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Message from the  
2018 USENIX Annual Technical Conference 

Program Co-Chairs

Welcome to the 2018 USENIX Annual Technical Conference.

We are excited for ATC ’18. We have had some very high-quality submissions, and clearly there has been a lot of 
work on behalf of both the authors who have contributed content and reviewers who have thoroughly reviewed sub-
missions. In particular, we want to thank the program committee members and external reviewers who were willing 
to volunteer their time and also willing to take on a larger-than-expected load to ensure proper reviewing.

The incredible dedication by this year’s program committee resulted in a program of 76 refereed papers and one 
keynote. These papers and keynote present novel research contributions and practical insights that advance the 
state-of-the-art in systems from a wide range of perspectives, demonstrating new capabilities or improvements for a 
variety of platforms and application scenarios. Given the spectrum of topics covered in the program, you are likely 
to find interesting ideas addressing your favorite areas and challenges.

For the traditional refereed papers track, we received a record number of paper registrations and submissions this 
year. Authors registered 557 papers, of which 377 (a 33% increase over last year) were complete submissions. The 
program co-chairs rejected one paper up front due to serious formatting violations. Of the submitted papers, 30 were 
short papers, which had to be at most five pages long (plus references), and the other 347 were full-length papers, 
which had to be at most 11 pages long plus references.

We required authors to submit abstracts a week before the paper submission in the hope of ensuring proper subject 
area coverage by the program committee and to get an idea of the reviewing load. This did not work. We had over 
550 submitted abstracts, meaning almost 40% of the submissions were abandoned. In the end, requiring abstracts 
to be submitted early did not help with planning due to such a large number of abstracts that did not result in a 
 submission.

The program committee had 72 members, excluding the 2 co-chairs. 28 of them had affiliations with industrial 
organizations, 42 with academic organizations (one member had dual affiliations), and 2 with government lab 
organizations. The committee represented three continents and seven countries. Program committee members were 
allowed to submit papers. The program co-chairs did not submit any papers.

We followed standard rules for handling conflicts of interest: conflicted members (or co-chairs) left the room dur-
ing the discussion of conflicted papers. We followed the tradition of single-blind reviews. It was not a decision we 
explicitly made. Given the issues surrounding single-blind reviews, it was a decision that we should have thought 
about and justified. Reviews were done by the program committee in two rounds with a few external reviews. The 
chairs did not participate in any of the reviews. In the first round, each of the 377 submitted papers received at least 
two reviews. 219 (58%) of the papers moved to the second round. Each paper in round two received at least two ad-
ditional reviews.

One of our goals was to get a large enough program committee so that we would not overwhelm members with 
review load and to give members enough time to produce quality reviews. Lower reviews also enable access to more 
potential committee members. We also had a light (20 members) and heavy committee (52). The light committee 
had an expected load of 12 to 16 papers and were not expected to attend the in-person committee meeting. The 
heavy committee had an expected load of 14-18 papers and were expected to attend the in-person meeting. As the 
load is relatively similar between light and heavy PC, we do not distinguish them on the website. When we saw the 
higher than expected number of submissions, we grew the committee. Furthermore, for papers where we lacked re-
viewer expertise in the main PC, we solicited 43 external reviewers, each reviewing on average one paper. In the end 
our committee members reviewed the maximum expected number of papers with a few going over the expectation. 
Altogether, we had more than 1,230 reviews.

After two phases of reviews, an online discussion was conducted among reviewers, during which the program 
committee decided to pre-accept 26 highly-ranked papers and pre-reject 69 more papers. These papers were not 
discussed in the PC Meeting while the rest of the round 2 papers, 124 papers, were discussed during the in-person 
program committee meeting.



The PC meeting was held on April 16–17 at the Facebook campus in Menlo Park, CA; more than 50 PC members 
 attended the meeting in person and many others called in. During the meeting, 50 additional papers were accepted. 
Among these 76 acceptances, four were short papers. Because of the large number of papers to discuss, we had two 
parallel meetings run by each chair. We would like to thank PhD students Huaicheng Li and Mingzhe Hao of the 
University of Chicago for optimizing the scheduling of discussions for the meetings and for acting as scribes during 
the meetings. We also would like to thank Facebook engineers and staff for helping with the logistics of the PC 
meeting.

We added to the program one keynote, chosen from recommendations made by members of the program committee. 
We were not able to have any additional sessions due to the large number of presentations for accepted papers.

We are very grateful to all who contributed to ATC ’18. In addition to the authors who submitted their work for 
consideration, the program committee, and the external reviewers, we would like to thank the USENIX staff for 
their outstanding conference management. By taking care of all organizational details, they enabled us to focus on 
building a strong program. We would also like to thank Facebook for their generosity in hosting the PC meeting.

We hope that you enjoy the conference. Thank you for participating in the USENIX ATC community!

USENIX ATC ’18 Program Co-Chairs  
Haryadi Gunawi, University of Chicago 
Benjamin Reed, Facebook
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Abstract
The Tributary elastic control system embraces the uncer-
tain nature of transient cloud resources, such as AWS
spot instances, to manage elastic services with latency
SLOs more robustly and more cost-effectively. Such
resources are available at lower cost, but with the pro-
viso that they can be preempted en masse, making them
risky to rely upon for business-critical services. Tribu-
tary creates models of preemption likelihood and exploits
the partial independence among different resource of-
ferings, selecting collections of resource allocations that
satisfy SLO requirements and adjusting them over time,
as client workloads change. Although Tributary’s col-
lections are often larger than required in the absence of
preemptions, they are cheaper because of both lower spot
costs and partial refunds for preempted resources. At the
same time, the often-larger sets allow unexpected work-
load bursts to be absorbed without SLO violation. Over
a range of web service workloads, we find that Tribu-
tary reduces cost for achieving a given SLO by 81–86%
compared to traditional scaling on non-preemptible re-
sources, and by 47–62% compared to the high-risk ap-
proach of the same scaling with spot resources.

1 Introduction
Elastic web services have been a cloud computing sta-
ple from the beginning, adaptively scaling the number
of machines used over time based on time-varying client
workloads. Generally, an adaptive scaling policy seeks to
use just the number of machines required to achieve its
Service Level Objectives (SLOs), which are commonly
focused on response latency and ensuring that a given
percentage (e.g., 95%) of requests are responded to in
under a given amount of time [17, 28, 19]. Too many
machines results in unnecessary cost, and too few re-
sults in excess customer dissatisfaction. As such, much
research and development has focused on doing this
well [20, 14, 11, 12, 26].

Elastic service scaling schemes generally assume in-
dependent and infrequent failures, which is a relatively
safe assumption for high-priority allocations in private
clouds and non-preemptible allocations in public clouds
(e.g., on-demand instances in AWS EC2 [3]). This as-
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sumption enables scaling schemes to focus on client
workload and server responsiveness variations in deter-
mining changes to the number of machines needed to
meet SLOs.

Modern clouds also offer transient, preemptible re-
sources (e.g., EC2 Spot Instances [1]) at a discount of
70–80% [6], creating an opportunity for cheaper ser-
vice deployments. But, simply using standard scaling
schemes fails to address the risks associated with such
resources. Namely, preemptions should be expected to
be more frequent than failures and, more importantly,
preemptions often occur in bulk. Akin to co-occurring
failures, bulk preemptions can cause traditional scaling
schemes to have sizable gaps in SLO attainment.

This paper describes Tributary, a new elastic control
system that exploits transient, preemptible resources to
reduce cost and increase robustness to unexpected work-
load bursts. Tributary explicitly recognizes the bulk
preemption risk, and it exploits the fact that preemp-
tions are often not highly correlated across different
pools of resources in heterogeneous clouds. For ex-
ample, in AWS EC2, there is a separate spot market
for each instance type in each availability zone, and re-
searchers have noted that they often move independently:
while preemptions within each spot market are corre-
lated, across spot markets they are not [16]. To safely
use preemptible resources, Tributary acquires collections
of resources drawn from multiple pools, modified as re-
source prices change and preemptions occur, while en-
deavoring to ensure that no single bulk preemption would
cause SLO violation. We refer to this dynamic use of
multiple preemptible resource pools as spot-dancing.

AcquireMgr is Tributary’s component that decides the
resource collection’s makeup. It works with any tradi-
tional scaling policy that determines (reactively or pre-
dictively) how many cores or machines are needed for
each successive period of time, based on client load vari-
ation. AcquireMgr decides which instances will provide
sufficient likelihood of meeting each time period’s tar-
get at the lowest expected cost. Its probabilistic algo-
rithm combines resource cost and preemption probability
predictions for each pool to decide how many resources
to include from each pool, and at what price to bid for
any new resources (relative to the current market price).
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Given that a preemption occurs when a market’s spot
price exceeds the bid price given at resource acquisition
time, AcquireMgr can affect the preemption probability
via the delta between its bid price and the current price,
informed by historical pricing trends. In our implemen-
tation, which is specialized to AWS EC2, the predictions
use machine learning (ML) models trained on historical
EC2 Spot Price data. The expected cost of the computa-
tion takes into account EC2’s policy of partial refunds for
preempted instances, which often results in AcquireMgr
choosing high-risk instances and achieving even bigger
savings than just the discount for preemptibility.

In addition to the expected cost savings, Tributary’s
spot-dancing provides a burst tolerance benefit. Any
elastic control scheme has some reaction delay between
an unexpected burst and any resulting addition of re-
sources, which can cause SLO violations. Because Trib-
utary’s resource collection is almost always bigger than
the scaling policy’s most recent target in order to accom-
modate bulk preemptions, extra resources are often avail-
able to handle unexpected bursts. Of course, traditional
elastic control schemes can also acquire extra resources
as a buffer against bursts, but only at a cost, whereas the
extra resources when using Tributary are a bonus side-
effect of AcquireMgr’s robust cost savings scheme.

Results for four real-world web request arrival traces
and real AWS EC2 spot market data demonstrate Tribu-
tary’s cost savings and SLO benefits. For each of three
popular scaling policies (one reactive and two predic-
tive), Tributary’s exploitation of AWS spot instances re-
duces cost by 81–86% compared to traditional scaling
with on-demand instances for achieving a given SLO
(e.g., 95% of requests below 1 second). Compared to un-
safely using traditional scaling with spot instances (AWS
AutoScale [2]) instead of on-demand instances, Tribu-
tary reduces cost by 47–62% for achieving a given SLO.
Compared to other recent systems’ policies for exploit-
ing spot instances to reduce cost [24, 16], Tributary pro-
vides higher SLO attainment at significantly lower cost.

This paper makes four primary contributions. First,
it describes Tributary, the first resource acquisition sys-
tem that takes advantage of preemptible cloud resources
for elastic services with latency SLOs. Second, it in-
troduces AcquireMgr algorithms for composing resource
collections of preemptible resources cost-effectively, ex-
ploiting the partial refund model of EC2’s spot markets.
Third, it introduces a new preemption prediction ap-
proach that our experiments with EC2 spot market price
traces show is significantly more accurate than previous
preemption predictors. Fourth, we show that Tributary’s
approach yields significant cost savings and robustness
benefits relative to other state-of-the-art approaches.

2 Background and Related Work
Elastic services dynamically acquire and release machine
resources to adapt to time-varying client load. We distin-
guish two aspects of elastic control, the scaling policy
and the resource acquisition scheme. The scaling pol-
icy determines, at any point in time, how many resources
the service needs in order to satisfy a given SLO. The
resource acquisition scheme determines which resources
should be allocated and, in some cases, aspects of how
(e.g., bid price or priority level). This section discusses
AWS EC2 spot instances and resource acquisition strate-
gies to put Tributary and its new approach to resource
acquisition into context.

2.1 Preemptible resources in AWS EC2
In addition to non-preemptible, or reliable resources,

most cloud infrastructures offer preemptible resources as
a way to increase utilization in their datacenters. Pre-
emptible resources are made available, on a best-effort
basis, at decreased cost (in for-pay settings) and/or at
lower priority (in private settings). This subsection de-
scribes preemptible resources in AWS EC2, both to pro-
vide a concrete example and because Tributary and most
related work specialize to EC2 behavior.

EC2 offers “on-demand instances”, which are reli-
able VMs billed at a flat per-second rate. EC2 also of-
fers the same VM types as “spot instances”, which are
preemptible but are usually billed at prices significantly
lower (70% - 80%) than the corresponding on-demand
price. EC2 may preempt spot instances at any time, thus
presenting users with a trade-off between reliability (on-
demand) and cost savings (spot).

There are several properties of the AWS EC2 spot mar-
ket behavior that affect customer cost savings and the
likelihood of instance preemption. (1) Each instance type
in each availability zone has a unique AWS-controlled
spot market associated with it, and AWS’s spot mar-
kets are not truly free markets [9]. (2) Price movements
among spot markets are not always correlated, even for
the same instance type in a given region [23]. (3) Cus-
tomers specify a bid in order to acquire a spot instance.
The bid is the maximum price a customer is willing to
pay for an instance in a specific spot market; once a bid
is accepted by AWS, it cannot be modified. (4) A cus-
tomer is billed the spot market price (not the bid price)
for as long as the spot market price for the instance does
not exceed the bid price or until the customer releases
it voluntarily. (5) As of Oct 2nd, 2017, AWS charges
for the usage of an EC2 instance up to the second, with
one exception: if the spot market price of an instance ex-
ceeds the bid price during its first hour, the customer is
refunded fully for its usage. No refund is given if the
spot instance is revoked in any subsequent hour. We de-
fine the period where preemption makes the instance free
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as the preemption window.
When using EC2 spot instances, the bidding strategy

plays an important role in both cost and preemption prob-
ability. Many bidding strategies for EC2 spot instances
have been studied [9, 33, 30]. The most popular strategy
by far is to bid the on-demand price to minimize the odds
of preemption [23, 21], since AWS charges the market
price rather than the bid price.

2.2 Cloud Resource Acquisition Schemes
Given a target resource count from a scaling policy, a

resource acquisition scheme decides which resources to
acquire based on attributes of resources (e.g., bid price
or priority level). Many elastic control systems assume
that all available resources are equivalent, such as would
be true in a homogeneous cluster, which makes the ac-
quisition scheme trivial. But, some others address re-
source selection and bidding strategy aspects of multi-
ple available options. Tributary’s AcquireMgr employs
novel resource acquisition algorithms, and we discuss re-
lated work here.

AWS AutoScale [2] is a service provided by AWS that
maintains the resource footprint according to the target
determined by a scaling policy. At initialization time,
if using on-demand instances, the user specifies an in-
stance type and availability zone. Whenever the scaling
target changes, AutoScale acquires or releases instances
to reach the new target. If using spot instances, the user
can use a so-called “spot fleet”[4] consisting of multi-
ple instance type and availability zone options. In this
case, the user configures AutoScale to use one of two
strategies. The lowestPrice strategy will always select
cheapest current spot price of the specified options. The
diversified strategy will use an equal number of instances
from each option. Tributary bids aggressively and diver-
sifies based on predicted preemption rates and observed
inter-market correlation, resulting in both higher SLO at-
tainment and lower cost than AutoScale.

Kingfisher [26] uses a cost-aware resource acquisition
scheme based on using integer linear programming to
determine a service’s resource footprint among a het-
erogeneous set of non-preemptible instances with fixed
prices. Tributary also selects from among heterogeneous
options, but addresses the additional challenges and op-
portunities introduced by embracing preemptible tran-
sient resources. Several works have explored ways of
selecting and using spot instances. HotSpot [27] is a re-
source container that allows an application to suspend
and automatically migrate to the most cost-efficient spot
instance. While HotSpot works for single-instance ap-
plications, it is not suitable for elastic services since its
migrations are not coordinated and it does not address
bulk preemptions.

SpotCheck [25] proposes two methods of selecting
spot markets to acquire instances in while always bid-

ding at a configurable multiple of the spot instance’s cor-
responding on-demand price. The first method is greedy
cheapest-first, which picks the cheapest spot market. The
second method is stability-first, which chooses the most
price-stable market based on past market price move-
ment. SpotCheck relies on VM migration and hot spares
(on-demand or otherwise) to address revocations, which
incurs additional cost, while Tributary uses a diverse pool
of spot instances to mitigate revocation risk.

BOSS [32] hosts key-value stores on spot instances
by exploiting price differences across pools in different
data-centers and creating an online algorithm to dynam-
ically size pools within a constant bound of optimal-
ity. Tributary also constructs its resource footprint from
different pools, within and possibly across data-centers.
Whereas BOSS assumes non-changing storage capacity
requirements, Tributary dynamically scales its resource
footprint to maintain the specified latency SLO while
adapting to changes in client workload.

Wang et al. [31] explore strategies to decide whether,
in the face of changing application behavior, it is better to
reserve discounted resources over longer periods or lease
resources at normal rates on a shorter term basis. Their
solution combines on-demand and “reserved” (long term
rental at discount price) instances, neither of which are
ever preempted by Amazon.

ExoSphere [24] is a virtual cluster framework for
spot instances. Its instance acquisition scheme is based
on market portfolio theory, relying on a specified risk
averseness parameter (α). ExoSphere formulates the re-
turn of a spot instance acquisition as the difference be-
tween the on-demand cost and the expected cost based
on past spot market prices. It then tries to maximize the
return of a set of instance allocations with respect to risk,
considering market correlations and α , determining the
fraction of desired resources to allocate in each spot mar-
ket being considered. For a given virtual cluster size,
ExoSphere will acquire the corresponding number of in-
stances from each market at the on-demand price. Unsur-
prisingly, since it was created for a different usage model,
ExoSphere’s scheme is not a great fit for elastic services
with latency SLOs. We implement ExoSphere’s scheme
and show in Section 5.6 that Tributary achieves lower
cost, because it bids aggressively (resulting in more pre-
emptions), and higher SLO attainment, because it explic-
itly predicts preemptions and selects resource sets based
on sufficient tolerance of bulk preemptions.

Proteus [16] is an elastic ML system that combines
on-demand resources with aggressive bidding of spot re-
sources to complete batch ML training jobs faster and
cheaper. Rather than bidding the on-demand price, it bids
close to market price and aggressively selects spot mar-
kets and bid prices that it predicts will result in preemp-
tion, in hopes of getting many partial hours of free re-
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sources. The few on-demand resources are used to main-
tain a copy of the dynamic state as spot instances come
and go, and acquisitions are made and used to scale the
parallel computation whenever they would reduce the av-
erage cost per unit work. Although Tributary uses some
of the same mindset (aggressive use of preemptible re-
sources), elastic services with latency SLOs are different
than batch processing jobs; elastic services have a tar-
get resource quantity for each point in time, and having
fewer usually leads to SLO violations, while having more
often provides no benefit. Unsurprisingly, therefore, we
find that Proteus’s scheme is not a great fit for such ser-
vices. We implement Proteus’s acquisition scheme and
show in Section 5.6 that Tributary achieves much higher
SLO attainment, because it understands the resource tar-
get and explicitly uses diversity to mitigate bulk preemp-
tion effects. Tributary also uses a new and much more
accurate preemption predictor.

3 Elastic Control in Tributary
AcquireMgr is Tributary’s resource acquisition compo-
nent, and its approach differentiates Tributary from pre-
vious elastic control systems. It is coupled with a scal-
ing policy, any of many popular options, which provides
the time-varying resource quantity target based on client
load. AcquireMgr uses ML models to predict the pre-
emption probability of resources and exploits the rela-
tive independence of AWS spot markets to account for
potential bulk preemptions by acquiring a diverse mix of
preemptible resources collectively expected to satisfy the
user-specified latency SLO. This section describes how
AcquireMgr composes the resource mix while targeting
minimal cost.

Resource Acquisition. AcquireMgr interacts with
AWS to request and acquire resources. To do so, Ac-
quireMgr builds sets of request vectors. Each request
vector specifies the instance type, availability zone, bid
price, and number of instances to acquire. We call this
an allocation request. An allocation is defined as a set
of instances of the same type acquired at the same time
and price. AcquireMgr’s total footprint, denoted with the
variable A, is a set of such allocations. Resource acqui-
sition decisions are made under four conditions: (1) a
periodic (one-minute) clock event fires, (2) an allocation
reaches the end of its preemption window, (3) the scaling
policy specifies a change in resource requirement, and/or
(4) a preemption occurs. We term these conditions deci-
sion points.

AcquireMgr abstracts away the resource type which
is being optimized for. For the workloads described
in this paper, virtual CPUs (VCPUs) are the bottleneck
resource; however, it is possible to optimize for mem-
ory, network bandwidth, or other resource types instead.
A service using Tributary provides its resource scaling

characteristics to AcquireMgr in the form of a utility
function υ(). This utility function maps the number of
resources to the percentage of requests expected to meet
the target latency, given the load on the web service.
The shape of a utility function is service-specific and de-
pends on how the service scales, for the expected load,
with respect to the number of resources. In the simplest
case where the web service is embarrassingly parallel,
the utility function is linear with respect to the number
of resources offered until 100% of the requests are ex-
pected to be satisfied, at which point the function turns
into a horizontal line. As a concrete example, if an em-
barrassingly parallel service specifies that 100 instances
are required to handle 10000 requests per second with-
out any of the requests missing the target latency, a linear
utility function will assume that 50 instances will allow
the system to meet the target latency on 50% of the re-
quests. Tributary allows applications to customize the
utility function so as to accommodate the resource re-
quirements of applications with various scaling charac-
teristics.

In addition to providing υ(), the service also provides
the application’s target SLO in terms of a percentage of
requests required to meet the target latency. By expos-
ing the target SLO as a customizable input, Tributary al-
lows the application to control the Cost-SLO tradeoff.
Upon receiving this information, AcquireMgr acquires
enough resources to meet SLO in expectation while op-
timizing for expected cost. In deciding which resources
to acquire, AcquireMgr uses the prediction models de-
scribed in Sec. 3.1 to predict the probability that each
allocation would be preempted. Using these predictions,
AcquireMgr can compute the expected cost and the ex-
pected utility of a set of allocations (Sec. 3.2). Ac-
quireMgr greedily acquires allocations until the expected
utility is greater than or equal to the SLO percentage re-
quirement (Sec. 3.3).

3.1 Prediction Models
When acquiring spot instances on AWS, there are

three configurable parameters that affect preemption
probability: instance type, availability zone and bid
price. This section describes the models used by Ac-
quireMgr to predict allocation preemption probabilities.

Previous work [16] proposed taking the historical me-
dian probability of preemption based on the instance
type, availability zone and bid price. This approach does
not consider time of day, day of week, price fluctuations
and several other factors that affect preemption proba-
bilities. AcquireMgr trains ML models considering such
features to predict resource reliability.

Training Data and Feature Engineering. The pre-
diction models are trained ahead of time with data de-
rived from AWS spot market price histories. Each sam-
ple in the training dataset is a hypothetical bid, and the
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target variable, preempted, of our model is whether or
not an instance acquired with the hypothetical bid is pre-
empted before the end of its preemption window (1 hr).
We use the following method to generate our data set:
For each instance and bid delta (bid price above the mar-
ket price with range [0.00001,0.2]) we generate a set of
hypothetical bids with the bid starting at a random point
in the spot market history. For each bid, we look forward
in the spot market price history. If the market price of
the instance rises above the bid price at any point within
the hour, we mark the sample as preempted. For each
historical bid, we also record the ten prices immediately
prior to the random starting point and their time-stamps.

To increase prediction accuracy, AcquireMgr engi-
neers features from AWS spot market price histories.
Our engineered features include: (1) Spot market price;
(2) Average spot market price; (3) Bid delta; (4) Fre-
quency of spot market price changing within past hour;
(5) Magnitude of spot market price fluctuations within
past two, ten, and thirty minutes; (6) Day of the week;
(7) Time of day; (8) Whether the time of day falls within
working hours (separate feature for all three time zones).
These features allow AcquireMgr to construct a more
complex prediction model, leading to a higher prediction
accuracy (Sec. 5.7).

Model Design. To capture the temporal nature of the
EC2 spot market, AcquireMgr uses a Long Short-Term
Memory Recurrent Neural Network (LSTM RNN) to pre-
dict instance preemptions. The LSTM RNN is a popu-
lar model for workloads where the ordering of training
examples is important to prediction accuracy [29]. Ex-
amples of such workloads include language modeling,
machine translation, and stock market prediction. Un-
like feed forward neural networks, LSTM models take
previous inputs into account when classifying input data.
Modeling the EC2 spot market as a sequence of events
significantly improves prediction accuracy (Sec. 5.7).
The output of the model is the probability of the resource
being preempted within the hour.

3.2 AcquireMgr
To make decisions about which resources to acquire

or release, AcquireMgr computes the expected cost and
expected utility of the set of instances it is considering
at each decision point. Calculations of the expected val-
ues are based on probabilities of preemption computed
by AcquireMgr’s trained LSTM model. This section de-
scribes how AcquireMgr computes these values.

Definitions. To aid in discussion, we first define the
notion of a resource pool. Each instance type in each
availability zone forms its own resource pool—in the
context of the EC2 spot instances, each such resource
pool has its own spot market. Given a set of allocations
A, where A is formulated as a jagged array, let Ai be de-
fined as the ith entry of A corresponding to an array of

A Set of allocations as jagged array
Ai Sorted array of allocations from resource pool i
ai, j Set of instances allocated from resource pool i
βi, j Probability that allocation ai, j is preempted
ti, j Time left in the preemption window for ai, j

ki, j Number of instances in allocation ai, j

Pi, j Market price of allocation ai, j

pi, j Bid price of allocation ai, j

size(y) Size of the major dimension of array y
resc(y) Counts the total number of resources in y
λi Regularization term for diversity
P(R = r) Probability that r resources remain in A
υ(r) The utility of having r resources remain in A
VA The expected utility of a set of allocations A
CA Expected cost of a set of allocations ($)

Table 1: Summary of parameters used by AcquireMgr
.allocations from resource pool i sorted by bid price in as-

cending order. We define allocation ai, j as an allocation
from resource pool i (i.e., ai, j ∈ Ai) with the jth lowest
bid in that resource pool. We further denote pi, j as the
bid price of allocation ai, j, βi, j as the probability of pre-
emption of allocation ai, j, and ti, j as the time remaining
in the preemption window for allocation ai, j. Note that
pi, j ≥ pi, j−1, which also implies βi, j−1 ≥ βi, j. Finally,
we define a size(A) function that returns the size of A’s
major dimension. See Table 1 for symbol reference.

Expected Cost. The total expected cost for a given
footprint A is calculated as the sum over the expected
cost of individual allocations CA [ai, j]:

CA =
size(A)

∑
i=1

size(Ai)

∑
j=1

CA[ai, j] (1)

AcquireMgr calculates the expected cost of an alloca-
tion by considering the probability of preemption within
the preemption window βi, j for a given allocation ai, j at
a given bid delta. There are exactly two possibilities: an
allocation will either be preempted with probability βi, j
or it will reach the end of its preemption window in the
remaining ti, j minutes with probability 1−βi, j, in which
case we would voluntarily release the allocation. The ex-
pected cost can then be written down as:

CA[ai, j] = (1−βi, j)∗Pi, j ∗ ki, j ∗ ti, j +βi, j ∗0∗ ki, j ∗ ti, j (2)

where ki, j is the number of instances in the allocation.
and Pi, j is the market price for instance of type i at the
time of acquisition.

Expected Utility. In addition to computing expected
cost for a set of allocations, AcquireMgr computes the
expected utility for a set of allocations. The expected
utility is the expected percentage of requests that will
meet the latency target given the set of allocations A. Ex-
pected utility takes into account the probability of allo-
cation preemptions, providing AcquireMgr with a metric
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for quantifying the expected contribution that each allo-
cation should make to meet the resource target. The ex-
pected utility VA of the set of allocations A is calculated
as follows:

VA =
resc(A)

∑
r=0

P(R = r)∗υ(r) (3)

where P(R) is the probability mass function of the dis-
crete random variable R that denotes the number of re-
sources not preempted within the next hour, υ is the util-
ity function provided by the service, and resc(A) is the
function that reports the number of resources in a set of
allocations A. resc(A) computes the total amount of re-
sources in A, while size(A) only computes the size of A’s
major dimension.

Eq. 3 computes the expected utility over the next hour
given a workload, as though Tributary just bid for all its
allocations. This works, even though there will usually
be complex overlapping expiration windows across an
hour, because it only needs to hold true until recomputed
at the next decision point, which is never more than a
minute away. To derive P(R), AcquireMgr starts off with
the original set of allocations A and generates all possible
subsets of A. Each possible subset S ⊆ A, S marks some
allocations in A as preempted (∈ S) and the remaining
allocations as not preempted (6∈ S). To formalize the no-
tion, we define the indicator variable di, j, where di, j = 1
if allocation ai, j ∈ S and di, j = 0 otherwise.

To compute the probability of S being the set of pre-
empted resources (P(S)), AcquireMgr separates all allo-
cations by resource pools, as each resource pool within
AWS has its own spot market. We leverage the follow-
ing localizing property. Within each resource pool Ai,
the probability of preempting an allocation ai, j is only
dependent on whether the allocation with the next low-
est bid price, ai, j−1, in the same resource pool is pre-
empted. Note that P(ai,1) = βi,1 for allocation ai,1 for all
resource pools i. Consider two allocations ai, j,ai, j−1 ∈ A
from resource pool Ai. We observe the following prop-
erties: (1) ai, j cannot be preempted unless ai, j−1 is pre-
empted, (2) the probability that both ai, j and ai, j−1 are
preempted is the probability that ai, j is preempted, and
(3) the probability that ai, j is preempted without ai, j−1
being preempted is 0. With Bayes’ Rule, we observe
that:

P(ai, j|ai, j−1) =
P(ai, j ∧ai, j−1)

P(ai, j−1)
=

βi, j

βi, j−1
. (4)

Thus, for an allocation ai, j given subset S⊆ A,

P(ai, j|ai, j−1) =

{
0 if allocation ai, j−1 6∈ S,
βi, j/βi, j−1 else.

(5)

Tributary further introduces a regularization term λi
to encourage bidding in markets with low correlation.
Having instances spread across lowly correlated markets

is important for avoiding high-risk footprints. If the re-
source footprint has too many instances from correlated
resource pools, Tributary becomes exposed to having too
many resources being lost to a correlated price spike,
potentially causing an SLO violation. In order obtain
price correlation across spot markets, we periodically
keep track of fix-sized moving windows of spot markets
and compute the Pearson correlation between each pair
of spot markets. When computing expected utility, Trib-
utary increases an allocation in Ai’s probability of pre-
emption βi, j by λi:

λi = γ ∗
size(A)

∑
l=1

ρi,l ∗
resc(Ai)+ resc(Al)

2∗ resc(A)
(6)

where ρi,l is the Pearson correlation between resource
pools i and l, and γ ∈ R ≥ 0 is the configurable penalty
multiplier. Essentially, we add a weighted penalty to an
allocation based on its Pearson correlation scores with
the rest of our resources in different resource pools. In
our experiments, we set γ = 0.01. The regularization
term leads to Tributary creating a diversified resource
pool, thus reducing the probability that a significant por-
tion of the resources are preempted simultaneously. Hav-
ing a high probability of maintaining the majority of the
resource pool at any point time, allows Tributary to avoid
SLO violations with a high probability.

Let’s denote P(S) as the probability of S being the set
of resources preempted from A. AcquireMgr computes
it by taking the product of the conditional probability of
each allocation having the outcome specified in S. If the
allocation is preempted (di, j = 1) the conditional prob-
ability of the allocation being preempted (P(ai, j|ai, j−1))
is used, otherwise (di, j = 0) the product uses the condi-
tional probability of the allocation not being preempted
(1−P(ai, j|ai, j−1)).

P(S) =
size(A)

∏
i=1

size(Ai)

∏
j=1

(
di, j ∗P(ai, j|ai, j−1)

+(1−di, j)∗ (1−P(ai, j|ai, j−1))
) (7)

Finally, AcquireMgr formulates the probability of r re-
sources remaining after preemption P(R = r) (Eq. 3) as
the sum of the probabilities of all sets S where the num-
ber of resources not preempted in S equals to r:

P(R = r) = ∑
S⊆A,resc(S)=resc(A)−r

P(S) (8)

which it uses to calculate the expected utility of a set of
allocations A (Eq. 3).

Computational tractability. AcquireMgr’s algorithm
is exponentially computationally expensive as the num-
ber of spot markets considered increases. When con-
sidering more markets, it is possible to reduce compu-
tational complexity by grouping similar, correlated spot
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Figure 1: Figures (b) and (c) show how Tributary and AutoScale handle a sample workload respectively. Figure (a) is the legend for
(b) and (c), color-coding each allocation. The black dotted lines in (b) and (c) signify the request rates over time. At minute 15, the
request rate unexpectedly spikes and AutoScale experiences “slow” requests until completing integration of additional resources
with 3. Tributary, meanwhile, had extra resources meant to address preemption risk in C, providing a natural buffer of resources
that is able to avoid “slow” requests during the spike. At minute 35, when the request rate decreases, Tributary terminates B, since
it believes that B has the lowest probability of getting the free partial hour. It does not terminate D since it has a high probability
of eviction and is likely to be free; it also does not terminate C since it needs to maintain resources. AutoScale, on the other hand,
terminates both 2 and 3, incurring partial cost. At minute 52, the request rate increases and Tributary again benefits from the extra
buffer while AutoScale misses its latency SLO. In this example, Tributary has less “slow” requests and achieves lower cost than
AutoScale because AutoScale pays for 3 and for the partial hour for both 1 and 2 while Tributary only pays for A and the partial
hour for B since C and D were preempted and incur no cost.

markets, and performing revocation analysis with a rep-
resentative market. Although this would potentially de-
crease the precision of the preemption analysis, it would
allow AcquireMgr to further improve performance by
considering a larger number of markets.

3.3 Scaling Out
Resource Acquisition. When Tributary starts, the

user specifies a target SLO in terms of percentage of re-
quests that respond within a certain latency for Tributary
to target. AcquireMgr uses this target SLO to acquire
resources. At each decision point, AcquireMgr’s objec-
tive is to acquire resources until the expected utility θA
is greater than or equal to the target SLO. If the expected
utility is greater than or equal to the target SLO, no action
is taken; otherwise, AcquireMgr computes the expected
cost (Eq. 2) and utility of the current set of allocations
(Eq. 3). AcquireMgr then calculates the missing num-
ber of resources (M) required to meet the target SLO and
builds a set of possible allocations (Λ) that consists of
allocations from different resource pools at different bid
prices (from $0.0001 to $0.2 above the current price).
For each possible allocation Λi, AcquireMgr records the
new expected utility divided by the new expected cost
of A∪Λi, choosing the allocation Λchosen that maximizes
this value. AcquireMgr continues to add possible alloca-
tions until it achieves the target SLO in expectation.

Buffers of Transient Resources. To accommodate
potential resource preemptions, Tributary inherently ac-
quires more than the required amount of resources if any
of its allocations have a preemption probability greater
than zero, which is always the case with spot instances.
The amount of additional resources acquired depends on
the target SLO and the probabilities of allocation pre-

emptions (Eq. 3). While the primary goal of these ad-
ditional resources is to account for preemptions, they of-
ten have the added benefit handling unexpected increases
in load. Experiments with Tributary show that these
resource buffers both increase the fraction of requests
meeting latency targets and decrease cost (Sec. 5.3).

3.4 Scaling In
Aside from preemptions, Tributary also tries to scale

in voluntarily. As described earlier, each allocation is
considered only for the duration of the preemption win-
dow. When an allocation reaches the end of its preemp-
tion window, it is terminated and replaced with a new
allocation if required. When resource requirements de-
crease, Tributary considers terminating allocations for al-
locations least likely to be preempted. During this pro-
cess Tributary chooses the allocation with the least time
remaining in the hour, computes the expected utility θA
without this allocation, and if it is greater than the tar-
get SLO, Tributary terminates the allocation. Tributary
continues to try and terminate allocations as long as θA
remains greater than the target SLO.

3.5 Example and Future Consideration
Example. Fig. 1 shows how Tributary and AutoScale

handle a sample workload, including how the extra re-
sources Tributary acquires to handle preemption events
can also handle an unexpected request rate increase and
how aggressive allocation selection can get some re-
sources for free due to preemptions.

Future. Tributary lowers cost and meets SLO require-
ments by taking advantage of low-cost spot instances and
uncorrelated prices across different spot instance mar-
kets. Mass adoption of systems like Tributary could
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change these characteristics. While a detailed analysis of
mass adoption’s potential effects on EC2 spot-markets is
outside the scope of this paper, we evaluate the effects
of two potential changes to the spot-market policies in
Section 5.5.

4 Tributary Implementation
Figure 2 shows Tributary’s high-level system architec-
ture. This section describes the main components, how
they fit together, and how they interact with AWS.

Preemption Prediction Models. The prediction mod-
els are trained offline using TensorFlow [8] and deployed
using Tensorflow Serving [7]. A separate model is used
for each resource pool. To service run time predictions
Tributary launches a Prediction Serving Proxy that re-
ceives all prediction queries from AcquireMgr, forwards
them to their respective models, aggregates the results,
and returns the predictions to AcquireMgr.

Resource Footprint Management. In Tributary, Ac-
quireMgr takes primary responsibility for managing the
resource footprint. AcquireMgr acquires instances, ter-
minates instances, and monitors AWS for instance pre-
emption notifications. AcquireMgr considers modifying
the resource footprint at every decision point, and it fol-
lows the procedure described in Sec. 3.3 when additional
resources are needed. Once AcquireMgr selects a set of
instances to acquire, it sends instance requests to AWS
via boto.ec2 API calls. AWS responds with a set of spot
request ids, which corresponds to the EC2 instances al-
located to AcquireMgr. Once the instances are in a run-
ning state, AcquireMgr sends the instance ids associated
with the new instances to Resource Manager. Instance
removal follows a similar procedure.

Scaling Policy. The Scaling Policy component deter-
mines dynamic sizing of the resource target. Through a
simple event-driven API, users can implement their own
scaling policies that access metrics provided by the Mon-
itoring Manager and specify the resource target.

Monitoring Manager (MonMgr). The Monitoring
Manager orchestrates monitoring of service system re-
sources. The Scaling Policy can register for metrics such
as total number of requests and average CPU utilization
of instances. The MonMgr queries requested metrics us-
ing AWS CloudWatch each monitoring period and for-
wards them to the scaling policy.

Resource Manager (ResMgr). The Resource Man-
ager is a proxy for AcquireMgr. Using resource tar-
gets provided by the Scaling Policy, the ResMgr gen-
erates the utility function used by AcquireMgr to make
resource acquisition decisions.1 The ResMgr also re-
ceives instance allocations and termination notices from
AcquireMgr and forwards them to the Service Manager.

1Process of constructing the utility function is described in Sec. 5.2.

Figure 2: Tributary architecture.

5 Evaluation
This section evaluates Tributary’s effectiveness. The re-
sults support a number of important findings: (1) Tribu-
tary’s exploitation of AWS spot market instances reduces
cost by 81%–86% compared to on-demand instances and
simultaneously decrease SLO latency misses; (2) Com-
pared to standard bidding policies for spot instances,
Tributary reduces cost by up to 41% and decreases SLO
latency misses by 31%–65%; (3) Compared to extend-
ing those standard policies to use enough extra (buffer)
resources to match Tributary’s number of SLO latency
misses, Tributary reduces cost by 47%–62%; (4) Trib-
utary outperforms state-of-the-art resource managers in
running elastic services; (5) Tributary’s preemption pre-
diction models improve accuracy significantly, resulting
in 37% lower cost than previous prediction approaches.

5.1 Experimental Setup
Experimental Platform. We report results for use of

three AWS EC2 spot instance types: c4.large, c4.xlarge,
and c4.2xlarge. The results correspond to the us-west-2
region, which consists of three availability zones. Us-
ing the three instance types in each availability zone, our
experiments involve nine resource pools.

Workload. The simulated workload uses a real-world
trace for request arrival times, with each request con-
sisting of the derivation of the PBKDF2 [18] key of a
password. The calculation of a PBKDF2 key is CPU-
heavy, with no network overhead and minimal memory
overhead. With the CPU performance being the bottle-
neck, the resource requirement can be characterized in
requests-per-second-per-VCPU.

Environment. In the simulation framework, each in-
stance is characterized with a number of VCPUs, and
the request processing time is configured to the mea-
sured time for one request on an EC2 instance (≈100ms).
Each instance server maintains a queue of requests, and
we simulate the queueing effects using the discrete event
simulation library SimPy [22]. The simulation frame-
work takes into account resource start-up time, with
newly acquired instances not able to service requests for
two hundred seconds following their launch.

SLO and Scaling. The target service latency is set to
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Figure 3: Traces used in system evaluation.

one second, and we verified on EC2 that a VCPU can
handle roughly 10 requests per second without violat-
ing the latency target. So, the requests-per-second-per-
VCPU is ten, and the queue size per server instance is
ten times the number of VCPUs in the instance. Tribu-
tary is not overly sensitive to the target latency setting.

Traces. We use four real-world request arrival traces
with differing characteristics. Berkeley is from the
Berkeley Home IP proxy service and ClarkNet is from
the ClarkNet ISP’s HTTP servers [10]. Both exhibit a
periodic, diurnal pattern. We use the first 2000 minutes
of these two traces, which covers an entire period. WITS
is a sampled trace from the Waikato Internet Traffic Stor-
age (WITS) [15]. The trace lasts for roughly a day, from
April 6th to April 7th of the year 2000. This trace ex-
hibits large variation of request rates throughout the day,
as can be seen in Fig. 3b. WorldCup98 is the arrival trace
of the workload on the 1998 FIFA World Cup HTTP
Servers [10] on day 75 of the World Cup. All traces are
scaled to have an average of 125 requests per second in
order to generate sufficient load for the experiments.

5.2 Scaling Policies Evaluated
We implement three popular scaling policies: Reac-

tive, Predictive Moving Window Average (MWA), and
Predictive Linear Regression (LR) to evaluate our sys-
tem. The utility function provided by the service is lin-
ear for all three policies. We make this assumption since
our workload characteristic is embarrassingly parallel —
if a workload exhibits different scaling characteristics, a
different utility function can be employed.

The Reactive Policy scales out immediately when de-
mand reported by the MonMgr is greater than what the
available resources are able to handle. It scales in slowly
(only after three minutes of low demand), as recom-
mended by Gandhi et al. [12], to prevent premature scale-
in in case the demand fluctuates widely in a short period
of time. The MWA Policy maintains a sliding window
of a fixed size, with each window entry consisting of the
number of requests received in each monitoring period.
The policy takes the average of the window entries to
predict the number of requests on the next monitoring pe-
riod. The policy then adjusts the utility and scaling func-
tions according to the predicted number of requests, and
reports the updated functions to the ResMgr to scale in
expectation of future requests. The LR Policy also main-
tains a sliding window of a fixed size, but rather than us-

ing the average in the window for prediction, the policy
performs linear regression on data points in the window
to estimate the expected number of requests in the next
monitoring period. Our experiments show that regardless
of the scaling policy used, Tributary beats its competitors
in both meeting the service latency target and cost.

5.3 Improvements with Tributary
Here, we evaluate Tributary’s ability to reduce cost

and latency target misses against AutoScale.
AWS Autoscale. AWS AutoScale (Sec. 2.2) as of-

fered by Amazon only supports the simplest reactive
scaling policies. To provide better comparison between
approaches, we implement the AWS AutoScale resource
acquisition algorithm as closely as possible according to
its documentation [2] and integrate it with Tributary’s
SvcMgr to work with its more powerful scaling policies.
From here on, mentions of AutoScale refer to our imple-
mentation of AWS AutoScale. AutoScale is the equiv-
alent of the AcquireMgr component of Tributary. The
default AutoScale algorithm with spot instances bids for
the lowest market-priced spot instance at the on-demand
price upon resource requests by the scaling policy. In ad-
dition, AutoScale terminates resources as soon as the re-
source requirements are lowered, choosing to terminate
resources that are most expensive at the moment.

Methodology and Terminology. To achieve fair com-
parisons across a wide range of data points, we perform
cost analysis with simulations using historical spot mar-
ket traces. Using traces allows us to test different ap-
proaches on the same period of market data and to get
a better picture of the expected behavior of the system
in a shorter amount of time. For each request arrival
trace (Sec. 5.1) and resource acquisition approach, we
present the average cost and percentage of “slow” re-
quests over trace requests across ten randomly chosen
day/time starting points between January 23, 2017 and
March 23, 2017 in the us-west-2 region. From here on,
we define a “slow” request as a request that does not
meet the latency target and the percentage of “slow” re-
quests as the percentage of “slow” requests over all re-
quests in a single trace. 2

Cost Savings and Service Latency Improvements.
Fig. 4 shows the cost savings and percentage of “slow”
requests for the ClarkNet trace. The cost savings are
normalized against running Tributary on on-demand re-
sources. The results demonstrate that Tributary reduces
cost and “slow” requests for all three scaling policies.
Cost savings are ≈ 85% compared to on-demand re-
sources. For the ClarkNet trace, Tributary reduces cost
by 36%, 24% and 21% compared to to AutoScale for
the Reactive, Predictive-LR and Predictive-MWA scaling
policies, respectively. Compared to AutoScale, Tributary

2Prediction models were trained on data from 06/06/16 – 01/22/17.
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Figure 4: Cost savings (red) and percentage of “slow” requests (blue) for the ClarkNet trace.

reduces “slow” requests by 72%, 61% and 64%, respec-
tively, for the three scaling policies.

In order to decrease the number “slow” requests, popu-
lar scaling polices are often configured to provision more
resources than immediately necessary to handle unex-
pected increases in load. It is common to specify the
resource buffer as a percentage of the expected resource
requirement. For example, with a buffer of 50%, 15 re-
sources (e.g., VCPUs) would be acquired rather than the
projected 10. AutoScale+Buffer shows the cost of provi-
sioning AutoScale with a large enough buffer such that
its number of “slow” requests matches that of Tributary.
Tributary reduces cost by 61%, 56% and 57% compared
to AutoScale+Buffer for the three scaling policies.

The cost savings for Tributary on the Berkeley trace
relative to AutoScale are similar to those on the ClarkNet
trace, but the reduction in percentage of “slow” requests
increases. This difference in performance is due to differ-
ing characteristics of the two traces — the ClarkNet trace
experiences more minute-to-minute volatility in request
rate compared to the Berkeley trace. We observe similar
levels of cost reductions and reduction in “slow” requests
on the WITS and WorldCup98 traces, results for WITS
are shown in Tables 2. Compared to AutoScale+Buffer,
Tributary decreased costs by 47–62% across all traces.

Scaling Policy Cost Saving “Slow” request Reduction
Reactive 37% 31%
Predictive-LR 33% 50%
Predictive-MWA 29% 51%

Table 2: Cost and “slow” request improvements for Tributary
compared to AutoScale for the WITS trace

Attribution of Benefits. Tributary’s superior perfor-
mance arises from several factors. Much of the reduction
in cost compared to AutoScale is due to Tributary’s abil-
ity to get free instance hours. Free instance hours occur
when an allocation does useful work but is preempted
by AWS before the end of a preemption window. The
user receives a refund for the partial hour, which means
that any work done by the allocation in the preemption
window comes at no cost to the user. Tributary takes
the probability of getting free instance hours into account
when computing the expected cost of allocations (Eq. 1),
often acquiring resources that provide higher opportuni-
ties for free instance hours.

Another factor in Tributary’s lower cost is its abil-
ity to remove allocations that are not likely to be pre-

empted when demand drops. When resource demand
decreases, Tributary terminates instances that are least
likely to be preempted, thus lowering the expected cost
of its resource footprint. The reductions in “slow” re-
quests arise from the buffer of resources acquired by
Tributary (Sec. 3.3). When acquiring instances, Ac-
quireMgr estimates their probability of preemption. Un-
less all allocations have a preemption probability of zero,
which never occurs for spot instances, Tributary acquires
more resources than specified by the scaling policy. The
primary goal of the additional resources is to ensure that,
when Tributary experiences preemption events, it still
has at least the specified number of resources in expecta-
tion. The additional resources also provide a secondary
benefit by handling some or all of unexpected bursts of
requests that exceed the load expected by the scaling pol-
icy. The cost of these additional resources is commonly
offset by free instance hours; indeed, the extra resources
are acquired to cope with preemptions.

5.4 Risk Mitigation
A key feature of Tributary is that it encourages

instance diversification, i.e., acquiring instances from
mostly independent resource pools (Sec. 3.2). The de-
fault AutoScale policy is the lowest-price policy, which
does not take diversification into account when acquiring
instances; instead, it acquires the cheapest instance. Il-
lustrated in Fig. 1, Tributary acquires different types of
instances in different availability zones, while AutoScale
acquires instances of the same type (all red). Diversify-
ing across resource pools is important, because each has
an independent spot market, avoiding highly correlated
allocation preemptions within a single instance market.
Acquiring too much from a single pool, as often oc-
curs with AutoScale, creates a high risk of SLO violation
when preemption events occur (e.g., if the red allocation
in Fig. 1c was preempted prior to minute 35).

In our experiments, we found it to be very rare for mar-
ket prices to rise above on-demand prices, meaning that
AutoScale rarely experiences preemption events. How-
ever, when examining past EC2 spot market traces and
other availability zones, we found it to be significantly
more common for the market price to rise above the
on-demand price, thus preempting AutoScale instances.3

3 From 01/23/17–03/20/17, the market price rose above the on-demand
price 0 times for the c4.2xlarge instance type in us-west-2. From
11/1/16–01/22/17, it happened 1073 times.
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(d) Predictive-LR
Figure 5: Comparing to ExoSphere and Proteus. Predictive-MWA results not shown but similar.

Since Amazon charges users the market price and not
the bid price, it is possible that Amazon may once again
preempt instances bidding the on-demand price with
regularity—a phenomenon we recently observed in the
us-east availability zones. Thus, AutoScale’s resource
acquisition approach is riskier for services with latency
SLOs on spot machines.

Cost of Diversified AutoScale. In addition to the
default AutoScale policy which acquires the lowest-
priced instance, AWS also offers a diversified AutoScale
policy that starts instances from a diverse set of re-
source pools [4]. Acquiring instances from different spot
markets reduces preemption risks, but our experiments
showed that it increases cost by 8%–12% compared to
the lowest-price AutoScale policy. Compared to Tribu-
tary, which diversifies across spot markets intelligently,
we found that a diversified AutoScale policy cost 68%
more to achieve the same number of “slow” requests for
the reactive scaling policy on the ClarkNet trace.

5.5 Pricing Model Discussion
Our experimental results are based on current AWS

EC2 billing policies, as described Section 2.1. This sec-
tion discusses how Tributary would function under two
potential changes to the billing model: (1) elimination of
preemption refunds, (2) institution of a free market.

Elimination of preemption refunds. If Amazon
eliminates refunds when the market price exceeds bid
price during the first hours of usage, Tributary would
lose incentive to bid close to market price. Tributary’s
model would capture this change by setting β in Eq. 2
to zero. With higher bids, Tributary would acquire fewer
resources because preemption would be less likely. The
amount of resources acquired would still exceed the
amount of resources required as they would still have
non-zero preemption probabilities.

Although Tributary extracts significant benefit from
the refunds, it still outperforms AutoScale without it. For
example, in a simulation with this billing model modi-
fication, Tributary still reduces cost by 31% compared
to AutoScale with sufficient buffer to match numbers of
“slow” requests, for the Clarknet trace using the reactive
scaling policy. As expected, Tributary continues to meet
SLOs with high likelihood, as it continues to diversify
its resource pool and acquire buffers of resources (albeit
smaller ones) to account for preemption events.

Free market behavior. In its current design, the AWS
EC2 spot markets do not behave as free markets [9]. Cus-

tomers specify their bid prices for a given resource, but
generally do not pay that amount. Instead, a customer
is billed according to the EC2-determined spot price for
that resource. It is possible, perhaps even likely as the
spot market becomes widely popular, that AWS will tran-
sition toward a billing policy in which users are charged
their bid price, instead of the market price, and prices
move based on supply and demand rather than unknown
seller policies. This change would render the commonly
used strategy of bidding far above the market price (e.g.,
bidding the on-demand price) obsolete. Tributary’s be-
havior would not change significantly, as it already often
sets bid prices close to market prices and explicitly con-
siders revocation risks, and we believe it would therefore
outperform other approaches by even larger margins.

5.6 Comparing to State of the Art
This section compares Tributary’s support for elastic

services to two state-of-the-art resource managers de-
signed for preemptible instances. Since neither system
was designed for elastic services with latency SLOs,
Tributary unsurprisingly performs significantly better.

Exosphere. We implemented ExoSphere’s allocation
strategy, described in Sec. 2.2, with the following as-
sumptions and modifications: (i) The ExoSphere paper
did not specify whether the correlation between mar-
kets is recomputed as time moves on. In order to avoid
the need to constantly reconstruct ExoSphere’s resource
footprint, we assumed static correlation between mar-
kets. (ii) As the ExoSphere paper does not provide guide-
lines as to how to choose α , we experimented with a
range of α from 1 to 109. Higher α instructs ExoSphere
to be more risk averse at the expense of higher cost.

Fig. 5 shows the normalized cost and percentage of
“slow” requests served for Tributary and for ExoSphere
with small (1) and large (109) values of α . These ex-
periments were performed on a further scaled-up version
of the ClarkNet trace (100x of already-scaled version),
since ExoSphere was designed for 100s to 1000s of in-
stances and performs poorly at a scale of 10s.4 In our
experiments, we observed that Exosphere with a small α

tends to acquire mainly the cheapest resources, inducing
little diversity and increasing the number of “slow” re-
quests in the event of preemptions. Tributary’s advantage
in both cost and SLO attainment results from Tributary’s
exploitation of spot instance characteristics (Sec. 5.3).

4At small scales, ExoSphere with low α had no resource diversity.
With large α , it acquired too many resources, increasing its cost.
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Proteus. We implemented Proteus’s allocation strat-
egy, described in Sec. 2.2, modified to acquire only spot
resources (reducing cost with no significant change in
SLO attainment). Fig. 5 compares Tributary and Pro-
teus for the ClarkNet trace, for two different scaling poli-
cies. While Proteus achieves lower cost than Tributary, it
experiences a large increase in ”slow” requests. This in-
crease is due to Proteus not diversifying its resource pool,
instead only acquiring resources based on reducing aver-
age per-core cost. When told by the scaling policy to ac-
quire additional resources, similarly to AutoScale buffers
(Sec. 5.3), Proteus is unable to match Tributary’s number
of ”slow” requests no matter how large the buffer (and,
thus, how high the cost). This is once again due to the
lack of diversity in the resources that Proteus acquires.

5.7 Prediction Model Evaluations
This section evaluates the accuracy of the preemption

prediction models used by Tributary, which are described
in Sec. 3.1. The recent Proteus system [16] used the his-
torical median probability of preemption depending on
the instance type, availability zone and the difference be-
tween the user bid price and the spot market price of the
resource. Tributary improves prediction accuracy by us-
ing machine learning inference models trained with his-
torical spot market data with engineered features. Fig. 6
shows the accuracy and F1 scores for prediction models
based on the historical median, a logistic regression clas-
sifier, a multilayer perceptron neural network (MLP NN)
and a long short term memory recurrent neural network
(LSTM RNN). These models were trained on spot mar-
ket data from 06/06/16 – 01/22/17 and were evaluated on
data from 01/23/17 – 03/20/17 for instance types c4.large,
c4.xlarge and c4.2xlarge in us-west-2.

The output of the prediction models is whether the in-
stance specified in a query will be preempted within the
preemption window. Accuracy scores are calculated by
the number of samples classified correctly divided by to-
tal number of samples. F1 scores, which account for data
skew, are a good accuracy measurement because the data
set is skewed toward preemptions at lower bid deltas and
non-preemptions at higher bid deltas. The LSTM RNN
model provides the best accuracy and the best F1 because
it is able to capture the temporal nature of the AWS spot
market. LSTM increases accuracy by 11% and the F1
score by 27% compared to using the historical median.
The MLP NN model performs worse than the historical
median model for accuracy, but its F1 score is higher
because unlike the historical median model, the MLP
model considers advanced features when predicting pre-
emptions as described in Sec. 3.1. The increased accu-
racy of the LSTM RNN model translates to Tributary’s
effectiveness. When using the LSTM RNN model, Trib-
utary runs at ≈37% less cost on the ClarkNet workload
compared to Tributary using historical medians, because
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Figure 6: Accuracies and F1 scores (accounts for data skew)
for predicting preemption of AWS spot instances. The LSTM
RNN outperforms prior techniques (blue bar) by 11% on the
accuracy metric and 27% on the F1 score metric.
the historical median model overestimates the probabil-
ity of preemption, causing Tributary to acquire more re-
sources than necessary.

6 Conclusion
Tributary exploits AWS spot instances to meet latency
SLOs for elastic services at lower cost. By predicting
preemption probabilities and acquiring diverse resource
footprints, Tributary can aggressively use collections of
cheap spot instances to reliably meet SLOs even in the
face of bulk preemptions. Our experiments show cost
savings of 81–86% relative to using non-preemptible
on-demand instances and 47–62% relative to traditional
high-risk use of spot instances.

Tributary exploits AWS properties, such as dynamic
spot markets and preemption based thereon. We be-
lieve its approach would also work for other clouds offer-
ing preemptible resources, if they expose enough infor-
mation to predict preemption probabilities, which AWS
provides via the visible spot market prices. Currently,
Google Cloud Engine [5] does not expose such a signal
for its preemptible instances. For private clouds, expos-
ing preemption logs could provide the historical view,
but even better predictions can be enabled by exposing
scheduler state.
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Abstract
The quality of user experience on a smartphone is di-
rectly affected by how fast a foreground app reacts to
user inputs. Although existing Android smartphones
properly differentiate a foreground app from background
apps for most system activities, one major exception is
the I/O service where I/O-priority inversions between
a foreground app and background apps are commonly
observed. In this paper, we investigate the I/O-priority
inversion problem on Android smartphones. From
our empirical study with real Android smartphones,
we observed that the existing techniques for mitigat-
ing I/O-priority inversions are not applicable for smart-
phones where frequently inverted I/O priorities should be
quickly corrected to avoid any user-perceived extra de-
lay. We also identified that most noticeable I/O-priority
inversions occur in the page cache and a flash storage
device. Based on the analysis results, we propose a
foreground app-aware I/O management scheme, called
FastTrack, that accelerates foreground I/O requests by
1) preempting background I/O requests in the entire I/O
stacks including the storage device and 2) preventing
foreground app’s data from being flushed from the page
cache. Our experimental results using a prototype Fast-
Track implementation on four smartphones show that a
foreground app can achieve the equivalent level of user-
perceived responsiveness regardless of the number of
background apps. Over the existing Android I/O im-
plementation, FastTrack can reduce the average user re-
sponse time by 94% when six I/O-intensive apps run as
background apps.

1 Introduction
As a highly interaction-oriented device, a smartphone
needs to react promptly without a noticeable delay to
user inputs. In order to minimize a user-perceived delay,
which directly affects the quality of user experience on
the smartphone, Android smartphones properly differen-
tiate a foreground (or FG) app from background (or BG)
apps for most system activities. For example, when CPU
cores are allocated, an FG app may be allowed to use
one or more CPU cores exclusively while BG apps must
share CPU cores with other apps [1, 2]. Such FG app-
centric resource management becomes more important
for modern Android smartphones because they run more
apps at the same time thanks to aggressive multitasking

support. As the number of concurrent BG apps increases,
an FG app may encounter more interference from BG
apps unless the FG app is managed with a higher priority
over the BG apps.

Unlike FG app-aware CPU management which has
been extensively investigated [3, 4, 5], I/O management
on smartphones has not actively considered the quality
of user experience issue in designing various I/O-related
techniques. FG app-oblivious I/O management was not
of a big concern for older smartphones where the number
of BG apps is quite limited because of a small DRAM
capacity (e.g., 512 MB) [6, 7, 8]. However, on mod-
ern high-end smartphones with a large number of CPU
cores and a large DRAM capacity (e.g., 8 GB) [9, 10, 11]
where the number of BG apps has significantly increased
(e.g., from one in Nexus S [12] to more than 8 in Galaxy
S8 [13]), FG I/O requests (or FG I/Os) are more likely to
be interfered with BG I/O requests (or BG I/Os). Unless
FG I/Os are treated with a higher priority over BG I/Os,
FG I/Os may have to wait for the completion of a BG
I/O. (That is, I/O-priority inversions occur.) In this pa-
per, we comprehensively treat the I/O-priority inversion
problem on Android smartphones including its impact on
user experience, its main causes and an efficient solution.

Our work is mainly motivated by our empirical obser-
vation that I/O-priority inversions between the FG I/Os
and the BG I/Os are quite common on Android smart-
phones. In particular, when an FG app needs a large
number of I/Os (e.g., when the app starts), such I/O-
priority inversions significantly degraded the response
time of the FG app. For example, when five BG apps
run at the same time, the app launch time of an FG app
can increase by up to four times over when no BG app
competes. This large increase in the app launch time of
the FG app was rather surprising because the Android
system is already designed to handle the FG app with a
higher priority. In order to understand why the response
time of a higher-priority FG app is affected by the num-
ber of BG apps, we have extensively analyzed the com-
plete I/O path of the Android/Linux I/O stack layers on
several smartphones using our custom I/O profiling tool,
IOPro [14]. From our analysis study, we found that I/O-
priority inversions in the page cache and the storage de-
vice were main causes of the increased response time of
an FG app. We also observed that the current flush policy
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in the page cache, which does not distinguish whether a
victim page (to be flushed) is from an FG app or a BG
app, significantly impacted the FG app performance.

For frequent I/O-priority inversions on a smartphone,
the existing techniques such as [15, 16, 17, 18, 19] may
not be applicable because these techniques require a long
latency (from the smartphone’s viewpoint) to correct the
inverted I/O priorities. For example, [19] depends on the
priority inheritance protocol [20] to accelerate the com-
pletion of the current BG I/O before an FG I/O is started.
In our experiment, the FG I/O waited up to 117 ms for
the completion of the current BG I/O under the priority
inheritance protocol. Obviously, this is too long for a
smartphone where a delay of more than a few millisec-
onds is unacceptable [19]. Furthermore, the efficiency of
these existing techniques, which were not specifically de-
veloped for smartphones as a target system, is limited in
several aspects. For example, they do not fully exploit an
important hint such as the type of apps (e.g., foreground
or background) and do not take a holistic approach in op-
timizing the entire I/O stack layers including the storage
device. Therefore, a different approach is necessary for
resolving the I/O-priority inversion problem on smart-
phones. A solution should meet the fast response time
requirement and should better exploit the smartphone-
specific hints in a holistic I/O-path-aware fashion.

In this paper, we propose a new I/O management
scheme for Android smartphones, called FastTrack (or
FastT in short), which efficiently meets the above re-
quirements on resolving I/O-priority inversions on An-
droid smartphones. The key difference of FastTrack over
the existing techniques is that FastTrack takes a more di-
rect approach in fixing the I/O priority inversion problem
by preempting the current background activity through-
out the entire I/O stack layers. By stopping the current
background activity immediately, FastTrack can quickly
service the I/O request from an FG app. FastTrack also
modifies the flush policy of the page cache to be FG app-
aware. For example, when a victim page is selected for
the next flush, FastTrack first considers pages that be-
long to BG apps as victim candidates.

In order to evaluate the effectiveness of the proposed
scheme, we have implemented FastTrack on various
Android smartphones, including Nexus 5 [21], Nexus
6 [22], Galaxy S6 [23] and Pixel [24]. Our experimen-
tal results show that FastTrack can provide the equiv-
alent level of responsiveness to FG apps regardless of
the number of BG apps. For important I/O-intensive app
use cases (such as the app launch time, app switch time
and app loading time)1, compared over when no BG app
runs, FastTrack can limit an increase in the average re-
sponse time of an FG app within 27% even when six I/O-

1Since a user must wait for these use cases to complete, their re-
sponse times directly affect the smartphone user experience quality.

intensive BG apps run together. On the other hand, in the
default Android implementation, the average response
time can increase up to by 2,319%. Because of fore-
ground app-centric I/O management, FastTrack is very
effective in decreasing the average response time of an
FG app as well. For example, when six BG apps run to-
gether, FastTrack can reduce the response time of an FG
app by 94% over the default Android implementation.

The remainder of this paper is organized as follows.
In Section 2, we report the key results of our empirical
study on the impact of BG I/Os on user experience. Sec-
tion 3 describes the root causes of the I/O-priority inver-
sion problem on smartphones and summarizes the main
requirements that must be satisfied by a solution. A de-
tailed description of FastTrack is given in Section 4. Ex-
perimental results follow in Section 5, and related work
is summarized in Section 6. Finally, Section 7 concludes
with future work.

2 Impact of BG I/Os on User Experience
In this section, we empirically analyze how much FG app
performance is affected by BG I/Os. We also investigate
how often BG I/Os interfere with an FG app. Our em-
pirical study is carried out under various real-life smart-
phone usage scenarios with 10 different smartphones.

2.1 Evaluation Study Setup
For our study, we collected 10 Android smartphones2

(with a proper instrumentation function) from different
users who are all heavy users (almost always carrying
their smartphones with them). To avoid possible bias,
we have selected the smartphones from seven different
manufacturers. Each smartphone is equipped with 4 or
more cores and 3 GB or larger DRAM memory which is
large enough to actively support multitasking. All of the
smartphones also have the latest version of Android (ver-
sion 7.x) which supports enhanced multitasking features
(such as a split screen).

Like other active smartphone users, our study partic-
ipants used Chrome, Messenger, Camera, Gallery, and
Game as their main FG apps. As popular BG apps, cloud
backup apps such as Dropbox [25] and OneDrive [26]
were popular among the study participants. Furthermore,
all the participants enabled an option for an automatic
app update. The “background process limit” option was
set to “standard limit”, which is a default setting.

2.2 Response Time Analysis
In order to understand an impact of BG I/Os on user ex-
perience, we conducted a series of experiments on com-
mon smartphone usage cases when typical BG apps run.
We have measured the user-perceived response times

210 phones include Nexus 5 (N5), 6 (N6), 6P (6P), Z3 (Z3), Redmi
4X (4X), P9 (P9), Galaxy S6 (S6), Mi 5 (M5), Pixel (P1), and G5 (G5).
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Fig. 1: Impact of background I/Os on user experience.

of three usage cases where prompt reaction to user in-
puts are important – when (i) a new app is launched
by a user, (ii) one app is switched to another, and (iii)
a launched app is loading required contents. For BG
apps, we have selected two BG workloads: Update and
Backup. Update downloads and installs multiple apps
from the Android market (e.g., as in an auto app update),
and Backup uploads a large number of files to cloud stor-
age services (e.g., as in Dropbox). These workloads were
selected because they are known to generate substantial
BG I/Os in a periodic fashion3 Our background scenarios
are automatically invoked in background when a smart-
phone is connected to a fast network (e.g., Wi-Fi).

Scenario A – Launching Gallery App: Launching
an app requires to load a relatively large number of files,
including executables, libraries, and files. While an app
is being launched, a user has to wait until all the required
files are loaded from a storage device. In this paper, an
app launch refers to a cold start, where an app is launched
without any preloaded data. It should be noted that, as
the quality and complexity of mobile applications im-
prove, the amount of data to be loaded while launching
apps increases as well. In case of Gallery app [30], for
example, 25 image files, on average, must be preloaded
to complete the app’s initial display.

Fig. 1(a) depicts the launch time of Gallery on the 10
smartphones. Here, the launch time is defined to be the
time interval from when an app icon is touched by a user
to when all the components are displayed on the screen.
Even though there are differences depending on the hard-
ware performance, noticeable launch time degradations
are observed in all the smartphones when BG I/Os are
issued simultaneously. In N6 with an eMMC storage,
the launch times under two BG workloads, FG+Update
and FG+Backup, increase by 2.4 times and 1.6 times, re-
spectively, over a standalone launch (FG-only). Sim-
ilar trends are also observed even in smartphones with
faster mobile storage systems. In S6 with an UFS stor-
age that provides higher throughput, the launch times of

3Update is based on an observation that popular mobile apps (such
as Twitter) are typically updated once every week and the average
size of downloaded packages for an app update is about 110 MB [27,
28], and Backup is based on a report that a typical smartphone user
uploads more than 200 MB of files per day to the cloud storage [29].

FG+Update and FG+Backup increase by 2.6 times and
1.7 times, respectively.

Scenario B – Switching Camera App: Switching
from one app to another becomes a common feature in
smartphones supporting multitasking. Before moving to
a new app, a current app should be properly suspended.
In the Android platform, the app switch involves the
flushing of dirty pages in the page cache to persistent
storage, so as to create as many free pages as possible
for a new app. A user must wait for an old app to com-
plete flushing its dirty pages before a new app is acti-
vated. Therefore, a user may experience a long unpleas-
ant delay between app switches if BG I/Os interfere with
the flushing process in the page cache.

We examine the switch time of a Camera app [31]
when it switches to a home screen app. While the
Camera app is recording a video for 10 minutes, we
measure the time interval from when the home button
is pressed to when the home screen is displayed for the
next user interaction. Fig. 1(b) illustrates the switch time
of Camera in S6 – it is less than 1 second when no BG
I/Os are being issued, but it increases by 19.5 times un-
der heavy BG I/Os. In N6, the switch time also increases
by 11 times compared to when there are no BG I/Os.

Scenario C – Loading Game App: After app launch-
ing, some apps require additional file loading work be-
fore a user interacts with launched apps. One representa-
tive example is a Game app [32] that has to preload game
contents (e.g., stage maps and rendered images) depend-
ing on a user’s input after it completed the app launching
process. This loading process inevitably results in re-
sponse time delays from the perspective of end users.

In order to understand how much BG I/Os affect the
app loading time, we measure the time interval from
when the ‘story mode’ button on a Game app [32] is
touched by a user to when its loading process is fin-
ished. As expected, we observed that the app loading
time increases with BG I/Os in all the smartphones. We
also confirm that the app loading times tend to be longer
in smartphones with less memory over ones with larger
memory. For example, on N5 with 2 GB DRAM, the
loading time increases by 2.7 times under Update. The
loading time, however, increases about 2 times only on
P1 with 4 GB DRAM.
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Fig. 2: FG-BG interference analysis results.

2.3 FG-BG Interference Analysis
Although we confirmed that BG I/Os can significantly
degrade the quality of user experience of an FG app when
they conflict with FG I/Os, if BG I/Os were unlikely to
overlap with FG I/Os in practice, our response time anal-
ysis in Section 2.2 becomes less meaningful. For exam-
ple, if most BG I/Os occurred while a smartphone was
not actively used by a user, their actual impact on user
experience would be negligible, thus making our work
useless. In order to evaluate if such conflicts are really
happening in real-world settings, we built a simple I/O
utility4 which can tell how much BG I/Os were issued
while processing a given FG I/O req. If an FG I/O τ was
started at tstart and completed at t f inish , our utility com-
putes the ratio rτ of the total amount of I/Os from τ to the
total amount of I/Os in the interval [tstart , t f inish]. This ra-
tio, we call the foreground coefficient C f g, indicates the
proportion of FG I/Os over the total I/Os in [tstart , t f inish].
If C f g is high, it indicates that there is less interference
from BG I/Os. For example, if C f g is close to 1, few BG
I/Os interfere with the FG I/O.

Fig. 2 shows how much BG I/Os interfere with FG
apps on 10 smartphones. For each smartphone, we have
collected a month’s history of system call usage and
computed average foreground coefficients for three use
cases (explained in Section 2.2). Fig. 2 shows that a sig-
nificant portion of BG I/Os can interfere with user’s in-
teraction with FG apps. For example, in the app launch
scenario, FG I/Os account for only 42% of the total I/Os,
which can conflict with 58% of the total I/Os that are
requested from BG apps. Similarly, in the app switch
scenario and the app loading scenario, FG I/Os are re-
sponsible for 77% and 53% of the total I/O requests, re-
spectively. Although the BG I/O portion was reduced
over the app launch scenario, the BG I/O portion is still
large enough to affect the user experience of an FG app
in a significant fashion.

3 Root Causes of User-Perceived Delay
In this section, we analyze the I/O stack of the An-
droid platform to find root causes that are responsible

4Our monitoring tool is based on strace which is a popular profiling
utility for analyzing system calls [33]. Strace provides PIDs of pro-
cesses that generate I/Os, along with detailed information of relevant
I/O system calls. Using the collected information, we can distinguish
BG I/Os from FG IOs with their respective I/O traffic amounts.
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Fig. 3: A breakdown of foreground I/O execution time.

for rapidly increasing user-perceived response time along
with an increasing number of I/O-intensive BG apps. We
first review the overall architecture of the Android I/O
stack, giving a brief explanation of how apps access files
in storage media. Then, we explain three major bottle-
necks we found through the analysis.

3.1 Overview of Android I/O Stack
As in typical UNIX-like OSes, Android file I/Os (i.e.,
reads and writes on files) created by an app are delivered
to the kernel through system-call interfaces. The Linux
kernel checks if corresponding file data is already cached
in the page cache. If not, free pages available in the page
cache are allocated to individual file I/Os. If the file I/O
is for writes, user data is copied to the allocated pages
in the kernel. Before sending I/O commands to an un-
derlying block device, each file I/O is converted into a
set of block I/Os with designated logical block addresses
(LBAs). Block I/Os are then transferred to the block I/O
layer and are put into proper I/O scheduling queues, sync
or async queues, according to their types. I/O scheduling
algorithms (e.g., CFQ [34]) move ready-to-submit block
I/Os to a dispatch queue, which will be sent to the stor-
age device via the eMMC [35] or UFS [36] interface. If
the file I/O is for reads, data read from the storage device
is stored in the allocated pages, and the data is finally
copied to the user-space buffer.

In order to analyze the root causes of performance
degradation by BG I/Os, we have measured the execu-
tion time of FG I/Os using IOPro. IOPro is capable
of measuring the detailed elapsed times of I/O requests
across all the Android I/O stacks, including a page cache,
a block I/O layer, and a storage device. Fig. 3 shows
a breakdown of the I/O execution time observed in the
three usage scenarios used in Section 2. Because of the
space limit, only the results from S6 are displayed in
Fig. 3, but other smartphones also exhibit similar per-
formance trends. When there are no BG I/Os (denoted
by FG-Only in Fig. 3), the storage device is a major bot-
tleneck. This is a reasonable result because the storage
device is considered the slowest component in the I/O
stack hierarchy.

With BG apps running heavily (FG+Update in Fig. 3),
we observe that the execution times increased consider-
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Fig. 4: Impact of lock contention on the I/O latency of the foreground app.

ably across all the layers. In particular, the times spent
by the page cache layer have increased by 12 times, on
average. For example, in Fig. 3, the portions of the page
cache in FG-Only were negligible, but these rapidly in-
creased in FG+Update to 32%-51% of the total execution
times. While the relative portion of the time spent by the
storage device has decreased, the total execution time
spent by the storage device has significantly increased.
For example, in the case of the app switch scenario, the
execution time on the storage device has increased by 5
times. One surprising result in our study was that the
impact of the block I/O layer on performance was rather
negligible compared with the other two layers.

In the following three subsections, we investigate what
happens inside the kernel I/O stacks when BG I/Os are
heavily issued. Particularly, we focus on analyzing in-
ternal I/O activities at the page cache and the storage de-
vice layers because they are the main contributors to the
increase of the execution times.

3.2 Root Cause 1: Page Allocation
From our performance bottleneck study, we found that
lock contentions in the page cache layer are responsible
for many I/O-priority inversions we have observed. As
the first and major root cause of a performance degrada-
tion of an FG app under BG apps, we explain the impact
of the page allocation module on user experience. When
a new I/O request arrives at the kernel, free pages should
be assigned first to the I/O request. When new free pages
are necessary for serving the incoming I/O request, a
free-page allocation module first acquires a global lock,
page lock, for the exclusive access of the page cache
during the page reclamation process [37] which is non-
preemptive [38]. Acquiring free pages is mostly done
quickly. However, if there are not sufficient free pages
available, it takes a rather long time (e.g., more than 200
ms [19]) to create free pages by evicting dirty pages.
Evicting dirty pages require extra writes to the storage
device. If FG I/Os are blocked by BG apps that need the
free page reclamation process, an FG app has to wait for
BG I/Os to finish, thus causing an I/O-priority inversion
between the FG app and the BG apps.

Fig. 4(a) illustrates an example where an FG app F
reads a photo file of 256 KB size from storage media by
calling a read() system call. We compare two different

cases: 1) when F runs alone without any BG apps and 2)
when F runs together with a BG app B that writes a large
file to the storage device. Without BG apps, the FG app
can quickly get free pages from the page cache (by call-
ing alloc pages() 1 ). Since the maximum allocation
unit of free pages is limited to 128 KB [39], the kernel
calls alloc pages() twice, each of which gets 128 KB
free pages. After calling each alloc pages(), the ker-
nel sends a read I/O command to the storage device ( 2 ),
which transfers file contents from the storage to the al-
located pages. Finally, data kept in the kernel pages are
copied to a user-space buffer in the unit of 128 KB (by
calling copy to user() 3 ).

Suppose that the BG app calls the write() system
call to write data just before read() is invoked by the
FG app. The page lock is grabbed by the BG app first, so
the FG app has to wait until it releases the lock ( 4 ). This
could be quite long if dirty page evictions are involved
while assigning free pages to the BG app. After the page
lock is released by the BG app, the FG app is able to ac-
quire the lock, allocates free pages for reads, and then
releases the lock. Then, it issues a read I/O command
to the device. Copying data from the user space to the
kernel space (copy from user()) also requires holding
the same global lock of the page cache ( 5 ). As depicted
in 4(b), if the BG app has already acquired the global
lock, the FG app has to wait again for the lock to be re-
leased, which increases additional user-perceived delays.

Some might argue that the eviction of dirty pages in
the middle of calling alloc pages() would rarely oc-
cur. In our observation, however, when write-dominant
BG apps run (e.g., Update), many dirty pages are cre-
ated in the page cache and available free pages quickly
run out. If an FG app requests I/Os in such situations,
frequent evictions of dirty pages are inevitable.

3.3 Root Cause 2: Page Replacement
Our second root cause comes from a somewhat surpris-
ing source. As discussed in Section 3.2, the perfor-
mance degradation of an FG app from the lock con-
tention mostly occurs when many dirty pages are created
in the page cache. When BG apps are read-dominant,
such performance degradation is difficult to occur be-
cause few dirty pages may exist in the page cache. For
example, in 4 of Fig. 4(a), if reclaimed pages were
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clean, no writes to the storage device would be needed.
Unlike our reasoning about read-dominant BG apps, our
experiments revealed an interesting result that even read-
dominant BG apps can often interfere with an FG app.

Although it was not straightforward to understand why
such unexpected performance degradation occurs, we
identified the page replacement policy in the page cache
as the main cause. The existing Linux page replacement
policy in the page cache works in an FG app-oblivious
fashion. That is, the Linux kernel prefers choosing a
clean page as a victim because of its cheap replacement
cost regardless of whether the owner of the victim page
is an FG app or a BG app. Suppose that BG apps want to
read a large amount of data from the storage and they
need to get more free pages by evicting existing ones
from the page cache. In this situation, the Linux kernel
often selects clean pages of an FG app even though those
clean pages are soon to be accessed. Although choosing
a clean page as a victim page is reasonable from mini-
mizing the eviction cost, it is a bad decision for the FG
app because a large page cache miss penalty can signifi-
cantly increase the FG app response time.

Fig. 5 shows a concrete example of how a read-
dominant BG app negatively affects an FG app. Here,
the FG app F is assumed to read a file A twice by call-
ing read(). Again, we compare two different cases: 1)
when F solely runs and 2) when F runs together with a
BG app which read a large file B from the storage de-
vice. Without BG apps, the FG app can quickly finish
the second read() by reading the file A from the page
cache ( 1 ). However, when the FG and BG apps run si-
multaneously, some pages of the file A may be evicted
from the page cache ( 2 ) to create a room for the large
file B. After the completion of BG reads, when the FG
app tries to read the file A again, free pages should be
allocated ( 3 ) and the previously-evicted pages should
be read from the storage device again ( 4 ). Even worse,
from our investigations on real-life app usage scenarios,
we observed that many FG apps exhibit high temporal
locality, repeatedly referencing the same files. For such
an FG app, the existing page cache replacement policy
can significantly degrade the user experience by evicting
performance-critical hot pages of the FG app.
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Fig. 6: I/O priority inversions in flash storage device.

3.4 Root Cause 3: Device I/O Scheduling
After our bottleneck study on the page cache layer, we in-
vestigated the block layer as a next candidate for the I/O
priority inversion problem. We analyzed how the block
layer processes I/O requests from when the I/O requests
are put into the I/O scheduler queue to when an inter-
rupt handler receives signals notifying the completion of
the requests in the storage device. Our investigation re-
vealed that the I/O priority inversion problem occurred
in the storage device rather than in the block layer.

Once the storage device gets I/Os from a block de-
vice driver, it processes them according to its own I/O
scheduling algorithm. The storage device generally gives
a higher priority to reads than writes because reads have
a higher impact on user-perceived response time. For
the same type of I/O requests, the storage device process
them in an FIFO manner with no preference. Although
this generic scheduling policy works reasonably well for
equal-priority I/O requests, it causes I/O-priority inver-
sions very frequently because the scheduling policy in-
side the storage device is not aware of the priority of an
I/O request. For example, if FG writes and BG reads are
sent to the storage device, the FG writes would be de-
layed until all the BG reads complete.

Fig. 6 illustrates the negative impact of a priority-
unaware I/O scheduler inside a storage system on the
throughput of FG I/Os. It plots the throughputs of FG
I/Os and BG I/Os in the app switch scenario, where an
FG app writes a large number of files, while huge files
are being read in background. Note that the I/O through-
puts were measured at the block device driver in order
to device-level performance. Unlike the FG-Only case
shown in Fig. 6(a), a significant degradation of the FG
I/O throughput is observed in Fig. 6(b) when FG writes
and BG reads are mixed inside the storage system. The
app switch scenario, which was completed in 0.45 sec-
onds without BG I/Os, took 3.55 seconds to finish. Our
additional experiments showed that the I/O-priority in-
version problem within the storage device occurs very
frequently whenever FG writes are mixed with BG reads
and its impact on an FG app is very serious.
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4 Design and Implementation of FastTrack

As explained in the previous section, high-priority FG
I/Os are unintentionally delayed by low-priority BG I/Os
for various reasons across the entire I/O stack. One of the
most commonly used solutions to resolve the I/O-priority
inversion problem is to use the priority inheritance pro-
tocol that raises a priority of BG I/Os. The priority in-
heritance, however, is not effective in our cases – it still
requires an FG app to wait for BG I/Os to finish, creating
long delays to latency-sensitive smartphone users.

An ideal solution to resolve the problem is to create
a vertically-integrated fast I/O path which is dedicated
to serving FG I/Os across the entire I/O stack, includ-
ing a page cache, a block layer, and a storage device. In
other words, if it is possible to quickly preempt BG I/Os
upon the arrival of FG I/Os and to deliver them directly
to the storage device with minimal interference by I/O
stack layers, it would be possible to provide the equiva-
lent level of user-perceived responsiveness as when there
is no BG I/O. Key technical challenges here are (1) how
to identify FG I/Os from BG I/Os inside the kernel, (2)
how to preempt BG I/Os immediately, and (3) how to
prevent potential side effects that could occur when cre-
ating such a new I/O path.

Keeping these technical challenges in mind, we design
the app status-aware I/O management, FastTrack, with
five modules as illustrated in Fig. 7. The app status de-
tector obtains the information of the current FG app by
monitoring the activity stacks of the Android platform
( 1 ) and forwards it to the page allocator ( 2 ). Using
this, the page allocator is able to identify I/O requests
from the FG app, suspending the currently executing BG
I/O jobs. The page allocator then grabs a global lock of
the page cache, preferentially assigning free pages to FG
I/Os, regardless of their arrival time ( 3 ). Until the page
allocator releases the lock, BG I/Os are postponed.

If there are not enough free pages to handle I/O re-
quests, the page reclaimer evicts kernel pages that be-
long to BG I/Os as victims, preventing FG pages from
being flushed from the page cache ( 4 ). After acquiring
all the free pages required, the page reclaimer builds up
block I/Os for FG I/Os (FG BIOs) with designated LBAs,
putting them into I/O scheduler’s queue in the block layer
( 5 ). Upon the arrival of FG BIOs, the I/O dispatcher
suspends servicing BG BIOs by limiting I/O queueing
and then immediately delivers FG BIOs to the dispatch
queue ( 6 and 7 ). When FG BIOs are converted to FG
commands (FG cmds) for the storage device, the I/O dis-
patcher tags an FG I/O flag so that the device I/O sched-
uler suspends the BG I/O execution ( 8 ), and FG cmds
can be processed immediately in the storage device.

4.1 App Status Detector
In order to identify an FG app among all the apps avail-
able in the system, the app status detector inquires of
the Android activity manager holding all of the activities
initiated by a user. Whenever a user inputs a command
to a phone by touching a screen or an icon, the Android
platform creates a new activity, which is a sort of job
corresponding to user’s command, and puts it into an ac-
tivity stack in the Android activity manager. Since the
top activity on the stack points to the current interactive
app with a user (i.e., an FG app), the FG app information
in the system can be easily retrieved.

All of the Android apps have its own unique ID num-
ber, called UID, which is assigned when an app was in-
stalled in the system. An UID number is different from
Linux’s process ID (PID). Thus, our next step is to find
a list of the Linux processes connected to the FG app.
A list in question can be obtained by examining all the
processes in Linux’s process tree. However, such an ex-
haustive search on the process tree takes a relatively long
time. Therefore, the app status detector maintains an
UID-indexed table that is updated whenever a new pro-
cess or thread is created or terminated. Then, using UID
as a key, the app status detector quickly retrieves a list
of FG app’s processes.

Whenever the top activity changes, the app status de-
tector sends an UID of the new FG app, along with PIDs
and TIDs of related Linux processes, to the Linux kernel
via the sysfs interface. By doing this, app status de-
tector can keep track of the currently executing FG app.

4.2 Page Allocator
The page allocator is designed to preferentially allocate
kernel pages to I/O requests from an FG app by suspend-
ing outstanding BG I/Os. Fig. 8 shows how the page
allocator works using the same example in Fig. 4, where
the FG app generates read requests to the kernel just af-
ter the BG app issued write requests. The page alloca-
tor sees if the I/O request is from the FG app or not by
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comparing its UID, PIDs, and TIDs with the ones that it
previously got from the app status detector ( 1 ). If it is
from the FG app, the page allocator forces BG I/Os to
release a global lock of the page cache just after getting
a page currently being requested ( 2 ). After allocating
desired pages to the FG I/Os, the page allocator resumes
the preempted BG I/Os ( 3 ). At the same time, the ker-
nel issues FG BIOs to fill up the allocated pages with
data read from storage media. In a similar way, the page
allocator suspends and resumes data copy operations of
BG I/Os between the user and kernel space.

In order to support the prompt preemption and re-
sumption of BG I/Os, we modified the major ker-
nel functions relevant to the page cache, includ-
ing alloc pages(), do generic file read(), and
generic perform write(). These functions are di-
vided into several execution segments. At the end of each
segment, the page allocator checks if there are waiting
FG I/Os. If so, the page allocator promptly suspends BG
I/Os, unlocks the page-cache lock, and yields the CPU
for the FG I/Os. After serving FG I/Os, the suspended
BG I/Os restart at the point where they were suspended.

While conceptually simple, the implementation of
the preemptive page cache raises two technical issues.
Firstly, giving the highest favor to FG I/Os does not guar-
antee the improved response time all the time, and, in
the worst case, it may result in serious response time
degradation or even application deadlocks. Imagine an
application that downloads files from the network and
performs certain operations on the download files. The
application model of Android requires an app to of-
fload such a typical task to a built-in process that runs
as a background service. In case of a file download,
a network service process performs downloading files
in background on behalf of a user app. If I/O requests
from the network service process are preempted for FG
I/Os, the execution of the FG app that initiates the file
download would be delayed for a long time. Fortunately,
the Android system does not allow such dependency be-
tween conventional user apps (e.g., game and camera
apps) [40]. To avoid the self-harming preemption men-
tioned above, therefore, it is only necessary to prevent
the preemption for BG I/Os from service processes. To
do this, the page allocator checks if BG I/Os are issued
by services or not and excludes them from the preemp-
tion if they are from service processes. This I/O filtering
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can be done by checking UID because the Android sys-
tem assigns predefined UIDs to service processes, giving
UIDs ranging from 10,000 to 19,999 to user apps [41].

Secondly, performing the preemption at the page
cache level is not always possible. Some pieces of the
kernel code must run in a special context, called an
atomic context [42], which does not allow a CPU to go
into sleep. Representative examples are interrupt han-
dlers and critical section codes wrapped by spinlocks.
The page allocator modifies the page cache functions
that are also invoked by other parts of the kernel for var-
ious purposes. Thus, the page allocator should disable
the preemption if it is called by a caller running in the
atomic context. It is straightforward to know whether the
page allocation is requested inside the atomic context. In
the Linux kernel, a caller function should let the mem-
ory allocator know which type of contexts it runs now
as an argument (e.g., GFP ATOMIC). The page allocator
refers this information and prevents the preemption if the
allocation is requested inside the atomic context.

4.3 Page Reclaimer
In addition to preempting BG I/Os to accelerate page al-
location for FG I/Os, the page reclaimer improves the
performance of FG apps by preventing the eviction of
kernel pages belonging to the FG apps.

Fig. 9 illustrates how the page reclaimer operates us-
ing the same example in Fig. 5, where the FG app at-
tempts to read the file A twice, while the BG app is heav-
ily reading the large file B. In Fig. 5, the second read to
the file A is not hit by the page cache since it was chosen
as a victim and was evicted from the page cache ( 2 in
Fig. 5). As explained earlier, this is due to the kernel’s
page replacement that evicts clean pages first, regardless
of the status of an app. The page reclaimer prevents such
a problem by adopting new replacement priorities for
victim selection: BG clean pages (highest) > BG dirty
pages (high) > FG clean pages (low) > FG dirty pages
(lowest). With the new policy, clean pages belonging to
BG apps are preferentially evicted when there is insuf-
ficient memory. In Fig. 9, the pages labeled by B1 are
evicted for B1, even though the pages for the file A were
least recently referenced ( 1 in Fig. 9).

Keeping FG pages in the page cache wouldn’t be ef-
fective if an FG app has low temporal locality. In the
worst case, it would degrade the performance of BG apps
without any performance improvement on an FG app.
According to the mobile app workload study [43], how-
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ever, the majority of the apps have high degrees of data
locality. Thus, the negative effects of the page reclaimer
are expected to be minimal in smartphone usages.

4.4 I/O Dispatcher
The primary goal of FastTrack is to create a fast I/O path
for FG I/Os in the entire kernel layer. To this end, it
is also required to enhance the block I/O layer, together
with the page cache layer. Once block I/Os are delivered
to the block layer from the page cache, they are put into
a sync queue or an async queue in the I/O scheduler ac-
cording to their types. To accelerate FG BIOs, the I/O
dispatcher looks for FG BIOs in both queues and moves
them to the dispatch queue immediately.

Depending on the type of a queue, the I/O dispatcher
has to take different strategies to find FG BIOs. FG BIOs
can be easily found in the sync queue using the FG app’s
PID number delivered by the app status detector. In the
case of async I/Os, however, the PID number of all async
I/Os is the same as the PID of the kworker kthread which
delivers async BIOs to the block layer on behalf of FG
processes. Since the PID number is useless to find async
FG BIOs, the I/O dispatcher uses LBAs as keys to fetch
FG BIOs from the async queue.

Finally, whenever a new BIO enters the sync/async
queues, the I/O dispatcher prevalidates whether it is FG
BIO, then directly sends FG BIO to the dispatch queue
regardless of its priority in sync/async queues.

4.5 Device I/O Scheduler
In order for FastTrack to achieve its maximum bene-
fit, a storage device, which is at the lowest layer in the
I/O stack, needs to be enhanced as well. According to
[44, 45, 46], modern flash storage maintains its own in-
ternal queue, but is unaware of the status of applications
issuing I/Os. To make a storage device FG I/O-aware,
we modify an SCSI command set so that it carries an
additional flag in a reserved opcode [47] that specifies
whether I/O requests are issued by FG apps or not. This
flag is used as a hint for a device-level I/O scheduler to
decide the execution order of I/O requests staying in the
internal I/O queue. In our current design, we assign the
highest priority to FG reads, followed by FG writes and
BG reads. BG writes are assigned to the lowest priority.

5 Experimental Results
In order to quantitatively evaluate the effect of FastT, we
implemented the FastT modules in the Android 7.1.1 and
the Linux kernel 3.10.61. Four smartphones, Nexus 5
(N5), Nexus 6 (N6), Galaxy S6 (S6) and Pixel (P1) were
used for our evaluation. N5 and N6 use eMMC-based
storage devices while S6 and P1 employ UFS-based stor-
age devices. (Note that UFS supports 3 times higher
throughput over eMMC.) All the smartphones were con-
nected to the Internet through a 5-GHz Wi-Fi.

We have chosen two background usage scenarios:
Update for a write-dominant workload and Backup for a
read-dominant workload. The Update scenario updated
Hearthstone game [48] downloaded from Play Store,
whose size was about 1.5 GB. The Backup scenario up-
loaded 1 GB of data files to cloud storage.

While running BG apps, we executed three FG apps,
Gallery (app launch), Camera (app switch), and Game

(app loading) discussed in Section 2.2. Gallery was a
read-dominant workload, Camera was a write-dominant
workload, and Game was a mixed workload. In order
to accurately measure performance, all other apps were
terminated before the experiment.

5.1 Performance Analysis on Smartphones
As the response time lower limit of an FG app, we first
measured user-perceived response time of the FG app
when only the FG app ran without any BG apps. To
understand the impact of a BG app on performance, we
also measured performance when both FG and BG apps
ran simultaneously on the unmodified kernel. The above
two cases are denoted by FG-only and FG+BG, respec-
tively. We compared the performances of FG-only and
FG+BG with four different versions of FastT: PA, PR,
ID and FastT−. PA, PR, ID represents FastT with a
single main component only, that is, the page allocator,
the page reclaimer, and the I/O dispatcher only, respec-
tively. FastT− employs all of the main components but it
uses the existing storage device I/O scheduler5. In all the
FastT versions we tested, the app status detector was
enabled by default.

Fig. 10 shows that, for six different combinations of
FG and BG apps, FastT− reduced the user-perceived re-
sponse times by 74% over FG+BG, on average. PA ex-
hibited significant performance improvements when BG
apps were write-dominant (i.e., Update). Update re-
quired a copy of data from the user space to the kernel,
which involved the allocation of free pages in the page
cache. PA not only made this acquisition process pre-
emptible, but also gave a higher priority to an FG app so
that it got free pages prior to BG apps. By doing this, PA
was able to prevent FG I/Os from being blocked by BG
writes. Unlike PA, PR mostly contributed to reducing
user-perceived response time when the read-dominant
BG app (i.e., Backup) ran. In our observation, Backup
required many free pages to load files from the storage
before sending them to cloud storage. To create free
pages, it often selected clean pages belonging to FG apps
as victims, which resulted in the eviction of hot data from
the page cache. PR prevented those clean pages from
being evicted from the page cache, thereby reducing the

5Unfortunately, we cannot access the firmware inside the storage
device. For a complete FastT implementation, we use an emulated
storage as discussed in Section 5.2.
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Fig. 10: Response time analysis on smartphones.

number of reads from the storage which were not neces-
sary when only FG apps ran. ID improved the response
times by 11% on average, but its impact on performance
was negligible compared with PA and PR. This result
confirmed our hypothesis that rescheduling I/O requests
at the scheduler level was less efficient than doing it at a
higher level – a page cache. As expected, by integrating
the three techniques, FastT− exhibited the best perfor-
mance among all the versions evaluated.

Fig. 10 also shows that FastT− works more efficiently
atop a faster storage device like UFS (used in S6 and
P1) than a slower one like eMMC (used in N5 and N6).
In our observation, the absolute numbers of I/O laten-
cies reduced by FastT− are almost the same, regard-
less of the type of underlying storage devices (i.e., UFS
or eMMC). Therefore, the overall improvement ratio by
FastT− becomes more significant for the fast storage,
where FG apps generally exhibit shorter response times.
This means that as the storage devices evolve in its speed,
the effect of FastT becomes more substantial.

Even though FastT− gave FG I/Os the highest pri-
ority combined with a fast I/O path, we still observed
that FastT− showed longer response times than FG-Only
in all the scenarios. When we compare Fig. 11(a) and
Fig. 6(a), the throughput of FG I/Os was not improved
as much as FG-Only. This is because FastT− cannot re-
solve the I/O-priority inversion problem inside the stor-
age device. Because of a priority-unaware I/O scheduler,
for example, FG writes are always delayed by BG reads.

5.2 Performance Analysis on Emulator
Although the evaluation results in Section 5.1 showed
that FastT− is quite effective on real smartphones,
FastT− didn’t reveal the full potential of our proposed
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Fig. 11: Storage-level snapshot of FG I/Os and BG I/Os.

FastT because it cannot fully control the storage device-
internal I/O scheduler. In order to better understand the
real effect of FastT on user experience, it is important to
implement the proposed I/O device scheduler (in Section
4.5) with a complete support for the fast I/O path from
the Android platform to the storage device. Since stor-
age vendors do not allow to modify their firmware inside
their storage devices, we performed evaluations using an
emulated storage device with I/O traces collected from
real smartphone apps.

We have implemented an emulation layer on top of an
off-the-shelf SSD to emulate I/O latency and throughput
of eMMC and UFS devices. This work is done by using
a storage emulator developed for our prior studies [14].
Then, we collected the app status information, along with
I/O traces, while executing scenarios described in Sec-
tion 5.1 on the smartphone. The collected I/O traces were
replayed on the emulated storage. Finally, we imple-
mented the device I/O scheduler on the emulated storage
which processed FG I/Os with a higher priority.
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Fig. 12: Response time analysis on emulator.
We compared the performance of three policies: FG-

only, FastT−, and FastT, where FastT is FastT− with
the device I/O scheduler. Fig. 12 shows that FastT
greatly improved the performance of Camera under both
Update and Backup. In the case of Camera under
Update on N6, FastT− achieved the response time of
2.53 seconds, whereas FastT achieved the response time
of 0.75 seconds, which is quite close to 0.6 seconds of
FG-Only. For Camera under Backup, similarly, FastT
achieved an equivalent response time to FG-Only. Com-
pared with Fig. 11(a), in Fig. 11(b), we observe that FG
I/Os were processed at a much higher throughput with
negligible delays at the storage device level. This re-
sult shows that higher performance can be achieved if
the storage device is able to handle I/O requests with the
app-level priority information.

Finally, Fig. 13 shows how FastT scales when the
number of BG apps increases from two to six. In addition
to Update and Backup, we used four more I/O-intensive
BG apps for this experiment. As shown in Fig. 13, the
normalized app switch time increases from 1.1 to 1.27
only as the number of BG apps increases from 2 to 6.
These results indicate that FastT can provide the equiv-
alent level of responsiveness to an FG app regardless of
the number of BG apps running with the FG app. Fig.
13 also shows that FastT is effective in improving the
app switch time over the existing Android implementa-
tion (indicated by FG+BG), reducing the app switch time
by 94% when 6 BG apps run.

6 Related Work
Various I/O scheduling techniques have been proposed
to address the problem caused by BG I/Os [18, 19, 49,
50]. A boosting quasi-async I/O (QASIO) is one of such
efforts to provide better I/O scheduling by means of the
priority inheritance protocol [18]. QASIO is motivated
by an observation that high-priority sync writes are often
delayed by low-priority async writes. QASIO improve
overall I/O responsiveness by temporarily increasing the
priority of async writes over sync ones. A request-centric
I/O prioritization (RCP) [19] is proposed which is also
based on the priority inheritance protocol. RCP further
improves QASIO by prioritizing I/O requests at the page
cache layer rather than the block I/O layer.

While still effective, both QASIO and RCP have fun-
damental limitations in improving I/O responsiveness, in
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Normalized Camera App Switch Time
0.2 0.80.6 1.21 10 2015 25
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Fig. 13: Scalability of FastT over the varying BG apps.

comparison to FastTrack. First, both techniques are
not aware of FG I/Os and BG I/Os in smartphones, and
thus, they are unable to prioritize FG I/Os that have a
high impact on user-perceived response times. Second,
QASIO and RCP both rely on the priority inheritance
protocol. Thus, they cannot remove additional delays
required for high-priority I/Os to wait until low-priority
ones finish. Therefore, their effectiveness on improving
user-perceived latency is limited on highly interaction-
oriented devices like smartphones.

Foreground app-aware I/O management (FAIO) [49]
is the first technique that accelerates FG I/Os by adopt-
ing I/O preemption in smartphones. FAIO analyzes FG
app information to identify FG I/Os and preempts BG
I/Os to quickly process FG I/Os. However, since FAIO
uses I/O preemption only at the page cache level, it does
not resolve the priority inversion problem at the storage
device level. It also fails to prevent performance degrada-
tion caused by the aggressive evictions of FG data from
page cache under BG I/O intensive workloads.

7 Conclusions
We have presented a foreground app-aware I/O manage-
ment scheme, FastTrack, which significantly improves
the quality of user experience on smartphones by avoid-
ing I/O-priority inversions between a foreground app and
background apps on Android smartphones. Unlike the
existing techniques, FastTrack employs a preemption-
based approach for fast responsiveness of a foreground
app. In order to support I/O-priority-based preemption
in a holistic fashion, FastTrack reimplemented the page
cache in Linux and the storage-internal I/O scheduler
which previously operated in a foreground app-oblivious
fashion. From a systematic analysis study, these two
modules were identified as the root causes of most I/O-
priority inversions. Our experimental results on real
smartphones show that FastTrack is effective in improv-
ing the quality of user experience on smartphones. For
example, FastTrack achieved the equivalent quality of
user experience of a foreground app regardless of the
number of concurrent background apps.

FastTrack can be extended in several directions. For
example, we believe that our preemption-based approach
can be extended to other computing environments where
a strong requirement on the response time exists.
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Abstract

Mainstream is a new video analysis system that jointly
adapts concurrent applications sharing fixed edge re-
sources to maximize aggregate result quality. Mainstream
exploits partial-DNN (deep neural network) compute shar-
ing among applications trained through transfer learning
from a common base DNN model, decreasing aggregate
per-frame compute time. Based on the available resources
and mix of applications running on an edge node, Main-
stream automatically determines at deployment time the
right trade-off between using more specialized DNNs to
improve per-frame accuracy, and keeping more of the
unspecialized base model to increase sharing and pro-
cess more frames per second. Experiments with several
datasets and event detection tasks on an edge node confirm
that Mainstream improves mean event detection F1-scores
by up to 47% relative to a static approach of retraining only
the last DNN layer and sharing all others (“Max-Sharing”)
and by 87X relative to the common approach of using
fully independent per-application DNNs (“No-Sharing”).

1 Introduction

Video cameras are ubiquitous, and their outputs are in-
creasingly analyzed by sophisticated, online deep neural
network (DNN) inference-based applications. The ever-
growing capabilities of video and image analysis tech-
niques create new possibilities for what may be gleaned
from any given video stream. Consequently, most raw
video streams will be processed by multiple analysis
pipelines. For example, a parking lot camera might be
used by three different applications: reporting open park-
ing spots, tracking each car’s parking duration for billing,
and recording any fender benders.
This paper focuses on video processing on edge de-

vices, which will be a common way to address bandwidth
limitations, intermittent connectivity (e.g., in drones),
and real-time requirements. Applications executing at
the edge, though, face tighter bounds on resource avail-
ability than in datacenters. Naturally, optimal video
application performance requires tuning for the resources

M-SCHEDULER

2

3

4 5

1 App 1 dataset

M-TRAINER

M-RUNNER

M-TRAINER

M-Package M-Package

App 2 dataset

App 1 result

App 2 result

Figure 1: Mainstream Architecture. Offline, for each task,
M-Trainer takes a labeled dataset and outputs an M-Package.
M-Scheduler takes independently generated M-Packages, and
chooses the task-specific degree of specialization and frame rate.
M-Scheduler deploys the unified multi-task model to M-Runner,
performing inference on the edge.

available [48, 12, 51, 18, 26].
Unfortunately, what resources will be available to the

application at deployment time is often unknown to the
developer. Further, resource availability changes as addi-
tional applications arrive and depart. Instead, individual
application developers typically develop their models in
isolation, assuming either infinite resources or a predeter-
mined resource allotment. When a number of separately
tuned models are run concurrently, resource competition
forces the video stream to be analyzed at a lower frame
rate—leading to unsatisfactory results for the running
applications, as frames are dropped and events in those
frames are missed. However, due to the popularity of
transfer learning (Sec. 2) [40, 47, 37, 43], contention
can be reduced by eliminating redundant computation
between concurrent applications [18].

Mainstream is a new system for video processing that
addresses resource contention by dynamically tuning de-
grees of work sharing among concurrent applications.
Specifically, it focuses on sharing portions of DNN infer-
ence, which consumes the majority of video processing
cycles. Mainstream exploits the potential “shared stem”
of computation that results from application developers’
use of the standard DNN training approach of transfer
learning. In transfer learning, training begins with an
existing, pre-trained DNN, which is then re-trained for a
different task. Typically, only a subset of the pre-trained
DNN is specialized; when different applications start
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with the same pre-trained DNN, Mainstream identifies the
common layers and executes them only once per frame.
A critical challenge of exploiting shared stems well is

determining how much to share. Application developers
usually specialize as much of the pre-trained DNN as is
necessary to achieve high model accuracy. More special-
ization, however, means that less of the pre-trained DNN
can be shared. Thus, there is an explicit trade-off between
the benefits of greater per-frame accuracy (via more-
specialized DNNs) and processing more frames of the
input video stream (via more sharing of less-specialized
DNNs). The right choice depends on the edge device
resources, the number of concurrent applications, and
their individual characteristics.
Deployment time model selection. Mainstream

moves the final DNN model selection step from appli-
cation development time to deployment time, when the
hardware resources and concurrent application mix are
known. By doing so, Mainstream has the necessary infor-
mation to select the right amount of DNN specialization
(and thus sharing) for each application. As applications
come and go, Mainstream can dynamically modify its
choices. Previous systems like VideoStorm [48] select
models by considering each application independently.
The specialization-vs-sharing trade-off, however, can only
be optimized when considering applications jointly. Joint
optimization produces a combinatorial set of options,
which Mainstream navigates using application metadata
and domain-specific models; the system uses this infor-
mation to estimate the effects of DNN specialization and
frame sampling rate on application performance. Unlike
black-box approaches, Mainstream can jointly optimize for
stem-sharing without needing to profile each combination.
Mainstream consists of three main parts (Fig. 1). The

M-Trainer toolkit helps application developers manage
their training process to produce the information needed
to allow tuning the degree of specialization at deployment
time. Current standard practice is for developers to ex-
periment with different model types, hyperparameters,
and degrees of re-training to find the best choice for an
assumed resource allocation, discarding the trained DNN
models not chosen. M-Trainer instead keeps “less opti-
mal” candidate DNN models, together with associated
training-time information (e.g., per-frame accuracy, event
detection window). TheM-Scheduler uses this informa-
tion, together with a profile of per-layer runtime on the
target edge device, to determine the best candidate for
each application—including the degrees of specializa-
tion and, thus, sharing. It efficiently searches the option
space to maximize application quality (e.g., average F1
score among the applications). The M-Runner runtime
system runs the selected DNNs, sharing the identical
unspecialized layers.
Experiments with several datasets and event detection

          Sensor Frame
Ingest

Image
Transform DNN Classifier

Figure 2: Example computation pipeline for event detection.

tasks on an edge node confirm the importance of making
deployment-time decisions and the effectiveness of Main-
stream’s approach. Results show that dynamic selection of
shared stems can improve F1-scores by up to 87X relative
to the common approach of using fully-independent per-
application DNNs (No-Sharing) and up to 47% compared
to a static approach of retraining only the last DNN layer
and sharing all others (Max-Sharing). Across a range of
concurrent applications, Mainstream adaptively selects a
balance between per-frame accuracy and frame sampling
rate that consistently provides superior performance over
such static approaches.

Contributions. This paper makes three main contri-
butions. First, it highlights the critical importance of
reducing aggregate per-frame CPU work of multiple in-
dependently developed video processing applications via
stem-sharing; No-Sharing is unable to support even three
concurrent applications on our edge node deployment.
Second, it identifies the goodness trade-off between per-
frame quality and the frame sampling rate dictated by the
degree of DNN specialization (and thus the amount of
sharing). Third, it describes and demonstrates the efficacy
of the Mainstream approach for automatically deploy-
ing the right degree of specialization for each submitted
application’s DNN.

2 Background

DNNs are a powerful tool used in computer vision tasks
such as human action recognition [43], object detec-
tion [15], scene geometry estimation [14], face recogni-
tion [45], etc. Fig. 2 shows a typical computation pipeline
for an image classification application. Although frame
ingest and image preprocessing are necessary stages of
computation, they are low cost and easily shared between
concurrent applications. DNNs, on the other hand, are
typically unique to each application and computationally
expensive: in one image classification application we
run, the DNN inference incurs 25X more latency than the
preprocessing steps.

DNNs and transfer learning. A machine learning
(ML) model is a parameterized function that performs a
task. Training is the process of learning parameter values
(called weights) such that the model will approximate the
desired function with some measure of accuracy. For
example, when training an image classifier, one might
examine labeled input images and use gradient descent to
find a set of weights that minimizes a loss function over
the labels. Using the trained model to find the function’s

30    2018 USENIX Annual Technical Conference USENIX Association



.1

.1

.2

.6

(a) Base DNN model

.1

.1

.8

(b) App. #1’s DNN model

.2

.7

.1

(c) App. #2’s DNN model

.2

.7

.1

.1

.1

.8

(d) As executed in Mainstream

Figure 3: Fig. 3a depicts a base DNN trained from scratch for its task. Fig. 3b and Fig. 3c show two new task DNNs, fine-tuned
against the base DNN. App. #1 freezes more layers during training than App. #2. Fig. 3d shows howMainstream runs the applications
concurrently. Layers frozen by both App. #1 and App. #2 can be shared.

Architecture Number of
Layers

ImageNet Top-1
Accuracy (%)

InceptionV3 314 78.0
MobileNets-224 84 70.7
ResNet-50 177 75.6

Table 1: Top-1 accuracy of three neural networks architectures
trained on the ImageNet dataset.

output given a new, unlabeled input is called inference.
DNNs are a class of ML models that usually have a

large input space, such as the pixels of an image. A DNN
can be represented by a graph where nodes are organized
into layers; each node computes a function of its inputs,
which are outputs from the previous layer.

The “deep” in DNNs refers to their many layers. In-
creasingly, successful applications of DNNs have largely
been the result of building models with more layers that
take larger vectors of inputs [42, 29, 19, 44]. The success
of these models has hinged critically upon the arrival of
very large, labeled datasets for training [13, 32, 3].

Training these large models is notoriously hard. One
often lacks sufficient labeled data or computational re-
sources to train such a model. Transfer learning is an
alternative to training a model from scratch. Here, a model
that has already been trained on a similar task (a base DNN
as in Fig. 3a), is used as an initialization point or feature
extractor for the new target DNN. During training, a subset
of the old parameters are frozen and do not change. The
remaining free parameters are then retrained on the new
task with a new training dataset (Fig. 3b and Fig. 3c). This
process fine-tunes these parameters to achieve a result
comparable to end-to-end training on the entire DNN,
but does so with much less data and at a much lower
computational cost. In practice, few practitioners train
networks from scratch, let alone develop novel network
architectures. Transfer learning via one of a few popular
neural networks is standard practice.
DNNs for image classification and event detection.

Although we believe that Mainstream’s approach is gener-
ally applicable to video stream analysis, in this paper, we
focus on applications that use image-classification DNNs
to perform event detection.

Image classification aims to assign one label from a
set of categories or classes to each image. For example,
a 10-class classifier takes an input image and returns a
10-item vector of probabilities representing the likelihood
that the image belongs to each class. Top-N accuracy is
the probability that the correct label is among the top-N
highest probability output labels. So, Top-1 accuracy
indicates the fraction of images that the model classifies
correctly. We refer to this metric as the per-frame accuracy
in the context of video classification. Popular neural
network architectures for image classification include
ResNet [19], InceptionV3 [44], and MobileNets [20].
Table 1 describes these three neural networks and their
Top-1 accuracy achieved on the ImageNet dataset [13].
Networks trained on ImageNet are popular base-DNNs
for image classification tasks.

We define an event as a contiguous group of frames
containing some visible phenomenon that we are trying to
identify: e.g., a cyclist passing by, or a puff of smoke being
emitted. One way of doing event detection is to perform
image classification across a sequence of frames. An
event is detected if at least one of the contiguous frames is
sampled, analyzed, and correctly labeled. Previous works
[31] have also used this existence metric to measure recall
and precision of range-based queries. (Event detection is
not to be confused with object detection, where the goal
is to locate an object in a single frame. Indeed, object
detection is another way of performing event detection.)
We evaluate event classification applications by measuring
the event F1-score, the harmonic mean between event
recall and event precision. The event recall reports the
proportion of ground truth events identified. The event
precision reports the proportion of classified events that
are true positives. Note that these metrics are relative
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to the detection of events across multiple frames and are
distinct from per-frame metrics (e.g., Top-1 accuracy).

3 Mainstream Approach: What and Why

Sharing computation betweenDNNs. When supporting
multiple inference applications on a single infrastructure,
the common approach is to execute every application’s
DNN model independently. We refer to this as a “No
Sharing” approach. To avoid redundant work, Mainstream
instead computes results for DNN layers common to
multiple concurrent applications just once and distributes
the outputs of shared stems to the specialized layers of
all sharing applications. This is analogous to common
subexpression elimination used in other domains, e.g.,
optimizing compilers or database query planners.

Fig. 3 illustrates how compute sharing can be leveraged
when two DNNs are fine-tuned from a common pre-
trained model and have some unspecialized layers in
common. Compute sharing can significantly affect per-
frame computation cost and improve throughput for a
given CPU resource. Fig. 4a quantifies this effect. It
shows the throughput achieved by Mainstream running
up to eight concurrent InceptionV3-based event detection
pipelines, as a function of howmanyDNN layers they have
in common (i.e., their common degree of specialization).
With no sharing (the left-most points), adding a second
application halves throughput, which continues to degrade
geometrically as more applications are added. Moving
to the right, throughput improves as more layers are
shared. When all but the last layer are shared, additional
applications can be run at very low marginal cost.

On the other hand, there are costs to enabling sharing by
leaving many layers unspecialized. In particular, the per-
frame accuracy of a model may be lower when only a few
layers are specialized. Fig. 4b shows the effect of special-
ization on per-frame accuracy for several combinations of
DNN architectures and classification tasks. As expected,
accuracy decreases slowly as less-specialized networks
are employed (and hence more sharing is enabled)— with
a large decrease occurring only when the fraction of the
network specialized is very small. This characteristic
enables Mainstream to share large portions of the network
with low accuracy loss.

Adaptive management of the sharing opportunity.
Since transfer learning is so commonly used by ML devel-
opers, and base models are shared within organizations
and on the Internet, there may be many opportunities to
exploit inter-DNN redundancy in the unspecialized layers.
Most developers either use a popular default of specializ-
ing only the last layer (which is great for sharing potential,
at the potential cost of model accuracy) or determine the
degree of specialization based on the amount of training
data available, since retraining too many layers without

sufficient training data leads to over-fitting. Notably, each
developer decides independently.
The problem with this approach is that the impact

of sharing computation on application quality depends
on factors only known at deployment time: the set of
concurrent applications and the resources of the edge
node on which they are run. Hence, Mainstream defers
the decision regarding how much specialization to employ
from application development time to deployment time.

Impact of sampling rate for event detection. Given
the trade-off between per-frame accuracy and frame pro-
cessing throughput, picking the right degree of specializa-
tion is challenging. Consider an application formonitoring
environmental pollution from trains, which is being built
using a train detector we deployed. When the application
detects a train coming into view, it triggers the capture
of high fidelity frames of the train’s smoke stack (for
subsequent pollution analysis).

Increasing specialization to improve per-frame accuracy
increases the probability of correctly classifying frames
containing trains— but reduces shared computation. This,
in turn, leads to less frequent sampling, which removes
opportunities to analyze frames containing a particular
view of a train. A higher frame rate increases the prob-
ability that an event will be observed in more frames,
creating more opportunities for detection. So, the ques-
tion becomes: should one sample more frames using a
less accurate model or sample fewer frames using a more
accurate model?

Analytical model for event detection. The Main-
stream scheduler (Sec. 6) navigates this “accuracy vs.
sampling rate” space by evaluating various candidate
{specialization, frame rate} tuples. To do so, however,
the scheduler must be able to interpret the benefit at the
application (not per-frame) level. Hence, we propose an
analytical model (sketched in Equations 1-4, below) that
approximates the event F1-score for a given DNN, given
estimates of (a) event length, (b) event frequency, (c) the
correlation between frames (discussed below), (d) per-
frame DNN accuracy, and (e) DNN analysis frame rate.
The frame rate (e) comes directly from the scheduler’s
proposed tuple; similarly, the accuracy (d) associated
with a given specialization proposal will be available
to the scheduler (see Sec. 5). Values for event length
(a), frequency (b), and correlation (c) can either be mea-
sured using representative video samples, or they can be
estimated by the developer.
We are able to predict the application’s F1-score by

estimating the expected number of frames per event that
we will have the opportunity to analyze and computing the
probability that analyzing the set of frames will result in a
detection. The expected number of frames analyzed per
event is dependent on the event length and frame rate. The
per-frame Top-1 accuracy represents the probability that
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Figure 4: Conflicting consequences of DNN compute sharing. (a) shows the frame processing rate for 1–8 concurrent event detection
applications as a function of the fraction of the InceptionV3 DNN they share, from No-Sharing on the left to sharing all but the
last layer (Max-Sharing) on the right. The experiments are run on the hardware described in Section 7. (b) shows Top-1 accuracy
as a function of the fraction of unspecialized layers for three popular DNN architectures (ResNet-50 [19], InceptionV3 [44], and
MobileNets-224 [20]) using six of the datasets described in Table 2. We trained each classifier using all three network architectures
but omitted some curves for brevity. The horizontal axis starts from fully specialized DNNs on the left to only the last layer being
specialized on the right; recall that potential computation sharing is limited to the unspecialized layers.

we will classify any individual frame correctly. However,
this does not factor in the fact that sequential frames of
an event may be correlated in some way. We therefore
introduce and estimate the inter-frame correlation, which
measures the marginal benefit of analyzing more frames
of a single event.
The inter-frame correlation, corr, is based on condi-

tional probabilities. For frames corresponding to an event,
if P(Xi) and P(¬Xi) are the probabilities of detecting
or not detecting the event in frame i, respectively, then
P(¬X2 | ¬X1) is the probability of not detecting the event
in frame X2, given that we did not detect it in frame X1.
This conditional probability can be measured empirically
from training data. Relying on the Kolmogorov definition,
we can calculate the probability the event is detected in at
least one of the two frames as 1− P(¬X2 | ¬X1) ∗ P(¬X1).
This logic can be extended to approximate the probability
of detecting the event in N tries and to estimate recall.

To estimate recall, we calculate the probability that our
DNN will correctly classify at least one frame of an event
using the following steps:

N =

{⌈
d

stride
⌉

w.p. d−(stride%d)
stride⌊

d
stride

⌋
else

(1)

Pmiss_1 = 1 − accuracyper− f rame (2)
Pmiss_N = corrN−1 ∗ Pmiss_1 (3)
recall = 1 − Pmiss_N (4)

We use Eq. 1 to calculate N , the expected number of
frames of the event that the model will process. Here,
d is the event length, and stride is the inverse of the
frame rate. Equation 3 estimates the probability the
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Figure 5: Effect of sample-rate on recall, for different inter-
frame correlations. The dotted vertical lines represent each
train in the dataset, denoting 1

trainlength , which is the sample
rate required to ensure that one frame of that train is analyzed.
The “Profiled” line is measured directly from the Train video
dataset, and the other three are approximations based on different
inter-frame correlations (uncorrelated, fully correlated, and the
empirical correlation observed in the Train dataset).

DNN misclassifies all N analyzed frames. Recall is the
complement: the probability that we correctly classify at
least one frame of the event.
To estimate the false positive rate, we repeat this cal-

culation, except that d is the number of frames between
events (derived from the event frequency), and Pmiss_1 is
the probability of true negatives. The true positive rate,
the false positive rate, and the event frequency are used
to calculate the precision. The F1-score is the harmonic
mean between precision and recall.
To evaluate our model, we profile an application and
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measure the actual recall observed when running the event
detector application (e.g., train detection) on the video
stream at different sampling rates (Fig. 5). This was mea-
sured by averaging the recall achieved from 10,000 trials
of sampling at each sample rate. The result is plotted
by the “Profiled” line. Our analytical model (“Main-
stream Prediction”) is sufficiently accurate to describe
the complex relationship between frame sample rate and
application recall. Mainstream uses this analytical model
to efficiently optimize for the trade-off between per-frame
accuracy and frame rate.
We use Mainstream for event detection but believe its

approach can be generally applied to DNN-based tasks
where application quality depends not only on its model,
but also on its input sampling rate (e.g., object tracking,
action recognition.)

4 Mainstream Architecture

We have developed Mainstream, a training and runtime
system for DNN-based live analytics of camera streams,
which (a) enables efficient sharing of computation be-
tween detection applications, (b) maximizes event F1-
score across all tasks, and (c) allows each task to be inde-
pendently developed, trained, and deployed. Fig. 1 shows
the architecture of Mainstream, which consists of three
components: M-Trainer, M-Scheduler, and M-Runner.
To deploy a new application to Mainstream, the user

provides a corresponding labeled training dataset to their
local instance of M-Trainer (Step 1). M-Trainer uses
the dataset to train a number of potential models, with
varying numbers of specialized layers. This Model Set
and associated metadata are then assembled into an “M-
Package” (Step 2). Note that these are offline steps,
performed just once per application prior to deployment,
independent of all other tasks. At runtime, M-Scheduler
uses theM-Packages of all currently-deployed applications
to determine, for each application, the degree of DNN
sharing and sampling rate such that, across all applications,
the event F1-score is maximized, subject to the resource
limits of the edge platform (Step 3). M-Scheduler runs in
the datacenter, and is executed once for each scheduling
event (e.g., a change in the deployed set of applications, or
in available hardware resources). M-Runner then executes
the selected model configuration on edge devices (Step 4)
and returns app-specific results in real-time (Step 5).

M-Runner is a relatively straightforward execution sys-
tem for running visual processing pipelines. It accepts
a DAG, where each node represents a unit of indepen-
dent computation, and connections represent data flow.
Fig. 2 illustrates the logical DAG for an image classifica-
tion application. Most of the computation is expected in
the “DNN” process, which evaluates the merged DNN
of all concurrent tasks. This combined DNN, as illus-

trated in Fig. 3d, represents the set of models selected
by M-Scheduler across all tasks. This DNN is structured
as a tree, with sets of layers branching from the shared
stem. M-Runner executes the shared stem once per frame,
reducing the total processing costs of the deployed tasks.
We next describe how M-Trainer independently trains

model candidates for potential sharing (Sec. 5) and how
M-Scheduler dynamically chooses among them (Sec. 6).

5 Distributed Sharing-Aware Training

M-Trainer produces a set of models for each task so that
they can be combined dynamically at runtime to maximize
collective performance. Application developers use M-
Trainer independently at different times and locations.

One approach to sharing computation between appli-
cations would be to jointly train them using a multi-task
network. This, however, requires centralized training of
applications. MCDNN [18] proposed fine-tuning models
independently and sharing the unspecialized DNN layers.
This static approach prevents M-Scheduler from dynami-
cally tailoring stem-sharing to the available resources. In
contrast, M-Trainer generates a set of models that vary
in the number of specialized layers. These models com-
pose an application-specific Model Set. The generation
of Model Sets allows for the late binding of the degree
of specialization to deployment time, when the platform
characteristics and co-deployed applications are known.
To construct a Model Set, M-Trainer first analyzes

the structure of the base DNN to identify branchpoints,
the potential boundaries between frozen and specialized
layers. Using the app-specific training data provided by
the developer, M-Trainer generates a set of fine-tuned
DNN models, one per branchpoint, where layers up to the
branchpoint are frozen, and the rest are specialized. Only
the models at the Pareto-optimal frontier with respect to
number of layers specialized and estimated accuracy are
actually included in the M-Package. This eliminates from
considerationmodels that reduce accuracy, while requiring
more specialization. For example, an overfitted model,
caused by specializing too many layers with insufficient
training data, will not be included.

Model Sets are bundled together with application meta-
data into an M-Package. This metadata includes the
measured per-frame accuracy of each model (we use a
portion of the data as the validation dataset.) The expected
minimum event duration, event frequency, and inter-frame
correlation are optionally measured from the training data
and included in the M-Package, or directly provided by
the application developer.
The construction of the M-Package is an offline oper-

ation, which is run just once per application. For each
application, M-Trainer must train multiple models. Al-
though training a model from scratch can be very resource
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intensive, fine-tuning is much quicker. M-Trainer creates
Model Sets with 15 model options in 8 hours on a single
GPU (Sect. 7). Note that the computation for generating
all of the models is easily parallelized in a datacenter set-
ting, and may not be significantly higher than traditional
fine-tuning. For example, to find the right number of lay-
ers to specialize in order to maximize accuracy, one may
need to generate these models anyway. The key difference
here is that intermediate runs are not discarded, and the
final selection is made at run time by M-Scheduler.

As each application’s models are independently trained
and analyzed, no coordination or sharing of training data
is needed between developers of different tasks. The re-
sulting M-Package, however, contains enough information
that M-Scheduler, at run time, can optimize across the
independently-developed tasks.

6 Dynamic Sharing-Aware Scheduling

At each scheduling event (typically, an application submis-
sion or termination), M-Scheduler uses the M-Packages
created by the various per-application M-Trainers to pro-
duce a new overall schedule that optimizes some global
objective function, subject to resource constraints (cur-
rently, M-Scheduler maximizes average event F1-score
across applications). The schedule consists of a DNN
model selection (indicating the degree of sharing) and
target frame-rate for every running application.1 The final
schedule is a tree-like model with applications splitting
from a shared stem at potentially different branch points,
with each application able to run at its own frame rate.

M-Scheduler optimization algorithm. With N appli-
cations to schedule, S possible specialization settings per
application, and R frame-rate settings per application, the
number of possible schedules is (S · R)N . Although this
space is large (e.g., N ≈ 10, R ≈ 10, and S ≈ 10 in our
experiments), M-Scheduler can efficiently determine a
good schedule using a greedy heuristic (Algo. 1). We
compare the schedules generated by our greedy scheduler
to those of an exhaustive scheduler in >4,800 workloads
each consisting of up to 10 applications, and find that the
greedy schedules are on average within 0.89% of optimal.
Essentially, at each step of our iterative algorithm, the

scheduler considers making a move which improves the
application quality of a single application by tweaking its
frame rate and/or model specialization. The algorithm
greedily selects the move that yields the best ratio of
benefit to cost, defined below. Naturally, before this
iterative refinement, the schedule is initialized to the
lowest cost configuration— Max-Sharing with minimum
frame rate. At any iteration step, the number of possible

1Here, we assume that some admission control policy (outside the
scope of this work) has been applied to ensure that some schedule is
feasible for the set of running applications.

Algorithm 1 Scheduler optimization algorithm
function Get Next Move(schedule)
. Finds change to schedule with the highest benef it

cost

function Schedule(budget)
sched← Get Schedule(max_sharing, min_fps)
while True do

next_move← Get Next Move(sched)
cost← cost + Get Cost(next_move)
if cost < budget then

sched← Update Schedule(next_move)
else return sched

moves is bounded by S · R · N . The total number of moves
per invocation of the scheduler is similarly bounded by
S · R · N , but in practice is much fewer as the set of
potential moves that fit within the computational budget
is exhausted.

Measuring the Benefit of a Move. The benefit associ-
ated with a move captures the improvement in F1-score for
the application associated with that move. This value is
calculated using the analytical model presented in Sect. 3
and the application metadata in the M-Package.

Measuring the Cost of a Move. The cost value con-
sidered represents the computational resources (e.g., CPU-
seconds per second) consumed by a given schedule ar-
rangement and depends on the number of shared sub-
graphs, the number of task-specific subgraphs, and the
intended throughput (frame-rate) of each subgraph. The
relative cost of a schedule is the sum of the execution time
of each model layer, multiplied by the desired throughput.
Consider for example a schedule with two applications,
both executing at F FPS. Assume they share a compute
stem A, and then branch to specialized subgraphs B1 and
B2. If CA represents the execution cost (in CPU-seconds
per frame, say) of A, and CB the execution cost of B1 and
B2, then the total cost of the schedule is F · CA + 2F · CB.
Adding a third application based on the same network, us-
ing the same branchpoint and frame rate will add another
factor of F · CB to the schedule cost.
To most accurately model the compute costs (e.g., CA

andCB), a forward pass execution of the base DNN should
be executed and measured once on the target hardware.
Note that as cost is relatively insensitive to the assigned
model weights, each base DNN need only run one time
(ever) per target hardware, not once per trained application.

Max-Min Fairness Among Applications. Although
stem-sharing improves overall system efficiency, max-
imizing a global objective may lead to an inequitable
allocation of resources for individual applications. Thus,
M-Scheduler can also be run in max-min fairness mode,
which maximizes the minimum benefit among applica-
tions, instead of the average. Max-min fairness is sched-
uled by searching the space using dynamic programming.
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X-Voting To Improve Precision. Mainstream uses
voting across frames to improve precision, and consequen-
tially F1-score. With X-voting, Mainstream requires X
consecutive positives to identify an event. While X-voting
decreases false positives, it is not guaranteed to increase
precision. For X-voting to improve precision, it must
decrease false positives at a higher rate than true positives.
The ideal X-voting configuration again depends on the
applications and the resources available. A higher X
incurs fewer false positives, but requires more cost to
sustain high recall (either by increasing FPS or increasing
specialization). We evaluate the effect of various X-voting
configurations in Sect. 8.

7 Experimental Setup

To evaluate our system, we implement seven different event
detection applications. We refer to the set of applications
as 7-Hybrid. These are listed in Table 2, along with the
datasets we used to train and test them. A pedestrian-
detection application (Pedestrian) is trained based on
the fully-labeled, publicly-available Urban Tracking video
dataset [25]. Our application to classify car models (Car)
uses the Stanford Cars image dataset [28]. Train detection
(Train) is based on video of nearby train tracks that we
have captured in our camera deployment, and have hand
labeled. The remaining classifiers are trained on a video
of a nearby intersection, also captured in our camera
deployment. We have obtained the necessary permissions
and plan to make our Trains and Intersection video dataset
available publicly. We reserve a portion of these datasets
to create synthetic video workloads for testing.

We use M-Trainer to produce a task-specific M-Package
for each application. Model candidates are fine-tuned
using the MobileNets-224 model pretrained on ImageNet
as a base DNN (implemented in Keras [8] using Tensor-
Flow [2]). Each M-Package contains several models with
different degrees of fine-tuning as described in Section 5.
We evaluate Mainstream using the M-Packages and hold-
out validation sets from our datasets. Our experiments
use the applications in Table 2.
Hardware. Training is performed on nodes equipped

with Intel® Xeon® E5-2698Bv3 processors (2.0 GHz,
16 cores) and an Nvidia Titan X GPU. All end-to-end
experiments use an Intel® NUC with an Intel® Core™ i7-
6770HQ processor and 32 GiB DRAM, which is intended
to represent an edge processing device. The Train and
Intersection videos were captured using an Allied Vision
Manta G-1236 GigE Vision camera.

8 Evaluation

We evaluate our system in the context of independent
DNN-based video processing applications sharing a fixed-

resource edge computer. In our evaluation, we show that
Mainstream’s dynamic approach outperforms static solu-
tions in all of our experimental settings, across various
application workloads, computational budgets, and num-
bers of concurrent applications. Mainstream’s X-voting is
capable of improving F1-score but, like model specializa-
tion, must also be dynamically configured to the resources
available. In addition to our benchmarked applications,
we show an end-to-end Mainstream deployment of a train
detection application used for environmental pollution
monitoring.

8.1 Mainstream Improves App Quality
Our goal in event detection is to maximize per-event
F1-score. We compare the F1-score achieved by Main-
stream with two baselines: No-Sharing and Max-Sharing.
No-Sharing is the default behavior for a multi-tenant
environment and is the approach taken by systems like
TensorFlow Serving [1] and Clipper [12]. No-Sharing
maximizes classification accuracy at the cost of a re-
duced sampling rate and requires no coordination between
tenants. Max-Sharing is the sharing approach used by
MCDNN [18]. It uses partial-DNN sharing by fine-tuning
the final layer of concurrent DNNs. In many cases, Max-
Sharing provides better F1-score relative to No-Sharing
when a non-trivial number of applications share the infras-
tructure; it sacrifices classification accuracy to maximize
the number of frames processed. We show, however,
that Max-Sharing is less effective than making deliberate
runtime decisions about how much sharing to use.
In order to observe the effects of increasingly con-

strained resources without a large number of distinct appli-
cations, we generate additional applications by augmenting
our application set. Each of the seven classification tasks
in Table 2 has a corresponding “accuracy-tradeoff curve”,
which represents the relationship between per-frame ac-
curacy and the shared stem size (Fig. 4b). For each
application in our experiments, we randomly choose one
of the seven classifiers (and its corresponding accuracy-
tradeoff curve) and parameterize it with a different event
length, event frequency and inter-frame correlation. To
capture the effects of diverse application characteristics,
the parameters are uniformly sampled from a range of
possible values. Each workload consists of up to 30
concurrent applications. In most experiments, we show
the behavior averaged across 100 workloads. Our video
capture rate for all experiments is 10 FPS.

Mainstream outperforms static approaches. M-
Scheduler maximizes per-event F1-score by varying the
sampling rate and amount of sharing. Each additional
application introduces more resource contention, forcing
the system to pick a different balance between accuracy
and sampling rate to achieve the best average F1-score.
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Detection Dataset Number Avg Event Min Event Event
Task Description of Images Length Length Frequency
Pedestrians Urban Tracker atrium video 4538 59 2 0.63
Bus Intersection near CMU video 4762 1039 141 0.27
Red Car Intersection near CMU video 9172 228 46 0.08
Scramble Intersection near CMU video 1500 412 382 0.16
Schoolbus Intersection near CMU video 2600 854 92 0.03
Trains Train tracks near CMU video 3066 132 20 0.01
Cars Images of 23 car models 3042 — — —

Table 2: Labeled datasets used to train classifiers for event detection applications. Average and minimum event lengths are reported
in number of frames. Event length and event frequency only apply to video datasets and not Cars.
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Figure 6: Mainstream improves F1-scores vs. No-Sharing
between applications or conservatively sharing all layers but the
last one. “Frame Rel Acc” is the relative image-level accuracy
of the model deployed, compared to the best performing model
candidate. “FPS” is the average observed throughput of the
deployed applications.

Fig. 6 compares Mainstream with our baseline strate-
gies. Mainstream delivers as much as a 87X higher
per-event F1-score than No-Sharing and as much as a 47%
higher score vs Max-Sharing. Fig. 6 reports F1-scores
averaged across 100 workloads. The relationship between
the three schedulers holds when examining individual
workloads. No-Sharing exhibits low recall because of its
low throughput—the system has fewer opportunities to
detect the event. Max-Sharing has high throughput but a
worse precision because the underlying model accuracy is
lower—it evaluates many frames but does so inaccurately.
Mainstream outperforms by striking a balance, sometimes
choosing a more accurate model, and sometimes choosing
to run at a higher throughput.
Mainstream dynamically balances precision and re-

call. Fig. 7 delves into the system effects of Mainstream
more deeply. F1-score, recall, and precision are plotted.
The average application frame rate is plotted, showing
how Mainstream dynamically tailors resource usage to
the workload. (Not shown is the varying model accu-
racy.) Optimizing for precision requires careful tuning
of the application frame rate. While higher FPS always

leads to higher recall, it does not always lead to higher
precision. (A high frame rate may only increase false
positives without increasing expected true positives.) For
instance, No-Sharing’s low frame rate and high per-frame
accuracy allows it to have the highest precision of the
three approaches. When given just a few applications,
Mainstream runs specialized models, while throttling the
stream rate to avoid unnecessary false positives. As re-
sources become scarce, many applications begin to share
more of the network.

Mainstream improves upon Max-Sharing even un-
der tight resource constraints. Fig. 8 shows the effect
of Mainstream, Max-Sharing, and No-Sharing on a range
of computational budgets. We average the event F1-scores
across 100 workloads, each with 3 applications. The
right-most points represent the scenario of running on
computational resources equivalent to an Intel® NUC.
With a small workload of three applications, No-Sharing
performs better than Max-Sharing, as it is able to run
expensive models at a high enough frame rate. As we de-
crease the available budget, Max-Sharing’s conservative
sharing approach allows it to be more scalable than No-
Sharing. However, even after the computational budget
is reduced by 83%, Mainstream still improves applica-
tion performance, compared to the overly conservative
Max-Sharing approach.

8.2 Tuned X-Voting improves F1-score
Applications that suffer from low per-frame precision will
generate many false positives. An X-voting approach can
greatly decrease the incidence of false positives, as X
consecutive classifications are needed in order to report a
detection. Too large a value of X can hurt recall, causing
real events to go unreported. By using X-voting and
optimizing the parameter X, Mainstream can improve the
overall average event F1-score.
Fig. 9 shows the effects of X-voting on F1-scores as

X and the number of applications are varied, while total
resources are kept fixed. With just a few concurrent
applications, running at high frame rates, 7-voting and
5-voting yield the highest F1-scores. With more resource
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Figure 7: The average event F1-score (Fig. 7a), recall (Fig. 7b) and precision (Fig. 7c) across 100 deployed workloads are shown
(solid lines) alongside the average frame-rate across applications (dotted lines). Mainstream dynamically balances recall and precision
to maximize aggregate F1-score. With high numbers of concurrent applications, Mainstream sacrifices small amounts of both
specialization and frame-rate.
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Figure 8: Mainstream improves F1-score of workloads under
varying computational budgets. The rightmost points on the X
axis represent the resources available on an Intel® NUC. Even
under heavy resource constraints, there is available capacity for
Mainstream to perform optimizations.

contention, and lower throughput, 3-voting becomes the
best choice as the cost of dropping true positives outweighs
the benefit of reducing false positives for higher values of
X. When resources become too constrained, this approach
is less viable, e.g., 1-voting becomes the best approach at
25 concurrent apps. Fig. 9 also shows the Pareto frontier
of F1-scores achievable across all values of X for a given
number of concurrent applications.

8.3 Mainstream Deployment
We deployed our environmental pollution monitor appli-
cation and nine other concurrent applications using both
Mainstream and a conventional No-Sharing approach for
one week on the hardware setup described in Section 7.
Fig. 10 shows the trace of both approaches on a single
train event sequence, indicating the frames analyzed. A
hit represents a correct classification of the train, a miss
represents an incorrect classification. We see that Main-
stream’s deployment samples the stream more frequently,
yielding many more hits (and misses) than No-Sharing;
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Figure 9: X-voting increases precision and helps Mainstream
achieve a higher F1-score, but only if frame rate is high enough
to avoid hurting recall. Thus, the effects vary by the level of
resource contention. The Pareto frontier shows the F1-scores
achievable given the dynamic selection of an optimal X-voting
scheme for the resource scenario.

the result, though, is that Mainstream detects the train
event earlier and more confidently.

We control the false positive rate with 2-voting, requir-
ing Mainstream to have two positive samples before an
event is classified. The false positive rate of the Train
video drops from 0.028 to 0.00056. No-Sharing and
Mainstream achieve a 0 and a 0.00056 false positive rate,
respectively. In the analyzed deployment in Fig 10, we see
that Mainstream still detects the train easily and quickly.

9 Additional Related Work

Several recent systems have attempted to tackle the prob-
lem of optimizing execution of visual computing pipelines.

VideoStorm [48] is a video analytics system for large-
scale clusters and workloads. It analyzes resource use and
application-goal-based metrics as a function of tunable
parameters of the analytics pipelines, building models
for each application independently. It uses these models
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Figure 10: Timeline of Mainstream running a train detector app
with 9 concurrent applications. Our goal is to detect the train as
early as possible, before the smoke stack is out of view (end of
window represented by the dotted line). Mainstream detects the
train earlier and more confidently than No-Sharing.

to allocate resources and select parameters for deployed
applications on a target platform, in order to maximize
application quality metrics. VideoStorm takes a black-box
view of the applications, and assumes that quality and
resource consumption of co-deployed applications are
independently determined. Therefore, it cannot take into
account computation sharing, or optimize the sharing vs.
degree of specialization tradeoff. In contrast, Mainstream
takes a white-box approach to modeling application qual-
ity, and can explicitly tune computation sharing to improve
application quality metrics. Compared to VideoStorm,
Mainstream sacrifices some generality to solve the joint
optimization problem.
MCDNN [18] introduces a static approach to sharing

DNN computation, in which each application developer
independently determines their amount of model special-
ization. MCDNN opportunistically shares any identical
unspecialized layers between applications. In contrast,
Mainstream’s training and scheduling components allow
late binding and jointly-optimized selection of the degrees
of specialization at run time, when resource availability
and co-deployed tasks are known.
Inference serving systems. Mainstream is an infer-

ence serving system for running neural networks on
resource-constrained nodes. Other inference serving sys-
tems include Clipper [12], NoScope [26], and TensorFlow
Serving [1]. Like Mainstream, these systems optimize for
latency and throughput gains. Clipper caches results from
multiple models, dynamically chooses from the results,
and optimizes the batch size. NoScope replaces expen-
sive neural networks for object detection with cheaper
difference detectors and specialized models. TensorFlow
Serving increases throughput with batching and hardware
acceleration. LASER [4] and Velox [11] are inference
serving systems for non-DNN models. LASER deploys
linear models while Velox deploys personalized prediction
algorithms using Apache Spark.
Unlike Mainstream, these inference serving systems

do not share computation between independently trained

models. They also target cluster environments. Main-
stream targets edge devices with limited resources, where
achieving the right degree of DNN computation sharing
is particularly important, though such sharing would also
be valuable in large data centers.

Reducing DNN inference time. Approaches to re-
ducing DNN inference time for vision applications can
be broadly classified into those that reduce model preci-
sion [16, 50, 10, 9, 7, 23, 39], use efficient network architec-
tures [20, 24], use anytime prediction methods [22, 21], or
employ model compression and sparsification [17, 33, 46].
All of these methods are orthogonal to Mainstream’s adap-
tive DNN computation sharing technique, but share its
goal of selecting the right trade-off between per-frame
quality and frame throughput.

Multi-task networks. Multi-task learning [6, 49, 5, 36,
35, 34, 27, 38] is aML approach in which a single model is
trained to perform multiple tasks. Using multiple tasks to
train a single model helps achieve better accuracy because
of better generalization and complementary information [6,
41]. In the context of DNNs, a multi-task network can
have a varying number of shared layers across tasks and
task-specific layers [36, 35]. Multi-task learning assumes
that all of the tasks are known a priori, and that training
data for all of the tasks is available for use in a single
training process. In contrast, Mainstream allows each
task to be developed, trained, and deployed independently,
and avoids the need to share or expose proprietary or
privacy-sensitive training data between task developers.
Note that one can run a multi-task network as a single
large application in Mainstream.

10 Conclusion

Mainstream adaptively orchestrates DNN stem-sharing
among concurrent video processing applications sharing
the limited resources on an edge device, resulting in much
higher aggregate application quality. Experiments with
several event detection tasks confirm that Mainstream
significantly increases overall event F1-score relative to
current approaches over a range of concurrency levels.
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Abstract
Many video streaming applications require low-latency
processing on resource-constrained devices. To meet the
latency and resource constraints, developers must often
approximate filter computations. A key challenge to suc-
cessfully tuning approximations is finding the optimal
configuration, which may change across and within the
input videos because it is content-dependent. Searching
through the entire search space for every frame in the
video stream is infeasible, while tuning the pipeline off-
line, on a set of training videos, yields suboptimal results.

We present VIDEOCHEF, a system for approximate
optimization of video pipelines. VIDEOCHEF finds the
optimal configurations of approximate filters at runtime,
by leveraging the previously proposed concept of ca-
nary inputs—using small inputs to tune the accuracy of
the computations and transferring the approximate con-
figurations to full inputs. VIDEOCHEF is the first sys-
tem to show that canary inputs can be used for com-
plex streaming applications. The two key innovations of
VIDEOCHEF are (1) an accurate error mapping from the
approximate processing with downsampled inputs to that
with full inputs and (2) a directed search that balances the
cost of each search step with the estimated reduction in
the run time.

We evaluate our approach on 106 videos obtained
from YouTube, on a set of 9 video processing pipelines
with a total of 10 distinct filters. Our results show sig-
nificant performance improvement over the baseline and
the previous approach that uses canary inputs. We also
perform a user study that shows that the videos produced
by VIDEOCHEF are often acceptable to human subjects.

1 Introduction
Video processing has brought many emerging appli-
cations such as augmented reality, virtual reality, and
motion tracking. These applications implement com-
plex video pipelines for video editing, scene understand-

ing, object recognition and object classification [14, 49].
They often consume significant computational resources,
but also require short response time and low energy con-
sumption. Often, the applications need to run on the local
machines instead of the cloud, due to latency [14], band-
width [50], or privacy constraints [46].

To enable low-latency and low-energy video process-
ing, we leverage the the fact that most stages in the video
pipeline are inherently approximate because human per-
ception is tolerant to modest differences in images and
many end goals of video processing require only esti-
mates (e.g., detecting object movement or counting the
number of objects in a scene [5]). Many domain-specific
algorithms have exposed algorithmic knobs, that can e.g.,
subsample the input images or replace expensive com-
putations with lower-accuracy but faster alternatives [45,
41, 13, 26]. To complement domain-specific approxima-
tions, researchers have proposed various generic system-
level techniques that expose additional knobs for opti-
mizing performance and energy of applications while
trading-off accuracy of the results. The techniques span
compilers [39, 30, 42, 7, 36, 27], systems [3, 15, 18, 17,
31], and architectures [32, 29, 37, 36, 8].
Content-dependent Approximation. A fundamental
challenge of uncovering the full power of both generic
and domain specific approximations is finding the con-
figurations of these approximations that provide max-
imum savings, while providing acceptable results for
each given input. This challenge has two main parts.

First, the optimal approximation setting is dependent
on the content of the video, not just on the algorithms
being used in the processing pipeline. Often individual
videos, or parts of the same video should have different
approximation settings, requiring the program to make
the decisions at runtime. Second, the optimization needs
to explore a large number of approximate configurations
before selecting the optimal one for the given input, re-
quiring the optimizer to construct off-line models. Sys-
tems like Green [3] and Paraprox [36] dynamically adapt
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the computation using runtime checks of the intermedi-
ate results, while Capri [43] selects approximation level
from the input features at the program start. However,
the systems rely on extensive off-line training to map the
approximation levels to accuracy and performance.

To relax the dependency on off-line training, Lauren-
zano et al. [25] propose Input Responsive Approxima-
tion (IRA) for runtime recalibration with no offline train-
ing. IRA creates canary inputs, smaller representations
of the full inputs (obtained via subsampling), and then re-
runs the computation on the canary input with different
approximation settings, until it finds the most efficient
setting that maintains the accuracy requirement (on the
canary). While the concept is promising, the application
of IRA to video processing pipelines is limited:
• IRA has been applied to individual computational ker-

nels (in contrast to full pipelines). It is unclear how
to capture the interactions between the stages of the
pipeline, how often to calibrate, and what are the opti-
mal canary sizes.

• IRA uses the approximation settings derived from the
canary input to the full input, assuming that the er-
rors for the full and correlated inputs will be identical.
However, this assumption is often incorrect (98% of
cases, Figure 2) and leads to missed speedup opportu-
nities.

• IRA’s greedy search may introduce additional over-
heads and may not find good approximation settings
efficiently because it has no notion of what are the ap-
propriate points in the stream to search.

Our Solution: VIDEOCHEF. We present VIDEOCHEF,
a fast and efficient processing pipeline for stream-
ing videos. VIDEOCHEF can optimize the perfor-
mance subject to accuracy constraints for the system-
level and domain-specific approximations of all kernels
in the video processing pipeline. Figure 1 presents
VIDEOCHEF’s end-to-end workflow:
• Like IRA, VIDEOCHEF uses small-sized canary input

to guide the on-line search for approximation setting.
However, unlike IRA, VIDEOCHEF is tailored for op-
timization of the whole video processing pipelines, not
just individual kernels.

• In contrast to IRA, VIDEOCHEF presents a finely tun-
able prediction model for mapping the error from the
canary input to that with the original input. This pre-
diction model is trained offline and hence does not
generate any additional runtime overhead. At the same
time, it is much more lightweight than the full off-line
training employed by other approaches.

• At runtime, VIDEOCHEF performs an efficient search
through the space of approximation settings and en-
sures that the cost of the search does not overwhelm
the benefit of approximating the computation.
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Figure 1: End-to-end flow of approximate video processing with
VIDEOCHEF. The video processing pipeline comprises multiple fil-
ters, which can be approximated to save computation at the expense
of tolerable video quality. The offline and the online components of
VIDEOCHEF work together to determine the best approximation set-
ting for each approximable filter block.

We evaluate VIDEOCHEF with three error models and
two search strategies, applied to a corpus of 106 YouTube
videos from 8 content categories, which span the range
of video features (e.g., color and motion). We analyze
10 filters arranged in 9 pipelines of size 3. We find that
VIDEOCHEF is able to reach within 20% of the theo-
retical best performance possible and outperforms IRA’s
performance by 14.6% averaged across all videos and
saves on an average 39.1% over the exact computation
given a relatively restrict quality requirement. While
given a more loose quality requirement, VIDEOCHEF is
able to reach within 26.6% of the theoretical best and
also achieve higher performance gain – 53.4% and 61.5%
over IRA and exact computation, respectively.

While we have framed this discussion in terms of
video processing, the novel contributions outlined be-
low apply to other low-latency streaming applications,
with the fundamental requirement that the characteristics
change to some extent from one segment of the stream to
another, for instance, online video gaming, augmented
reality and virtual reality applications.

Contributions. We make the following contributions:

1. We present VIDEOCHEF, a system for perfor-
mance and accuracy optimization of video stream-
ing pipelines. It consists of off-line and on-line
components, that together adapt the application’s
approximation level to the desired output quality.

2. We build a predictive model to accurately estimate
the quality degradation in the full output from the
error generated when using the canary input. This
enables more aggressive approximation setting the
approximation algorithm that has tunable knobs.

3. We propose an efficient and incremental search
technique for the optimal approximation setting that
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takes hints from the video encoding parameters to
reduce the overhead of the search process.

4. We demonstrate the benefits of VIDEOCHEF
through (1) quantitative evaluation on various real-
world video contents and filters and (2) a user study.

2 Background and Motivation
Error Metric: At a high-level, a video is composed of
a sequence of image frames. To quantify the error in
the output or the processed video due to approximation,
we measure the Peak Signal-to-Noise Ratio (PSNR) of
the output video. PSNR is the average of the PSNRs
of the individual frames in the output video. Suppose
that a video consists of K frames where each frame has
M×N pixels. Let Yk(i, j) be the value of the pixel at (i, j)
position on the k-th frame of the processed video without
any use of approximation, and Zk(i, j) be the value of the
pixel when approximation was applied. Then, the PSNR
of the approximate output is computed as follows:

PSNR =
1
K

K−1

∑
k=0

20× log10
MaxValue√
MSE(Zk,Yk)

, (1)

where MaxValue is the maximum possible pixel value
present in the frame, and MSE(Zk,Yk) is the mean square
error between Zk and Yk, i.e., ∑i ∑ j(Zk(i, j)−Yk(i, j))2,
as a result of approximation. Thus, lower the PSNR, the
higher the error in the output video.
Isn’t the problem solved by IRA and Capri? IRA (In-
put Responsive Approximation) [25] and Capri [43] at-
tempted to address the problem of selecting optimal ap-
proximation level for individual inputs.

IRA [25] solely relies on canary inputs to search for
best approximation settings. Thus, it implicitly assumes
that the magnitude of error corresponding to a particu-
lar approximation setting on the canary inputs is iden-
tical to the error with the same approximation settings
on the full-sized inputs. But, Figure 2 shows our experi-
ment with 424 real images and 216 different approxima-
tion settings. We found that for the same approximation
settings, the PSNR of the full-sized inputs can be sig-
nificantly different from the PSNR of the canary inputs.
Most of the points (about 98%) are above the diagonal,
indicating that the error on the full input is lower than that
with the canary input for the same approximation level.

We attribute the difference in the approximation to
the higher variations between neighboring pixel values
for canary inputs. Therefore, for the same approxima-
tion settings, the approximate processing on canary in-
puts gives lower PSNR. We found that on an average,
the PSNR of a full-sized output is 5.36 dB higher than
the PSNR of canary output. Therefore, IRA misses an
opportunity for more aggressive optimization that can fit
within the user-specified quality threshold.

Figure 2: The PSNR of full-sized output versus the PSNR of ca-
nary output, for the I-frames of 106 videos on one of our application
Boxblur-Vignette-Dilation video filter pipeline. The PSNR of full out-
put is higher for over 98% approximation settings and 45.1% of the
approximation settings lie in such a zone that is ignored by IRA ap-
proach but actually satisfies the quality requirement.

Capri [43] rigorously addresses the problem of se-
lecting the best approximation settings to minimize the
computational cost, while meeting the error bound. But
Capri also fails in the video processing setting because it
does not recalibrate itself with the stream and thus cannot
change its approximation settings when the characteris-
tics of the stream change. Further, it (1) relies on prior
enumeration of all possible inputs, which is impossible in
this target domain, and (2) performs the selection of ap-
proximation settings completely offline, which reduces
the cost of the optimization but makes it non-responsive
to changes in the input data.

3 Solution Overview
Figure 1 shows the end-to-end workflow of streaming
video processing, with approximation.
Approximation. Under normal processing, a video de-
coder converts the video into its constituent frames. Then
a sequence of “filters” (synonymously, processing steps
or pipeline stages) is applied to each frame. Examples
include blurring filter (e.g., at the TSA airport check-
point scanners) and edge detection filter (e.g., for count-
ing people in a scene). Finally, the transformed frames
are optionally put together by a video encoder. To make
such processing fast and resource efficient, VIDEOCHEF
intelligently uses selective approximation (Section 3.1)
during the computation of the filters. The user sets the
quality constraint on the output video quality. An ex-
ample specification is that the PSNR of the output video
should be above 30 dB.
Accuracy Calibration with Canary Inputs. For
each representative frame (called “key frame” here),
VIDEOCHEF determines a canary input (Section 3.2),
which summarizes the full frame such that the dissim-
ilarity between the full and the canary frame remains
below a threshold. With the canary input, VIDEOCHEF
occasionally recalibrates the approximation levels of the
filters. It determines when to call the search algorithm
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using domain specific knowledge about the frames and
scenes (Section 3.3). For this, we extract hints from
the video decoder which lets VIDEOCHEF determine the
key frames. This amortizes the cost of the search across
many frames of the video, with 80-120 frames being a
typical range for MPEG-4 videos. In the absence of such
a video decoder, we have a variant, which triggers the
search upon a scene change detection.
Online Search for Optimal Tradeoffs. VIDEOCHEF
searches for the approximation setting of each filter that
gives the lowest execution time subject to a threshold for
the output quality (Section 3.4). Since the search for ap-
proximation is done with the canary input, the error of
approximate computation is different from the error of
the computation on the full input. VIDEOCHEF intro-
duces a method to accurately map between these two
errors (Section 3.5). In performing this estimation, we
consider multiple variants of VIDEOCHEF, depending on
what features are available to the predictor, such as, some
categorization of the video frame according to its image
properties. Through this procedure, we aim to maximally
leverage the approximation potential in the application
and give flexible approximation choices.

3.1 Approximation techniques
The computations involved in filtering operations can be
approximated by VIDEOCHEF in various ways as long
as each of the underlying approximation techniques ex-
poses knobs that can be tuned to control the approxi-
mation levels (ALs). For example, in the three pop-
ular program transformation-based approximation tech-
niques, the variable approx level is a tuning knob
that controls the levels of approximation. A higher value
implies more aggressive approximation, leading most of-
ten to higher speedup but also higher error. These trans-
formations are performed automatically by a compiler
(LLVM in our case).
Loop perforation: In loop perforation [42, 30], the
computation is reduced by skipping some iterations, as
shown below.
f o r ( i = 0 ; i < n ; i = i + a p p r o x l e v e l )

r e s u l t = c o m p u t e r e s u l t ( ) ;

Loop truncation: In loop truncation [42, 30], the last
few iterations of the computation are dropped as shown
in the following example:
f o r ( i = 0 ; i < ( n − a p p r o x l e v e l ) ; i ++)

r e s u l t = c o m p u t e r e s u l t ( ) ;

Loop memoization: In this technique [7, 36], for some
iterations in a loop we compute the result and cache it.
For other iterations we use the previously cached results.
f o r ( i = 0 ; i < n ; i ++)

i f ( i % a p p r o x l e v e l == 0)
c a c h e d r e s u l t = r e s u l t = c o m p u t e r e s u l t ( ) ;

e l s e r e s u l t = c a c h e d r e s u l t ;

3.2 Canary Inputs
To reduce the search overhead for finding the best ap-
proximation level within each frame of the video, we
generate canary inputs for the frame following the work
in [25]. A good canary input should meet two require-
ments: (1) it should be close enough to the original input
so that the AL found by the canary is the same as the
AL computed from the original; (2) it should be small
enough that the search process using the canary input is
efficient. We first define the dissimilarity metric to com-
pare the canary sample video and the full-sized video and
then show how to choose the appropriate canary input.
Metrics of Dissimilarity. We define two metrics of dis-
similarity. Let a full-sized video have K frames and
M×N pixels in each frame, and each pixel has the prop-
erty X(i, j). A canary video has K frames with m× n
pixels, and the same property Y (i, j). The property could
be one component in the YUV colorspace of an image,
where the Y component determines the brightness of the
color (known as “luminance”) while the U and V com-
ponents determine the color itself (known as “chroma”)
and each ranges from 0 to 255. The “dissimilarity metric
for mean” (SMM), is defined as follows (following [25]):

mFull =
1

M×N×K

K−1

∑
i=0

M−1

∑
i=0

N−1

∑
j=0

X(i, j) (2)

mSmall =
1

m×n×K

K−1

∑
i=0

m−1

∑
i=0

n−1

∑
j=0

Y (i, j) (3)

SMM =
|mSmall−mFull|

mFull
(4)

When a pixel has a vector of values, such as the YUV
colorspace which has 3 values for the 3 components, then
the SMM metric is combined across the different ele-
ments of the vector. The combination could be a sim-
ple average or a weighted average; we use the latter due
to the higher weight of the Y-channel in the YUV col-
orspace. Similarly, we define the “dissimilarity metric of
standard deviation” (SMSD) to capture the dissimilarity
in the Standard Deviation between the full input and the
canary input.
Generating Candidate Canary Videos. Given a frame
of the video from which to generate the canary video, we
resize the frame to a fraction 1/N of its original size to
create the canary video. Typical sizes that we find useful
in our target domain are 1/16, 1/32, 1/64, 1/128, 1/256
of the original size. Since the frame is a 2-D matrix of
pixels, to resize it to 1/N of its original size, we shrink
the width and height each to 1/

√
N of the full size by

sub-sampling 1 pixel out of every
√

N pixels.
Reducing an input size causes at least proportional re-

duction in the amount of work inside the filter. Many
filters that are finding increasing use are super-linear,
where the benefit of using a small canary frame is even
more significant. Two popular examples are determining
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optical flow to measure motion [4] and morphological fil-
ter [10], where the value of each pixel in the output image
is based on a comparison of the corresponding pixel in
the input image with its neighbors. We compute the sim-
ilarity between the full-sized video frame and the canary
video frame according to the metrics SMM and SMSD.
We set the maximum dissimilarity metric we can tolerate
as a threshold parameter—we find 10% is a practically
useful threshold for both SMM and SMSD. Among all
the qualified canary inputs, we select the smallest one as
our final choice.

3.3 Identifying Key Video Frames
Searching for the best AL for each approximable pro-
gram block is computationally expensive. Conceptu-
ally, we would want to repeat the search when the char-
acteristic of the video changes significantly so that the
optimal approximation setting is expected to be differ-
ent. In practical terms, we want to perform such change
point detection without having to parse the content of the
video. Video encoders already provide hints when the
content of the scene has changed significantly.

We make the observation that videos have temporal
locality, and many frames in the same group will have
the same approximation setting. Therefore, we can per-
form a single search once per a single group of frames.
We leverage domain-specific knowledge about videos to
automatically select the group boundaries in two ways:
Scene Change Detector. Our first observation is to re-
calibrate the approximation at the beginning of different
scenes. This approach is general and works for any video
format. There are mainly 2 classes of scene change de-
tectors, namely, pixel-based and histogram-based. The
pixel-based methods are highly sensitive to camera and
object motion. Histogram-based methods are good for
detecting abrupt scene changes. To keep our overhead
low (since the detection algorithm runs on every frame),
we limit ourselves to detecting only abrupt scene changes
and use canary frames for this detection.

We implement a histogram-based scene change detec-
tor using only the Y-channel of the canary frames [20].
We experimentally found the Y-channel information was
sufficient to detect abrupt scene changes and we were
more concerned about overhead of scene change detector
than its accuracy. The algorithm detects a scene change
whenever the sum of the absolute difference across all the
bins of histograms of two consecutive frames is greater
than some predefined threshold (20% of the total pix-
els in our evaluation). Our experiments show that the
optimal configuration (found through offline brute-force
search) changes dramatically at scene change boundaries
but stay relatively stable within a group of frames.
I-frame Selection for MPEG videos. The second so-
lution takes advantage of I-frames, present in the popu-

lar H.264 encoder (which the MPEG-4 and many other
video formats follow). It defines three main types of
frames: I−, P−, and B− f rames [21]. An I-frame
uses intra-prediction meaning the predicted pixels within
this frame are formed using only samples from the same
frame. The P- and the B-frames use inter-prediction
meaning the predicted pixel within this frame depends
on samples from the same frame as well as samples from
other frames around it (the distinction between P- and B-
frames is not relevant for our discussion).

When to insert an I-frame (also called a “reference
frame”) depends on the exact coding scheme being used,
but in all such coding schemes that we are aware of, a
big difference in the frame triggers the insertion of a new
I-frame, since inter-coding will give almost as long a
code as intra-coding. Further, because an I-frame does
not have dependencies on other frames, this makes it
easier to reconstruct and perform the (exact or approx-
imate) computation. We see empirically that for a wide
range of videos used in our evaluation, the average spac-
ing between adjacent I-frames is 137 frames. Although
specific to only some video formats, it results in a low
sampling rate and consequently the low search overhead,
while triggering search at a suitable granularity.

3.4 Search with Canary Inputs
An approximable program block exposes one or more
approximation knobs. The approx level variable
mentioned with the loop-based approximation tech-
niques in Section 3.1 is an example of such a knob. In
our notation, we use AL 1 to denote the exact computa-
tion. The higher the AL is, the less accurate the com-
putation is and the higher the speedup is. Now for a
pipeline of cascaded filters, each having one or more
approximation knobs we have a vector of approxima-
tion settings per frame. We define a setting in the pro-
cessing pipeline as the combination of ALs for each of
the approximable program blocks in the video process-
ing pipeline. For example, with an n-stage processing
pipeline and each stage being approximable and hav-
ing exactly one approximation knob, the setting will be
~A = {a1,a2, · · · ,an}, where ai denotes the AL of knob i.

To find the best approximation setting, we follow a
searching algorithm outlined as follows:

1. Start searching at a particular setting, typically
(1,1, · · · ,1), corresponding to no approximation.

2. Select a group of candidate settings by the Candi-
date Selection Algorithm. The selection algorithm
simply selects the next set of settings to try out in the
search process. The greedy algorithm works as fol-
lows: given the current setting ~A(0), we assume that
we can reach the best AL by looking at each step 1 AL
further in each approximable block. So the candidates
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are { ~A(i)}, with i = 1 · · ·n, for n approximable blocks
and ~A( j) = {a(0)1 , · · ·a(0)j−1,a

(0)
j +1,a(0)j+1, · · · ,a

(0)
n }.

3. Decide whether to continue search, i.e., whether it
is worthwhile to try any of these candidate settings.
We use the Approximation Payoff Estimation Algo-
rithm (Section 3.4.1). If not, return the current set-
ting. This algorithm estimates whether the saving due
to the more aggressive approximation can compensate
for the time of the additional search step.

4. Try each worthwhile candidate setting from the set
computed by the previous step. Use the ALs in candi-
date settings to run approximate computation on ca-
nary video and compute the error metric for each can-
didate setting. Then map the error metric to that with
the full sized outputs.

5. Check for exit or iterate – if error metrics of all the
full video outputs exceed the error boundary, return
the current setting. Otherwise, the candidate setting
which gives the lowest error becomes the next setting,
go to (2) and iterate.

3.4.1 Approximation Payoff Estimation Algorithm

The goal of this algorithm is to estimate the benefit of
executing the application with the new AL searched for
versus the cost of searching with the new AL, all for the
key frame under question. Let the current setting be rep-
resented by ~A(0) = {a(0)1 ,a(0)2 , · · · ,a(0)n }. Recollect that
this is the set of ALs for each of the approximable blocks
in the application. Let the execution time of the applica-
tion at setting ~A(i) and with canary downsampling Cd be
given by g(A(i),Cd), where Cd = 1 denotes the execution
time with the full input.

This algorithm works in a breadth-first fashion and at-
tempts to prune some of the paths where exploring higher
degrees of approximation for a particular knob cannot
speedup the execution further and may lead to slowdown
due to associated overheads. From the current setting
of ~A(0), let the next possible settings of exploration be
~A(1), ~A(2), · · · , ~A(N). For example, with greedy search,

with n approximable blocks, there will be n possible next
settings. The maximum possible benefit by exploring all
the candidate next settings is calculated as:

B =
N

max
i=1

[g(A(0),1)−g(A(i),1)] (5)

This benefit B simply means the maximum reduction in
execution time across all the possible candidate settings,
when run with the full input. However, to realize this
gain, we have to pay the cost of searching, which can be
expressed in terms of the overhead as follows:

O =
N

∑
i=1

g(A(i),Cd) (6)

This overhead O is simply the cost of executing the appli-
cation with the next step ALs, but with the canary input
(and hence the downsampling ratio Cd). The decision for
VIDEOCHEF becomes simple: if B > O, then continue
the search, else stop and return the current setting.

3.5 Error mapping model
We have to develop an error mapping model to character-
ize the relation between error in the canary output and er-
ror in the full output, for the same approximation levels.
This is important because we have seen empirically (Fig-
ure 2) that the canary errors are higher than full frame er-
rors for most points. We propose three different mapping
models to use according to different amounts of knowl-
edge in the model.

3.5.1 Model-C
Suppose we know the error metric of a canary output C.
The error metric of a full-sized output F is estimated by
a quadratic regression model as follows,

F = w0 +w1×C+w2×C2 (7)
Offline, we calculate the ground truth of the pairs

(C,F) for every possible AL ~A and for all the videos in
the training set. In practice, we find that sub-sampling
the space of possible ALs still provides accurate enough
training, with a sub-sampling rate of 10% being ade-
quate. Let us say that the error bound specified by the
user is EB. Then clearly we want F < EB. However, due
to the possible inaccuracy of the error mapping model,
we want to explore a larger space so that we are not
missing out on opportunities for approximating. There-
fore, while training the model, Model-C, we explore all
the points where F ≤ EB +∆ , where ∆ is a user con-
figurable parameter for how far outside the tolerable re-
gion we want to explore in the model. Then we solve the
unknown coefficients w0,w1, and w2 in the model. We
find empirically that for a large set of videos, this model
reaches its limits with the quadratic regression function.

3.5.2 Model-CA
Now, suppose VIDEOCHEF has additional knowledge of
what ALs were in effect. Given the error metric of a
canary output C, which is computed approximately with
ALs ~A = {a1,a2, · · · ,an}, we construct the input vector
~I = (1,C,~A). The first element of this vector is the con-
stant 1 and allows for a constant term in our equation
for F . Then the error metric of a full-sized output F is
estimated by a regression model as follows,

F =~I ·w (8)
where w is a (n+2)×1 coefficient vector. The goal of

the training is to estimate the matrix w. The elements of
the matrix w provide the weights to multiply the different
input components—the error in canary output (C), and
the different ALs. We use similar training method offline
as for Model-C.
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3.5.3 Model-CAD
Many of approximation techniques on image processing
reduce computation load by skipping a fraction of rows
of images. Thus, the difference over rows is often related
with approximation quality. Inspired by this characteris-
tic, we consider a new feature vector ~D = (d1,d2,d3),
where each of dk’s represents a feature extracted from
one of Y, U, and V channels of an image. The feature dk
is referred to as a row-difference feature and is defined
as the mean of absolute difference in pixel values of the
same column between consecutive rows in each channel.
Averaging over rows and columns, we use only one rep-
resentative number as dk for each channel.

Considering an input vector ~I = (1,C,~A,~D), the error
metric of a full-sized output F is estimated by a linear
regression model as:

F =~I ·w, (9)

where w is a (n+ 5)× 1 coefficient vector. In the ex-
periment results, we will see that Model-CAD outper-
forms the other models.

3.5.4 Non-linear models.

We have also tested complex non-linear models to pre-
dict F , using artificial neural networks with all pixel in-
formation as input. However, considering the run-time
complexity [23], we could not observe any significant
benefit of the non-linear models over the linear models
mentioned earlier. Thus, we do not report their results in
the evaluation.

4 Implementation and Dataset

We use loop perforation and memoization [42, 30] to ap-
proximately filter the frames in the video. The imple-
mentation of VIDEOCHEF is comprised of an offline and
an online component. The offline component uses a set
of training videos (50% of videos described under the
dataset below) and creates models for the error mapping
and for the cost and the benefit of each step of the search.
This last model is actually implemented as a lookup ta-
ble, due to the space being only piece-wise continuous.
During runtime, VIDEOCHEF queries these models, us-
ing linear interpolation if needed, and performs an effi-
cient search to identify the optimal ALs and runs each of
the three filters in any pipeline with their optimal values.
VIDEOCHEF API. Our compiler pass identifies the ap-
proximable blocks using program annotations and then
performs the relevant transformations to insert the ap-
proximation knobs to be tuned (such as approx level
in Sec. 3.1). We have provided support for similar anno-
tations in other domain specific languages that we have
built in the past and that helps to reduce the programmer

burden [28]. The user can then use the following API
calls to enable VIDEOCHEF in the video pipeline:

• setCalibrationFrequency(f=”I-frame”) : This will
set how frequently VIDEOCHEF will search for the
best approximation settings. The default value is
VIDEOCHEF will trigger a search for every I-frame. If
f =”x”, then VIDEOCHEF will search every x-th frame.

• setQualityThreshold(b=”30”) : This will set the
(lower) PSNR threshold that the approximated
pipeline must deliver. Default is 30 dB. VIDEOCHEF
exposes to the user approximate versions of many fil-
ters from the FFmpeg library, with names like de-
flate approx. The developer of VIDEOCHEF can reg-
ister a callback with the video decoder using the call
void notifyIFrame(void *).

Video Dataset. We used 106 YouTube MPEG-4 videos
for our evaluation. We used libvideo, a lightweight
.NET library [24], to download the videos. The videos
were collected from 8 different categories to cover a
spectrum of different motion and color artifacts in the
frames: Lectures, Ads, Car Races, Entertainment, Movie
trailers, Nature, News, and Sports. At the first step, a sin-
gle seed video was downloaded from each category, then
we downloaded all YouTube’s recommendations to the
seed video, which turned out to belong to the same cate-
gory as that of the seed video. Once the set of videos was
collected, we randomly sub-sampled a 20 second clip
from each video, being motivated by a desire to bound
the experiment time. For each category, we collected
approximately 25 videos and filtered out those with low
resolution (since the quality threshold was likely already
breached with the original video).

5 Evaluation

We describe our benchmarks first and then the
four experiments to evaluate the macro properties of
VIDEOCHEF and then its various components.
Benchmarks. We construct our benchmark by includ-
ing different video processing pipelines. Each video pro-
cessing pipeline consists of 3 consecutive filters, which
are selected from a pool of 10 video filters from the FFm-
peg library. These filters are modified to support approx-
imation with tuning knobs. To execute on these filter
pipelines, one needs to provide a video input and a qual-
ity threshold. Finally, the output is also a video, together
with a quality metric with respect to each frame. We have
a total of 9 different filter pipelines.
Quality Metric. We use PSNR (Eq. 1) as the qual-
ity metric for the videos produced by the approximate
pipelines. We present the results for two acceptable
PSNR thresholds. The threshold of 30 dB is considered a
typical lower bound for lossy image and video compres-
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Table 1: Summary of the analyzed pipelines. We denote the approximation applied to each filter: Loop Perforation (LP) or Memoization (M)

Name Description, labeled with Approx. type Approximation Type Approximation Levels
DEB Deflate(LP)-Emboss(LP)-Boxblur(M) Loop perforation(LP) & Memoization(M) 1-6, 1-6, 1-6
DVE Deflate(LP)-Vignette(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
BVI Boxblur(M)-Vignette(LP)-Inflate(LP) Loop perforation & Memoization 1-6, 1-6, 1-6
UIV Unsharp(LP)-Inflate(LP)-Vignette(LP) Loop perforation 1-6, 1-6, 1-6
DUE Dilation(LP)-Unsharp(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
BVD Boxblur(M)-Vignette(LP)-Dilation(LP) Loop perforation & Memoization 1-6, 1-6, 1-6
UEE Unsharp(LP)-Erosion(LP)-Emboss(LP) Loop perforation 1-6, 1-6, 1-6
EUB Erosion(LP)-Unsharp(LP)-Boxblur(M) Loop perforation & Memoization 1-6, 1-6, 1-6
BUC Boxblur(M)-Unsharp(LP)-Colorbalance(LP) Loop perforation & Memoization 1-6, 1-6, 1-6

sion [48, 16]. The threshold of 20 dB is considered the
lower bound for lossy wireless transmission [44].
Evaluation Metrics. We define improvement as de-
crease in execution time, expressed as a percentage of
the competitive protocol. We define the speedup of our
approach as Speedup = Speed of our protocol

Speed of compared protocol −1
Setup. We split the input videos into three groups: train-
ing, validation and test, with a share of 50%, 25%, and
25% of the videoset. The experiments are done on an x86
server with a six-core Intel(R) Xeon CPU, 16 GB RAM,
and Ubuntu Linux kernel 4.4. We used FFmpeg library
version 3.0 (compiled with gcc 5.4.0).
Canary Input Selection. We fixed the canary size to be
1/64 of the original size because our preliminary exper-
iments showed that it is a good parameter to guarantee
a dissimilarity metric value of 10% or less. Thus, the
overhead of appropriate canary selection is not included
in the results.

5.1 Performance and Quality Comparison
for End-to-End Workflow

Figure 3 presents the results of the end-to-end workflow
for the nine different video processing pipelines over all
videos from the test set. Each plot presents the speedup
relative to the exact pipeline for the following configura-
tions (from left to right):
• Exact computation, with default parameters.
• Best static approximation, created by setting the AL

that is just over the error threshold for all the frames
in training videos.

• IRA extended with a simple searching policy that has a
fixed interval of 10 frames. This number is chosen ac-
cording to SAGE [37], which gives an analytic bound
for a video processing setting.

• VIDEOCHEF version A – with I-frames detection.
• VIDEOCHEF version B – with scene change detection.
• Oracle version uses exhaustive search but does not in-

cur search overhead. This sets the upper bound of the
performance.

For both VIDEOCHEF versions, we used the CAD er-
ror model with 3dB margin, as the result of the analysis
in Section 5.3.

Performance for 30db Threshold. Figure 3(a) shows
that VIDEOCHEF version A reduces the execution time
by 39.1% over exact computation and is within 20% of
the Oracle. It outperforms both static approximation and
IRA, by respectively 29.9% and 14.6% in the aggregate.
The advantage exists for all the video filter pipelines with
the greatest savings relative to IRA being in Unsharp-
Inflate-Vignette (UIV) pipeline. We are 39.2%, 36.8%
and 29.5% better than exact computation, static approx-
imation, and IRA, respectively. The search overhead for
VIDEOCHEF (both versions A and B) is small – the yel-
low portions of the bars are almost not visible – and yet it
finds more aggressive approximations than the competi-
tive approaches (static or IRA) (the blue portions of the
bars are shorter). The IRA approach, due to its assump-
tion that the error in the canary output is identical to the
error in the full output, cannot use aggressive ALs and
thus cannot achieve the full speedup available through
approximation. Within the two variants of VIDEOCHEF,
scene change detector (version B) is slower than an I-
frame lookup (version A).
Performance for 20db Threshold. We also evalu-
ate on VIDEOCHEF on a different quality thresholds
20dB. Given a larger error budget, Figure 3 shows that
VIDEOCHEF is able to achieve more performance gain
over exact computation (1.6x speedup). We also outper-
form static approximation and IRA by 53.4% and 23.1%
and within 26.6% from the Oracle results. Notice that the
pipelines where we achieve the maximum performance
gain over IRA changes from UIV to DVE.
Quality for 30db Threshold. Figure 4(a) shows that
IRA and static approximation both achieve much higher
quality than what the user specified (30 dB), an unde-
sirable outcome here since this comes at the expense of
higher execution time. VIDEOCHEF on the other hand
tracks the Oracle quality quite closely, which in turn
meets the user requirement. It does however, drop below
the threshold on some inputs, albeit by small amounts.
This indicates that a future design feature should com-
pensate for the tendency of VIDEOCHEF to sometime
drop below the target video quality, say by adding a
penalty function when the AL brings it close to the
boundary. Further, a carefully designed margin in the
searching algorithm can reduce the violation in quality
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(a) Quality threshold = 30dB (b) Quality threshold = 20dB

Figure 3: Mean execution times over all frames of all videos. Geometric means of the speedups are on the right.

(a) Quality threshold = 30dB (b) Quality threshold = 20dB

Figure 4: Quality of each frame across different video filter pipelines.

requirement but still achieve speedup. The careful reader
would have noticed that for some pipelines, some pro-
tocol results are missing here. This happens because no
approximation is possible for some pipelines and there is
no error introduced and hence, PSNR is not defined.

We also use the percentage of frames that violate
the quality threshold to characterize the robustness of
each protocol. The violation rate of static approxima-
tion, IRA, VIDEOCHEF version A and B are 3.27%,
0.64%, 6.6% and 4.79%. Although the two versions of
VIDEOCHEF have higher violation rates, they are still
within a typical user acceptable threshold (5%). We con-
sider the violation may due to two factors – (1) Inaccu-
rate error prediction in the key frame. (2) The quality
of non-key frames degrade and drop below the thresh-
old before a fresh key frame is identified and a search
triggered. According to our modeling in Sec 5.3, the vi-
olation due to the first factor is limited to at most 5%,
while the second error may be inevitable as long as we
do not search for every frame. Considering the trade-
off between searching overhead and better error control,
VIDEOCHEF is able to largely reduce the searching over-
head and still maintain good quality.

Quality for 20db Threshold. Figure 4(b) shows the
quality measurement of different protocols across all
the pipelines. The mean violation rate averaged across
all pipelines of static approximation, IRA, VIDEOCHEF
version A and B are 0%, 0.23%, 7.18% and 3.93%. In the
two quality threshold case, we see the advantage of scene
change detection as an add-on in VIDEOCHEF version B
to decrease the violation rate because it can accurately
detect the frame which differs largely from the previous
and trigger a required search for optimal approximation

levels.

5.2 Speedup and Video Quality versus
Approximation Levels

This experiment studies (1) how the execution time of
each filter varies with the AL setting for that filter and
(2) how the video quality varies with the AL setting. This
result is dependent on the approximation technique but
is independent of the VIDEOCHEF configuration used to
decide on the AL. We show the results with all the videos
in our dataset and 5 out of 10 representative filters in
Figure 5 (number of executed instructions) and Figure
6 (video quality). When showing the result for a specific
filter, we only execute on this filter and not the 3-stage
pipeline. Here the results have higher variability due to
the content-dependent effect. For the execution time, we
normalize by the measure for exact computation.
Execution Time. Figure 5 shows that as the AL becomes
higher, i.e., the approximation becomes more aggressive,
the execution time decreases. But the rate of decrease
slows down as the AL becomes higher and the behaviors
among the different filters in our evaluation are compa-
rable. Note that this is a box plot, but there is little varia-
tion across the different videos and hence each AL gives
very tight result. This is expected because the amount
of processing done in the filter, whether with exact or ap-
proximate computation, is not content dependent, but the
effect of the approximation is content dependent.
Quality. Figure 6 shows the effect of AL on the video
quality when the full frame is used. The quality degrades
as the approximation gets more aggressive, but the nature
of the decrease is not uniform across all the filters. Even
within each filter, the effect on quality depends on the ex-
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(a) Deflate filter (b) Emboss filter (c) Boxblur filter (d) Histeq filter (e) Vignette filter

Figure 5: The normalized execution time for each filter as the Approximation Level (AL) is varied, across all 106 videos in our dataset. The
number of CPU cycles is normalized by the measure for exact computation. As the AL increases, the execution time decreases and this happens
consistently across all videos and filters.

(a) Deflate filter (b) Emboss filter (c) Boxblur filter (d) Histeq filter (e) Vignette filter

Figure 6: The video quality for each filter as the Approximation Level (AL) is varied, across all 106 videos in our dataset. The effect depends
on the video content and the filter being used.

act video frame, as implied by the vertical data spread for
any given AL. We identify two forms of unpredictability
of how AL correlates with video quality: with the content
(which video frame is being approximated) and with the
filter. Due to these two factors, we do not try to come up
with a closed form curve for doing the prediction, rather,
we do the actual computation with the canary input for
a given AL setting, compute the PSNR, and then map it
to the PSNR with the full input (Section 3.5). Contrast
this to the execution time where we create a lookup ta-
ble through training, which is content independent, and
just look it up during the online search (Section 3.4.1).
The variability due to video content in the PSNR plot
validates our rationale for doing the approximation in a
content-dependent manner. The rationale is shared with
[25], but it sets our work apart from the approximation
techniques that select the approximation configuration in
a content-independent manner.

5.3 Evaluation of Error Mapping Models
In this experiment, we evaluate the quality of the vari-
ous error mapping models in VIDEOCHEF. We trained
the model on the training video set. Table 2 and Fig-
ure 3 present the performance of our model on the vali-
dation videos. Figure 7 shows that even a simple model
C can greatly reduce the prediction error relative to
IRA. Also, as we increase the level of knowledge, the
model achieves higher prediction accuracy and model-
CAD performs the best due to its good use of the fea-
ture extraction from the frames. We can see that with our
CAD model, we can successfully control the error within
2dB in 80% of the cases and within 3dB in 90% of the

(a) Validation set (b) Test set

Figure 7: Results of the error modeling in VIDEOCHEF mapping
error in canary output to error in full output. The CAD model with
characteristics of the frame performs best, though it is only slightly
better than the CA models.

Table 2: F-1 measure of different error mapping models averaged
over all pipelines. We regard IRA as a pass through error mapping.

Models IRA C CA CAD
30dB threshold 0.8650 0.9576 0.9594 0.9686
20dB threshold 0.8007 0.9679 0.9660 0.9759

cases. Given these results, we set up a 3dB margin when
mapping from the canary error to the full error.

The results on the test videos (Section 5.1) show that
the cases when we violate the quality requirement are
within 10%.

5.4 User Perception Study
To evaluate if the protocols cause any perceptual differ-
ence, we conduct a small user study with 16 participants.
Users were recruited by emailing students of certain ECE
classes. We picked 16 videos, 2 from each YouTube con-
tent category, randomly picked from our dataset. We pro-
cessed each video (a snippet of 20 seconds from each, as
in the rest of the evaluation) using the Oracle approach
and using VIDEOCHEF for pipeline DBE.
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Table 3: Results of the user studies with 16 videos processed using
Oracle and VIDEOCHEF

Degree of difference Percentage
No difference 58.59%
Little difference 34.77%
Large difference 6.64%
Total difference 0

This pipeline was chosen because its result in the rest
of the evaluation is representative and it produces videos
which are still visually pleasing. In the experiment, we
showed the two versions of each of the 16 videos con-
currently, processed using the Oracle and VIDEOCHEF
tools, without letting the participant know which window
corresponded to which tool. All participants watched
the videos independently. The participants were asked
to rate the videos in four categories: Same, Little dif-
ference, Large difference, and Total difference. We gave
guidance to the participants for the four categories as dif-
ference ∈ [0%,5%),[5%,20%),[20%,50%), and ≥ 50%.

We show the results in Table 3. The percentage figure
is the percentage of the total number of videos shown,
which is 16× 16 (number of videos× number of users).
We conclude that 58.59% of the videos got no differ-
ence rating between the Oracle and the VIDEOCHEF pro-
cessed videos, while 34.77% got a little difference rat-
ing. Although 6.64% of videos got large difference rat-
ing, none of the videos got total difference rating. This
validates that qualitatively human perception is not see-
ing significant difference in video quality due to approx-
imate processing using VIDEOCHEF.

6 Related Work

Approximate Tradeoffs in Computations and Data.
Researchers presented various techniques for changing
computations at the system level to trade accuracy for
performance, e.g., in hardware [32, 47, 12, 11, 8], run-
time systems [3, 18], and compilers [30, 42, 2, 39, 6].
A key challenge of approximate computing is find-
ing good tradeoffs between accuracy and performance.
For this, researchers have looked at both off-line au-
totuning [30, 42, 29, 38] and on-line dynamic adapta-
tion [3, 18, 37, 22, 17]. In image processing, various
techniques exist for synthesizing approximate filter ver-
sions, e.g., using genetic programming [45, 41, 13]. Re-
cently, Lou et al. [26] present “image perforation”, an
adaptive version of loop perforation tailored for indi-
vidual image filters. Researchers also proposed stor-
ing multimedia data in approximate memories, includ-
ing standard [39, 34], solid-state [40], and multi-level
cell memories specialized for video encodings [19]. We
consider such storage approaches complementary to our
computation-based technique for video encoding.
Input-Aware Approximation. Several techniques pro-

vide input-aware approximations to monitor output qual-
ity and control the aggressiveness of the approximation
during execution. Green [3] was an early approach that
applied dynamic quality monitoring to adjust the level
of approximation, based on a user-defined quality func-
tion. More recently, input-aware approximation identi-
fies classes of similar inputs and applies different ap-
proximations for each input class [9, 43]. Opprox [31]
learns the control-flow of the input-optimized program
and then selects in which phase to approximate as well
as how much to approximate. In contrast to our work,
all these approaches use off-line models for prediction of
input quality and do not craft the smaller inputs at run-
time. Ringenburg et. al. [35] proposed online moni-
toring mechanisms, where a random subset of approx-
imate outputs is compared with a precise output on a
sampling basis, or the output of the current execution is
predicted from past executions with similar inputs. Raha
et al. [33] present a precise analysis of accuracy for a
commonly used reduce-and-rank computational pattern.
Rumba [22] and Topaz [1] detect outliers in intermedi-
ate computation results. In contrast to IRA [25] and our
VIDEOCHEF, these approaches do not use canary inputs
to guide the optimization and monitoring and therefore
grapple with the overhead issue.

7 Conclusion

Fast and resource efficient processing of videos is re-
quired in many scenarios. We built a resource efficient
and input-aware approximate video processing pipeline
called VIDEOCHEF. VIDEOCHEF controls the approxi-
mation in each frame (using the properties of the frame)
to meet the user’s accuracy requirement. In particu-
lar, VIDEOCHEF uses a canary-input based approach for
fast searching, as proposed in prior work, but overcomes
some fundamental challenges by innovating a machine-
learning based accurate error estimation technique and
an input-aware search technique that finds best approx-
imation settings. We show that VIDEOCHEF can pro-
vide significant speedup in 9 different video processing
pipelines while satisfying user’s quality requirements.
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Abstract

Serverless computing promises to provide applications

with cost savings and extreme elasticity. Unfortunately,

slow application and container initialization can hurt

common-case latency on serverless platforms. In this

work, we analyze Linux container primitives, identify-

ing scalability bottlenecks related to storage and net-

work isolation. We also analyze Python applications

from GitHub and show that importing many popular li-

braries adds about 100 ms to startup. Based on these

findings, we implement SOCK, a container system opti-

mized for serverless workloads. Careful avoidance of ker-

nel scalability bottlenecks gives SOCK an 18× speedup

over Docker. A generalized-Zygote provisioning strategy

yields an additional 3× speedup. A more sophisticated

three-tier caching strategy based on Zygotes provides

a 45× speedup over SOCK without Zygotes. Relative

to AWS Lambda and OpenWhisk, OpenLambda with

SOCK reduces platform overheads by 2.8× and 5.3×

respectively in an image processing case study.

1. Introduction

The effort to maximize developer velocity has driven

many changes in the way programmers write and run

their code [43]. Programmers are writing code at a higher

level of abstraction: JavaScript, Python, Java, Ruby, and

PHP are now the most popular languages on GitHub

(in that order), surpassing lower-level languages such as

C and C++ [51]. Developers also increasingly focus on

application-specific logic, reusing existing libraries for

general functionality when possible [19, 23, 40].

New programming paradigms are also liberating de-

velopers from the distraction of managing servers [18,

52, 54]. In particular, a proliferation of new serverless

platforms [5, 6, 14, 17, 20, 39, 45] allow developers to

construct applications as a set of handlers, called lamb-

das, commonly written in Python (or some other high-

level language), that execute in response to events, such

as web requests or data generation. Serverless providers

automatically scale the number of handlers up and down

to accommodate load so that developers need not worry

about the number or configuration of machines serving

their workload. Using serverless platforms is often very

economical: billing granularity is in fractions of a second,

and there is generally no tenant charge for idle time.

These three strategies (i.e., programming at higher ab-

straction levels, reusing libraries, and decomposing ap-

plications into auto-scaling serverless lambdas) improve

developer velocity, but they also create new infrastructure

problems. Specifically, these techniques make process

cold-start more expensive and frequent. Languages such

as Python and JavaScript require heavy runtimes, making

startup over 10× slower than launching an equivalent C

program [1]. Reusing code introduces further startup la-

tency from library loading and initialization [4, 8, 26, 27].

Serverless computing amplifies these costs: if a mono-

lithic application is decomposed to N serverless lamb-

das, startup frequency is similarly amplified. Lambdas are

typically isolated from each other via containers, which

entail further sandboxing overheads [31].

Fast cold start is important for both tenants and

providers. A graceful reaction to flash crowds [15, 22] re-

quires concurrent low-latency deployment to many work-

ers. From a provider perspective, avoiding cold starts

can be quite costly. Most serverless platforms currently

wait minutes or hours to recycle idle, unbilled lambda in-

stances [50]. If cold start is made faster, providers will be

able to reclaim idle resources and rebalance load across

machines more aggressively.

In order to better understand the sandboxing and ap-

plication characteristics that interfere with efficient cold

start, we perform two detailed studies. First, we ana-

lyze the performance and scalability of various Linux

isolation primitives. Among other findings, we uncover

scalability bottlenecks in the network and mount names-

paces and identify lighter-weight alternatives. Second, we

study 876K Python projects from GitHub and analyz-

ing 101K unique packages from the PyPI repository. We

find that many popular packages take 100 ms to import,

and installing them can take seconds. Although the entire

1.5 TB package set is too large to keep in memory, we

find that 36% of imports are to just 0.02% of packages.

Based on these findings, we implement SOCK (roughly

for serverless-optimized containers), a special-purpose

container system with two goals: (1) low-latency invo-

cation for Python handlers that import libraries and (2)
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efficient sandbox initialization so that individual workers

can achieve high steady-state throughput. We integrate

SOCK with the OpenLambda [20] serverless platform,

replacing Docker as the primary sandboxing mechanism.

SOCK is based on three novel techniques. First,

SOCK uses lightweight isolation primitives, avoiding the

performance bottlenecks identified in our Linux primi-

tive study, to achieve an 18× speedup over Docker. Sec-

ond, SOCK provisions Python handlers using a general-

ized Zygote-provisioning strategy to avoid the Python

initialization costs identified in our package study. In

the simplest scenarios, this technique provides an ad-

ditional 3× speedup by avoiding repeated initialization

of the Python runtime. Third, we leverage our general-

ized Zygote mechanism to build a three-tiered package-

aware caching system, achieving 45× speedups relative

to SOCK containers without Zygote initialization. In

an image-resizing case study, SOCK reduces cold-start

platform overheads by 2.8× and 5.3× relative to AWS

Lambda and OpenWhisk, respectively.

The rest of this paper is structured as follows. We

study the costs of Linux provisioning primitives (§2) and

application initialization (§3), and use these findings to

guide the design and implementation of SOCK (§4). We

then evaluate the performance of SOCK (§5), discuss

related work (§6), and conclude (§7).

2. Deconstructing Container Performance

Serverless platforms often isolate lambdas with contain-

ers [14, 20, 39, 45]. Thus, optimizing container initial-

ization is a key part of the lambda cold-start problem. In

Linux, containerization is not a single-cohesive abstrac-

tion. Rather, general-purpose tools such as Docker [36]

are commonly used to construct containers using a vari-

ety of Linux mechanisms to allocate storage, isolate re-

sources logically, and isolate performance. The flexibil-

ity Linux provides also creates an opportunity to design a

variety of special-purpose container systems. In this sec-

tion, we hope to inform the design of SOCK and other

special-purpose container systems by analyzing the per-

formance characteristics of the relevant Linux abstrac-

tions. In particular, we ask how can one maximize den-

sity of container file systems per machine? What is the

cost of isolating each major resource with namespaces,

and which resources must be isolated in a serverless envi-

ronment? And how can the cost of repeatedly initializing

cgroups to isolate performance be avoided? We perform

our analysis on an 8-core m510 machine [11] with the

4.13.0-37 Linux kernel.

2.1 Container Storage

Containers typically execute using a root file system other

than the host’s file system. This protects the host’s data

and provides a place for the container’s unique depen-

dencies to be installed. Provisioning a file system for a

container is a two step procedure: (1) populate a sub-

directory of the host’s file system with data and code

needed by the container, and (2) make the subdirectory

the root of the new container, such that code in the con-

tainer can no longer access other host data. We explore

alternative mechanisms for these population and access-

dropping steps.

Populating a directory by physical copying is pro-

hibitively slow, so all practical techniques rely on log-

ical copying. Docker typically uses union file systems

(e.g., AUFS) for this purpose; this provides a flexible

layered-composition mechanism and gives running con-

tainers copy-on-write access over underlying data. A sim-

pler alternative is bind mounting. Bind mounting makes

the same directory visible at multiple locations; there is

no copy-on-write capability, so data that must be pro-

tected should only be bind-mounted as read-only in a

container. To compare binds to layered file systems, we

repeatedly mount and unmount from many tasks in paral-

lel. Figure 1 shows the result: at scale, bind mounting is

about twice as fast as AUFS.

Once a subdirectory on the host file system has been

populated for use as a container root, the setup process

must switch roots and drop access to other host file data.

Linux provides two primitives for modifying the file-

system visible to a container. The older chroot operation

simply turns a subdirectory of the original root file system

into the new root file system. A newer mount-namespace

abstraction enables more interesting transformations: an

unshare call (with certain arguments) gives a container a

new set of mount points, originally identical to the host’s

set. The container’s mount points can then be modified

with mount, unmount, and other calls. It is even possible

to reorganize the mount namespace of a container such

that the container may see file system Y mounted on

file system X (the container’s root) while the host may

see X mounted on Y (the host’s root). There are cases

where this powerful abstraction can be quite helpful, but

overusing mount namespace flexibility “may quickly lead

to insanity,” as the Linux manpages warn [32].

We measure the scalability of mount namespaces, with

results shown in Figure 2. We have a variable number of

long-lived mount namespaces persisting throughout the

experiment (x-axis). We churn namespaces, concurrently

creating and deleting them (concurrency is shown by dif-

ferent lines). We observe that churn performance scales

poorly with the number of prior existing namespaces: as

the number of host mounts grows large, the rate at which

namespaces can be cloned approaches zero. We also eval-

uate chroot (not shown), and find that using it entails

negligible overhead (chroot latency is < 1µs).

2.2 Logical Isolation: Namespace Primitives

We have already described how mount namespaces can

be used to virtualize storage: multiple containers can have
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access to their own virtual roots, backed by different

physical directories in the host. Linux’s network names-

paces similarly allow different containers to use the same

virtual port number (e.g., 80), backed by different physi-

cal ports on the host (e.g., 8080 and 8081). In this section,

we study the collective use of mount and network names-

paces, along with UTS, IPC, and PID namespaces [37]

(user and cgroup namespaces are not evaluated here). The

unshare call allows a process to create and switch to

a new set of namespaces. Arguments to unshare allow

careful selection of which resources need new names-

paces. Namespaces are automatically reaped when the

last process using them exits.

We exercise namespace creation and cleanup perfor-

mance by concurrently invoking unshare and exiting

from a variable number of tasks. We instrument the ker-

nel with ftrace to track where time is going. Figure 3

shows the latency of the four most expensive namespace

operations (other latencies not shown were relatively in-

significant). We observe that mount and IPC namespace

cleanup entails latencies in the tens of milliseconds. Upon

inspection of the kernel code, we found that both opera-

tions are waiting for an RCU grace period [35]. During

this time, no global locks are held and no compute is con-

sumed, so these latencies are relatively harmless to over-

all throughput; as observed earlier (§2.1), it is possible to

create ∼1500 mount namespaces per second, as long as

churn keeps the number of namespaces small over time.

Network namespaces are more problematic for both

creation and cleanup due to a single global lock that is

shared across network namespaces [13]. During creation,

Linux iterates over all existing namespaces while hold-

ing the lock, searching for namespaces that should be

notified of the configuration change; thus, costs increase

proportionally as more namespaces are created. As with

mount and IPC namespaces, network-namespace cleanup

requires waiting for an RCU grace period. However, for

network namespaces, a global lock is held during that pe-

riod, creating a bottleneck. Fortunately, network names-

paces are cleaned in batches, so the per-namespace cost

becomes small at scale (as indicated by the downward-

sloping “net cleanup” line).

Figure 4 shows the impact of network namespaces

on overall creation/deletion throughput (i.e., with all
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five namespaces). With unmodified network namespaces,

throughput peaks at about 200 c/s (containers/second).

With minor optimizations (disabling IPv6 and eliminat-

ing the costly broadcast code), it is possible to churn over

400 c/s. However, eliminating network namespaces en-

tirely provides throughput of 900 c/s.

2.3 Performance Isolation: Cgroup Primitives

Linux provides performance isolation via the cgroup in-

terface [9]. Processes may be assigned to cgroups, which

are configured with limits on memory, CPU, file I/O, and

other resources. Linux cgroups are easier to configure dy-

namically than namespaces. The API makes it simple to

adjust the resource limits or reassign processes to differ-

ent cgroups. In contrast, a mechanism for reassigning a

process to a new PID namespace would need to overcome

obstacles such as potential PID collisions.

The flexibility of cgroups makes two usage patterns vi-

able. The first involves (1) creating a cgroup, (2) adding

a process, (3) exiting the process, and (4) removing the

cgroup; the second involves only Steps 2 and 3 (i.e., the

same cgroup is reused for different processes at differ-

ent times). Figure 5 compares the cost of these two ap-

proaches while varying the numbers of tasks concurrently

manipulating cgroups. Reusing is at least twice as fast as

creating new cgroups each time. The best reuse perfor-

mance is achieved with 16 threads (the number of CPU

hyperthreads), suggesting cgroups do not suffer from the

scaling issues we encountered with namespaces.

2.4 Serverless Implications

Our results have several implications for the design of

serverless containers. First, in a serverless environment,

all handlers run on one of a few base images, so the flex-

ible stacking of union file systems may not be worth the

the performance cost relative to bind mounts. Once a root

location is created, file-system tree transformations that

rely upon copying the mount namespace are costly at

scale. When flexible file-system tree construction is not

necessary, the cheaper chroot call may be used to drop

access. Second, network namespaces are a major scalabil-

ity bottleneck; while static port assignment may be useful

in a server-based environment, serverless platforms such

as AWS Lambda execute handlers behind a Network Ad-

dress Translator [16], making network namespacing of

little value. Third, reusing cgroups is twice as fast as cre-

ating new cgroups, suggesting that maintaining a pool of

initialized cgroups may reduce startup latency and im-

prove overall throughput.

3. Python Initialization Study

Even if lambdas are executed in lightweight sandboxes,

language runtimes and package dependencies can make

cold start slow [4, 8, 26, 27]. Many modern applications

are accustomed to low-latency requests. For example,

most Gmail remote-procedure calls are short, complet-

ing in under 100 ms (including Internet round trip) [20].

Of the short requests, the average latency is 27 ms, about

the time it takes to start a Python interpreter and print a

“hello world” message. Unless serverless platforms pro-

vide language- and library-specific cold-start optimiza-

tions, it will not be practical to decompose such applica-

tions into independently scaling lambdas. In this section,

we analyze the performance cost of using popular Python

libraries and evaluate the feasibility of optimizing initial-

ization with caching. We ask: what types of packages are

most popular in Python applications? What are the ini-

tialization costs associated with using these packages?

And how feasible is it to cache a large portion of main-

stream package repositories on local lambda workers?

3.1 Python Applications

We now consider the types of packages that future

lambda applications might be likely to use, assuming ef-

ficient platform support. We scrape 876K Python projects

from GitHub and extract likely dependencies on packages

in the popular Python Package Index (PyPI) repository,

resolving naming ambiguity in favor of more popular

packages. We expect that few of these applications cur-

rently run as lambdas; however, our goal is to identify

potential obstacles that may prevent them from being

ported to lambdas in the future.

Figure 6 shows the popularity of 20 packages that are

most common as GitHub project dependencies. Skew is

high: 36% of imports are to just 20 packages (0.02%

of the packages in PyPI). The 20 packages roughly fall

into five categories: web frameworks, analysis, commu-

nication, storage, and development. Many of these use

cases are likely applicable to future serverless applica-

tions. Current web frameworks will likely need to be re-

placed by serverless-oriented frameworks, but compute-

intense analysis is ideal for lambdas [21]. Many lamb-

das will need libraries for communicating with other ser-

vices and for storing data externally [16]. Development

60    2018 USENIX Annual Technical Conference USENIX Association



Web

Analysis

Communication

Storage

Development

Other
1
1
.5

%
4
.7

%
3
.1

%
1
.9

%
1
.8

%
1
.5

%
1
.5

%
1
.2

%
1
.1

%
1
.1

%
1
.0

%
0
.8

%
0
.7

%
0
.7

%
0
.7

%
0
.7

%
0
.6

%
0
.6

%
0
.6

%
0
.6

%
6
4
%

d
ja

n
g
o

n
u
m

p
y

s
e
tu

p
to

o
ls

p
ip

fl
a
s
k

m
a
tp

lo
tl
ib

w
e
rk

z
e
u
g

re
q
u
e
s
ts

s
q
la

lc
h
e
m

y
jin

ja
2

s
c
ip

y
p
ro

to
b
u
f

p
a
n
d
a
s

s
ix

s
im

p
le

js
o
n

tw
is

te
d

P
y
Q

t4
u
p
d
a
te

s
d
n
s
p
y
th

o
n

m
o
c
k

O
th

e
r

0

3

6

9

12

15

P
e
rc

e
n
t 
o
f 
Im

p
o
rt

s

PyPI Package

Figure 6. Package Popularity. The twenty most used PyPI

packages are shown. The bar labels represent the percentage of

all GitHub-to-PyPI dependencies.

PyPI Package

T
im

e
 (

s
)

import

install

download

1
2
.8

s

1
0
.4

s

9
.8

s

9
.8

s

4
.4

s

4
.0

s

3
.8

s

3
.7

s

2
.9

s

2
.5

s

2
.4

s

2
.3

s

2
.1

s

1
.8

s

1
.7

s

1
.5

s

1
.3

s

1
.2

s

1
.0

s

n
o
t 
in

s
ta

lla
b
le

 f
o
r 

u
s

p
a
n
d
a
s

tw
is

te
d

s
c
ip

y

m
a
tp

lo
tl
ib

s
q
la

lc
h
e
m

y

d
ja

n
g
o

fl
a
s
k

n
u
m

p
y

s
im

p
le

js
o
n

p
ro

to
b
u
f

jin
ja

2

u
p
d
a
te

s

p
ip

s
e
tu

p
to

o
ls

re
q
u
e
s
ts

m
o
c
k

w
e
rk

z
e
u
g

d
n
s
p
y
th

o
n

s
ix

P
y
Q

t4

0

2

4

6

8

10

12

14

Figure 7. Startup Costs. The download, install, and im-

port times are shown for 20 popular Python packages, ordered

by total initialization time.
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libraries may be somewhat less relevant, but lambda-

based parallel unit testing is an interesting use case.

If a package is being used for the first time, it will

be necessary to download the package over the network

(possibly from a nearby mirror), install it to local stor-

age, and import the library to Python bytecode. Some of

these steps may be skipped upon subsequent execution,

depending on the platform. Figure 7 shows these costs for

each of the popular packages. Fully initializing a pack-

age takes 1 to 13 seconds. Every part of the initialization

is expensive on average: downloading takes 1.6 seconds,

installing takes 2.3 seconds, and importing takes 107 ms.

3.2 PyPI Repository

We now explore the feasibility of supporting full lan-

guage repositories locally on serverless worker machines.

We mirror and analyze the entire PyPI repository, which

contains 101K unique packages. Figure 8 shows the foot-

print of the entire repository, including every version of

every package, but excluding indexing files. The pack-

ages are about 1.5 TB total, or ∼0.5 TB compressed.

Most packages are compressed as .tar.gz files or a zip-

based format (.whl, .egg, or .zip). Across all format types,

the average package contains about 100 files (e.g., 135K

.whl packages hold 13M compressed files).

We wish to understand how many of the PyPI pack-

ages could coexist when installed together. PyPI pack-

ages that unpack to a single directory can easily coex-

ist with other installed packages, whereas packages that

modify shared files may break other packages. We at-

tempt to install every version of every PyPI package in

its own Docker Ubuntu container (using a 1-minute time-

out) and identify file creations and modifications. We ig-

nore changes to temporary locations. Figure 9 shows the

results for .tar.gz, .whl, and .zip distributions (.egg li-

braries are used directly without a prior installation, so

we skip those). While fewer than 1% timed out, 18% sim-

ply failed to install in our container. 66% of succeeding

installs only populate the local Python module directory

(the module dirs category). Another 31% of succeeding

installs modified just the module directories and the lo-

cal bin directory (Python modules are sometimes bundled
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with various utilities). We conclude it is possible for 97%

of installable packages to coexist in a single local install.

3.3 Serverless Implications

Downloading and installing a package and its dependen-

cies from a local mirror takes seconds; furthermore, im-

port of installed packages takes over 100 ms. Fortunately,

our analysis indicates that storing large package reposito-

ries locally on disk is feasible. Strong popularity skew

further creates opportunities to pre-import a subset of

packages into interpreter memory [8].

4. SOCK with OpenLambda

In this section, we describe the design and implementa-

tion of SOCK, a container system optimized for use in

serverless platforms. We integrate SOCK with the Open-

Lambda serverless platform, replacing Docker containers

as the primary sandboxing mechanism for OpenLambda

workers and using additional SOCK containers to imple-

ment Python package caching. We design SOCK to han-

dle high-churn workloads at the worker level. The local

churn may arise due to global workload changes, rebal-

ancing, or aggressive reclamation of idle resources.

SOCK is based on two primary design goals. First,

we want low-latency invocation for Python handlers that

import libraries. Second, we want efficient sandbox ini-

tialization so that individual workers can achieve high

steady-state throughput. A system that hides latency by

maintaining pools of pre-initialized containers (e.g., the

LightVM approach [31]) would satisfy the first goal, but

not the second. A system that could create many contain-

ers in parallel as part of a large batch might satisfy the

second goal, but not the first. Satisfying both goals will

make a serverless platform suitable for many applications

and profitable for providers.

Our solution, SOCK, takes a three-pronged approach

to satisfying these goals, based on our analysis of Linux

containerization primitives (§2) and Python workloads

(§3). First, we build a lean container system for sandbox-

ing lambdas (§4.1). Second, we generalize Zygote provi-

sioning to scale to large sets of untrusted packages (§4.2).

Third, we design a three-layer caching system for reduc-

ing package install and import costs (§4.3).

4.1 Lean Containers

SOCK creates lean containers for lambdas by avoid-

ing the expensive operations that are only necessary for

general-purpose containers. Creating a container involves

constructing a root file system, creating communication

channels, and imposing isolation boundaries. Figure 10

illustrates SOCK’s approach to these three tasks.

Storage: Provisioning container storage involves first

populating a directory on the host to use as a container

root. Bind mounting is faster using union file systems

(§2.1), so SOCK uses bind mounts to stitch together a

root from four host directories, indicated by the “F” la-

bel in Figure 10. Every container has the same Ubuntu

base for its root file system (“base”); we can afford to

back this by a RAM disk as every handler is required to

use the same base. A packages directory used for pack-

age caching (“packages”) is mounted over the base, as de-

scribed later (§4.3). The same base and packages are read-

only shared in every container. SOCK also binds handler

code (“λ code”) as read-only and a writable scratch di-

rectory (“scratch”) in every container.

Once a directory has been populated as described, it

should become the root directory. Tools such as Docker

accomplish this by creating a new mount namespace, then

restructuring it. We use the faster and simpler chroot op-

eration (§2.1) since it is not necessary to selectively ex-

pose other host mounts within the container for server-

less applications. SOCK containers always start with two

processes (“init” and “helper” in Figure 10); both of these

use chroot during container initialization, and any chil-

dren launched from these processes inherit the same root.

Communication: The scratch-space mount of every

SOCK container contains a Unix domain socket (the

black pentagon in Figure 10) that is used for communi-

cation between the OpenLambda manager and processes

inside the container. Event and request payloads received

by OpenLambda are forwarded over this channel.

The channel is also used for a variety of control op-

erations (§4.2). Some of these operations require privi-

leged access to resources not normally accessible inside a

container. Fortunately, the relevant resources (i.e., names-

paces and container roots) may be represented as file de-

scriptors, which may be passed over Unix domain sock-

ets. The manager can thus pass specific capabilities over

the channel as necessary.

Isolation: Linux processes may be isolated with a

combination of cgroup (for performance isolation) and

namespace primitives (for logical isolation). It is rela-

tively expensive to create cgroups; thus, OpenLambda

creates a pool of cgroups (shown in Figure 10) that can

be used upon SOCK container creation; cgroups are re-

turned to the pool after container termination.

The “init” process is the first to run in a SOCK con-

tainer; init creates a set of new namespaces with a call to

unshare. The arguments to the call indicate that mount

and network namespaces should not be used, because

these were the two namespaces that scale poorly (§2.1

and §2.2). Mount namespaces are unnecessary because

SOCK uses chroot. Network namespaces are unneces-

sary because requests arrive over Unix domain socket, not

over a socket attached to a fixed port number, so port vir-

tualization is not required.

4.2 Generalized Zygotes

Zygote provisioning is a technique where new processes

are started as forks of an initial process, the Zygote,
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that has already pre-imported various libraries likely

to be needed by applications, thereby saving child pro-

cesses from repeatedly doing the same initialization work

and consuming excess memory with multiple identical

copies. Zygotes were first introduced on Android sys-

tems for Java applications [8]. We implement a more

general Zygote-provisioning strategy for SOCK. Specif-

ically, SOCK Zygotes differ as follows: (1) the set of

pre-imported packages is determined at runtime based

on usage, (2) SOCK scales to very large package sets by

maintaining multiple Zygotes with different pre-imported

packages, (3) provisioning is fully integrated with con-

tainers, and (4) processes are not vulnerable to malicious

packages they did not import.

As already described, SOCK containers start with

two processes, an init process (responsible for setting

up namespaces) and a helper process. The helper process

is a Python program that listens on the SOCK communi-

cation channel; it is capable of (a) pre-importing modules

and (b) loading lambda handlers to receive subsequent

forwarded events. These two capabilities are the basis for

a simple Zygote mechanism. A Zygote helper first pre-

imports a set of modules. Then, when a lambda is invoked

requiring those modules, the Zygote helper is forked to

quickly create a new handler helper, which then loads

the lambda code to handle a forwarded request.

We assume packages that may be pre-imported may be

malicious [48], and handlers certainly may be malicious,

so both Zygote helpers and handler helpers must run in

containers. The key challenge is using Linux APIs such

that the forked process lands in a new container, distinct

from the container housing the Zygote helper.

Figure 11 illustrates how the SOCK protocol provi-

sions a helper handler (“helper-H” in “Container H”)

from a helper Zygote (“helper-Z” in “Container Z”). (1)

The manager obtains references, represented as file de-

scriptors (fds), to the namespaces and the root file system

of the new container. (2) The fds are passed to helper-Z,

which (3) forks a child process, “tmp”. (4) The child then

changes roots to the new container with a combination

of fchdir(fd) and chroot(".") calls. The child also

calls setns (set namespace) for each namespace to relo-

cate to the new container. (5) One peculiarity of setns is

that after the call, the relocation has only partially been

applied to all namespaces for the caller. Thus, the child

calls fork again, creating a grandchild helper (“helper-H”

in the figure) that executes fully in the new container with

respect to namespaces. (6) The manager then moves the

grandchild to the new cgroup. (7) Finally, the helper lis-

tens on the channel for the next commands; the manager

will direct the helper to load the lambda code, and will

then forward a request to the lambda.

The above protocol describes how SOCK provisions a

handler container from a Zygote container. When Open-

Lambda starts, a single Zygote that imports no mod-

ules is always provisioned. In order to benefit from pre-

importing modules, SOCK can create additional Zygotes

that import various module subsets. Except for the first

Zygote, new Zygotes are provisioned from existing Zy-

gotes. The protocol for provisioning a new Zygote con-

tainer is identical to the protocol for provisioning a new

handler container, except for the final step 7. Instead of

loading handler code and processing requests, a new Zy-

gote pre-imports a specified list of modules, then waits to

be used for the provisioning of other containers.

Provisioning handlers from Zygotes and creating new

Zygotes from other Zygotes means that all the inter-

preters form a tree, with copy-on-write memory unbro-

ken by any call to exec. This sharing of physical pages

between processes reduces memory consumption [2]. Ini-

tialization of the Python runtime and packages will only

be done once, and subsequent initialization will be faster.

If a module loaded by a Zygote is malicious, it may in-

terfere with the provisioning protocol (e.g., by modifying

the helper protocol so that calls to setns are skipped).

Fortunately, the Zygote is sandboxed in a container, and
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Figure 13. Tree Cache. Numbered circles represent Zy-

gotes in the cache, and sets of letters indicate the packages im-

ported by a process. Arrows represent the parent-child relation-

ships between interpreter processes.

will never be passed descriptors referring to unrelated

containers, so a malicious process cannot escape into ar-

bitrary containers or the host. SOCK protects innocent

lambdas by never initializing them from a Zygote that

has pre-imported modules not required by the lambda.

4.3 Serverless Caching

We use SOCK to build a three-tier caching system, shown

in Figure 12. First, a handler cache maintains idle handler

containers in a paused state; the same approach is taken

by AWS Lambda [49]. Paused containers cannot con-

sume CPU, and unpausing is faster than creating a new

container; however, paused containers consume memory,

so SOCK limits total consumption by evicting paused

containers from the handler cache on an LRU basis.

Second, an install cache contains a large, static set of

pre-installed packages on disk. Our measurements show

that 97% of installable PyPI packages could coexist in

such a installation. This installation is mapped read-only

into every container for safety. Some of the packages

may be malicious, but they do no harm unless a handler

chooses to import them.

Third, an import cache is used to manage Zygotes. We

have already described a general mechanism for creat-

ing many Zygote containers, with varying sets of pack-

ages pre-imported (§4.2). However, Zygotes consume

memory, and package popularity may shift over time,

so SOCK decides the set of Zygotes available based on

the import-cache policy. Import caching entails new de-

cisions for handling hits. In traditional caches, lookup

results in a simple hit or miss; in contrast, SOCK always

hits at least one cache entry and often must decide be-

tween alternative Zygotes. Eviction is also complicated

by copy-on-write sharing of memory pages between Zy-

gotes, which obfuscates the consumption of individuals.

We now describe SOCK’s selection and eviction policies.

Import-Cache Selection: Suppose (in the context of

Figure 13) that a handler is invoked that requires pack-

ages A and B. Entry 4 is a tempting choice to use as

the template for our new interpreter; it would provide the

best performance because all requisite packages are al-

ready imported. However, if package C is malicious, we

expose the handler to code that it did not voluntarily im-

port. We could potentially vet a subset of packages to be

deemed safe, but we should generally not use cache en-

tries that pre-import packages not requested by a handler.

This leaves cache Entries 2 and 3 as reasonable candi-

dates. The import cache decides between such alterna-

tives by choosing the entry with the most matching pack-

ages, breaking ties randomly. When SOCK must use an

entry X that is not an exact match, it first replicates X to

a new entry Y , imports the remaining packages in Y , and

finally replicates from Y to provision for the handler.

Import-Cache Eviction: The import cache measures

the cumulative memory utilization of all entries; when

utilization surpasses a limit, a background process begins

evicting entries. Deciding which interpreters to evict is

challenging because the shared memory between inter-

preters makes it difficult to account for the memory used

by a particular entry. The import cache relies on a simple

runtime model to estimate potential memory reclamation;

the model identifies the packages included by an inter-

preter that are not included by the parent entry. The model

uses the on-disk size of the packages as a heuristic for es-

timating memory cost. The import cache treats the sum

of these sizes as the benefit of eviction and the number

of uses over a recent time interval as the cost of eviction,

evicting the entry with highest benefit-to-cost ratio.

5. Evaluation

We now evaluate the performance of SOCK relative to

Docker-based OpenLambda and other platforms. We run

experiments on two m510 machines [11] with the 4.13.0-

37 Linux kernel: a package mirror and an OpenLambda

worker. The machines have 8-core 2.0 GHz Xeon D-1548

processors, 64 GB of RAM, and a 256 GB NVMe SSD.

We allocate 5 GB of memory for the handler cache and

25 GB for the import cache. We consider the following

questions: What speedups do SOCK containers provide

OpenLambda (§5.1)? Does built-in package support re-

duce cold-start latency for applications with dependen-

cies (§5.2)? How does SOCK scale with the number of

lambdas and packages (§5.3)? And how does SOCK com-

pare to other platforms for a real workload (§5.4)?

5.1 Container Optimizations

SOCK avoids many of the expensive operations nec-

essary to construct a general-purpose container (e.g.,

network namespaces, layered file systems, and fresh

cgroups). In order to evaluate the benefit of lean con-

tainerization, we concurrently invoke no-op lambdas on

OpenLambda, using either Docker or SOCK as the con-

tainer engine. We disable all SOCK caches and Zygote

preinitialization. Figure 14 shows the request throughput

and average latency as we vary the number of concur-

rent outstanding requests. SOCK is strictly faster on both

metrics, regardless of concurrency. For 10 concurrent re-
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Figure 14. Docker vs. SOCK. Request throughput (x-
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quests, SOCK has a throughput of 76 requests/second

(18× faster than Docker) with an average latency of

130 milliseconds (19× faster). Some of the namespaces

used by Docker rely heavily on RCUs (§2.2), which scale

poorly with the number of cores [34]. Figure 14 also

shows Docker performance with only one logical core

enabled: relative to using all cores, this reduces latency

by 44% for concurrency = 1, but throughput no longer

scales with concurrency.

SOCK also improves performance by using Zygote-

style preinitialization. Even if a lambda uses no libraries,

provisioning a runtime by forking an existing Python

interpreter is faster than starting from scratch. Figure 15

compares SOCK throughput with and without Zygote

preinitialization. Using Zygotes provides SOCK with an

additional 3× throughput improvement at scale.

OpenLambda, like AWS Lambda [49], keeps recently

used handlers that are idle in a paused state in order

to avoid cold start should another request arrive. We

now compare the latency of SOCK cold start to the la-

tency of unpause, as shown in Figure 16. Although Zy-

gotes have reduced no-op cold-start latency to 32 ms

(concurrency = 10), unpausing takes only 3 ms. Al-

though SOCK cold-start optimizations enable more ag-

gressive resource reclamation, it is still beneficial to

pause idle handlers before immediately evicting them.

5.2 Package Optimizations

SOCK provides two package-oriented optimizations.

First, SOCK generalizes the Zygote approach so that

new containers can be allocated by one of many dif-

ferent Zygote containers, each with different packages

pre-imported, based on the current workload (import

caching). Second, a large subset of packages are pre-

installed to a partition that is bind-mounted read-only in

every container (install caching).

We first evaluate these optimizations together with a

simple workload, where a single task sequentially in-

vokes different lambdas that use the same single library,

but perform no work. Figure 17 shows the result. With-

out optimizations, downloading, installing, and importing

usually takes at least a second. The optimizations reduce

latency to 20 ms, at least a 45× improvement.

To better understand the contributions of the three

caching layers (i.e., the new import and install caches and

the old handler cache), we repeat the experiment in Fig-

ure 17 for django, evaluating all caches, no caches, and
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each cache in isolation. For each experiment, 100 differ-

ent lambdas import django, and a single task sequentially

invokes randomly-chosen lambdas. Figure 18 shows the

results. The handler cache has bimodal latency: it usually

misses, but is fastest upon a hit. The working set fits in the

import cache, which provides consistent latencies around

20 ms; the install cache is also consistent, but slower. Us-

ing all caches together provides better performance than

any one individually.

When import caching is enabled, processes in the han-

dler cache and processes in the import cache are part of

the same process tree. This structure leads to deduplica-

tion: multiple processes in the handler cache can share

the same memory page on a copy-on-write basis with a

parent process in the import cache. This allows the han-

dler cache to maintain more cache entries. Figure 19 il-

lustrates this helpful interaction. We issue 200 requests

to many different lambdas, all of which import django,

without an import cache (experiment 1) and with an im-

port cache (experiment 2). In the first experiment, the

handler cache has 18% hits. In the second, deduplica-

tion allows the handler cache to maintain more entries,

achieving 56% hits.

5.3 Scalability

We stress test SOCK with a large set of artificial packages

(100K). The packages generate CPU load and memory

load, similar to measured overheads of 20 popular pack-

ages (§3.1). We create dependencies between packages

similar to the PyPI dependency structure. Each handler

imports 1-3 packages directly. The packages used are de-

cided randomly based on package popularity; popularity

is randomly assigned with a Zipfian distribution, s = 2.5.

All packages are pre-installed to the install cache.

We also vary the number of handlers (100 to 10K).

A small working set exercises the handler cache, and a

large working set exercises the install cache. The import

cache should service mid-sized working sets. Handlers

are executed uniformly at random as fast as possible

by 10 concurrent tasks. Figure 20 shows a latency CDF

for each working set size. With 100 handlers, SOCK

achieves low latency (39 ms median). For 10K handlers,

88% percent of requests must be serviced from the install

cache, so the median latency is 502 ms. For 500 handlers,

the import cache absorbs 46% of the load, and the handler

cache absorbs 6.4%, resulting in 345 ms latencies.
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5.4 Case Study: Image Resizing

In order to evaluate a real serverless application, we im-

plement on-demand image resizing [28]. A lambda reads

an image from AWS S3, uses the Pillow package to re-

size it [10], and writes the output back to AWS S3. For

this experiment, we compare SOCK to AWS Lambda and

OpenWhisk, using 1 GB lambdas (for AWS Lambda) and

a pair of m4.xlarge AWS EC2 instances (for SOCK and

OpenWhisk); one instance services requests and the other

hosts handler code. We use AWS’s US East region for

EC2, Lambda, and S3.

For SOCK, we preinstall Pillow and the AWS SDK [44]

(for S3 access) to the install cache and specify these

as handler dependencies. For AWS Lambda and Open-

Whisk, we bundle these dependencies with the handler

itself, inflating the handler size from 4 KB to 8.3 MB.

For each platform, we exercise cold-start performance by

measuring request latency after re-uploading our code as

a new handler. We instrument handler code to separate

compute and S3 latencies from platform latency.

The first three bars of Figure 21 show compute and

platform results for each platform (average of 50 runs).

“SOCK cold” has a platform latency of 365 ms, 2.8×

faster than AWS Lambda and 5.3× faster than Open-

Whisk. “SOCK cold” compute time is also shorter than

the other compute times because all package initialization

happens after the handler starts running for the other plat-

forms, but SOCK performs package initialization work as

part of the platform. The “SOCK cold+” represents a sce-

nario similar to “SOCK cold” where the handler is being

run for the first time, but a different handler that also uses

the Pillow package has recently run. This scenario further

reduces SOCK platform latency by 3× to 120 ms.

6. Related Work

Since the introduction of AWS Lambda in 2014 [5], many

new serverless platforms have become available [6, 14,

17, 39, 45]. We build SOCK over OpenLambda [20].

SOCK implements and extends our earlier Pipsqueak

proposal for efficient package initialization [38].

In this work, we benchmark various task-provisioning

primitives and measure package initialization costs. Prior

studies have ported various applications to the lambda

model in order to evaluate platform performance [21,

33]. Spillner et al. [46] ported Java applications to AWS

Lambda to compare performance against other platforms,

and Fouladi et al. [16] built a video encoding platform

over lambdas. Wang et al. [50] reverse engineer many

design decisions made by major serverless platforms.

There has been a recent revival of interest in sand-

boxing technologies. Linux containers, made popular

through Docker [36], represent the most mainstream

technology; as we show herein, the state of the art is

not yet tuned to support lambda workloads. OpenWhisk,

which uses Docker containers, hides latency by maintain-

ing pools of ready containers [47]. Recent alternatives to

traditional containerization are based on library operating

systems, enclaves, and unikernels [7, 24, 29, 31, 41, 42].

The SOCK import cache is a generalization of the Zy-

gote approach first used by Android [8] for Java pro-

cesses. Akkus et al. [1] also leverage this technique to

efficiently launch multiple lambdas in the same container

when the lambdas belong to the same application. Zy-

gotes have also been used for browser processes (some-

times in conjunction with namespaces [12]). We believe

SOCK’s generalized Zygote strategy should be generally

applicable to other language runtimes that dynamically

load libraries or have other initialization costs such as

JIT-compilation (e.g., the v8 engine for Node.js [25] or

the CLR runtime for C# [3, 30]); however, it is not obvi-

ous how SOCK techniques could be applied to statically-

linked applications (e.g., most Go programs [53]).

Process caching often has security implications. For

example, HotTub [27] reuses Java interpreters, but not

between different Linux users. Although the Zygote

approach allows cache sharing between users, Lee et

al. [26] observed that forking many child processes

from the same parent without calling exec undermines

address-space randomization; their solution was Morula,

a system that runs exec every time, but maintains a pool

of preinitialized interpreters; this approach trades overall

system throughput for randomization.

7. Conclusion

Serverless platforms promise cost savings and extreme

elasticity to developers. Unfortunately, these platforms

also make initialization slower and more frequent, so

many applications and microservices may experience

slowdowns if ported to the lambda model. In this work,

we identify container initialization and package depen-

dencies as common causes of slow lambda startup. Based

on our analysis, we build SOCK, a streamlined container

system optimized for serverless workloads that avoids

major kernel bottlenecks. We further generalize Zygote

provisioning and build a package-aware caching system.

Our hope is that this work, alongside other efforts to min-

imize startup costs, will make serverless deployment vi-

able for an ever-growing class of applications.
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Abstract
In the era of the Internet of Things, users desire more
valuable services by simultaneously utilizing various re-
sources available in remote devices. As a result, cross-
device resource sharing, a capability to utilize the re-
sources of a remote device, becomes a desirable feature
to enable interesting multi-device services. However, the
existing resource sharing mechanisms either have limited
resource coverage, involve complex programming efforts
for utilizing multiple devices, or more importantly, incur
huge inter-device network traffic.

We propose DynaMix, a novel framework that realizes
efficient cross-device resource sharing. First, DynaMix
maximizes resource coverage by dynamically integrating
computation and I/O resources of remote devices with
distributed shared memory and I/O request forwarding.
Second, DynaMix obviates the need for multi-device
programming by providing the resource sharing capabil-
ity at the low level. Third, DynaMix minimizes inter-
device network traffic by adaptively redistributing tasks
between devices based on their dynamic resource usage.
By doing so, DynaMix achieves efficient resource shar-
ing along with dynamic plug-and-play and reconfigura-
bility. Our example implementation on top of Android
and Tizen devices shows that DynaMix enables efficient
cross-device resource sharing in multi-device services.

1 Introduction
In the era of the Internet of Things, a user can access an
increasing number of heterogeneous devices (e.g., smart-
phones, wearable devices, smart TVs) equipped with di-
verse, and possibly different, hardware resources (e.g.,
CPU, memory, camera, screen). As a result, such an
environment poses the need for multi-device services
which simultaneously utilize the diverse resources of the
heterogeneous devices. For instance, when watching
movies or viewing PDF files, a user can use a large TV
screen rather than a smaller smartphone screen. Also, a

user can take pictures from various angles by using mul-
tiple remote cameras. In a similar sense, a number of
recent studies [33,37,38] develop and demonstrate multi-
device services utilizing resources of multiple devices.

However, the existing cross-device resource sharing
schemes suffer from several challenges. First, using net-
work libraries explicitly imposes significant program-
ming burden on developers [2, 3, 6] as they should fol-
low a server-client model that involves careful task distri-
bution between server and client processes. Distributed
programming platform [54] may reduce the program-
ming burden; however, they still impose the burden of
efficiently partitioning an application. Second, code of-
floading [19, 21, 28] and remote I/O [11] can enable
cross-device resource sharing without the programming
burden. Unfortunately, neither of them supports all com-
putation (e.g., CPU, memory) and I/O sharing at the
same time, which limits their applicability. More impor-
tantly, the existing schemes do not optimize the place-
ment of tasks and hence suffer when running on slow
wireless networks.

Motivated by the limitations of the existing mech-
anisms, we need a new cross-device resource sharing
mechanism achieving all of the following design goals.
First, it should fully integrate the diverse resources of
different devices including CPU, memory, and I/O re-
sources. Second, it should achieve good programmabil-
ity by not exposing any cross-device resource sharing de-
tails to the application layer. Third, it should dynamically
redistribute tasks between devices to minimize the nega-
tive performance impacts of slow wireless networks.

In this paper, we propose DynaMix, a novel frame-
work to enable Dynamic Mobile device integration
for efficient cross-device resource sharing. First, Dy-
naMix fully integrates diverse resources using Dis-
tributed Shared Memory (DSM) and I/O request for-
warding; DSM integrates CPU and memory, and I/O re-
quest forwarding integrates I/O resources. Second, as
DSM and I/O request forwarding enable low-level re-
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source sharing below the application level, DynaMix
does not demand applications to be aware of multiple
devices, achieving good programmability. Third, Dy-
naMix dynamically redistributes tasks between devices
in a way that minimizes inter-device communication by
monitoring per-device resource usage and inter-device
network usage. In addition, DynaMix supports seamless
plug-and-play of remote devices by monitoring their con-
nectivity and by taking checkpoints of an application’s
states.

For evaluation, we implement DynaMix on various
Android and Tizen devices (e.g., Google Nexus, Sam-
sung Smart TV). We also introduce three multi-device
services to demonstrate the effectiveness of DynaMix:
home theater, smart surveillance, and photo classifica-
tion. The experimental results clearly show that Dy-
naMix enables efficient cross-device resource sharing by
fully integrating diverse resources and by dynamically
redistributing tasks between devices. For instance, Dy-
naMix achieves the target performance goal of home the-
ater (i.e., 24 FPS when playing HD movies), whereas
the existing mechanisms suffer from severe performance
degradation (e.g., only 8.2 FPS with request forwarding).

In summary, our contributions are as follows:
• Novel Platform. We propose DynaMix, a novel

framework to fully integrate remote resources for
efficient cross-device resource sharing.
• High Applicability. DynaMix can easily be de-

ployed to existing devices, and its low-level re-
source sharing enables easy programmability.
• High Performance. DynaMix minimizes the inter-

device communication overheads by dynamically
redistributing tasks between devices.
• High Reliability. DynaMix supports seamless

plug-and-play of remote devices, improving the re-
liability of multi-device services.

2 Background and Motivation
In the IoT environment, cross-device resource sharing is
a promising solution to satisfy various service demands
of users who can access an increasing number of het-
erogenous devices. The users can select favorable re-
sources in different devices, so that they enjoy the same
application in different ways depending on their resource
configurations.

2.1 Limitations of Existing Schemes
To enable multi-device services, researchers have pro-
posed various resource sharing schemes. We group them
into three categories and compare their tradeoffs.
I/O Request Forwarding. The I/O request forwarding
is a method to utilize remote I/O resources (e.g., cam-
era, screen, audio, sensor) by forwarding I/O requests
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Figure 1: An example setup to play a video on a remote
screen and network latency to send a single frame

to the target device, which then accesses the requested
resources on behalf of the requesting device. The re-
quest forwarding schemes can forward the I/O requests
in different layers (e.g., kernel, platform, user). For ex-
ample, Rio [11] forwards I/O requests at the kernel level
to a remote device which then performs the delivered
I/O requests. M+ [43] provides cross-device functional-
ity sharing at the platform level by forwarding IPC mes-
sages. Both schemes enable the transparent access to re-
mote I/O resources. On the other hand, user-level [2,3,6]
request forwarding schemes make programmers explic-
itly handle the remote I/O requests.

However, the applicability of the existing request for-
warding schemes is limited as follows. First, they sup-
port only I/O resources for resource sharing1. Next, they
require carefully-designed abstraction layers to support
single-device applications. Furthermore, they can suf-
fer from severe network overheads unless they access
resources in an optimized task distribution. Figure 1a
shows an example kernel-level request forwarding setup
configured to use a remote screen to play a video. Since
the local device forwards the decoded frame to the re-
mote screen, it can suffer from the severe communication
overhead as the video quality increases. Figure 1b shows
that only the lowest resolution quality can barely meet
the 24 frames per second (FPS) performance goal. Ac-
tually, moving Decoder task from the smartphone to the
TV would greatly reduce the network overheads as only
the small traffic between Loader and Decoder is ex-
posed. From this example, we can see why the resource-
aware task redistribution is important.
Code Offloading and Distributed Computation. The
code offloading [19, 21] and distributed computa-
tion [28] schemes utilize remote computation resources
(e.g., CPU, memory) by offloading performance-critical
code regions to more powerful devices. They can not
only improve the performance but also save the power
consumption of the requesting device by using a faster
CPU or exploiting the increased parallelism with more
cores. In addition, COMET [28] implements a software-
based distributed shared-memory (DSM) framework to
support efficient thread offloading among devices.

However, the applicability of the existing code of-
1Note that M+ [43] restrictively uses CPU and memory resources

for specific platform services.
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Figure 2: An example workflow of the DynaMix framework. Though programmers develop single-device applications,
users can configure their services (i.e., DynaMix devices) by selecting desired resources to access remote resources.

floading schemes is limited as follows. First, they sup-
port only computation resources for cross-device shar-
ing, which leaves I/O resources to be wasted. Next, their
migration points of non-DSM schemes are restricted to
specific function entries, similar to Remote Procedure
Calls (RPC). Also, the migrated tasks should eventually
go back to the requesting device which restricts the scope
of performance-critical task redistributions.
Distributed Programming Platform. A distributed
programming platform such as Sapphire [54] is similar
to the distributed computation scheme but provides an in-
terface to enable more flexible task migrations. Once the
tasks are deployed by the platform-defined unit objects,
the platform supports a limited form of task redistribu-
tions to reduce the performance overhead.

However, such distributed programming platform suf-
fers from the following limitations. First of all, the
resource coverage is still limited to computation re-
sources for cross-device sharing. Next, the scheme
leaves the burden of difficult multi-device programming
(e.g., device-aware task partitioning, dynamic exception
handling) to application developers.

2.2 Design Goals
Motivated by the limitations, we claim that an ideal re-
source sharing framework must satisfy the following.
High Resource Coverage. The framework should cover
both I/O and computation resources for cross-device
sharing. Various types of I/O resources enable the frame-
work to provide interesting multi-device services which
are infeasible in a single device alone due to its limited
capabilities (e.g., device’s unsupported resource types
and physical location). In addition, sharing computation
resources allows an application to run in a more efficient
way by distributing its tasks across other devices.
Single-device Application Support. The framework
should transparently support single-device applications
for multi-device services. Developing multi-device ap-
plications [2, 3, 6] using a server-client model often im-
poses an excessive burden on developers (e.g., statically
separated multiple programs). Also, this approach is
practically limited toward satisfying users’ various de-
mands and developers have to manually handle dynamic
behaviors. On the other hand, if the framework trans-
parently supports a single-device application to access
remote resources, developers no longer consider how re-
mote resources are accessed. Users create their own ser-

vice by selecting favorable resources and the framework
provides seamless mechanisms to access them, signifi-
cantly reducing the programming burden.
Resource-aware Task Redistribution. The framework
should minimize the inter-device communication over-
head with dynamic inter-device task redistributions. The
communication overhead incurred by the remote access
highly depends on dynamic factors, such as the recon-
figuration of the resource sharing, the available network
bandwidth, and runtime behaviors of tasks in an applica-
tion. Therefore, it is important to adaptively redistribute
tasks to the optimal devices to minimize the overhead.

3 DynaMix Framework
3.1 Overview
Figure 2 shows an example workflow of DynaMix frame-
work. First, programmers develop DynaMix applica-
tions. To reduce the burden of the programmers, Dy-
naMix requires neither any special programming con-
cepts nor special APIs except the underlying memory
consistency model described in §4.1. Therefore, pro-
grammers can write ordinary multi-threaded programs
on a single device with multi-thread libraries without
concerns about remote resources. This single-device pro-
gramming model of DynaMix makes developing new ap-
plications and porting existing applications easy. Sec-
ond, users can select desired resources (e.g., StorageA
and ScreenB in Figure 2) to execute DynaMix applica-
tions at runtime. DynaMix framework dynamically inte-
grates the selected resources and constructs a single vir-
tual device called a DynaMix device. Third, DynaMix
detects the network traffic and automatically redistributes
tasks across the devices to minimize the network over-
head. Within the DynaMix device, tasks (i.e., threads) of
the DynaMix applications can freely access remote re-
sources or be migrated for the optimal task redistribution.

3.2 DynaMix Operations
DynaMix framework has two basic operation models: re-
mote resource integration and resource-aware task redis-
tribution. To support the operations, users should first
make their devices DynaMix-enabled by installing two
software components on each device: resource integra-
tor and thread migrator. The resource integrator inte-
grates both computation and I/O resources (or constructs
a DynaMix device) by applying a distributed shared
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Figure 3: DynaMix architectural overview

memory (DSM) model and I/O request forwarding to-
gether (§3.2.1). The thread migrator monitors both inter-
thread communication and device connectivity, and dy-
namically redistributes threads to their optimal locations
to minimize the communication overhead (§3.2.2).

3.2.1 Remote Resource Integration
The resource integrators installed on each device col-
laboratively apply a DSM model and a kernel-level I/O
request forwarding to integrate both computation (e.g.,
CPU, memory) and I/O (e.g., display, storage) resources.
This mechanism enables DynaMix to satisfy two design
goals of ideal resource sharing: single-device program-
ming model and high resource coverage.

The resource integrator performs the integration in
three steps. First, the resource integrator collects the
information of remote resources (e.g., CPU frequency,
memory size, I/O type), broadcasted by remote resource
integrators, and makes the resources available for user
applications. Second, if an application tries to use a re-
mote resource, the resource integrator forwards the re-
quest to the target resource integrator. Third, the target
resource integrator delivers the outcome to the applica-
tion through the shared memory for computation results
or through forwarding for I/O results.

3.2.2 Resource-aware Task Redistribution
With only the I/O request forwarding, DynaMix can
incur severe inter-device communications. Therefore,
DynaMix applies a resource-aware task redistribution
mechanism by adaptively migrating threads to the op-
timal devices in a way to minimize the overall inter-
device traffic. This mechanism satisfies the design goal

of resource-aware task redistributions.
The resource integrator and the thread migrator work

together to enable task redistributions as follows. First,
the resource integrator monitors per-thread resource us-
age (e.g., CPU, network) to detect possible resource con-
tentions. Second, on detecting a contention, the thread
migrator compares tradeoffs of various thread allocation
scenarios, and finds the best one. Third, the thread migra-
tor migrates threads based on the scenario by delivering
their execution contexts to the target devices.

4 Implementation
This section describes how we implement the aforemen-
tioned core components (resource integrator and thread
migrator) and a newly introduced master demon com-
ponent to correctly orchestrate operations. The master
daemon runs on a failure-free master device on which a
user launches applications. Note that we regard failures
in the master device as user-intended ones such as device
shutdown. Figure 3 illustrates the overall architecture.

4.1 Resource Integrator
The resource integrator consists of three components: a
DSM engine, an I/O engine, and a device status monitor.
The DSM and I/O engines integrate computation and I/O
resources, respectively, and the device status monitor de-
tects intra-device resource contentions.

4.1.1 DSM Engine
The DSM engine integrates the memory regions of mul-
tiple devices into a single memory space in a DSM man-
ner. On receiving a memory access request, the DSM
engine either delivers its local memory data or forwards
a request to the destination DSM engine owning the data.
It also works with the master daemon to orchestrate these
communications for globally consistent memory man-
agement (§4.3.2). The DSM engine applies three perfor-
mance optimizations as follows. First, it adopts a lazy
release consistency (LRC) model [32] to safely delay
memory synchronization within acquire-release block,
similar to previous work [27,28]. Second, it actively per-
forms memory prefetches on detecting sequential mem-
ory access patterns. Third, it uses a page-level coherence
block to reduce the coherence overheads.

To support the page-level DSM, the DSM engine
leverages a page fault handler in Linux kernel which
manages page permissions. When an application enters
a critical section (i.e., lock acquire), the DSM engine dis-
ables write permissions of all shareable pages in the tar-
get application. In this way, the DSM engine can detect
the page modifications during a critical section. On the
exit of the critical section (i.e., lock release), it recov-
ers the write permissions. Due to the LRC model, the
memory transfer of the modified pages occurs only when
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another device newly acquires the same lock, which min-
imizes unnecessary network communications.

To further reduce the network traffic, the DSM engine
transfers only the updated contents called diffs. On a
lock release, the DSM engine generates diffs by compar-
ing the contents of original and modified pages. When
another device acquires the same lock, its DSM engine
receives the corresponding diffs from the previous lock
holder and applies them into the original pages.

4.1.2 I/O Engine
The I/O engine manages the access to local and remote
I/O resources through kernel-level request forwarding.
For the purpose, the I/O engine provides a device file
boundary for cross-device I/O sharing similar to previous
approaches [10, 11]. Mobile platforms with the Linux
kernel base (e.g., Android, Tizen) use device files as
their I/O abstraction layer because such files are device-
agnostic. In this way, DynaMix can support a wide spec-
trum of I/O resources. To forward incoming requests
from the host to a remote target device, the I/O engine in-
tercepts I/O-related system calls (e.g., open, read, write,
ioctl) and delivers them to the remote device with their
input parameters. The remote device then performs the
forwarded requests and returns the results to the host.
The I/O engine also cooperates with a platform to allow
users to access remote I/O resources transparently.

For example, to access audio peripherals (e.g.,
speaker, microphone) on a remote device, the I/O en-
gine creates virtual device files corresponding to device
files for audio peripherals (e.g., /dev/snd/pcmCxDxx,
/dev/snd/control). The host I/O engine transfers re-
quests coming through a virtual device file to the remote
I/O engine which executes the requests with the corre-
sponding original device file. Note that an audio Hard-
ware Abstraction Layer (HAL) library (e.g., tinyalsa) is
modified to access virtual device files instead of origi-
nal device files. In this way, DynaMix applications can
transparently access the remote audio peripherals.

Unfortunately, such kernel-level request forwarding
does not directly support some I/O resources (e.g., a
screen, file system) that require special management.
For example, to display frame data from a frame buffer
(/dev/graphics/fb0) in the host, the remote I/O en-
gine should cooperate with graphics APIs in a plat-
form to follow the existing graphics stack (i.e., Surface-
Flinger). In particular, to access a file on a remote stor-
age, the I/O engine works with the master daemon which
keeps a file directory containing the file metadata. There-
fore, devices joining the DynaMix device should upload
their file metadata information to the shared file direc-
tory. On receiving a file access request, the I/O engine
first checks the local file directory. If the file does not
exist, the I/O engine asks the master daemon to find the

location in the shared file directory and forwards the re-
quest to the owner device.

4.1.3 Device Status Monitor
The device status monitor periodically collects various
system information (e.g., per-thread CPU utilization,
network stall time) to detect CPU and network con-
tentions. The device status monitor is implemented as
a kernel thread, which enables more accurate resource
monitoring. It detects CPU contentions when CPUs are
fully utilized but each thread has low CPU utilization
without the existence of other bottlenecks (e.g., no I/O
wait). On the other hands, it detects network contentions
when the stalled time due to remote I/O accesses or mem-
ory synchronization exceeds a pre-defined threshold 2

(e.g., 30% in our environment). On detecting such con-
tentions, the device status monitor immediately notifies
the master daemon to initiate thread redistributions.

4.2 Thread Migrator
The thread migrator consists of four components: a
thread manager, a migration selector, a migration engine,
and a heartbeat communicator.

4.2.1 Thread Manager
The thread manager preserves various information of
running threads such as execution states, resource usage,
and locks. On resource contentions, the thread manager
calculates threads’ data communications3 (i.e., thread-
to-thread and thread-to-resource) and sends the results
to the migration selector which determines the best vic-
tim for migration and its destination device. The thread
manager also implements kernel-level locks to synchro-
nize threads across different devices. Note that we mod-
ify a user-level multi-thread library (e.g., POSIX) to ac-
cess these locks internally. The thread manager checks
with the master daemon before allowing a thread to ac-
quire a lock. The master daemon then forces the prior
lock holder to transfer the updated memory within the
acquire-release block, following the LRC model.

For reliable execution, the master thread manager
keeps execution contexts of the migrated threads as a
checkpoint, so it can consistently recover missing threads
for an unintended device disconnection. After the check-
point is created, non-migrated threads in the same ap-
plication update memory pages in a copy-on-write man-
ner to maintain original contents of shared pages. The
checkpoint is updated only when the size of copied data
exceeds a threshold (e.g., 20% of total memory size). As

2This conservative detection using the static threshold works well in
DynaMix because the migration selector (§4.2.2) considers the trade-
offs of all candidates and eventually decides the best migration target.

3DSM and I/O engine provide the information of data communica-
tions. The profiling overhead of each engine is typically insignificant
because DSM engine measures the communication only in critical sec-
tions and I/O engine merely records the size of transferred data.
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Algorithm 1: Migration Selector
input : the analyzed data communication result, C.
input : a set of local threads, threadslocal .
input : a set of remote devices, devices.
output : a tuple of a migration victim thread group to recommend,

its destination device, and the network gain.
/* Construct thread groups */
tgroups = [[T ] for thread T in threadslocal ]
do

/* Compare the amount of inter-thread comm. */
foreach (tg1, tg2) where tg1, tg2 ∈ tgroups do

if communication(tg1, tg2,C)> Dthre then
merge groups(tg1, tg2, tgroups)

end
end

while tgroups changed;
/* Find a victim thread group and a destination device

that yields the largest network gain */
(victim tg,dest dev,max gain) = (null,null,0)
foreach tg ∈ tgroups do

/* Consider devices with enough idle CPU BW */
foreach dev ∈ possible devices(tg,devices) do

net gain = estimate net gain(tg,dev,C)
if net gain > max gain then

(victim tg,dest dev,max gain) = (tg,dev,net gain)
end

end
end
return (victim tg,dest dev,max gain)

the threshold can affect memory pressure on a device,
it is experimentally decided by considering an available
memory size not to hurt other applications’ performance.

4.2.2 Migration Selector

With the information delivered by a thread manager, the
migration selector determines the best victim thread for
migration and its destination device. The estimation re-
lies on recent access patterns of an application with the
assumption that similar behaviors appear in the near fu-
ture. This assumption is reasonable in DynaMix’s target
applications which mainly access remote resources (e.g.,
repeatedly accessing a remote screen or camera) unless a
user changes the resource configuration. The migration
selector determines the best victim thread for migration
and its destination device, and notifies the information to
the master daemon as migration recommendation. Al-
gorithm 1 describes how the migration selector finds the
migration recommendation.

The migration selector first groups tightly coupled
threads as a thread group which is a minimal migra-
tion unit. Such grouping simplifies the selection pro-
cess and prevents unnecessary migration initiations. The
algorithm sets threads as a thread group if their inter-
thread communication amount is larger than a pre-
defined threshold (Dthre). Next, it finds the best victim
group and its destination device in a way to maximize the
network overhead reduction, network gain. Note that the
selected victim group is temporarily excluded in the next
target selection during a specific time period to avoid fre-
quent migration invocations on the same group. The time
period is extended using exponential backoff.

The destination device should have idle CPU band-

Smartphone
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Loader Decoder

Screen

50KB

Player

50KB

Group 1

10KB 5KB

Group 2

(a) Thread grouping

Status Value

CPUthread 30%
idletv 70%

Per ftv,phone 0.9
NAcqload,dec 10

lattv,phone 0.01s
BWtv,phone 100KB/s

(b) Device status

Thread Placement Tct Tdt Tgain

Group 1 on TV -0.1 s -0.15 s -0.25 s
Group 2 on TV -0.1 s 0.45 s 0.35 s

(c) Network gain estimation

Figure 4: Migration victim and destination selection

width enough to accommodate the migrated threads. To
consider the different CPU performance of devices, the
algorithm uses a scaling factor, Per fdest,source. For exam-
ple, if Per fdest,source is 0.9, the destination device’s CPU
is slower than the source’s CPU by 10%.
Calculating the network gain. The network gain Tgain
quantifies how much the thread migration will improve
the network performance in terms of the latency to trans-
fer control messages (Tct ) and data (Tdt ): Tgain = Tct +Tdt .

A lock-acquire operation is the most critical source of
the control messages, and each one incurs a three-hop la-
tency (§4.2.1). The latency between thread i and j is the
number of acquire operations (NAcqi, j) times the three-
hop latency between them (latD(i),D( j)), where D(i) and
D( j) indicate the devices running thread i and j. There-
fore, the total transfer latency is Σi∈tgΣ j∈tcomNAcqi, j ×
latD(i),D( j), where tg is the thread group and tcom is a
set of communicating threads. Then, the network gain
of control message transfer, Tct , is the latency difference
due to the migration to the destination, dst:

Tct = ∑
i∈tg

∑
j∈tcom

NAcqi, j× (latD(i),D( j)− latdst,D( j))

The data transfer latency gain can also be calculated
in a similar manner. If Di, j is the size of transferred
data between thread i and j, and BWDi,D j is the net-
work bandwidth between them, the data transfer latency
is Di, j/BWDi,D j. Then, the network latency gain of data
transfer, Tdt , is the latency difference due to the migration
to the destination, dst:

Tdt = ∑
i∈tg

∑
j∈tcom

(Di, j/BWD(i),D( j)−Di, j/BWdst,D( j))

Example Victim/Destination Selection Scenario. We
illustrate example operations of the migration selector.
Figure 4a shows the data communication status collected
by the thread manager, and Figure 4b shows the sta-
tus of devices collected by the device status monitor
and the heartbeat communicator. Figure 4a also shows
two thread groups, where the Loader and the Decoder
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thread are allocated in the same group because they heav-
ily communicate each other. As the TV has enough idle
CPU bandwidth (70%×0.9 = 63%) to accommodate ei-
ther thread group (30% for Group 1, 30%×2 = 60% for
Group 2), both groups can be migrated to the TV. Next,
the migration selector compares the network gains of mi-
grating either thread group (Figure 4c), and reports the
best group and destination (i.e., Group 2 and TV) to the
master daemon.

4.2.3 Migration Engine
After the migration selector decides the victim threads
(i.e., thread group) and its destination device, the mi-
gration engine eventually performs a thread migration.
DynaMix supports a low-overhead migration by adopt-
ing thread cloning and live migration. It minimizes the
downtime, a suspended time period during migration, by
transferring essential pages in a short time.

First, the source device sends only the memory layout
(e.g., heap, stack) of the victim threads to the destination
device which then creates their clone threads suspended
during the migration. Next, for a short period (e.g., 2
secs), the migration engine transfers the most recently
accessed pages (e.g., using the LRU-based page cache
in Linux kernel) to the destination device, while the vic-
tim threads run on the original device. Using write per-
mission faults (similar to §4.1.1), the migration engine
detects and records the updated pages during the mem-
ory transfer. After finishing (i.e., timeout) the memory
transfer, it sends the victim thread’s execution context
(e.g., process control blocks) with the updated pages in
the meanwhile. This transparent live migration (similar
to [20]) effectively hides the migration latency and min-
imizes the service downtime. Finally, the clone threads
continue their execution on the destination device after
the victim threads are suspended on the original device.

4.2.4 Heartbeat Communicator
For dynamic resource integration, DynaMix supports
seamless operations whiles devices are plugged in and
out. The heartbeat communicators periodically exchange
heartbeat messages to check the device connectivity and
share their resource status (e.g., CPU idleness, network
latency, bandwidth). The resource status information is
then delivered to the migration selector. Note that the
inter-device network latency can be estimated from the
round-trip latency of heartbeat messages.

The heartbeat communicator can detect which remote
device joins or leaves a DynaMix device. For a newly
joined device, its heartbeat communicator broadcasts
heartbeat messages. On receiving the message, the mas-
ter daemon enlists the new device in the DynaMix de-
vice. The heartbeat communicator also detects unstable
devices by monitoring the connectivity (e.g., the number
of packet drops). If a device becomes unstable, the heart-

beat communicator notifies the master daemon to initiate
migrating the threads in the device to more stable devices
to avoid thread recovery that may cause the loss of the
overall progress. For an unexpected disconnection. the
master heartbeat communicator notifies the thread man-
ager to recover from the latest checkpoint (§4.2.1).

4.3 Master Daemon
A DynaMix device has a single master daemon4 that
manages various system states (e.g., threads, locks,
memory pages, files) to orchestrate DynaMix operations
and components. The master daemon runs on the failure-
free master device, and consists of three components: a
thread directory, a page directory, and a file directory.

4.3.1 Thread Directory
The thread directory manages the global states of threads
such as thread locations, and arbitrates the thread migra-
tion process. It collects resource contention signals from
the device status monitors, and migration recommenda-
tions from the migration selectors. On receiving recom-
mendations, the thread directory selects the best migra-
tion victim and its destination to achieve the highest net-
work gain, and then manages the migration engines to
perform the designed migrations.

The thread directory also keeps the lock information
(e.g., current owner, status). To acquire a lock, each de-
vice should consult the master device’s thread directory.
To reduce the lock acquisition overhead, the thread di-
rectory can speculatively grant the lock to frequent lock
holding devices. When another device attempts to ac-
quire the lock, the thread directory reclaims the spec-
ulatively given lock. Note that when a device is dis-
connected, the thread directory immediately reclaims all
locks held by the device to avoid a deadlock.

4.3.2 Page Directory
The page directory manages the sharing state of memory
pages to orchestrate memory synchronization operations.
When a device sends a remote read request due to a page
fault, the page directory consults a sharer table which
keeps the sharer device lists of each page. It then relays
the request to one of the sharer devices which will deliver
the page to the requesting device.

On a lock release, the lock owner device reports the
address list of updated pages to the page directory. In this
way, the page directory identifies which pages should be
sent to the next owner. When another device acquires
the lock, the page directory manages its prior owner to
forward the updated pages or their diffs if the new owner
has old copies. Note that the transfers of shared pages

4Such a centralized approach enables easy management but might
limit scalability. We believe that composing multiple DynaMix devices
rather than a single large one is much preferable in our scenarios.
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Figure 5: Two example DynaMix applications

mostly occur when a device newly acquires a lock due to
LRC memory model.

4.3.3 File Directory
The file directory manages the file metadata and the
physical locations of shared files for the globally con-
sistent file view. Whenever a new device joins the Dy-
naMix device or a device updates the metadata, the mas-
ter daemon updates its file directory and then notifies the
updated information to other devices. Note that except
the device which owns a file, each device holds the file’s
read-only copy in memory.

5 Evaluation

5.1 Experimental Setup
We implemented our example DynaMix prototype which
can be easily installed on top of existing Android and
Tizen devices. For our evaluation, we installed DynaMix
on Google Nexus smartphones (i.e., Nexus 4 and 5) and
an in-house Samsung Smart TV. The smartphones run
Android 5.1.1 (CyanogenMod 12.1) with Linux kernel
version 3.4 patch, and the Samsung Smart TV runs Tizen
2.3 with Linux kernel version 3.0 patch. All devices are
connected to the same Wi-Fi network (IEEE 802.11ac)
with the maximum bandwidth of 100Mbps.

To evaluate the DynaMix prototype, we introduce
three example multi-device use cases (i.e., home theater,
smart surveillance, and photo classification) designed to
utilize both computation and I/O resources simultane-
ously. We believe users can easily make other interesting
services using our framework.
Home Theater. The home theater is a typical multi-
threaded movie player application which loads and de-
codes a movie file from a storage, shows the video on
a screen, and plays the audio through a speaker. Dy-
naMix allows users to configure resources (e.g., a large
TV, an HQ speaker) used to run the home theater. Fig-
ure 5a shows the example home theater setup with three
devices. We used FFmpeg [4] to decode video and audio
frames. Here, the home theater plays a movie with both
video and audio frames synchronized.
Smart Surveillance. The smart surveillance is another
possible service that performs image processing (e.g.,
edge detection) with preview images from a remote cam-
era. Figure 5b shows the example smart surveillance
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Figure 6: Perf. timeline of the home theater application

setup using four devices. A processing thread performs
edge detection on preview images from a selected cam-
era device, and a UI thread displays the processed image
on the screen. We used the Canny edge detection algo-
rithm [16] to detect moving objects in the service.
Photo Classification. Lastly, integrating storage re-
sources enables a shared storage system across devices
where users can observe scattered remote files (e.g.,
photos, videos) in the same hierarchy and easily ac-
cess them at any device. To evaluate the storage sys-
tem, we perform object classifications for photos scat-
tered in the connected devices. For the purpose, we
used an object classifier with the pre-trained CNN model
(SSD MobileNet [31]) using a TensorFlow [9] library.
Each thread classifies its assigned photos with the classi-
fier and reports the results to the collector thread.

5.2 Operation Models
This evaluation revisits the basic operation models of
DynaMix in §3.2. We use the multi-threaded home the-
ater with loader, decoder, and player threads. It runs on
the DynaMix device (Figure 5a) configured with a Sam-
sung Smart TV as the remote screen, an HQ speaker at-
tached to Nexus 4 as the remote audio, and a Nexus 5
smartphone as the master device. We play an HD (720p)
movie and measure its frames per second (FPS).

Figure 6 shows its performance timeline. When the
user initially plays a movie on the master device, the
home theater displays video frames on the local smart-
phone screen with the target performance of 24 FPS.
However, after the user suddenly switches the screen de-
vice to the remote TV (8 sec), it suffers from signifi-
cant FPS drops due to the huge network traffic caused
by forwarding HD video frames to the TV. Therefore,
DynaMix immediately detects a network contention (10
sec), decides the best task redistribution plan (11 sec),
and migrates the video decoder and player threads to the
TV (13 sec). Although the performance temporarily de-
grades due to the increased network consumption caused
by the migration, DynaMix quickly restores the target
performance (14 sec) with a negligible service down-
time. This experiment verifies that DynaMix enhances
the service quality with resource-aware task redistribu-
tion even in the sudden resource reconfiguration.

5.3 Service Quality
We now evaluate three use cases (i.e., home theater,
smart surveillance, and photo classification) to verify that
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Figure 8: The smart surveillance performance for Request Forwarding (RF) and DynaMix (DM)

DynaMix significantly enhances the service quality. To
show the benefit of resource-aware task redistribution,
we compare DynaMix with Request Forwarding (RF)
as a representative baseline because its resource shar-
ing mechanism conceptually includes the state-of-the-art
work (e.g., Rio [11]), which accesses a remote resource
and receives the result via a wireless network. We also
evaluate DynaMix without memory prefetching.
Home Theater. We configure a DynaMix device as ex-
plained in §5.2, and measure the throughput (i.e., frames
per second) of the home theater on the DynaMix device.
RF forwards decoded frames to the remote device be-
cause all threads run on the master device.

Figure 7a compares the throughput (FPS) of the home
theater for RF and DynaMix. While RF suffers from in-
creasing throughput degradations with the target video
quality improved, DynaMix successfully achieves the
target throughput up to the decent quality (480p) even
without memory prefetching. Enabling the prefetching
further enhances the throughput, which makes DynaMix
achieve the throughput close to the maximum for the
full HD quality (1080p). DynaMix achieves 8.3x higher
throughput than RF, while paying only 11% performance
drop from the maximum throughput for 1080p.

Figure 7b compares the network stall time of three de-
sign points to process a video frame for the various video
qualities. The network stall time means how much net-
work traffic affects the per-frame latency, and helps to
clearly investigate why RF suffers from the low through-
put. First, RF incurs severe network traffic to transfer a
decoded frame between the player thread and the remote
TV screen even for a relatively inferior quality (360p).
Moreover, RF suffers from a huge amount of network
stall as the video quality increases. On the other hand,
as DynaMix can migrate the video decoder and player
threads to the TV, the loader thread on the master de-

vice can timely transfer small-sized encoded frames to
the decoder threads on the TV. As a result, DynaMix ef-
fectively hides the network stall up to 480p, and applying
the memory prefetching further amortizes the network
overheads (i.e., near-zero network stall for 1080p).
Smart Surveillance. We configure a DynaMix device to
use a Nexus 5 device as a master device with a screen,
and three Nexus 4 devices as remote cameras, as shown
in Figure 5b. As this application allows a user to select
a target remote camera, we randomly choose one camera
as the current input feeder. RF receives preview images
from the remote camera because a processing thread runs
on the master device. We now assume that DynaMix is
equipped with memory prefetching by default.

Figure 8a compares the throughput (FPS) of the smart
surveillance for RF and DynaMix. While RF suffers
from significant throughput degradation with the preview
resolution increased, DynaMix retains moderate perfor-
mance drop as only 24.7% compared with the target
throughput for the highest preview resolution (720x480).
Figure 8b shows the breakdown of the average latency in
detecting edges of a preview image. After analyzing the
tradeoff, DynaMix migrates the edge-detector threads to
the camera devices to avoid the network contention. As a
result, it achieves far less network latency than forward-
ing raw preview images from the camera to the master
device. Note that the computation still occupies a signif-
icant portion of the total latency due to the lack of suf-
ficient computation resources. This result suggests de-
ploying faster CPUs on remote cameras so that DynaMix
can completely remove the computation overhead.
Photo Classification. We configure a DynaMix device
to use up to four Nexus 5 smartphones to construct the
shared storage system. Each device has 100MB of pho-
tos with different sizes ranging from 4KB to 10MB. A
user can choose the number of classifier threads and
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Remote File Size (B)
<10K <100K <1M <5M ≤10M

RF (%) 87.8 64.4 33.3 13.9 0
Mig. (%) 12.2 35.6 66.7 86.1 100

Table 1: DynaMix’s request forwarding (RF) vs. migra-
tion (Mig.) ratio on the photo classification

would launch threads in proportion to the total size of
photos. In our four-device configuration, we assume that
four threads classify total 400MB of photos.

We then measure the latency to perform the classifi-
cation for all photos, and compare the performance of
RF and DynaMix. We also mark the ideal performance
to identify the bottleneck. We assume that the ideal one
classifies all files on the remote devices without any net-
work overheads. Note that RF forwards remote files to
the threads running on the master device.

Figure 9 compares the performance of the total clas-
sification latency. As the number of connected devices
increases, RF suffers from high latency due to the in-
creasing network overheads incurred by forwarding re-
mote files to the classifiers. On the other hand, Dy-
naMix is barely affected by the network overheads and
thus achieves the latency close to the ideal one, even for
the four-device configuration. It is because DynaMix dy-
namically redistributes the threads across devices to min-
imizes the network overheads.

Furthermore, DynaMix can dynamically use either
of request forwarding and the adaptive task migration,
based on their tradeoffs. Note that the migrated threads
should use request forwarding during a certain time pe-
riod to prevent frequent migrations (§4.2.2). To em-
phasize the point, Table 1 shows the percentage of the
two cases in the four-device configuration. DynaMix is
likely to use the request forwarding more for small files
(i.e., <100KB) to avoid the migration overhead, whereas
it is likely to migrate threads for large-sized files (i.e.,
>1MB) to avoid the transfer overhead.

5.4 Network Sensitivity
To identify the performance impact for a given network
bandwidth, we measure the performance of the home
theater by playing an HD movie on RF and DynaMix.
For this experiment, we vary the available bandwidth
with Linux tc utility, and measure the average FPS as
the performance metric.

Figure 10 shows that RF severely suffers from its per-
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work bandwidth to play an HD video

Average Power (mW)
Master Device Screen Device Total

RF 4985.90 5151.37 10137.27
DynaMix 2956.55 6480.51 9427.06

Table 2: The power consumption of the home theater for
Request Forwarding (RF) and DynaMix

formance drops even with the maximum network band-
width available (100Mbps) and further as the network
bandwidth decreases. On the other hand, DynaMix
maintains the target 24 FPS with only 40Mbps of band-
width available. This result indicates that DynaMix ef-
fectively minimizes the network overhead by adaptively
redistributing tasks among devices.

5.5 Power Consumption
In this experiment, we measure the power consumption
of DynaMix while playing an HD movie clip, and com-
pare it against RF. To measure the impact of inter-device
traffic reduction, we use two Nexus 5 smartphones as
a master device and a screen device. We use Monsoon
power monitor [5] to measure the power consumption.

Table 2 measures the power consumption of the de-
vices. First, the master device consumes much less
power with DynaMix than RF by migrating a rendering
task to the remote device and thus reducing the network
traffic. On the other hand, the screen device consumes
little more power with DynaMix than RF by running a
relocated rendering task. As a result, DynaMix reduces
the total power by 7% mainly due to the reduced net-
work overhead. More importantly, as DynaMix’s ser-
vice quality (or performance) is 3-4 times higher than
RF (Figure 10) and their power consumptions are simi-
lar (Table 2), DynaMix’s overall energy efficiency can be
considered 3-4 times higher for the target service quality.
For further energy reduction, DynaMix may redistribute
tasks in a way to maximize the energy efficiency.

6 Discussion
Heterogeneous ISA/OS. One interesting issue related to
our work is to extend the coverage of architecture and
operating system used by DynaMix devices. However, it
is a well-known challenge to seamlessly share resources
in heterogeneous devices using different ISAs and OSes.
Therefore, existing work often assume either homoge-
neous ISA/OS [11,43] or expensive VM supports to em-
ulate the homogeneous platform [19, 21, 28].
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In this work, DynaMix also assumes homogeneous
ISA/OS environments for the most popular mobile plat-
form (i.e., Andriod/ARM). However, we showed that
its OS coverage can be easily extended to Tizen which
shares the Linux kernel base. To improve the platform
coverage further, we believe that the following directions
seem to be promising. For non-Linux based OSes (e.g.,
iOS), DynaMix may implement a compatibility layer be-
tween kernel and application by taking approaches simi-
lar to existing OS-compatibility schemes [8,12]. To sup-
port cross-ISA (e.g., ARM to x86) migrations, DynaMix
may implement a native offloading using the compiler-
assisted method [39] or dynamic binary translation [51].
Developing DynaMix Applications. To fully utilize
DynaMix’s resource-aware task redistribution, program-
mers are recommended to compose applications with
multiple threads, specialized in certain computing jobs
or I/O resource accesses. We believe this guideline is not
burdensome to programmers, as many recent program-
ming conventions also recommend similar guidelines for
optimal performance [1, 7]. To further accommodate
easy application development, DynaMix may adopt ex-
isting automatic code parallelization techniques [34, 40,
49] to maximize the effectiveness of resource-aware task
redistribution without additional programming effort.
Security Concerns. Another assumption of this work is
that a user shares resources in only user-owned trusted
devices, as existing schemes such as task offloading [19,
21, 28] and remote IO forwarding [11]. In fact, resource
sharing with untrusted devices is not common scenarios
that DynaMix considers. Therefore, the security issues
related to untrusted devices are beyond the scope of our
work. However, we believe that DynaMix can resolve
such security issues by adopting existing secure task-
offloading schemes [26,42,45,47], without a noticeable
increase in complexity.

7 Related Work
Cross-device Resource Sharing. Single system image
(SSI) [17, 18, 25] is traditional work to integrate re-
sources by creating one single system with a cluster of
machines connected to a fast and stable wired network.
However, its complex operations and huge synchroniza-
tion overheads are not suitable to the mobile environ-
ment with limited communication capabilities. Thus,
similar studies in mobile computing have focused on
how to selectively integrate remote resources. For ex-
ample, offloading schemes [19, 21, 28] offload compute-
intensive tasks to powerful servers, even for hetero-
geneous ISAs [39, 51]. Solutions to utilize other re-
sources such as GPU [22], screen [14], storage [23, 44,
46], generic I/O resources [11] and platform-level ser-
vices [43] have also been proposed. While they only
support specific types of resources, DynaMix integrates a

wide spectrum of computation and I/O resources. On the
other hand, some studies [50, 53] have optimized spec-
trum utilization sharing in cellular networks. Such tech-
niques are orthogonal to our work but we can adopt them
to more efficiently communicate between devices.
Multi-device Programming Platform. To facilitate
easy application development in the multi-device envi-
ronment, [54] allows programmers to develop unit ob-
jects and automatically deploys them across devices. [27]
also provides a DSM platform and APIs for multi-device
applications. Such platforms, however, still force pro-
grammers to explicitly partition applications with special
APIs. [24] provides a control interface to access various
home appliances with unified APIs, but it does not dis-
tribute tasks for efficient resource utilization. DynaMix,
on the other hand, enables task redistributions of single-
device applications for multi-device services, without ex-
plicit application partitioning.
Thread Migration. The thread migration is a widely
supported feature in distributed computing platforms
[13,41,52,55]. Especially, to reduce a service downtime
during migration, various VM platforms [15,29,36] have
implemented the pre-copy [20] or the post-copy [30, 35]
live migrations, depending on the timing to send execu-
tion contexts. DynaMix also applies such live migration
schemes to our environment. Researchers have proposed
an online thread distribution algorithm [48] to minimize
inter-thread network overheads. However, DynaMix re-
solves CPU contention as well as network contention,
optimized to the mobile environment.

8 Conclusion
In the era of the Internet of Things, a user can access an
increasing number of heterogeneous devices. We pro-
posed DynaMix, a novel framework to enable efficient
cross-device resource sharing by integrating diverse re-
sources and dynamically redistribute tasks. Our exam-
ple implementation on the top of Android and Tizen
devices showed that DynaMix can efficiently support
multi-device services using single-device applications.
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VINYALS, O., WARDEN, P., WATTENBERG, M., WICKE, M.,
YU, Y., AND ZHENG, X. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[10] AMIRI SANI, A., BOOS, K., QIN, S., AND ZHONG, L. I/o par-
avirtualization at the device file boundary. In Proceedings of the
19th international conference on Architectural support for pro-
gramming languages and operating systems (2014).

[11] AMIRI SANI, A., BOOS, K., YUN, M. H., AND ZHONG, L.
Rio: A system solution for sharing I/O between mobile systems.
In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (2014).

[12] ANDRUS, J., HOF, A. V., ALDUAIJ, N., DALL, C., VIENNOT,
N., AND NIEH, J. Cider: Native execution of iOS apps on An-
droid. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (2014).

[13] ARIDOR, Y., FACTOR, M., AND TEPERMAN, A. cJVM: A sin-
gle system image of a JVM on a cluster. In Proceedings of the
International Conference on Parallel Processing (1999).

[14] BARATTO, R. A., KIM, L. N., AND NIEH, J. THINC: A virtual
display architecture for thin-client computing. In Proceedings
of the 12th ACM Symposium on Operating Systems Principles
(2005).

[15] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles
(2003).

[16] CANNY, J. A computational approach to edge detection. IEEE
Transactions On Pattern Analysis and Machine intelligence 8, 6
(1986).

[17] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. Hive: Fault containment for shared-
memory multiprocessors. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (1995).

[18] CHERITON, D. The v distributed system. Commun. ACM 31, 3
(1988).

[19] CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M., AND PATTI,
A. CloneCloud: Elastic execution between mobile device and
cloud. In Proceedings of the 6th Conference on Computer Sys-
tems (2011).

[20] CLARK, C., FRASER, K., HAND, S., AND HANSEN, J. G. Live
migration of virtual machines. In Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design and Imple-
mentation (2005).

[21] CUERVO, E., BALASUBRAMANIAN, A., CHO, D.-K., WOL-
MAN, A., SAROIU, S., CHANDRA, R., AND BAHL, P. MAUI:
Making smartphones last longer with code offload. In Proceed-
ings of the 8th International Conference on Mobile Systems, Ap-
plications, and Services (2010).

[22] CUERVO, E., WOLMAN, A., COX, L. P., LEBECK, K.,
RAZEEN, A., SAROIU, S., AND MUSUVATHI, M. Kahawai:
High-quality mobile gaming using GPU offload. In Proceedings
of the 13th Annual International Conference on Mobile Systems,
Applications, and Services (2015).

[23] DAHLIN, M., GAO, L., NAYATE, A., VENKATARAMANA, A.,
YALAGANDULA, P., AND ZHENG, J. PRACTI replication. In
Proceedings of the 3rd Conference on Networked Systems Design
and Implementation (2006).

[24] DIXON, C., MAHAJAN, R., AGARWAL, S., BRUSH, A., LEE,
B., SAROIU, S., AND BAHL, P. An operating system for the
home. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation (2012).

[25] FEELEY, M. J., MORGAN, W. E., PIGHIN, E. P., KARLIN,
A. R., LEVY, H. M., AND THEKKATH, C. A. Implementing
global memory management in a workstation cluster. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating Systems
Principles (1995).

[26] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J., AND
FELTEN, E. W. SPORC: Group collaboration using untrusted
cloud resources. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation (2010).

[27] GAO, J., SIVARAMAN, A., AGARWAL, N., LI, H., AND PEH,
L.-S. DIPLOMA: Consistent and coherent shared memory over
mobile phones. In Proceedings of the 30th International Confer-
ence on Computer Design (2012).

[28] GORDON, M. S., JAMSHIDI, D. A., MAHLKE, S., MAO, Z. M.,
AND CHEN, X. COMET: Code offload by migrating execution
transparently. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (2012).

[29] GULATI, A., SHANMUGANATHAN, G., HOLLER, A., WALD-
SPURGER, C., JI, M., AND ZHU, X. VMware distributed
resource management: Design, implementation, and lessons
learned. VMware Technical Journal (2012).

[30] HINES, M. R., AND GOPALAN, K. Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic self-
ballooning. In Proceedings of the ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (2009).

[31] HUANG, J., RATHOD, V., SUN, C., ZHU, M., KORATTIKARA,
A., FATHI, A., FISCHER, I., WOJNA, Z., SONG, Y., GUADAR-
RAMA, S., AND MURPHY, K. Speed/accuracy trade-offs for
modern convolutional object detectors. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017).

[32] KELEHER, P., COX, A. L., AND ZWAENEPOEL, W. Lazy re-
lease consistency for software distributed shared memory. In Pro-
ceedings of the 19th Annual International Symposium on Com-
puter Architecture (1992).

82    2018 USENIX Annual Technical Conference USENIX Association

https://developer.android.com/training/multiple-threads/index.html
https://developer.android.com/training/multiple-threads/index.html
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
https://play.google.com/store/apps/details?id=pixelface.android.audio&hl=en
https://play.google.com/store/apps/details?id=pixelface.android.audio&hl=en
https://ffmpeg.org/
http://www.msoon.com/
http://www.msoon.com/
https://www.nest.com/camera/meet-nest-cam/
https://www.nest.com/camera/meet-nest-cam/
https://developer.tizen.org/development/guides/native-application/user-interface/efl/core-loop-and-os-interfacing/using-threads?langredirect=1
https://developer.tizen.org/development/guides/native-application/user-interface/efl/core-loop-and-os-interfacing/using-threads?langredirect=1
https://developer.tizen.org/development/guides/native-application/user-interface/efl/core-loop-and-os-interfacing/using-threads?langredirect=1
https://developer.tizen.org/development/guides/native-application/user-interface/efl/core-loop-and-os-interfacing/using-threads?langredirect=1
https://developer.tizen.org/development/guides/native-application/user-interface/efl/core-loop-and-os-interfacing/using-threads?langredirect=1
https://www.winehq.org/


[33] KIM, B., HEO, S., LEE, G., PARK, S., KIM, H., AND KIM,
J. Heterogeneous Distributed Shared Memory for Lightweight
Internet of Things Devices. IEEE Micro 36, 6 (2016).

[34] KIM, H., JOHNSON, N. P., LEE, J. W., MAHLKE, S. A., AND
AUGUST, D. I. Automatic speculative doall for clusters. In Pro-
ceedings of the Tenth International Symposium on Code Genera-
tion and Optimization (2012).

[35] KIM, J., CHAE, D., KIM, J., AND KIM, J. Guide-copy: Fast
and silent migration of virtual machine for datacenters. In Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (2013).

[36] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM: The Linux virtual machine monitor. In
Proceedings of The Ottawa Linux Symposium (2007).

[37] LEE, G., HEO, S., KIM, B., KIM, J., AND KIM, H. Integrated
IoT Programming with Selective Abstraction. In Proc. 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES) (2017).

[38] LEE, G., HEO, S., KIM, B., KIM, J., AND KIM, H. Rapid
prototyping of IoT applications with Esperanto compiler. In
Proc. 28th International Symposium on Rapid System Prototyp-
ing (RSP) (2017).

[39] LEE, G., PARK, H., HEO, S., CHANG, K.-A., LEE, H., AND
KIM, H. Architecture-aware automatic computation offload for
native applications. In Proceedings of the 48th International Sym-
posium on Microarchitecture (2015).

[40] LIU, W., TUCK, J., CEZE, L., AHN, W., STRAUSS, K., RE-
NAU, J., AND TORRELLAS, J. Posh: A tls compiler that ex-
ploits program structure. In Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (2006).

[41] MA, M. J., WANG, C.-L., AND LAU, F. C. Delta Execution: A
preemptive Java thread migration mechanism. Cluster Comput-
ing 3, 2 (2000), 83–94.

[42] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI, L.,
DAHLIN, M., AND WALFISH, M. Depot: Cloud storage with
minimal trust. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (2010).

[43] OH, S., YOO, H., JEONG, D. R., BUI, D. H., AND SHIN,
I. Mobile plus: Multi-device mobile platform for cross-device
functionality sharing. In Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services
(2017).

[44] PERKINS, D., AGRAWAL, N., ARANYA, A., YU, C., GO, Y.,
MADHYASTHA, H. V., AND UNGUREANU, C. Simba: Tunable
end-to-end data consistency for mobile apps. In Proceedings of
the 10th European Conference on Computer Systems (2015).

[45] PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K., AND
BOS, H. Paranoid Android: versatile protection for smartphones.
In Proceedings of the 26th Annual Computer Security Applica-
tions Conference (2010).

[46] RAMASUBRAMANIAN, V., RODEHEFFER, T. L., TERRY, D. B.,
WALRAED-SULLIVAN, M., WOBBER, T., MARSHALL, C. C.,
AND VAHDAT, A. Cimbiosys: A platform for content-based par-
tial replication. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (2009).

[47] SHRAER, A., CACHIN, C., CIDON, A., KEIDAR, I.,
MICHALEVSKY, Y., AND SHAKET, D. Venus: Verification for
untrusted cloud storage. In Proceedings of the ACM Workshop on
Cloud Computing Security Workshop (2010).

[48] THITIKAMOL, K., AND KELENHER, P. Thread migration and
communication minimization in DSM systems. Proceedings of
The IEEE 87, 3 (1999), 487–497.

[49] VACHHARAJANI, N., RANGAN, R., RAMAN, E., BRIDGES,
M. J., OTTONI, G., AND AUGUST, D. I. Speculative decou-
pled software pipelining. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques
(2007).

[50] WANG, J., ZHU, D., ZHAO, C., LI, J. C., AND LEI, M. Re-
source sharing of underlaying device-to-device and uplink cellu-
lar communications. IEEE Communications Letters 17, 6 (2013),
1148–1151.

[51] WANG, W., YEW, P.-C., ZHAI, A., MCCAMANT, S., WU, Y.,
AND BOBBA, J. Enabling cross-isa offloading for cots binaries.
In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services (2017).

[52] WOOD, T., SHENOY, P., VENKATARAMANI, A., AND YOUSIF,
M. Black-box and gray-box strategies for virtual machine mi-
gration. In Proceedings of the 4th USENIX Conference on Net-
worked Systems Design and Implementation (2007).

[53] YU, C.-H., DOPPLER, K., RIBEIRO, C. B., AND TIRKKONEN,
O. Resource sharing optimization for device-to-device commu-
nication underlaying cellular networks. IEEE Transactions on
Wireless communications 10, 8 (2011), 2752–2763.

[54] ZHANG, I., SZEKERES, A., VAN AKEN, D., ACKERMAN, I.,
GRIBBLE, S. D., KRISHNAMURTHY, A., AND LEVY, H. M.
Customizable and extensible deployment for mobile/cloud appli-
cations. In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation (2014).

[55] ZHU, W., WANG, C.-L., AND LAU, F. C. M. JESSICA2: A
distributed Java virtual machine with transparent thread migration
support. In Proceedings of the IEEE International Conference on
Cluster Computing (2002).

USENIX Association 2018 USENIX Annual Technical Conference    83





The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS

Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy Zwaenepoel
EPFL

Redha Gouicem, Julia Lawall, Gilles Muller, Julien Sopena
Sorbonne University, Inria, LIP6

Abstract

This paper analyzes the impact on application perfor-
mance of the design and implementation choices made
in two widely used open-source schedulers: ULE, the
default FreeBSD scheduler, and CFS, the default Linux
scheduler. We compare ULE and CFS in otherwise iden-
tical circumstances. We have ported ULE to Linux, and
use it to schedule all threads that are normally scheduled
by CFS. We compare the performance of a large suite
of applications on the modified kernel running ULE and
on the standard Linux kernel running CFS. The observed
performance differences are solely the result of schedul-
ing decisions, and do not reflect differences in other sub-
systems between FreeBSD and Linux.

There is no overall winner. On many workloads the
two schedulers perform similarly, but for some work-
loads there are significant and even surprising differ-
ences. ULE may cause starvation, even when execut-
ing a single application with identical threads, but this
starvation may actually lead to better application perfor-
mance for some workloads. The more complex load bal-
ancing mechanism of CFS reacts more quickly to work-
load changes, but ULE achieves better load balance in
the long run.

1 Introduction

Operating system kernel schedulers are responsible for
maintaining high utilization of hardware resources (CPU
cores, memory, I/O devices) while providing fast re-
sponse time to latency-sensitive applications. They have
to react to workload changes, and handle large numbers
of cores and threads with minimal overhead [12]. This
paper provides a comparison between the default sched-
ulers of two of the most widely deployed open-source
operating systems: the Completely Fair Scheduler (CFS)
used in Linux, and the ULE scheduler used in FreeBSD.
Our goal is not to declare an overall winner. In fact, we

find that for some workloads ULE is better and for oth-
ers CFS is better. Instead, our goal is to illustrate how
differences in the design and the implementation of the
two schedulers are reflected in application performance
under different workloads.

ULE and CFS are both designed to schedule large
numbers of threads on large multicore machines. Scal-
ability considerations have led both schedulers to adopt
per-core runqueues. On a context switch, a core accesses
only its local runqueue to find the next thread to run. Pe-
riodically and at select times, e.g., when a thread wakes
up, both ULE and CFS perform load balancing, i.e., they
try to balance the amount of work waiting in the run-
queues of different cores.

ULE and CFS, however, differ greatly in their design
and implementation choices. FreeBSD ULE is a simple
scheduler (2,950 lines of code in FreeBSD 11.1), while
Linux CFS is much more complex (17,900 lines of code
in the latest LTS Linux kernel, Linux 4.9). FreeBSD run-
queues are FIFO. For load balancing, FreeBSD strives to
even out the number of threads per core. In Linux, a core
decides which thread to run next based on prior execu-
tion time, priority, and perceived cache behavior of the
threads in its runqueue. Instead of evening out the num-
ber of threads between cores, Linux strives to even out
the average amount of pending work.

The major challenge in comparing ULE and CFS is
that application performance depends not only on the
scheduler, but also on other OS subsystems, such as net-
working, file systems and memory management, which
also differ between FreeBSD and Linux. To isolate the
effect of differences between CFS and ULE, we have
ported ULE to Linux, and we use it as the default sched-
uler to run all threads on the machine (including kernel
threads that are normally scheduled by CFS). Then, we
compare application performance between this modified
Linux with ULE and the default Linux kernel with CFS.

We first examine the impact of the per-core scheduling
decisions made by ULE and CFS, by running applica-
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tions and combinations of applications on a single core,
We then run the applications on all cores of the machine,
and study the impact of the load balancer. We use 37
applications ranging from scientific HPC applications to
databases. While offering similar performance in many
circumstances, CFS and ULE occasionally behave very
differently, even on simple workloads consisting of one
application running one thread per core.

This paper makes the following contributions:

• We provide a complete port of FreeBSD’s ULE
scheduler in Linux and release it as open source
[21]. Our implementation contains all the features
and heuristics used in the FreeBSD 11.1 version.

• We compare the application performance under the
ULE and CFS schedulers in an otherwise identical
environment.

• Unlike CFS, ULE may starve threads that it deems
non-interactive for an unbounded amount of time.
Surprisingly, starvation may also occur when the
system executes only a single application consist-
ing of identical threads. Even more surprising, this
behavior actually proves beneficial for some work-
loads (e.g., a database workload).

• CFS converges faster towards a balanced load, but
ULE achieves a better load balance in the long run.

• The heuristics used by CFS to avoid migrating
threads can hurt performance in HPC workloads
that only use one thread per core, because CFS
sometimes places two threads on the same core,
while ULE always places one thread on each core.

The outline of the rest of this paper is as follows. Sec-
tion 2 presents the CFS and ULE schedulers. Section 3
describes our port of ULE to Linux and the main differ-
ences between the native ULE implementation and our
port. Sections 4 presents the machines and the work-
loads used in our experiments. Section 5 analyzes the im-
pact of per-core scheduling in CFS and ULE. Section 6
analyzes the load balancer of CFS and ULE. Section 7
presents related work and Section 8 concludes.

2 Overview of CFS and ULE

2.1 Linux CFS

Per-core scheduling: Linux’s CFS implements a
weighted fair queueing algorithm: it evenly divides CPU
cycles between threads weighted by their priority (rep-
resented by their niceness, high niceness meaning low
priority and vice versa) [18]. To that end, CFS orders

threads by a multi-factor value called vruntime, repre-
senting the amount of CPU time a thread has already
used divided by the thread’s priority. Threads with the
same priority and same vruntime have executed the same
amount of time, meaning that core resources have been
shared fairly between them. To ensure that the vruntime
of all threads progresses fairly, when the current running
thread is preempted, CFS schedules the thread with the
lowest vruntime to run next.

Since Linux 2.6.38 the notion of fairness in CFS has
evolved from fairness between threads to fairness be-
tween applications. Before Linux 2.6.38 every thread
was considered as an independent entity and got the same
share of resources as other threads in the system. This
meant that an application that used many threads got a
larger share of resources than single-threaded applica-
tions. In more recent kernel versions, threads of the same
application are grouped into a structure called a cgroup.
A cgroup has a vruntime that corresponds to the sum of
the vruntimes of all of its threads. CFS then applies its
algorithm on cgroups, ensuring fairness between groups
of threads. When a cgroup is chosen to be scheduled,
its thread with the lowest vruntime is executed, ensuring
fairness within a cgroup. Cgroups can also be nested.
For instance, systemd automatically configures cgroups
to ensure fairness between different users, and then fair-
ness between the applications of a given user.

CFS avoids thread starvation by scheduling all threads
within a given time period. For a core executing fewer
than 8 threads the default time period is 48ms. When
a core executes more than 8 threads, the time period
grows with the number of threads and is equal to 6 ∗
number o f threads ms; the 6ms value was chosen to
avoid preempting threads too frequently. Threads with
a higher priority get a higher share of the time period.
Since CFS schedules the thread with the lowest vruntime,
CFS needs to prevent a thread from having a vruntime
much lower than the vruntimes of the other threads wait-
ing to be scheduled. If that were to happen, the thread
with the low vruntime could run for a long time, starving
the other threads. In practice, CFS ensures that the vrun-
time difference between any two threads is less than the
preemption period (6ms). It does so at two key points:
(i) when a thread is created, the thread starts with a vrun-
time equal to the maximum vruntime of the threads wait-
ing in the runqueue, and (ii) when a thread wakes up af-
ter sleeping, its vruntime is updated to be at least equal
to the minimum vruntime of the threads waiting to be
scheduled. Using the minimum vruntime also ensures
that threads that sleep a lot are scheduled first, a desir-
able strategy on desktop systems, because it minimizes
the latency of interactive applications. Most interactive
applications sleep most of the time, waiting for user in-
put, and are immediately scheduled as soon as the user
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interacts with them.
CFS also uses heuristics to improve cache usage. For

instance, when a thread wakes up, it checks the differ-
ence between its vruntime and the vruntime of the cur-
rently running thread. If the difference is not significant
(less than 1ms), the current running thread is not pre-
empted – CFS sacrifices latency to avoid frequent thread
preemption, which may negatively impact caches.

Load balancing: In a multicore setting, Linux’s CFS
evens out the amount of work on all cores of the machine.
This is different from evening out the number of threads.
For instance, if a user runs 1 CPU-intensive thread and
10 threads that mostly sleep, CFS might schedule the 10
mostly sleeping threads on a single core.

To balance the amount of work, CFS uses a load met-
ric for threads and cores. The load of a thread corre-
sponds to the average CPU utilization of a thread: a
thread that never sleeps has a higher load than one that
sleeps a lot. Like the vruntime, the load of a thread is
weighted by the thread’s priority. The load of a core is
the sum of the loads of the threads that are runnable on
that core. CFS tries to even out the load of cores.

CFS takes into account the loads of cores when creat-
ing or waking up threads. The scheduler first decides
which cores are suitable to host the thread. This de-
cision involves many heuristics, such as the frequency
at which the thread that initiated the wakeup wakes
up threads. For instance, if CFS detects a 1-to-many
producer-consumer pattern, then it spreads out the con-
sumer threads as much as possible on the machine, and
most cores of the machine are considered suitable to host
woken up threads. In a 1-to-1 communication pattern,
CFS restricts the list of suitable cores to cores sharing a
cache with the thread that initiated the wakeup. Then,
among all suitable cores, CFS chooses the core with the
lowest load on which to wake up or create the thread.

Load balancing also happens periodically. Every 4ms
every core tries to steal work from other cores. This
load balancing takes into account the topology of the ma-
chine: cores try to steal work more frequently from cores
that are “close” to them (e.g., sharing a cache) than from
cores that are “remote” (e.g., on a remote NUMA node).
When a core decides to steal work from another core, it
tries to even out the load between the two cores by steal-
ing as many as 32 threads from the other core. Cores
also immediately call the periodic load balancer when
they become idle.

On large NUMA machines, CFS does not compare the
load of all cores against each other, but instead balances
the load in a hierarchical way. For instance, on a machine
with 2 NUMA nodes, CFS balances the load of cores in-
side the NUMA nodes, and then compares the load of
the NUMA nodes (defined as the average load of their

cores) to decide whether or not to balance the load be-
tween nodes. If the load difference between the nodes is
small (less than 25% in practice), then no load balancing
is performed. The greater the distance between two cores
(or groups of cores), the higher the imbalance has to be
for CFS to balance the load.

2.2 FreeBSD ULE
Per-core scheduling: ULE uses two runqueues to
schedule threads: one runqueue contains interactive
threads, and the other contains batch threads. A third
runqueue called idle is used when a core is idle. This
runqueue only contains the idle task.

The goal of having two runqueues is to give priority
to interactive threads. Batch processes usually execute
without user interaction, and thus scheduling latency is
less important. ULE keeps track of the interactivity of
a thread using an interactivity penalty metric between 0
and 100. This metric is defined as a function of the time
r a thread has spent running and the time s a thread has
spent voluntarily sleeping (not including the time spent
waiting for the CPU), and is computed as follows:

scaling factor = m = 50

penalty(r,s) =

{
m
s
r

s > r
m
r
s
+m otherwise

A penalty in the lower half of the range (≤ 50) means
that a thread has spent more time voluntarily sleeping
than running, while a penalty above means the opposite.

The amount of history kept for the sleep and running
times is (by default) limited to the last 5 seconds of the
thread’s lifetime. On the one hand, having a large amount
of history would lengthen the time required to detect
batch threads. On the other hand, too little history would
induce noise in the classification [15].

To classify threads, ULE first computes a score de-
fined as interactivity penalty + niceness. A thread is con-
sidered interactive if its score is under a certain thresh-
old, 30 by default as in FreeBSD11.1. With a niceness
value of 0, this corresponds roughly to spending more
than 60% of the time sleeping. Otherwise, it is classified
as batch. A negative nice value (high priority) makes it
easier for a thread to be considered interactive.

When a thread is created, it inherits the runtime and
sleeptime (and thus the interactivity) of its parent. When
a thread dies, its runtime in the last 5 seconds is returned
to its parent. This penalizes parents that spawn batch
children when being interactive.

Inside the interactive and batch runqueues, threads
are further sorted by priority. The priority of interac-
tive threads is a linear interpolation of their score (i.e.,
a thread with a penalty of 0 has the highest interactive
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priority, while a thread with a penalty of 30 has the low-
est interactive priority). Inside the interactive runqueue,
there is one FIFO per priority. To add a thread to a run-
queue, the scheduler inserts the thread at the end of the
FIFO indexed by the thread’s priority. Picking a thread
to run from this runqueue is simply done by taking the
first thread in the highest-priority non-empty FIFO.

The priority of batch threads depends on their runtime:
the more a thread runs, the lower its priority. The nice-
ness of the thread is added to get a linear effect on the pri-
ority. Inside the batch runqueue, there is also one FIFO
per priority. Insertion and removal work as in the inter-
active case, with a slight difference. To avoid starvation
between batch threads, ULE tries to be fair among batch
threads by minimizing the difference of runtime between
threads, similarly to what CFS does with the vruntime.

When picking the next thread to run, ULE first
searches in the interactive runqueue. If an interactive
thread is ready to be scheduled, it returns that thread. If
the interactive runqueue is empty, ULE searches in the
batch runqueue instead. If both runqueues are empty, that
means that the core is idle, and no thread is scheduled.

The order in which ULE searches the runqeues ef-
fectively gives interactive threads absolute priority over
batch threads. Batch threads may potentially starve if the
machine executes too many interactive threads. How-
ever, it is thought that, as interactive threads by definition
sleep more than they execute, starvation does not occur.

A thread runs for a limited period of time defined as a
timeslice. Contrary to CFS, the rate at which a thread’s
timeslice expires is the same regardless of its priority.
However, the value of a timeslice changes with the num-
ber of threads currently running on the core. When a
core executes 1 thread, the timeslice is 10 ticks (78ms).
When multiple threads are running, this value is divided
by the number of threads while being constrained to a
lower bound of 1 tick (1/127th of a second). In ULE, full
preemption is disabled, meaning that only kernel threads
can preempt others.

Load balancing: ULE only aims to even out the num-
ber of threads per core. In ULE, the load of a core is sim-
ply defined as the number of threads currently runnable
on this core. Unlike CFS, ULE does not group threads
into cgroups, but rather considers each thread as an inde-
pendent entity.

When choosing a core for a newly created or awoken
thread, ULE uses an affinity heuristic. If the thread is
considered cache affine on the last core it ran on, then it
is placed on this core. Otherwise, ULE finds the high-
est level in the topology that is considered affine, or the
entire machine if none is available. From there, ULE
first tries to find a core on which the minimum priority
is higher than that of this thread. If that fails, ULE tries

again, but now on all cores of the machine. If this also
fails, ULE simply picks the core with the lowest number
of running threads on the machine.

ULE also balances threads periodically, every 500-
1500ms (the duration of the period is chosen randomly).
Unlike CFS, the periodic load balancing is performed
only by core 0. Core 0 simply tries to even out the num-
ber of threads amongst the cores as follows: a thread
from the most loaded core, the (donor), is migrated to
the less loaded core, the (receiver). A core can only be
a donor or a receiver once, and the load balancer iterates
until no donor or receiver is found, meaning that a core
may give away or receive at most one thread per load
balancer invocation.

ULE also balances threads when the interactive and
batch runqueues of a core are empty. ULE tries to steal
from the most loaded core with which the idle core shares
a cache. If ULE fails to steal a thread, it tries at a higher
level of the topology and so on, until it finally manages
to steal a thread. As with the periodic load balancer, the
idle stealing mechanism steals at most one thread.

Periodic load balancing in ULE happens less often
than in CFS, but more computation is involved in select-
ing a core during thread placement in ULE. The rationale
is that having a better initial thread placement avoids the
need for frequently running a global load balancer.1

3 Porting ULE to the Linux kernel

In this section we describe the problems encountered
when porting ULE to Linux, and the main differences
between our port and the original FreeBSD code.

The Linux kernel offers an API to add new schedulers
to the kernel. Schedulers must implement the set of func-
tions presented in Table 1. These functions are responsi-
ble for adding and removing threads in runqueues, pick-
ing threads to be scheduled, and placing threads on cores.

FreeBSD does not offer such an API to schedulers. In-
stead, it declares prototypes of the functions that must be
defined, meaning that only one scheduler can be used at
a time, as opposed to Linux, in which multiple schedul-
ing classes can co-exist. Fortunately, functions inside the
ULE scheduler can easily be mapped to their counter-
parts in Linux (see Table 1). In the few cases where
the interfaces do not match, it was possible to find a
workaround. For instance, Linux uses a single func-
tion to enqueue newly created threads and threads that
have been woken up, while FreeBSD uses two functions.
Linux uses a flag parameter in its function to distinguish
between the two cases. It then suffices to use this flag to
choose the corresponding FreeBSD function.

1In recent versions of FreeBSD, due to a bug, the periodic load
balancer never executes [1]. In our ULE code we fixed the bug, and the
load balancer is executed periodically.
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Linux FreeBSD equivalent Usage

enqueue_task sched_add for new threads Enqueue a thread in a runqueuesched_wakeup for woken up threads
dequeue_task sched_rem Remove a thread from a runqueue
yield_task sched_relinquish Yield the CPU back to the scheduler
pick_next_task sched_choose Select the next task to be scheduled
put_prev_task sched_switch Update statistics about the task that just ran
select_task_rq sched_pickcpu Choose the CPU on which a new (or waking up) thread should be placed

Table 1: Linux scheduler API and equivalent functions in FreeBSD.

Other than interfaces, CFS and ULE also differ in
some low-level assumptions. The most notable differ-
ence is related to the presence or absence of the cur-
rent thread in the runqueue data structures. The Linux
scheduling class mechanism relies on the assumption
that the current thread stays in the runqueue data struc-
ture while it runs on a core. In ULE, a thread that runs
on a core is removed from the runqueue data structure,
and added back when its timeslice is depleted, so that
the FIFO property holds. When trying to implement this
behavior in Linux, we encountered several showstopper
issues, such as kernel crashes for threads that tried to
change their scheduling class. We decided instead to
adhere to the Linux way of doing things, and leave the
currently running thread in the runqueue. Because of
that, we had to slightly change the ULE load balancing
to avoid migrating a currently running thread.

Furthermore, in ULE, when migrating a thread from
one CPU to another, the scheduler acquires the lock on
both runqueues. In Linux, this locking mechanism lead
to deadlocks. Therefore, we modified the ULE load bal-
ancing code to use the same mechanism as that of CFS.

Finally, in FreeBSD, ULE is responsible for schedul-
ing all threads, whereas Linux uses different schedul-
ing policies for different priority ranges (e.g., a realtime
scheduler for high priority threads). In this work, we are
mainly interested in comparing workloads with priorities
falling in the CFS range (100-139). Hence, we scaled
down the ULE penalty scores to fit within the CFS range.

4 Experimental environment

4.1 Machines

We evaluate ULE on a 32-core machine (AMD Opteron
6172) with 32GB of RAM. All experiments were per-
formed on the latest LTS Linux kernel (4.9). We also ran
experiments on a smaller desktop machine (8-core In-
tel i7-3770), reaching similar conclusions. Due to space
limitations, we omit these results from the paper.

4.2 Workloads

To assess the performance of CFS and ULE, we used
both synthetic benchmarks and realistic applications.
Fibo is a synthetic application computing Fibonacci
numbers. Hackbench [10] is a benchmark designed by
the Linux community to stress the scheduler. It creates
a large number of threads that run for a short amount of
time and exchange data using pipes. We also selected
16 applications from the Phoronix test suite [2] based on
their completion time. We excluded Phoronix applica-
tions that take more than 10 minutes to complete on a
single core, or that were too short to allow reliable time
measurements. The 16 Phoronix applications are: com-
pilation benchmarks (build-apache, build-php), compres-
sion (7zip, gzip), image processing (c-ray, dcraw), sci-
entific (himeno, hmmer, scimark), cryptography (john-
the-ripper) and web (apache). We use the NAS bench-
mark suite [6] to benchmark HPC applications, the Par-
sec benchmark suite [7] to benchmark parallel applica-
tions, and Sysbench [3] with MySQL and RocksDB [16]
as database benchmarks. We use a read-write workload
for sysbench and RocksDB to schedule threads with dif-
ferent behaviors.

5 Evaluation of per-core scheduling

In this section, we run applications on a single core to
avoid possible side effects introduced by the load bal-
ancer. The main difference between CFS and ULE in
per-core scheduling is in the handling of batch threads:
CFS tries to be fair to all threads, while ULE gives pri-
ority to interactive threads. We first analyze the impact
of this design decision by co-scheduling a batch and an
interactive application on the same core, and we show
that under ULE batch applications can starve for an un-
bounded amount of time. We then show that starva-
tion under ULE can occur even when the system is only
running a single application. We conclude this section
by comparing the performance of 37 applications, and
show how different choices regarding the preemption of
threads impact performance.
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5.1 Fairness and starvation when
co-scheduling applications

In this section, we analyse the behavior of CFS and
ULE running a multi-application workload consisting
of a compute-intensive thread that never sleeps (fibo,
computing numbers), and an application whose threads
mostly sleep (sysbench, a database, using 80 threads).
Having more than 80 threads per core is not uncommon
in datacenters [12]. These threads are never all active at
the same time; they mostly wait for incoming requests,
or for data stored on disk.

Fibo runs alone for 7 seconds, and then sysbench is
launched. Both applications then run to completion. Fig-
ure 1(a) presents the runtime accumulated by fibo and
sysbench on CFS, and Figure 1(b) presents the same
quantities on ULE.

On CFS, sysbench completes in 235s, and then fibo
runs alone. Both fibo and sysbench threads share the ma-
chine. When sysbench executes, the cumulative runtime
of fibo progresses roughly half as fast as when it runs
alone, meaning that fibo gets 50% of the core. This is
expected: CFS tries to share the core fairly between the
two applications. In practice, fibo gets a bit less than half
of the CPU due to rounding errors.

On ULE, sysbench is able to complete the same work-
load in 143s, and then fibo runs by itself. fibo starves
while sysbench is running. sysbench threads mainly
sleep, so they are classified as interactive and get abso-
lute priority over fibo. Since sysbench uses 80 threads,
these threads are able to saturate a core, and prevent fibo
from running. Figure 2 presents the evolution of the in-
teractivity penalty of fibo and sysbench over time. Both
applications start out as interactive (penalty of 0). The
penalty of fibo quickly rises to the maximum value, and
then fibo is no longer considered interactive. Sysbench
threads, in contrast, remain interactive during their entire
execution (penalty below the 30 limit). Thus, sysbench
threads get absolute priority over the fibo thread. This
situation persists as long as sysbench is running (i.e., the
starvation time is not bounded by ULE).

Table 2 presents the total execution time of fibo and
sysbench on CFS and ULE, and the latency of requests
for sysbench. Sysbench runs 50% slower on CFS, be-
cause it shares the CPU with fibo, instead of running in
isolation, as it does with ULE (290 transactions/s with
CFS vs. 532 with ULE). Fibo is “stopped” during the ex-
ecution of sysbench on ULE, but then gets to execute by
itself, and thus can use the cache more efficiently than
when running simultaneously with sysbench on CFS.
Thus, fibo runs slightly faster on ULE than on CFS.

We found the strategy used by the ULE scheduler to
work well with latency-sensitive applications. These ap-
plications are usually correctly classified as interactive

CFS ULE
Fibo - Runtime 160s 158s
Sysbench - Transactions/s 290 532
Sysbench - Avg. latency 441ms 125ms

Table 2: Execution time of fibo and sysbench using CFS
and ULE, average latency of requests in sysbench using
CFS and ULE.

and get priority over background threads. To achieve
the same result in Linux, the latency-sensitive applica-
tion would have to be executed by the realtime scheduler,
which gets absolute priority over CFS.

5.2 Fairness and starvation within a single
application

The starvation exhibited by ULE in the multi-application
scenario above also occurs in single-application work-
loads. We now exemplify this behavior using sysbench.

In ULE, newly created threads inherit the interactivity
penalty of their parent at the time of the fork. In sys-
bench, the master thread is created with the interactivity
penalty of the bash process from which it was forked.
Since bash mostly sleeps, sysbench is created as an in-
teractive process. The sysbench master thread initializes
data and creates threads. While doing so, it never sleeps,
and its interactivity penalty increases. The first threads
are created with an interactivity penalty below the inter-
active threshold, while the remaining threads are created
with an interactivity penalty above it. As a consequence,
the first threads get absolute priority over the remaining
ones. Since these threads spend most of their time wait-
ing for new requests, their interactivity penalty stays low
(it decreases to 0), and their priority remains higher than
that of threads that were forked late in the initialization
process. The latter threads sysbench may starve forever,
if the interactive threads keep the CPU busy at all times.

Figure 3 presents the cumulative runtime of sysbench
threads, and Figure 4 presents their interactivity penalty.
Sysbench is configured to use 128 threads. The threads
created early execute, and their interactivity penalty
drops to 0. The threads created later never execute.

Counterintuitively, in this benchmark ULE actually
performs better than CFS, because it avoids over-
subscription: the machine runs as many threads as it
can. As a consequence, ULE has a lower average la-
tency than CFS. In general, we found that this starvation
mechanism, seemingly problematic on paper, performs
very well in applications where all threads compete to
perform the same job.

In contrast to sysbench, the scientific applications
we tested are not impacted by starvation, because their
threads never sleep. After a short initialization period
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Figure 1: Cumulative runtime of fibo, and sysbench on (a) CFS, and (b) ULE. (a) On CFS, fibo continues to accumulate
runtime, albeit more slowly, when sysbench executes, meaning that fibo is not starved. (b) On ULE, when sysbench
executes, fibo stops accumulating runtime, meaning that it is starved.
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Figure 2: Interactivity penalty of threads over time.
Fibo’s penalty quickly rises to the maximum value, while
the penalty of sysbench threads drops to 0.
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Figure 3: Cumulative runtime of threads of sysbench on
ULE. The master thread first spawns 128 threads. 80
threads are classified as interactive and are executed, and
48 threads are classified as background and starve.
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Figure 4: Interactivity penalty of the threads presented
in Figure 3. Threads inherit the interactivity penalty of
their parent when created. Some are created with a low
penalty, and their penalty decreases as they execute (bot-
tom of the graph), while other threads are created with a
high penalty and never execute (top of the graph).

all threads are considered as background threads and are
scheduled in a fair manner.

5.3 Performance analysis

We now analyze the impact of the per-core scheduling
on the performance of 37 applications. We define “per-
formance” as follows: for database workloads and NAS
applications, we compare the number of operations per
second, and for the other applications we compare “1/ex-
ecution time”. The higher the “performance”, the better
a scheduler performs. Figure 5 presents the performance
difference between CFS and ULE on a single core, with
percentages above 0 meaning that the application exe-
cutes faster with ULE than CFS.

Overall, the scheduler has little influence on most
workloads. Indeed, most applications use threads that
all perform the same work, thus both CFS and ULE end
up scheduling all of the threads in a round-robin fashion.
The average performance difference is 1.5%, in favor of
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Figure 5: Performance of ULE with respect to CFS on a single core. A number higher than 0 means that the application
runs faster on ULE than on CFS.

ULE. Still, scimark is 36% slower on ULE than CFS, and
apache is 40% faster on ULE than CFS.

Scimark is a single-threaded Java application. It
launches one compute thread, and the Java runtime ex-
ecutes other Java system threads in the background (for
the garbage collector, I/O, etc.). When the application is
executed with ULE, the compute thread can be delayed,
because Java system threads are considered interactive
and get priority over the computation thread.

The apache workload consists of two applications: the
main server (httpd) running 100 threads, and ab, a single-
threaded load injector. The performance difference be-
tween ULE and CFS is explained by different choices
regarding thread preemption.

In ULE, full preemption is disabled, while CFS pre-
empts the running thread when the thread that has just
been woken up has a vruntime that is much smaller than
the vruntime of the currently executing thread (1ms dif-
ference in practice). In CFS, ab is preempted 2 million
times during the benchmark, while it never preempted
with ULE. This behavior is explained as follows: ab
starts by sending 100 requests to the httpd server, and
then waits for the server to answer. When ab is wo-
ken up, it checks which requests have been processed
and sends new requests to the server. Since ab is single-
threaded, all requests sent to the server are sent sequen-
tially. In ULE, ab is able to send as many new requests
as it has received responses. In CFS, every request sent
by ab wakes up a httpd thread, which preempts ab.

6 Evaluation of the load balancer

In this section, we analyze the impact of the load balanc-
ing and thread placement strategies on performance. In
CFS and ULE, load balancing happens periodically, and
thread placement occurs when threads are created or wo-
ken up. We first analyze the time it takes for the periodic
load balancer to balance a static workload on all cores
of the machine. We then analyze design choices made
by CFS and ULE when placing threads. Next, we com-

pare the performance of 37 applications running on CFS
vs. ULE. Finally, we analyze the performance of multi-
application workloads.

6.1 Periodic load balancing

CFS relies on a rather complex load metric. It uses a hi-
erarchical load balancing strategy that runs every 4ms.
ULE only tries to even out the number of threads on
the cores. Load balancing happens less often (the period
varies between 0.5s and 1.5s) and ignores the hardware
topology. We now evaluate how these strategies impact
the time needed to balance the load on the machine.

To that end, we pin 512 spinning threads on core 0, we
launch a taskset command to unpin the threads, and we
let the load balancer balance the load between cores. All
threads perform the same work (an infinite empty loop),
so we expect the load balancer to place 16 threads on
each of the 32 cores. Figure 6 presents the evolution over
time of the number of threads per core. In the figure,
each of the 32 lines represents the number of threads on
a given core. The taskset command that unpins threads
is launched at 14.5s.

On ULE, as soon as the threads are unpinned, idle
cores steal threads (at most one per core) from core 0,
thus right after the unpinning, core 0 has 512−31 = 481
threads while every other core has 1 thread. Over time,
the periodic load balancer is triggered and tries to bal-
ance the thread count. However, as the load balancer
only migrates one thread at a time from core 0, it takes
more that 450 load balancer invocations or about 240
seconds to reach a balanced state.

CFS balances the load much faster. 0.2 seconds af-
ter the unpinning, CFS has migrated more that 380
threads from core 0. Surprisingly, CFS never achieves
perfect load balance. CFS only balances the load be-
tween NUMA nodes when the imbalance between the
two nodes is “big enough” (25% load difference in prac-
tice). So cores in one node can have 18 threads while
cores in another only have 15.
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Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core 0 for the first 14.5 seconds of the execution.

While the load balancing strategy used by CFS is well
suited for solving a large imbalance loads in the system,
it is less suited when a perfect load balance is important
for performance.

6.2 Thread placement

We study placement of threads using c-ray, an image pro-
cessing application from the phoronix benchmark suite.
C-ray starts by creating 512 threads. Threads are not
pinned at creation time, so the scheduler chooses a core
for each thread. Then all threads wait on a barrier be-
fore performing the computation. Since all threads be-
have in the same way, we would expect ULE to perform
better than CFS in that configuration: ULE always forks
threads on the core with the lowest number of threads, so
the load should be perfectly balanced from the start.

Figure 7 presents the evolution in the number of
runnable threads per core over time. Load is always bal-
anced in ULE, but surprisingly it takes more than 11 sec-
onds for ULE to have all threads runnable, while it only
takes 2 seconds for CFS. This delay is explained by star-
vation. C-ray uses a cascading barrier in which thread
0 wakes up thread 1, thread 1 wakes up thread 2, etc.
Threads are originally created with different interactiv-
ity penalties, and some threads are initially interactive,
while others are initially batch (same reason as in sys-
bench, see Section 5.2). When a batch thread is woken
up, it might starve until all interactive threads are done,
or until their penalty has increased enough for them to
be downgraded to the batch runqueue. In practice, in c-
ray, threads never sleep after the barrier, so eventually all
threads become batch, but, before they do, threads that
were initially categorized as batch cannot wake up other
threads. Thus, it takes 11 seconds for all threads to be
woken up after the barrier.

CFS on the contrary is fair, and all threads are quickly
woken up. Then, CFS runs into the imperfect load bal-

ancing issue that we explained in Section 6.1.
Despite these load balancing differences, c-ray com-

pletes in the same time on CFS and ULE, because c-ray
creates more threads than cores, and because both sched-
ulers always keep all cores busy. Preemptions do occur
more often with CFS, but do not affect the performance.

6.3 Performance analysis

Figure 8 presents the performance difference between
CFS and ULE in a multicore context. The average per-
formance difference between CFS and ULE is small:
2.75% in favor of ULE.

MG, from the NAS benchmark suite, benefits the most
from ULE’s load balancing strategy: it is 73% faster on
ULE than on CFS. MG spawns as many threads as there
are cores in the machine, and all threads perform the
same computations. When a thread has finished its com-
putation, it waits on a spin-barrier for 100ms and then
sleeps if some threads are still computing. ULE correctly
places one thread per core, and then never migrates them
again. Threads spend very little time waiting for each
other in the barriers, and never sleep. In contrast, CFS
reacts to micro changes in the load of cores (e.g., due to a
kernel thread waking up), and sometimes wrongly places
two MG threads on the same core. Since MG uses bar-
riers, the two threads scheduled on the same core end up
delaying the whole application. The delay is more than
50% because threads scheduled alone on their cores go
to sleep, and then have to be woken up, thus adding la-
tency to the barriers. This suboptimal thread placement
also explains the performance difference between CFS
and ULE on FT and UA. The simple approach of bal-
ancing the number of threads used by ULE works better
on HPC-like applications because it ends up placing one
thread per core and then never migrates them again.

Sysbench, is slower on ULE due to the overhead of the
ULE load balancer. When a thread wakes up, ULE scans
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Figure 7: Number of threads per core over time on c-ray on (a) ULE and (b) CFS. Contrary to Figure 6, threads do not
start pinned on core 0.
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Figure 8: Performance of ULE with respect to CFS on a multicore.

the cores of the machine to find an appropriate core for
the thread, and, at worst, may scan all cores three times.
This worst case scenario happens on most wakeups in
sysbench, resulting in 13% of all CPU cycles being spent
on scanning cores. To validate this assumption, we re-
placed the ULE wakeup function by a simple one that
returns the CPU on which the thread was previously run-
ning, and then observed no difference between ULE and
CFS.

In all the benchmarks we tested, 13% is the highest
time spent in the scheduler we observed in ULE, and
2.6% is the highest time spent in the scheduler we ob-
served in CFS. Note that ULE runs into a corner case
situation with sysbench, but has a low overhead on other
benchmarks, even when they spawn a large number of
threads: for instance in hackbench (32 000 threads), the
overhead of ULE is 1% (compared to 0.3% for CFS).

6.4 Multi application workloads
Finally, we evaluate the combination of interactive and
background workloads using a set of different applica-
tions: c-ray + EP (from NAS) is a workload where both
applications are considered background by ULE, fibo +
sysbench and blackscholes + ferret are workloads where
only one application is interactive, and apache + sys-
bench is a fully interactive workload. Figure 9 shows the
performance of CFS and ULE with respect to the perfor-
mance of the application running alone on the machine
(higher is better). Overall, most applications run slower
when they are co-scheduled with another application.

When both applications are non-interactive (c-ray +
EP), CFS and ULE perform similarly. This is expected,

as they schedule background threads in a similar way.
EP runs slightly faster on ULE when executed alone, and
this performance difference is still present when it is co-
scheduled with c-ray. When both applications are inter-
active, CFS and ULE also perform similarly.

For blackscholes + ferret, ULE gives priority to the in-
teractive application, and ferret is not impacted by being
co-scheduled with blackscholes. Blackscholes however
runs more than 80% slower. In that context, blacksc-
holes does not fully starve because ferret does not use
100% of all cores. CFS on the contrary shares the CPU
fairly, and both applications suffer equally (the impact of
co-scheduling on these applications is less than 50% be-
cause neither ferret nor blackscholes scales to 32 cores).

Surprisingly when co-scheduled with fibo, sysbench
performs worse on ULE than on CFS even though it is
correctly categorized as interactive and gets priority over
fibo threads. The lack of preemption in ULE explains the
performance difference. MySQL does not achieve per-
fect scaling and, when executed on 32 cores, lock con-
tention forces the threads to sleep when waiting for the
locks to be released. Thus, fibo does not starve. When
a MySQL lock is released, ULE does not preempt the
currently running thread (usually fibo) to schedule a new
MySQL thread to enter the critical section. This adds
delays (of up to the length of fibo’s timeslice, between
7.8ms and 78ms) to the execution of sysbench.

7 Related work

Previous works have compared the design choices made
by FreeBSD and Linux. Abaffy et al. [4, 5] compare the
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Figure 9: Performance of CFS and ULE on multi application workloads with respect to the performance of the appli-
cation running alone on CFS.

average waiting time of threads in scheduler runqueues.
Schneider et al. [17] compare the networking stack per-
formance of the two operating systems. Design choices
made by FreeBSD are also frequently discussed on the
Linux kernel mailing list [20]. This study differs in its
approach: instead of comparing two complete operat-
ing systems, we ported the FreeBSD ULE scheduler to
Linux. To the best of our knowledge, this is the first
apples-to-apples comparison of the design of ULE and
CFS.

The Linux scheduler design has also been discussed
in previous works. Torrey et al. [19] compare the la-
tency of the Linux scheduler against a custom imple-
mentation of a multilevel feedback queue. Wong et al.
compare the fairness of CFS with the O(1) scheduler
that was the default Linux scheduler prior to 2.6.23 [23],
and with a RSDL scheduler (Rotating Staircase Deadline
Scheduler) [22]. Groves et al. [9] compare the overhead
of CFS against BFS (Brain Fuck Scheduler), a simplis-
tic scheduler aimed at improving responsiveness on ma-
chines with few cores. Other work has studied the over-
head of schedulers. Kanev et al. [12] report that the CFS
alone accounts for more than 5% of all datacenter cycles.

The performance of operating systems is frequently
assessed by measuring the evolution of performance be-
tween kernel versions. The Linux Kernel Performance
project [8] started in 2005 to measure performance re-
gressions in the Linux Kernel. Mollison et al. [14]
propose Litmus tests to find performance regressions in
schedulers. Performance issues in operating systems are
also frequently reported in the Systems community. Lozi
et al. [13] report bugs in the Linux scheduler that could
lead to cores being permanently left idle while work was
waiting to be scheduled on other cores. Harji et al. [11]
report similar performance bugs in earlier kernel ver-
sions. During the work on this paper we also reported
bugs in the scheduler to the FreeBSD community [1]. In
this study we chose to compare “glitch free” versions of
ULE and CFS by fixing obvious bugs that were not in-
tended as features of the schedulers.

8 Conclusion

Scheduling threads on a multicore machine is hard. In
this paper, we perform a fair comparison of the design
choices of two widely used schedulers: the ULE sched-
uler from FreeBSD and CFS from Linux. We show that
they behave differently even on simple workloads, and
that no scheduler performs better than the other on all
workloads.
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Abstract
The virtual machine abstraction provides a wide va-

riety of benefits which have undeniably enabled cloud
computing. Virtual machines, however, are a double-
edged sword as hypervisors they run on top of must treat
them as a black box, limiting the information which the
hypervisor and virtual machine may exchange, a prob-
lem known as the semantic gap. In this paper, we present
the design and implementation of a new mechanism, hy-
perupcalls, which enables a hypervisor to safely execute
verified code provided by a guest virtual machine in or-
der to transfer information. Hyperupcalls are written in
C and have complete access to guest data structures such
as page tables. We provide a complete framework which
makes it easy to access familiar kernel functions from
within a hyperupcall. Compared to state-of-the-art par-
avirtualization techniques and virtual machine introspec-
tion, Hyperupcalls are much more flexible and less in-
trusive. We demonstrate that hyperupcalls can not only
be used to improve guest performance for certain oper-
ations by up to 2× but hyperupcalls can also serve as a
powerful debugging and security tool.

1 Introduction

Hardware virtualization introduced the abstraction of a
virtual machine (VM), enabling hosts known as hyper-
visors to run multiple operating systems (OSs) known
as guests simultaneously, each under the illusion that
they are running in their own physical machine. This is
achieved by exposing a hardware interface which mim-
ics that of true, physical hardware. The introduction of
this simple abstraction has led to the rise of the modern
data center and the cloud as we know it today. Unfortu-
nately, virtualization is not without drawbacks. Although
the goal of virtualization is for VMs and hypervisors to
be oblivious from each other, this separation renders both
sides unable to understand decisions made on the other
side, a problem known as the semantic gap.

R
eq

ue
st

or Paravirtual, Executed by: Uncoordinated
Hypervisor Guest Introspection

Guest Hypercalls Pre-Virt [42] HVI [72]
HV Hyperupcalls Upcalls VMI [25]

Table 1: Hypervisor-Guest Communication Mecha-
nisms. Hypervisors (HV) and guests may communi-
cate through a variety of mechanisms, which are char-
acterized by who initiates the communication, who exe-
cutes and whether the channel for communication is co-
ordinated (paravirtual). Shaded cells represent channels
which require context switches.

Addressing the semantic gap is critical for perfor-
mance. Without information about decisions made in
guests, hypervisors may suboptimally allocate resources.
For example, the hypervisor cannot know what memory
is free in guests without understanding their internal OS
state, breaking the VM abstraction. State-of-the-art hy-
pervisors today typically bridge the semantic gap with
paravirtualization [11, 58], which makes the guest aware
of the hypervisor. Paravirtualization alleviates the guest
from the limitations of the physical hardware interface
and allows direct information exchange with the hyper-
visor, improving overall performance by enabling the hy-
pervisor to make better resource allocation decisions.

Paravirtualization, however, involves the execution of
code both in the context of the hypervisor and the guest.
Hypercalls require that the guest make a request to be
executed in the hypervisor, much like a system call, and
upcalls require that the hypervisor make a request to be
executed in the guest. This design introduces a num-
ber of drawbacks. First, paravirtual mechanisms intro-
duce context switches between hypervisors and guests,
which may be substantial if frequent interactions be-
tween guests and the hypervisor are needed [7]. Sec-
ond, the requestor of a paravirtual mechanism must wait
for it to be serviced in another context which may be
busy, or waking the guest if it is idle. Finally, par-
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avirtual mechanisms couple the design of the hypervi-
sor and guest: paravirtual mechanisms need to be imple-
mented for each guest and hypervisor, increasing com-
plexity [46] and hampering maintainability [77]. Adding
paravirtual features requires updating both the guest and
hypervisor with a new interface [69] and has the potential
to introduce bugs and the attack surface [47, 75].

A different class of techniques, VM introspection
(VMI) [25] and the reverse, hypervisor introspection
(HVI) [72] aim to address some of the shortcomings of
paravirtualization by introspecting the other context, en-
abling communication transfer without context switch-
ing or prior coordination. These techniques however,
are fragile: small changes in data structures, behavior
or even security hardening [31] can break introspective
mechanisms, or worse, introduce security vulnerabilities.
As a result, introspection is usually relegated to the area
of intrusion detection systems (IDSs) which detect mal-
ware or misbehaving applications.

In this paper, we describe the design and implemen-
tation of hyperupcalls 1, a technique which enables a
hypervisor to communicate with a guest, like an upcall,
but without a context switch, like VMI. This is achieved
through the use of verified code, which enables a guest
to communicate to the hypervisor in a flexible manner
while ensuring that the guest cannot provide misbehav-
ing or malicious code. Once a guest registers a hyper-
upcall, the hypervisor can execute it to perform actions
such as locating free guest pages or running guest inter-
rupt handlers without switching into the guest.

Hyperupcalls are easy to build: they are written in a
high level language such as C, and we provide a frame-
work which allows hyperupcalls to share the same code-
base and build system as the Linux kernel that may be
generalized to other operating systems. When the kernel
is compiled, a toolchain translates the hyperupcall into
verifiable bytecode. This enables hyperupcalls to be eas-
ily maintained. Upon boot, the guest registers the hype-
rupcalls with the hypervisor, which verifies the bytecode
and compiles it back into native code for performance.
Once recompiled, the hypervisor may invoke the hyper-
upcall at any time.

We show that using a hyperupcalls can significantly
improve performance by allowing a hypervisor to be
proactive about resource allocation, rather than waiting
for guests to react through existing mechanisms. We
build hyperupcalls for memory reclamation and dealing
with interprocessor interrupts (IPIs) and show a perfor-
mance improvement of up to 2×. In addition to improv-
ing performance, hyperupcalls can also enhance both the
security and debuggability of systems in virtual environ-
ments. We develop a hyperupcall to enables guests to

1Hyperupcalls were previously published as “hypercallbacks” [5].

write-protect memory pages without the use of special-
ized hardware, and another which enables ftrace [57]
to capture both guest and hypervisor events in a unified
trace, allowing us to gain new insights on performance in
virtualized environments.

This paper makes the following contributions:
• We build a taxonomy of mechanisms for bridging

the semantic gap between hypervisor and guests and
place hyperupcalls within that taxonomy (§2).
• We describe and implement hyperupcalls (§3) with:

– An environment for writing hyperupcalls and
a framework for using guest code (§3.1)

– A compiler (§3.2) and verifier (§3.4) for hype-
rupcalls which addresses the complexities and
limitations of verified code.

– Registration (§3.3) and execution (§3.5) mech-
anisms for hyperupcalls.

• We prototype and evaluate hyperupcalls and show
that hyperupcalls can improve performance (§4.3,
§4.2), security (§4.5) and debuggability (§4.4).

2 Communication Mechanisms

It is now widely accepted that in order to extract the most
performance and utility from virtualization, hypervisors
and their guests need to be aware of one another. To that
end, a number of mechanisms exist to facilitate commu-
nication between hypervisors and guests. Table 1 sum-
marizes these mechanisms, which can be broadly char-
acterized by the requestor, the executor, and whether the
mechanism requires that the hypervisor and the guest co-
ordinate ahead of time.

In the next section, we discuss these mechanisms and
describe how hyperupcalls fulfill a need for a communi-
cation mechanism where the hypervisor makes and ex-
ecutes its own requests without context switching. We
begin by introducing state-of-the-art paravirtual mecha-
nisms in use today.

2.1 Paravirtualization
Hypercalls and upcalls. Most hypervisors today
leverage paravirtualization to communicate across the se-
mantic gap. Two mechanisms in widespread use today
are hypercalls, which allow guests to invoke services
provided by the hypervisor, and upcalls, which enable
the hypervisor to make requests to guests. Paravirtual-
ization means that the interface for these mechanisms
are coordinated ahead of time between hypervisor and
guest [11].

One of the main drawbacks of upcalls and hypercalls is
that they require a context switch as both mechanisms are
executed on the opposite side of the request. As a result,
these mechanisms must be invoked with care. Invoking
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a hypercall or upcall too frequently can result in high
latencies and computing resource waste [3].

Another drawback of upcalls in particular that the re-
quests are handled by the guest, which could be busy
handling other tasks. If the guest is busy or if a guest is
idle, upcalls incur the additional penalty of waiting for
the guest to be free or for the guest or woken up. This
can take an unbounded amount of time, and hypervisors
may have to rely on a penalty system to ensure guests
respond in a reasonable amount of time.

Finally, by increasing the coupling between the hyper-
visor and its guests, paravirtual mechanisms can be dif-
ficult to maintain over time. Each hypervisor have their
own paravirtual interfaces, and each guest must imple-
ment the interface of each hypervisor. The paravirtual in-
terface is not thin: Microsoft’s paravirtual interface spec-
ification is almost 300 pages long [46]. Linux provides a
variety of paravirtual hooks, which hypervisors can use
to communicate with the VM [78]. Despite the effort to
standardize the paravirtualization interfaces they are in-
compatible with each other, and evolve over time, adding
features or even removing some (e.g., Microsoft hyper-
visor event tracing). As a result, most hypervisors do not
fully support efforts to standardize interfaces and special-
ized OSs look for alternative solutions [45, 54].

Pre-virtualization. Pre-virtualization [42] is another
mechanism in which the guest requests services from
the hypervisor, but the requests are served in the context
of the guest itself. This is achieved by code injection:
the guest leaves stubs, which the hypervisor fills with
hypervisor code. Pre-virtualization offers an improve-
ment over hypercalls, as they provide more flexible in-
terface between the guest and the hypervisor. Arguably,
pre-virtualization suffers from a fundamental limitation:
code that runs in the guest is deprivileged and cannot per-
form sensitive operations, for example, accessing shared
I/O devices. As a result, in pre-virtualization, the hyper-
visor code that runs in the guest still needs to commu-
nicate with the privileged hypervisor code using hyper-
calls.

2.2 Introspection

Introspection occurs when a hypervisor or guest attempts
to infer information from the other context without di-
rectly communicating with it. With introspection, no in-
terface or coordination is required. For instance, a hy-
pervisor may attempt to infer the state of completely un-
known guests simply by their memory access patterns.
Another difference between introspection and paravirtu-
alization is that no context switch occurs: all the code to
perform introspection is executed in the requestor.

Virtual machine introspection (VMI). When a hy-
pervisor introspects a guest, it is known as VMI [25].
VMI was first introduced to enhance VM security by
providing intrusion detection (IDS) and kernel integrity
checks from a privileged host [10, 24, 25]. VMI has also
been applied to checkpointing and deduplicating VM
state [1], as well as monitoring and enforcing hypervisor
policies [55]. These mechanisms range from simply ob-
serving a VM’s memory and I/O access patterns [36] to
accessing VM OS data structures [16], and at the extreme
end they may modify VM state and even directly inject
processes into it [26, 19]. The primary benefits of VMI
are that the hypervisor can directly invoke VMI without a
context switch, and the guest does not need to be “aware”
that it is inspected for VMI to function. However, VMI
is fragile: an innocuous change in the VM OS, such as a
hotfix which adds an additional field to a data structure
could render VMI non-functional [8]. As a result, VMI
tends to be a “best effort” mechanism.

HVI. Used to a lesser extent, a guest may introspect
the hypervisor it is running on, known as hypervisor in-
trospection (HVI) [72, 61]. HVI is typically employed
either to secure a VM from untrusted hypervisors [62] or
by malware to circumvent hypervisor security [59, 48].

2.3 Extensible OSes

While hypervisors provide a fixed interface, OS research
suggested along the years that flexible OS interfaces can
improve performance without sacrificing security. The
Exokernel provided low level primitives, and allowed ap-
plications to implement high-level abstractions, for ex-
ample for memory management [22]. SPIN allowed
to extend kernel functionality to provide application-
specific services, such as specialized interprocess com-
munication [13]. The key feature that enables these ex-
tensions to perform well without compromising security,
is the use of a simple byte-code to express application
needs, and running this code at the same protection ring
as the kernel. Our work is inspired by these studies, and
we aim to design a flexible interface between the hyper-
visor and guests to bridge the semantic gap.

2.4 Hyperupcalls

This paper introduces hyperupcalls, which fulfill a need
for a mechanism for the hypervisor to communicate to
the guest which is coordinated (unlike VMI), executed by
the hypervisor itself (unlike upcalls) and does not require
context switches (unlike hypercalls). With hyperupcalls,
the VM coordinates with the hypervisor by registering
verifiable code. This code is then executed by the hyper-
visor in response to events (such as memory pressure, or
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Hyperupcall Code (C)

Hyperupcall Table

Hyperupcall
Framework

int is_page_free {
   if (page��free)
 return false;
   else {
 int page;

eBPF Bytecode

BPF_MOV_64 r0, r1
BPF_JMP_IMM #04
BPF_LD_ABS r1, #08
BPF_ALU64_IMM r3, #
BPF_EXIT_INSN

Native  Code

movl $0xff12AB45, %
addl %ecx, %eax
xorl %esi, %esi
movl 4(%esp), %ebx
retl
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Figure 1: System Architecture. Hyperupcall registration
(left) consists of compiling C code, which may refer-
ence guest data structures, into verifiable bytecode. The
guest registers the generated bytecode with the hypervi-
sor, which verifies its safety, compiles it into native code
and sets it in the VM hyperupcall table. When the hy-
pervisor encounters an event (right), such as a memory
pressure, it executes the respective hyperupcall, which
can access and update data structures of the guest.

VM entry/exit). In a way, hyperupcalls can be thought of
as upcalls executed by the hypervisor.

In contrast to VMI, the code to access VM state is pro-
vided by the guest so the hyperupcalls are fully aware
of guest internal data structures— in fact, hyperupcalls
are built with the guest OS codebase and share the same
code, thereby simplifying maintenance while providing
the OS with an expressive mechanism to describe its state
to underlying hypervisors.

Compared to upcalls, where the hypervisor makes
asynchronous requests to the guest, the hypervisor can
execute a hyperupcall at any time, even when the guest
is not running. With an upcall, the hypervisor is at the
mercy of the guest, which may delay the upcall [6]. Fur-
thermore, because upcalls operate like remote requests,
upcalls may be forced to implement OS functionality in
a different manner. For example, when flushing remote
pages in memory ballooning [71], the canonical tech-
nique for identifying free guest memory, the guest in-
creases memory pressure using a dummy process to free
pages. With a hyperupcall, the hypervisor can act as if
it were a guest kernel thread and scan the guest for free
pages directly.

Hyperupcalls resemble pre-virtualization, in that code
is transferred across the semantic gap. Transferring code
not only allows for more expressive communication, but
it also moves the execution of the request to the other
side of the gap, enhancing performance and functional-

Local
Hyperupcalls

Global
Hyperupcalls

event VM-exit memory reclaim
examples VM-entry memory aging

interrupt injection VCPU preemption
page mapping

use
notifications and
local policy
decisions

global policy
decisions

preemptable yes no
memory
mappings host user-space host kernel-space

memory
limit high low

memory
pinning no yes

callback
chaining yes no

hyperupcall IPI handling scheduler activation
examples security agent memory discard hints

tracing

Table 2: Hyperupcall event types. The hypervisor en-
forces certain limitations on global hyperupcalls, which
are used to make policy decisions.

ity. Unlike pre-virtualization, the hypervisor cannot trust
the code being provided by the virtual machine, and the
hypervisor must ensure that execution environment for
the hyperupcall is consistent across invocations.

3 Architecture

Hyperupcalls are short verifiable programs provided by
guests to the hypervisor to improve performance or pro-
vide additional functionality. Guests provide hyperup-
calls to the hypervisor through a registration process at
boot, allowing the hypervisor to access the guest OS state
and provide services by executing them after verification.
The hypervisor runs hyperupcalls in response to events
or when it needs to query guest state. The architecture of
hyperupcalls and the system we have built for utilizing
them is depicted in Figure 1.

We aim to make hyperupcalls as simple as possible
to build. To that end, we provide a complete frame-
work which allows a programmer to write hyperupcalls
using the guest OS codebase. This greatly simplifies
the development and maintenance of hyperupcalls. The
framework compiles this code into verifiable code which
the guest registers with the hypervisor. In the next sec-
tion, we describe how an OS developer writes a hyperup-
call using our framework.
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3.1 Building Hyperupcalls
Guest OS developers write hyperupcalls for each hyper-
visor event they wish to handle. Hypervisors and guests
agree on these events, for example VM entry/exit, page
mapping or virtual CPU (VCPU) preemption. Each hy-
perupcall is identified by a predefined identifier, much
like the UNIX system call interface [56]. Table 2 gives
examples of events a hyperupcall may handle.

3.1.1 Providing Safe Code

One of the key properties of hyperupcalls is that the code
must be guaranteed to not compromise the hypervisor.
In order for a hyperupcall to be safe, it must only be able
to access a restricted memory region dictated by the hy-
pervisor, run for a limited period of time without block-
ing, sleeping or taking locks, and only use hypervisor
services that are explicitly permitted.

Since the guest is untrusted, hypervisors must rely on a
security mechanism which guarantees these safety prop-
erties. There are many solutions that we could have cho-
sen: software fault isolation (SFI) [70], proof-carrying
code [51] or safe languages such as Rust. To implement
hyperupcalls, we chose the enhanced Berkeley Packet
Filter (eBPF) VM.

We chose eBPF for several reasons. First, eBPF is
relatively mature: BPF was introduced over 20 years
ago and is used extensively throughout the Linux ker-
nel, originally for packet filtering but extended to sup-
port additional use cases such as sandboxing system calls
(seccomp) and tracing of kernel events [34]. eBPF en-
joys wide adoption and is supported by various run-
times [14, 49]. Second, eBPF can be provably verified
to have the safety properties we require, and Linux ships
with a verifier and JIT which verifies and efficiently exe-
cutes eBPF code [74]. Finally, eBPF has a LLVM com-
piler backend, which enables eBPF bytecode to be gen-
erated from a high level language using a compiler fron-
tend (Clang). Since OSes are typically written in C, the
eBPF LLVM backend provides us with a straightforward
mechanism to convert unsafe guest OS source code into
verifiably safe eBPF bytecode.

3.1.2 From C to eBPF — the Framework

Unfortunately, writing a hyperupcall is not as simple re-
compiling OS code into eBPF bytecode. However, our
framework aims to make the process of writing a hyper-
upcalls simple and maintainable as possible. The frame-
work provides three key features that simplify the writ-
ing of hyperupcalls. First, the framework takes care of
dealing with guest address translation issues so guest OS
symbols are available to the hyperupcall. Second, the
framework addresses limitations of eBPF, which places

significant constraints on C code. Finally, the framework
defines a simple interface which provides the hyperup-
call with data so it can execute efficiently and safely.

Guest OS symbols and memory. Even though hyper-
upcalls have access to the entire physical memory of the
guest, accessing guest OS data structures requires know-
ing where they reside. OSes commonly use kernel ad-
dress space layout randomization (KASLR) to random-
ize the virtual offsets for OS symbols, rendering them un-
known during compilation time. Our framework enables
OS symbol offsets to be resolved at runtime by associat-
ing pointers using address space attributes and injecting
code to adjust the pointers. When a hyperupcall is reg-
istered, the guest provides the actual symbol offsets en-
abling a hyperupcall developer to reference OS symbols
(variables and data structures) in C code as if they were
accessed by a kernel thread.

Global / Local Hyperupcalls. Not all hyperupcalls
need to be executed in a timely manner. For example,
notifications informing the guest of hypervisor events
such as a VM-entry/exit or interrupt injection only affect
the guest and not the hypervisor. We refer to hyperup-
calls that only affect the guest that registered it as local,
and hyperupcalls that affect the hypervisor as a whole
as global. If a hyperupcall is registered as local, we re-
lax the timing requirement and allow the hyperupcall to
block and sleep. Local hyperupcalls are accounted in the
VCPU time of the guest similar to a trap, so a misbehav-
ing hyperupcall penalizes itself.

Global hyperupcalls, however, must complete their ex-
ecution in a timely manner. We ensure that for the guest
OS pages requested by global hyperupcalls are pinned
during the hyperupcall, and restrict the memory that can
be accessed to 2% (configurable) of the guest’s total
physical memory. Since local hyperupcalls may block,
the memory they use does not need to be pinned, allow-
ing local hyperupcalls to address all of guest memory.

Addressing eBPF limitations. While eBPF is expres-
sive, the safety guarantees of eBPF bytecode mean that
it is not Turing-complete and limited, so only a subset
of C code can be compiled into eBPF. The major lim-
itations of eBPF are that it does not support loops, the
ISA does not contain atomics, cannot use self-modifying
code, function pointers, static variables, native assembly
code, and cannot be too long and complex to be verified.

One of the consequences of these limitations is that
hyperupcall developers must be aware of the code com-
plexity of the hyperupcall, as complex code will fail
the verifier. While this may appear to be an unintuitive
restriction, other Linux developers using BPF face the
same restriction, and we provide a helper functions in our
framework to reduce complexity, such as memset and
memcpy, as well as functions that perform native atomic
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Helper Name Function
send vcpu ipi Send an interrupt to VCPU

get vcpu register Read a VCPU register
set vcpu register Read a VCPU register

memcpy memcpy helper function
memset memset helper function
cmpxchg compare-and-swap

flush tlb vcpu Flush VCPU’s TLB
get exit info Get info on an VM EXIT event

Table 3: Selected hyperupcall helper functions. The hy-
perupcall may call these functions implemented in the
hypervisor, as they cannot be verified using eBPF.

operations such as cmpxchg. A selection of these helper
functions is shown in Table 3. In addition, our frame-
work masks memory accesses (§3.4), which greatly re-
duces the complexity of verification. In practice, as long
as we were careful to unroll loops, we did not encounter
verifier issues while developing the use cases in (§4) us-
ing a setting of 4096 instructions and a stack depth of
1024.

Hyperupcall interface. When a hypervisor invokes a
hyperupcall, it populates a context data structure, shown
in Table 4. The hyperupcall receives an event data struc-
ture which indicates the reason the callback was called,
and a pointer to the guest (in the address space of the hy-
pervisor, which is executing the hyperupcall). When the
hyperupcall completes, it may return a value, which can
be used by the hypervisor.

Writing the hyperupcall. With our framework, OS
developers write C code which can access OS variables
and data structures, assisted by the helper functions of
the framework. A typical hyperupcall will read the
event field, read or update OS data structures and po-
tentially return data to the hypervisor. Since the hyper-
upcall is part of the OS, the developers can reference the
same data structures used by the OS itself—for example,
through header files. This greatly increases the main-
tainability of hyperupcalls, since data layout changes are
synchronized between the OS source and the hyperupcall
source.

It is important to note that a hyperupcall cannot invoke
guest OS functions directly, since that code has not been
secured by the framework. However, OS functions can
be compiled into hyperupcalls and be integrated in the
verified code.

3.2 Compilation
Once the hyperupcall has been written, it needs to be
compiled into eBPF bytecode before the guest can reg-
ister it with the hypervisor. Our framework generates
this bytecode as part of the guest OS build process by
running the hyperupcall C code through Clang and the

Input field Function
event Event specific data including event ID.
hva Host virtual address (HVA) in which the

guest memory is mapped.
guest mask Guest address mask to mask bits which

are higher than the guest memory address-
width. Used for verification (§ 3.4).

vcpus Pointers to the hypervisor VCPU data
structure, if the event is associated with a
certain VCPU, or a pointer to the guest OS
data structure. Inaccessible to the hyperup-
call, but used by helper functions.

vcpu reg Frequently accessed VCPU registers: in-
struction pointer and VCPU ID.

env Environment variables, provided by the
guest during hyperupcallregistration. Used
to set address randomization offsets.

Table 4: Hyperupcall context data. These fields are pop-
ulated by the hypervisor when a hyperupcall is called.

eBPF LLVM backend, with some modifications to assist
with address translation and verification:

Guest memory access. To access guest memory, we
use eBPF’s direct packet access (DPA) feature, which
was designed to allow programs to access network pack-
ets safely and efficiently without the use of helper func-
tions. Instead of passing network packets, we utilize
this feature by treating the guest as a “packet”. Using
DPA in this manner required a bug fix [2] to the eBPF
LLVM backend, as it was written with the assumption
that packet sizes are ≤64KB.

Address translations. Hyperupcalls allow the hyper-
visor to seamlessly use guest virtual addresses (GVAs),
which makes it appear as if the hyperupcall was running
in the guest. However, the code is actually executed by
the hypervisor, where host virtual address (HVAs) are
used, rendering guest pointers invalid. To allow the use
of guest pointers transparently in the host context, these
pointers therefore need to be translated from GVAs into
HVAs. We use the compiler to make these translations.

To make this translation simple, the hypervisor maps
the GVA range contiguously in the HVA space, so ad-
dress translations can easily be done by adjusting the
base address. As the guest might need the hyperupcall to
access multiple contiguous GVA ranges—for example,
one for the guest 1:1 direct mapping and of the OS text
section [37]—our framework annotates each pointer with
its respective “address space” attribute. We extend the
LLVM compiler to use this information to inject eBPF
code that converts each of the pointer from GVA to HVA
by a simple subtraction operation. It should be noted that
the generated code safety is not assumed by the hypervi-
sor and is verified when the hyperupcall is registered.
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Bound Checks. The verifier rejects code with direct
memory accesses unless it can ensure the memory ac-
cesses are within the “packet” (in our case, guest mem-
ory) bounds. We cannot expect the hyperupcall program-
mer to perform the required checks, as the burden of
adding them is substantial. We therefore enhance the
compiler to automatically add code that performs bound
checks prior to each memory access, allowing verifica-
tion to pass. As we note in Section 3.4, the bounds check-
ing is done using masking and not branches to ease veri-
fication.

Context caching. Our compiler extension introduces
intrinsics to get a pointer to the context or to read its data.
The context is frequently needed along the callback for
calling helper functions and for translating GVAs. Deliv-
ering the context as a function parameter requires intru-
sive changes and can prevent sharing code between the
guest and its hyperupcall. Instead, we use the compiler
to cache the context pointer in one of the registers and
retrieve it when needed.

3.3 Registration
After a hyperupcall is compiled into eBPF bytecode, it is
ready to be registered. Guests can register hyperupcalls
at any time, but most hyperupcalls are registered when
the guest boots. The guest provides the hyperupcall event
ID, hyperupcall bytecode and the virtual memory the hy-
perupcall will use. Each parameter is described below:

Hyperupcall event ID. ID of the event to handle.

Memory registration. The guest registers the virtual
contiguous memory regions used by the hyperupcall. For
global hyperupcalls, this memory is restricted to a max-
imum of 2% of the guest’s total physical memory (con-
figurable and enforced by the hypervisor).

Hyperupcall bytecode. The guest provides a pointer
to the hyperupcall bytecode with its size.

3.4 Verification
The hypervisor verifies that each hyperupcall is safe to
execute at registration time. Our verifier is based on the
Linux eBPF verifier and checks three properties of the
hyperupcall: memory accesses, number of runtime in-
structions, and helper functions used.

Ideally, verification is sound, ensuring only safe code
passes verification, and complete, successfully verifying
any safe program. While soundness cannot be compro-
mised as it might jeopardize the system safety, many ver-
ification systems, including eBPF, sacrifice completeness
to keep the verifier simple. In practice, the verifier re-
quires programs to be written in a certain way to pass
verification [66], and even then verification can fail due

to path explosion. These limitations are at odds of our
goal of making hyperupcalls simple to build.

We discuss the properties our verifier checks below,
and how we simplify these checks to make verification
as straightforward as possible.

Bounded runtime instructions. For global hyperup-
calls, the eBPF verifier ensures that any possible execu-
tion of the hyperupcall contains a limited number of in-
structions, which is set by the hypervisor (defaulted to
4096). This ensures that the hypervisor can execute the
hyperupcall in a timely manner, and that there are no in-
finite loops which can cause the hyperupcall not to exit.

Memory access verification. The verifier ensures that
memory accesses only occur in the region bounded by
the “packet”, which in a hyperupcall is the virtual mem-
ory region provided during registration. As noted before,
we enhance the compiler to automatically add code that
proves to the verifier that each memory access is safe.

However, adding such code naively results in frequent
verification failures. The current Linux eBPF verifier is
quite limited in its ability to verify the safety of mem-
ory accesses, as it requires that they will be preceded
by compare and branch instructions to prevent out of
bound accesses. The verifier explores the possible exe-
cution paths and ensures their safety. Although the veri-
fier employs various optimizations to prune branches and
avoid walking every possible branch, verification often
exhausts available resources and fails as we and others
have experienced [65].

Therefore, instead of using compare and branch to en-
sure memory access safety, our enhanced compiler adds
code that masks memory accesses offset within each
range, preventing out-of-bounds memory accesses. We
enhance the verifier to recognize this masking as safe.
After applying this enhancement, all the programs we
wrote passed verification.

Helper function safety. Hyperupcalls may call helper
functions to both improve performance and to help limit
the number of runtime instructions. Helper functions
are a standard eBPF feature and the verifier enforces
the helper functions which can be called, which may
vary from event to event depending on hypervisor pol-
icy. For example, the hypervisor may disallow the use of
flush tlb vcpu during memory reclamation, as it may
block the system for an extended amount of time.

The verifier checks to ensure that the inputs to the
helper function are safe, ensuring that the helper func-
tion only accesses memory which it is permitted to ac-
cess. While these checks could be done in the helper
function, new eBPF extensions allow the verifier to stat-
ically verify the helper function inputs. Furthermore, the
hypervisor can also set a policy for inputs on a per-event
basis (e.g, memcpy size for global hyperupcalls).
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The number and complexity of helper functions
should be limited as well, as they become part of the
trusted computing base. We therefore only introduce
simple helper functions, which mostly rely on code that
the guest can already trigger today directly or indirectly,
for example interrupt injection.

eBPF security. Two of the proof-of-concept exploits
of the recently discovered “Spectre” hardware vulnera-
bilities [38, 30] targeted eBPF, which might raise con-
cerns about eBPF and hyperupcall safety. While exploit-
ing these vulnerabilities is simpler if an attacker can run
unprivileged code in privileged context, just as hyperup-
calls do, discovered attacks can be prevented [63]. In
fact, these security vulnerabilities can make hyperupcalls
more compelling as their mitigation techniques (e.g, re-
turn stack buffer stuffing [33]) induce extra overheads
when context switches take place using traditional par-
avirtual mechanisms such as upcalls and hypercalls.

3.5 Execution

Verified hyperupcalls are installed into a per guest hype-
rupcall table. Once the hyperupcall has been registered
and verified, the hypervisor executes hyperupcalls in re-
sponse to events.

Hyperupcall patching. To avoid the overhead of test-
ing whether hyperupcall is registered, the hypervisor
uses a code patching technique, known in Linux as
“static keys” [12]: a no-op instruction is set on each of
the hypervisor hyperupcall invocation code only when
hyperupcalls are registered.

Accessing remote VCPU state. Some hyperupcalls
read or modify the state of remote VCPUs. These VC-
PUs may not be running or their state may be accessed by
a different thread of the hypervisor. Even if the remote
VCPU is preempted, the hypervisor may have already
read some registers and not expect them to change until
the VCPU resumes execution. If the hyperupcall writes
to remote VCPU registers, it may break the hypervisor
invariants and even introduce security issues.

Furthermore, reading remote VCPU registers can in-
duce high overheads, as part of the VCPU state may
be cached in another CPU, and must be written back
to memory first if the VCPU state is to be read. More
importantly, in Intel CPUs the VCPU state cannot be
accessed by common instructions, and the VCPU must
be “loaded” first before its state can be accessed by us-
ing special instructions (VMREAD and VMWRITE). Switch-
ing the loaded VCPU incurs significant overhead, which
roughly 1800 cycles on our system.

For performance, we define synchronization points
where the hypervisor is commonly preempted, and ac-
cessing the VCPU state is known to be safe. At these

points we “decache” VCPU registers from the VMCS
and write them to the memory so the hyperupcall can
read them. The hyperupcall writes to remote VCPU reg-
isters and updates the decached value to flag the hyper-
visor to reload the register values into the VMCS before
resuming that VCPU. Hyperupcalls that access remote
VCPUs are executed on a best-effort basis, running only
if the VCPU is in a synchronization point. The remote
VCPU is prevented from resuming execution while the
hyperupcall is running.

Using guest OS locks. Some of the OS data-structures
are protected by locks. Hyperupcalls that require con-
sistent guest OS data structure view should abide the
synchronization scheme that the guest OS dictates. Hy-
perupcall, however, can only acquire locks opportunis-
tically, since a VCPU might be preempted while hold-
ing a lock. The lock implementation might need to be
adapted to support locking by an external entity, different
than any VCPU. Releasing a lock can require relatively
large code to handle slow-paths, which might prevent the
timely verification of the hyperupcall.

While various ad-hoc solutions may be proposed, it
seems a complete solution requires the guest OS locks
to be hyperupcall-aware. It also necessitates support for
calling eBPF function from eBPF code to avoid inflated
code size that might cause verification failures. Since
this support has been added very recently, our implemen-
tation does not include lock support.

4 Use Cases and Evaluation

Our evaluation is guided by the following questions:
• What are the overheads of using verified code

(eBPF) versus native code? (§4.1).
• How do hyperupcalls compare to other paravirtual

mechanisms (§4.3, 4.2, 4.5)?
• How can hyperupcalls enhance not only the perfor-

mance (§4.3, 4.2) but also the security (§4.5) and
debuggability (§4.4) of virtualized environments?

Testbed. Our testbed consists of a 48 core dual-socket
Dell PowerEdge R630 server with Intel E5-2670 CPUs,
a Seagate ST1200 disk, which runs Ubuntu 17.04 with
Linux kernel v4.8. The benchmarks are run on guests
with 16 VCPUs and 8GB of RAM. Each measurement
was performed 5 times and the average result is reported.

Hyperupcall prototype. We implemented a prototype
for hyperupcall support on Linux v4.8 and KVM, the hy-
pervisor which is integrated in Linux. Hyperupcalls are
compiled through a patched LLVM 4, and are verified
through the Linux kernel eBPF verifier with the patches
we described in §3. We enable the Linux eBPF “JIT” en-
gine , which compiles the eBPF code to native machine
code after verification. The correctness of the BPF JIT
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h-visor runtime (cycles) eBPF C
use case event h-upcall native instr. SLoC
discard § 4.3 reclaim 185 147 357 32
tracing § 4.4 exit 568 336 3308 889
TLB § 4.2 interrupt 395 530 111 112
protect § 4.5 exit 43 25 119 74

map 108 92 170 52

Table 5: Evaluated hyperupcall use cases, comparison of
runtime, eBPF instructions and number of lines of code.

engine has been studied and can be verified [74].

Use cases. We evaluate four hyperupcall use cases as
listed in Table 5. Each use case demonstrates the use
of hyperupcalls on different hypervisor events, and uses
hyperupcalls of varying complexity.

4.1 Hyperupcall overheads
We evaluate the overheads of using verified code to ser-
vice hypervisor requests by comparing the runtime of a
hyperupcall versus native code with the same function
(Table 5). Overall, we find that the absolute overhead of
the verified code relative to native is small (< 250 cy-
cles). For the TLB use case which handles TLB shoot-
down to inactive cores, our hyperupcall runs faster than
native code since the TLB flush is deferred. The over-
head of verifying a hyperupcall is minimal. For the
longest hyperupcall (tracing), verification took 67ms.

4.2 TLB Shootdown
While interrupt delivery to VCPUs can usually be done
efficiently, there is a significant penalty if the target
VCPU is not running. This can occur if CPUs are over-
committed and scheduling the target VCPU requires pre-
empting another VCPU. With synchronous interproces-
sor interrupts (IPIs), the sender resumes execution only
after the receiver indicates the IPI was delivered and han-
dled, resulting in prohibitive overheads.

The overhead of IPI delivery is most notable in the
case of translation lookaside buffer (TLB) shootdowns, a
software protocol that OSs use to keep TLBs—caches of
virtual to physical address mapping—coherent. As com-
mon CPU architectures (e.g., x86) do not keep TLBs co-
herent in hardware, an OS thread that modifies a mapping
sends an IPI to other CPUs that may cache the mapping,
and these CPUs then flush their TLBs.

We use hyperupcalls to handle this scenario by reg-
istering a hyperupcall which handles TLB shootdowns
when interrupts are delivered to a VCPU. The hypervisor
provides that hyperupcall with the interrupt vector and
the target VCPU after ensuring it is in quiescent state.
Our hyperupcall checks whether this vector is the “re-
mote function invocation” vector and whether the func-
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tion pointer equals to the OS TLB flush function. If
it does, it runs this function with few minor modifica-
tions: (1) instead of flushing the TLB using native in-
struction, the TLB flush is performed using a helper func-
tion, which defers it to the next VCPU re-entry; (2) TLB
flush is performed even when the VCPU interrupts are
disabled, as experimentally it improves performance.

Admittedly, an alternative solution is available: intro-
ducing a hypercall that delegates TLB flushes to the hy-
pervisor [52]. Although this solution can prevent TLB
flushes, it requires a different code path, which may in-
troduce hidden bugs [43], complicate the integration with
OS code or introduce additional overheads [44]. This
solution is also limited to TLB flushes, and cannot deal
with other interrupts, for example, rescheduling IPIs.

Evaluation We run Apache Web server [23] in a guest
using the default mpm event module, which runs mul-
tithreaded workers to handle incoming requests. To
measure performance, we use ApacheBench, an Apache
HTTP server benchmarking tool, generating 10k re-
quests using 16 connections, and measuring the request
latency. The results, which are shown in Figure 2, show
hyperupcalls reduce the latency by up to 1.3×. It might
appear surprising that performance improves even when
the physical CPUs are not oversubscribed. However, as
VCPUs are often momentarily idle in this benchmark,
they can also trigger an exit to the hypervisor.

4.3 Discarding Free Memory

Free memory, by definition, holds no needed data and
can be discarded. If the hypervisor knows what memory
is free in the guest, it can discard it during memory recla-
mation, snapshotting, live migration or lock-step execu-
tion [20] and avoid I/O operations for saving and restor-
ing their content. Information on which memory pages
are free, however, is held by the guest and unavailable to
the hypervisor due to the semantic gap.

Throughout the years several mechanisms have been
proposed to inform the hypervisor which memory pages
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Figure 3: Time of guest memory reclaim of 7GB and refault, when reading a 4GB file, when CPUs are overcommitted.
The x-axis shows the number of physical cores available. (a) As the number of physical cores decrease (and overcom-
mitment increases), the time to reclaim memory increases. (b) refaulting free memory incurs a significant penalty for
uncooperative swapping (swap-base) on its own because it swaps out active and free pages.

are free using paravirtualization. These solutions, how-
ever, either couple the guest and hypervisor [60]; induce
overheads due to frequent hypercalls [41] or are limited
to live migration [73]. All of these mechanisms suffer for
an inherent limitation: without coupling the guest and the
hypervisor, the guest needs to communicate to the hyper-
visor which pages are free.

In contrast, a hypervisor that supports hyperupcalls
does not need to be notified about free pages. In-
stead, the guest sets a hyperupcall that describes whether
a page is discardable based on the page metadata
(Linux’s struct page) and is based in Linux on the
is free buddy page function. When the hypervisor
performs an operation that can benefit from discarding
a free guest memory page such as reclaiming a page, the
hypervisor invokes this hyperupcall to check whether the
page is discardable. The hyperupcall is also called when
the page is already unmapped, preventing a race in which
it is discarded when it is no longer free.

Checking whether a page can be discarded must be
done through a global hyperupcall, since the answer must
be provided in a bounded and short time. As a result, the
guest can only register part of its memory to be used by
the hyperupcall, since this memory is never paged out to
ensure timely execution of the hyperupcall. Our Linux
guest registers the memory of the pages’ metadata, which
accounts to about 1.6% of the guest’s physical memory.

Evaluation. To evaluate the performance of the “mem-
ory discard” hyperupcall, we measure its impact on a
guest whose memory is reclaimed due to memory pres-
sure. When memory is scarce, hypervisors can per-
form “uncooperative swapping”—directly reclaim guest
memory and swap it out to disk. This approach, how-
ever, often leads to suboptimal reclamation decisions.
Alternatively, hypervisors can use memory ballooning,
a paravirtual mechanism in which a guest module is in-
formed on host memory pressures and causes the guest
to reclaim memory directly [71]. The guest can then

make knowledgeable reclamation decisions and discard
free pages. Although memory ballooning usually per-
forms well, performance suffers when memory needs to
be abruptly reclaimed [4, 6] or when the guest disk is set
on a network attached storage [68], and it is therefore not
used under high memory pressure [21].

To evaluate memory ballooning, uncooperative swap-
ping and swapping with hyperupcalls we run a scenario
in which memory and physical CPU need to be abruptly
reclaimed, such as to accommodate a new guest. In
the guest, we start and exit “memhog”, making 4GB
available to be reclaimed in the guest. Next, we make
the guest busy by running a CPU intensive task with
low memory footprint - the SysBench CPU benchmark,
which computes primes using all VCPUs [39].

Now, with the the system busy, we simulate the need
to reclaim resources to start a new guest by increasing
memory and CPU overcommitment. We lower the num-
ber of physical CPUs available to the guest and restrict
it to only 1GB of memory. We measure the time it
takes to reclaim memory against the number of physi-
cal CPUs that were allocated for the guest (Figure 3a).
This simulates a new guest starting up. Then, we stop
increasing memory pressure and measure the time to run
a guest application with a large memory footprint using
the SysBench file read benchmark on 4GB (Figure 3b).
This simulates the guest reusing pages that have been re-
claimed by the hypervisor.

Ballooning reclaims memory slowly (up to 110 sec-
onds) when physical CPUs are overcommitted, as the
memory reclamation operations compete with the CPU
intensive tasks on CPU time. Uncooperative swapping
(swap-base) can reclaim faster (32 seconds), but as it
is oblivious to whether memory pages are free, it in-
curs higher overhead in refaulting guest free pages. In
contrast, when hyperupcalls are used, the hypervisor
can promote free pages’ reclamation and discard them,
thereby reclaiming memory up to 8 times faster than bal-

106    2018 USENIX Annual Technical Conference USENIX Association



loon, with only 10% slowdown in refaulting the memory.
CPU overcommitment, of course, is not the only

scenario where ballooning is non-responsive or unus-
able. Hypervisors refrain from ballooning when memory
pressure is very high, and use host-level swapping in-
stead [67]. It is possible for hyperupcalls to operate syn-
ergistically with ballooning: the hypervisor may use the
balloon normally and use hyperupcalls when resource
pressures are high or the balloon is not responding.

4.4 Tracing
Event tracing is an important tool for debugging correct-
ness and performance issues. However, collecting traces
for virtualized workloads is somewhat limited. Traces
collected inside a guest do not show hypervisor events,
such as when a VM-exit is forced, which can have signif-
icant effect on performance. For traces that are collected
in the hypervisor to be informative, they require knowl-
edge about guest OS symbols [15]. Such traces cannot be
collected in cloud environments. In addition, each trace
collects only part of the events and does not show how
guest and hypervisor events interleave.

To address this issue, we run the Linux kernel trac-
ing tool, ftrace [57], inside a hyperupcall. Ftrace is
well suited to run in a hyperupcall. It is simple, lock-
less, and built to enable concurrent tracing in multiple
contexts: non-maskable interrupt (NMI), hard and soft
interrupt handlers and user processes. As a result, it was
easily be adapted to trace hypervisor events concurrently
with guest events. Using the ftrace hyperupcall, the
guest can trace both hypervisor and guest events in one
unified log, easing debugging. Since tracing all events
use only guest logic, new OS versions can change the
tracing logic, without requiring hypervisor changes.

Evaluation. Tracing is efficient, despite the hyperup-
callcomplexity (3308 eBPF instructions), as most of the
code deals with infrequent events that handles situations
in which trace pages fill up. Tracing using hyperupcalls
is slower than using native code by 232 cycles, which
is still considerably shorter time than the time a context
switch between the hypervisor and the guest takes.

Tracing is a useful tool for performance debugging,
which can expose various overheads [79]. For example,
by registering the ftrace on the VM-exit event, we see
that many processes, including short-lived ones, trigger
multiple VM exits due to the execution of the CPUID in-
struction, which enumerates the CPU features and must
be emulated by the hypervisor. We find that the GNU C
Library, which is used by most Linux applications, uses
CPUID to determine the supported CPU features. This
overhead could be prevented by extending Linux virtual
dynamic shared object (vDSO) for applications to query
the supported CPU features without triggering an exit.

4.5 Kernel Self-Protection
One common security hardening mechanisms that OSs
employ is “self-protection”: OS code and immutable
data write protection. However, this protection is done
using page tables, allowing malware to circumvent it by
modifying page table entries. To prevent such attacks,
the use of nested page tables has been suggested, as these
tables are inaccessible from the guest [50].

However, nesting can only provide a limited number
of policies and for example, cannot whitelist guest code
that is allowed to access protected memory. Hyperup-
calls are much more expressive, allowing the guest to
specify memory protection in a flexible manner.

We use hyperupcalls to provide hypervisor-level guest
kernel self-protection, which can be easily modified to
accommodate complex policies. In our implementation
the guest sets a bitmap which marks protected pages, and
registers hyperupcall on exit events, which checks the
exit reason, whether a memory access occurred and if the
guest attempted to write to protected memory according
to the bitmap. If there is an attempt to access protected
memory, a VM shutdown is triggered. The guest sets an
additional hyperupcall on the “page map” event, which
queries the required protection of the guest page frames.
This hyperupcall prevents situations in which the hyper-
visor proactively prefaults guest memory.

Evaluation. This hyperupcall code is simple, yet in-
curs overhead of 43 cycles per exit. Arguably, only work-
loads which already experience very high number of con-
text switches would be affected by the additional over-
heads. Modern CPUs prevent such frequent switches.

5 Conclusion

Bridging the semantic gap is critical performance and for
the hypervisor to provide advanced services to guests.
Hypercalls and upcalls are now used to bridge the gap,
but they have several drawbacks: hypercalls cannot
be initiated by the hypervisor, upcalls do not have a
bounded runtime, and both incur the penalty of context
switches. Introspection, an alternative which avoids con-
text switches can be unreliable as it relies on observations
instead of an explicit interface. Hyperupcalls overcome
these limitations by allowing the guest to expose its logic
to the hypervisor, avoiding a context switch by enabling
the hyperupcall to safely execute guest logic directly.

We have built a complete infrastructure for develop-
ing hyperupcalls which allow developers to easily add
new paravirtual features using the codebase of the OS.
We have written and evaluated several hyperupcalls and
show hyperupcalls improve virtualized performance by
up to 2×, ease debugging of virtualized workloads and
improve VM security.
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Abstract

The need for countering Advanced Persistent Threat
(APT) attacks has led to the solutions that ubiqui-
tously monitor system activities in each host, and per-
form timely attack investigation over the monitoring
data for analyzing attack provenance. However, ex-
isting query systems based on relational databases and
graph databases lack language constructs to express key
properties of major attack behaviors, and often execute
queries inefficiently since their semantics-agnostic de-
sign cannot exploit the properties of system monitoring
data to speed up query execution.

To address this problem, we propose a novel query
system built on top of existing monitoring tools and
databases, which is designed with novel types of opti-
mizations to support timely attack investigation. Our sys-
tem provides (1) domain-specific data model and stor-
age for scaling the storage, (2) a domain-specific query
language, Attack Investigation Query Language (AIQL)
that integrates critical primitives for attack investigation,
and (3) an optimized query engine based on the charac-
teristics of the data and the semantics of the queries to
efficiently schedule the query execution. We deployed
our system in NEC Labs America comprising 150 hosts
and evaluated it using 857 GB of real system monitor-
ing data (containing 2.5 billion events). Our evaluations
on a real-world APT attack and a broad set of attack
behaviors show that our system surpasses existing sys-
tems in both efficiency (124x over PostgreSQL, 157x
over Neo4j, and 16x over Greenplum) and conciseness
(SQL, Neo4j Cypher, and Splunk SPL contain at least
2.4x more constraints than AIQL).

1 Introduction

Advanced Persistent Threat (APT) attacks are sophis-
ticated (involving many individual attack steps across
many hosts and exploiting various vulnerabilities) and

stealthy (each individual step is not suspicious enough),
plaguing many well-protected businesses [9, 11, 15, 18,
27, 30]. A recent massive Equifax data breach [11] has
exposed the sensitive personal information of 143 mil-
lion US customers. In order for enterprises to counter
advanced attacks, recent approaches based on ubiquitous
system monitoring have emerged as an important solu-
tion for monitoring system activities and performing at-
tack investigation [37,42,47–49,54,57,58]. System mon-
itoring observes system calls at the kernel level to collect
system-level events about system activities. Collection
of system monitoring data enables security analysts to
investigate these attacks by querying risky system behav-
iors over the historical data [71].

Although attack investigation is performed after the at-
tacks compromise enterprises’ security, it is a consider-
ably time-sensitive task due to two major reasons. First,
advanced attacks include a sequence of steps and are per-
formed in multiple stages. A timely attack investigation
can help understand all attack behaviors and prevent the
further damage of the attacks. Second, understanding the
attack sequence is crucial to correctly patch the systems.
A timely attack investigation can pinpoint the vulnerable
components of the systems and protect the enterprises
from future attacks of the same types.

Challenges: However, there are two major challenges
for building a query system to support security analysts
in efficient and timely attack investigation.

Attack Behavior Specification: The system needs to
provide a query language with specialized constructs for
expressing various types of attack behaviors using sys-
tem monitoring data: (1) Multi-Step Attacks: risky
behaviors in advanced attacks typically involve activi-
ties that are related to each other based on either spe-
cific attributes (e.g., the same process reads a sensitive
file and accesses the network) or temporal relationships
(e.g., file read happens before network access), which
requires language constructs to easily specify relation-
ships among activities. In Fig. 1, the attacker runs osql
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cmd.exe osql.exe
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Multi-Step Attack

sbblv.exeXXX.129

/bin/cp Info stealer

wget

Dependency Tracking of Attack

apache

Info stealer

Abnormal System Behavior

Host 1

Host 2

sbblv.exe

xxx.129

… …

xxx.122 xxx.128

e1:Start

e2: Write

e3:Read

e4: Write

e1: Write
e2: Read

e3: Connect
e4: Write

e3: Write en: Write

e1: Write e2: Write

Figure 1: Major types of attack behaviors (events e1, . . . ,en are shown in ascending temporal order)

.exe to cause the database sqlservr.exe to dump its data
into a file backup1.dmp. Later (i.e., e3 happens after e2;
temporal relationship), a malicious script sbblv.exe reads
from the dump backup1.dmp (i.e., the same dump file in e2

and e3; attribute relationship) and sends the data back
to the attacker. (2) Dependency Tracking of Attacks:
dependency analysis is often applied to track causality
of data for discovering the “attack entry” (i.e., prove-
nance) [48,49,61], which requires language constructs to
chain constraints among activities. In Fig. 1, a malicious
script info_strealer in Host 1 infects Host 2 via network
communications between apache and wget. (3) Abnormal
System Behaviors: frequency-based behavioral models
are often required to express abnormal system behaviors,
such as network access spikes [20, 29]. Investigating
such spikes requires the system to support sliding win-
dows and statistical aggregation of system activities, and
compare the aggregate results with either fixed thresholds
(in absolute sense) or the historical results (in relative
sense). In Fig. 1, a malicious script sbblv.exe sends a
large amount of data to a particular destination XXX.129.1

Big-Data Security Analysis: System monitoring pro-
duces a huge amount of daily logs [55,69] (∼ 50 GB per
day for 100 hosts), and the investigation of these attacks
typically requires enterprises to keep at least a 0.5 ∼ 1
year worth of data [32]. Such a big amount of security
data poses challenges for the system to meet the require-
ments of timely attack investigation.

Limitations of Existing Systems: Unfortunately, ex-
isting query systems do not address both of these in-
herent challenges in attack investigation. First, existing
query languages in relational databases based on SQL
and SPARQL [19,22,25] lack constructs for easily chain-
ing constraints among relations. Graph databases such
as Neo4j [16] and NoSQL tools such as MongoDB [38],
Splunk [23], and ElasticSearch [10] are ineffective in ex-
pressing event relationships where two events have no
common entities (e.g., e1 and e2 in Fig. 1). More impor-
tantly, none of these languages provide language con-
structs to express behavioral models with historical re-

1While existing complex event processing systems [3, 12, 21] sup-
port similar features, they operate over stream rather than historical
data stored in databases.

sults. Second, system monitoring data is generated with a
timestamp on a specific host in the enterprise, exhibiting
strong spatial and temporal properties. However, none
of these systems provide optimizations that exploit the
domain specific characteristics of the data, missing op-
portunities to optimize the system for supporting timely
attack investigation and often causing queries to run for
hours (e.g., performance evaluation results in Sec. 6.2.2).
Contributions: We design and build a novel system
for efficient attack investigation from system monitor-
ing data. We build our system (∼ 50,000 lines of Java
code) on top of existing system-level monitoring tools
(i.e., auditd [28] and ETW [13]) for data collection and
relational databases (i.e., PostgreSQL [19] and Green-
plum [14]) for data storage and query. This enables our
system to leverage the services provided by these ma-
ture infrastructures, such as data management, indexing
mechanisms, recovery, and security. In particular, our
system is designed with three novel types of optimiza-
tions. First, our system provides a domain-specific query
language, Attack Investigation Query Language (AIQL),
which is optimized to express the three aforementioned
types of attack behaviors. Second, our system provides
domain-specific data model and storage for scaling the
storage. Third, our system optimizes the query engine
based on the characteristics of the monitoring data and
the semantics of the queries to efficiently schedule the
query execution. To the best of our knowledge, we are
the first to accelerate attack investigation via optimizing
storage and query of system monitoring data.

1 agentid = 1 // host id; spatial constraints
2 (at "01/01/2017") // temporal constraints
3 proc p1 start proc p2["%telnet%"] as evt1
4 proc p3 start ip ipp[dstport = 4444] as evt2
5 proc p4["%apache%"] read file f1["/var/www%"] as evt3
6 with p2 = p3, // attribute relationship
7 evt1 before evt2, evt3 after evt2 // temporal

relationships
8 return p1, p2, p4, f1

Query 1: AIQL Query for CVE-2010-2075 [5]

Domain-Specific Query Language (Sec. 4): Our AIQL
language is designed for specifying the attack behaviors
shown in Fig. 1 (i.e., Query 7 in Sec. 6.2.1, Query 3 in
Sec. 4.2, and Query 5 in Sec. 6.2.1, respectively). Specif-
ically, AIQL provides language constructs to specify re-
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Figure 2: The AIQL system architecture

lationships among system activities (Sec. 4.1), chain
constraints among activities (Sec. 4.2), and compute
aggregate results in sliding time windows (Sec. 4.3).
AIQL adopts the {subject-operation-object} syntax to
represent system behavior patterns as events (e.g., proc

p1 write file f1) and supports attribute relationships
and temporal relationships of multiple events, as well
as syntax shortcuts based on context-aware inference
(Sec. 4.1). As shown in Query 1, AIQL can relate mul-
tiple system activities using spatial/temporal constraints
and attribute/temporal relationships.

Data Model and Storage (Sec. 3.2): Our system mod-
els system monitoring data as a sequence of events,
where each event describes how a process interacts with
a system resource, such as writing to a file. More impor-
tantly, our system clearly identifies the spatial and tem-
poral properties of the events, and leverages these proper-
ties to partition the data storage in both spatial and tem-
poral dimensions. Such partitioning presents opportuni-
ties for parallel processing of query execution (Sec. 5.2).

Query Scheduling (Sec. 5): Our system identifies both
spatial and temporal constraints in AIQL queries, and op-
timizes the query execution in two aspects: (1) for AIQL
queries that involve multiple event patterns, our system
prioritizes the search of event patterns with high pruning
power, maximizing the reduction of irrelevant events as
early as possible; (2) our system breaks down the query
into independent sub-queries along temporal and spatial
dimensions and executes them in parallel.

Evaluation: We deployed the AIQL system in NEC
Labs America comprising 150 hosts. We performed a
broad set of attack behaviors in the deployed environ-
ment, and evaluated the query performance and concise-
ness of AIQL against existing systems using 857 GB of
real system monitoring data (16 days; 2.5 billion events):
(1) our end-to-end efficiency evaluations on an APT at-
tack case study (27 queries) show that AIQL surpasses
both PostgreSQL (124x) and Neo4j (157x); (2) our per-
formance evaluations show that the query scheduling em-
ployed by AIQL is efficient in both single-node databases
(40x over PostgreSQL scheduling) and parallel databases
(16x over Greenplum scheduling); (3) our conciseness
evaluations on four major types of attack behaviors (19
queries) show that SQL, Neo4j Cypher, and Splunk SPL
contain at least 2.4x more constraints, 3.1x more words,
and 4.7x more characters than AIQL. All queries and a

demo video are available on our project website [1].

2 System Overview and Threat Model

Fig. 2 shows the AIQL system architecture: (1) we de-
ploy monitoring agents across servers, desktops and lap-
tops in the enterprise to monitor system activities by
collecting information about system calls from kernels.
The collected system monitoring data is then sent to
the central server and stored in our optimized data stor-
age (Sec. 3); (2) the language parser, implemented us-
ing ANTLR 4 [2], analyzes input queries and generates
query contexts. A query context is an object abstraction
of the input query that contains all the required informa-
tion for the query execution. Multievent syntax, depen-
dency syntax, and anomaly syntax are supported (Sec. 4);
(3) the query execution engine executes the generated
query contexts to search for the desired attack behav-
iors. Based on the data storage and the query seman-
tics, domain-specific optimizations, such as relationship-
based scheduling and temporal & spatial parallelization,
are adopted to speedup the query execution (Sec. 5).
Threat Model: Our thread model follows the threat
model of previous work [34, 48, 49, 54, 55]. We assume
that kernel is trusted, and the system monitoring data col-
lected from kernel is not tampered with [13, 28]. Any
kernel-level attack that deliberately compromises secu-
rity auditing systems is beyond the scope of this work.

3 Data Model and Storage

3.1 Data Model and Collection
System monitoring data records the interactions among
system resources as system events [48]. Each of the
recorded event occurs on a particular host at a particular
time, thus exhibiting strong spatial and temporal proper-
ties. Existing works have indicated that on most modern
operating systems (Windows, Linux and OS X), system
resources (system entities) in most cases are files, pro-
cesses, and network connections [42, 45, 48, 49]. Thus,
in our data model, we consider system entities as files,
processes, and network connections. We define a sys-
tem event as the interaction among two system entities
represented using the triple 〈subject, operation, object〉,
which consists of the initiator of the interaction, the type
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Table 1: Representative attributes of system entities
Entity Attributes
File Name, Owner/Group, VolID, DataID, etc.
Process PID, Name, User, Cmd, Binary Signature, etc.
Network Connection IP, Port, Protocol

of the interaction, and the target of the interaction. Sub-
jects are processes originating from software applica-
tions such as Firefox, and objects can be files, processes
and network connections. We categorize system events
into three types according to their object entities, namely
file events, process events, and network events.

Both entities and events have critical security-related
attributes (Tables 1 and 2). The attributes of entities in-
clude the properties to support various security analyses
(e.g., file name, process name, and IP addresses), and the
unique identifiers to distinguish entities (e.g., file data ID
and process ID). The attributes of events include event
origins (i.e., agent ID and start time/end time), operations
(e.g., file read/write), and other security-related proper-
ties (e.g., failure code). Agent ID refers to the unique ID
of the host where the entity/event is observed.

Data Collection: We implement data collection agents
for Windows and Linux based on ETW event tracing [13]
and the Linux Audit Framework [28]. Tables 1 and 2
show representative attributes of our collected data.

3.2 Data Storage

After the modeling, we store the data in relational
databases powered by PostgreSQL [19]. Relational
databases come with mature indexing mechanisms and
are scalable to massive data. However, even with in-
dexes for speeding up queries, relational databases still
face challenges in handling high ingest rates of massive
system monitoring data. We next describe how we ad-
dress these challenges to optimize the database storage.

Time and Space Partitioning: System monitoring data
exhibits strong temporal and spatial properties: the data
collected from different agents is independent from each
other, and the timestamps of the collected data increase
monotonically. Queries of the data are often specified
with a specific time range or a host, or across many hosts
within some time interval. Therefore, when storing the
data, we partition the data in both the time and the space
dimensions: separating groups of agents into table par-
titions and generating one database per day for the data
collected on that day. We build various types of indexes
on the attributes that will be queried frequently, such as
executable name of process, name of file, source/destina-
tion IP of network connection.

Hypertable: For large organizations with hundreds or
thousands of machines, we scale the data storage using
MPP (massively parallel processing) databases Green-
plum [14]. These databases intelligently distribute the

Table 2: Representative attributes of system events
Operation Read/Write, Execute, Start/End, Rename/Delete
Time/Sequence Start Time/End Time, Event Sequence
Misc. Subject ID, Object ID, Failure Code

storage and search of events and entities based on the
spatial and temporal properties of our data model.

Time Synchronization: We correct potential time drift-
ing of events on agents by applying synchronization pro-
tocols like Network Time Protocol (NTP) [17] at the
client side, and checking with the clock at the server side.

4 Query Language Design

AIQL is designed to specify three types of attack behav-
iors: multi-step attacks, dependency tracking of attacks,
and abnormal system behaviors. In contrast to previous
query languages [7, 22, 23, 25] that focus on the speci-
fication of relation joins or graph paths, AIQL uniquely
integrates the critical primitives for attack investigation,
providing explicit constructs for spatial/temporal con-
straints, relationship specifications, constraint chaining
among system events, and the access to aggregate and
historical results in sliding time windows. Grammar 1
shows the representative rules of AIQL.

4.1 Multievent AIQL Query
For multievent queries, AIQL provides explicit lan-
guage constructs for system events (in a natural format
of {subject-operation-object}), spatial/temporal con-
straints, and event relationships.

A Running Example: Query 2 specifies an example
system behavior that probes user command history files.
Multiple context-aware syntax shortcuts (illustrated in
comments) are used, such as attribute inference and
omitting unreferenced entity IDs (details are given later).

1 agentid = 1 // unique id of the enterprise host
2 (at "01/01/2017") // time window
3 proc p2 start proc p1 as evt1
4 proc p3 read file[".viminfo" || ".bash_history"] as

evt2 // .viminfo -> name=.viminfo; omit file ID
5 with p1 = p3, evt1 before evt2
6 return p2, p1 //p2 -> p2.exe_name, p1 -> p1.exe_name
7 sort by p2, p1

Query 2: Command history probing

Global Constraints: The global constraint rule
(〈global cstr〉) specifies the constraints for all event pat-
terns (e.g., agentid and time window in Query 2).

Event Pattern: The event pattern rule (〈evt patt〉) spec-
ifies an event pattern that consists of the subject/ob-
ject entity (〈entity〉), operation (〈op exp〉), and optional
event ID (〈evt〉). The entity rule (〈entity〉) consists of en-
tity type, optional entity ID, and optional attribute con-
straints (〈attr cstr〉). Logical operators (“&&” for AND,
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“||” for OR, “!” for NOT) can be used in 〈op exp〉 and
〈attr cstr〉 to form complex expressions. The optional
time window rule (〈twind〉) further narrows down the
search for the event pattern. Common time formats (US
formats and ISO 8601) and granularities are supported.

〈aiql〉 ::= 〈multievent〉 | 〈dependency〉
〈multievent〉 ::= (〈global cstr〉)* (〈m query〉)+
〈dependency〉 ::= (〈global cstr〉)* 〈d query〉
〈global cstr〉 ::= 〈cstr〉 | ‘(’ 〈twind〉 ‘)’ | 〈slide wind〉
〈twind〉 ::= ‘from’ 〈datetime〉 ‘to’ 〈datetime〉 | ...
〈slide wind〉 ::= 〈wind length〉 〈wind step〉
Multi-event query:
〈m query〉 ::= 〈evt patt〉+ 〈evt rel〉? 〈return〉 〈filter〉?
〈evt patt〉 ::= 〈entity〉 〈op exp〉 〈entity〉 〈evt〉? (‘(’

〈twind〉 ‘)’)?
〈entity〉 ::= 〈entity type〉 〈e id〉 ? (‘[’ 〈attr cstr〉‘]’)?
〈attr cstr〉 ::= 〈cstr〉

| ‘!’〈attr cstr〉
| 〈attr cstr〉 (‘&&’ | ‘||’) 〈attr cstr〉
| ‘(’ 〈attr cstr〉 ‘)’

〈cstr〉 ::= 〈attr〉 〈bop〉 〈val〉
| ‘!’? 〈val〉
| 〈attr〉 ‘not’? ‘in’ ‘(’ 〈val〉 (‘,’ 〈val〉)* ‘)’

〈op exp〉 ::= 〈op〉
| ‘!’〈op exp〉
| 〈op exp〉 (‘&&’ | ‘||’) 〈op exp〉
| ‘(’ 〈op exp〉 ‘)’

〈evt〉 ::= ‘as’ 〈evt id〉 (‘[’ 〈attr cstr〉‘]’)?
〈evt rel〉 ::= ‘with’ 〈rel〉 (‘,’ 〈rel〉)*
〈rel〉 ::= 〈attr rel〉 | 〈temp rel〉
〈attr rel〉 ::= 〈e id〉‘.’〈attr〉 〈bop〉 〈e id〉‘.’〈attr〉

| 〈e id〉 〈bop〉 〈e id〉
〈temp rel〉 ::= 〈evt id〉 (‘before’ | ‘after’

| ‘within’) (‘[’ 〈val〉‘-’〈val〉
〈timeunit〉‘]’)? 〈evt id〉

〈return〉 ::= ‘return’ ‘count’? ‘distinct’? 〈res〉
(‘,’ 〈res〉)*

〈res〉 ::= 〈e id〉(‘.’〈attr〉)?
| 〈agg func〉‘(’ 〈res〉 ‘)’
| ‘as’ 〈rename id〉

〈group by〉 ::= ‘group by’ 〈res〉 (‘,’ 〈res〉)*
〈filter〉 ::= ‘having’ 〈expr〉

| ‘sort by’ 〈attr〉 (‘,’ 〈attr〉)* (‘asc’ |
‘desc’)?

| ‘top’ 〈int〉
Dependency query:
〈d query〉 ::= ((‘forward’ | ‘backward’) ‘:’)?

(〈entity〉 〈op edge〉)+ 〈entity〉 〈return〉
〈filter〉?

〈op edge〉 ::= (‘->’ | ‘<-’) ‘[’ 〈op exp〉 ‘]’

Grammar 1: Representative BNF grammar of AIQL

Event Attribute and Temporal Relationships: The
event relationship rule (〈evt rel〉) specifies how multi-
ple event patterns are related. The attribute relationship
rule (〈attr rel〉) uses attribute values of event patterns to
specify their relationships. In Query 2, p1=p3 (inferred
as p1.id=p3.id) indicates that two event patterns evt1 and
evt2 are linked by the same entity. The temporal rela-
tionship rule (〈temporal rel〉) specifies temporal order
(“before”, “after”, “within”) of event patterns. For ex-
ample, evt1 before[1-2 minutes] evt2 specifies that evt1
occurred 1 to 2 minutes before evt2.

Event Return and Filters: The event return rule
(〈return〉) retrieves the attributes of the matched events.
Constructs such as “count”, “distinct”, “top”, “having”,
and “sort by” are provided for result manipulation and
filtering.
Context-Aware Syntax Shortcuts: AIQL includes lan-
guage syntax shortcuts to make queries more concise.
• Attribute inference: (1) default attribute names will

be inferred if users specify only attribute values in an
event pattern, or specify only entity IDs in the return
clause. We select the most commonly used attributes
in security analysis as the default attributes: name for
files, exe_name for processes, and dst_ip for networks;
(2) id will be used as the default attribute if users spec-
ify only entity IDs in attribute relationships.

• Optional ID: the ID of entity/event can be omitted if it
is not referenced in the event relationship clause or the
event return clause.

• Entity ID reuse: reusing entity IDs in multiple event
patterns implicitly means that these event patterns
share the same entity.

For example, in Query 2, ".viminfo", return p2, and p1

= p3 will be inferred as name = ".viminfo", return p2.

exe_name, and p1.id = p3.id, respectively. Query 2 also
omits the file ID in evt2 since it is not referenced. We
can also replace p3 with p1 in evt2 and omit p1 = p3.

4.2 Dependency AIQL Query
AIQL provides the dependency syntax that chains con-
straints and specifies temporal relationships among event
patterns, facilitating the specification of dependency
tracking of attacks. The syntax specifies a sequence of
event patterns in the form of a path, where nodes in the
path represent system entities and edges represent oper-
ations. The forward and backward keywords can be used
to specify the temporal order of the events on the path:
forward (backward) means the events found by the left-
most event pattern occurred earliest (latest).

1 (at "01/01/2017")
2 forward: proc p1["%/bin/cp%", agentid = 2] ->[write]

file f1["/var/www/%info_stealer%"]
3 <-[read] proc p2["%apache%"]
4 ->[connect] proc p3[agentid=3] // tracking across

host
5 ->[write] file f2["%info_stealer%"]
6 return f1, p1, p2, p3, f2

Query 3: Forward tracking for malware ramification

Query 3 shows a forward dependency query in
AIQL that investigates the ramification of malware
(info_stealer), which originates from host ha (agentid
= 2) and affects host hb (agentid = 3) through an Apache
web server. Lines 2-3 specify that p1 writes to f1, and
then f1 is read by p2. Such syntax eliminates the need
to repetitively specify the shared entity (i.e., f1) in each
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event pattern. An example result may show that p3 is
the wget process that downloads the malicious script from
host hb. The operation ->[connect] at Line 4 indicates the
search will track dependencies of events across hosts.

4.3 Anomaly AIQL Query
AIQL provides the constructs of sliding time window
with common aggregation functions (e.g., count, avg, sum
) to facilitate the specification of frequency-based system
behavioral models. Besides, AIQL provides the construct
of history states, allowing queries to compare frequen-
cies using historical information.

1 (at "01/01/2017")
2 window = 1 min
3 step = 10 sec
4 proc p read ip ipp
5 return p, count(distinct ipp) as freq
6 group by p
7 having freq > 2 * (freq + freq[1] + freq[2]) / 3

Query 4: Simple moving average for network frequency

Query 4 shows an anomaly query that specifies a 1-
minute sliding time window and computes the moving
average [44] to detect network spikes (Line 7). AIQL
supports the common types of moving averages through
built-in functions (SMA, CMA, WMA, EWMA [44]).
For example, the computation of EWMA for network
frequency with normalized deviation can be expressed
as: (freq - EWMA(freq, 0.9)) / EWMA(freq, 0.9) > 0.2.

5 Query Execution Engine

The AIQL query execution engine executes the query
context generated by the parser and optimizes the query
execution by leveraging domain-specific properties of
system monitoring data. Optimizing a query with many
constraints is a difficult task due to the complexities of
joins and constraints [8]. AIQL addresses these chal-
lenges by providing explicit language constructs for spa-
tial/temporal constraints and temporal relationships, so
that the query engine can directly optimize the query ex-
ecution by: (1) using event patterns as a basic unit for
generating data queries and leveraging attribute/temporal
relationships to optimize the search strategy; (2) leverag-
ing the spatial and temporal properties of system moni-
toring data to partition the data and executing the search
in parallel based on the spatial/temporal constraints.

5.1 Query Execution Pipeline
Fig. 3 shows the execution pipeline of a multievent
query. Based on the query semantics, for every event
pattern, the engine synthesizes a SQL data query, which
searches the optimized relational databases (Sec. 3.2) for

Multievent Query

…

Global Constraints

Event Pattern 1

Event Pattern 2

Event Relationships

Return and Filters

Event Pattern n

Data Query 1

Data Query 2

Data Query n

…

Data Query 
Scheduler

Synthesis

Results

Domain Data 
Characteristics

Data Query 
Executor

Database

Figure 3: Execution of a multievent AIQL query

the matched events. The data query scheduler prioritizes
the execution of data queries to optimize execution per-
formance (Sec. 5.2). Execution results of each data query
are further processed by the executor to perform joins
and filtering to obtain the desired results. Note that by
weaving all these join and filtering constraints together,
the engine could generate a large SQL with many con-
straints mixed together. Such strategy suffers from in-
deterministic optimizations due to the large number of
constraints and often causes the execution to last for min-
utes or even hours (Sec 6.2.2). For an input dependency
query, the engine compiles it to an equivalent multievent
query for execution. For an anomaly query, the engine
maintains the aggregate results as historical states and
performs the filtering based on the historical states.

5.2 Data Query Scheduler

The data query scheduler in Fig. 3 schedules the execu-
tion of data queries. A straightforward scheduling strat-
egy (fetch-and-filter) is to: (1) execute data queries sepa-
rately and store the results of each query in memory; (2)
leverage event relationships to filter out results that do
not satisfy the constraints. However, this strategy incurs
non-trivial computation costs and memory space if some
data queries return a large number of results.

Relationship-Based Scheduling: To optimize the exe-
cution scheduling of data queries, we leverage two in-
sights based on event relationships: (1) event patterns
have different levels of pruning power, and the query
engine can prioritize event patterns with more pruning
power to narrow the search; (2) if two event patterns are
associated with an event relationship, the query engine
can execute the data query for the pattern that has more
constraints first (likely having more pruning power), and
use the execution results to constrain the execution of the
other data query.

Algorithm 1 gives the relationship-based scheduling:
1. A pruning score is computed for every event pattern

based on the number of constraints specified.
2. Event relationships are sorted based on the relation-

ship type (process events and network events are
sorted in front of file events) and the sum of the in-
volved event patterns’ pruning scores.

3. The main loop processes event relationships returned
from the sorted list, executes data queries, and gener-
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ates result tuples. The engine executes the data query
whose associated event pattern has a higher pruning
score first, and leverages existing results to narrow
the search scope. To facilitate tuple management, we
maintain a map M that stores the mapping from the
event pattern ID to the set of event ID tuples that its
execution results belong to. As the loop continues,
new tuple sets are created and put into M, and old tu-
ple sets are updated, filtered, or merged.

4. After analyzing all event relationships, if there remain
unexecuted data queries, these queries are executed
and the corresponding results are put into M.

5. The last step is to merge tuple sets in M, so that all
event patterns are mapped to the same tuple set that
satisfy all constraints.

Algorithm 1: Relationship-based scheduling
Input: n data queries: Q = {qi | i≤ n, i ∈ N+}

n event patterns: E = {ei | i≤ n, i ∈ N+}
m event relationships: R = {rel(ei,e j)}

Output: Event ID tuples that satisfy all constraints
1. ∀ei ∈ E,score(ei)

compute←−−−− ei;

2. Rsorted
sort←−− R;

3. Initialize empty set Exec, empty map M;
for rel(ei,e j) in Rsorted do

if ei not in Exec and e j not in Exec then
// Suppose score(ei)≥ score(e j)

Si
execute←−−−− qi; Exec.add(ei); // Si:event ID set

S j
execute←−−−−

Si
q j; Exec.add(e j);

T ← Si×S j |rel(ei ,e j); // create tuple set from

Si and S j, then filter by rel(ei,e j)

M.put(ei,T ); M.put(e j,T );
else if Either of {ei,e j} in Exec then

// Suppose ei in Exec

S j
execute←−−−−

Si
q j; Exec.add(e j);

T ←M.get(ei); T ′← T ×S j |rel(ei ,e j); // update

tuple set using S j and rel(ei,e j)

replaceVals(M,T,T ′); M.put(e j,T ′);
else

Ti←M.get(ei); Tj ←M.get(e j);
if Ti = Tj then

T ′← Ti |rel(ei ,e j); // filter tuple set

replaceVals(M,Ti,T ′);
else

T ′← Ti×Tj |rel(ei ,e j); // merge tuple sets

replaceVals(M,Ti,T ′); replaceVals(M,Tj,T ′);
4. for ei ∈ E and ei not in Exec do

Si
execute←−−−− qi; Exec.add(ei); M.put(ei,Si);

5. while unique(M.values())> 1 do
Pick Ti, Tj from M.values(), such that Ti 6= Tj;
T ′← Ti×Tj; // merge tuple sets

replaceVals(M,Ti,T ′); replaceVals(M,Tj,T ′);
6. Return unique(M.values());

Function replaceVals (M, T, T’)
Replace all values T stored in M with T ′;

Our empirical results (Sec. 6.3.2 and 6.3.3) demon-
strate that the number of constraints work well in approx-
imating the pruning power of event patterns in a broad

set of queries, even though they may not accurately rep-
resent the size of the results returned by event patterns.
Time Window Partition: The AIQL query engine lever-
ages temporal properties of the data to further speed up
the execution of synthesized data queries: the engine par-
titions the time window of a data query into sub-queries
with smaller time windows, and executes them in par-
allel. Currently, our system splits the time window into
days for a query over a multi-day time window.

6 Deployment and Evaluation

We deployed the AIQL system in NEC Labs America
comprising 150 hosts (10 servers, 140 employee sta-
tions). We performed a series of attacks based on known
exploits in the deployed environment and constructed 46
AIQL queries to investigate these attacks, demonstrat-
ing the expressiveness of AIQL. To evaluate the effec-
tiveness of AIQL in supporting timely attack investiga-
tion, we evaluate the query efficiency and conciseness
against existing systems: PostgreSQL [19], Neo4j [16],
Splunk [23]. We also evaluate the efficiency offered by
our data query scheduler (Sec. 5.2) in both storage set-
tings: PostgreSQL and Greenplum. In total, our eval-
uations use 857GB of real system monitoring data (16
days; 2.5 billion events).

6.1 Evaluation Setup
The evaluations are conducted on a database server with
an Intel(R) Xeon(R) CPU E5-2660 (2.20GHz), 64GB
RAM, and a RAID that supports four concurrent read-
s/writes. Neo4j databases are configured by importing
system entities as nodes and system events as relation-
ships. Greenplum databases are configured to have 5
segment nodes that can effectively leverage the concur-
rent reads/writes of RAID. For each AIQL query (except
anomaly queries), we construct semantically equivalent
SQL, Cypher, and Splunk SPL queries. We measure
the execution time and the conciseness of each query.
Note that we omit the performance evaluation of Splunk
since the community version is limited to 500MB per
day and the enterprise version is prohibitively expensive
($1,900 per GB). Nevertheless, Splunk’s limited support
for joins [24] makes it inappropriate for investigating
multi-step attack behaviors. Due to the limited expres-
siveness of SQL and Cypher, we cannot compare the
anomaly queries (e.g., Query 5). All queries are avail-
able on our project website [1].

6.2 Case Study: APT Attack Investigation
We conduct a case study by asking white hat hackers to
perform an APT attack in the deployed environment, as
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Figure 4: Environmental setup for the APT attack

shown in Fig. 4. Below are the attack steps:
c1 Initial Compromise: The attacker sends a crafted

email to the victim. The email contains an Excel file
with a malicious macro embedded.

c2 Malware Infection: The victim opens the Excel file
through the Outlook mail client and runs the macro,
which downloads and executes a malware (CVE-
2008-0081 [4]) to open the backdoor to the attacker.

c3 Privilege Escalation: The attacker enters the victim’s
machine through the backdoor, scans the network
ports to discover the IP address of the database, and
runs the database cracking tool (gsecdump.exe) to
obtain the credentials of the user database.

c4 Penetration into Database Server: Using the creden-
tials, the attacker penetrates into the database server
and delivers a VBScript to drop another malware,
which creates another backdoor to the attacker.

c5 Data Exfiltration: With the access to the database
server, the attacker dumps the database content using
osql.exe and sends the data dump back.

Anomaly Detectors: We deployed two anomaly detec-
tors based on existing solutions [36,52,66]. The first de-
tector is deployed on the database server, which monitors
network data transfer and emits alerts when the transfer
amount is abnormally large. The second detector is de-
ployed on the Windows client, which monitors process
creation and emits alerts when a process starts an unex-
pected child process. These detectors may produce false
positives, and we need tools like AIQL to investigate the
alerts before taking any further action.

6.2.1 Attack Investigation Procedure

Our investigation assumes no prior knowledge of the de-
tailed attack steps but merely the detector alerts. We start
with these alerts and iteratively compose AIQL queries to
investigate the entire attack sequence.
Step c5: We first examine the alerts reported by the
database server detector, and identify a suspicious ex-
ternal IP “XXX.129” (obfuscated for privacy). Existing
network traffic detectors usually cannot capture the pre-
cise process information [50,64]. Thus, we first compose
an anomaly AIQL query that computes moving average
(SMA3) to find processes which transfer a large amount
of data to this suspicious IP.

1 (at "mm/dd/2017") // date (obfuscated)
2 agentid = xxx // SQL database server (obfuscated)
3 window = 1 min, step = 10 sec

4 proc p write ip i[dstip="XXX.129"] as evt
5 return p, avg(evt.amount) as amt
6 group by p
7 having (amt > 2 * (amt + amt[1] + amt[2]) / 3)

Query 5: AIQL anomaly query for large file transfer

Query 5 finishes execution within 4 seconds and iden-
tifies a suspicious process “sbblv.exe”. We then compose
a multievent AIQL query to find the data sources for this
process (Query 6).

1 (at "mm/dd/2017")
2 agentid = xx // SQL database server (obfuscated)
3 proc p1["%sbblv.exe"] read || write file f1 as evt1
4 proc p1 read || write ip i1[dstip="XXX.129"] as evt2
5 with evt1 before evt2
6 return distinct p1, f1, i1, evt1.optype, evt1.access

Query 6: Starter AIQL query for c5

We identify a suspicious file “BACKUP1.DMP” for
f1 out of the other normal DLL files. We investigate its
creation process and find “sqlservr.exe”, which is a stan-
dard SQL server process with verified signature. Thus,
we speculate that the attacker penetrates into the SQL
server, dumps the data (“BACKUP1.DMP”), and sends
the data back to his host (“XXX.129”). We verify this by
checking that “osql.exe” process is started by “cmd.exe”
(OSQL utility is often involved in many SQL database
attacks). Query 7 gives the complete query for investi-
gating the step c5.

1 (at "mm/dd/2017")
2 agentid = xxx // SQL database server (obfuscated)
3 proc p1["%cmd.exe"] start proc p2["%osql.exe"] as

evt1
4 proc p3["%sqlservr.exe"] write file f1["%backup1.dmp"

] as evt2
5 proc p4["%sbblv.exe"] read file f1 as evt3
6 proc p4 read || write ip i1[dstip="XXX.129"] as evt4
7 with evt1 before evt2, evt2 before evt3, evt3 before

evt4
8 return distinct p1, p2, p3, f1, p4, i1

Query 7: Complete AIQL query for c5

Steps c4-c1: The investigation for c4-c1 is similar to c5,
including iterative query execution and editing. In to-
tal, we constructed 26 multievent queries and 1 anomaly
query to successfully investigate the APT attack, touch-
ing 119GB of data/422 million events.

6.2.2 Evaluation Results

As we can see, attack investigation is an iterative process
that revises queries: (1) latter iterations add more event
patterns based on the selected results from the former
queries, and (2) 4-5 iterations are needed before finding
a complete query with 5-7 event patterns. Thus, slow
response and verbose specification could greatly impede
the effectiveness and efficiency of the investigation.
End-to-End Execution Efficiency: Fig. 5 shows the
execution time of AIQL queries, SQL queries in Post-
greSQL, and Cypher queries in Neo4j. For evaluation
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Table 3: Aggregate statistics for case study
Attack Step # of Queries # of Evt Patterns AIQL (s) PostgreSQL (s) Neo4j (s)
c1 1 3 3.8 3.1 10.8
c2 8 27 31.0 8038.7 10981.7
c3 2 4 15.9 15.3 3615.6
c4 8 35 61.0 10906.7 8150.6
c5 7 18 58.8 2166.5 4285.4
All 26 87 170.5 21130.3 27044.1
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Figure 5: Log10-transformed query execution time

fairness, PostgreSQL and Neo4j databases store the same
copies of data and employ the same schema and index
designs as AIQL, but they do not employ our domain-
specific data storage optimizations such as spatial and
temporal partitioning, nor our scheduling optimizations.2

Table 3 shows aggregate statistics for investigating each
attack step, including the number of queries, the number
of event patterns, and the total investigation time (sec-
ond). We observe that: (1) Neo4j generally runs slower
than PostgreSQL, due to the lack of support for effi-
cient joins; (2) PostgreSQL and Neo4j become very slow
when the query becomes complex and the number of
event patterns (hence the required table joins) becomes
large. Many large queries in PostgreSQL and Neo4j can-
not finish within 1 hour (e.g., c2-7, c2-8, c4-7, c4-8);
(3) all AIQL queries finish within 15 seconds, and the
performance of the queries grows linearly with the num-
ber of event patterns (rather than the exponential growth
in PostgreSQL and Neo4j), demonstrating the effective-
ness of our domain-specific storage optimizations and
query scheduling. (4) the total investigation time is ∼5.9
hours for PostgreSQL and ∼7.5 hours for Neo4j, which
is a significant bottleneck for a timely attack investiga-
tion. In contrast, the total investigation time for AIQL
is within 3 minutes (124x speedup over PostgreSQL and
157x speedup over Neo4j).

Conciseness: The largest AIQL query is c4-8 with 7
event patterns, 25 query constraints, 109 words, and 463
characters (excluding spaces). The corresponding SQL
query contains 77 constraints (3.1x larger), 432 words
(4.0x larger), and 2792 characters (6.0x larger). The cor-
responding Cypher query contains 63 constraints (2.5x
larger), 361 words (3.3x larger), and 2570 characters
(5.6x larger). As the attack behaviors become more
complex, SQL and Cypher queries become verbose with
many joins and constraints, posing challenges for con-
structing the queries for timely attack investigation.

2Fine-grained evaluations of the AIQL scheduling are in Sec. 6.3.

Table 4: Selected malware samples from Virussign
ID Name Category
v1 7dd95111e9e100b6243ca96b9b322120 Trojan.Sysbot
v2 425327783e88bb6492753849bc43b7a0 Trojan.Hooker
v3 ee111901739531d6963ab1ee3ecaf280 Virus.Autorun
v4 4e720458c357310da684018f4a254dd0 Virus.Sysbot
v5 7dd95111e9e100b6243ca96b9b322120 Trojan.Hooker

6.3 Performance Evaluation
We evaluate the performance of AIQL in both storage set-
tings (PostgreSQL and Greenplum) by constructing 19
AIQL queries for a broad set of attack behaviors, touch-
ing 738GB/2.1 billion events. Particularly, we are in-
terested in the efficiency speedup provided by the AIQL
scheduling (Sec. 5.2) in comparison with PostgreSQL
scheduling and Greenplum scheduling.

6.3.1 Attack Behaviors

Multi-Step Attack Behaviors: We asked white hat
hackers to launch another APT attack using different ex-
ploits (details available on [1]). We then constructed 5
AIQL queries for investigating the attack steps (a1-a5).
Dependency Tracking Behaviors: We performed
causal dependency tracking of origins of Chrome update
executables (d1) and Java update executables (d2). We
performed forward dependency tracking of the ramifica-
tion malware info_stealer (d3).
Real-World Malware Behaviors: We obtained a dataset
of free malware samples from VirusSign [33]. We then
randomly selected 5 malware samples (Table 4) from the
3 largest categories: Autorun, Sysbot, and Hooker. We
executed the 5 selected samples in the deployed environ-
ment and constructed AIQL queries by analyzing the ac-
companied behavior reports [33] (v1-v5).
Abnormal System Behaviors: We evaluated 6 abnor-
mal system behaviors based on security experts’ knowl-
edge: (1) s1: command history probing; (2) s2: suspi-
cious web service; (3) s3: frequent network access; (4)
s4: erasing traces from system files; (5) s5: network ac-
cess spike; (6) s6: abnormal file access. Note that for
s5 and s6, we did not construct SQL, Cypher, or Splunk
queries, due to their lack of support for sliding window
and history state comparison.

6.3.2 Efficiency in PostgreSQL

We select two baselines: (1) PostgreSQL databases that
employ our data storage optimizations (Sec. 3.2). Note
that this setting is different from the end-to-end effi-
ciency evaluation in Sec. 6.2.2, because here we want to
rule out the speedup offered by the data storage compo-
nent; (2) AIQL with fetch-and-filter scheduling (denoted
as AIQL FF; Sec. 5.2). We measure the execution time
of the 19 queries in Sec. 6.3.1.
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Figure 6: Query execution time of the scheduling employed by PostgreSQL, AIQL FF, and AIQL (single-node)

Table 5: Conciseness improvement statistics
Metrics AIQL/SQL AIQL/ Cypher AIQL/Splunk SPL
# of constraints 3.0x 2.4x 4.2x
# of words 3.9x 3.1x 3.8x
# of characters 5.3x 4.7x 4.7x

Evaluation Results: Fig. 6 shows the execution time of
queries in PostgreSQL, AIQL FF, and AIQL. We ob-
serve that: (1) the scheduling employed by PostgreSQL
is inefficient in executing complex queries. In particu-
lar, PostgreSQL cannot finish executing a2, a4, and d2
within 1 hour; (2) the scheduling employed by AIQL FF
and AIQL is more efficient than PostgreSQL, with 19x
and 40x speedup, respectively; (3) the relationship-based
scheduling employed by AIQL is more efficient than the
fetch-and-filter scheduling employed by AIQL FF.

6.3.3 Efficiency in Parallel Databases

We compare the performance of AIQL scheduling in
the Greenplum storage with the Greenplum scheduling
(i.e., running SQLs). As in Sec. 6.3.2, the Greenplum
databases also employ our data storage optimizations.

Evaluation Results: Fig. 7 shows the execution time of
queries in Greenplum and AIQL. We observe that: (1) in
most cases, our scheduling in parallel settings achieves a
comparable performance as Greenplum scheduling; (2)
in certain cases (e.g., a4, d3), our scheduling is signif-
icantly more efficient than Greenplum scheduling; (3)
the average speedup over Greenplum is 16x. The results
show that without our semantics-aware model, Green-
plum distributes the storage of events based on their in-
coming orders (which is arbitrary). On the contrary, our
data model allows Greenplum to evenly distribute events
in a host, and achieves more efficient parallel search.

6.4 Conciseness Evaluation
We evaluate the conciseness of queries that express the
19 attack behaviors in Sec. 6.3.1 in three metrics: the
number of query constraints, the number of words, and
the number of characters (excluding spaces).

Evaluation Results: Fig. 8 shows the conciseness met-
rics of AIQL, SQL, Neo4j Cypher, and Splunk SPL
queries. Table 5 shows the average improvement of
AIQL queries over other queries. We observe that AIQL

is the most concise query language in terms of all three
metrics and all attack behaviors: SQL, Neo4j Cypher,
and Splunk SPL contain at least 2.4x more constraints,
3.1x more words, and 4.7x more characters than AIQL.
In contrast to SQL, Cypher, and SPL which employ lots
of joins on tables or nodes, AIQL provides high-level
constructs for spatial/temporal constraints, relationship
specifications, constraints chaining, and context-aware
syntax shortcuts, making the queries much more concise.

7 Discussion

Query Scheduler: Our data query scheduler estimates
the pruning score of an event pattern based on its num-
ber of constraints. This can be improved by (1) consider-
ing the number of records in different hosts and different
time periods and (2) constructing a statistical model of
constraint pruning power. Additionally, the query sched-
uler may partition the time window uniformly based on
the data volume. Such strategies require further analy-
sis of the domain data statistics to infer the proper data
volume for splitting, which we leave for future work.

System Entities and Data Reduction: In the future
work, we plan to add registry entries in Windows and
pipes in Linux to expand the monitoring scope. We
also plan to incorporate more finer granularity system
monitoring, such as execution partition [58, 59] and in-
memory data manipulations [40, 43]. To handle the in-
crease of data size, we plan to explore more aggressive
data reduction techniques in addition to existing solu-
tions [55, 69] to make the system more scalable.

8 Related Work

Security-Related Languages: There also exist domain-
specific languages in a variety of security fields that
have a well-established corpus of low level algorithms,
such as threat descriptions [6,26,31], secure overlay net-
works [46, 56], and network intrusions [35, 39, 65, 68].
These languages provide specialized constructs for their
particular problem domain. In contrast to these lan-
guages, the novelty of AIQL focuses on querying attack
behaviors, including (a) providing specialized constructs
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Figure 7: Query execution time of the scheduling employed by Greenplum and AIQL (parallel)
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Figure 8: Conciseness evaluation of queries written in AIQL, SQL, Neo4j Cypher, and Splunk SPL

for system interaction patterns/relationships and abnor-
mal behaviors; (b) optimizing query execution over sys-
tem monitoring data. Splunk [23] and Elasticsearch [10]
are distributed search and analytics engine for applica-
tion logs, which provide search languages based on key-
words and shell-like piping. However, these systems
lack efficient supports for joins and their languages can-
not express abnormal behaviors with history states as
AIQL. Furthermore, our AIQL can be used to investigate
the real-time anomalies detected on the stream of sys-
tem monitoring data, complementing the stream-based
anomaly detection systems [41] for better defense.
Database Query Languages: Relational databases
based on SQL [19, 25] and SPARQL [22] provide lan-
guage constructs for joins, facilitating the specification
of relationships among events, but these languages lack
constructs for easily chaining constraints among rela-
tions (i.e., tables). Graph databases [16] provide lan-
guage constructs for chaining constraints among nodes
in graphs, but these databases lack efficient support for
joins. Similarly, NoSQL tools [38] lack efficient sup-
ports for joins. Temporal expressions are also introduced
to databases [62], and various time-oriented applications
are explored [63]. Currently, AIQL focuses on the set of
temporal expressions that are frequently used in express-
ing attack behaviors, which is a subset of the temporal
expressions proposed in [62]. More importantly, none of
these languages provide constructs to express frequency-
based behavioral models with historical results.
System Defense Based on Behavioral Analytics: Ex-
isting malware detection has looked at various ways to
build behavioral models to capture malware, such as se-
quences of system calls [67], system call patterns based

on data flow dependencies [51], and interactions between
benign programs and the operating system [53]. Behav-
ioral analytics have also shown promising results for net-
work intrusion [70,72] and internal threat detection [60].
These works learn models to detect anomaly or predict
attacks, but they do not provide mechanisms for users
to perform attack investigation. Our AIQL system fills
such gap by allowing security analysts to query histori-
cal events for investigating the reported anomalies.

9 Conclusion

We have presented a novel system for collecting attack
provenance using system monitoring and assisting timely
attack investigation. Our system provides (1) domain-
specific data model and storage for scaling the storage
and the search of system monitoring data, (2) a domain-
specific query language, Attack Investigation Query Lan-
guage (AIQL) that integrates critical primitives for attack
investigation, and (3) an optimized query engine based
on the characteristics of the data and the queries to better
schedule the query execution. Compared with existing
systems, our AIQL system greatly reduces the cycle time
for iterative and interactive attack investigation.
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Abstract

The proliferation of applications that handle sensitive
user data on wearable platforms generates a critical need
for embedded systems that offer strong security without
sacrificing flexibility and long battery life. To secure sen-
sitive information, such as health data, ultra-low-power
wearables must isolate applications from each other and
protect the underlying system from errant or malicious
application code. These platforms typically use micro-
controllers that lack sophisticated Memory Management
Units (MMU). Some include a Memory Protection Unit
(MPU), but current MPUs are inadequate to the task,
leading platform developers to software-based memory-
protection solutions. In this paper, we present our memory
isolation technique, which leverages compiler inserted
code and MPU-hardware support to achieve better run-
time performance than software-only counterparts.

1 Introduction

Smart watches and smart bands offer novel opportuni-
ties for individuals to monitor and control their health,
manage a chronic disease, pursue athletic excellence, re-
cover from surgery, or steer their lifestyle toward healthier
behaviors. Smart watches can run a variety of apps, in-
cluding third-party apps installed by the user. However,
the battery life for a typical smart watch is about one
day, far shorter than the weeks-long battery life typical
of single-purpose fitness bands. To balance these trade-
offs, some devices (such as the Amulet [10]) seek to
achieve the battery life of a closed-source fitness band
(like a Fitbit) and the capability to run multiple third-party
apps, while retaining strong security properties. These
low-energy multi-app wearable platforms employ ultra-
low-power microcontrollers (MCUs), with tiny RAM,
limited secondary storage, and which lack the hardware-
based memory-protection mechanisms – such as Memory
Management Units (MMU) – needed to ensure that ap-

plications cannot interfere with each other. This makes it
difficult to provide long battery life and strong security
properties that allow multiple third-party apps to coexist.

This work focuses on a fundamental security property:
memory isolation, which ensures that no application can
read, write, or execute memory locations outside its own
allocated region, or call functions outside a designated
system API. In this paper, we present a novel memory
isolation technique, which leverages compiler inserted
code and a low-sophistication Memory Protection Unit
(MPU) found in many microcontrollers, to achieve better
performance than software-only counterparts.

We use the open-source Amulet platform [10] to im-
plement the following isolation methods for comparison:
(1) compiler-enforced language limitations (no pointers,
no recursion), (2) compiler-inserted run-time memory iso-
lation (address-space bounds verification), and (3) MPU-
supported memory isolation (hardware enforced failure).
The first option is the approach taken by the Amulet team,
which limits the programmer to a subset of C. Pointers
are disallowed, and the compiler inserts code for run-time
bounds-checking on arrays. In the second approach, we
modify the Amulet implementation to allow for pointers
and recursion, but our custom compiler inserts code to
validate each pointer dereference to ensure the application
stays within its bounds. In the third approach we imple-
ment a novel combination, in which the OS and compiler
coordinate the dynamic assignment of the MPU’s lim-
ited functionality – and limited compiler-inserted pointer
checking – to enable the desired isolation. Finally, we
automate this process through an extension to the Amulet
Build System. We make the following contributions:

1. an analysis of design considerations, including se-
curity issues, that enable multiple applications on
ultra-low-power wearables, with minimal burden on
the programmer or the user;

2. a novel technique, using the limited-function hard-
ware memory protection unit (MPU) found in com-
modity ultra-low-power microcontrollers, combined
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with compile-time analysis of application code, to
sandbox application code and memory;

3. a prototype implementation as a refinement of the
open-source Amulet platform;

4. an evaluation that compares the performance of the
Amulet platform’s limited language-based memory-
isolation mechanism, a full-featured software-only
approach, and a full-featured MPU-assisted mecha-
nism.

2 Background and Related Work

Early operating systems for wireless sensors like
TinyOS [14] and others [1, 6, 9] reduced complexity [13],
enabled dynamic reprogramming [15], and provided in-
terfaces for concurrent execution [7]. These platforms
did not provide memory isolation, nor did they allow
installation of multiple third-party applications. As the
application space grows, security mechanisms that enable
multiprogramming of multi-tenant microcontroller units
(MCUs) must be developed. Recent work has explored
approaches for memory isolation on microcontrollers.

Some approaches change the language: AmuletOS [10]
uses a dialect of ANSI C, termed AmuletC, which disal-
lows pointers and recursion. TockOS [16] writes kernel
code in Rust, a type-safe and memory-safe language, and
isolates their apps using an MPU. While language mod-
ifications can make compile-time analysis easier [17],
they tend to limit expressiveness and are rarely enough to
ensure complete application isolation.

Language features are often coupled with compiler
checks, binary-code rewriting, or system-implemented
dynamic checks. For example, AmuletOS has a compiler
that inserts run-time bounds-checking code around all
array accesses [10]. Deputy [4, 5] enforces type safety
at compile time; Harbor [12], built on top of SOS [9],
rewrites binary code to check any pointer reference and
function call. T-Kernel [8] modifies code at load time to
secure application memory. Each of these compile and
run-time techniques come with limitations: compile-time
techniques depend on language features (or modifications)
and clear OS rules, while dynamic checking requires ex-
pensive run-time overhead to check memory accesses.

Other systems virtualize the single memory space to
isolate applications, like Maté [13], or rely on novel hard-
ware mechanisms such as a Secure Loader hardware unit
between the CPU, peripherals, and RAM [11].

Many ultra-low-power MCUs like the MSP430 FRAM
series [18] are equipped with a basic Memory Protection
Unit, but they have some or all of the following short-
comings: (1) they support too few distinct regions, not
enough to sandbox each application; (2) they leave certain
segments of memory, like hardware registers or RAM, un-
protected; and (3) they have arcane protection boundary

rules, because they depend on opaque hardware imple-
mentations.

Given all these prior techniques, we see the potential
for a new approach that leverages the meager capabilities
of the new class of MPU, and the lessons learned from
years of isolation techniques using software approaches.
In this paper, we evaluate the performance of our memory-
isolation technique, which leverages compiler-inserted
code and MPU-hardware support, against: a language-
limited software-based approach (the native Amulet ap-
proach [10]), and a full-featured compiler-inserted-check
approach.

3 System Design

We apply our memory-isolation technique to the latest
open-source build of Amulet1. Amulet implements mem-
ory isolation through compiler-enforced language limita-
tions (no pointers, no recursion, no goto statements and
no inline assembly). We remove the most burdensome
restrictions by allowing app programmers to use recur-
sion and C pointers (including function pointers) in their
code, which reduces the effort to port code to the Amulet
and allows developers to write new apps in a customary
fashion. In our approach we implement two methods to
allow these language features and still ensure memory
isolation – use of the memory protection unit (MPU) and
compiler-inserted run-time memory isolation.

The Amulet system allows an Amulet user to select
a customized mix of applications to run on her Amulet
wristband, from a suite of applications developed indepen-
dently by separate app developers. The Amulet system
consists of three core parts – AmuletOS, Amulet Runtime,
and the Amulet Firmware Toolchain (AFT). AmuletOS
provides the core system services and an event-based
scheduler that drives the apps’ state machines, deliver-
ing events by calling the appropriate event-handler func-
tion with parameters representing the details of the event.
Amulet Runtime provides a state-machine environment
in which all applications run. The Amulet Firmware
Toolchain (AFT) [10], analyzes, transforms, merges, and
compiles the user’s desired applications with the Amule-
tOS to construct a firmware image for installation on the
user’s Amulet device.

Amulet devices use a TI MSP430FR5969 MCU, which
have a memory protection unit (MPU), with limited ca-
pabilities as described in Section 2. The MPU is not a
memory-management unit (MMU), nor does it provide
full memory protection: it cannot protect all regions of
memory (the MPU will not prevent instructions from read-
ing or writing the peripheral registers, InfoMem, SRAM,

1The latest open-source release of the Amulet platform can be found
at https://github.com/AmuletGroup/amulet-project
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Figure 1: Memory diagram of our approach, and MPU regions per application.

or interrupt vectors), and its limited selection of three
MPU-controlled segments does not allow us to subdi-
vide memory into the four regions we desire (app code,
app data/stack, off-limits memory below the app, and off-
limits memory above the app). The MPU only has the
ability to protect accesses to memory above the higher
app bound but not below the lower app bound. To pro-
tect lower memory the compiler inserts a lower bound
check. Thus, the MPU memory isolation method consists
of configuring the MPU for an app and inserting lower-
bound checks, while the compiler inserted (software-only)
method mentioned earlier consists of not using the MPU
and inserting both an upper and lower memory bound
check. Although the MSP430’s MPU itself is not suffi-
cient to protect the system and other applications from
pointer misuse by a buggy (or malicious) app, it is use-
ful: in our approach, we strategically leverage both the
MPU and the compiler to accomplish the necessary pro-
tections. This section details the memory map used for
MPU, as well as how we handle memory accesses and
context switches.

Memory Map: Use of the MPU requires a different
memory mapping than in the original Amulet implemen-

tation. Figure 1 diagrams our approach. We leverage
the SRAM for the AmuletOS stack, the low FRAM for
AmuletOS code and data, and the high FRAM for app
code and data, grouped by app.2 Each app’s code and
data are separated, with its code in lower addresses than
its data. The MPU has four segments, of which we can
make good use of three.3InfoMem, the first segment, is
fixed to a certain address range and its configuration can
be changed any time by any code. Furthermore, only
two boundaries are adjustable: the boundary between
segment 1 and 2 and the boundary between segment 2
and 3.

To allow application developers to use C pointers, we
leverage previously described MPU hardware. While
an app is running, we configure the MPU segments as
follows: 0: InfoMem (unused; no access); 1: OS, lower-
memory apps, and current-running app’s code (execute-
only); 2: current-running app’s data and stack (read-write
only); 3: higher-memory apps (no access).

Consider, as an example, Application 2 in Figure 1.
All of the app’s code is gathered in one region, all of its
data and stack in another region. The MPU configuration
triggers a fault if a stray pointer references anything in
higher regions (shown as Application 3 in the figure), but
the MPU cannot fully protect regions in addresses below
the application’s code segment.

While the OS is running, we configure the MPU seg-
ments as follows: 0: InfoMem (unused; no access); 1:
OS code (execute-only); 2: interrupt vectors and OS data
(read-write only); 3: apps (read-write only). This con-
figuration allows the AmuletOS to run its own code and,
as needed, to manipulate data in both the app and OS
regions.

It’s important to note an important design change from
Amulet as it was originally introduced. The Amulet sys-
tem uses a single stack – shared by both the OS and the
current application. This approach is possible because at
most one app runs at any time, so there is no need to retain
a stack for non-running apps. It is also possible because
app code cannot use pointers, and thus cannot read any
memory outside its statically allocated global variables,
or outside its current stack frame. If we were to stick with
the same single-stack model, we would need to bzero the
stack region every time we switched apps, lest the new
app glean information from the stack tailings left behind
by the prior app. We chose instead to allocate a distinct
region of memory for each app’s stack, removing this
cost (and other costs to ensure stack references remain

2If the AmuletOS is too large to fit in the low FRAM, it could span
the interrupt vectors, but for simplicity we do not show it as such in the
diagram.

3MPU segment 0 is pinned to the InfoMem, which is only 512 bytes
and which we currently do not use. We anticipate using the InfoMem
in future revisions, for a return-address stack that protects the return
address from stack overflow bugs and attacks.
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in-bounds) at the cost of increased memory usage.
That brings us to another important design decision

related to security and the application stack. Languages
such as C traditionally place a function’s return address
on the stack, and jump indirectly through that address as
part of the function-return instruction. Stack overflows
in buggy or malicious code can overwrite that entry on
the stack, however, causing the function to return to a
different address. We leverage the compiler to insert
code to bounds-check the return address before every
function return. Furthermore, we place the top of the
app stack below the app’s data in the app’s data/stack
segment, and allow the stack to grow downward. The
compiler and linker can compute the size of the app’s data
region, and estimate the maximum stack depth, to ensure
the data/stack segment is large enough for the app’s needs.
If the app overflows its stack, for example by too-deep
recursive calls, it will cross an MPU boundary into an
execute-only code region and trigger a fault.

Memory accesses: An important role for the runtime
system is to handle application faults; when the app at-
tempts an invalid memory access, it jumps to a FAULT
function to log app-specific information about the fault.
At compile time, the AFT uses its transformation tools
to verify that the app only calls approved API functions
and reads approved system global variables, and to insert
code that verifies (at run-time) every pointer dereference
before it occurs. Notice that every one of these checks
is a simple comparison against a constant, followed by
a conditional branch (jump) to the fault-handling code.
Because all app code is processed by the AFT, and the app
cannot inline any of its own assembly code, the resulting
code is guaranteed to check every pointer used by the app.

Context Switches: The AmuletOS provides an API
for applications to access utilities and system services.
We need to swap MPU configurations and change stacks
on each transition, and we need to carefully handle
application-provided pointers passed through API calls
to the OS. Furthermore, because each app, and the OS,
has a separate stack segment, we need to change the stack
pointer on every transition between the OS and an app.

AFT Implementation: We extend the AFT to imple-
ment the MPU and software-only method checks previ-
ously mentioned. These tasks are accomplished by the
AFT in a four-phase code analysis. In the first phase, the
AFT checks for any still unsupported language features –
such as inline assembly and GOTO statements. In addi-
tion, the AFT enumerates each memory access and OS
API call on an app by app basis. Examination of the ap-
plication call graph and the stack frame for each function
determines the maximum stack size for each app. In the
event of recursion, the maximum stack size cannot be
determined and the AFT cannot guarantee a large enough
stack to prevent overflow. During the second phase, the

Operation
No

Isolation

Feature

Limited
MPU

Software

Only

Memory Access 23 41 29 32
Context Switch 90 90 142 98

Table 1: Average cycle count for basic memory isolation operations.

MPU configuration code and the previously mentioned
memory access checks (with placeholder values for app
boundaries) are injected into the code. The third phase
marks apps with memory section attributes for the linker,
as well as injecting the assembly code needed to manipu-
late the stack pointer. The last phase involves determining
the code size of each app, updating the linker script to
place each app in high memory (as detailed in Figure 1),
and updating the memory access checks from phase two
with the correct app boundaries. The AFT completes by
recompiling the modified code into the final firmware
image.

4 Evaluation

In this section we evaluate the costs of application isola-
tion. Our proposed system allows developers to write pure
C, instead of a constrained Amulet C, enabling them to
more easily write (or port) application code to the Amulet
platform. We look at the isolation overhead of a large set
of Amulet applications for three methods in Section 4.1,
and see that while the overhead of our isolation method is
higher than a feature-limited Amulet C, the impact of the
overhead on battery lifetime is negligible. In Section 4.2
we describe three benchmark applications, and the trade-
offs they display between computation-intensive and OS-
intensive applications.

4.1 Isolation Overhead

We use the Amulet Resource Profiler (ARP) and the ARP-
view tool to count the number of memory accesses and
context switches per state and transition, per application.
Using ARP-view, we can account for the rate of environ-
mental, user, and timer events set by the developer, com-
bine this information with the counted number of memory
accesses and context switches, and extrapolate the num-
ber of cycles of overhead for isolating applications. We
can then convert the estimated cycles into energy cost
(in Joules) to estimate the negative impact of isolation
on battery lifetime. The results of this experiment are
shown in Figure 2 for nine applications that are part of the
Amulet platform. These applications comprise thousands
of lines of code, and many have been deployed in user
studies [2, 3]. For all applications, isolation using ei-

ther the MPU or Software Only methods has less than

a 0.5% impact on battery lifetime.
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source Profiler infrastructure.

4.2 Benchmark Applications

We further explore the system overhead of application iso-
lation through several benchmark applications with vary-
ing levels of memory accesses. We designed a Synthetic

App a simple application whose purpose is to test the two
fundamental actions that incur memory-protection over-
heads: memory accesses and context switches. We then
investigate two major functions in our Activity Detection

App, which correspond to Activity Case 1 and Activity

Case 2 in Figure 3. These functions have a high number of
memory accesses compared to context switches. Finally,
we design a Quicksort App: an application that runs the
quicksort algorithm with a high number of memory ac-
cesses and no context switches. Each application was run
200 times and a hardware timer on the MSP430FR5969
MCU was used to measure the time of each iteration (with
a precision of 16 cycles).
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Figure 3: Percentage slowdown for each memory isolation method calculated by
comparing them to running apps with no isolation method.

The results from the synthetic app test in Table 1 show
that our MPU method had the fastest memory accesses,
but the slowest context switches. This result was expected,
and validates the simulation results, as our method only
requires half the number of bounds checks as the Soft-
ware Only approach, but incurs extra overhead for re-
configuring the MPU during context switches. Figure 3
further confirms the results from Table 1, which is that
our method is the most effective when used for computa-
tionally heavy applications.

5 Discussion and Conclusion

In this paper we explore the challenge of memory iso-
lation on ultra-low-power microcontrollers, which offer
primitive hardware support for memory protection. Tra-
ditional approaches use a range of language limitations,
compiler analysis, or dynamic checks (inserted by com-
piler or other tools); few have leveraged the capabilities
of emerging MPUs.

Our solution employs MPU hardware to protect most
regions of memory from inappropriate access by appli-
cation code. Our proof-of-concept implementation (on
an Amulet) is limited by the capabilities of the MSP430
MPU, which cannot protect the region below the current
app’s allocation; thus, the compiler still needs to insert
some code for bounds checks – albeit half as many as in
the software-only solution. We envision extending our
approach to work with more advanced MPUs to further re-
duce our runtime overheads; MPUs that can protect all of
memory and support 4 or more regions would negate the
need for our compiler-inserted bounds checks. We may
also explore more robust error handling techniques, such
as restart policies for applications that trigger a memory
access fault, or the use of a shadow return-address stack
to prevent applications from jumping outside their code
bounds.

In conclusion, our exploration shows that (1) it is possi-
ble to efficiently support memory isolation without resort-
ing to language limitations, as in the original Amulet ap-
proach, and (2) a hybrid approach that leverages compiler-
inserted code and MPU-hardware support can provide per-
formance benefits over a software-only approach. While
our approach leveraging the MPU was not effective for
apps that make frequent API calls, our MPU isolation
approach had, for all applications, less than 0.5% impact
on battery lifetime.
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Abstract
Serverless computing is an emerging paradigm in which
an application’s resource provisioning and scaling are
managed by third-party services. Examples include
AWS Lambda, Azure Functions, and Google Cloud
Functions. Behind these services’ easy-to-use APIs
are opaque, complex infrastructure and management
ecosystems. Taking on the viewpoint of a serverless
customer, we conduct the largest measurement study
to date, launching more than 50,000 function instances
across these three services, in order to characterize their
architectures, performance, and resource management
efficiency. We explain how the platforms isolate the
functions of different accounts, using either virtual
machines or containers, which has important security
implications. We characterize performance in terms
of scalability, coldstart latency, and resource efficiency,
with highlights including that AWS Lambda adopts
a bin-packing-like strategy to maximize VM memory
utilization, that severe contention between functions can
arise in AWS and Azure, and that Google had bugs that
allow customers to use resources for free.

1 Introduction
Cloud computing has allowed backend infrastructure
maintenance to become increasingly decoupled from
application development. Serverless computing (or
function-as-a-service, FaaS) is an emerging application
deployment architecture that completely hides server
management from tenants (hence the name). Tenants
receive minimal access to an application’s runtime
configuration. This allows tenants to focus on developing
their functions — small applications dedicated to specific
tasks. A function usually executes in a dedicated function
instance (a container or other kind of sandbox) with
restricted resources such as CPU time and memory.
Unlike virtual machines (VMs) in more traditional
infrastructure-as-a-service (IaaS) platforms, a function
instance will be launched only when the function is
invoked and is put to sleep immediately after handling
a request. Tenants are charged on a per-invocation basis,
without paying for unused and idle resources.

Serverless computing originated as a design pattern
for handling low duty-cycle workloads, such as process-
ing in response to infrequent changes to files stored on
the cloud. Now it is used as a simple programming model
for a variety of applications [14,22,42]. Hiding resource
management from tenants enables this programming
model, but the resulting opacity hinders adoption for
many potential users, who have expressed concerns
about: security in terms of the quality of isolation,
DDoS resistance, and more [23, 35, 37, 40]; the need to
understand resource management to improve application
performance [4, 19, 24, 27, 28, 40]; and the ability
of platforms to deliver on performance [10–12, 29–
31]. While attempts have been made to shed light on
platforms’ resource management and security [33, 34],
known measurement techniques, as we will show, fail to
provide accurate results.

We therefore perform the most in-depth study of
resource management and performance isolation to
date in three popular serverless computing providers:
AWS Lambda, Azure Functions, and Google Cloud
Functions (GCF). We first use measurement-driven
approaches to partially reverse-engineer the architectures
of Lambda and Azure Functions, uncovering many
undocumented details. Then, we systematically examine
a series of issues related to resource management: how
quickly function instances can be launched, function
instance placement strategies, function instance reuse,
and more. Several security issues are identified and
discussed.1 We further explore how CPU, I/O and
network bandwidth are allocated among functions and
the ensuing performance implications. Last but not least,
we explore whether all resources are properly accounted
for, and report on two resource accounting bugs that
allow tenants to use extra resources for free. Some
highlights of our results include:

• AWS Lambda achieved the best scalability and
the lowest coldstart latency (the time to provision
a new function instance), followed by GCF. But

1We responsibly disclosed our findings to related parties before this
paper was made public.
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the lack of performance isolation in AWS between
function instances from the same account caused up
to a 19x decrease in I/O, networking, or coldstart
performance.

• Azure Functions used different types of VMs as
hosts: 55% of the time a function instance runs on
a VM with debased performance.

• Azure had exploitable placement vulnerabilities [36]:
a tenant can arrange for function instances to run on
the same VM as another tenant’s, which is a stepping
stone towards cross-function side-channel attacks.

• An accounting issue in GCF enabled one to use
a function instance to achieve the same computing
resources as a small VM instance at almost no cost.

Many more results are given in the body. We have
repeated several measurements in May 2018 and high-
light in the paper the improvements the providers have
made. We noticed that serverless platforms are evolving
quickly; nevertheless, our findings serve as a snapshot
of the resource management mechanisms and efficiency
of popular serverless platforms, provide performance
baselines and design options for developers to build more
reliable platforms, and help tenants improve their use of
serverless platforms. More generally, our study provides
new measurement techniques that are useful for other
researchers. Towards facilitating this, we will make our
measurement code public and open source.2

2 Background

Serverless computing platforms. In serverless com-
puting, an application usually consists of one or more
functions — standalone, small, stateless components
dedicated to handle specific tasks. A function is most
often specified by a small piece of code written in some
scripting language. Serverless computing providers
manage the execution environments and backend servers
of functions, and allocate resources dynamically to
ensure their scalability and availability.

In recent years, many serverless computing platforms
have been developed and deployed by cloud providers,
including Amazon, Azure, Google, and IBM. We focus
on Amazon AWS Lambda, Azure Functions and Google
Cloud Functions.3 In these services, a function is
executed in a dedicated container or other type of
sandbox with limited resources. We use function
instance to refer to the container/sandbox a function
runs on. The resources advertised as available to a
function instance varies across platforms, as shown in
Table 1. When the function is invoked by requests, one
or more function instances (depending on the request
volume) will be launched to execute the function. After

2https://github.com/liangw89/faas_measure
3We use AWS, Azure and Google to refer to these services.

AWS Azure Google

Memory (MB) 64 * k
(k = 2, 3, ..., 24) 1536 128 * k

(k = 1, 2, 4, 8, 16)

CPU Proportional to
Memory Unknown Proportional to

Memory

Language
Python 2.7/3.6

Nodejs 4.3.2/6.10.3
Java 8, and others

Nodejs 6.11.5,
Python 2.7,
and others

Nodejs 6.5.0

Runtime OS Amazon Linux Windows 10 Debian 8*
Local disk (MB) 512 500 > 512
Run native code Yes Yes Yes
Timeout (second) 300 600 540

Billing factor Execution time
Allocated memory

Execution time
Consumed memory

Execution time
Allocated memory

Allocated CPU

Table 1: A comparison of function configuration and
billing in three services. (*: We infer the OS version
of GCF by checking the help information and version of
several Linux tools such as APT.)

the function instance(s) have processed the requests
and exited or reached the maximum execution time
(see “Timeout” in Table 1), the function instance(s)
becomes idle. They may be reused to handle subsequent
requests to avoid the delay of launching new instances.
However, idle function instances can also be suddenly
terminated [32]. Each function instance is associated
with a non-persistent local disk for temporarily storing
data, which will be erased when the function instance
is destroyed.

One benefit of using serverless services is that tenants
do not pay for resources consumed when function
instances are idle. Tenants are billed based on resource
consumption only during execution.4 In common
across platforms is charging for aggregated function
execution time across all invocations. Additionally, the
price varies depending on the pre-configured function
memory (AWS, Google) or the actual consumed memory
during invocations (Azure). Google further charges
different rates based on CPU speed.

Related work. Many serverless application developers
have conducted their own experiments to measure
coldstart latency, function instance lifetime, maximum
idle time before shut down, and CPU usage in AWS
Lambda [10–12, 19, 27, 28, 40]. Unfortunately, their
experiments were ad-hoc, and the results may be
misleading because they did not control for contention
by other instances. A few research papers report on
measured performance in AWS. Hendrickson et al. [18]
measured request latency and found it had higher latency
than AWS Elastic Beanstalk (a platform-as-a-service
system). McGrath et al. [34] conducted preliminary
measurements on four serverless platforms, and found

4Azure Functions offers two types of function hosting plans.
Consumption Plan manages resources in a serverless-like way while
App Service Plan is more like “container-as-a-service”. We only
consider Consumption Plan in this paper.
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that AWS achieved better scalability, coldstart latency,
and throughput than Azure and Google.

A concurrent study from Lloyd et al. [33] investigated
the factors that affect application performance in AWS
and Azure. The authors developed a heuristic to
identify the VM a function runs on in AWS based on
the VM uptime in /proc/stat. Our experimental
evaluation suggests that their heuristic is unreliable (see
§4.5), and that the conclusions they made using it are
mostly inaccurate.

In our work, we design a reliable method for identi-
fying instance hosts, and use systematic experiments to
inspect resource scheduling and utilization.

3 Methodology
We take the viewpoint of a serverless user to characterize
serverless platforms’ architectures, performance, and
resource management efficiency. We set up vantage
points in the same cloud provider region to manage and
invoke functions from one or more accounts via official
APIs, and leverage the information available to functions
to determine important characteristics. We repeated the
same experiment under various settings by adjusting
function configuration and workloads to determine the
key factors that could affect measurement results. In the
rest of the paper, we only report on the relevant factors
affecting the experiment results.

We integrate all the necessary functionalities and
subroutines into a single function that we call a mea-
surement function. A measurement function performs
two tasks: (1) collect invocation timing and function
instance runtime information, and (2) run specified
subroutines (e.g., measuring local disk I/O throughput,
network throughput) based on received messages. The
measurement function collects runtime information via
the proc filesystem on Linux (procfs), environment
variables, and system commands. It also reports
on execution start and end time, invocation ID (a
random 16-byte ASCII string generated by the function
that uniquely identify an invocation), and function
configurations to facilitate further analysis.

The measurement function checks the existence of a
file named InstanceID on the local disk, and if it does
not exist, creates this file with a random 16-byte ASCII
string that serves as the function instance ID. Since the
local disk is non-persistent and has the same lifetime as
the associated function instance, the InstanceID file will
not exist for a fresh function instance, and will not be
modified or deleted during the function instance lifetime
once created.

The regions for functions were us-east-1, us-central-1,
“EAST US” in AWS, Google and Azure (respectively).
The vantage points were VMs with at least 4 GB RAM
and 2 vCPUs. We used the software recommended by the

VM1

Instance root ID: 

sandbox-root-aaaaaa

VM2

Instance root ID: 

sandbox-root-bbbbbb

VM1

website instance_id: abcd…
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Figure 2: VM and function instance organization in AWS
Lambda and Azure Functions. A rectangle represents a
function instance. A or B indicates different tenants.

providers and follow the official instructions to configure
the time synchronization service in the vantage points. 5

We implemented the measurement function in various
languages, but most experiments used Python 2.7 and
Nodejs 6.* as the language runtime (the top 2 most
popular languages in AWS according to Newrelic
[25]). We invoked the functions via synchronous HTTP
requests. Most of our measurements were done from
July–Dec 2017.

Ethical considerations. We built our measurement
functions in a way that should not cause undue burden
on platforms or other tenants. In most experiments,
the function did no more than collecting necessary
information and sleeping for a certain amount of time.
Once we discovered performance issues we limited our
tests to not DoS other tenants. We only conducted
small-scale tests to inspect the security issues but did not
further exploit them.

4 Serverless Architectures Demystified
We combine two approaches to infer the architectures
of AWS Lambda, Google Cloud Functions, and Azure
Functions: (1) reviewing official documents, related
online articles and discussions, and (2) measurements
— analyzing the data collected from running our
measurement functions many times (> 50,000) under
varying conditions. This data enables partially re-
verse engineering the architectures of AWS, Azure,
and Google.

4.1 Overview

AWS. A function executes in a dedicated function
instance. Our measurements suggest different versions
of a function will be treated as distinct and executed
in different function instances (we discuss outliers in
§5.5). The procfs file system exposes global statistics
of the underlying VM host, not just a function instance,
and contains useful information for profiling runtime,

5AWS: http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/set-time.html; Google: https://developers.

google.com/time/; Azure does not offer instructions so we use the
default NTP servers at http://www.pool.ntp.org/en/use.html
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(1) Set up N distinct functions f1, ..., fN that run the
following task upon receiving a RUN message: record
/proc/diskstats, write 20 K – 30 K times to a file (1
byte each time), and record /proc/diskstats again.

(2) Invoke each function once without RUN message to launch
N function instances.

(3) Assuming the instances of f1, ..., fk (k instances) share the
same instance root ID, invoke f1, ..., fk once each with the
RUN message and examine I/O statistics of each function
instance.

Figure 3: I/O-based coresidency test in AWS.

identifying host VMs, and more. From procfs, we
found host VMs mostly have 2 vCPUs and 3.75 GB
physical RAM (same as EC2 c4.large instances).

Azure. Azure Functions uses Function Apps to
organize functions. A function app, corresponding
to one function instance, is a container that contains
the execution environments for individual functions [5].
The environment variables in the function instance
contain some global information about the host VM. The
environment variables collected suggest the host VMs
can have 1, 2 or 4 vCPUs.

One can create multiple functions in a function app
and run them concurrently. In our experiments, we
assume that a function app has only one function.

Google. Google isolates and filters information that can
be accessed from procfs. The files under procfs only
report usage statistics of the current function instance.
Also, many system files and syscalls are obscured or
disabled so we cannot get much information about
runtime. The /proc/meminfo and /proc/cpuinfo

files suggest a function instance has 2 GB RAM and 8
vCPUs, which we suspect is the configuration for VMs.

4.2 VM identification
Associating function instances with VMs enables us to
perform richer analysis. The heuristic for identifying
VMs in AWS Lambda proposed by Lloyd et al.,
though theoretically possible, has never been evaluated
experimentally [33]. Therefore, we looked for a more
robust method.

AWS. The /proc/self/cgroup file has a special entry
that we call instance root ID. It starts with “sandbox-
root-” followed by a 6-byte random string. We found
it can be used to reliably identity a host VM. Using
the I/O-based coresidency tests (shown in Figure 3), we
confirmed that the instances sharing the same instance
root ID are on the same VM, as the difference in the total
bytes written between two consecutive invocations, for fi
and fi+1 respectively, is almost the same as the number of
bytes written by fi. Moreover, we can get the same kernel
uptime (or memory usage statistics) from the instances

when reading /proc/uptime (/proc/meminfo) at the
same time.

We call the IP obtained via querying IP address lookup
tools from an instance VM public IP, and the IP obtained
from running uname command VM private IP. Function
instances that share the same instance root ID have the
same VM public IP and VM private IP.

Azure. The WEBSITE INSTANCE ID environment
variable serves as the VM identifier, according to official
documents [6]. We refer to it as Azure VM ID. We used
Flush-Reload via shared DLLs to verify coresidency of
instances sharing the same Azure VM ID [43]. The
results suggest Azure VM ID is a robust VM identifier.

Google. We could not find any information enabling
us to identify a host. Using I/O-based coresidency did
not work as procfs contains no global usage statistics.
We tried to use performance as a covert-channel (e.g.,
performing patterned I/O operations in one function
instance and detecting the pattern from I/O throughput
variation in another) but found this is not reliable, as
performance varied greatly (See §6.2).

4.3 Tenant isolation
Prior studies showed that co-located VMs in AWS
EC2 allow attacks [36, 38, 41]. With the knowledge
of instance-VM relationship, we examined how well
tenants’ primary resources — function instances — are
isolated. We assume that one tenant corresponds to one
user account, and only consider VM-level coresidency.

AWS. The functions created by the same tenant will
share the same set of VMs, regardless of their con-
figurations and code. The detailed instance placement
algorithm will be discussed in §5.1. AWS assigns
different VMs to each tenant, since we have never seen
function instances from different tenants in the same
VM. We conducted a cross-tenant coresidency test to
confirm this assumption. The basic principle is similar
to Figure 3: in each round, we create a new function
under each of the two accounts at the same time, write
a random number of bytes in one function, and check the
disk usage statistics in another function. We ran this test
for 1 week, but found no VM-coresidency of cross-tenant
function instances.

Azure. Azure Functions are a part of the Azure App
service, in which all tenants share the same set of
VMs according to Azure [2]. Hence, tenants in Azure
Functions should also share VM resources. A simple test
confirmed this assumption: we invoked 500 functions in
each of two accounts and found that 30% of function
instances were coresident with a function instance from
the other account, executing in a total of 120 VMs. Note
that as of May 2018, different tenants no longer share the
same VMs in Azure. See §5.1 for more details.
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4.4 Heterogeneous infrastructure
We found the VMs in all the considered services had a
variety of configurations. The variety, likely resulting
from infrastructure upgrades, can cause inconsistent
function performance. To estimate the fraction of
different types of VM in a given service, we examined
the configurations of the host VMs of 50,000 unique
function instances in each service.

In AWS, we checked the model name and the
processor numbers in the /proc/cpuinfo, and the
MemTotal in the /proc/meminfo, and found five types
of VMs: two E5-2666 vCPUs (2.90 GHZ), two E5-
2680 vCPUs (2.80 GHZ), two E5-2676 vCPUs (2.40
GHZ), two E5-2686 vCPUs (2.30 GHZ), and one E5-
2676 vCPUs. These types account for 59.3%, 37.5%,
3.1%, 0.09% and 0.01% of 20,447 distinct VMs.

Azure shows a greater diversity of VM configurations.
The instances in Azure report various vCPU counts:
of 4,104 unique VMs, 54.1% use 1 vCPU, 24.6% use
2 vCPUs, and 21.3% use 4 vCPUs. For a given
vCPU count, there are three CPU models: two Intel
and one AMD. Thus, nine (at least) different types
of VMs are being used in Azure. Performance may
vary substantially based on what kind of host (more
specifically, the number of vCPUs) runs the function.
See §6 for more details.

In Google, the model name is always “unknown”, but
there are 4 unique model versions (79, 85, 63, 45),
corresponding to 47.1%, 44.7%, 4.2%, and 4.0% of
selected function instances.

4.5 Discussion
Being able to identify VMs in AWS is essential for our
measurements. It helps to reduce noise in experiments
and get more accurate results. For the sake of
comparison, we evaluated the heuristic designed by
Lloyd et al. [33]. The heuristic assumes that different
VMs have distinct boot times, which can be obtained
from /proc/stat, and group function instances based
on the boot time. We sent 10 – 50 concurrent requests
at a time to 1536 MB functions for 100 rounds, used
our methodology (instance root ID + IP) to label the
VMs, and compared against the heuristic. The heuristic
identified 940 VMs as 600 VMs, so 340 (36%) VMs
were incorrectly labeled. So, we conclude this heuristic
is not reliable.

None of these serverless providers completely hide
runtime information from tenants. More knowledge of
instance runtime and the backend infrastructure could
make finding vulnerabilities in function instances easier
for an adversary. In prior studies, procfs has been
used as a side-channel [9, 21, 46]. In the serverless
setting, one actually can use it to monitor the activity
of coresident instances; while seemingly harmless, a
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Figure 4: The total number of VMs being used after
sending a given number of concurrent requests in AWS.

dedicated adversary might use it as a steppingstone to
more sophisticated attacks. Overall, accesses to runtime
information, unless necessary, should be restricted for
security purposes. Additionally, providers should expose
such information in an auditable way, i.e., via API calls,
so they are able to detect and block suspicious behaviors.

5 Resource Scheduling
We examine how instances and VMs are scheduled in the
three serverless platforms in terms of instance coldstart
latency, lifetime, scalability, and more.

5.1 Scalability and instance placement
Elastic, automatic scaling in response to changes in
demand is a main advertised benefit of the serverless
model. We measure how well platforms scale up.

We created 40 measurement functions of the same
memory size f1, f2, . . . , f40 and invoked each fi with 5i
concurrent requests. We paused for 10 seconds between
batches of invocations to cope with rate limits in the
platforms. All measurement functions simply sleep for
15 seconds and then return. For each configuration we
performed 50 rounds of measurements.

AWS. AWS is the best among the three services
with regard to supporting concurrent execution. In
our measurements, N concurrent invocations always
produced N concurrently running function instances.
AWS could easily scale up to 200 (the maximum
measured concurrency level) fresh function instances.

We observed that 3,328 MB was the maximum
aggregate memory that can be allocated across all
function instances on any VM in AWS Lambda. AWS
Lambda appears to treat instance placement as a bin-
packing problem, and tries to place a new function
instance on an existing active VM to maximize VM
memory utilization rates, i.e., the sum of instance
memory sizes divided by 3,328. We invoked a single
function with sets of concurrent requests, increasing
from 5 to 200 with a step of 5, and recorded the
total number of VMs being used after each number
of requests. A few examples are shown in Figure 4.
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#vCPU Total 1 2 3 4 >4
1 61.3 16.6 24.6 13.7 4.9 1.5
2 19.5 7.3 7.1 3.3 1.4 0.4
4 19.2 7.6 6.2 3.9 1.3 0.2
All 100 31.5 37.9 20.9 7.6 2.1

Table 5: The average (over 10 runs) probabilities (as per-
centages) of getting N-way single-account coresidency
(for N ∈ {1,2,3,4,} and N > 4, when launching 1,000
function instances in Azure. Here N = 1 indicates no
coresidency among the functions.

The number of active VMs are close to the “expected”
number if AWS maximizes VM memory utilization.
Quantitatively speaking, more than 89% of VMs we got
in the test achieved 100% memory utilization. Sending
concurrent requests to different functions resulted in
the same pattern, indicating placement is agnostic to
function code.

In a further test we sent 10 sets of random numbers
of concurrent requests to randomly-chosen functions of
varied memory sizes over 50 runs. AWS’s placement still
worked efficiently: the average VM memory utilization
rate across VMs in the same run ranged from 84.6% to
100%, with a median of 96.2%.

Azure. Azure documentation states that it will
automatically scale up to at most 200 instances for
a single Nodejs-based function and at most one new
function instance can be launched every 10 seconds [7].
However, in our tests of Nodejs-based functions, we saw
at most 10 function instances running concurrently for a
single function, no matter how we changed the interval
between invocations. All the requests were handled by a
small set of function instances. None of the concurrently
running instances were on the same VM. So, it appears
that Azure does not try to co-locate function instances of
the same function on the same VMs.

We conducted a single-account coresidency test to
examine how function instances are placed on VMs of
different numbers of vCPUs. We invoked 100 different
functions from one account at a time until we had 1,000
concurrent, distinct function instances running. We then
checked for co-residency, and repeated the entire test
10 times.

We observed at most 8 instances on a single 1/2/4-
vCPU VM. Co-resident instances tend to be on 1-vCPU
VMs (presumably because there are more 1-vCPU VMs
for Azure Functions). We show the breakdown of co-
residency results in Table 5. In general, co-residency is
undesirable for users wanting many function instances,
as contention between instances on low-end VMs will
exacerbate performance issues.

We further conducted a cross-account coresidency test
in a more realistic scenario where an attacker wants
to place her function instances on the same VM with

the instances of a target victim. In each round of this
test, we launched either 5 or 100 function instances
from one account (the victim) and 500 simultaneous
function instances from another account (the attacker).
On average, 0.12% (3.82%) of the 500 attacker instances
were coresident with the 5 (100) victim instances in each
round (10 rounds in total). So, it was possible to achieve
cross-tenant coresidency even for a few targets. In the
test with 100 victim instances, we were able to obtain
up to 5 attacker instances on the same VM. Security
implications will be discussed in §5.6.

We repeated the coresidency tests in May 2018 but
could not find any cross-tenant coresident instances,
even in the test in which we tired 500 victim instances.
Therefore, we believe that Azure has fixed the cross-
tenant coresidency issue.

Google. Google failed to provide our desired scalability,
even though Google claims HTTP-triggered functions
will scale to the desired invocation rate quickly [13].
In general, only about half of the expected number of
instances, even for a low concurrency level (e.g., 10),
could be launched at the same time, while the remainder
of the requests were queued.

5.2 Coldstart and VM provisioning
We use coldstart to refer to the process of launching
a new function instance. For the platform, a coldstart
may involve launching a new container, setting up the
runtime environment, and deploying a function, which
will take more time to handle a request than reusing an
existing function instance (warmstart). Thus, coldstarts
can significantly affect application responsiveness and,
in turn, user experience.

For each platform, we created 1,000 distinct functions
of the same memory and language and sequentially
invoked each of them twice to collect its coldstart
and warmstart latency. We use the difference of
invocation send time (recorded by the vantage point)
and function execution start time (recorded by the
function) as an estimation of its coldstart/warmstart
latency. As baselines, the median warmstart latency in
AWS, Google, and Azure were about 25, 79 and 320 ms
(respectively) across all invocations.

AWS. We examine two types of coldstart events: a
function instance is launched (1) on a new VM that
we have never seen before and (2) on an existing VM.
Intuitively, case (1) should have significantly longer
coldstart latency than (2) because case (1) may involve
starting a new VM. However, we found case (1) was only
slightly longer than (2) in general. The median coldstart
latency in case (1) was only 39 ms longer than (2) (across
all settings). Plus, the smallest VM kernel uptime (from
/proc/uptime) we found was 132 seconds, indicating
that the VM has been launched before the invocation.
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Figure 6: Median coldstart latency with min-max error
bars (across 1,000 rounds) under different combinations
of function languages and memory sizes in AWS. Y-axis
is truncated at 1,000 ms.

So, AWS has a pool of ready VMs. The extra delays in
case (1) are more likely introduced by scheduling (e.g.,
selecting a VM) rather than launching a VM.

Our results are consistent with prior observations:
function memory and language affect coldstart la-
tency [10], as shown in Figure 6. Python 2.7 achieves
the lowest median coldstart latencies (167–171 ms)
while Java functions have significantly higher latencies
than other languages (824–974 ms). Coldstart latency
generally decreases as function memory increases. One
possible explanation is that AWS allocates CPU power
proportionally to the memory size; with more CPU
power, environment set up becomes faster (see §6.1).

A number of function instances may be launched
on the same VM concurrently, due to AWS’s instance
placement strategy. In this case, the coldstart latency
increases as more instances are launched simultaneously.
For example, launching 20 function instances of a
Python 2.7-based function with 128 MB memory on a
given VM took 1,321 ms on average, which is about 7
times slower than launching 1 function instance on the
same VM (186 ms).

Azure and Google. The median coldstart latency in
Google ranged from 110 ms to 493 ms (see Table 7).
Google also allocates CPU proportionally to memory,
but in Google memory size has greater impact on
coldstart latency than in AWS. It took much longer
to launch a function instance in Azure, though their
instances are always assigned 1.5 GB memory. The
median coldstart latency was 3,640 ms in Azure.
Anecdotes online [3] suggest that the long latency is
caused by design and engineering issues in the platform
that Azure is both aware of and working to improve.

Latency variance. We collected the coldstart latencies
of 128 MB, Python 2.7 (AWS) or Nodejs 6.* (Google
and Azure) based functions every 10 seconds for over

Provider-Memory Median Min Max STD
AWS-128 265.21 189.87 7048.42 354.43
AWS-1536 250.07 187.97 5368.31 273.63
Google-128 493.04 268.5 2803.8 345.8
Google-2048 110.77 52.66 1407.76 124.3
Azure 3640.02 431.58 45772.06 5110.12

Table 7: Coldstart latencies (in ms) in AWS, Google, and
Azure using Nodejs 6.* based functions for comparison.
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Figure 8: Coldstart latency (in ms) over 168 hours. All
the measurements were started at right after midnight on
a Sunday. Each data point is the median of all coldstart
latencies collected in a given hour. For clarity, the y-axes
use different ranges for each service.

168 hours (7 days), and calculated the median of the
coldstart latencies collected in a given hour. The changes
of coldstart latency are shown in Figure 8. The coldstart
latencies in AWS were relatively stable, as were those
in Google (except for a few spikes). Azure had the
highest network variation over time, ranging from about
1.5 seconds up to 16 seconds.

We repeated our coldstart measurements in May 2018.
We did not find significant changes in coldstart latency
in AWS. But, the coldstart latencies became 4x slower
on average in Google, probably due to its infrastructure
update in February 2018 [15], and 15x better in Azure.
This result demonstrates the importance of developing a
measurement platform for serverless systems (similar to
[39] for IaaS) to do continuous measurements for better
performance characterization.

5.3 Instance lifetime
A serverless provider may terminate a function instance
even if still in active use. We define the longest time
a function instance stays active as instance lifetime.
Tenants prefer long lifetimes because their applications
will be able to maintain in-memory state (e.g., database
connections) longer and suffer less from coldstarts.

To estimate instance lifetime, we set up functions
of different memory sizes and languages, and invoked
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Figure 9: The CDFs of instance lifetime in AWS, Google, and Azure under different memory and request frequency.

them at different frequencies (one request per 5/30/60
seconds). The lifetime of a function instance is the
difference between the first time and the last time we saw
the instance. We ran the experiment for 7 days (AWS
and Google) or longer (Azure) so that we could collect at
least 50 lifetimes under a given setting.

In general, Azure function instances have significantly
longer lifetimes than AWS and Google as shown in
Figure 9. In AWS, the median instance lifetime across
all settings was 6.2 hours, with the maximum being 8.3
hours. The host VMs in AWS usually lives longer:
the longest observed VM kernel uptime was 9.2 hours.
When request frequency increases instance lifetime tends
to become shorter. Other factors have little effect on
lifetime except in Google, where instances of larger
memory tend to have longer lifetimes. For example,
when being invoked every five seconds, the lifetimes
were 3–31 minutes and 19–580 minutes for 90% of the
instances of 128 MB and 2,048 MB memory in Google,
respectively. So, for functions with small memory under
a heavy workload, Google seems to launch new instances
aggressively rather than reusing existing instances. This
can increase the performance penalty from coldstarts

5.4 Idle instance recycling
To efficiently use resources, Serverless providers shut-
down idle instances to recycle allocated resources (see,
e.g., [32]). We define the longest time an instance can
stay idle before getting shut down as instance maximum
idle time. There is a trade-off between long and short
idle time, as maintaining more idle instances is a waste
of VM memory resources, while fewer ready-to-serve
instances cause more coldstarts.

We performed a binary search on the minimum delay
tidle between two invocations of the function that resulted
in distinct function instances. We created a function,
invoked it twice with some delay between 1 and 120
minutes, and determined whether the two requests used
the same function instance. We repeated until we
identified tidle. We confirmed tidle (to minute granularity)
by repeating the measurement 100 times for delays close
to tidle.

AWS. An instance could usually stay inactive for at most
27 minutes. In fact, in 80% of the rounds instances were

shut down after 26 minutes. When their host VM is
“idle”, i.e., no active instances on that VM, idle function
instances will be recycled the following way: Assuming
that the function instances of N functions f1, . . . , fN are
coresident on a VM, and k fi instances are from fi. For a
given function fi, AWS will shut down bk fi/2c of the
idle instances of fi every 300 (more or less) seconds
until there are two or three instances left, and eventually
shut down the remaining instances after 27 minutes (we
have tested with k fi = 5,10,15,20). AWS performs these
operations to f1, . . . , fN on a given VM independently,
and also on individual VMs independently. Function
memory or language does not affect maximum idle time.

If there are active instances on the VM, instances
can stay inactive for a longer time. We kept one
instance active on a given VM by sending a request
every 10 seconds and found: (1) AWS still adopted the
same strategy to recycle the idle instances of the same
function, but (2) somehow idle time was reset for other
coresident instances. We observed some idle instances
could stay idle in such cases for 1–3 hours.

Azure and Google. In Azure, we could not find a
consistent maximum instance idle time. We repeated
the experiment several times on different days and found
the maximum idle times of 22, 40, and more than 120
minutes. In Google, the idle time of instances could be
more than 120 minutes. After 120 minutes, instances
remained active in 18% of our experiments.

5.5 Inconsistent function usage
Tenants expect the requests following a function update
should be handled by the new function code, especially
if the update is security-critical. However, we found in
AWS there was a small chance that requests could be
handled by an old version of the function. We call such
cases inconsistent function usage. In the experiment, we
sent k = 1 or k = 50 concurrent requests to a function,
and did this again without delay after updating one of
the following aspects of the function: IAM role, memory
size, environment variables, or function code. For a
given setting, we performed these operations for 100
rounds. When k = 1, 1%–4% of the tests used an
inconsistent function. When there were more associated
instances before the update (k = 50), 80% of our
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rounds had at least one inconsistent function. Looking
across all tests from all rounds, we found that 3.8% of
instances ran an inconsistent function. Examining the
cases, we found two situations: (1) AWS launched new
instances of the outdated function (2% of all the cases),
and (2) AWS reused existing instances of the outdated
function. Inconsistent instances never handle more than
one request before terminating (note that max execution
time is 300 s in AWS), but still, a considerable faction of
requests may fail to get desired results.

As we waited for a longer time after the function
update to send requests, we found fewer inconsistent
cases, and eventually zero cases with a 6-second
waiting time. So, we suspect that the inconsistency
issues are caused by race conditions in the instance
scheduler. The results suggest coordinating function
update among multiple function instances is challenging
as the scheduler cannot do an atomic update.

5.6 Discussion
We believe our results motivate further study on
designing more efficient instance scheduling algorithms
and robust schedulers to further improve VM resource
utilization, i.e., to maximize VM memory usage, reduce
scheduling latency, and promptly propagate function
updates while guaranteeing consistency.

Loading modules or libraries could introduce high
latency during coldstart [1, 3]. To reduce coldstart la-
tency, providers might need to adopt more sophisticated
library loading mechanisms, for example, using library
caching to speed up this process, and resolving the
library dependence before deployment and only loading
required libraries.

Cross-tenant VM sharing in Azure plus the ability to
run arbitrary binaries in the function instance could make
applications vulnerable to many kinds of side-channel
attacks [16, 17, 20, 45]. We did not examine how well
Azure can tackle the potential threats resulting from
cross-tenant VM sharing, and leave the actual security
vulnerable as an open question.

AWS’s bin-packing placement may bring security
issues to an application, depending on its design. When
a multi-tenant application in Lambda uses IAM roles
to isolate its tenants, function instances from different
application tenants still share the same VMs. We found
two real services that use this pattern: Backand [8] and
Zapier [44]. Both allow their tenants to deploy functions
in Lambda in some way. We successfully achieved
cross-account function coresidency in Backand in just a
few tries, while failing in Zapier due to its rate limits
and large user base (1 M+). Nevertheless, we could
still observe the changes of procfs caused by other
Zapier tenants’ applications, which may admit side-
channels [9, 21, 46]. For these multi-tenant applications
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rounds) in Azure, with min-max error bars.

to isolate their tenants and achieve better security and
privacy, AWS may need to provide a finer-grained VM
isolation mechanism, i.e., allocating a set of VMs to each
IAM role instead of to each account.

6 Performance Isolation
In this section, we investigate performance isolation. We
mainly focus on AWS and Azure, where our ability to
achieve coresidency allows more refined measurements.
We also present some basic performance statistics for
instances in Google that surface seeming contention with
other tenants.

6.1 CPU utilization
To measure CPU utilization, our measurement function
continuously records timestamps using time.time()

(Python) or Date.now() (Nodejs) for 1,000 ms. The
metric instance CPU utilization rate is defined as
the fraction of the 1,000 ms for which a timestamp
was recorded.

AWS. According to AWS, a function instance’s CPU
power is proportional its pre-configured memory [26].
However, AWS does not give details of how exactly
CPU time is allocated to instances. We measured the
CPU utilization rates on 1,000 distinct function instances
and show the median rate for a given memory size in
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Figure 12: Aggregate I/O and network throughput across coresident instances as concurrency level increases. The
coresident instances perform the same task simultaneously. The values are the median values across 50 rounds.

Figure 10a. Instances with higher memory get more
CPU cycles. The median instance CPU utilization rate
increased from 7.7% to 92.3% as memory increased
from 128 to 1,536 MB, and the corresponding standard
deviations (SD) were 0.7% and 8.7%. When there is
no contention from other coresident instances, the CPU
utilization rate of an instance can vary significantly,
resulting in inconsistent application performance. That
said, an upper bound on CPU share is approximated by
2∗m/3328, where m is the memory size.

We further examine how CPU time is allocated among
coresident instances. We let colevel be the number of
coresident instances and a colevel of 1 indicates only
a single instance on the VM. For memory size m, we
selected a colevel in the range 2 to b3328/mc. We
then measured the CPU utilization rate in each of the
coresident instances. Examining the results over 20
rounds of tests, we found that the currently running
instances share CPU fairly, since they had nearly the
same CPU utilization rate (SD <0.5%). With more
coresident instances, each instance’s CPU share becomes
slightly less than, but still close to 2 ∗ m/3328 (SD
<2.5% in any setting).

The above results indicate that AWS tries to allocate a
fixed amount of CPU cycles to an instance based only on
function memory.

Azure and Google. Google adopts the same mechanism
as AWS to allocate CPU cycles based on function
memory [13]. In Google, the median instance CPU
utilization rates ranged from 11.1% to 100% as function
memory increased. For a given memory size, the
standard deviations of the rates across different instances
are very low (Figure 10b), ranging from 0.62% to 2.30%.

Azure has a relatively high variance in the CPU
utilization rates (14.1%–90%), while the median was
66.9% and the SD was 16%. This is true even though the
instances are allocated the same amount of memory. The
breakdown by vCPU number shows that the instances on
4-vCPU VMs tend to gain higher CPU shares, ranging
from 47% to 90% (Figure 11a). The distributions of
utilization rates of instances on 1-vCPU VMs and 2-
vCPU VMs are in fact similar; however, when colevel

increased, the CPU utilization of instances on 1-vCPU
VMs drops more dramatically, as shown in Figure 11b.

6.2 I/O and network

To measure I/O throughput, our measurement functions
in AWS and Google used the dd command to write
512 KB of data to the local disk 1,000 times (with
fdatasync and dsync flags to ensure the data is
written to disk). In Azure, we performed the same
operations using a Python script (which used os.fsync

to ensure data is written to disk). For network
throughput measurement, the function used iperf 3.13

with default configurations to run the throughput test for
10 seconds with different same-region iperf servers, so
that iperf server-side bandwidth was not a bottleneck.
The iperf servers used the same types of VMs as the
vantage points.

AWS. Figure 12 shows aggregate I/O and network
throughput across a given number of coresident in-
stances, averaged across 50 rounds. All the coresident
instances performed the same measurement concur-
rently. Though the aggregate I/O and network throughput
remains relatively stable, each instance gets a smaller
share of the I/O and network resources as colevel
increases. When colevel increased from 1 to 20, the
average I/O throughput per 128 MB instance dropped
by 4x, from 13.1 Mbps to 2.9 Mbps, and network
throughput by 19x, from 538.6 MB/s to 28.7 MB/s.

Coresident instances get less share of the network with
more contention. We calculate the Coefficient of Varia-
tion (CV), which is defined as SD divided by the mean,
for each colevel. A higher CV suggests the performance
of instances differ more. For 128 MB instances, the CV
of network throughput ranged from 9% to 83% across all
colevels, suggesting significant performance variability
due to contention with coresident instances. In contrast,
the I/O performance was similar between instances (CV
of 1% to 6% across all colevels). However, the I/O
performance is affected by function memory (CPU) for
small memory sizes (≤ 512 MB), and therefore the I/O
throughput of an instance could degrade more when
competing with instances of higher memory.
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Azure. In Azure, the I/O and network throughput of an
instance also drops as colevel increases, and fluctuates
due to contention from other coresident instances. Even
more interestingly, resource allocation is differentiated
based on what type of VM a function instance happens
to be scheduled on. As shown in Figure 12, the 4-vCPU
VMs could get 1.5x higher I/O and 2x higher network
throughput than the other types of VMs. The 2-vCPU
VMs have higher I/O throughput than 1-vCPU VMs, but
similar network throughput.

Google. In Google, both the measured I/O and network
throughput increase as function memory increases:
the median I/O throughput ranged from 1.3 MB/s to
9.5 MB/s, and the median network throughput ranged
from 24.5 Mbps to 172 Mbps. The network throughput
measured from different instances with the same memory
size can vary substantially. For instance, the network
throughput measured in the 2,048 MB function instances
fluctuated between 0.2 Mbps and 321.4 Mbps. We found
two cases: (1) all instances throughputs’ fluctuated
during a given period of time, irrespective of memory
sizes, or (2) a single instance temporarily suffered from
degraded throughput. Case (1) may be due to changes in
network conditions, while case (2) leads us to suspect
that GCF tenants actually share hosts and suffer from
resource contention.

6.3 Discussion
AWS and Azure fail to provide proper performance
isolation between coresident instances, and so contention
can cause considerable performance degradation. In
AWS, the fact that they bin-pack function instances from
the same account onto VMs means that scaling up a
function places the same function on the same VM,
resulting in resource contention and prolonged execution
time (not to mention a longer coldstart latency). Azure
has similar issues, with the additional issue that
contention within VMs arises between accounts. The
latter also opens up the possibility for cross-tenant
degradation of service attacks.

We leave developing new, efficient isolation mech-
anisms that take the special characteristics of server-
less (e.g., frequent instance creation, short-lived in-
stances, and small memory-footprint functions) as
considerations for future work.

7 Resource accounting
In the course of our study, we found several resource
accounting issues that can be abused by tenants.

Background processes. We found in Google one
could execute an external script in the background that
continued to run even after the function invocation
concluded. The script we ran posted a 10 M file every
10 seconds to a server under our control, and the

longest time it stayed alive was 21 hours. We could
not find any logs of the network activity performed by
the background process and were not charged for its
resource consumption.67 In contrast, one could run such
background script in Azure but Azure logged all the
activity. Our observations suggest that: (1) In Azure and
Google the function instance execution context will not
be frozen after an invocation, as opposed to AWS; and
(2) Google does resource accounting via monitoring the
Node.js process rather than the entire function instance.

One can exploit the billing issue in Google to run
sophisticated tasks at negligible cost. For a function
instance with 2 GB memory and 2.4 GHz CPU, one only
needs to pay for a few invocations ($0.0000029/100 ms,
with 2 M free calls) to get the same computing resources
as using a g1-small instance ($0.0257/hour) on Google
Cloud Platform.

CPU accounting. In Google, we found there was an
80% chance that a just-launched function instance (of
any memory size other than 2,048 MB) could temporally
gain more CPU time than expected. Measuring the CPU
utilization rates and the completion times of a CPU-
intensive task, we confirmed that the instances that one
expects to have 8%–58% of the CPU time (see §6) had
near 100% of the CPU time, the same as that given to
2,048 MB instances. The instance can retain the CPU
resources until the next invocation. Note that if one wants
to conduct performance measurements in Google, this
issue could introduce a lot of noise (we appropriately
controlled for it in previously reported experiments).

8 Conclusion

In this paper, we provided insights into architectures,
resource utilization, and the performance isolation effi-
ciency of three modern serverless computing platforms.
We discovered a number of issues, raised from either
specific design decisions or engineering, with regard to
security, performance, and resource accounting in the
platforms. Our results surface opportunities for research
on improving resource utilization and isolation in future
serverless platform designs.
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Abstract
Broadly defined as the Internet of Things (IoT), the
growth of commodity devices that integrate physical pro-
cesses with digital systems have changed the way we live,
play and work. Yet existing IoT platforms cannot eval-
uate whether an IoT app or environment is safe, secure,
and operates correctly. In this paper, we present SOTERIA, a
static analysis system for validating whether an IoT app or
IoT environment (collection of apps working in concert)
adheres to identified safety, security, and functional prop-
erties. SOTERIA operates in three phases; (a) translation of
platform-specific IoT source code into an intermediate
representation (IR), (b) extracting a state model from the
IR, (c) applying model checking to verify desired prop-
erties. We evaluate SOTERIA on 65 SmartThings market
apps through 35 properties and find nine (14%) individual
apps violate ten (29%) properties. Further, our study of
combined app environments uncovered eleven property
violations not exhibited in the isolated apps. Lastly, we
demonstrate SOTERIA on MALIOT, a novel open-source test
suite containing 17 apps with 20 unique violations.

1 Introduction
The introduction of IoT devices into public and pri-
vate spaces has changed the way we live. For exam-
ple, home automation apps supporting smart devices of
thermostats, locks, switches, surveillance systems, and
Internet-connected appliances change the way we inter-
act with our living spaces. While these systems have
been widely embraced, IoT has also raised concerns
about the security and safety of digitally augmented
lives [18,21,24,34,36]. IoT apps have access to functions
that may put the user or environment at risk, e.g., unlock
doors when not at home or create unsafe or damaging
conditions by turning off the heat in winter. There has
been an increasing amount of recent research exploring
IoT security and more broadly environmental safety.

One of the oft-discussed criticisms of IoT is that the
software and hardware frameworks do not possess the
capability to determine if an IoT device or environment

is implemented in a way that is safe, secure, and operates
correctly. The SmartThings [37], OpenHab [32], Apple’s
Homekit [1] provide guidelines and policies for regu-
lating security [2, 31, 43], and related markets provide
a degree of internal (hand) vetting of the apps prior to
distribution [3, 40]. Recent technical community efforts
have explored vulnerability analysis within targeted IoT
domains [21, 30], while others focused on sensitive data
leaks and correctness of IoT apps using a range of anal-
yses [8, 17, 25, 45]. However, tools and algorithms for
evaluating general safety and security properties within
IoT apps and environments are at this time largely absent.

In this paper, we present SOTERIA1, a static analysis sys-
tem for validating whether an IoT app or IoT environment
(collection of apps working in concert) adheres to identi-
fied safety, security, and functional properties. We exploit
existing IoT platforms’ sensor-computation-actuator pro-
gram structures to translate source code of an IoT app
into an intermediate representation (IR). Here, the SOTERIA

IR models the app’s lifecycle–including app entry points,
event handler methods, and call graphs. From this, SOTERIA

uses the IR to perform efficient static analysis extracting a
state model of the app; the state model includes its states
and transitions. A set of IoT properties is systematically
developed, and model checking is used to check that the
app (or collection of apps) conforms to those properties.
In this work, we make the following contributions:

• We introduce SOTERIA, a system designed for model
checking of IoT apps. SOTERIA automatically extracts
a state model from a SmartThings IoT app and ap-
plies model checking to find property violations.

• We used SOTERIA on 65 different IoT apps (35 apps
from the official SmartThings repository and 30
community-contributed third-party apps from the
official SmartThings forum) and reveal how safety
and security properties are violated.

• We develop an IoT-specific test corpus MALIOT, an
open-source repository of 17 flawed apps that con-
taining an array of safety and security violations.

1Soteria is the goddess in Greek mythology preserving from harm.
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Figure 1: The architecture of SmartThings IoT platform.

2 Background
IoT platforms provide a software stack used to develop
applications that monitor and control IoT devices.2 For
example, Fig. 1 shows the three components of the Sam-
sung’s SmartThings Platform: a hub, apps, and the cloud
backend [40]. The hub controls the communication be-
tween connected devices, cloud back-end, and mobile
apps. Apps are developed in the Groovy language (a
dynamic, object-oriented language) and executed in a
Kohsuke sandboxed environment. The cloud backend cre-
ates software proxies called SmartDevices that act as a
conduit for physical devices, as well as run the apps.

The permission system in SmartThings allows a devel-
oper to specify devices and user inputs required for an
app at install time. Devices in SmartThings have capabili-
ties (i.e., permissions) that are composed of actions and
events. Actions represent how to control or actuate device
states and events are triggered when device states change.
SmartThings apps control one or more devices. Apps sub-
scribe to device events or other pre-defined events such as
the icon-clicking event, and an event handler is invoked
to handle it, which may lead to further events and actions.

Users can install SmartThings apps either from the
market or proprietary system via SmartThings Mobile.
In the former, publishing an app in the official market
requires the developer to submit the source code of the
app for review. Official apps appear in the market after the
completion of a lengthy review process [40]. In the latter,
organizations can develop an app and make it accessible
using the Web IDE. These self-published apps do not
receive any official review process and are often shared
in the SmartThings official community forum [41].

3 Motivation and Assumptions
Example IoT Applications. We introduce three running
examples used throughout for exposition and illustration:
The Smoke-Alarm app contains a smoke-detection alarm,
a water valve (basement), and a light switch (living room).
The app sounds the smoke alarm and turns on the light
when smoke is detected; when smoke is detected and a
heat level is reached, the app opens the water valve to
activate fire sprinklers; finally, it turns off the alarm and
closes water valve when smoke is clear. Also, it turns on
the light switch when the smoke-detector battery is low.
The Water-Leak-Detector app detects a water leak with

2While the SOTERIA approach is largely agnostic to the specific IoT
software platform, we focus on Samsung’s SmartThings Platform [37].
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Figure 2: 1 shows the state models of the expected and actual
behavior of the Smoke-Alarm app. The app fails because of a
bug which halts the alarm when smoke is present. 2 shows the
state models of the Smoke-Alarm and Water-Leak-Detector

apps violating a property when they installed together. The envi-
ronment fails when the apps interact–the Water-Leak-Detector
app shuts off water valve when a fire is detected.

a moisture sensor and shuts off the main water supply
valve in order to prevent any further water damage.
The Thermostat-Energy-Control app locks the front
door and sets the heating thermostat temperature to a pre-
defined value when the user-presence mode is changed
(e.g., from the user-away mode to the user-home mode or
vice versa). When the energy usage is above a pre-defined
consumption threshold, it turns off the thermostat switch.
SOTERIA illustrated. Here we informally illustrate SOTERIA

analysis through a single and multi-app example.
Consider the Smoke-Alarm app. We first model the

app’s source code as a transition system. Fig. 2(1a)
presents the expected behavior of the smoke alarm; the
alarm sounds when smoke is detected and not otherwise.
The state model starts from an initial state S0 and tran-
sits to state S1 when smoke is detected. The state transi-
tions are controlled by the output of the smoke sensor:
“smoke-detected” (smoke) and “not detected” (~smoke).
Fig. 2(1b) is the actual behavior extracted from the open-
source implementation of a smoke alarm (that has a bug).
We use SOTERIA to validate the above safety property–i.e.,
“does the alarm always sound when there is smoke?” To
perform this analysis SOTERIA encodes the safety prop-
erty in temporal logic and verifies it on the model with a
symbolic model checker. Naturally, the analysis showed
a violation; the actual behavior of the app stops the sound
moments after the alarm sounds (the state transition from
S1 to S0). In this case, users may not hear the short or in-
termittent alarm with potentially disastrous consequences.

Now consider the situation when both Smoke-Alarm
and Water-Leak-Detector apps are co-located in an en-
vironment. Fig. 2(2c) and 2(2d) presents expected behav-
ior of the Smoke-Alarm and Water-Leak-Detector apps,
respectively. Here, we use SOTERIA to validate the property
“does the sprinkler system activate when there is a fire?”.
The model checker revealed that there was a safety vio-
lation: the Water-Leak-Detector app shuts off the water
valve and stops fire sprinklers when it detects water re-
lease from sprinklers. In this case, the joint behavior of
the otherwise-safe apps leaves users are at risk from fire.
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Figure 3: Overview of SOTERIA architecture.

Assumptions and Threat Model. We assume violations
can be caused by design flaws or malicious intent. In the
latter, the adversary may insert malicious code resulting
in insecure or unsafe states, e.g., as seen in attacks on
smart light bulbs [36] and home security systems [35].
We do not evaluate adversaries’ ability to thwart secu-
rity measures (e.g., crypto, forged inputs) or explore user
privacy, but defer those investigations to future work.

4 SOTERIA

Fig. 3 provides an overview of the four stages of the SOTE-
RIA system analysis. SOTERIA first extracts an intermediate
representation (IR) from the source code of an IoT app
(Sec. 4.1). The IR is used to model the lifecycle of an
app including entry points, event handler methods, and
call graphs. Second, SOTERIA uses the IR to extract a state
model of the app; the state model includes its states and
transitions (Sec. 4.2). Lastly, a set of IoT properties is de-
veloped (Sec. 4.3), and model checking is used to check
that the app conforms to those properties when running
independently or interacting with other apps (Sec. 4.4).

4.1 From Source Code to IR
The first step toward modeling an IoT app is to extract
an IR from the app’s source code. SOTERIA builds the IR
from a framework-agnostic component model, which is
comprised of the building blocks of IoT apps, shown in
Fig. 4. A broad investigation of existing IoT environments
showed that the programming environments could be gen-
eralized into three component types: (1) Permissions grant
capabilities to devices used in an app; (2) Events/Actions
reflect the association between events and actions: when
an event is triggered, an associated action is performed;
and (3) Call graphs represent the relationship between
entry points and functions in an app. The IR has sev-
eral benefits. First, it allows us to precisely model the
app lifecycle as described above. Second, it is used to
abstract away parts of the code that are not relevant to
property analysis, e.g., definition blocks that specify
app meta-data and logger logging code. Third, it allows
efficiently extract the states and state transitions from the
implementation (see below). Presented in Fig. 5, we use
the Smoke-Alarm app to illustrate the use of the IR.
Permissions. When a SmartThings app gets installed or
updated, the permissions for devices and user inputs are
displayed to the user (and explicitly accepted). The per-
missions are read-only, and app logic is implemented
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Figure 4: Components of the intermediate representation (IR).

using the permissions. SOTERIA visits permissions of an
app to extract its devices and user inputs. Turning to the
IR in Fig. 5, the permission block (lines 1–7) defines: (1)
the devices; a smoke detector, a switch, an alarm, a valve,
and a battery in the smoke detector; and (2) user input:
“thrshld” is used to determine whether the battery level
of the smoke detector is low. For each permission, the IR
declares a triple following keyword “input”. For a device,
the triple associates an identifier for the device, called the
device handle, to its platform-specific device name in or-
der to determine the interface that the device may access.
For instance, an app may associate identifier the_switch
with a switch device, which is in either the “off” or the
“on” state. For a user input, the triple in the IR contains
the variable name storing the user input, its type, and a tag
showing the kind of input such as the user-defined input.
In this way, we obtain a complete list of devices and user
inputs that an app might access.

Events/Actions. Similar to mobile applications, an IoT
app does not have a main method due to its event-driven
nature. Apps implicitly define entry points by subscrib-
ing events. The event/actions block in an IR is built by
analyzing how an app subscribes to events. Each line in
the block includes three pieces of information: a device
handle, a device event to be subscribed, and an event han-
dler method to be invoked when that event occurs (lines
9–10). Event handler methods are commonly used to take
device actions. Therefore, an app may define multiple
entry points by subscribing multiple events of a device
or devices. Turning to our example, the event of “smoke-
detected” state change is associated with an event handler
method named h1() and the event of “battery” level state
change with h2(). We also found that events are not lim-
ited to device events; we call these abstract events: (1)
Timer events; event-handlers are scheduled to take actions
within a particular time or at pre-defined times (e.g., an
event-handler is invoked to take actions after a given num-
ber of minutes has elapsed or at specific times such as
sunset); (2) App touch events; for example, some action
can be performed when the user clicks on a button in an
app; (3) what actions get generated may also depend on
mode events, which are behavior filters automating device
actions. For instance, an app running in “home” mode
turns off the alarm and turns on the alarm when it is in the
“away” mode. SOTERIA examines all event subscriptions
and finds their corresponding event-handler methods; it
creates a dummy main method for each entry point.
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//	Permissions	block	
input	(smoke_detector,	smokeDetector,	type:device)	
input	(the_switch,	switch,	type:device)		
input	(the_alarm,	alarm,	type:device)	
input	(the_battery,	battery,	type:device)	
input	(thrshld,	number,	type:user_defined,)	
	

//	Events/Actions	block	
subscribe(smoke_detector,	"smoke",	h1)	
subscribe(the_battery,	"battery",	h2)	
	

//	Entry	point	
h1(){	
		if(evt.value	==	"detected")	{	
						the_alarm.siren()	
		}		
		if(evt.value=="clear"){	
						the_alarm.off()	
		} 		
}	
	

//	Entry	point	
h2(){	
		batteryLevel	=	p()	
	

		if(batteryLevel	<	thrshld	?:	10){	
						the_switch.on()	
			}	
}	
	

p(){	
			return	the_battery.currentValue("battery")	
}	

1:	
2:	
3:	
4:	
5:	
	6:	

	

7:	
8:	
9:	
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26:	
27:	
28:	

//	Permissions	block	
input	(smoke_detector,	smokeDetector,	type:device)	
input	(the_switch,	switch,	type:device)	
input	(the_alarm,	alarm,	type:device)		
input	(the_valve,	valve,	type:device)	
input	(the_battery,	battery,	type:device)	
input	(thrshld,	number,	type:user_defined)	
	

//	Events/Actions	block	
subscribe(smoke_detector,	"smoke",	h1)	
subscribe(the_battery,	"battery",	h2)	
	

//	Entry	point	
h1(){	
		if(evt.value	==	"detected")	{	
						the_alarm.siren()	
						the_valve.open() 		
		}		
		if(evt.value=="clear"){	
						the_alarm.off()	
						the_valve.close()	
		} 		
}	
	

//	Entry	point	
h2(){	
		batteryLevel	=	p()	
	

		if(batteryLevel	<	thrshld){	
						the_switch.on()	
		}	
}	
	

p(){	
			return	the_battery.currentValue("battery")	
}	
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6:	
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Figure 5: The IR of Smoke-Alarm app constructed with SOTERIA.

Asynchronously Executing Events. While each event
corresponds to a unique event-handler, the sequence of
event handler invocations cannot be decided in advance
when multiple events happen at the same time. For in-
stance, in our example, there could be a third subscription
in the event/actions block that subscribes to the switch-off
event to invoke another event handler method. We con-
sider eventually consistent events, which means any time
an event handler is invoked, it will finish execution be-
fore another event is handled, and the events are handled
in the order they are received by an edge device (e.g., a
hub). We base our implementation on path-sensitive anal-
ysis that analyzes an app’s event handlers, which can run
in arbitrary sequential order. This analysis is enabled by
constructing a separate call graph for each entry point.
Call Graphs. We create a call graph for each entry point
that defines an event handler method. Turning to the IR in
Fig. 5, we define call graphs for two entry points h1() and
h2() (line 12 and 23). h1() invokes p() to get the current
battery level of the smoke detector. Addressed below,
note that these initial graphs are sometimes incomplete
because of dynamic method invocations (reflection).

4.2 State Model Extraction
SOTERIA next extracts a state model from the IR model.
Definition of State Models. An IoT app manages one
or more devices. Each device has a set of attributes,
which are the states of the device. For instance, in
the Water-Leak-Detector app, the water sensor has a
boolean-typed attribute, whose value signals the “water-
detected” or “water-undetected” status. Hence, we nat-
urally model the states in the model from the values of
device attributes. IoT apps are event-driven: events such as
state changes or user input trigger event handlers, which
can in turn change device attributes by invoking device
actions. Therefore, by analyzing an IoT app’s code, we

can add state transitions and label them with events that
trigger the transitions (changes to attribute values).

More formally, we define the state model of an IoT app
as a triple (Q,Σ,δ), where Q is a set of states, Σ is a set of
transition labels, and δ is a state-transition function that
represents labeled transitions between states. We restrict
our attention to deterministic state models, as we believe
this is a condition for safe operation of IoT devices. In
fact, after a state model extracted, SOTERIA reports nonde-
terministic state models as a safety violation.
Challenges in Extracting State Models. Although it
may appear at first glance to be straightforward, extracting
state models is fraught with challenges. First, extraction
faces state-explosion problem. For instance, a thermostat
device may have an integer-discrete or continuous temper-
ature attribute would lead to many different states–adding
a state for every possible value in such cases would result
in state explosion. To address this, SOTERIA implements
a form of property abstraction that collapses states by
aggregating attribute values (see Sec. 4.2.1).

A second challenge concerns with model precision.
A state model is an abstraction of an app’s logic and
necessarily has to over-approximate. A sound over-
approximation can cause false positives during model
checking. One such approximation that caused false pos-
itives for an earlier version of SOTERIA was that the la-
bels on transitions were only events and thus too coarse-
grained. It turns out that many IoT apps change device
states conditionally; for example, an app may turn off
a switch when the energy consumption is above some
threshold and turn on the switch when the energy con-
sumption is below another threshold. For precision, the
current version of SOTERIA performs a path-sensitive analy-
sis to extract predicates that guard state changes and adds
the predicates as part of state-transition labels. We detail
how state transitions are constructed in Sec. 4.2.2.

Finally, the SmartThings platform has a number of id-
iosyncrasies that SOTERIA’s model extraction must address.
For instance, SmartThings apps are written in Groovy,
a dynamically typed language that supports call by re-
flection; as another example, SmartThings apps can use
special objects for persistent data storage. We will discuss
how these issues are addressed in Sec. 4.2.3.

4.2.1 Extracting States

As discussed, states in an app’s state model should
represent device attribute values. Turning to the
Water-Leak-Detector app, this app has two devices: a
water sensor and a valve, both of which are represented
as Boolean attributes. Therefore, the app’s state model
has four states: water-detected and valve-closed; water-
detected and valve-open; water-undetected and valve-
closed; water-undetected and valve-open. The number
of possible states of an app is determined by the Cartesian
product of the attributes of its device. For instance, an app
implementing two devices that have A and B attributes
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Algorithm 1: Computing dependence from device’s code

Input :ICFG: Inter-procedural control flow graph
Input :A numerical-valued attribute
Output :Dependence relation dep

1 worklist← /0; done← /0; dep← /0

2 for an id in a device action call that sets the attribute at node n do
3 worklist ← worklist ∪ {(n: id)}
4 end
5 while worklist is not empty do
6 (n: id)← worklist.pop()
7 done← done ∪ {(n: id)}

/* a def of (n: id) at node n′ means a path from n’
to n exists and on the path there is no other
assignment to id */

8 for a def of (n: id) at node n′ of form id = e and e has only a
single identifier id′ do

9 worklist ← worklist ∪ ({(n′: id′)} \ done)
10 dep← dep ∪ {(n: id, n′: id′) }
11 end
12 end

should have states of all pairs (a,b), where a∈A and b∈B.
Identification of Device Attributes. An IoT platform
supports many physical devices. Sound model extraction
requires identifying the complete set of device attributes.
Prior work has used binary instrumentation to observe the
runtime behavior of apps to infer the set of device oper-
ations used with a particular state [16]. However, this is
not an option on some IoT platforms such as SmartThings
where app execution is inside proprietary back-ends. An-
other option would be to use the built-in capability files,
which come with devices. The capability file for a device
identifies device permissions but not attribute values–and
thus do not provide enough information for analysis.

Thus, to identify device attributes, SOTERIA uses
platform-specific device handlers. A device handler is
the representation of a physical device in an IoT platform
and is responsible for communication between the device
and the IoT platform (it is similar to a traditional device
driver in an OS). For instance, the switch device handlers
in SmartThings [44] and OpenHAB [32] IoT platforms
support the “switch on” and “switch off” attributes, and
allow apps to incorporate different kinds of switches in
the same way. We developed a crawler script, which visits
the status (for attributes) and reply (for actions) code
blocks of SmartThings device handlers found in its offi-
cial GitHub repository [44] and determines a complete
set of attributes and actions for devices. We then created
our own platform-specific device capability reference file,
which includes for each device its complete set of at-
tributes and actions. SOTERIA then uses this file to identify
all attributes for those devices used in an app.
Numerical-Valued Device Attributes. Noted above, IoT
devices may have attributes with integer or continuous
values leading to many states. Returning to the previous
Thermostat-Energy-Control app, a thermostat with 45
values (50-95◦F) and a power meter with 100 energy
levels would lead to (clearly intractable) 4.5K states if a
state is added for each combination of attribute values.

SOTERIA performs property abstraction [5] to reduce

def	modeChangeHandler(evt){			
		def	temp	=	68	
		setTemp(temp)	
}	

1:	
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3:	
4:	

	

u  
5:	
6:	
7:	

def	setTemp(t){			
		ther.setHeatingPoint(t)	
}	

w 
v 

Figure 6: Property abstraction under backward flow analysis.

the state space. It first performs dependence analysis
on an app’s source code to identify possible sources for
numerical-valued attributes, and then prunes sources us-
ing path- and context-sensitivity; the remaining sources
are used to construct states in the state model. The SOTE-
RIA dependence analysis is presented in Algorithm 1 as a
worklist-based algorithm. The goal of the algorithm is to
identify a set of possible sources that a numerical-valued
attribute can take during the execution of an app. The
worklist is initialized with identifiers that are used in the
arguments of device action calls that change the attribute.
The worklist also labels an identifier with node informa-
tion to uniquely identify the use of an identifier, because
the same identifier can be used in multiple locations. The
algorithm then takes an entry (n, id) from the worklist
and finds a definition for id according to the ICFG; if the
right-hand side of the definition has a single identifier,
the identifier is added to the worklist;3 furthermore, the
dependence between id and the right-hand side identifier
is recorded in dep. For ease of presentation, the algorithm
treats parameter passing as inter-procedural definitions.

The dependence analysis is a form of backward taint
analysis and produces a set of sources that can affect a
change to a numerical-valued attribute. For those sources,
SOTERIA makes them separate states in the state model and
adds another state representing the rest of values.

To illustrate, we use a code block of the Thermostat-

Energy-Control app as an example, shown in Fig. 6.
There is a device action call that sets the thermostat to
t at 1 ; so the worklist is initialized to be (6:t); for pre-
sentation, we use line numbers instead of node numbers
to label identifiers. Then, because of the function call at
2 , (3:temp) is added to the worklist and the dependence

(6:t, 3:temp) is recorded in dep. With this dependence
analysis, SOTERIA computes that the value for t has to be
68 ◦F since temp is initialized to be a constant value at 3 .
Therefore, the state model has two states for the thermo-
stat: a state when the temperature is equal to 68 ◦F, and
a state when the temperature is not 68 ◦F; thus, the state
space for temperature values is reduced from 45 to 2.

The backward dependence analysis also produces the
dep relation, through which SOTERIA constructs paths from
identifier initialization points to where device changes
happen. For the example in Fig. 6, it produces the path

3We found that SmartThings IoT apps most often propagates a
developer-defined constant or a user input to places that change device
attributes. Occasionally, simple arithmetic is performed; for example,
the user input is stored in y, followed by x = y+ 10, followed by a
device attribute change using x. In theory, an IoT app could perform
operations like x = y+ z, where both y and z are user input or defined to
be constants; however, we have not encountered this in our evaluation.
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3→ 2→ 1 . Some produced paths by dependence analy-
sis, however, can be infeasible paths. As an optimization,
SOTERIA prunes infeasible paths using path- and context-
sensitivity. For a path calculated in dependence analysis, it
collects the predicates at conditional branches and checks
whether the conjunction of those predicates (i.e., the path
condition) is always false; if so, the path is infeasible
and discarded. This is similar to how symbolic execu-
tion prunes paths using path conditions. For instance, if
a path goes through two conditional branches and the
first branch evaluates x > 1 to true and the second eval-
uates x < 0 to true, then it is an infeasible path. SOTERIA

does not use a general SMT solver to check path condi-
tions. We found that the predicates used in IoT apps are
extremely simple in the form of comparisons between
variables and constants (such as x = c and x > c); thus,
SOTERIA implemented its simple custom checker for path
conditions. Furthermore, SOTERIA throws away paths that
do not match function calls and returns (using depth-one
call-site sensitivity [39]). At the end of the pruning pro-
cess, we get a set of feasible paths that propagate sources
defined by the developer or by user input to device action
calls that change the numerical-valued attribute; and then
those sources are used to define the states in the model.

4.2.2 Extracting State Transitions

If an event handler changes a device’s attributes by actu-
ating the device, it leads to a state transition. By statically
analyzing event handlers, SOTERIA computes state transi-
tions and labels them with events. When a water-detected
event is generated in the Water-Leak-Detector app a
handler method closes the valve; by analyzing the handler
method, SOTERIA adds a transition with the water-detected
event label from state “water-undetected and valve-open”
to “water-detected and valve-closed” state.
Labeling Transitions with Predicates. Many device
state changes happen in conditional branches; as a re-
sult, those state changes occur only when the predi-
cates in the conditional branches hold. To illustrate,
consider the source code in Fig. 7 abstracted from the
Thermostat-Energy-Control app. The app has a condi-
tional branch turning off the switch when energy usage
is above a consumption threshold (above=50); it turns on
the switch when it is below the threshold (below=5).

SOTERIA implements a path-sensitive analysis to cap-
ture state transitions and predicates that guard transitions.
Particularly, it uses symbolic execution to perform path
exploration on source code and accumulates path condi-
tions during exploration. In detail, it starts the analysis
at the entry of an event handler with respect to some
initial state, say S0. Then it performs forward symbolic
execution along all paths, and also smartly merges paths
following the ESP algorithm [13] (as a way of avoiding
path explosion). For a conditional branch with condition
b, it evaluates both paths and labels the true path with b
and the false path with ¬b. If the end states for the true

//	Permission	block		

Input(switch,	switch)		

Input(power-meter,	powerMeter)	

Input(alarm,	alarm)	
	

//	Entry	point		

subscribe(power_meter,	power,	handler)	
	

//	Callback	

handler(){	

			above_thrshld_val	=	50		

			below_thrshld_val	=	5	
	

			power_val	=	get_power()	
	

			if	(power_val	>	above_thrshld_val	){	

						switch.off()	

						alarm.siren()	

			}	

			if	(power_val	<	below_thrshld_val	){	

		switch.on()	

			}	

}	
	

get_power(){	

		latest_power	=	power_meter.currentValue("power")	

		return	latest_power 		

}	

1:	

2:	

3:	

4:	
	

5:	

6:	
	

7:	

8:	
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21:	

22:	

23:	

//	Permission	block		
Input(switch,	switch)		
Input(power_meter,	powerMeter)	
	

//	Event/Action	block	
subscribe(power_meter,	power,	handler)	
	

//	Entry	point		
handler(){	
			above	=	50		
			below	=	5	

			power_val	=	get_power()	
	

			if	(power_val	>	above){	
						switch.off()				
			}	
	

			if	(power_val	<	below){	
						switch.on()	
			}	
}	
	

get_power(){	
			latest_power	=	power_meter.currentValue("power")	
			return	latest_power 		
}	

1:	
2:	
3:	

	

4:	

5:	
	

6:	
7:	
8:	
9:	

10:	
	

11:	

12:	
13:	

	

14:	
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16:	
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18:	
19:	

	

20:	
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Final	
	

Figure 7: The impact of predicates on state transitions in the
Thermostat-Energy-Control app.

and false branches are the same, then the two paths are
merged [13]. On the other hand, if the end states are dif-
ferent for the two paths, they are kept separate for further
symbolic execution. SOTERIA throws away infeasible paths
in a way similar to that used during property abstraction.
At the end of symbolic execution, SOTERIA obtains the set
of paths, their end states, and path conditions. For each
path, a state transition from the initial state to the end state
is added to the state model, and the transition is labeled by
the event triggering the event handler and path condition.

We use the Thermostat-Energy-Control app with the
initial state of “switch-on” as an illustration of this explo-
ration. SOTERIA explores all paths, and there are two fea-
sible paths at the end, with currentValue(“power”)>50

as the path condition of the path that turns off the switch,
and currentValue(“power”)<5 as the path condition of
the path that turns on the switch.

In addition, SOTERIA also tracks the sources of compo-
nents in predicates that guard state transitions. For pred-
icate currentValue(“power”)>50 in the previous exam-
ple, currentValue(“power”) is obtained from a device
state and therefore is labeled as “device-state”, while 50
is hardcoded by the developer and therefore is labeled as
“developer-defined”. In some cases, users can also define
part of predicates at install time of an app. For instance,
if the threshold value were entered by a user, then SOTE-
RIA would label it as “user-defined”. Labeling sources in
predicates is useful for precisely stating properties used in
model checking. For example, one property says that the
alarm must siren when the main door is left open longer
than a threshold entered by the user. In this case, there is
no property violation if the threshold is not hard-coded
into the app by the developer. We detail this in Sec. 4.3.

4.2.3 SmartThings Idiosyncrasies

Platform-specific Interfaces. The SmartThings platform
implements a variety of programmer interfaces for an app
to obtain device attribute values (for the same value). For
instance, the temperature value of a thermostat can be read
through the currentState or the currentTemperature

interface (see Listing 1 (lines 1–8). Additionally, we found
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Listing 1: Sample code blocks for SmartThings Idiosyncrasies

1 /* A code block of an app using platform-specific interfaces */
2 subscribe(theMotion, "motion", motionHandler)
3 subscribe(theThermostat, "thermostat", thermostatHandler)
4 // different interfaces to get device attribute values
5 def thermostatHandler() {
6 def tempAttr = theThermostat.currentState("temperature")
7 def tempAttr2 = theThermostat.currentThermostat
8 }
9 // transitions without explicit event subscriptions

10 def motionHandler(evt) {
11 if (evt.value == "active") { ... }
12 else if (evt.value == "inactive") {...}
13 }
14 /* A code block of an app using call by reflection */
15 //initial state = S0
16 def getMethod(){
17 httpGet("http://url"){ resp −>
18 if(resp.status == 200){
19 name = resp.data.toString()
20 }
21 }
22 "$name"() // dynamic method invocation
23 }
24 // check state transition from S0 to next state in both methods
25 def foo() {...}
26 def bar() {...}

that some apps subscribe to all device events instead of
specific device events; for example, the subscribe inter-
face in Listing 1 (lines 9–13) is used to subscribe to all
events of a motion sensor. The event handler then gets an
event value as an argument that describes what event it is.
We extract precise state models by parsing the event val-
ues passed in these interfaces and adding state transitions
through those interfaces.
Call by Reflection. The Groovy language supports pro-
gramming by reflection (using the GString feature) [44],
which allows a method to be invoked by providing its
name as a string. For instance, a Groovy method foo()

can be invoked by declaring a string name=“foo” re-
quested from an external server via the httpGet() in-
terface and thereafter called by reflection through $name

(see Listing 1 (lines 14–26)). To handle calls by reflection,
SOTERIA’s call graph construction adds all methods in an
app as possible call targets, as a safe over-approximation.
For the example in Listing 1, SOTERIA adds both foo() and
bar() to the targets of the call; then it searches for state
changes in each method and extracts state transitions.

4.3 Identifying IoT Properties
As many have found in the security and safety communi-
ties, identifying the correct set of properties to validate for
a given artifact is often a daunting task. In this work and as
described below, we use established techniques adapted
from other domains to systematically identify a set of
properties that exercise SOTERIA and are representative
of the real world needs of users and environments. That
being said, we acknowledge in practice that properties are
often more contextual and the methods to find them are
often more art than science. Hence, we argue that many
environments will need to tailor their property discovery
process to their specific security and safety needs.

We refer to a property as a system artifact that can
be formally expressed via specification and validated on
the application model. We extend the use/misuse case
requirements engineering [29, 33, 38, 47] to identify IoT
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Figure 8: Illustration of general properties (S.1-S.5).

properties. This approach derives requirements (proper-
ties) by evaluating the connections between 1) assets are
artifacts that someone places value upon, e.g., a garage
door, 2) functional requirements define how a system is
supposed to operate in normal environment, e.g., when a
garage door button is opened, the door opens, and 3) func-
tional constraints restrict the use or operation of assets,
e.g., the door must open only when an authorized garage-
door opener device requests it. We used use/misuse case
requirements engineering as a property discovery process
on the IoT apps used in our evaluation (See Section 6) and
identified 5 general properties (S.1-S.5, see Fig. 8) and
30 application-specific properties (P.1-P.30, see Table 1).
General Properties. General properties are constraints
on state models that are independent of an app’s
semantics–intuitively, these are states and transitions that
should never occur regardless of the app domain. We de-
velop the properties based on the constraints on states and
state transitions. To illustrate, property S.1 states that a
handler must not change an attribute to conflicting val-
ues on the same control-flow path, e.g., the motion-active
handler must not turn on and turn off a switch in the
same branch of the handler. More subtly, property S.4
states that two or more non-complementary handlers must
not change an attribute to conflicting values, e.g., a user-
present handler turns on the switch while a timer turns off
the switch–leading to a potential race condition.
App-specific Properties. App-specific properties are de-
veloped according to use cases of one or more devices–
here we take a device-centric approach. For instance, P.1
says that the door must always be locked when the user is
not at home (thus involving the smart door and presence
detector). Similarly, P.30, states that the water valve must
be shut off when there is a water leak (thus involving the
water valve and moisture sensor). We evaluated all apps
using this approach, but defer discussion to the extended
paper. We check the app against a property if all of the
devices in the property are included in the app.

4.4 Validating Properties
Validation begins by defining a temporal formula for each
property to be verified. Thereafter, SOTERIA uses a general
purpose model checker to validate the property with re-
spect to the generated model of the target app (see next
section for details). What the user does with a discovered
violation is outside the scope of SOTERIA. However, in
most cases, we expect that the results will be recorded
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ID Property Description
P.1 The door must always be locked when the user is not home.
P.10 The alarm must always go off when there is smoke.
P.12 The light must be off when the user is not home.
P.13 The devices (e.g., coffee machine, crock-pot) must always be on

at the time set by the user.
P.14 The refrigerator and security system must always be on.
P.17 The AC and heater must not be on at the same time.
P.22 The battery of devices must not be below a specified threshold.
P.28 The sound system must not play music during the sleeping mode.
P.29 The flood sensor must always notify the user when there is water.
P.30 The water valve must be closed if a leak is detected.

Table 1: Examples of application-specific properties. A complete
list of properties is available in the extended paper [9].

and the code hand-investigated to determine the cause(s)
of the violation. If the violation is not acceptable for the
domain or environment, the app can be rejected (from the
market) or modified (by the developer) as needs dictate.

Validation of properties in multi-app environments is
more challenging. Apps often interact through a com-
mon device or some common abstract event (such as the
home or away modes). For illustration, consider two apps
(App1 and App2) co-resident with the Smoke-Alarm and
Thermostat-Energy-Control apps in a multi-device en-
vironment. App1 changes the mode from away to home
when the light switch is turned on, and App2 turns off a
light switch when the smoke is detected, as follows:
Smoke-Alarm: switch-off smoke-detected−−−−−−−−→switch-on
App1: away-mode switch-on−−−−−→home-mode
Thermostat-Energy-Control: door-unlocked home-mode−−−−−−→door-locked
App2: switch-on smoke-detected−−−−−−−−→switch-off

The Smoke-Alarm app interacts with App1 through the
switch, and interacts with App2 through the smoke de-
tector and switch. The Thermostat-Energy-Control app
interacts with App2 through the mode-change event.

To check general and app-specific properties in the
setting of multiple apps, SOTERIA builds a state model
that is the union of the apps’ state models. The resulting
state model G′ represents the complete behavior when run-
ning the multiple apps together. The union algorithm is
presented in Algorithm 2. SOTERIA first creates an empty-
transition state model G′ whose states are the Cartesian
product of the states in the input apps (line 1); note that
since the input apps’ states encode device attributes, the
Cartesian product should remove attributes of duplicate
devices (i.e., those devices that appear in multiple apps).
For instance, if we consider Smoke-Alarm and App1, G′

should have four states, and each state encodes a pair of
switch and mode attributes. The algorithm then iterates
through all apps’ transitions and adds appropriate tran-
sitions to the union model G′. SOTERIA’s union algorithm
is a modification of the multiple-graph union algorithm
of igraph library [22], based on a set of constraints on
transitions and states. It has a complexity of O(|V|+ |E|),
|V| and |E| is the number of vertices and edges in G′.

With the union state model created, SOTERIA then per-
forms model checking on the union model concerning
properties we discussed earlier. As an example, SOTE-
RIA reports that, when Smoke-Alarm and App2 are used

Algorithm 2: Creating the union of apps’ state models

Input :G= {Gi}ni=1: State models of n apps
Output :G′ is the union of {Gi}ni=1
/* Initialize G′ */

1 states(G′)← {v | v is a tuple of attribute values in G}
/* Construct union of apps’ state models */

2 for i ∈ (1: n) do
3 forall states v ∈ Gi do
4 forall transitions e = v l−→ u ∈ Gi do
5 V′ is a subset of states in G′ that contain v
6 U′ is a subset of states in G′ that contain u
7 forall v′ ∈ V′ and u′ ∈ U′ do
8 add e′ = v′ l−→ u′ to G′ and label the edge with i
9 end

10 end
11 end
12 end

together, there is a property violation of S.1: the smoke-
detected event would make the Smoke-Alarm app turn
on the switch, while it would also make App2 to turn
off the switch. As another example, when Smoke-Alarm,
App1 and Thermostat-Energy-Control are used to-
gether, there is a misuse case that violates property P.3:
the door would be locked when there is smoke at home.
The property violation is demonstrated as follows:
switch-off smoke-detected−−−−−−−−→switch-on switch-on−−−−−→home-mode home-mode−−−−−−→door-locked

P.3 is violated because switch-on attribute in the
Smoke-Alarm app is used by App1, which changes the
mode from away to home. The mode change then triggers
locking the door in Thermostat-Energy-Control.

5 Implementation
IR and State Model Construction. Constructing an IR
from the source code requires, among other things, the
building of the app’s ICFG. Here the SOTERIA IR-building
algorithm directly works on the Abstract Syntax Tree
(AST) representation of Groovy source code. The Groovy
compiler supports customizing the compilation via com-
piler hooks, through which one can insert extra passes
into the compiler (similar to the modular design of the
LLVM compiler [27]). SOTERIA visits AST nodes at the
compiler’s semantic analysis phase where the Groovy
compiler performs consistency and validity checks on the
AST. Our implementation uses an ASTTransformation to
hook into the compiler, GroovyClassVisitor to extract
the entry points and the structure of the analyzed app, and
GroovyCodeVisitor to extract method calls and expres-
sions inside AST nodes. Here we AST visitors to analyze
expressions and statements to construct the IR and model.

SOTERIA uses AST visitors for state model construction
as well. We extend the ASTBrowser class implemented in
the Groovy Swing console, which allows users to enter
and run Groovy scripts [19]. The implementation hooks
into the IR of an app in the console and dumps informa-
tion to the TreeNodeMaker class; the information includes
an AST node’s children, parent, and all properties built
during compilation. This includes the resolved classes,
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IoT	Model	Checking	Console	
	
	

preferences	{	
	sec*on("When	there’s	water	is	detected...")	{	
	 	input	"sensor",	"capability.waterSensor",	*tle:	

"Where?",	required:	true	
	}	
	sec*on("Turn	on	a	pump...")	{	
	 	input	”valve_device",	"capability.valve",	*tle:	

"Which?",	required:	true	
	}	}	

	
def	installed()	{	

	subscribe(valve_device,	"water.wet",	waterWetHandler)	
}	

Source	Code	
	
	

water.wet	�	(AX	valve.on	)	
	

Property	Verifica;on	

	

Using	NuSMV	symbolic	model	checker…	
General	proper*es	failed	at	state-model	construc*on:	none	
NuSMV	>>	read	model	...	
NuSMV	>>	check	property	
NuSMV	>>	true	
	

Output	 Stacktrace	

SMV	format	of	State-Model			
	

//	Permissions	block	
input	(water_sensor,	waterSensor,	type:device)	
input	(valve_device,	valve,	type:device)		
	

//Events/Ac*ons	block	
subscribe(water_sensor,	"water.wet",	h)	
	

	IR	

State-Model	  WaterLeakDetector.dot 
[water.dry, valve.close]

[water.wet, valve.close]

water.wet

water.wet

[water.dry, valve.open]

water.wet

[water.wet, valve.open]

water.wet

Figure 9: Our SOTERIA framework designed for IoT apps. The left region is the analysis frame; the middle region contains the IR and
visual representation of the state model of an example IoT app, and the right region shows the output for a property violation.

static imports, the scope of variables, method calls, inter-
faces accessed in an app. We then use Groovy visitors to
traverse the IR’s ICFG and extract the state model.
Model Checking with NuSMV. We translate the state
model of an IoT app into a Kripke structure [12]. A
Kripke structure is an equivalent temporal structure of
a state model and increases readability. We create a vi-
sual representation of a state model using open-source
graph visualization software GraphViz [14]. We use the
open-source symbolic model checker NuSMV [10] for
its reliability and maturity. We express properties with
temporal logic formulas [11]. NuSMV either confirms
a property holds or presents a counter-example show-
ing why the property is false. To address state explosion
in apps that control a large number of devices or that
have complex control logic, we use NuSMV options that
combine binary decision diagrams (BDDs)-based model
checking with SAT-based model checking [6]. This was
successfully applied to verify models having more than
1020 states and hundreds of state variables [7].
Output of SOTERIA. Fig. 9 presents SOTERIA’s analysis
result on a sample app. It builds the app IR, extracts the
state model, and displays a visual representation of the
state model. For each property, SOTERIA either shows the
property holds or presents a counter-example.

6 Evaluation
As a means of evaluating the SOTERIA framework, we per-
formed an analysis on two large-scale data-sets–one mar-
ket based and one synthetic. In these studies, we sought to
validate the correctness, completeness, and performance
of property analysis on the target datasets. We performed
our experiments on a laptop computer with a 2.6GHz
2-core Intel i5 processor and 8GB RAM, using Oracle’s
Java Runtime version 1.8 (64 bit) in its default settings.
We use NuSMV 2.6.0 for model checking and Graphviz
2.36 for visualization of a state model.
Datasets. For the market dataset, we obtained 35 offi-
cial (vetted) apps (O1-O35) from the SmartThings GitHub
repository [43] and 30 community-contributed third-party
(non-vetted) apps (TP1-TP30) from the official Smart-
Things community forum [41] in late 2017 (see Table 2).
The 65 apps were selected to include various devices and

Nr. Unique Devices Avg/Max States‡ Avg/Max LOC Func.†
Official 35 14 36/180 220/2633 All
Third-party 30 18 32/96 246/1360 All

‡ This is after applying SOTERIA’s state-reduction algorithms.
† The apps cover all spectrum of functionality, including security and safety,
green living, convenience, home automation, and personal care. We deter-
mined an app’s functionality by checking definition blocks in its source code.

Table 2: Description of analyzed official and third-party apps.

functionality that encompass diverse real-life use-cases.
For the synthetic dataset, we introduce MALIOT [23], an

open source repository containing flawed IoT apps. In-
spired by other security-relevant app test suites [4,15,28],
MALIOT includes 17 hand-crafted flawed SmartThings
apps (App1-App17) containing property violations in an
individual app and multi-app environments. 14 apps have
a single property violation, and three have multiple prop-
erty violations, with a total of 20 property violations. The
apps include various devices covering diverse real-life
use-cases. The accurate identification of property viola-
tions requires program analysis including multiple entry
points, numerical-valued device attributes, and transitions
guarded by predicates. Each app in MALIOT also comes
with ground truth of what properties are violated; this is
provided in a comment block in the app’s source code.

6.1 Market App Evaluation
We first report results of the verification of general (S.1-
S.5) and app-specific (P.1-P.30) properties. The proper-
ties are checked for each app and collections of apps
working in concert. SOTERIA flagged that nine individual
apps and three multi-app groups violate at least one prop-
erty. We manually checked the property violations and
verified that all reported ones are true positives. The man-
ual checking process was straightforward to perform since
SmartThings apps are relatively small.
Individual App Analysis. Table 3 the results of our anal-
ysis on single apps. SOTERIA flagged one third-party app
violating multiple properties, eight third-party apps vio-
lating a single property. None of the official apps were
flagged as violating properties; we believe this is because
of the strict manual vetting enforced on official apps,
which takes a couple of months [40]. For third-party apps,
we manually verified that all reported property violations
are indeed problems with the implementation. For exam-
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ID Violation Description Violated Pr.
TP1 The music player is turned on when user is not at home. P.13
TP2 The switch turns on and blinks lights when no user is present. P.12
TP3 The location is changed to the different modes when the switch S.4

is turned off and when the motion is inactive.
TP4 The flood sensor sounds alarm when there is no water. P.29
TP5 The music player turns on when the user is sleeping. P.28
TP6 The lights turn on and turn off when nobody is at home. P.13 and S.1
TP7 The lights turn on and turn off when the icon of the app is tapped. S.1
TP8 The door is unlocked on sunrise and locked on sunset. P.1
TP9 The door is locked multiple times after it is closed. S.2

Table 3: SOTERIA’s results on individual apps.

ple, a property violation happens in an app (TP6) that
turns off and on a light switch when there is nobody at
home; another app (TP9) unlocks the door at sunset and
locks the door at sunrise–and unintended action.

To assess whether the property violations are real bugs
in analyzed apps, we opened a thread in official Smart-
Things community forum and asked users whether the
functionality of the apps confirms their expectations [42].
We got eight answers from the users that are smart home
enthusiasts. These apps may have subtle and surprising
uses under the right conditions: a user for TP4, said that he
used his flood sensor to let him know when there is no wa-
ter so that he can add water to the trees during Christmas;
another user stated that TP6 might simulate occupancy of
his home at night by randomly turning on/off lights when
nobody is home. To guard against malicious code, those
users stated that they attempted to read and understand
the source code of the apps before they installed them.
However, since regular users cannot be expected to read
and check the source code of apps manually, SOTERIA ad-
dresses this problem by analyzing apps and presenting
their potential property violations to users, which allows
them to determine whether a violation is actually harmful.
Multi-App Analysis. We found that multiple apps work-
ing in concert can lead to unsafe and undesired device
states. SOTERIA flagged three group of apps violating mul-
tiple properties. We examined 28 groups and found three
groups that have 17 apps violate 11 properties. Table 4
shows the app groups, events, and device attributes that
constitute violations, and violated properties. In the fol-
lowing discussion, we will use app group IDs (G.1-G.3) in
Table 4. Each group includes a set of apps that a user may
install together and authorize to use the same devices.

In G.1, O3 and O4 violate S.1 by setting the switch at-
tribute to conflicting values when the contact sensor is
open; there is a similar violation between O4, O8 and TP12
when the contact sensor is closed. O8 and TP12 violates
S.2 by turning on the switch multiple times with the “con-
tact sensor close” event. In addition, O3 and O4 violate S.3
by turning on the switch with complement events of “con-
tact sensor close” and “contact sensor open”. In G.2, O9,
O16, and TP3 violates S.2 by turning on the switch multi-
ple times with the “motion active” event. Additionally, the
interaction between O14, O9, O16 and TP3 violates S.4 by
invoking “switch on” and “switch off” actions with dif-
ferent device events (“contact sensor open” and “motion
active”). There is a similar violation between O14 and TP2

Gr. ID App ID Events/Actions Violated Pr.

G.1

O3
contact sensor open−−−−−−−−−−→switch on

S.1, S.2,
S.3O4

contact sensor open−−−−−−−−−−→switch off
contact sensor close−−−−−−−−−−→switch on

O8, TP12 contact sensor close−−−−−−−−−−→switch off

G.2

O14
contact sensor open−−−−−−−−−−→switch off

S.2, S.4O9, O16, TP3 motion active−−−−−−−→switch on
TP2

app touch−−−−−→switch on

G.3

O7, TP3
switch off−−−−−→change location mode

P.12, P.13,
P.14, P.17,
S.1, S.2

motion inactive−−−−−−−−→ change location mode
O30, TP21

location mode change−−−−−−−−−−−→switch off
O31, TP22

location mode change−−−−−−−−−−−→switch on

O12, TP19
location mode change−−−−−−−−−−−→set thermostat heating
location mode change−−−−−−−−−−−→set thermostat cooling

Table 4: SOTERIA’s results in multi-app environments.

(“contact sensor open” and “app touch”). These events
may occur at the same time, which leads to a race condi-
tion. In G.3, similar to the other groups, S.1 and S.2 are
violated. In addition, multiple app-specific properties are
violated. O7 and TP3 change the location mode when the
switch is turned off and also when motion is inactive. O30
and TP21 turn off the switch of a set of devices including
a security system, smoke detector, and heater when the
location is changed; O31 and TP22 turns on devices such
as TV, coffee machine, A/C, and heater when the location
is changed; both cases violate multiple properties (P.12,
P.13, P.14 and P.17) and cause security and safety risks
for users. Lastly, O12 and TP19 sets the thermostat to user
settings when the switched is turned off and when the mo-
tion is inactive. These result in an unauthorized control of
thermostat heating and cooling temperature values.

6.2 MALIOT Evaluation
Our analysis of SOTERIA on MALIOT showed that it correctly
identified the 17 of the 20 unique property violations in
the 17 apps. SOTERIA produces a false warning for an app
that uses call by reflection (App5). This app invokes a
method via a string. It over-approximates the call graph
by allowing the method invocation to target all methods
in the app. Since one of the methods turns off the alarm
when there is smoke, SOTERIA reports a violation. However,
it turns out that the reflective call in this app would not
call the property-violating method. Note this pattern did
not appear in the 65 real IoT apps we discussed earlier.
Additionally, SOTERIA did not report a violation for an
app that leaks sensitive data (App10) and for an app that
implements dynamic device permissions (App11) as they
are outside the scope of SOTERIA analysis.

6.3 MicroBenchmarks
State Reduction Efficacy. Earlier we presented algo-
rithms for performing property abstraction on numerical-
valued device attributes. To evaluate its impact, we mea-
sured the number of states before and after the application
of these algorithms, and the results are presented on the
top of Fig. 10. We note that SOTERIA performs state reduc-
tion only for apps with devices that have numerical-valued
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Figure 10: SOTERIA’s state reduction efficacy (Top). SOTERIA’s
state model extraction overhead (Bottom).

attributes; examples include thermostats, batteries, and
power meters. Among the devices we examine, there are
ten such devices in analyzed apps, and 14 apps grant ac-
cess to these devices, and the states of three apps have the
same number before reduction and reduced to the same
number. The figure shows that SOTERIA’s state reduction
often results in order of magnitude less number of states.
State Model Extraction Overhead. We ran SOTERIA with
apps that have varying numbers of states and recorded
the state-model generation time; the result is shown on
the bottom of Fig. 10. The time includes the time for IR
extraction, generating a graphical representation of the
model, obtaining the SMV code of a state model, and
logging (required for general properties). The average
run-time for an app with 180 states was 17.3±2 secs. We
note that the total time depends on the time taken by the
algorithms we have developed for state reduction. For in-
stance, an app having 32 states took more time than an app
having 40 states due to many branches used in the 32-state
app. Note that overheads can be mitigated by eliminating
non-essential processing and other optimization.

We also measured the time for constructing a state
model in multi-app environments. The state model of mul-
tiple apps requires extraction of each app’s state model.
SOTERIA’s graph-union algorithm then finds 30 interact-
ing apps (which have on average 64 states and six state
attributes) and 4±2.1 seconds for the union algorithm.
Property Verification Overhead. We evaluated the ver-
ification time of a property on state models. The verifi-
cation of a property took on the order of milliseconds to
perform since the SmartThings apps have comparatively
smaller state models than the large-scale ones found in
other domains such as operating system kernels.

7 Limitations and Discussion
A limitation of SOTERIA is the treatment of call by reflec-
tion. As discussed in Sec. 4.2.3, SOTERIA constructs an
imprecise call graph that allows a reflective call to target

any method. This increases the size of state models and
may lead to false positives during property checking. We
plan to explore string analysis to statically identify possi-
ble values of strings and refine the target sets of method
calls by reflection. Another limitation of SOTERIA is dy-
namic device permissions and app configurations. These
may yield property violations because of the erroneous
device and input configurations by users at install time.
For instance, if a user enters an incorrect time value, the
door may be left unlocked in the middle of the night.

SOTERIA’s implementation and evaluation are based
on the SmartThings programming platform designed for
home automation. There are other IoT domains suitable
for applying model checking for finding property viola-
tions, such as FarmBeats for agriculture [46], HealthSaaS
for healthcare [20], and KaaIoT for the automobile indus-
try [26]. We plan to extend our SOTERIA to these platforms
by applying the IR-based analysis, as well as engage in
large-scale analyses of IoT markets and industries.

8 Conclusions
We presented SOTERIA4, a novel system that extracts state
models from IoT code suitable for finding the security,
safety, and functional errors. We evaluated SOTERIA in two
studies; a study of apps on the SmartThings market, and
a study on our novel MALIOT app corpus. These studies
demonstrated that our approach can efficiently identify
property violations and that many apps violate proper-
ties when used in isolation and when used together in
multi-app environments. In future work, we will extend
the kinds of analysis and provide a suite of tools for de-
velopers and researchers to evaluate implementations and
study the complex interactions between users and IoT
environments devices that they use to enhance their lives.
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Abstract
Multi-core virtual machines (VMs) are now a norm
in data center environments. However, one of the
well-known problems that VMs suffer from is the vCPU
scheduling problem that causes poor scalability behav-
iors. More specifically, the symptoms of this problem
appear as preemption problems in both under- and over-
committed scenarios. Although prior research efforts
attempted to alleviate these symptoms separately, they
fail to address the common root cause of these problems:
the missing semantic gap that occurs when a guest OS
is preempted while executing its own critical section,
thereby leading to degradation of application scalability.

In this work, we strive to address all preemption prob-
lems together by bridging the semantic gap between
guest OSes and the hypervisor: the hypervisor now
knows whether guest OSes are running in critical sec-
tions and a guest OS has hypervisor’s scheduling context.
We annotate all critical sections by using the lightweight
para-virtualized APIs, so we called enlightened critical

sections (eCS), that provide scheduling hints to both the
hypervisor and VMs. The hypervisor uses the hint to
reschedule a vCPU to fundamentally overcome the double
scheduling problem for these annotated critical sections
and VMs use the hypervisor provided hints to further
mitigate the blocked-waiter wake-up problem. Our eval-
uation results show that eCS guarantees the forward
progress of a guest OS by 1) decreasing preemption
counts by 85–100% while 2) improving the throughput
of applications up to 2.5× in an over-committed scenario
and 1.6× in an under-committed scenario for various
real-world workloads on an 80-core machine.

1 Introduction
Virtualization is now the backbone of every cloud-based
organization to run and scale applications horizontally
on demand. Recently, this scalability trend is also ex-
tending towards vertical scaling [2, 11], i.e., a virtual ma-
chine (VM) has up to 128 virtual CPUs (vCPUs) and 3.8 TB
of memory to run large in-memory databases [24, 35]
and data processing engines [47]. At the same time,
cloud providers strive to oversubscribe their resources
to improve hardware utilization and reduce energy con-
sumption, without imposing any permissible overhead
on the application [38, 46]. However, over subscription
requires multiplexing of physical CPUs among VMs to
equally distribute physical CPU cycles. Thus, the multi-
plexing of these VMs introduces the double scheduling

0
50
100
150
200
250
300

10 20 30 40 50 60 70 80
0k

40k

80k

120k

160k

200k

10 20 30 40 50 60 70 80

Jo
bs
/h
ou

r

#vCPUs

(a) Psearchy

Re
q/
se
c

#vCPUs

(b) Apache

PVM

HVM

eCS

Figure 1: Impact of exposing some of the semantic information
from the VM to the hypervisor and vice-versa, which leads to
better scalability of Psearchy and Apache web server bench-
mark, in a scenario in which two VMs are running with the
same benchmark. Here, PVM and HVM denote with and without
para-virtualization support, while eCS represents our approach.
Psearchy mostly suffers from LHP and BWW. Similarly, Apache
suffers from LHP and ICP.

problem [40]: 1) the guest OS schedules processes on
vCPUs and 2) the hypervisor schedules vCPUs on physical
CPUs. Some of the prior works address this problem by
adopting co-scheduling approaches [17, 41, 45], which
can suffer from priority inversion, CPU fragmentation,
and may mitigate the double scheduling symptoms [40].
Such symptoms, that have mostly been addressed indi-
vidually, are lock-holder preemption (LHP) [8, 15, 42, 44],
lock-waiter preemption (LWP) [44], and blocked-waiter
wakeup (BWW) [5, 39], problems.

The root cause of this double scheduling phenomenon
is a semantic gap between a hypervisor and guest OSes,
in which the hypervisor is agnostic of not only the
scheduling of VMs but also guest OS-specific critical code
that deter the scalability of applications. Furthermore,
LHP/LWP are not only limited to spinlocks [15, 19, 42], but
are also possible in blocking primitives such as mutex
and rwsem as well as readers of the rwsem. Moreover, be-
cause of their non work-conserving nature, these block-
ing primitives inherently suffer from the BWW problem
(refer Psearchy in Figure 1 (a)). Besides these, none of
the prior works have identified the preemption of an
interrupt context that happens in interrupt-intensive ap-
plications such as Apache web-server (Figure 1 (b)). We
define this problem as interrupt context preemption (ICP).
Our key observation is that these symptoms occur

because 1) the hypervisor is scheduling out a vCPU at a
time when the vCPU is executing a critical code, and 2) a
vCPU, waiting to acquire a lock, is either uncooperative
or sleeping [16], leading to LWP and BWW issues. Thus,
we propose an alternative perspective, i.e., instead of
devising a solution for each symptom, we use four key
ideas that allows a VM to hint the hypervisor for mak-
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ing an effective scheduling decision to allow its forward
progress. First, we consider all of the locks and interrupt
contexts as critical components. Second, we devise a
set of para-virtualized APIs that annotate these critical
components as enlightened critical sections (eCS). These
APIs are lightweight in nature and notify a hypervisor
from the VM and vice-versa with memory operations
via shared memory, while avoiding the overhead of hy-
percall and interrupt injection. Third, the hypervisor
now can figure out whether a vCPU is executing an eCS
and can reschedule it. We empirically found that an
extra schedule (one millisecond [27]) is sufficient as it
decreases preemptions by 85–100%; and these critical
sections are shorter (in µs [42]) than one schedule. How-
ever, by rescheduling a vCPU, we introduce unfairness
in the system. We tackle this issue with the OS’s fair
scheduling policy [27], which compensates for that addi-
tional schedule by allowing other tasks to run for extra
time, thereby maintaining the eventual fairness in the
system. Lastly, we leverage our APIs to design a virtual-
ized schedule-aware spinning strategy (eSchdSpin) that
enables lock waiters to be work conserving as well as co-
operative inside a VM. That is, a vCPU now cooperatively
spins for the lock, if a physical CPU is under-committed,
else it yields the vCPU.
Thus, our approach improves the scalability of real-

world applications by 1.2–1.6× in an under-committed
case. Moreover, our eCS annotation, combined with
eSchdSpin, avoids preemption by 85–100% while im-
proving the scalability of applications by 1.4–2.5× in an
over-committed scenario on an 80-core machine.
In summary, we make the following contributions:
• We identify similarities among various subproblems
that stem from the double scheduling phenomenon.
Moreover, we identify three new problems: 1) LHP in
blocking locks, 2) readers preemption (RP) in read-
write locks and semaphores, and 3) vCPU preemption
while processing an interrupt context (ICP).

• We address these subproblems with eCS, which we
annotate with six new APIs that bridge the seman-
tic gap between a hypervisor and a VM, and even
among vCPUs inside a VM.

• Our annotation approach, along with eSchdSpin,
improves the scalability of applications in both
under- and over-committed scenarios up to 2.5×
with only 0–15% preemptions, while maintaining
eventual fairness with merely one extra schedule.

2 Background and Motivation
We first describe the problem of double scheduling and
highlight its implications. Later, we summarize the prior
attempts to solve this problem, and then motivate our
approach.

2.1 Symptoms of Double Scheduling
In a virtualized environment, a hypervisor multiplexes
the hardware resources for a VM, such as assigning vCPUs
to physical CPUs (pCPUs). In particular, it runs a vCPU to
execute by its fair share [27], which is a general policy
of commodity OSes such as Linux, and preempts it be-
cause of either vCPUs of other VM or of the intermittent
processes of the OS and bookkeeping tasks of the hyper-
visor such as I/O threads. Hence, there is a possibility
that the hypervisor can preempt a vCPU while executing
some critical task inside a VM that leads to an application
performance anomaly, which we enumerate below:
Lock holder preemption (LHP) problem occurs when a
vCPU holding a lock gets preempted and all waiters waste
CPU cycles for the lock. Most of the prior works [8, 14,
42, 44] have focused on non-blocking primitives such
as spinlocks.1 On the other hand, LHP also occurs in
blocking primitives such as mutex [28] and rwsem [26, 31],
which the prior works have not identified. However, LHP
accounts up to 90% preemptions for blocking primitives
in some of the memory intensive applications that have
short critical sections.
Lock waiter preemption (LWP) problem stems when
the very next waiter is preempted just before acquiring
the lock, which occurs due to the strict FIFO ordering
of spinlocks [14, 42]. Fortunately, this problem has been
mostly mitigated in existing spinlock design [19, 20], as
the current implementation allows waiters to steal the
lock before joining the waiter queue. We do not see such
a problem in blocking primitives because the current
implementation is based on the test-and-set (TAS) lock—
an unfair lock, which inherently mitigates LWP.
Blocked-waiter wakeup (BWW) problem occurs mostly
for blocking primitives in which the latency to wake up
a waiter to pass the lock is quite high. This issue severely
degrades the throughput of applications running on a
high core count [16], even in a native environment. More-
over, it is evident in both under- and over-committed VM
scenarios. For example, the BWW problem degrades the
application scalability up to 1.6× (refer Figure 6).
Readers preemption (RP) problem is a new class of
problem that occurs when a vCPU holding a read lock
amongmultiple readers gets preempted. This problem im-
pedes the forward progress of a VM and also increases the
latency of the write lock. For instance, various memory-
intensive workloads have sub-optimal throughput as RP
accounts to at most 20% of preemptions. We observe
this issue in various read-dominated memory-intensive
workloads in which the readers are scheduled out.
RCU reader preemption (RRP) problem is a type of RP

1Non-blocking locks, both holders and waiters, do not schedule out.
However, the para-virtualized interface converts spinlocks to blocking
locks (only waiters) with hypercalls [6, 20] to overcome LHP/LWP issues.
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problem that occurs when an RCU reader is preempted,
while holding the RCU read lock [33]. Because of RRP,
the guest OS suffers from an increased quiescence pe-
riod. This issue can increase the memory footprint of the
application, and is responsible for 5% of preemptions.
Interrupt context preemption (ICP) problem hap-
pens when a vCPU that is executing an interrupt con-
text gets preempted. In particular, this problem is dif-
ferent from prior works that focus on interrupt deliv-
ery [12, 43] rather than interrupt handling. This issue
occurs in cases such as TLB shootdowns, function call
interrupts, rescheduling interrupts, IRQ work interrupts,
etc. in every commodity OS. For example, we found that
Apache web server, an interrupt-intensive workload, suf-
fers from the ICP problem as it accounts to almost 18%
of preemptions for evaluated workloads (refer Figure 3).
2.2 Prior Approaches
Some of the prior studies mitigate LHP and LWP prob-
lems by relaxed co-scheduling [45], balancing vCPUs to
physical CPUs [41] with IPIs as a heuristic [17], or using
hardware features [34]. Meanwhile, others designed a
para-virtualized interface [8, 14, 42, 44] to only tackle
the LHP and LWP problem for spinlocks. Besides these,
one radical design focused on scheduling VM’s processes
than vCPUs by hot plugging vCPUs on the basis of load on
the VM [3, 40]. Unfortunately, all of these prior works
address the double scheduling problem either partially
that misses other preemption problems, or take a radical
path that is not only difficult to adopt in practice but
can have significant overhead, in terms of scaling for
machines with almost 100 physical cores. Because their
approach involves 1) the detection of response to the dou-
ble scheduling in the form of hypercalls and interrupt in-
jection [3], and 2) explicit task migration from idle vCPUs
to active vCPUs. On the contrary, our approach does sim-
ple memory operations and exploits the vCPU scheduling
boundary to notify the hypervisor for scheduling deci-
sions without any explicit task and vCPU migration: a
lightweight approach even at high core count.
2.3 The Case for An Extra Schedule
As mentioned before, OS critical sections are the ones
that define the forward progress of an application for
which the OS is responsible. For instance, let us take an
example of two threads competing to acquire a lock to
update contents of a file. If the lock holder, which is up-
dating the file, is preempted, the other waiter will waste
CPU cycles. There are several critical operations that af-
fect the application scalability [16, 25], and OS performs
such operations either by acquiring a lock or executing
an interrupt context (I/O processing, TLB shootdowns,
etc.). In particular, a delay in processing of these critical
sections can result in a severe performance anomaly such
as a convoy effect [14, 16], or decreased network through-
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Figure 2: Overview of the information flow between a VM
and a hypervisor. Each vCPU has a per-CPU state that is shared
with the hypervisor, denoted as eCS state. Figure (a) shows how
the vCPU2 relays information about an eCS to the hypervisor.
On entering a critical section or an interrupt context ( 1), vCPU2

updates the non_preemptable_ecs_count ( 2 ). After a while,
before scheduling out vCPU2, the hypervisor reads its eCS state
( 3 ), and allows it run for one more schedule to mitigate any
of the double scheduling problems. Figure (b) shows how the
hypervisor shares the information whether a vCPU is preempted
or a physical CPU is overloaded, at the schedule boundary. For
instance, the hypervisor marks vcpu_preempted, while schedul-
ing out a vCPU; or updates pcpu_overloaded flag to one if the
number of active tasks on that physical CPU is more than one.
Both try to further mitigate LWP and BWW problems.

put for applications such as web servers (refer Figure 1).
Hence, unlike prior approaches, we propose a simple and
an intuitive approach, i.e., now a VM hints the hypervisor
about a critical section that enables the hypervisor to let
a vCPU execute for a pre-defined time slot (schedule). This
extra schedule is sufficient to complete a critical section
because 1) most critical sections are very fine-grained,
and have a time granularity of several microseconds [42],
while 2) the granularity of a single schedule is in the
order of milliseconds, which is sufficient enough to com-
plete a critical section. For instance, an extra schedule
decreases the preemption count by 85–100% (Figure 3).
This approach is not only practical but also critical to
apply on machines with large core count. However, the
extra schedule introduces unfairness in the system, which
we address by designing a simple, zero-overhead schedule
penalization algorithm that tries to maintain the eventual
fairness in the system by leveraging the CFS [27] that
tries to maintain fairness in the system.
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Hint Lightweight Para-virtualized API Description

VM → Hypervisor

void activate_non_preemptable_ecs(cpu_id) Increase the eCS count for a vCPU with cpu id by 1 for a non-preemptable task
void deactivate_non_preemptable_ecs(cpu_id) Decrease the eCS count for a vCPU with cpu id by 1 for a non-preemptable task

void activate_preemptable_ecs(cpu_id) Increase the eCS count for a vCPU with cpu id by 1 for a preemptable task
void deactivate_preemptable_ecs(cpu_id) Decrease the eCS count for a vCPU with cpu id by 1 for a preemptable task

Hypervisor → VM bool is_vcpu_preempted(cpu_id)† Return whether a vCPU with cpu id is preempted by the hypervisor
bool is_pcpu_overcommitted(cpu_id) Return whether a physical CPU, running a vCPU with cpu id, is over-committed

Table 1: Set of para-virtualized APIs exposed by the hypervisor to a VM for providing hints to the hypervisor to mitigate double
scheduling. These APIs provide hints to the hypervisor and VM via shared memory. A vCPU relies on the first four APIs to ask for
an extra schedule to overcome LHP, LWP, RP, RRP, and ICP. Meanwhile, a vCPU gets hints from the hypervisor by using the last two
APIs to mitigate LWP and BWW problems. The cpu_id is the core id that is used by tasks running inside a guest OS.
†Currently, is_vcpu_preempted() is already exposed to the VM in Linux.

3 Design
A hypervisor can mitigate various preemption problems,
if it is aware of a vCPU executing a critical section. We
denote such a hypervisor-aware critical section as an
enlightened critical section (eCS), that can be executed for
one more schedule. eCS is applicable to all synchroniza-
tion primitives and mechanisms such as RCU and inter-
rupt contexts. We now present our lightweight APIs that
act as a cross-layer interface for annotating an eCS and
later focus on our notion of an extra schedule and our
approach to maintain eventual fairness in the system.
3.1 Lightweight Para-virtualized APIs
We propose a set of six lightweight para-virtualized APIs
to bridge the semantic gap that both VM and hypervisor
use for conveying information between them. These APIs
rely on four variables (refer Figure 2) that are local to
each vCPU. They are exposed via shared memory between
the hypervisor and a VM and the notification happens
via simple read and write memory operations. A simple
memory read is sufficient for the hypervisor to decide
on scheduling because 1) it tries to execute each vCPU
on a separate pCPU, 2) and it requires knowing about an
eCS only at the schedule boundary, thereby removing the
cost of polling and other synchronous notifications [3].
To consider an OS critical section as an eCS, we mark the
start and unmark the end of a critical section, which lets
the hypervisor know about an eCS. However, a process in
an OS can be of two types. First is the non-preemptable
process that can never be scheduled out. Such a process
is either an interrupt or a kernel thread running after
acquiring a spinlock. Another one is the preemptable
task such as a user process or a process with blocking
lock. Hence, we introduce four APIs (VM→ Hypervisor)
to separately handle these two types of tasks. The last
two APIs (Hypervisor → VM) provide the hypervisor
context to the VM,which a lockwaiter can use tomitigate
the LWP problem or yield the vCPU to other hypervisor
tasks or vCPUs in an over-committed scenario. Figure 2
illustrates those four states:

• non_preemptable_ecs_count maintains the count
of active non-preemptable eCSs, such as non-
blocking locks, RCU reader, and interrupt contexts.

It is similar to the preemption count of the OS.
• preemptable_ecs_count is similar to the preemp-
tion count variable of the OS, but it only maintains
the count of active preemptable eCSs, such as block-
ing primitives, namely, mutex and rwsem.

• vcpu_preempted denotes whether a vCPU is running.
It is useful for handling the BWW problem in both
under- and over-committed scenarios.

• pcpu_overloaded denotes whether a physical CPU,
executing that particular vCPU, is over-committed.
Lock waiters can use this information to address
the BWW problem in an over-committed scenario.

Figure 2 presents two scenarios in which the sched-
ule context information is shared between a vCPU
and the hypervisor. Figure 2 (a) shows how a vCPU,
i.e., entering an eCS, shares information with the hy-
pervisor. During entry ( 1 ), vCPU2 first updates its
corresponding state (non_preemptable_ecs_count or
preemptable_ecs_count) ( 2 ) and continues to execute
its critical section. Meanwhile, the hypervisor, before
scheduling out vCPU2, checks vCPU2’s eCS states ( 3) and al-
lows it to run for extra time if certain criteria are fulfilled
(§3.2); otherwise, it schedules out vCPU2 with other wait-
ing tasks. When vCPU2 exits the eCS, it decreases the eCS
state count, denoting the end of critical section. Figure 2
(b) illustrates another scenario that addresses the BWW
problem. in which the hypervisor updates the eCS states:
pcpu_overloaded and vcpu_preempted while schedul-
ing in and out vCPU2, respectively, at each schedule
boundary ( 1 ). We devise a simple approach—virtualized
scheduling-aware spinning (eSchdSpin)—that enables
efficient scheduling aware waiting for both blocking
and non-blocking locks (§4). That is, vCPU2 reads both
states ( 2) and decides whether to keep spinning until the
lock is acquired if the pCPU is not overloaded ( 3 ), else it
yields, which allows the other vCPU (in VM2) or a hypervi-
sor’s task to progress forward by doing some useful task,
thereby mitigating the double scheduling problems.
3.2 Eventual Fairness with Selective Scheduling
As mentioned before, the hypervisor relies on its sched-
uler to figure out whether a vCPU is executing an eCS.
That is, when a vCPU with a marked eCS is about to be
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scheduled out, the hypervisor scheduler checks the value
of eCS count variables (Figure 2). If any of these values are
greater than zero, the hypervisor lets the vCPU run for an
extra schedule. However, vCPU rescheduling introduces
two problems: 1) How does the hypervisor handles a task
with eCS, which the guest OS can preempt or schedule
out? 2) How does it ensure the system fairness?
We handle an eCS preemptable task with

preemptable_ecs_count counter APIs, which differenti-
ate between a preemptable task and a non-preemptable
task. We do so because the guest OS can schedule out a
preemptable task. In this case, the hypervisor should
avoid rescheduling that vCPU because 1) it will result
in false rescheduling, and 2) it can hamper the VM
performance. We address this issue inside the guest OS,
i.e., before scheduling out an eCS-marked task inside a
guest OS, we save the value of preemptable_ecs_count
to a task-specific structure and reset the counter to zero.
Later, when the task is rescheduled again by the guest
OS, we restore the preemptable_ecs_count with the
saved value from the task-specific structure, thereby
mitigating the false scheduling.
With vCPU rescheduling, we introduce unfairness at

two levels: 1) An eCS marked vCPU will always ask
for rescheduling on every schedule boundary.2 2) By
rescheduling a vCPU, the hypervisor is unfair to other
tasks in the system. We resolve the first issue by allowing
the hypervisor to reschedule an eCS-marked vCPU only
once during that schedule boundary as rescheduling ex-
tends the boundary. At the end of schedule boundary, the
hypervisor schedules other tasks to avoid the starving
other tasks or VMs and addresses indefinite rescheduling.
In addition, the hypervisor also keeps track of this extra
reschedule information and runs other vCPUs for longer
duration and inherently balances the running time, an
equivalent to vCPU penalization. Thus, our approach se-
lectively reschedules and penalizes a vCPU rather than bal-
ancing the extra reschedule information across all cores,
which will result in an unnecessary overhead of synchro-
nizing all runtime information of rescheduling. We call
our approach as the local CPU penalization approach, as
we only penalize a vCPU that executed an eCS, thereby
ensuring eventual fairness in the system. Moreover, our
local vCPU scheduling is a form of selective-relaxed co-
scheduling of vCPUs depending on what kind of tasks are
being executed, while without maintaining any synchro-
nization among vCPUs, unlike prior approaches [41, 45].

4 Use Case
The double scheduling phenomenon introduces the se-
mantic gap in three places: 1) from a vCPU to a physical
CPU that results in LHP, RP, and ICP problems; 2) from a

2Such a VM can be either an I/O or an interrupt-intensive VM that
spends most of its time in the kernel, or even a compromised VM.

API LHP RP RRP ICP LWP BWW

activate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
deactivate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
activate_preemptable_vcs() ✓ ✓ - - - -
deactivate_preemptable_vcs() ✓ ✓ - - - -
is_vcpu_preempted() - - - - ✓ ✓
is_pcpu_overcommitted() - - - - - ✓

Table 2: Applicability of our six lightweight para-virtualized
APIs that strive to address the symptoms of double scheduling.

Component Lines of code

eCS annotation 60
eCS infrastructure 800
Scheduler extension 150
Total 1,010

Table 3: eCS requires small modifications to the existing Linux
kernel, and the annotation effort is also minimal: 60 LoC
changes to support the 10 million LoC Linux kernel that has
around 12,000 of lock instances with 85,000 lock invocations.

pCPU to a vCPU; and 3) from one vCPU to another in a VM,
both suffer from LWP and BWW problems. Table 2 shows
how to use our APIs to address these problems.

LHP, RP, RRP, and ICP problem. To circumvent these
problems, we rely on the VM → hypervisor notifica-
tion because a vCPU running any spinlocks, read-write
locks, mutex, rwsem, or an interrupt context is already
inside the critical section. Thus, we call activate_*()
and deactivate_*()APIs for annotating critical sections.
For example, the first two APIs are applicable to spin-
locks, read-write locks, RCU, and interrupts, and the next
two are for mutex and rwsem. (refer Table 2).

LWP and BWW problem. The LWP problem occurs in
the case of FIFO-based locks such as MCS and Ticket
locks [23]. However, unfair locks, such as qspinlock [6],
mutex [29], and rwsem [37], do not suffer from this prob-
lem, and are currently used in Linux. The reason is that
they allow other waiters to steal the lock, while suffering
from the issue of starvation. On the other hand, all of
these locks suffer from the BWW problem because the cost
to wake up a sleeping in a virtualized environment varies
from 4,000–10,000 cycles. as a wake-up call results in a
VMexit, which adds an extra overhead to notify a vCPU
to wake up a process. This problem is severe for blocking
primitives because they are non-work conserving in na-
ture [16], i.e., the waiters schedule out themselves, even
if a single task is present in the run queue of the guest OS.
We partially mitigate this issue by allowing the waiters to
spin rather than sleep if a single task is present in the run
queue of the guest scheduler (SchdSpin). However, this
approach is non-cooperative when multiple VMs are run-
ning. Thus, to avoid unnecessary spinning of waiters, we
rely on our is_pcpu_overcommitted() API that notifies
a waiter to only spin if the pCPU is not over-committed.
We call this approach the virtualized scheduling-aware
spinning approach (eSchdSpin).
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5 Implementation
We realized the idea of eCS by implementing it on the
Linux kernel version 4.13. Besides annotating various
locks and interrupt contexts with eCS, we specifically
modified the scheduler and the para-virtual interface of
the KVMhypervisor. Our changes are portable enough to
apply on the Xen hypervisor too. Thewhole modification
consists of 1,010 lines of code (see Table 3).
Lightweight para-virtualized APIs. We share the
information between the hypervisor and a VM with a
shared memory between them, which is similar to the
kvm_steal_time [4] implementation. For instance, each
VM maintains a per-core eCS states, and the hypervisor
maintains per-vCPU eCS states for each VM.
Scheduler extension. We extend a scheduler-to-
task notification mechanism, preempt_notifier [18], for
identifying an eCS-marked vCPU at the schedule boundary.
Our extension allows the scheduler to know about the
task scheduling requirement and decide scheduling strat-
egy at the schedule boundary. For example, in our case,
the extension reads the non_preemptable_ecs_count
and preemptable_ecs_count to decide the scheduling
strategy for the vCPU. Besides this, we rely on the noti-
fier’s in and out APIs to set the value of vcpu_preempted
and pcpu_overloaded variables.

We implemented our vCPU rescheduling decision in the
schedule_tick function [36]. The schedule_tick func-
tion performs two tasks: 1) It does the bookkeeping of
the task runtime, which is used for ensuring the fairness
in the system. 2) It also is responsible for setting the
rescheduling flag (TIF_NEED_RESCHED) if there is more
than one task on that run queue, which is used by the
scheduler to schedule out the task if the reschedule flag
is set. We implemented the rescheduling strategy by by-
passing the setting up of the reschedule flag in case the
preempt_notifier check function returned true, mean-
while updating the runtime statistics of the vCPU.
Annotating locks for eCS. We mark eCS by using the
non-preemptable APIs for non-blocking primitives, pre-
emptable ones for mutex and rwsem. Our annotation
comprises only 60 LoC that covers around 12,000 lock
instances with 85,000 lock API calls in the Linux kernel
that has 10 million LoC for the kernel version 4.13.

6 Evaluation
We evaluate our approaches by answering the following
questions:

• What is the overhead of an eCS annotation and the
scheduler overhead to read the values? (§6.1)

• Does eCS helps in an over-committed case? (§6.2)
• How does eCS impact the scalability of a VM? (§6.3)
• How do our APIs address the BWW problem? (§6.4)
• Does our schedule penalization approach maintain

the eventual fairness of the system? (§6.5)
Experimental setup. We extended VBench [13] for
our evaluation. We chose four benchmarks: Apache
web server [7], Metis [21], Psearchy from Mosbench,
and Pbzip2 [9]. The Apache web server serves a 300
bytes static page for each request that is generated by
WRK [10]. Both of them are running inside the VM to
remove the network wire overhead and only stress the
VM’s kernel components. We choose Apache to stress
the interrupt handler to emphasize the importance of
eCS for an interrupt context. Metis is a map-reduce li-
brary for a single multi-core server that mostly stresses
the memory allocator (spinlock) and the page-fault han-
dler (rwsem) of the OS. Similar to Metis, Psearchy is an
in-memory parallel search and indexer that stresses the
writer side of the rwsem design. In addition, we also
choose Pbzip2—a parallel compression and decompres-
sion program—because we wanted to use a minimally
kernel-intensive application. Moreover, none of these
workloads suffer from performance degradation from
any known user space bottleneck in a non-virtualized
environment. We use memory-based file system, tmpfs,
to isolate the effect of I/O. We further pin the cores to
circumvent vCPU migration at the hypervisor level to
remove the jitter from our evaluation.
We evaluate our eCS approach against the following

configurations: 1) PVM is a para-virtualized VM that in-
cludes unfair qspinlock implementation, which miti-
gates LWP and BWW issues, and it is the default config-
uration since Linux v4.5. 2) HVM is the one without para-
virtualization support and also includes unfair qspinlock
implementation. Both PVM and HVM are not eCS annotated.
Note that we could not compare other prior works be-
cause they are not open sourced [3, 45] and are very
specific to the Xen hypervisor [42]. We evaluate these
configuration on an eight socket, 80-core machine with
Intel E7-8870 processors. Another point is that the cur-
rent version of KVM partially addresses the BWW problem
that can occur from the user space [22].
6.1 Overhead of eCS

We evaluate the cost of our lightweight para-virtualized
APIs on various blocking and non-blocking locks, and
RCU. Table 4 enumerates the overhead of the sole API
cost including the cost of executing a critical section
with a simple microbenchmark that executes an empty
critical section to quantify the impact of eCS API on
these primitives in both lowest (1 core) and highest con-
tention (80 core) scenarios. 1 core denotes that a thread
is trying to acquire a critical section, whereas 80 core

denotes that 80 threads are competing. We observe that
eCS adds an overhead of almost 0.9–18.4 ns in low con-
tention, whereas negligible overhead in high contention
scenario, except RCU. For RCU, the empty critical section
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Critical sections

Time (ns)

1 core 80 core

W/o eCS W/ eCS W/o eCS W/ eCS

API cost – 16.4 – 16.4

spinlock 31.2 44.8 4,782.3 4,772.9
rwlock (read) 32.0 38.8 2,418.2 2,519.4
rwlock (write) 27.4 45.8 4,363.3 4,784.5
mutex 33.5 34.4 49,116.4 48,125.7
rwsem (read) 35.6 36.6 2,588.8 2,737.0
rwsem (write) 33.3 38.1 7,055.7 7,150.1
RCU 9.8 19.7 9.8 19.8

Table 4: Cost of using our lightweight para-virtualized APIs
with various synchronization primitives and mechanism. 1 core
and 80 core denote the time (in ns) to execute an empty critical
section with one and 80 threads, respectively. Although, our
approach slightly adds an overhead on a single core count, there
is no performance degradation for our evaluated workloads.

suffers from almost twice the overhead because both
RCU’s lock/unlock operations do a single memory update
on the preempt_count variable for a preemptable ker-
nel. Even though our APIs add an overhead in the low
contended scenario, we do not observe any performance
degradation for any of our evaluated workloads.
6.2 Performance in an Over-committed Scenario
We evaluate the performance of the aforementioned
workloads in an over-committed scenario by running
two VMs in which each vCPU from both VMs share a
physical CPU. Figure 3 (i) shows the throughput of these
workloads for PVM, HVM, and eCS; (ii) shows the number of
unavoidable preemptions that we capture while running
these workloads when a vCPU is about to be scheduled
out for eCS; and (iii) represents the percentage of types of
observed preemptions, namely, LHP for blocking (B-LHP)
and non-blocking (NB-LHP) locks, RP, RRP, ICP problems
that we observe for the eCS configuration, including both
avoided and unavoided preemptions.
Apache. eCS outperforms both PVM and HVM by 1.2× and
1.6×, respectively (refer (t:a) in Figure 3). Moreover, our
approach reduces the number of possible preemptions
by 85.8–100% (refer (n:a)) because of our rescheduling
approach. We cannot completely avoid all preemptions
because of our schedule penalization approach, as some
of the preemptions occur consecutively. Even though
eCS adds overhead, especially to RCU, it still does not
degrade the scalability for four reasons: 1) We address
the BWW problem, which allows for more opportunities
to acquire the lock on time; 2) both hypervisor → VM
APIs allow cooperative co-scheduling of the VMs; 3) our
extra schedule approach avoids 85.8–100% of captured
preemptions with the help of our VM→ hypervisor APIs;
and 4) the APIs overhead partially mitigates the highly
contended system at higher core count by acting as a
back-off mechanism. Another interesting observation
is that we observe almost every type of preemption (re-

fer Figure 3 (p:a)) because of serving the static pages,
which involves blocking locks for the socket connec-
tion and softirq and spinlocks use for the interrupts
processing. In particular, the number of preemptions is
dominated by LHP for non-blocking and blocking locks,
followed by ICP and then RP. We believe that the ICP
problem will further exacerbate with optimized interrupt
delivery mechanisms [12, 43]. PVM is 1.36× faster than
HVM at 80 cores because of the support of para-virtualized
spinlock (qspinlock [20]) as well as the asynchronous
page fault mechanism that decreases the contention [30].

The major bottleneck for this workload is the interrupt
injection, which can be mitigated by proposed optimized
methods [12, 43]. In addition, Figure 4 (b) presents the
latency CDF for the Apache workload at 80 cores in both
under- and over-compression case. We observe that eCS
not only maintains almost equivalent latency as that of
PVM in an under-committed case, but also decreases in the
over-committed case by 10.3–17% and 9.5–27.9% against
PVM and HVM, respectively.
Psearchy mostly stresses the writer side of rwsem as it
performs 20,000 small and large mmap/munmap opera-
tions along with stressing the memory allocator for inode
operations, which mostly idles the guest OS because of
the non-work conserving blocking locks [16]. Figure 3
(t:b) shows the throughput, in which eCS outperforms
both PVM and HVM by 2.3× and 1.7×, respectively. The rea-
son is that we 1) partially mitigate the BWW problem with
our eSchdSpin approach, and 2) decrease the number of
preemptions by 95.7–100% with an extra schedule (refer
(n:b)). In addition, our eSchdSpin approach decreases
the idle time from 65.4% to 45.2%, as it allows waiters
to spin than schedule out themselves, which severely
degrades the scalability in a virtualized environment, as
observed for both PVM and HVM. This workload is domi-
nated by mostly blocking and non-blocking locks, as they
account to almost 98% preemptions (refer (p:b)). We also
observe that HVM outperforms PVM by 1.33× because the
asynchronous page fault mechanism introduces more
BWW issue as it schedules out a vCPU if the page is not
available, which does not happen for HVM.
Metis is a mix of both page fault and mmap operations
that stress both the reader and the writer of the rwsem.
Hence, it also suffers from the BWW problem, as we ob-
serve in Figure 3 (t:c). eCS outperforms PVM and HVM by
1.3× at 80 cores because of the reduced BWW problem and
decreased preemptions that account to 91.4–99.5% (Fig-
ure 3 (n:c)). Note that the reader preemptions are 20%,
thereby illustrating that readers preemptions is possi-
ble for read-dominated workloads, which has not been
observed by any prior works. We do not observe any
difference in the throughput of HVM and PVM.
Pbzip2 is an efficient compression/decompression work-
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Figure 3: Analysis of real-world workloads in an over-committed scenario, i.e., two instances of VM are executing the same
workload. Column (i) represents the scalability of selected workloads in three settings: PVM, HVM, and with eCS annotations. Column
(ii) represents the number of preemptions caught and prevented by the hypervisor with our APIs. Column (iii) represents the type
of preemptions caught by the hypervisor (refer Table 4). By allowing an extra schedule, our approach reduces preemptions by
85–100% and improve scalability of applications by up to 2.5×, while observing almost all types of preemptions for each workload.
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Figure 4: CDF of the latency of requests for the Apache web server workload in both under- and over-committed scenarios at 80
cores. It clearly shows the impact of eCS in the over-committed scenario, while having minimal impact in the under-committed
case.

166    2018 USENIX Annual Technical Conference USENIX Association



0k
50k
100k
150k
200k
250k
300k
350k

10 20 30 40 50 60 70 80
0

100
200
300
400
500
600

10 20 30 40 50 60 70 80
0

300

600

900

1200

1500

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

10 20 30 40 50 60 70 80

Re
q/
se
c

#vCPUs

(a) Apache

PVM
HVM
eCS
Host

Jo
bs
/h
ou

r

#vCPUs

(b) Psearchy

Jo
bs
/h
ou

r

#vCPUs

(c) Metis

Jo
bs
/h
ou

r

#vCPUs

(d) Pbzip2
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persivor → VM in Table 1) on Psearchy in both under- and
over-committed scenarios.

load that spends only around 5% of the time in the kernel
space. Figure 3 (t:d) shows that the performance of eCS
is similar to PVM and HVM, while decreasing the number
of preemptions by 98.4–100% (refer (n:d)). We do not
observe any performance gain in this scenario because
1) these preemptions may not be too critical to affect the
application scalability, and 2) the overhead of our APIs,
which do not provide any gains even after decreasing
the preemptions. Similar to the other workloads, LHP
dominates the preemption, followed by RP, ICP, and RRP.
In summary, our APIs not only reduce preemptions

by 85–100%, but also improve the scalability of appli-
cations that use these synchronization primitives up to
2.5×, while no observable overhead on these applications.
Moreover, we found that these preemptions occur for
almost every type of primitives, specifically in the case
of blocking synchronization primitives, read locks (Metis
and Pbzip2), and interrupts (e.g., TLB operations, packet
processing etc.). In addition, most of the workloads still
suffer from the BWW problem because of them being non-
work conserving. We partially address this problem with
the help of our eSchdSpin approach. One point to note is
that we do not observe too many preemptions, as shown
by prior works [42], because the current Linux kernel
has dropped the FIFO-based Ticket spinlock and has re-
placed it with a highly optimized unfair queue-based
lock [20] that mitigates the problem of LHP and LWP.
6.3 Performance in an Under-committed Case
We evaluate our eCS approach against PVM and HVM con-
figurations in which a VM is running to show the im-
pact of both APIs and eSchdSpin approach. We also
include bare-metal configuration (Host) as a baseline

(Figure 5). We observe that eCS addresses the BWW prob-
lem, and outperforms both PVM and HVM in the case of
Apache (1.2× and 1.2×), Psearchy (1.6× and 1.9×), Metis
(1.2× and 1.3×), and Psearchy (1.2× and 1.4×), while hav-
ing almost similar latency for the Apache workload (Fig-
ure 4 (a)). Likewise, eCS performance is similar to that of
bare-metal, except for the Psearchy workload.
For Apache, our APIs act as a back-off mechanism to

improve its scalability, as the system is heavily contended.
The throughput degrades after 30 cores because of the
overhead of process scheduling, socket overhead, and
inefficient kernel packet processing. Besides this, both
Psearchy and Metis suffer from the BWW problem, which
we improve with our eSchdSpin approach that results
in better scalability as well as reduction in the idling of
VMs. In particular, we decrease the idle time of Psearchy
and Metis by 25% and 20%, respectively, by using our
approach. One point to note is that blocking locks are
based on the TAS lock, whose throughput severely de-
grades with increasing core count because of the increase
cache-line contention, which we observe after 40 cores
for Psearchy for all configurations. We also find that
the Host is still 1.4× faster than eCS because eSchdSpin
only partially mitigates the BWW problem, while intro-
ducing excessive cache-line contention, which we can
circumvent with NUMA-aware locks [16]. For Pbzip2,
we observe that eCS performs equivalent to the Host,
while outperforming PVM and HVM after 60 cores, because
Pbzip2 spends the least amount of time in the kernel
space (5%), and starts to suffer from the BWW problem
only after 60 cores, which our eSchdSpin easily tackles.
6.4 Addressing BWW Problem via eCS

We evaluate the impact of the BWW problem on Psearchy
in both under- and over-committed scenarios. Figure 6
(a) shows that our scheduling-aware spinning approach
(marked as eCS + SchdSpin) improves the throughput of
Psearchy by 1.5× and 1.2× at 40 and 80 cores, respectively,
in an under-committed scenario. SchdSpin approach al-
lows a blocking waiter, both reader and writer, to actively
spin for the lock if the number of tasks in the run queue
is one, else the task schedules itself out. This approach is
similar to the scheduling-aware parking/wake-up strat-
egy [16], which we applied to the stock mutex and rwsem.
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in the system, even if VM2 is allowed extra schedules. Both VMs get 4.95 seconds to run.

As mentioned before, the reason for such an improve-
ment is that the current design is not scheduling aware,
as the waiter parks itself if it is unable to acquire the
lock. With our approach, we try to mitigate this per-
formance anomaly and allow the applications to scale
further. Unfortunately, the scheduling-aware approach
is inefficient in the case of the over-committed scenario,
as shown in Figure 6 (b). The reason is that current wait-
ers are guest OS agnostic, which leads to wasting CPU
resources and resulting in more LHP and LWP problems,
thereby degrading the scalability by almost 4.4× (marked
eCS + SchdSpin in (b)) against a simple eCS configuration
that still suffers from the BWW problem. We overcome this
issue by using our is_pcpu_overcommitted() API that
allows the SchdSpin approach to spin only when there
is no active task on the pCPU’s run queue; otherwise, the
waiter is scheduled out when more than one task are in
the run queue of the pCPU. By using our API (marked eCS
+ eSchdSpin), we outperform the baseline eCS approach
by 1.8× and the eCS + SchdSpin approach by 8×.3

6.5 System Eventual Fairness
We now evaluate whether we are able to achieve even-
tual fairness while allowing eCS annotated VMs to obtain
an extra schedule followed by local vCPU penalization. To
evaluate the fairness, we run a simple micro-benchmark
in two VMs (marked VM1 and VM2). VM1 is a non-annotated
VM, whereas VM2 is an eCS annotated one. This micro-
benchmark indefinitely reads the content of a file that
stresses the read side of the rwsem and spends around 99%
of the time in the kernel without scheduling out the task,
thereby prohibiting the guest OS from doing any halt
exits. Figure 7 (a) shows the time difference between two
VM runtimes that we measure at every 100 ms window
for each VM as well as the number of preemptions for
VM2 in that window. Figure 7 (b) shows the cumulative
runtime of the VMs. We observe from Figure 7 (a) that
even after allowing for extra schedules, the CFS schedul-
ing policy balances out these extra schedules, which does

3Wehave used eCS + eSchdSpin approach for our evaluation against
PVM and HVM in §6.2 and §6.3.

not affect the runtime difference between VM1 and VM2.
For example, at the end of one second window, marked
10, we observe that the number of extra schedules that
the hypervisor granted VM2 was 34 (34 milliseconds of
extra time), but the runtime difference between VM1 and
VM2 is 7.8 ms, which becomes -1.9 ms at the end of two
seconds, while VM2 received a total of 54 extra schedules
(54 milliseconds). Hence, the extra schedule approach fol-
lowed by our local vCPU penalization ensures that none of
the tasks running on that particular physical CPU suffers
from the fairness issue, also referred as eventual fairness.
Moreover, Figure 7 (b) shows that both VMs get almost
equivalent runtime in a lockstep fashion with both VMs
getting almost 4.95 seconds at the end of 10 seconds.

7 Discussion
Our eCS approach addresses the problem of preemptions
and BWW in both under- and over-committed scenarios
by annotating all synchronization primitives and mecha-
nisms in the kernel space. However, besides these prim-
itives, kernel developers have to manually annotate a
critical section if they want to avoid the preemptions
while introducing their own primitives. One approach
could be that the hypervisor can read the instruction
pointer (IP) to figure out an eCS, but the guest OS must
provide a guest OS symbol table to resolve the IP. In ad-
dition, the current design of eCS only targets the kernel
space of a guest OS, and it is still agnostic of the user
space critical sections such as pthread locks. Hence, we
would like to extend our approach to the user space criti-
cal sections to further avoid the preemption problem, as
we believe that eCS is a natural fit for multi-level schedul-
ing. However, we need to communicate the scheduling
hint down to the lowest layer effectively, which requires
designing of the eCS composability extensions.
Our annotation approach does not open any security

vulnerability because our approach is based on the para-
virtualized VM, and it is similar to other approaches
that share the information with the hypervisor [4, 19].
By using our virtualized scheduling-aware spinning ap-
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proach (eSchdSpin), we partially mitigate the BWW prob-
lem. However, our Hypervisor → VM APIs expose
scheduling information of the pCPU, but they only tell
if a pCPU is overloaded or a vCPU is preempted. In ad-
dition, a VM cannot misuse this information as it will
be later penalized by the hypervisor. There is also very
slight possibility of priority inversion problem with our
extra schedule approach. However, the window of that
hypervisor-granted extra schedule is too small to incur
priority inversion and performance, unlike co-scheduling
approaches [41, 45] in which the scheduling window is
in the order of several milliseconds.

8 Related work
The double scheduling phenomenon is a recurring prob-
lem in the domain of virtualization, which seriously im-
pacts the performance of a VM. There have been com-
prehensive research efforts to mitigate this problem.
Synchronization primitives in VMs. Uhlig et al. [44]
demonstrated the spinlock synchronization issue in a
virtualized environment, which he addressed with syn-
chronous hints to the hypervisor, and was later replaced
by para-virtual hooks for the spinlock [8] for notifying
the hypervisor to block the vCPU after it has exhausted its
busy wait threshold. Meanwhile, other problems such as
LWP [32], the BWW problem [5, 39], and RCU readers preemp-
tion problems were found. Gleaner [5] that addressed the
BWW problem implemented a user space solution to handle
tasks among a varying number of vCPUs, by manipulat-
ing tasks’ processor affinity in the user space, which is
difficult to maintain at runtime as it must accurately track
each task launch and deletion. However, our eSchdSpin
approach is user agnostic and mitigates the problem to
certain extent for large core count.

Taebe et al. [42] addressed the LHP/LWP issue by expos-
ing the time window from the hypervisor to the guest OS,
which leverages this information that enables a waiter
to either spin or join the waiting queue. However, their
solution is not applicable to CFS [27] scheduler of Linux
as it does not expose the scheduling window information.
Their solution is orthogonal to our approach as we want
the hypervisor to take a decision than the VM. Waiman
Long [20] designed and implemented qspinlock that in-
herently overcomes the problem of LWP by exploiting
the property of the TAS lock in the queue-based lock. It
works by allowing the other waiters to steal the lock
before joining the queue without disrupting the waiters’
queue. However, qspinlock is still prone to LHP. Mean-
while, by annotating various locks as eCS, we confirm
these problems, and further identify new sets of prob-
lems such as RP and ICP, and provide a simple solution
to address the double scheduling phenomenon.
Partial handling of scheduling overhead in VMs.
There have been several studies on virtualization over-

head because of the software-hardware redirection [1, 39]
and co-scheduling issues [17, 41, 45]. For example,
VMware relies on relaxed co-scheduling [45] to mit-
igate double scheduling problem, in which vCPUs are
scheduled in batches and the stragglers are synchronized
within a predefined threshold. Besides this, other works
have proposed balanced vCPU scheduling [41] or even
IPI based demand scheduling [17]. However, these co-
scheduling approaches suffer from CPU fragmentation.
On the contrary, our approach neither introduces any
CPU fragmentation nor it needs to synchronize the global
scheduling information for all the vCPU of a VM because
each vCPU is locally penalized by the hypervisor rather
than synchronizing them among other vCPUs.
Song et al. [40] proposed the idea of dynamically

adjusting vCPUs according to available CPU resources,
while allowing guest OS to schedule its tasks. They
used the approach of vCPU ballooning, which avoided
the problem of double scheduling and was later extended
by Cheng et al. [3] by designing a lightweight hotplug
vCPU mechanism. Although their approach is effective in
case of small VMs, it is complementary to our approach
and may not scale effectively for large SMP VMs be-
cause of the overhead of migrating tasks from one vCPU
to another as well as the frequent rescheduling of the
targeted vCPUs. eCS, on the other hand, does not suffer
from any explicit IPI and migration-specific tasks, as it
only adds an overhead of a simple memory operations
for a scheduling decision.

9 Conclusion
Double scheduling phenomenon is a well-known prob-
lem in the domain of virtualization that leads to several
symptoms in the form of LHP, LWP, and BWW. We identify
that it not only is limited to non-blocking locks, but also
is applicable to blocking locks and reader side of locks.
We present a single shot solution with our key insight: if
a certain key component of a guest OS is allowed to pro-
ceed further, the guest OS will make forward progress.
We identify these critical components as synchroniza-
tion primitives and mechanism such as spinlocks, mutex,
rwsem, RCU, and even interrupt context, which we call en-
lightened critical sections (eCS). We annotate eCSwith our
lightweight APIs that expose whether a VM is executing
a critical section, which the hypervisor uses to provide
an extra schedule at the scheduling boundary, thereby
allowing the guest OS to progress forward. In addition,
by leveraging the hypervisor scheduling context, a VM
mitigates the effect of BWW problem with our simple vir-
tualized spinning-aware spinning strategy. With eCS, we
not only decrease the spurious preemptions by 85–100%
but also improve the throughput of applications up to
1.6× and 2.5× in an under- and over-committed scenario,
respectively.
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Abstract
Unikernel specializes a minimalistic LibOS and a tar-

get application into a standalone single-purpose virtual
machine (VM) running on a hypervisor, which is referred
to as (virtual) appliance. Compared to traditional VMs,
Unikernel appliances have smaller memory footprint and
lower overhead while guaranteeing the same level of
isolation. On the downside, Unikernel strips off the
process abstraction from its monolithic appliance and
thus sacrifices flexibility, efficiency, and applicability.

This paper examines whether there is a balance em-
bracing the best of both Unikernel appliances (strong
isolation) and processes (high flexibility/efficiency). We
present KylinX, a dynamic library operating system for
simplified and efficient cloud virtualization by providing
the pVM (process-like VM) abstraction. A pVM takes the
hypervisor as an OS and the Unikernel appliance as a
process allowing both page-level and library-level dy-
namic mapping. At the page level, KylinX supports pVM
fork plus a set of API for inter-pVM communication (IpC).
At the library level, KylinX supports shared libraries to
be linked to a Unikernel appliance at runtime. KylinX
enforces mapping restrictions against potential threats.
KylinX can fork a pVM in about 1.3 ms and link a library
to a running pVM in a few ms, both comparable to process
fork on Linux (about 1 ms). Latencies of KylinX IpCs
are also comparable to that of UNIX IPCs.

1 Introduction

Commodity clouds (like EC2 [5]) provide a public plat-
form where tenants rent virtual machines (VMs) to run
their applications. These cloud-based VMs are usually
dedicated to specific online applications such as big data
analysis [24] and game servers [20], and are referred to
as (virtual) appliances [56, 64]. The highly-specialized,
single-purpose appliances need only a very small portion
of traditional OS support to run their accommodated

applications, while the current general-purpose OSs con-
tain extensive libraries and features for multi-user, multi-
application scenarios. The mismatch between the single-
purpose usage of appliances and the general-purpose de-
sign of traditional OSs induces performance and security
penalty, making appliance-based services cumbersome
to deploy and schedule [62, 52], inefficient to run [56],
and vulnerable to bugs of unnecessary libraries [27].

This problem has recently motivated the design of
Unikernel [56], a library operating system (LibOS) archi-
tecture that is targeted for efficient and secure appliances
in the clouds. Unikernel refactors a traditional OS into
libraries, and seals the application binary and requisite
libraries into a specialized appliance image which could
run directly on a hypervisor such as Xen [30] and
KVM [22]. Compared to traditional VMs, Unikernel
appliances eliminate unused code, and achieve smaller
memory footprint, shorter boot times and lower overhead
while guaranteeing the same level of isolation [56]. The
hypervisor’s steady interface avoids hardware compati-
bility problems encountered by early LibOSs [39].

On the downside, Unikernel strips off the process
abstraction from its statically-sealed monolithic appli-
ances, and thus sacrifices flexibility, efficiency, and
applicability. For example, Unikernel cannot support
dynamic fork, a basis for commonly-used multi-process
abstraction of conventional UNIX applications; and the
compile-time determined immutability precludes run-
time management such as online library update and
address space randomization. This inability has largely
reduced the applicability and performance of Unikernel.

In this paper, we examine whether there is a balance
embracing the best of both Unikernel appliances (strong
isolation) and processes (high flexibility/efficiency). We
draw an analogy between appliances on a hypervisor and
processes on a traditional OS and take one step forward
from static Unikernels to present KylinX, a dynamic
library operating system for simplified and efficient
cloud virtualization by providing the pVM (process-like
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VM) abstraction. We take the hypervisor as an OS and
the appliance as a process allowing both page-level and
library-level dynamic mapping for pVM.

At the page level, KylinX supports pVM fork plus a
set of API for inter-pVM communication (IpC), which is
compatible with conventional UNIX inter-process com-
munication (IPC). The security of IpC is guaranteed by
only allowing IpC between a family of mutually-trusted
pVMs forked from the same root pVM.

At the library level, KylinX supports shared libraries
to be dynamically linked to a Unikernel appliance, en-
abling pVMs to perform (i) online library update which
replaces old libraries with new ones at runtime and (ii)
recycling which reuses in-memory domains for fast boot-
ing. We analyze potential threats induced by dynamic
mapping and enforce corresponding restrictions.

We have implemented a prototype of KylinX based
on Xen [30] (a type-1 hypervisor) by modifying Mini-
OS [14] (a Unikernel LibOS written in C) and Xen’s
toolstack. KylinX can fork a pVM in about 1.3 ms and link
a library to a running pVM in a few ms, both comparable
to process fork on Linux (about 1 ms). Latencies of
KylinX IpCs are also comparable to that of UNIX IPCs.
Evaluation on real-world applications (including a Redis
server [13] and a web server [11]) shows that KylinX
achieves higher applicability and performance than static
Unikernels while retaining the isolation guarantees.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background and design options.
Section 3 presents the design of dynamically-customized
KylinX LibOS with security restrictions. Section 4
reports the evaluation results of the KylinX prototype
implementation. Section 5 introduces related work. And
Section 6 concludes the paper and discusses future work.

2 Preliminaries

2.1 VMs, Containers & Picoprocesses
There are several conventional models in the literature of
virtualization and isolation: processes, Jails, and VMs.

• OS processes. The process model is targeted for
a conventional (partially-trusted) OS environment,
and provides rich ABI (application binary interface)
and interactivity that make it not suitable for truly
adversarial tenants.
• FreeBSD Jails [47]. The jail model provides a

lightweight mechanism to separate applications and
their associated policies. It runs a process on a
conventional OS, but restricts several of the syscall
interfaces to reduce vulnerability.
• VMs. The VM model builds an isolation boundary

matching hardware. It provides legacy compatibi-
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Figure 1: Alternative virtualization architectures.

lity for guests to run a complete OS, but it is costly
due to duplicated and vestigial OS components.

VMs (Fig. 1(left)) have been widely used in multi-
tenant clouds since it guarantees strong (type-1-
hypervisor) isolation [55]. However, the current virtu-
alization architecture of VMs is heavy with layers of
hypervisor, VM, OS kernel, process, language runtime
(such as glibc [16] and JVM [21]), libraries, and applica-
tion, which are complex and could no longer satisfy the
efficiency requirements of commercial clouds.

Containers (like LXC [9] and Docker [15]) leverage
kernel features to package and isolate processes. They
are recently in great demand [25, 7, 6] because they
are lightweight compared to VMs. However, containers
offer weaker isolation than VMs, and thus they often run
in VMs to achieve proper security guarantees [58].

Picoprocesses [38] (Fig. 1 (center)) could be viewed
as containers with stronger isolation but lighter-weight
host obligations. They use a small interface between the
host OSs and the guests to implement a LibOS realizing
the host ABI and map high-level guest API onto the small
interface. Picoprocesses are particularly suitable for
client software delivery because client software needs to
run on various host hardware and OS combinations [38].
They could also run on top of hypervisors [62, 32].

Recent studies [67, 32, 54] on picoprocesses relax
the original static isolation model by allowing dynamics.
For example, Graphene [67] supports picoprocess fork
and multi-picoprocess API, and Bascule [32] allows OS-
independent extensions to be attached to a picoprocess
at runtime. Although these relaxations dilute the strict
isolation model, they effectively extend the applicability
of picoprocesses to a much broader range of applications.

2.2 Unikernel Appliances
Process-based virtualization and isolation techniques
face challenges from the broad kernel syscall API that
is used to interact with the host OS for, e.g., pro-
cess/thread management, IPC, networking, etc. The
number of Linux syscalls has reached almost 400 [3]
and is continuously increasing, and the syscall API is
much more difficult to secure than the ABI of VMs
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(which could leverage hardware memory isolation and
CPU rings) [58].

Recently, researchers propose to reduce VMs, instead
of augmenting processes, to achieve secure and efficient
cloud virtualization [56, 19, 49]. Unikernel [56] is
focused on single-application VM appliances [26] and
adapts the Exokernel [39] style LibOS to VM guests to
enjoy performance benefits while preserving the strong
isolation guarantees of a type-1 hypervisor. It breaks
the traditional general-purpose virtualization architec-
ture (Fig. 1 (left)) and implements the OS features (e.g.,
device drivers and networking) as libraries. Compared
to other hypervisor-based reduced VMs (like Tiny Core
Linux [19] and OSv [49]), Unikernel seals only the
application and its requisite libraries into the image.

Since the hypervisor already provides a number of
management features (such as isolation and scheduling)
of traditional OSs, Unikernel adopts the minimalism
philosophy [36], which minimizes the VMs by not only
removing unnecessary libraries but also stripping off the
duplicated management features from its LibOS. For
example, Mirage [57] follows the multikernel model [31]
and leverages the hypervisor for multicore scheduling, so
that the single-threaded runtime could have fast sequen-
tial performance; MiniOS [14] relies on the hypervisor
(instead of an in-LibOS linker) to load/link the appliance
at boot time; and LightVM [58] achieves fast VM boot
by redesigning Xen’s control plane.

2.3 Motivation & Design Choices

Unikernel appliances and conventional UNIX processes
both abstract the unit of isolation, privileges, and ex-
ecution states, and provide management functionalities
such as memory mapping, execution cooperation, and
scheduling. To achieve low memory footprint and small
trusted computing base (TCB), Unikernel strips off the
process abstraction from its monolithic appliance and
links a minimalistic LibOS against its target application,
demonstrating the benefit of relying on the hypervisor to
eliminate duplicated features. But on the downside, the
lack of processes and compile-time determined mono-
lithicity largely reduce Unikernel’s flexibility, efficiency,
and applicability.

As shown in Fig. 1 (right), KylinX provides the pVM

abstraction by explicitly taking the hypervisor as an
OS and the Unikernel appliance as a process. KylinX
slightly relaxes Unikernel’s compile-time monolithicity
requirement to allow both page-level and library-level
dynamic mapping, so that pVMs could embrace the best
of both Unikernel appliances and UNIX processes. As
shown in Table 1, KylinX could be viewed as an exten-
sion (providing the pVM abstraction) to Unikernel, similar
to the extention of Graphene [67] (providing conven-

Static Dynamic
Picoprocess Embassies [43],

Xax [38], etc.
Graphene [67],
Bascule [32], etc

Unikernel Mirage [57],
MiniOS [14], etc.

KylinX

Table 1: Inspired by dynamic picoprocesses, KylinX
explores new design space and extends the applicability
of Unikernel.

tional multi-process compatibility) and Bascule [32]
(providing runtime extensibility) to picoprocess.

We implement KylinX’s dynamic mapping extension
in the hypervisor instead of the guest LibOS for the
following reasons. First, an extension outside the guest
LibOS allows the hypervisor to enforce mapping restric-
tions (§3.2.3 and §3.3.4) and thus improves security. Sec-
ond, the hypervisor is more flexible to realize dynamic
management for, e.g., restoring live states during pVM’s
online library update (§3.3.2). And third, it is natural
for KylinX to follow Unikernel’s minimalism philosophy
(§2.2) of leveraging the hypervisor to eliminate dupli-
cated guest LibOS features.

Backward compatibility is another tradeoff. The ori-
ginal Mirage Unikernel [56] takes an extreme position
where existing applications and libraries have to be com-
pletely rewritten in OCaml [10] for type safety, which
requires a great deal of engineering effort and may intro-
duce new vulnerabilities and bugs. In contrast, KylinX
aims to support source code (mainly C) compatibility, so
that a large variety of legacy applications could run on
KylinX with minimum effort for adaptation.

Threat model. KylinX assumes a traditional threat
model [56, 49], the same context as Unikernel [56]
where VMs/pVMs run on the hypervisor and are expected
to provide network-facing services in a public multi-
tenant cloud. We assume the adversary can run untrusted
code in the VMs/pVMs, and applications running in the
VMs/pVMs are under potential threats both from other
tenants in the same cloud and from malicious hosts
connected via Internet. KylinX treats both the hypervisor
(with its toolstacks) and the control domain (dom0)
as part of the TCB, and leverages the hypervisor for
isolation against attacks from other tenants. The use of
secure protocols like SSL and SSH helps KylinX pVMs

trust external entities.
Recent advance in hardware like Intel Software Guard

eXtensions (SGX) [12] demonstrates the feasibility of
shielded execution in enclaves to protect VMs/pVMs
from the privileged hypervisor and dom0 [33, 28, 45],
which will be studied in our future work. We also assume
hardware devices are not compromised, although in rare
cases hardware threats have been identified [34].
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Figure 2: KylinX components. Blue parts are newly de-
signed. DomU pVM is essentially a Unikernel appliance.

3 KylinX Design

3.1 Overview
KylinX extends Unikernel to realize desirable features
that are previously applicable only to processes. Instead
of designing a new LibOS from scratch, we base KylinX
on MiniOS [27], a C-style Unikernel LibOS for user
VM domains (domU) running on the Xen hypervisor.
MiniOS uses its front-end drivers to access hardware,
which connect to the corresponding back-end drivers
in the privileged dom0 or a dedicated driver domain.
MiniOS has a single address space without kernel and
user space separation, as well as a simple scheduler
without preemption. MiniOS is tiny but fits the bill
allowing a neat and efficient LibOS design on Xen. For
example, Erlang on Xen [1], LuaJIT [2], ClickOS [59]
and LightVM [58] leverage MiniOS to provide Erlang,
Lua, Click and fast boot environments, respectively.

As shown in Fig. 2, the MiniOS-based KylinX de-
sign consists of (i) the (restricted) dynamic page/library
mapping extensions of Xen’s toolstack in Dom0, and (ii)
the process abstraction support (including dynamic pVM

fork/IpC and runtime pVM library linking) in DomU.

3.2 Dynamic Page Mapping
KylinX supports process-style appliance fork and com-
munication by leveraging Xen’s shared memory and
grant tables to perform cross-domain page mapping.

3.2.1 pVM Fork

The fork API is the basis for realizing traditional multi-
process abstractions for pVMs. KylinX treats each user
domain (pVM) as a process, and when the application
invokes fork() a new pVM will be generated.

We leverage the memory sharing mechanism of Xen
to implement the fork operation, which creates a child
pVM by (i) duplicating the xc dom image structure and
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Figure 3: pVM fork. After fork is invoked, KylinX creates
a child pVM by sharing the parent (caller) pVM’s pages.

(ii) invoking Xen’s unpause() API to fork the calling
parent pVM and return its domain ID to the parent. As
shown in Fig. 3, when fork() is invoked in the parent
pVM, we use inline assemblies to get the current states
of CPU registers and pass them to the child. The control
domain (dom0) is responsible for forking and starting the
child pVM. We modify libxc to keep the xc dom image

structure in memory when the parent pVM was created,
so that when fork() is invoked the structure could be
directly mapped to the virtual address space of the child
pVM and then the parent could share sections with the
child using grant tables. Writable data is shared in a
copy-on-write (CoW) manner.

After the child pVM is started via unpause(), it (i)
accepts the shared pages from its parent, (ii) restores
the CPU registers and jumps to the next instruction after
fork, and (iii) begins to run as a child. After fork() is
completed, KylinX asynchronously initializes an event
channel and shares dedicated pages between the parent
and child pVMs to enable their IpC, as introduced in the
next subsection.

3.2.2 Inter-pVM Communication (IpC)

KylinX provides a multi-process (multi-pVM) application
with the view that all of its processes (pVMs) are col-
laboratively running on the OS (hypervisor). Currently
KylinX follows the strict isolation model [67] where only
mutually-trusted pVMs can communicate with each other,
which will be discussed in more details in §3.2.3.

The two communicating pVMs use an event channel
and shared pages to realize inter-pVM communication.
If two mutually-trusted pVMs have not yet initialized
an event channel when they communicate for the first
time because they have no parent-child relationship via
fork() (§3.2.1), then KylinX will (i) verify their mutual
trustworthiness (§3.2.3), (ii) initialize an event channel,
and (iii) share dedicated pages between them.
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Type API Description

Pipe
pipe Create a pipe and return the f ds.
write Write value to a pipe.
read Read value from a pipe.

Signal
kill Send signal to a domain.
exit Child sends SIGCHLD to parent.
wait Parent waits for child’s signal.
ftok Return the key for a given path.

Message msgget Create a message queue for key.
Queue msgsnd Write msg to message queue.

msgrcv Read msg from message queue.
Shared shmget Create & share a memory region.

Memory shmat Attach shared memory (of shmid).
shmdt Detach shared memory.

Table 2: Inter-pVM communication API.

The event channel is used to notify events, and the
shared pages are used to realize the communication.
KylinX has already realized the following four types of
inter-pVM communication APIs (listed in Table. 2).

(1) pipe(fd) creates a pipe and returns two file
descriptors (fd[0] and fd[1]), one for write and the
other for read.

(2) kill(domid, SIG) sends a signal (SIG) to an-
other pVM (domid) by writing SIG to the shared page and
notifying the target pVM (domid) to read the signal from
that page; exit and wait are implemented using kill.

(3) ftok(path, projid) translates the path and
projid to an IpC key, which will be used by
msgget(key, msgflg) to create a message queue with
the flag (msgflg) and return the queue ID (msgid);
msgsend(msgid, msg, len) and msgrcv(msgid,

msg, len) write/read the queue (msgid) to/from the
msgbuf structure (msg) with length len.

(4) shmget(key, size, shmflg) creates and
shares a memory region with the key (key), memory
size (size) and flag (shmflg), and returns the shared
memory region ID (shmid), which could be attached
and detached by shmat(shmid, shmaddr, shmflg)

and shmdt(shmaddr).

3.2.3 Dynamic Page Mapping Restrictions

When performing dynamic pVM fork, the parent pVM

shares its pages with an empty child pVM, the procedure
of which introduces no new threats.

When performing IpC, KylinX guarantees the security
by the abstraction of a family of mutually-trusted pVMs,
which are forked from the same root pVM. For example, if
a pVM A forks a pVM B, which further forks another pVM
C, then the three pVMs A, B, and C belong to the same
family. For simplicity, currently KylinX follows the all-
all-nothing isolation model: only the pVMs belonging

to the same family are considered to be trusted and are
allowed to communicate with each other. KylinX rejects
communication requests between untrusted pVMs.

3.3 Dynamic Library Mapping
3.3.1 pVM Library Linking

Inherited from MiniOS, KylinX has a single flat virtual
memory address space where application binary and
libraries, system libraries (for bootstrap, memory allo-
cation, etc.), and data structures co-locate to run. KylinX
adds a dynamic segment into the original memory layout
of MiniOS, so as to accommodate dynamic libraries after
they are loaded.

As depicted in Fig. 2, we implement the dynamic
library mapping mechanism in the Xen control library
(libxc), which is used by the upper-layer toolstacks such
as xm/xl/chaos. A pVM is actually a para-virtualized
domU, which (i) creates a domain, (ii) parses the kernel
image file, (iii) initializes the boot memory, (iv) builds
the image in the memory, and (v) boots up the image
for domU. In the above 4th step, we add a function
(xc dom map dyn()) to map the shared libraries into
the dynamic segment, by extending the static linking
procedure of libxc as follows.

• First, KylinX reads the addresses, offsets, file sizes
and memory sizes of the shared libraries from the
program header table of the appliance image.

• Second, it verifies whether the restrictions (§3.3.4)
are satisfied. If not, the procedure terminates.

• Third, for each dynamic library, KylinX retrieves
the information of its dynamic sections including
the dynamic string table, symbol table, etc.

• Fourth, KylinX maps all the requisite libraries
throughout the dependency tree into the dynamic
segment of the pVM, which will lazily relocate an
unresolved symbol to the proper virtual address
when it is actually accessed.

• Finally, it jumps to the pVM’s entry point.

KylinX will not load/link the shared libraries until they
are actually used, which is similar to lazy binding [17]
for conventional processes. Therefore, the boot times
of KylinX pVMs are lower than that of previous Uni-
kernel VMs. Further, compared to previous Unikernels
which support only static libraries, another advantage of
KylinX using shared libraries is that it effectively re-
duces the memory footprint in high-density deployment
(e..g., 8K VMs per machine in LightVM [58] and 80K
containers per machine in Flurries [71]), which is the
single biggest factor [58] limiting both scalability and
performance.
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Next, we will discuss two simple applications of
dynamic library mapping of KylinX pVMs.

3.3.2 Online pVM Library Update

It is important to keep the system/application libraries
up to date to fix bugs and vulnerabilities. Static Uni-
kernel [56] has to recompile and reboot the entire ap-
pliance image to apply updates for each of its libraries,
which may result in significant deployment burdens
when the appliance has many third-party libraries.

Online library update is more attractive than rolling
reboots mainly in keeping connections to the clients.
First, when the server has many long-lived connections,
rebooting will result in high reconnection overhead.
Second, it is uncertain whether a third-party client will
re-establish the connections or not, which imposes com-
plicated design logic for reconnection after rebooting.
Third, frequent rebooting and reconnection may severely
degrade the performance of critical applications such as
high-frequency trading.

Dynamic mapping makes it possible for KylinX to
realize online library update. However, libraries may
have their own states for, e.g., compression or cryp-
tography, therefore simply replacing stateless functions
cannot satisfy KylinX’s requirement.

Like most library update mechanisms (including DY-
MOS [51], Ksplice [29], Ginseng [61], PoLUS [37],
Katana [63], Kitsune [41], etc), KylinX requests the new
and old libraries to be binary-compatible: it is allowed
to add new functions and variables to the library, but it is
not allowed to change the interface of functions, remove
functions/variables, or change fields of structures. For
library states, we expect all the states are stored as vari-
ables (or dynamically-allocated structures) that would be
saved and restored during update.

KylinX provides the update(domid, new lib,

old lib) API to dynamically replace old lib with
new lib for a domU pVM (ID = domid), with necessary
update of library states. We also provide an update
command “update domid, new lib, old lib” for
parsing parameters and calling the update() API.

The difficulty of dynamic pVM update lies in manip-
ulating symbol tables in a sealed VM appliance. We
leverage dom0 to address this problem. When the
update API is called, dom0 will (i) map the new library
into dom0’s virtual address space; (ii) share the loaded
library with domU; (iii) verify whether the old library is
quiescent by asking domU to check the call stack of each
kernel thread of domU; (iv) wait until the old library is
not in use and pause the execution; (v) modify the entries
of affected symbols to the proper addresses; and finally
(vi) release the old library. In the above 5th step, there
are two kinds of symbols (functions and variables) which
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Figure 4: KylinX dynamic symbol resolution for func-
tions. The green lines represent pointers for normal lazy
binding of processes. The blue line represents the result
of KylinX’s resolution, pointing to the real function
instead of the .plt table entry (dashed green line).

will be resolved as discussed below.

Functions. The dynamic resolution procedure for func-
tions is illustrated in Fig. 4. We keep the relocation table,
symbol table and string table in dom0 as they are not in
the loadable segments. We load the global offset table
of functions (.got.plt) and the procedure linkage table
(.plt) in dom0 and share them with domU. In order to
resolve symbols across different domains, we modify the
2nd line of assembly in the 1st entry of the .plt table (as
shown in the blue region in Fig. 4) to point to KylinX’s
symbol resolve function (du resolve). After the new
library (new lib) is loaded, the entry of each function
of old lib in the .got.plt table (e.g., foo in Fig. 4)
is modified to point to the corresponding entry in the
.plt table, i.e., the 2nd assembly (push n) shown by the
dashed green line in Fig. 4. When a function (foo) of
the library is called for the first time after new lib is
loaded, du resolve will be called with two parameters
(n and *(got+4)), where n is the offset of the symbol
(foo) in the .got.plt table, and *(got+4) is the ID of
the current module. du resolve then asks dom0 to call
its counterpart d0 resolve, which finds foo in new lib

and updates the corresponding entry (located by n) in the
.got.plt table of the current module (ID = module ID) to
the proper address of foo (the blue line in Fig. 4).

Variables. Dynamic resolution for variables is slightly
complex. Currently we simply assume that new lib

expects all its variables to be set to their live states in
old lib instead of their initial values. Without this
restriction, the compiler will need extensions to allow
developers to specify their intention for each variable.

(1) Global variables. If a global variable (g) of the
library is accessed in the main program, then g is stored
in the data segment (.bss) of the program and there is
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an entry in the global offset table (.got) of the library
pointing to g, so after new lib is loaded KylinX will
resolve g’s entry in the .got table of new lib to the
proper address of g. Otherwise, g is stored in the data
segment of the library and so KylinX is responsible for
copying the global variable g from old lib to new lib.

(2) Static variables. Since static variables are stored
in the data segment of the library and cannot be accessed
from outside, after new lib is loaded KylinX will simply
copy them one by one from old lib to new lib.

(3) Pointers. If a library pointer (p) points to a
dynamically-allocated structure, then KylinX preserves
the structure and set p in new lib to it. If p points to a
global variable stored in the data segment of the program,
then p will be copied from old lib to new lib. If p
points to a static variable (or a global variable stored in
the library), then p will point to the new address.

3.3.3 pVM Recycling

The standard boot (§3.3.1) of KylinX pVMs and Uni-
kernel VMs [58] is relatively slow. As evaluated in
§4.1, it takes 100+ ms to boot up a pVM or a Unikernel
VM, most time of which is spent in creating the empty
domain. Therefore, we design a pVM recycling mecha-
nism for KylinX pVMs which leverages dynamic library
mapping to bypass domain creation.

The basic idea of recycling is to reuse an in-memory
empty domain to dynamically map the application (as a
shared library) to that domain. Specifically, an empty
recyclable domain is checkpointed and waits for running
an application before calling the app entry function
of a placeholder dynamic library. The application is
compiled into a shared library instead of a bootable
image, using app entry as its entry. To accelerate the
booting of a pVM for the application, KylinX restores the
checkpointed domain, and links the application library
by replacing the placeholder library following the online
update procedure (§3.3.2).

3.3.4 Dynamic Library Mapping Restrictions

KylinX should isolate any new vulnerabilities compared
to the statically and monolithically sealed Unikernel
when performing dynamic library mapping. The main
threat is that the adversary may load a malicious library
into the pVM’s address space, replace a library with a
compromised one that has the same name and symbols,
or modify the entries in the symbol table of a shared
library to the fake symbols/functions.

To address these threats, KylinX enforces restrictions
on the identities of libraries as well as the loaders of
the libraries. KylinX supports developers to specify the
restrictions on the signature, version, and loader of the

dynamic library, which are stored in the header of the
pVM image and will be verified before linking a library.

Signature and version. The library developer first gen-
erates the library’s SHA1 digest that will be encrypted by
RSA (Rivest-Shamir-Adleman). The result is saved in a
signature section of the dynamic library. If the appliance
requires signature verification of the library, the signature
section will be read and verified by KylinX using the
public key. Version restrictions are requested and verified
similarly.

Loader. The developer may request different levels of
restrictions on the loader of the libraries: (i) only allow-
ing the pVM itself to be the loader; (ii) also allowing other
pVMs of the same application; or (iii) even allowing pVMs
of other applications. With the first two restrictions a
malicious library in one compromised application would
not affect others. Another case for loader check is to
load the application binary as a library and link it against
a pVM for fast recycling (§3.3.3), where KylinX restricts
the loader to be an empty pVM.

With these restrictions, KylinX introduces no new
threats compared to the statically-sealed Unikernel. For
example, runtime library update (§3.3.2) of a pVM with
restrictions on the signature (to be the trusted developer),
version (to be the specific version number), and loader
(to be the pVM itself) will have the same level of security
guarantees as recompiling and rebooting.

4 Evaluation

We have implemented a prototype of KylinX on top of
Ubuntu 16.04 and Xen. Following the default settings
of MiniOS [14], we respectively use RedHat Newlib and
lwIP as the libc/libm libraries and TCP/IP stack. Our
testbed has two machines each of which has an Intel 6-
core Xeon E5-2640 CPU, 128 GB RAM, and one 1GbE
NIC.

We have ported a few applications to KylinX, among
which we will use a multi-process Redis server [13] as
well as a multi-thread web server [11] to evaluate the
application performance of KylinX in §4.6. Due to the
limitation of MiniOS and RedHat Newlib, currently two
kinds of adaptations are necessary for porting applica-
tions to KylinX. First, KylinX can support only select

but not the more efficient epoll. Second, inter-process
communications (IPC) are limited to the API listed in
Table 2.

4.1 Standard Boot
We evaluate the time of the standard boot procedure
(§3.3.1) of KylinX pVMs, and compare it with that of
MiniOS VMs and Docker containers, all running a Redis
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Figure 5: Total time of standard booting (reduced Redis).

server. Redis is an in-memory key-value store that
supports fast key-value storage/queries. Each key-value
pair consists of a fixed-length key and a variable-length
value. It uses a single-threaded process to serve user
requests, and realizes (periodic) serialization by forking
a new backup process.

We disable XenStore logging to eliminate the inter-
ference of periodic log file flushes. The C library (libc)
of RedHat Newlib is static for use in embedded systems
and difficult to be converted into a shared library. For
simplicity, we compile libc into a static library and libm
(the math library of Newlib) into a shared library that
will be linked to the KylinX pVM at runtime. Since
MiniOS cannot support fork, we (temporarily) remove
the corresponding code in this experiment.

It takes about 124 ms to boot up a single KylinX
pVM which could be roughly divided into two stages,
namely, creating the domain/image in memory (steps 1
∼ 4 in §3.3.1), and booting the image (step 5). Dynamic
mapping is performed in the first stage. Most of the time
(about 121 ms) is spent in the first stage, which invokes
hypercalls to interact with the hypervisor. The second
stage takes about 3 ms to start the pVM. In contrast,
MiniOS takes about 133 ms to boot up a VM, and Docker
takes about 210 ms to start a container. KylinX takes less
time than MiniOS mainly because its shared libraries are
not read/linked during the booting.

We then evaluate the total times of sequentially boot-
ing up a large number (up to 1K) of pVMs on one
machine. We also evaluate the total boot times of
MiniOS VMs and Docker containers for comparison.

The result is depicted in Fig. 5. First, KylinX is
slightly faster than MiniOS owing to its lazy load-
ing/linking. Second, the boot times of both MiniOS
and KylinX increase superlinearly as the number of
VMs/pVMs increases while the boot time of Docker con-
tainers increases only linearly, mainly because XenStore
is highly inefficient when serving a large number of
VMs/pVMs [58].
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4.2 Fork & Recycling
Compared to containers, KylinX’s standard booting can-
not scale well for a large number of pVMs due to the
inefficient XenStore. Most recently, LightVM [58] com-
pletely redesigns Xen’s control plane by implementing
chaos/libchaos, noxs (no XenStore), and split toolstack,
together with a number of other optimizations, so as to
achieve ms-level booting times for a large number of
VMs. We adopt LightVM’s noxs for eliminating Xen-
Store’s affect and test the pVM fork mechanism running
unmodified Redis emulating conventional process fork.
LightVM’s noxs enables the boot times of KylinX pVMs

to increase linearly even for a large number of pVMs. The
fork of a single pVM takes about 1.3 ms (not shown here
due to lack of space), several times faster than LightVM’s
original boot procedure (about 4.5 ms). KylinX pVM

fork is slightly slower than a process fork (about 1 ms)
on Ubuntu, because several operations including page
sharing and parameter passing are time-consuming. Note
that the initialization for the event channel and shared
pages of parent/child pVMs is asynchronously performed
and thus does not count for the latency of fork.

4.3 Memory Footprint
We measure the memory footprint of KylinX, MiniOS
and Docker (Running Redis) for different numbers of
pVMs/VMs/containers on one machine. The result (de-
picted in Fig. 6) proves that KylinX pVMs have smaller
memory footprint compared to statically-sealed MiniOS
and Docker containers. This is because KylinX allows
the libraries (except libc) to be shared by all appliances
of the same application (§3.3), and thus the shared
libraries need to be loaded at most once. The memory
footprint advantage facilitates ballooning [42] which
could be used to dynamically share physical memory
between VM appliances, and enables KylinX to achieve
comparable memory efficiency with page-level dedupli-
cation [40] while introducing much less complexity.
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pipe msg que kill exit/wait sh m
KylinX1 55 43 41 43 39
KylinX2 240 256 236 247 232
Ubuntu 54 97 68 95 53

Table 3: IpC vs. IPC in latency (µs). KylinX1: a pair
of lineal pVMs which already have an event channel and
shared pages. KylinX2: a pair of non-lineal pVMs.

4.4 Inter-pVM Communication
We evaluate the performance of inter-pVM communica-
tion (IpC) by forking a parent pVM and measuring the
parent/child communication latencies. We refer to a pair
of parent/child pVMs as lineal pVMs. As introduced in
§3.2.1, two lineal pVMs already have an event channel
and shared pages and thus they could communicate with
each other directly. In contrast, non-lineal pVM pairs have
to initialize the event channel and shared pages before
their first communication.

The result is listed in Table 3, and we compare it
with that of the corresponding IPCs on Ubuntu. KylinX
IpC latencies between two lineal pVMs are comparable
to the corresponding IPC latencies on Ubuntu, owing to
the high-performance event channel and shared memory
mechanism of Xen. Note that the latency of pipe

includes not only creating a pipe but also writing and
reading a value through the pipe. The first-time commu-
nication latencies between non-lineal pVMs are several
times higher due to the initialization cost.

4.5 Runtime Library Update
We evaluate runtime library update of KylinX by dynam-
ically replacing the default libm (of RedHat Newlib 1.16)
with a newer version (of RedHat Newlib 1.18). libm is
a math library used by MiniOS/KylinX and contains a
collection of 110 basic math functions.

To test KylinX’s update procedure for global variables,
we also add 111 pseudo global variables as well as
one read global function (reading out all the global
variables) to both the old and the new libm libraries. The
main function first sets the global variables to random
values and then periodically verifies these variables by
calling the read global function.

Consequently, there are totally 111 functions as well
as 111 variables that need to be updated in our test. The
update procedure could be roughly divided into 4 stages
and we measure the time of each stage’s execution.

First, KylinX loads new lib into the memory of dom0
and shares it with domU. Second, KylinX modifies the
relevant entries of the functions in the .got.plt table to
point to the corresponding entries in the .plt table. Third,
KylinX calls du resolve for each of the functions

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Stage1 Stage2 Stage3 Stage4

T
im

e 
(u

 s
ec

)

Different Stages

Figure 7: Runtime library update.

which asks dom0 to resolve the given function and
returns its address in new lib, and then updates the
corresponding entries to the returned addresses. Finally,
KylinX resolves the corresponding entries of the global
variables in the .got table of new lib to the proper
addresses. We modify the third stage in our evaluation
to update all the 111 functions in libm at once, instead
of lazily linking a function when it is actually being
called (§3.3.2), so as to present an overview of the entire
runtime update cost of libm.

The result is depicted in Fig. 7, where the total over-
head for updating all the functions and variables is about
5 milliseconds. The overhead of the third stage (resolv-
ing functions) is higher than others including the fourth
stage (resolving variables), which is caused by several
time-consuming operations in the third stage including
resolving symbols, cross-domain invoking d0 resolve,
returning real function addresses and updating corre-
sponding entries.

4.6 Applications
Besides the process-like flexibility and efficiency of pVM
scheduling and management, KylinX also provides high
performance for its accommodated applications compa-
rable to that of their counterparts on Ubuntu, as evaluated
in this subsection.

4.6.1 Redis Server Application

We evaluate the performance of Redis server in a KylinX
pVM, and compare it with that in MiniOS/Ubuntu. Again,
since MiniOS cannot support fork(), we temporarily
remove the code for serialization. The Redis server uses
select instead of epoll to realize asynchronous I/O,
because epoll is not yet supported by the lwIP stack [4]
used by MiniOS and KylinX.

We use the Redis benchmark [13] to evaluate the
performance, which uses a configurable number of busy
loops asynchronously writing KVs. We run different
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Figure 8: Redis server application.

numbers of pVMs/VMs/processes (each for 1 server)
servicing write requests from clients. We measure the
write throughput as a function of the number of servers
(Fig. 8). The three kinds of Redis servers have similar
write throughput (due to the limitation of select), in-
creasing almost linearly with the numbers of concurrent
servers (scaling being linear up to 8 instances before the
lwIP stack becomes the bottleneck).

4.6.2 Web Server Application

We evaluate the JOS web server [11] in KylinX, which
adopts multithreading for multiple connections. After
the main thread accepts an incoming connection, the web
server creates a worker thread to parse the header, reads
the file, and sends the contents back to the client. We use
the Weighttp benchmark that supports a small fraction
of the HTTP protocol (but enough for our web server)
to measure the web server performance. Similar to the
evaluation of Redis server, we test the web server by
running multiple Weighttp [8] clients on one machine,
each continuously sending GET requests to the web
server.

We evaluate the throughput as a function of the num-
ber of concurrent clients, and compare it with the web
servers running on MiniOS and Ubuntu, respectively.
The result is depicted in Fig. 9, where the KylinX
web server achieves higher throughput than the MiniOS
web server since it provides higher sequential perfor-
mance. Both KylinX and MiniOS web servers are slower
than the Ubuntu web server, because the asynchronous
select is inefficiently scheduled with the netfront driver
of MiniOS [27].

5 Related Work

KylinX is related to static Unikernel appliances [56, 27],
reduced VMs [19, 48, 49], containers [66, 9, 15], and
picoprocess [38, 62, 32, 54, 67, 33].
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5.1 Unikernel & Reduced VMs
KylinX is an extension of Unikernel [56] and is imple-
mented on top of MiniOS [27]. Unikernel OSs include
Mirage [56], Jitsu [55], Unikraft [18], etc. For example,
Jitsu [55] leverages Mirage [56] to design a power-
efficient and responsive platform for hosting cloud ser-
vices in the edge networks. LightVM [58] leverages
Unikernel on Xen to achieve fast booting.

MiniOS [27] designs and implements a C-style Uni-
kernel LibOS that runs as a para-virtualized guest OS
within a Xen domain. MiniOS has better backward
compatibility than Mirage and supports single-process
applications written in C. However, the original MiniOS
statically seals an appliance and suffers from similar
problems with other static Unikernels.

The difference between KylinX and static Unikernels
(like Mirage [56], MiniOS [27], and EbbRT [65]) lies in
the pVM abstraction which explicitly takes the hypervisor
as an OS and supports process-style operations like
pVM fork/IpC and dynamic library mapping. Mapping
restrictions (§3.3.4) make KylinX introduce as little
vulnerability as possible and have no larger TCB than
Mirage/MiniOS [56, 55]. KylinX supports source code
(C) compatibility instead of using a type-safe language
to rewrite the entire software stack [56].

Recent research [19, 49, 48] tries to improve
the hypervisor-based type-1 VMs to achieve smaller
memory footprint, shorter boot times, and higher ex-
ecution performance. Tiny Core Linux [19] trims an
existing Linux distribution down as much as possible to
reduce the overhead of the guest. OSv [49] implements
a new guest OS for running a single application on
a VM, resolving libc function calls to its kernel that
adopts optimization techniques such as the spinlock-free
mutex [70] and the net-channel networking stack [46].
RumpKernel [48] reduces the VMs by implementing
a optimized guest OS. Different from KylinX, these
general-purpose LibOS designs consist of unnecessary
features for a target application leading to larger attack
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surface. They cannot support the multi-process abstrac-
tion. Besides, KylinX’s pVM fork is much faster than
replication-based VM fork in SnowFlock [50].

5.2 Containers
Containers use OS-level virtualization [66] and leverage
kernel features to package and isolate processes, instead
of relying on the hypervisors. In return they do not need
to trap syscalls or emulate hardware, and could run as
normal OS processes. For example, Linux Containers
(LXC) [9] and Docker [15] create containers by using
a number of Linux kernel features (such as namespaces
and cgroups) to package resource and run container-
based processes.

Containers require to use the same host OS API [49],
and thus expose hundreds of system calls and enlarging
the attack surface of the host. Therefore, although LXC
and Docker containers are usually more efficient than
traditional VMs, they provide less security guarantees
since attackers may compromise processes running in-
side containers.

5.3 Picoprocess
A picoprocess is essentially a container which imple-
ments a LibOS between the host OS and the guest,
mapping high-level guest API onto a small interface.
The original picoprocess designs (Xax [38] and Em-
bassies [43]) only permit a tiny syscall API, which can
be small enough to be convincingly (even verifiably)
isolated. Howell et al. show how to support a small
subset of single-process applications on top of a mini-
mal picoprocess interface [44], by providing a POSIX
emulation layer and binding existing programs.

Recent studies relax the static and rigid picoprocess
isolation model. For example, Drawbridge [62] is a Win-
dows translation of the Xax [38] picoprocess, and creates
a picoprocess LibOS which supports rich desktop appli-
cations. Graphene [67] broadens the LibOS paradigm
by supporting multi-process API in a family (sandbox)
of picoprocesses (using message passing). Bascule [32]
allows OS-independent extensions to be attached safely
and efficiently at runtime. Tardigrade [54] uses pico-
processes to easily construct fault-tolerant services. The
success of these relaxations on picoprocess inspires our
dynamic KylinX extension to Unikernel.

Containers and picoprocesses often have a large TCB
since the LibOSs contain unused features. In contrast,
KylinX and other Unikernels leverage the hypervisor’s
virtual hardware abstraction to simplify their implemen-
tation, and follow the minimalism philosophy [36] to link
an application only against requisite libraries to improve
not only efficiency but also security.

Dune [34] leverages Intel VT-x [69] to provide a
process (rather than a machine) abstraction to isolate pro-
cesses and access privileged hardware features. IX [35]
incorporates virtual devices into the Dune process model
and achieves high throughput and low latency for net-
worked systems. lwCs [53] provides independent units
of protection, privilege, and execution state within a
process.

Compared to these techniques, KylinX runs directly
on Xen (a type-1 hypervisor), which naturally provides
strong isolation and enables KylinX to focus on the
flexibility and efficiency issues.

6 Conclusion

The tension between strong isolation and rich features
has been long lived in the literature of cloud virtu-
alization. This paper exploits the new design space
and proposes the pVM abstraction by adding two new
features (dynamic page and library mapping) to the
highly-specialized static Unikernel. The simplified virtu-
alization architecture (KylinX) takes the hypervisor as an
OS and safely supports flexible process-style operations
such as pVM fork and inter-pVM communication, runtime
update, and fast recycling.

In the future, we will improve security through mo-
dularization [27], disaggregation [60], and SGX en-
claves [33, 28, 45, 68]. We will improve the perfor-
mance of KylinX by adopting more efficient runtime
like MUSL [23], and adapt KylinX to the MultiLibOS
model [65] which allows spanning pVMs onto multiple
machines. Currently, the pVM recycling mechanism is
still tentative and conditional: it can only checkpoint an
empty domain; the recycled pVM cannot communicate
with other pVMs using event channels or shared memory;
the application can only be in the form of a self-contained
shared library that does not need to load/link other shared
libraries; and there are still no safeguards inspecting
potential security threats between the new and old pVMs

after recycling. We will address these shortcomings in
our future work.
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[66] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A.,
AND PETERSON, L. Container-based operating system virtu-
alization: a scalable, high-performance alternative to hypervisors.
In ACM SIGOPS Operating Systems Review (2007), vol. 41,
ACM, pp. 275–287.

[67] TSAI, C.-C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN,
W., JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA,
D., AND PORTER, D. E. Cooperation and security isolation of
library oses for multi-process applications. In Proceedings of the
Ninth European Conference on Computer Systems (2014), ACM,
p. 9.

[68] TSAI, C.-C., PORTER, D. E., AND VIJ, M. Graphene-sgx: A
practical library os for unmodified applications on sgx. In 2017
USENIX Annual Technical Conference (USENIX ATC) (2017).

[69] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F., ANDERSON, A. V., BENNETT, S. M., KÄGI, A.,
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Abstract

Because of the intermittent nature of renewable energy-
based electricity generation, a key building block for
a sustainable renewable energy-based electricity infras-
tructure is cost-effective energy storage management,
which is largely determined by the cost of electric bat-
teries. Despite substantial technological advances in re-
cent years, batteries used in consumer devices and elec-
tric vehicles are still too expensive to be feasible for
large-scale deployment. One promising way to reduce
the battery cost of an energy storage system is to lever-
age retired batteries from electric vehicles. However, be-
cause the charging/discharging characteristics of retired
batteries tend to vary widely from one another, putting
these heterogeneous batteries into the same module or
energy storage system pose significant safety risks and
efficiency challenges. This paper presents the design, im-
plementation and evaluation of a reconfigurable battery
array system called RAIBA that is designed to address the
heterogeneity issue in retired battery-based energy stor-
age systems by allowing the inter-battery connectivity to
be reconfigurable at run time. In addition, RAIBA also
enables virtualization of the electrical energy resources
in a battery array in the same way as how computing,
storage and network resources are virtualized. Empirical
measurements on a fully operational RAIBA prototype
demonstrate that it can effectively increase the discharge
service time by more than 80% under a set of real-world
electric load traces.

1 Introduction

In light of the global warming and resulting climate
change effects triggered by carbon-based fossil energy
sources, more and more counties are charging ahead to
build an energy infrastructure in which renewable en-
ergy plays a major role. Because most important renew-
able energy sources, such as sun, wind and tidal wave,

generate electricity in a way dictated by weather con-
ditions, this intermittent nature renders them unfit as a
base load electric energy source, unless they are supple-
mented by an energy storage system that could bridge the
time gaps between energy production and energy con-
sumption. Therefore, for renewable energy to become
a significant element of the future clean energy infras-
tructure, cost-effective energy storage management is a
key factor. Most grid-scale energy storage systems today
are pumped hydroelectric energy storage, which stores
energy in the form of gravitational potential energy of
water, which is pumped by off-peak low-cost electric-
ity from a lower-elevation reservoir to one with a higher
elevation. However, as electric vehicles become more
and more prevalent, the electric batteries they use will
increasingly become an important part of the energy stor-
age element of the renewable energy infrastructure.

Despite substantial technological advances in recent
years, batteries used in consumer devices and electric ve-
hicles are still too expensive to be feasible for large-scale
deployment. In 2017, the LCOE (levelized cost of elec-
tricity) of Lithium-based battery [18] is about $0.4 USD
per kWh discharge, but US DOE’s LCOE target [8] for a
cost-effective renewable energy storage is $0.1 USD per
kWh discharge. A promising way to facilitate the reduc-
tion of the battery cost of an energy storage system is
to leverage retired batteries from electric vehicles, as has
already been done by several electric or hybrid vehicle
manufacturers, such as Tesla, Nissan, Toyota, and BMW.
The reason that batteries retired from electric vehicles are
still usable as energy storage is because the residual ca-
pacity of retired batteries is generally between 70% to
80% of their original full capacity. However, the charg-
ing/discharging characteristics of these retired batteries
may deviate substantially from those when they were in
mint condition.

Conventional battery energy storage systems assume
that the charging/discharging characteristics of con-
stituent batteries are homogeneous, as it greatly reduces
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Figure 1: The most general form of the proposed RAIBA
architecture, in which each battery could be attached or
detached from the interconnect, and any battery could be
connected to any other battery in series or in parallel. In-
tersecting signal lines are connected when they are joined
by a dot.

energy utilization inefficiency. For example, consider a
set of batteries that are connected in series, and the ca-
pacity of one of them is significantly smaller than the oth-
ers. In this case, the effective charging/discharging ca-
pacity of the entire battery series is dictated by the weak-
est battery, and the additional capacity of all the other
stronger batteries is essentially left wasted. Because re-
tired batteries come from a wide variety of sources, their
charging/discharging characteristics are bound to vary
widely from one another, and putting these heteroge-
neous batteries into the same module or energy storage
system pose safety risks and utilization efficiency chal-
lenges.

In this work, we propose a Reconfigurable Array of
Inexpensive Battery Architecture (RAIBA ) [12, 7, 6] to
address the heterogeneity issue inherent in energy stor-
age systems that are built from retired batteries. Tesla
pioneered the idea of applying commodity batteries used
in 3C consumer devices, i.e., 18650 lithium batteries, to
building large-scale battery arrays used in electric vehi-
cles. For example, the number of 18650 batteries used in
Tesla Model S’s battery array is more than 7,000. These
battery arrays are provisioned with a certain amount of
redundancy to cope with potential battery failures, but
when a battery fails, the entire module containing it is
impacted because the inter-battery connectivity is fixed.
To more effectively minimize the impacts of battery fail-
ures and degradations, we propose that a battery array be
reconfigurable so as to work around failed or degraded
batteries at run time.

The most general form of RAIBA is shown in Figure 1,
which, via software control, controls whether each bat-
tery is attached to or detached from the array’s intercon-

nect, and how the batteries are connected to one another
at run time. The three outputs, O1, O2 and O3, shown
in red, blue and green in the figure, represent the out-
puts of this 4-battery array at three different points in
time. The first output (O1) is driven by a series connec-
tion among Battery 1 (B1), Battery 2 (B2), and a parallel
connection between Battery 3 (B3) and Battery 4 (B4),
whereas the second output (O2) corresponds to a series
connection between a parallel connection between Bat-
tery 1 (B1) and Battery 4 (B4), and another parallel con-
nection between Battery 2 (B2) and Battery 3 (B3). The
third output (O3), to which Battery 2 (B2) does not con-
tribute, is simply a parallel connection among B1, B3 and
B4. The dynamic reconfigurability afforded by RAIBA
allows the inter-battery connectivity to be tailored to a
given electrical load so as to make the best of available
battery resources and minimize unnecessary energy loss,
as illustrated by the following three use cases:

• For a series-connected battery array, when the ca-
pacity of the weakest battery is exhausted during a
discharge operation, RAIBA could temporarily put
it aside to prevent it from blocking the entire ar-
ray, and then continues the discharge operation by
making the best of the additional capacities of other
stronger batteries.

• For a parallel-connected battery array, when the ca-
pacity of the weakest battery becomes significantly
smaller than that of the others during a discharge
operation, RAIBA could temporarily put it aside to
prevent unwanted inter-battery capacity balancing,
which consumes energy, and then continues the dis-
charge operation by making the best of the addi-
tional capacities of other stronger batteries.

• Given an electric load request, RAIBA makes it pos-
sible to use a proper subset of batteries to provide
an aggregate voltage and current level which barely
exceeds those of the request, with their differences
and thus the associated down-conversion losses be-
ing reduced to the minimum .

The reconfigurability of RAIBA opens up myriad bat-
tery resource management flexibilities that are not previ-
ously possible, and in particular enables virtualization of
a physical battery pool in a way similar to how comput-
ing and networking resources are virtualized. Given an
electric load request < V, I >, RAIBA dynamically con-
figures a virtual battery best fit to satisfy the request by
first selecting a proper subset of qualified batteries, and
then connecting them in the most appropriate way, so that
the virtual battery’s aggregate voltage level exceeds V , its
aggregate current exceeds I, and the incurred energy loss
due to conversion and balancing is minimized.

188    2018 USENIX Annual Technical Conference USENIX Association



Figure 2: The system architecture of RAIBA-1 con-
sists of N columns connected in parallel, each of which
contains M batteries connected in series, with each bat-
tery’s connectivity to the interconnect via an enable/by-
pass switch.

2 RAIBA Levels

The inter-battery interconnect of a RAIBA system shown
in Figure 1 is deceivingly similar to that of a pro-
grammable logic array (PLA) digital logic circuit [14],
with a series connection corresponding to an AND oper-
ation and a parallel connection corresponding to an OR
operation. But the analogy quickly breaks down because
of the following two technical challenges:

• The inter-battery interconnect is an energy delivery
network that is tasked with carrying much larger
electric energy than typical digital logic circuits,
and thus require advanced power electronics circuit
design techniques to support complex connectivity
patterns while guaranteeing operational safety.
• To render inter-battery connectivity reconfiguration

completely seamless to an electric load served by a
RAIBA system, RAIBA requires on-line reconfigura-
bility, which means the entire system remains func-
tional across each reconfiguration operation and the
electric energy pattern delivered to the load before a
reconfiguration operation is very close to that after
the reconfiguration operation.

Taking into account the significant added circuit com-
plexities involved in supporting dynamic reconfiguration
of inter-battery connectivity, we design three RAIBA lev-
els that offer increasing reconfiguration flexibility but
also impose growing circuit design challenges.

A RAIBA-1 array, as shown in Figure 2, consists of N
columns connected in parallel, each of which contains M

Figure 3: The system architecture of RAIBA-2 is a re-
finement of RAIBA-1, with each enable/bypass switch
replaced with an enable/bypass/off switch, and hori-
zontal inter-column connectivity controlled by on/off
switches.

batteries connected in series. At any point in time, each
battery is either part of or insulated from a certain col-
umn through an enable/bypass switch. When the switch
is enable, the battery participates in the series connec-
tivity of the column; when the switch is bypass, the bat-
tery takes itself off the series connectivity of the column.
Moreover, above all batteries in each column is an on/off
switch that allows a column to participate in or sit out of
the overall inter-column parallel connection. Each bat-
tery in a RAIBA-1 system could only be connected in
series with other batteries in the same column.

A RAIBA-2 array, as shown in Figure 3, is basically
a RAIBA-1 array augmented with row-wise inter-column
connectivity controllable by on/off switches. In addition,
each battery is equipped with a enable/bypass/off switch
that allows a battery to be part of or insulated from its
column, or to disconnect the batteries above it in the
same column from those below it. That is, when a bat-
tery’s switch to the battery array’s interconnect is off, the
battery breaks off the series connectivity of the column
to which it belongs. The switchable inter-column inter-
connects run horizontally and provide additional connec-
tivity flexibility of allowing a battery in the i-th column
to be connected in series with another battery in the j-th
column, or be connected in parallel with another battery
in the j-th column without bypassing all other batteries in
the i-th and j-th column. For example, if the horizontal
on/off switches above and below B4 and B9 are turned
on, B4 and B9 are effectively connected in parallel; if B3
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is off and the on/off switch above B4 and B9 is turned
on, B4 and B8 are effectively connected in series.

While RAIBA-1 and RAIBA-2 are designed to support
a single electric load at a time, RAIBA-3, as shown in
Figure 1, is able to support multiple electric loads si-
multaneously. In addition, a RAIBA-3 array allows any
battery to be connected in series or in parallel with any
other battery in the array. This generality provides much
more room for battery resource optimization, but re-
quires each battery to be equipped with approximately
as many on/off switches as the sum of the numbers of the
output lines and intermediate lines, a significant increase
hardware implementation complexity.

Although increasing RAIBA levels offer more dy-
namic reconfigurability, whether the additional hard-
ware complexity associated with higher RAIBA levels
is worth the potential gains due to the additional flexibil-
ity they provide is an open question. For the rest of this
paper, we will only focus on the RAIBA-1 architecture.

3 Hardware Support

The key building block of the RAIBA-1 architecture is the
enable/bypass switch, which either enables a battery to
participate in its column, i.e., connecting it in series with
the other batteries, or bypasses a battery from its column,
i.e., insulating it from the other batteries. While concep-
tually straightforward, two operational requirements ren-
der its design technically challenging:

• The transition between the enable mode and the by-
pass mode should be as short as possible so as to
minimize the energy consumed by each transition.

• The electric current flowing through a enable/by-
pass switch should remain constant during each
transition between the enable mode and the bypass
mode, so as to minimize the disruption to the elec-
tric loads being served.

We have designed and implemented an analog ASIC
for the enable/bypass switch, whose architecture and cir-
cuit layout are shown in Figure 4. Rather than with an
individual battery, this ASIC is designed to work with a
battery module, which in turn consists of multiple bat-
teries, in this example, 5 batteries connected in series.
An enable/bypass switch includes two on/off switches,
S1 and S2, a battery monitor, which keeps track of the
temperature (Tsen), voltage (Vsen) and current (Isen) of
each of batteries in the module, and a Mux controller,
which controls how S1 and S2 are turned on and off.
When S1 is on and S2 is off, the enable/bypass switch
bypasses the battery module and the voltage drop across
the enable/bypass switch is zero. When S1 is off and
S2 is on, the enable/bypass switch enables the battery

Figure 4: The (a) circuit architecture and (b) physi-
cal layout of the ASIC implementing the enable/bypass
switch required by the RAIBA-1 architecture. (b) shows
its ideal transient electric circuit behavior during a tran-
sition between the enable and the bypass mode.

module and so the voltage drop across the enable/bypass
switch is the voltage difference between the two ends of
the battery module. When S1 and S2 are both off, the en-
able/bypass switch cuts off the entire column to which it
is connected. When S1 and S2 are both on, the effective
circuit becomes a short circuit, and I2 may grow to a dan-
gerously large level. Therefore, this mode of operation is
strictly prohibited.

When an enable/bypass switch goes from the enable
(bypass) mode to the bypass (enable) mode, the current
running through S1, I1, is decreasing (increasing), but
the current running through S2, I2, is increasing (de-
creasing). During a transition between the enable mode
and the bypass mode, the Mux controller constantly mea-
sures I1 and I2, and applies a feedback control mecha-
nism to dynamically tuning the degree to which S1 and
S2 are on so that the sum of I1 and I2 remains constant
throughput the transition.

To decrease the power consumption incurred by each
transition (Ploss), the amount of time during which nei-
ther S1 nor S2 is off should be minimized, because Ploss
is equal to the product of the voltage drop and the sum
of I1 and I2 during this period, as shown in the lower
left of Figure 4. Minimizing the length of the transition
period conflicts with the goal of keeping the sum of I1
and I2 constant during the transition period, because, in-
tuitively, it is easier to slowly tune S1 and S2 to keep the
total current constant than to try to do so quickly.

When a battery module is enabled by an enable/by-
pass switch, it may seem that S1 could incur additional
energy consumption due to its on-resistance, which is
typically very small. However, even for a non-RAIBA
system, each battery module is typically paired with an
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on/off switch in order to protect the module from being
damaged by unexpected charging currents. This protec-
tion on/off switch is no different from S1.

4 Configuration Control Algorithm

Because of its dynamic configurability, RAIBA is able to
apply a different configuration to each electric load re-
quest. Given an electric load < V, I >, RAIBA’s config-
uration control algorithm computes a configuration that
best serves this load using the following optimization cri-
teria:

• The configuration’s delivered current and voltage
level exceed I and V , respectively.

• The difference between the configuration’s deliv-
ered power and V ∗ I is minimized.

• The residual capacities of the batteries in the array
are as equalized as possible.

Because every configuration change itself incurs energy
loss, RAIBA keeps on using its current configuration to
satisfy a new electric load request until either the current
configuration cannot satisfy the load’s < I,V > require-
ment or the batteries in the current configuration is seri-
ously imbalanced.

The design of RAIBA’s configuration control al-
gorithm aims to maximize the energy output of
each charge/discharge cycle and the total number of
charge/discharge cycles. To squeeze out every bit of the
energy accumulated in a charge cycle, it is essential that
the left-over battery capacity at the end of a charge cycle
be reduced to the minimum. The most likely scenario of
squandered battery capacity occurs when one of the bat-
teries in a series-connected battery chain exhausts its ca-
pacity and the remaining capacities of the other batteries
in the chain are forced to be laid to waste. To avoid this,
one should balance the residual capacities of a RAIBA ar-
ray as much as possible. The key to maximizing a battery
array’s total number of charge cycles is to use each bat-
tery in it as gently as possible. Towards this end, when
serving an electric load, it is desirable to involve as many
batteries and thus draw as little electric current from each
battery as possible.

Even though an enable/bypass switch in a RAIBA sys-
tem is associated with a battery module, to simplify the
exposition below we will assume that each battery mod-
ules consists of a single battery. The configuration con-
trol algorithm (CCA) used in the current RAIBA pro-
totype is shown in Figure 5. Designed with in mind
the above optimization objectives, CCA first identifies
all possible configurations in an NxM battery array that
meet the requirements of the given electric load request,

Input: < I,V > of an electric load request, and the

residual capacity and voltage level of each

battery in an NxM array;

for (each of the N columns) {
Sort the batteries in the column according to

their residual capacity into a list;

Traverse the list in the sorted order, find all

possible battery combinations whose

accumulated voltage level is between V and V ∗α,

and place the resulting combinations into a set;

Disqualify the column if its set is empty;

}

Form a candidate configuration by picking one

battery combination from each qualified column’s

set, and put all candidate configurations into a

list, CCL;

for (each candidate configuration in CCL) {
Simulate the candidate configuration for one

time step according to a battery model derived

from dynamic measurements;

Compute the candidate configuration’s

eventual output voltage level, Vout, and

switching cost, Costswitch;

Derive the residual capacity of all

participating batteries one time step later,

and compute the standard deviation of the

residual capacities of all batteries, ST Dc;

Disqualify the candidate configuration if

the current going through any participating

column is negative or its total power output

is less than V ∗ I;
}

Select the qualified candidate configuration that

minimizes β*Vout−V
Vout

+ γ*ST Dc + δ*Costswitch;

Figure 5: RAIBA’s configuration control algorithm,
which aims to balance the aggregate voltage levels of
participating columns and the residual capacities of all
the batteries

and then picks the one that best balances the residual ca-
pacities of all the batteries in the array. Instead of try-
ing out all possible battery combinations, CCA takes a
greedy approach by processing each column indepen-
dently, and within each column, considering only bat-
tery combinations that consist of top K batteries in the
column’s battery list sorted according to their residual
capacity and whose aggregate voltage level lies between
V and α ∗V . A column is disqualified if the aggregate
voltage level of all M batteries in it is below V . The
α parameter bounds the search scope and prevents CCA
from examining “over-provisioned” configurations. If no
satisfactory configuration could be identified for a given
α value, CCA increases α and repeats the algorithmic
process in Figure 5 again.
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When the aggregate voltage level of one column of a
candidate configuration is significantly lower than those
of the other columns, other columns may charge the
weaker column to bring its voltage level up to par with
others, in which case the electric current going through
the weaker column is negative, or opposite in direction
to the electric current requirement (I) of the electric load
request. Because the overhead incurred by such inter-
column charging represents an unnecessary energy loss,
CCA disqualifies all candidate configurations that lead to
inter-column charging from consideration.

To maximize the life time of an array’s batteries, CCA
spreads an electric load over as many columns as possi-
ble by considering only those configurations that include
all the qualified columns. That is, if L columns in an N-
column array are qualified, CCA considers only configu-
rations that consists of all L columns, but not those con-
sisting of a proper subset of these L columns. It is con-
ceivable that configurations using fewer than L columns
could lead to lower ST Dc or Vout or both, but including
them into consideration would significantly enlarge the
search space.

CCA takes into account the following three factors
when selecting the best among the candidate configu-
rations. First, to reduce the amount of wasted battery
capacity at the end of a charge cycle, CCA strives to bal-
ance the residual capacity of an array’s batteries, ST Dc,
by minimizing the standard deviation of their residual ca-
pacity after a time period. Second, to reduce the energy
loss due to the inverter, which down-converts a candidate
configuration’s eventual output voltage (Vout ) to V , CCA
also minimizes the difference between Vout and V . Fi-
nally, because each switching of an enable/bypass switch
also incurs an energy loss, it is desirable to pick a con-
figuration that is as close to the current configuration as
possible. For this, CCA computes the switching energy
cost of each candidate configuration, Costswitch. Because
these factors may conflict with one another, CCA uses
three empirically determined parameters, β , γ and δ , to
adjust their relative importance or weight.

Given a candidate configuration that comprises L
columns, each of which consists of a variable number
of batteries, to execute the above algorithm, CCA needs
to compute the eventual output voltage Vout , the current
going through each of the columns, and the residual ca-
pacity of each participating battery after a time period.
Because of the non-linear discharging characteristics of
modern batteries, CCA resorts to a simulation approach
to deriving the equivalent electrical circuit behavior of
each participating battery. Instead of pre-calibrating each
battery in advance, CCA adopts a trace-based strategy
to build up a simulation model for each battery by peri-
odically measuring the instantaneous discharge current,
voltage level and used capacity when it is discharged,

Figure 6: The discharge characteristic curves for a Pana-
sonic NCR 18650B battery that has been charged 400
times for four different discharge currents, 0.31A, 1.55A,
3.1A, and 4.65A. Measurements were taken in the tem-
perature range between 25 and 35 degrees Celsius.

generating a sampled version of its discharge character-
istic curves (DCC) [17, 19], which describes how a bat-
tery’s voltage level evolves with its used (not residual)
capacity at a discharge current, and then applying linear
interpolation to approximating those points on the DCCs
that do not have measured values. For example, Fig-
ure 6 shows the measured DCCs for a 400-cycle Pana-
sonic NCR 18650B battery for four different discharge
currents, 0.31A, 1.55A, 3.1A, and 4.65A, with measure-
ments taken in the temperature range between 25 and 35
degrees Celsius. Note that there is a distinct linear and
thus easier to predict range for the DCC corresponding to
a particular discharge current. The smaller the discharge
current, the larger the corresponding DCC’s linear range.
Also, suppose the cut-off voltage level is 3V, then the to-
tal usable capacity of this battery is around 2Ah when
it is discharged at 4.65A, but is about 2.95Ah when it
is discharged at 0.31A. This example illustrates that dis-
charging batteries as gently as possible not only length-
ens their total lifetime, but also increases their per-charge
usable capacity.

CCA models a battery as a voltage source connected
in series with an internal resistance. For an L-column
candidate configuration, CCA assumes the initial current
going through each column and thus each battery in the
array is I

L . To compute the internal resistance of a battery
with a used capacity X and a discharge current of I

L , CCA
first identifies the two DCC measurements (<discharge
current, voltage level, used capacity>) that are closest to
< I

L , ,X >, say < Ia,Va,UCa > and < Ib,Vb,UCb >, and
then approximates its internal resistance as V

I = Vb−Va
Ia−Ib

.
For example, to calculate the internal resistance of the
Panasonic battery whose DCC is shown in Figure 6 when
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Figure 7: The equivalent circuit of an L-column candi-
date configuration, which selects the first 3 batteries of
the first column, the first 2 batteries of the second col-
umn,... and the first 3 batteries of the L-th column. Each
column’s effective resistance is the sum of the internal
resistances of the participating batteries in that column.

its used battery is 2Ah and discharge current is 3.6A, we
identify the closest measurements < 3.0V,4.65A,2Ah >
and < 3.18V,3.1A,2Ah >, and then compute its internal
resistance as 3.18−3.0

4.65−3.1 = 0.12 Ohm.
With the internal resistance of every participating bat-

tery, CCA computes the aggregate voltage level (Vi)and
aggregate internal resistance Ri for each column in the
candidate configuration, represents the L-column candi-
date configuration as an equivalent circuit as shown in
Figure 7, and then solves the corresponding linear sys-
tem of equations as follows, to derive Vout and the actual
current going through each column, Ii:

V1− I1 ∗R1 =Vout

V2− I2 ∗R2 =Vout

V3− I3 ∗R3 =Vout

..........

VL− IL ∗RL =Vout

I1 + I2 + I3 + ...IL = I

If Vout is larger than some Vj, then the corresponding cur-
rent I j must be negative, the corresponding ( j-th) col-
umn is disqualified, and the associated candidate con-
figuration is considered unusable. Once the current go-
ing through each column of a candidate configuration is
known, CCA computes, for each participating battery,
the amount of charge that will be discharged within a
fixed time period by multiplying the discharge current
with the period’s length, subtracts the multiplication re-
sult from the battery’s residual capacity, and finally de-
rives the standard deviation of the residual capacities of
all batteries in the configuration, ST Dc.

Figure 8: The hardware implementation of the first
RAIBA prototype, whose building block is a 4S2P bat-
tery module protected by an ensemble/bypass switch,
shown in (a). Five such battery modules are connected
in series to form a column, shown in (b), and the entire
prototype contains five such columns connected in par-
allel and other measurement/control/protection circuits,
and is housed in a rack, as shown in (c).

A nice benefit of the trace-based approach to battery
modeling is the model derived from measurements taken
on a battery is tailored to and ages with the battery, and
is thus more likely to better approximate the battery’s
ground truth than a pre-calibrated model.

5 Prototype Implementation

The first RAIBA prototype is a 5x5 array of battery
modules, each of which in turn consists of 2 parallel-
connected columns with each column comprising 4
Panasonic INR18650GA 3.4Ah batteries connected in
series. Therefore, the entire prototype is composed of
two hundred 18650 batteries and contains an energy ca-
pacity of 2.5KWh. As shown in Figure 8(a), associ-
ated with each battery module is an enable/bypass switch
board and a cooling subsystem that provides thermal load
management for the 4S2P (2 parallel-connected columns
each having 4 series-connected batteries) batteries in the
module. Five of these battery modules are connected in
series to form a column, as shown in Figure 8(b), and five
of these columns are connected in parallel and placed in
a rack to form the complete battery array, as shown in
Figure 8(c).

In addition to the battery array, the RAIBA prototype
also contains a RAIBA controller, which is a Linux-based
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Figure 9: The electric circuit behavior of the enable/by-
pass switch IC used in the current RAIBA prototype for
(a) the transition from the bypass to enable mode, and
(b) the transition from the enable to bypass mode. Red
represents the current traversing the entire enable/bypass
switch, White and Blue represent the currents traversing
S1 and S2, respectively, and Green represent the voltage
across the enable/bypass switch.

Raspberry Pi 3 board that runs the Configuration Con-
trol algorithm based on electric load requests and bat-
tery status measurements, a battery status measurement
and communication module, which uses a Linear Tech-
nology LTC6804-1 battery monitor to constantly mea-
sure the voltage, current, and temperature of each battery
in the array, and an ATmega328P MCU to report these
measurements in real time through the UART protocol
to the RAIBA controller, and a surge protector that of-
fers a safeguard mechanism to limit unexpected transient
surge currents during battery array reconfiguration. The
charger circuit and the DC/AC inverter for discharging
are connected to the surge protector to charge and dis-
charge the RAIBA prototype, respectively.

6 Performance Evaluation

6.1 Efficiency of Enable/Bypass Switch
Unlike digital logic switch or computer network switch,
signals flowing on RAIBA’s enable/bypass switches rep-
resent energies to be delivered to and consumed by elec-
tric loads. Because these signals’ magnitude is much
larger and their transmission behavior is driven by in-
stantaneous voltage level differences and thus largely
analog, whether it is feasible to successfully implement
an electrically safe enable/bypass switch that keeps the
traversed electric current constant during the transitions
between the enable mode and the bypass mode, raised
serious doubts in the beginning of the RAIBA project.
We have two IC implementations for the enable/bypass
switch IC. The electric circuit behaviors of the version
used in the current RAIBA prototype during the transi-
tions of the enable and the bypass mode are shown in
Figure 9. Red represents the current traversing the entire

Figure 10: The initial capacity of each battery in the ar-
ray used in the test against five electric load traces

enable/bypass switch, White and Blue represent the cur-
rents traversing the two constituent switches S1 and S2
(shown in Figure 4(a)), respectively, and Green represent
the voltage across the enable/bypass switch.

When the voltage drop across an enable/bypass switch
is 16V and the running current is 15A, the total switch
time is 50 µsec for this switch to go from the bypass to
enable mode, and is 30 µsec for an enable/bypass switch
to go from the enable to the bypass mode. The resulting
power loss (Ploss) is 3mJ for the transition from the by-
pass to enable mode, and is 1.8mJ for the transition from
the enable to bypass mode. Although there are still some
glitches in the traversed current during the transitions, as
indicated by the dips and bumps in the red curves in Fig-
ure 9 (a) and (b), these glitches are relatively small in
magnitude and thus seamless to the electric loads.

The above results conclusively demonstrates that an
implementation of an electrically safe enable/bypass
switch IC which keeps the current traversing it constant
during transitions not only is feasible, but also could
be made highly efficient in terms of switch time and
switching-induced energy loss.

6.2 Gains from Dynamic Reconfigurability
Intuitively, the more heterogeneous the batteries in a
RAIBA array and the more fluctuated the electric load
facing a RAIBA array, the higher performance gain
RAIBA’s dynamic reconfigurability is expected to pro-
vide. To empirically assess the gain from RAIBA’s dy-
namic reconfigurability, we tested the first RAIBA proto-
type under a set of electric load traces until it cannot be
discharged any further, and measure the total discharge
service time, the percentage of wasted battery capacity
at the end of the discharge cycle, and the number of en-
able/bypass mode transitions.

To reduce the amount of time required for each experi-
ment run, we limited the capacity of each battery module
to under 4Ah, but still used the entire 5x5 array. Be-
cause RAIBA is designed to minimize unnecessary en-
ergy waste when the constituent batteries in an array ex-
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Electric Load Discharge Service Time (hr) Wasted Capacity (Ah) Standard Deviation (Ah) Transition Count
Simple 4.59 / 8.42 (83.4%) 35.5698 / 2.3747 (-93.3%) 0.8372 / 0.0428 (-94.9%) 0 / 3059

eBus 3.77 / 6.89 (82.9%) 35.5325 / 2.4114 (-93.2%) 0.8372 / 0.0695 (-91.7%) 0 / 1385

Data center 4.16 / 7.66 (84.0%) 35.5472 / 2.0324 (-94.3%) 0.8372 / 0.0931 (-88.9%) 0 / 2083

NYC 2.98 / 5.77 (93.4%) 35.4782 / 2.1170 (-94.3%) 0.8372 / 0.1040 (-87.6%) 0 / 2493

TaiPower 2.93 / 6.09 (108.1%) 35.4609 / 2.4612 (-93.1%) 0.8372 / 0.2510 (-70.0%) 0 / 545

Table 1: Comparison between the Fixed configuration (left) and the Reconfigurable configuration (right) in terms of
the total discharge service time, the total wasted capacity at the end, the standard deviation in battery capacity at the
end, and the number of mode transitions, under five electric load traces. Numbers inside the parenthesis represent the
percentage difference between the Reconfigurable configuration and the Fixed configuration.

hibit diverse discharging characteristics or have differ-
ent initial capacities, we focused below on a test case in
which the initial capacities of the battery modules in the
array vary from 1.49Ah to 3.99Ahm, as shown in Fig-
ure 10, where the standard deviation of the individual
battery capacity across the array is 0.8377Ah. The to-
tal battery capacity of the entire array is 72.4544Ah, and
the maximum power is 1790.3365W. To evaluate how the
RAIBA prototype performs under different electric load
patterns, we used the following five electric load traces
that represent a wide variety of use cases:

• Simple: A constant load at the level of 120W.

• eBus: A simplified version of an electric load trace
captured from an electric bus that consists of peri-
ods each of which includes a 5-sec accelerate phase
of 200W, a 50-sec cruise phase of 150W, and a 10-
sec decelerate phase of 100W.

• Data center: An electric load trace that was col-
lected on 2016/08/02 from a 700+-server cloud
computing data center within Industrial Technol-
ogy Research Institute, and then scaled down in the
power magnitude by a factor of 0.02.

• NYC: A scaled down version of the electric load
trace for New York City on 2016/04/01 by a factor
of 3∗10−8.

• Taipower: A scaled down version of the elec-
tric load trace for the Northern part of Taiwan on
2016/03/29 by a factor of 10−7.

We exercised each of the five electric load traces against
the RAIBA prototype twice, once when we enabled the
array’s reconfigurability capability (Reconfigurable con-
figuration), and the other time when we enabled it com-
pletely (Fixed configuration). At the beginning of each
run, we charged each battery in the array according to the
specification in Figure 10, and then discharged the array
using a programmable electric load generator that drew
power over time according to a given electric load trace.
Each experiment run terminates when the RAIBA proto-

type can no longer continue servicing the corresponding
electric load trace.

Table 1 shows the detailed comparisons between the
Fixed and Reconfigurable configuration under the five
electric load traces. For each and every of the five elec-
tric load traces, the Reconfigurable configuration out-
performs the Fixed configuration in terms of the total
discharge service time by between 82.9% and 108.1%.
That is, for the same initial array condition and elec-
tric load trace, the Reconfigurable configuration lasts al-
most twice as long as the Fixed configuration. This gain
mainly comes from the reduction in the imbalance of
the batteries’ residual capacity, as shown in the Stan-
dard Deviation column, which that indicates the Re-
configurable configuration reduces the standard devia-
tion in residual battery capacity at the end of an exper-
iment run by between 70% to 94.9% when compared
with that of the Fixed configuration, which is roughly
the same as the initial standard deviation because each
battery contributes equally during the discharging pro-
cess. Figure 11 shows visually how an array’s batter-
ies’ residual capacities evolve over time under an eBus
trace when dynamic reconfigurability is turned on and
off. As expected, the residual capacities of an array’s
batteries converge over time towards a common value
when RAIBA’s dynamic reconfigurability is enabled, but
progress largely independently of one another when dy-
namic reconfigurability is disabled.

Hardware-based inter-battery capacity balancing,
which transfers charge from larger-capacity batteries to
lower-capacity batteries, and inevitably incurs energy
loss. In contrast, RAIBA balances the residual capacities
of an array’s batteries by drafting different subsets of bat-
teries to work at different time, and thus is more general
because it could balance the residual capacities of those
batteries that are not electrically connected, and more
energy-efficient because it does not involve any move-
ment of electric charges between batteries.

When the residual capacities of an array’s batteries are
more balanced, it is less likely that the array is forced to
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Figure 11: The residual capacities of a RAIBA array’s
batteries evolve over time under an eBus trace when dy-
namic reconfigurability is turned (a) off and (b) on.

terminate earlier on because of the capacity exhaustion
of some batteries, and the amount of residual capacity
lying unused and wasted at the end of each experiment
run is expected to be smaller. The Wasted Capacity col-
umn of Table 1 shows that the wasted capacity at the end
of an experiment run for the Reconfigurable configura-
tion is less than 10% of that of the Fixed configuration
for each of the five electric load traces. This demon-
strates the Reconfigurable configuration’s capability to
eliminate energy waste due to fragmentation via more
effective inter-battery capacity balancing.

That there is not much correlation between the Transi-
tion Count column and the Discharge Service Time col-
umn of Table 1 suggests that a higher number of mode
transitions does not necessarily result in a higher gain in
the total discharge service time. The gain also has a lot
to do with the degree of mismatch between the demand
patterns of an electric load trace and the energy profile
that the Fixed configuration could offer.

The price of dynamic reconfigurability is the addi-
tional energy consumption due to transitions between the
enable and the bypass mode. However, the associated en-
ergy consumption is rather miniscule. For example, even
if a discharge cycle requires 3000 mode transitions, as in
the case of the Simple trace in Table 1, the total energy
consumption is about 3000 ∗ 3mJ = 9J, which is about
0.001% of the total energy capacity of the 5x5 battery
array used in the test.

7 Related Work

Song Ci et al. [4] provides a detailed survey of the recon-
figurable battery techniques, including various reconfig-
urable battery array designs proposed in the literature,
their management and fault tolerance properties, and the
design considerations of the associated battery manage-
ment mechanisms. Baronti et al. [3] and Miyatake et
al. [20] explored the effective capacity of a battery ar-
ray with different inter-battery connectivity configura-

tions. Baronti et al. [2] explored the design space for the
bypass/enable switch module. Kim and Shin [15] first
proposed a dynamically reconfigurable architecture for
large-scale battery arrays used in electric vehicles in or-
der to tolerate battery cell failures. Jin and Shin [13] fol-
lowed up on [15] with the development of battery pack
sizing and reconfiguration algorithms. Kim et al. [16]
built the first small-scale (6x3) reconfigurable battery ar-
ray called self-X, which aimed to tolerate battery fail-
ures, balance the capacities among batteries and opti-
mize energy conversion efficiency. He et al. [9] took into
account battery conditions, particularly state of health,
to dynamically reconfigure a battery array to maximize
its total capacity. He et al. [10] improved the perfor-
mance of charging operations by leveraging various bat-
tery state information to best exploit dynamic reconfig-
urability. He et al. [11] used dynamic reconfigurability
to allow weaker cells to rest longer so as to balance inter-
battery capacity and increase the battery array’s effective
capacity.

Badam et al. [1] proposed a software-defined battery
system that includes batteries of different charging/dis-
charging characteristics and provides an API for the con-
trol software to use the most appropriate batteries to ser-
vice given electric loads. While dynamic reconfigura-
bility was originally proposed for large-scale battery ar-
rays, Visairo and Kumar [21] and Ci et al. [5] explored
the effectiveness of applying dynamic reconfigurability
to portable and mobile devices.

RAIBA differs from the research efforts described in
the following ways. First, RAIBA features a real imple-
mentation of a switching IC that is able to enable and by-
pass a battery of a battery array while keeping the travers-
ing current constant and the array continuing operating.
This real-time dynamic reconfigurability makes it pos-
sible to apply RAIBA to applications beyond stand-by
energy storage systems, such as electric vehicles. Sec-
ond, RAIBA supports a dynamic battery array reconfigu-
ration algorithm that takes into account the capacity/state
of each battery and the target electric load, and produces
in real time a battery array configuration that meets the
energy needs of the target load while minimizing unnec-
essary energy waste due to inter-battery balancing and
power conversion. Third, RAIBA adopts a trace-based
battery model that removes the need for batteries with
homogeneous quality, and is able to accommodate bat-
teries that age over times.

8 Conclusion

This work proposes a RAIBA approach to using retired
batteries to build cost-effective energy storage systems
that make up for the intermittent nature of renewable en-
ergy generation systems. The key idea in RAIBA is to
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use dynamic reconfigurability to make the best of het-
erogeneity in retired batteries, so as to enable contin-
ued operations even in the presence of individual battery
failures, maximize the energy output of each charge/dis-
charge cycle, and minimize energy loss due to con-
version, analog inter-battery capacity balancing and re-
source fragmentation. The paper describes the design,
implementation and evaluation of a fully operational
RAIBA -1 prototype. More specifically, this paper makes
the following contributions to the energy storage man-
agement area:

• A taxonomic framework for analyzing varying de-
grees of flexibility of dynamically reconfiguring the
inter-battery connectivity of large-scale battery ar-
rays at run time,
• The first successful and efficient implementation of

an enable/bypass switch IC that keeps the traversed
current constant during transitions between the by-
pass and enable mode, and
• The completion of a fully operational software-

defined virtualized battery array prototype, and an
empirical demonstration of the efficacy of its dy-
namic reconfigurability in increasing the effective
discharge service time by more than 80% for a vari-
ety of electric load traces.

Notes
1Authors are listed in the alphabetical order of their last names.
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Abstract
Container-based virtualization has become the de-facto

standard for deploying applications in data centers.
However, deployed containers frequently include a
wide-range of tools (e.g., debuggers) that are not required
for applications in the common use-case, but they
are included for rare occasions such as in-production
debugging. As a consequence, containers are significantly
larger than necessary for the common case, thus increasing
the build and deployment time.

CNTR1 provides the performance benefits of lightweight
containers and the functionality of large containers by
splitting the traditional container image into two parts: the
“fat” image — containing the tools, and the “slim” image
— containing the main application. At run-time, CNTR
allows the user to efficiently deploy the “slim” image and
then expand it with additional tools, when and if necessary,
by dynamically attaching the “fat” image.

To achieve this, CNTR transparently combines the two
container images using a new nested namespace, without
any modification to the application, the container manager,
or the operating system. We have implemented CNTR in
Rust, using FUSE, and incorporated a range of optimiza-
tions. CNTR supports the full Linux filesystem API, and
it is compatible with all container implementations (i.e.,
Docker, rkt, LXC, systemd-nspawn). Through extensive
evaluation, we show that CNTR incurs reasonable perfor-
mance overhead while reducing, on average, by 66.6% the
image size of the Top-50 images available on Docker Hub.

1 Introduction
Containers offer an appealing, lightweight alternative to
VM-based virtualization (e.g., KVM, VMware, Xen) that
relies on process-based virtualization. Linux, for instance,
provides the cgroups and namespaces mechanisms
that enable strong performance and security isolation
between containers [24]. Lightweight virtualization is

1Read it as “center”.

fundamental to achieve high efficiency in virtualized
datacenters and enables important use-cases, namely
just-in-time deployment of applications. Moreover,
containers significantly reduce operational costs through
higher consolidation density and power minimization,
especially in multi-tenant environments. Because of all
these advantages, it is no surprise that containers have seen
wide-spread adoption by industry, in many cases replacing
altogether traditional virtualization solutions [17].

Despite being lightweight, deployed containers often
include a wide-range of tools such as shells, editors,
coreutils, and package managers. These additional tools
are usually not required for the application’s core function
— the common operational use-case — but they are
included for management, manual inspection, profiling,
and debugging purposes [64]. In practice, this significantly
increases container size and, in turn, translates into
slower container deployment and inefficient datacenter
resource usage (network bandwidth, CPU, RAM and disk).
Furthermore, larger images degrade container deployment
time [52, 44]. For instance, previous work reported that
downloading container images account for 92% of the de-
ployment time [52]. Moreover, a larger code base directly
affects the reliability of applications in datacenters [50].

Given the impact of using large containers, users
are discouraged from including additional tools that
would otherwise simplify the process of debugging,
deploying, and managing containers. To mitigate this
problem, Docker has recently adopted smaller run-times
but, unfortunately, these efforts come at the expense of
compatibility problems and have limited benefits [13].

To quantify the practical impact of additional tools on
the container image size, we employed Docker Slim [11]
on the 50 most popular container images available on
the Docker Hub repository [10]. Docker Slim uses a
combination of static and dynamic analyses to generate
smaller-sized container images, in which, only files
needed by the core application are included in the final
image. The results of this experiment (see Figure 5) are
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encouraging: we observed that by excluding unnecessary
files from typical containers it is possible to reduce the
container size, on average, by 66.6%. Similarly, others
have found that a only small subset (6.4%) of the container
images is read in the common case [53].

CNTR addresses this problem2 by building lightweight
containers that still remain fully functional, even in uncom-
mon use-cases (e.g., debugging and profiling). CNTR en-
ables users to deploy the application and its dependencies,
while the additional tools required for other use-cases are
supported by expanding the container “on-demand”, dur-
ing runtime (Figure 1 (a)). More specifically, CNTR splits
the traditional container image into two parts: the “fat” im-
age containing the rarely used tools and the “slim” image
containing the core application and its dependencies.

During runtime, CNTR allows the user of a container to
efficiently deploy the “slim” image and then expand it with
additional tools, when and if necessary, by dynamically
attaching the “fat” image. As an alternative to using a “fat”
image, CNTR allows tools from the host to run inside the
container. The design of CNTR simultaneously preserves
the performance benefits of lightweight containers and
provides support for additional functionality required by
different application workflows.

The key idea behind our approach is to create a new
nested namespace inside the application container (i.e.,
“slim container”), which provides access to the resources in
the “fat” container, or the host, through a FUSE filesystem
interface. CNTR uses the FUSE system to combine the
filesystems of two images without any modification to the
application, the container implementation, or the operating
system. CNTR selectively redirects the filesystem requests
between the mount namespace of the container (i.e., what
applications within the container observe and access) and
the “fat” container image or the host, based on the filesys-
tem request path. Importantly, CNTR supports the full
Linux filesystem API and all container implementations
(i.e., Docker, rkt, LXC, systemd-nspawn).

We evaluated CNTR across three key dimensions:
(1) functional completeness – CNTR passes 90 out of
94 (95.74%) xfstests filesystem regression tests [14]
supporting applications such as SQLite, Postgres, and
Apache; (2) performance – CNTR incurs reasonable over-
heads for the Phoronix filesystem benchmark suite [18],
and the proposed optimizations significantly improve
the overall performance; and lastly, (3) effectiveness –
CNTR’s approach on average results in a 66.6% reduction
of image size for the Top-50 images available on Docker
hub [10]. We have made publicly available the CNTR
implementation along with the experimental setup [6].

2Note that Docker Slim [11] does not solve the problem; it simply
identifies the files not required by the application, and excludes them from
the container, but it does not allow users to access those files at run-time.

2 Background and Motivation
2.1 Container-Based Virtualization
Containers consist of a lightweight, process-level form
of virtualization that is widely used and has become a cor-
nerstone technology for datacenters and cloud computing
providers. In fact, all major cloud computing providers
(e.g., Amazon [2], Google [16] and Microsoft [4]) offer
Containers as a Service (CaaS).

Container-based virtualization often relies on three
key components: (1) the OS mechanism that enforces
the process-level isolation (e.g., the Linux cgroups [41]
and namespaces [40] mechanisms), (2) the application
packaging system and runtime (e.g., Docker [9], Rkt [38]),
and (3) the orchestration manager that deploys, distributes
and manages containers across machines (e.g., Docker
Swarm [12], Kubernetes [22]). Together, these com-
ponents enable users to quickly deploy services across
machines, with strong performance and security isolation
guarantees, and with low-overheads.

Unlike VM-based virtualization, containers do not
include a guest kernel and thus have often smaller memory
footprint than traditional VMs. Containers have important
advantages over VMs for both users and data centers:

1. Faster deployment. Containers are transferred and
deployed faster from the registry [44].

2. Lower resource usage. Containers consume fewer
resources and incur less performance overhead [62].

3. Lower build times. Containers with fewer binaries
and data can be rebuilt faster [64].

Unfortunately, containers in practice are still unnecessar-
ily large because users are forced to decide which auxiliary
tools (e.g. debugging, profiling, etc.) should be included
in containers at packaging-time. In essence, users are cur-
rently forced to strike a balance between lightweight con-
tainers and functional containers, and end up with contain-
ers that are neither as light nor as functional as desirable.

2.2 Traditional Approaches to Minimize Containers
The container-size problem has been a significant source
of concern to users and developers. Unfortunately, existing
solutions are neither practical nor efficient.

An approach that has gained traction, and has been
adopted by Docker, consists of packing containers using
smaller base distributions when building the container
runtime. For instance, most of Docker’s containers are
now based on the Alpine Linux distribution [13], resulting
in smaller containers than traditional distributions. Alpine
Linux uses the musl library, instead of libc, and bundles
busybox , instead of coreutils — these differences
enable a smaller container runtime but at the expense of
compatibility problems caused by runtime differences.
Further, the set of tools included is still restricted and
fundamentally does not help users when less common
auxiliary tools are required (e.g., custom debugging tools).
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The second approach to reduce the size of containers
relies on union filesystems (e.g., UnionFS [60]). Docker,
for instance, enables users to create their containers on
top of commonly-used base images. Because such base
images are expected to be shared across different contain-
ers (and already deployed in the machines), deploying the
container only requires sending the diff between the base
image and the final image. However, in practice, users still
end up with multiple base images due to the use of different
base image distributions across different containers.

Another approach that has been proposed relies on the
use of unikernels [57, 58], a single-address-space image
constructed from a library OS [61, 49, 65]. By removing
layers of abstraction (e.g., processes) from the OS, the
unikernel approach can be leveraged to build very small
virtual machines—this technique has been considered as
containerization because of its low overhead, even though
it relies on VM-based virtualization. However, unikernels
require additional auxiliary tools to be statically linked into
the application image; thus, it leads to the same problem.

2.3 Background: Container Internals
The container abstraction is implemented by a userspace
container run-time, such as Docker [9], rkt [38] or
LXC [37]. The kernel is only required to implement a set
of per-process isolation mechanisms, which are inherited
by child processes. This mechanism is in turn leveraged
by container run-times to implement the actual container
abstraction. For instance, applications in different
containers are isolated and have all their resources bundled
through their own filesystem tree. Crucially, the kernel
allows the partitioning of system resources, for a given
process, with very low performance overhead thus
enabling efficient process-based virtualization.

The Linux operating system achieves isolation through
an abstraction called namespaces. Namespaces are
modular and are applied to individual processes inherited
by child processes. There are seven namespaces to limit
the scope what a process can access (e.g., filesystem
mountpoints, network interfaces, or process IDs[40]).

During the container startup, by default, namespaces
of the host are unshared. Hence, processes inside the
container only see files from their filesystem image (see
Figure 1 (a)) or additional volumes, that have been
statically added during setup. New mounts on the host
are not propagated to the container since by default, the
container runtime will mount all mount points as private.

2.4 Use-cases of CNTR

We envision three major use cases for CNTR that cover
three different debugging/management scenarios:

Container to container debugging in production.
CNTR enables the isolation of debugging and administra-
tion tools in debugging containers and allows application
containers to use debugging containers on-demand.

Consequently, application containers become leaner,
and the isolation of debugging/administration tools
from applications allows users to have a more consistent
debugging experience. Rather than relying on disparate
tools in different containers, CNTR allows using a single
debugging container to serve many application containers.
Host to container debugging. CNTR allows developers
to use the debugging environments (e.g., IDEs) in their
host machines to debug containers that do not have these
environments installed. These IDEs can sometimes take
several gigabytes of disk space and might be not even
compatible with the distribution of the container image
is based on. Another benefit of using CNTR in this context
is that development environments and settings can be also
efficiently shared across different containers.
Container to host administration and debugging.
Container-oriented Linux distributions such as CoreOS [8]
or RancherOS [30] do not provide a package manager and
users need to extend these systems by installing containers
even for basic system services. CNTR allows a user of a
privileged container to access the root filesystem of the
host operating system. Consequently, administrators can
keep tools installed in a debug container while keeping
the host operating system’s filesystem lean.

3 Design
In this section, we present the detailed design of CNTR.

3.1 System Overview

Design goals. CNTR has the following design goals:
• Generality: CNTR should support a wide-range of

workflows for seamless management and problem
diagnosis (e.g., debugging, tracing, profiling).

• Transparency: CNTR should support these workflows
without modifying the application, the container man-
ager, or the operating system. Further, we want to be
compatible with all container implementations.

• Efficiency: Lastly, CNTR should incur low perfor-
mance overheads with the split-container approach.

Basic design. CNTR is composed of two main compo-
nents (see Figure 1 (a)): a nested namespace, and the
CNTRFS filesystem. In particular, CNTR combines slim
and fat containers by creating a new nested namespace to
merge the namespaces of two containers (see Figure 1 (b)).
The nested namespace allows CNTR to selectively break
the isolation between the two containers by transparently
redirecting the requests based on the accessed path. CNTR
achieves this redirection using the CNTRFS filesystem.
CNTRFS is mounted as the root filesystem (/), and
the application filesystem is remounted to another path
(/var/lib/cntr) in the nested namespace. CNTRFS
implements a filesystem in userspace (FUSE), where the
CNTRFS server handles the requests for auxiliary tools
installed on the fat container (or on the host).
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Figure 1: Overview of CNTR

At a high-level, CNTR connects with the CNTRFS server
via the generic FUSE kernel driver. The kernel driver sim-
ply acts as a proxy between processes accessing CNTRFS,
through Linux VFS, and the CNTRFS server running
in userspace. The CNTRFS server can be in a different
mount namespace than the nested namespace, therefore,
CNTR establishes a proxy between two mount namespaces
through a request/response protocol. This allows a process
that has all its files stored in the fat container (or the host)
to run within the mount namespace of the slim container.

Cntr workflow. CNTR is easy to use. The user simply
needs to specify the name of the “slim” container and, in
case the tools are in another container, the name of the “fat”
container. CNTR exposes a shell to the user that has access
to the resources of the application container as well as the
resources forwarded from the fat container.

Figure 1 (a) explains the workflow of CNTR when a
user requests to access a tool from the slim container
(#A): CNTR transparently resolves the requested path
for the tool in the nested namespace (#B). Figure 1 (b)
shows an example of CNTR’s nested namespace, where
the requested tool (e.g., gdb) is residing in the fat container.
After resolving the path, CNTR redirects the request via
FUSE to the fat container (#C). Lastly, CNTRFS serves
the requested tool via the FUSE interface (#D). Behind
the scenes, CNTR executes the following steps:

1. Resolve container name to process ID and get con-
tainer context. CNTR resolves the name of the un-
derlying container process IDs and then queries the
kernel to get the complete execution context of the
container (container namespaces, environment vari-
ables, capabilities, ...).

2. Launch the CNTRFS server. CNTR launches the
CNTRFS server. CNTR launches the server either
directly on the host or inside the specified “fat” con-
tainer containing the tools image, depending on the
settings that the user specified.

3. Initialize the tools namespace. Subsequently, CNTR
attaches itself to the application container by setting
up a nested mount namespace within the namespace
of the application container. CNTR then assigns a
forked process to the new namespace. Inside the new
namespace, the CNTR process proceeds to mount
CNTRFS, providing access to files that are normally
out of the scope of the application container.

4. Initiate an interactive shell. Based on the configura-
tion files within the debug container or on the host,
CNTR executes an interactive shell, within the nested
namespace, that the user can interact with. CNTR
forwards its input/output to the user terminal (on the
host). From the shell, or through the tools it launches,
the user can then access the application filesystem
under /var/lib/cntr and the tools filesystem in /.
Importantly, tools have the same view on system re-
sources as the application (e.g., /proc, ptrace). Fur-
thermore, to enable the use of graphical applications,
CNTR forwards Unix sockets from the host/debug
container.

3.2 Design Details
This section explains the design details of CNTR.

3.2.1 Step #1: Resolve Container Name and Obtain
Container Context

Because the kernel has no concept of a container name
or ID, CNTR starts by resolving the container name, as
defined by the used container manager, to the process IDs
running inside the container. CNTR leverages wrappers
based on the container management command line tools to
achieve this translation and currently, it supports Docker,
LXC, rkt, and systemd-nspawn.

After identifying the process IDs of the container,
CNTR gathers OS-level information about the container
namespace. CNTR reads this information by inspecting the
/proc filesystem of the main process within the container.

202    2018 USENIX Annual Technical Conference USENIX Association



This information enables CNTR to create processes inside
the container in a transparent and portable way.

In particular, CNTR gathers information about the
container namespaces, cgroups (resource usage limits),
mandatory access control (e.g., AppArmor [26] and
SELinux [19] options), user ID mapping, group ID map-
ping, capabilities (fine-grained control over super-user per-
missions), and process environment options. Additionally,
CNTR could also read the seccomp options, but this would
require non-standard kernel compile-time options and
generally has limited value because seccomp options have
significant overlap with the capability options. CNTR reads
the environment variables because they are heavily used
in containers for configuration and service discovery [36].

Before attaching to the container, in addition, to gather
the information about the container context, the CNTR
process opens the FUSE control socket (/dev/fuse).
This file descriptor is required to mount the CNTRFS
filesystem, after attaching to the container.

3.2.2 Step #2: Launch the CNTRFS Server

The CNTRFS is executed either directly on the host or in-
side the “fat” container, depending on the option specified
by the user (i.e., the location of the tools). In the host case
the CNTRFS server simply runs like a normal host process.

In case the user wants to use tools from the “fat”
container, the CNTRFS process forks and attaches itself
to the “fat” container. Attaching to the “fat” container is
implemented by calling the setns() system call, thereby
assigning the child process to the container namespace
that was collected in the previous step.

After initialization, the CNTRFS server waits for a
signal from the nested namespace (Step #3) before it starts
reading and serving the FUSE requests (reading before
an unmounted FUSE filesystem would otherwise return
an error). The FUSE requests then will be read from the
/dev/fuse file descriptor and redirected to the filesystem
of the server namespace (i.e., host or fat container).

3.2.3 Step #3: Initialize the Tools Namespace

CNTR initializes the tool namespace by first attaching to
the container specified by the user—the CNTR process
forks and the child process assigns itself to the cgroup, by
appropriately setting the /sys/ option, and namespace
of the container, using the setns() system call.

After attaching itself to the container, CNTR creates
a new nested namespace, and marks all mountpoints as
private so that further mount events (regarding the nested
namespace) are not propagated back to the container
namespace. Subsequently, CNTR creates a new filesystem
hierarchy for the nested namespace, mounting the
CNTRFS in a temporary mountpoint (TMP/).

Within the nested namespace, the child process
mounts CNTRFS, at TMP/, and signals the parent process

(running outside of the container) to start serving requests.
Signalling between the parent and child CNTR processes
is implemented through a shared Unix socket.

Within the nested namespace, the child process re-
mounts all pre-existing mountpoints, from the application
container, by moving them from / to TMP/var/lib/cntr.
Note that the application container is not affected by this
since all mountpoints are marked as private.

In addition, CNTR also mounts special container-
specific files from the application over files from the tools
or host (using bind mount [42]). The special files include
the pseudo filesystems procfs (/proc), ensuring the
tools can access the container application, and devtmpfs
(/dev), containing block and character devices that
have been made visible to our container. Furthermore,
we bind mount a set of configuration files from the
application container into the temporary directory (e.g.,
/etc/passwd, and /etc/hostname).

Once the new filesystem hierarchy has been created
in the temporary directory, CNTR atomically executes a
chroot turning the temporary directory (TMP/) into the
new root directory (/).

To conclude the container attachment and preserve
the container isolation guarantees, CNTR updates the
remaining properties of the nested namespace: (1) CNTR
drops the capabilities by applying the AppArmor/SELinux
profile and (2) CNTR applies all the environment variables
that were read from the container process; with the
exception of PATH – the PATH is instead inherited from the
debug container since it is often required by the tools.

3.2.4 Step #4: Start Interactive Shell

Lastly, CNTR launches an interactive shell within the
nested namespace, enabling users to execute the tools.
CNTR forwards the shell I/O using a pseudo-TTY, and sup-
ports graphical interface using Unix sockets forwarding.

Shell I/O. Interactive shells perform I/O through standard
file descriptors (i.e., stdin, stdout, and stderr file descrip-
tors) that generally refer to terminal devices. For isolation
and security reasons, CNTR prevents leaking the terminal
file descriptors of the host to a container by leveraging
pseudo-TTYs – the pseudo-TTY acts as a proxy between
the interactive shell and the user terminal device.

Unix socket forwarding. CNTR forwards connections to
Unix sockets, e.g., the X11 server socket and the D-Bus
daemon running on the host. Unix sockets are also visible
as files in our FUSE. However, since our FUSE has inode
numbers that are different from the underlying filesystem,
the kernel does not associate them with open sockets in
the system. Therefore, we implemented a socket proxy
that runs an efficient event loop based on epoll. It uses
the splice syscall to move data between clients in the
application container and servers listening on Unix sockets
in the debug container/host.
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3.3 Optimizations
We experienced performance slowdown in CNTRFS
when we measured the performance using the Phoronix
benchmark suite [18] ( §5.2). Therefore, we incorporated
the following performance optimizations in CNTR.

Caching: Read and writeback caches. The major perfor-
mance improvement gain was by allowing the FUSE kernel
module to cache data returned from the read requests as
well as setting up a writeback buffer for the writes. CNTR
avoids automatic cache invalidation when a file is opened
by setting the FOPEN KEEP CACHE flag. Without this flag
the cache cannot be effectively shared across different pro-
cesses. To allow the FUSE kernel module to batch smaller
write requests, we also enable the writeback cache by speci-
fying the FUSE WRITEBACK CACHE flag at the mount setup
time. This optimization sacrifices write consistency for
performance by delaying the sync operation. However, we
show that it still performs correctly according to the POSIX
semantics in our regression experiments (see § 5.1).

Multithreading. Since the I/O operations can block, we
optimized the CNTRFS implementation to use multiple
threads. In particular, CNTR spawns independent threads
to read from the CNTRFS file descriptor independently
to avoid contentions while processing the I/O requests.

Batching. In addition to caching, we also batch operations
to reduce the number of context switches. In particular,
we apply the batching optimization in three places:
(a) pending inode lookups, (b) forget requests, and (c)
concurrent read requests.

Firstly, we allow concurrent inode lookups by applying
FUSE PARALLEL DIROPS option on mount. Secondly, the
operating system sends forget requests, when inodes
can be freed up by CNTRFS. The kernel can batch a
forget intent for multiple inodes into a single request. In
CNTR we have also implemented this request type. Lastly,
we set FUSE ASYNC READ to allow the kernel to batch
multiple concurrent read requests at once to improve the
responsiveness of read operations.

Splicing: Read and write. Previous work suggested the
use of splice reads and writes to improve the performance
of FUSE [66]. The idea behind splice operation is to avoid
copying data from and to userspace. CNTR uses splice for
read operations. Therefore, the FUSE userspace process
moves data from the source file descriptor into a kernel
pipe buffer and then to the destination file descriptor with
the help of the splice syscall. Since splice does not
actually copy the data but instead remaps references in the
kernel, it reduces the overhead.

We also implemented a splice write optimization. In
particular, we use a pipe as a temporary storage, where the
data is part of the request, and the data is not read from a
file descriptor. However, FUSE does not allow to read the
request header into userspace without reading the attached

data. Therefore, CNTR has to move the whole request to
a kernel pipe first in order to be able to read the request
header separately. After parsing the header it can move the
remaining data to its designated file descriptor using the
splice operation. However, this introduces an additional
context switch, and slowdowns all FUSE operations since
it is not possible to know in advance if the next request will
be a write request. Therefore, we decided not to enable
this optimization by default.

4 Implementation

To ensure portability and maintainability, we decided not to
rely on container-specific APIs, since they change quite of-
ten. Instead, we built our system to be as generic as possible
by leveraging more stable operating system interfaces. Our
system implementation supports all major container types:
Docker, LXC, systemd-nspawn and rkt. CNTR’s imple-
mentation resolves container names to process ids. Process
ids are handled in an implementation-specific way. On av-
erage, we changed only 70 LoCs for each container imple-
mentation to add such container-specific support for CNTR.

At a high-level, our system implementation consists of
the following four components:

• Container engine (1549 LoC) analyzes the container
that a user wants to attach to. The container engine
also creates a nested mount namespace, where it starts
the interactive shell.

• CNTRFS (1481 LoC) to serve the files from the fat
container. We implemented CNTRFS based on Rust-
FUSE [33]. We extended Rust-FUSE to be able to
mount across mount namespaces and without a dedi-
cated FUSE mount executable.

• A pseudo TTY (221 LoC) to connect the shell
input/output with the user terminal.

• A socket proxy (400 LoC) to forward the Unix socket
connection between the fat (or the host) and slim
containers for supporting X11 applications.

All core system components of CNTR were imple-
mented in Rust (total 3651 LoC). To simplify deployment,
we do not depend on any non-Rust libraries. In this way,
we can compile CNTR as a ∼1.2MB single self-contained
static executable by linking against musl-libc [23].
This design is imperative to ensure that CNTR can run
on container-optimized Linux distributions, such as
CoreOS [8] or RancherOS [30], that do not have a package
manager to install additional libraries.

Since CNTR makes heavy use of low-level filesystem
system calls, we have also extended the Rust ecosystem
with additional 46 system calls to support the complete
Linux filesystem API. In particular, we extended the
nix Rust library [34], a library wrapper around the Lin-
ux/POSIX API. The changes are available in our fork [29].
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5 Evaluation
In this section, we present the experimental evaluation of
CNTR. Our evaluation answers the following questions.

1. Is the implementation complete and correct? (§5.1)
2. What are the performance overheads and how

effective are the proposed optimizations? (§5.2)
3. How effective is the approach to reducing container

image sizes? (§5.3)

5.1 Completeness and Correctness
We first evaluate the completeness and correctness claim
of the CNTR implementation. The primary goal is to
evaluate whether CNTR implements the same features
(completeness) as required by the underlying filesystem,
and it follows the same POSIX semantics (correctness).

Benchmark: xfstests regression test suite. For this
experiment, we used the xfstests [14] filesystem
regression test suite. The xfstests suite was originally
designed for the XFS filesystem, but it is now widely used
for testing all of Linux’s major filesystems. It is regularly
used for quality assurance before applying changes to the
filesystem code in the Linux kernel. xfstests contains
tests suites to ensure correct behavior of all filesystem
related system calls and their edge cases. It also includes
crash scenarios and stress tests to verify if the filesystem
correctly behaves under load. Further, it contains many
tests for bugs reported in the past.

Methodology. We extended xfstests to support
mounting CNTRFS. For running tests, we mounted
CNTRFS on top of tmpfs, an in-memory filesystem. We
run all tests in the generic group once.

Experimental results. xfstests consists of 94 unit tests
that can be grouped into the following major categories:
auto, quick, aio, prealloc, ioctl, and dangerous.

Overall, CNTR passed 90 out of 94 (95.74%) unit tests
in xfstests. Four tests failed due minor implementation
details that we currently do not support. Specifically, these
four unit tests were automatically skipped by xfstests

because they expected our filesystem to be backed by a
block device or expected some missing features in the
underlying tmpfs filesystem, e.g. copy-on-write ioctl.
We next explain the reasons for the failed four test cases:

1. Test #375 failed since SETGID bits were not cleared
in chmod when the owner is not in the owning group
of the access control list. This would require man-
ual parsing and interpreting ACLs in CNTR. In our
implementation, we delegate POSIX ACLs to the un-
derlying filesystem by using setfsuid/setfsguid
on inode creation.

2. Test #228 failed since we do not enforce the per-
process file size limits (RLIMIT FSIZE). As replay
file operations and RLIMIT FSIZE of the caller is not
set or enforced in CNTRFS, this has no effect.

3. Test #391 failed since we currently do not support the
direct I/O flag inopen calls. The support for direct I/O
and mmap in FUSE is mutually exclusive. We chose
mmap here, since we need it to execute processes. In
practice, this is not a problem because not all docker
drivers support this feature, including the popular
filesystems such as overlayfs and zfs.

4. Test #426 failed since our inodes are not exportable.
In Linux, a process can get inode references from
filesystems by the name to handle at system call.
However, our inodes are not persisted and are dynami-
cally requested and destroyed by the operating system.
If the operating system no longer uses them, they be-
come invalid. Many container implementations block
this system call as it has security implications.

To summarize, the aforementioned failed test cases are
specific to our current state of the implementation, and they
should not affect most real-world applications. As such,
these features are not required according to the POSIX stan-
dard, but, they are Linux-specific implementation details.

5.2 Performance Overheads and Optimizations
We next report the performance overheads for CNTR’s
split-containers approach (§5.2.1), detailed experimental
results (§5.2.2), and effectiveness of the proposed
optimizations (§5.2.3).

Experimental testbed. To evaluate a realistic envi-
ronment for container deployments [3], we evaluated
the performance benchmarks using m4.xlarge virtual
machine instances on Amazon EC2. The machine type
has two cores of Intel Xeon E5-2686 CPU (4 hardware
threads) assigned and 16GB RAM. The Linux kernel
version was 4.14.13. For storage, we used a 100GB EBS
volume of type GP2 formatted with ext4 filesystem
mounted with default options. GP2 is an SSD-backed
storage and attached via a dedicated network to the VM.

Benchmark: Phoronix suite. For the performance
measurement, we used the disk benchmarks [39] from
the Phoronix suite [18]. Phoronix is a meta benchmark
that has a wide range of common filesystem benchmarks,
applications, and realistic workloads. We compiled the
benchmarks with GCC 6.4 and CNTR with Rust 1.23.0.

Methodology. For the performance comparison, we ran
the benchmark suite once on the native filesystem (the
baseline measurement) and compared the performance
when we access the same filesystem through CNTRFS.
The Phoronix benchmark suite runs each benchmark
at least three times and automatically adds additional
trials if the variance is too high. To compute the relative
overheads with respect to the baseline, we computed
the ratio between the native filesystem access and
CNTRFS (native/cntr) for benchmarks where higher
values are better (e.g. throughput), and the inverse ratio
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Figure 2: Relative performance overheads of CNTR for the Phoronix suite. The absolute values for each benchmark
is available online on the openbenchmark platform [31].

(cntr/native), where lower values are better (e.g. time
required to complete the benchmark).

5.2.1 Performance Overheads

We first present the summarized results for the entire
benchmark suite. Thereafter, we present a detailed
analysis of each benchmark individually (§5.2.2).

Summary of the results. Figure 2 shows the relative per-
formance overheads for all benchmarks in the Phoronix
test suite. We have made the absolute numbers available
for each benchmark on the openbenchmark platform [31].

Our experiment shows that 13 out of 20 (65%)
benchmarks incur moderate overheads below 1.5×
compared to the native case. In particular, three
benchmarks showed significantly higher overheads,
including compilebench-create (7.3×) and
compilebench-read (13.3×) and the postmark

benchmark (7.1×). Lastly, we also had three benchmarks,
where CNTRFS was faster than the native baseline
execution: FIO (0.2×), PostgreSQL Bench (0.4×) and
the write workload of Threaded I/O (0.3×).

To summarize, the results show the strengths and
weaknesses of CNTRFS for different applications and
under different workloads. At a high-level, we found
that the performance of inode lookups and the double
buffering in the page cache are the main performance
bottlenecks in our design (much like they are for FUSE).
Overall, the performance overhead of CNTR is reasonable.
Importantly, note that while reporting performance
numbers, we resort to the worst-case scenario for CNTR,
where the “slim” application container aggressively uses
the “fat” container to run an I/O-intensive benchmark suite.
However, we must emphasize the primary goal of CNTR:
to support auxiliary tools in uncommon operational
use-cases, such as debugging or manual inspection, which
are not dominated by high I/O-intensive workloads.

5.2.2 Detailed Experimental Results

We next detail the results for each benchmark.

AIO-Stress. AIO-Stress submits 2GB of asynchronous
write requests. In theory, CNTRFS supports asynchronous
requests, but only when the filesystem operates in the
direct I/O mode. However, the direct I/O mode in
CNTRFS restricts the mmap system call, which is required
by executables. Therefore, all requests are, in fact,
processed synchronously resulting in 2.6× slowdown.

Apache Web server. The Apache Web server bench-
mark issues 100K http requests for test files (average
size of 3KB), where we noticed a slowdown of up to 1.5×.
However, the bottleneck was not due to serving the actual
content, but due to writing of the webserver access log,
which triggers small writes (<100 bytes) for each request.
These small requests trigger lookups in CNTRFS of the
extended attributes security.capabilities, since
the kernel currently neither caches such attributes nor it
provides an option for caching them.

Compilebench. Compilebench simulates different
stages in the compilation process of the Linux kernel.
There are three variants of the benchmark: (a) the
compile stage compiles a kernel module, (b) the read

tree stage reads a source tree recursively, and lastly,
(c) the initial creation stage simulates a tarball
unpack. In our experiments, Compilebench has the
highest overhead of all benchmarks with the read tree

stage being the slowest (13.4×). This is due to the fact
that inode lookups in CNTRFS are slower compared to the
native filesystem: for every lookup, we need one open()
system call to get a file handle to the inode, followed by a
stat() system call to check if we already have lookup-ed
this inode in a different path due hardlinks. Usually, after
the first lookup, this information can be cached in the
kernel, but in this benchmark for every run, a different
source tree with many files are read. The slowdown of
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lookups for the other two variants, namely the compile
stage (2.3×) and initial create (7.3×) is lower,
since they are shadowed by write operations.

Dbench. Dbench simulates a file server workload, and it
also simulates clients reading files and directories with
increasing concurrency. In this benchmark, we noticed
that with increasing number of clients, CNTRFS is able to
cache directories and file contents in the kernel. Therefore,
CNTRFS does not incur performance overhead over the
native baseline.

FS-Mark. FS-Mark sequentially creates 1000 1MB files.
Since the write requests are reasonably large (16 KB per
write call) and the workload is mostly disk bound. There-
fore, there is no difference between CNTRFS and ext4.

FIO benchmark. The FIO benchmark profiles a fileserver
and measures the read/write bandwidth, where it issues
80% random reads and 20% random writes for 4GB data
with an average blocksize of 140KB. For this benchmark,
CNTRFS outperforms the native filesystem by a factor
of 4× since the writeback cache leads to fewer and larger
writes to the disk compared to the underlying filesystem.

Gzip benchmark. The Gzip benchmark reads a 2GB file
containing only zeros and writes the compressed version of
it back to the disk. Even though the file is highly compress-
ible,gzip compresses the file slower than the data access in
CNTRFS or ext4. Therefore, there was no significant per-
formance difference between CNTR and the native version.

IOZone benchmark. IOZone performs sequential writes
followed by sequential reads of a blocksize of 4KB. For
the write requests, as in the apache benchmark, CNTR
incurs low overhead (1.2×) due to extended attribute
lookup overheads. Whereas, for the sequential read
request, both filesystems (underlying native filesystem
and CNTRFS) can mostly serve the request from the page
cache. For smaller read sizes (4GB) the read throughput
is comparable for both CNTRFS and ext4 filesystems
because the data fits in the page cache. However, a larger
workload (8GB) no longer fits into the page cache of

CNTRFS and degrades the throughput significantly.

Postmark mailserver benchmark. Postmark simulates
a mail server that randomly reads, appends, creates or
deletes small files. In this benchmark, we observed higher
overhead (7.1×) for CNTR. In this case, inode lookups in
CNTRFS dominated over the actual I/O because the files
were deleted even before they were sync-ed to the disk.

PGBench – PostgreSQL Database Server. PGBench is
based on the PostgreSQL database server. It simulates
both read and writes under normal database load. Like
FIO, CNTRFS was faster in this benchmark also, since
PGBench flushes the writeback buffer less often.

SQLite benchmark. The SQlite benchmark measures
the time needed to insert 1000 rows in a SQL table. We
observed a reasonable overhead (1.9×) for CNTR, since
each insertion is followed by a filesystem sync, which
means that we cannot make efficient use of our disk cache.

Threaded I/O benchmark. The Threaded I/O bench-
mark separately measures the throughput of multiple
concurrent readers and writers to a 64MB file. We
observed good performance for reads (1.1×) and even
better performance for writes (0.3×). This is due to the
fact that the reads can be mostly served from the page
cache, and for the writes, our writeback buffer in the kernel
holds the data longer than the underlying filesystem.

Linux Tarball workload. The Linux tarball

workload unpacks the kernel source code tree from a com-
pressed tarball. This workload is similar to the create
stage of the compilebench benchmark. However, since
the source is read from a single tarball instead of copying
an already unpacked directory, there are fewer lookups
performed in CNTRFS. Therefore, we incur relatively
lower overhead (1.2×) even though many small files are
created in the unpacking process.

5.2.3 Effectiveness of Optimizations

We next evaluate the effectiveness of the proposed
optimizations in CNTR (as described in §3.3).
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Figure 4: Multithreading optimization with IOZone: Se-
quential read 500MB/4KB record size with increasing
number of CNTRFS threads.

Read cache. The goal of this optimization is to allow the
kernel to cache pages across multiple processes. Figure 3
(a) shows the effectiveness of the proposed optimization
for FOPEN KEEP CACHE: we observed 10× higher
throughput with FOPEN KEEP CACHE for concurrent reads
with 4 threads for the Threaded I/O benchmark.

Writeback cache. The writeback optimization was
designed to reduce the amount of write requests by
maintaining a kernel-based write cache. Figure 3 (b)
shows the effectiveness of the optimization: CNTR can
achieve 65% more write throughput with the writeback
cache enabled compared to the native I/O performance
for sequential writes for the IOZone benchmark.

Multithreading. We made CNTRFS multi-threaded to im-
prove responsiveness when the filesystem operations block.
While threads improve the responsiveness, their presence
hurts throughput as measured in Figure 4 (up to 8% for
sequential read in IOZone). However, we still require mul-
tithreading to cope with blocking filesystem operations.

Batching. To improve the directory and inode lookups,
we batched requests to kernel by specifying the
PARALLEL DIROPS flag. We observed a speedup of
2.5× in the compilebench read benchmark with this
optimization (Figure 3 (c)).

Splice read. Instead of copying memory into userspace,
we move the file content with the splice() syscall in the
kernel to achieve zero-copy I/O. Unfortunately, we did
not notice any significant performance improvement with
the splice read optimization. For instance, the sequential
read throughput in IOZone improved slightly by just 5%
as shown in Figure 3 (d).

5.3 Effectiveness of CNTR

To evaluate the effectiveness of CNTR’s approach to reduc-
ing the image sizes, we used a tool called Docker Slim [11].

Docker Slim applies static and dynamic analyses to
build a smaller-sized container image that only contains
the files that are actually required by the application.
Under the hood, Docker Slim records all files that have
been accessed during a container run in an efficient way
using the fanotify kernel module.
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Figure 5: Reduction of container size after applying
docker-slim on Top-50 Docker Hub images.

For our analysis, we extended Docker Slim to support
container links, which are extensively used for service
discovery and it is available as a fork [28].

Dataset: Docker Hub container images. For our
analysis, we chose the Top-50 popular official container
images hosted on Docker Hub [10]. These images are
maintained by Docker and contain commonly used
applications such as web servers, databases and web
applications. For each image, Docker provides different
variants of Linux distributions as the base image. We used
the variant set to be default as specified by the developer.

Note that Docker Hub also hosts container images that
are not meant to be used directly for deploying applications,
but they are meant to be used as base images to build ap-
plications (such as language SDKs or Linux distributions).
Since CNTR targets concrete containerized applications,
we did not include such base images in our evaluation.

Methodology. For our analysis, we instrumented the
Docker container with Docker Slim and manually ran the
application so it would load all the required files. There-
after, we build new smaller containers using Docker Slim.
These new smaller images are equivalent to containers
that developers could have created when having access
to CNTR. We envision the developers will be using a com-
bination of CNTR and tools such as Docker Slim to create
smaller container images. Lastly, we tested to validate that
the smaller containers still provide the same functionality.

Experimental results. On average, we could reduce the
size by 66.6% for the Top-50 Docker images. Figure 5
depicts the histogram plot showcasing percentage of
container size that could be removed in this process. For
over 75% of all containers, the reduction in size was
between 60% and 97%. Beside the applications, these
containers are packaged with common used command
line auxiliary tools, such as coreutils, shells, and package
managers. For only 6 out of 50 (12%) containers, the
reduction was below 10%. We inspected these 6 images
and found out they contain only single executables written
in Go and a few configuration files.
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6 Related Work
In this section, we survey the related work in the space of
lightweight virtualization.

Lambda functions. Since the introduction of AWS
Lambda [1], all major cloud computing providers of-
fer serverless computing, including Google Cloud Func-
tions [15], Microsoft Azure Functions [5], IBM Open-
Whisk [20]. Moreover, there exists a research implemen-
tation called Open Lambda [55]. In particular, serverless
computing offers a small language runtime rather than the
full-blown container image. Unfortunately, lambdas offer
limited or no support for interactive debugging or profiling
purposes [63] because the clients have no access to the
lambda’s container or container-management system. In
contrast, the goal of the CNTR is to aim for lightweight con-
tainers, in the same spirit of lambda functions, but to also
provide an on-demand mechanism for auxiliary tools for
debugging, profiling, etc. As a future work, we plan to sup-
port auxiliary tools for lambda functions [43] using CNTR.

Microkernels. The microkernel architecture [54, 46, 56]
shares a lot of commonalities with the CNTR architec-
ture, where the applications/services are horizontally
partitioned and the communication happens via the inter-
process communication (IPC) mechanism. In CNTR, the
application container obtains additional service by commu-
nicating with the “fat” container via IPC using CNTRFS.

Containers. Recently, there has been a lot of interest in
reducing the size of containers, but still allowing access to
the rich set of auxiliary tools. For instance, Toolbox [35] in
CoreOS [7] allows to bind the mount of the host filesystem
in a container to administrate or debug the host system
with installing the tools inside the container. In contrast to
Toolbox, CNTR allows bidirectional access with the debug
container. Likewise, nsenter [27] allows entering into
existing container namespaces, and spawning a process
into a new set of namespaces. However, nsenter only
covers namespaces, and it does not provide the rich set of
filesystem APIs as provided by CNTR. Lastly, Slacker [53]
proposed an opportunistic model to pull images from
registries to reduce the startup times. In particular, Slacker
can skip downloading files that are never requested by
the filesystem. Interestingly, one could also use Slacker
to add auxiliary tools such as gdb to the container in an
“on-demand” fashion. However, Slacker could support
additional auxiliary tools to a container, but these tools
would be only downloaded to the container host, if the
container is started by the user. Furthermore, Slacker also
has a longer build time and greater storage requirements in
the registry. In contrast, CNTR offers a generic lightweight
model for the additional auxiliary tools.

Virtual machines. Virtual machines [25, 47, 51]
provide stronger isolation compared to containers by
running applications and the OS as a single unit. On the

downside, full-fledged VMs are not scalable and resource-
efficient [62]. To strike a balance between the advantages
of containers and virtual machines, Intel Clear Containers
(or Kata Containers) [21] and SCONE [45] offer stronger
security properties for containers by leveraging Intel VT
and Intel SGX, respectively. Likewise, LightVM [59] uses
unikernel and optimized Xen to offer lightweight VMs. In a
similar vein, CNTR allows creating lightweight containers,
which are extensively used in the data center environment.

Unikernels and Library OSes. Unikernels [57, 58]
leverage library OSes [61, 49, 65, 48] to selectively include
only those OS components required to make an application
work in a single address space. Unikernels use a fraction
of the resources required compared to full, multipurpose
operating systems. However, Unikernels also face a
similar challenge as containers — If Unikernels need
additional auxiliary tools, they must be statically linked
in the final image as part of the library OS. Moreover,
unikernel approach is orthogonal since it targets the kernel
overhead, whereas CNTR targets the tools overhead.

7 Conclusion
We presented CNTR, a system for building and deploying
lightweight OS containers. CNTR partitions existing
containers into two parts: “slim” (application) and “fat”
(additional tools). CNTR efficiently enables the application
container to dynamically expand with additional tools in
an on-demand fashion at runtime. Further, CNTR enables
a set of new development workflows with containers:

• When testing the configuration changes, instead of
rebuilding containers from scratch, the developers
can use their favorite editor to edit files in place and
reload the service.

• Debugging tools no longer have to be manually
installed in the application container, but can be
placed in separate debug images for debugging or
profiling in production.

To the best of our knowledge, CNTR is the first generic
and complete system that allows attaching to container
and inheriting all its sandbox properties. We have used
CNTR to debug existing container engines [32]. In our
evaluation, we have extensively tested the completeness,
performance, and effectiveness properties of CNTR. We
plan to further extend our evaluation to include the nested
container design.

Software availability. We have made CNTR along with
the complete experimental setup publicly available [6].
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Abstract
Increasingly sophisticated Rowhammer exploits allow an
attacker that can execute code on a vulnerable system
to escalate privileges and compromise browsers, clouds,
and mobile systems. In all these attacks, the common
assumption is that attackers first need to obtain code
execution on the victim machine to be able to exploit
Rowhammer either by having (unprivileged) code exe-
cution on the victim machine or by luring the victim to
a website that employs a malicious JavaScript applica-
tion. In this paper, we revisit this assumption and show
that an attacker can trigger and exploit Rowhammer bit
flips directly from a remote machine by only sending
network packets. This is made possible by increasingly
fast, RDMA-enabled networks, which are in wide use in
clouds and data centers. To demonstrate the new threat,
we show how a malicious client can exploit Rowhammer
bit flips to gain code execution on a remote key-value
server application. To counter this threat, we propose
protecting unmodified applications with a new buffer al-
locator that is capable of fine-grained memory isolation
in the DRAM address space. Using two real-world ap-
plications, we show that this defense is practical, self-
contained, and can efficiently stop remote Rowhammer
attacks by surgically isolating memory buffers that are
exposed to untrusted network input.

1 Introduction

A string of recent papers demonstrated that the Rowham-
mer hardware vulnerability poses a growing threat to sys-
tem security. From a potential security hole in 2014 [36],
it grew into an attack vector to mount end-to-end exploits
in browsers [15, 29, 52], cloud environments [47, 51, 60],
and smartphones [24, 59]. Recent work even generated
Rowhammer-like bit flips on flash storage [17, 38]. Even
so, however advanced the attacks have become and how-
ever worrying for the research community, these attacks

never progressed beyond local privilege escalations or
sandbox escapes. The attacker needs the ability to run
code on the victim machine in order to flip bits in sen-
sitive data. Hence, Rowhammer posed little threat from
attackers without code execution on the victim machines.
In this paper, we show that this is no longer true and at-
tackers can flip bits by only sending network packets to
a victim machine connected to RDMA-enabled networks
commonly used in clouds and data centers [1, 20, 45, 62].

Rowhammer exploits today Rowhammer allows at-
tackers to flip a bit in one physical memory location
by aggressively reading (or writing) other locations (i.e.,
hammering). As bit flips occur at the physical level, they
are beyond the control of the operating system and may
well cross security domains. A Rowhammer attack re-
quires the ability to hammer memory sufficiently fast to
trigger bit flips in the victim. Doing so is not always triv-
ial as several levels of caches in the memory hierarchy
often absorb most of the memory requests. To address
this hurdle, attackers resort to accessing cache eviction
buffers [12] or using direct memory access (DMA) [59]
for hammering. But even with these techniques in place,
triggering a bit flip still requires hundreds of thousands
of memory accesses to specific DRAM locations within
tens of milliseconds. As a result, the current assumption
is that Rowhammer may only serve local privilege esca-
lation, but not to launch attacks from over the network.

Remote Rowhammer attacks In this paper, we revisit
this assumption. While it is true that millions of DRAM
accesses per second is harder to accomplish from across
the network than from code executing locally, today’s
networks are becoming very fast. Modern NICs are able
to transfer large amounts of network traffic to remote
memory. In our experimental setup, we observed bit flips
when accessing memory 560,000 times in 64 ms, which
translates to 9 million accesses per second. Even regular
10 Gbps Ethernet cards can easily send 9 million packets
per second to a remote host that end up being stored on
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the host’s memory. Might this be enough for an attacker
to effect a Rowhammer attack from across the network?
In the remainder of this paper, we demonstrate that this
is the case and attackers can use these bit flips induced
by network traffic to compromise a remote server appli-
cation. To our knowledge, this is the first reported case
of a Rowhammer attack over the network. Specifically,
we managed to flip bits remotely using a commodity
10 Gbps network. We rely on the commonly-deployed
RDMA technology in clouds and data centers for reading
from remote DMA buffers quickly to cause Rowhammer
corruptions outside these untrusted buffers. These cor-
ruptions allow us to compromise a remote memcached
server without relying on any software bug.

Mitigating remote Rowhammer attacks It is un-
clear whether existing hardware mitigations can protect
against these dangerous network attacks. For instance,
while clouds and data centers may (and sometimes do)
use ECC memory to guard against bit flips, researchers
have, from the first paper on Rowhammer [36], warned
that ECC may not be sufficient to protect against such
attacks. Targeted Row Refresh, specifically designed
to address Rowhammer is also shown not to be always
effective [41, 59]. Unfortunately, existing software de-
fenses are also unprepared to deal with network attacks:
ANVIL [12] relies on performance counters that are not
available for DMA, CATT [16] only protects the kernel
from user-space attacks and VUsion [47] only protects
the memory deduplication subsystem.

We make the observation that compared to local at-
tackers, remote attackers can only target memory that is
allocated for DMA buffers. Hence, instead of protecting
the entire memory, we only need to make sure that these
buffers cannot cause bit flips in the rest of the system.
Specifically, we show that we can isolate the buffers for
fast network communication using a new memory allo-
cation strategy that places CATT-like guard zones around
them. These guard zones absorb any attacker-generated
bit flips, protecting the rest of the system. Properly
implementing this allocation strategy is not trivial: the
guard zones need to be placed in the DRAM address
space to effectively absorb the bit flips. Unfortunately,
the physical address space is not consecutively mapped
to the DRAM address-space, unlike what is assumed
in existing defenses [12, 16]. Memory controllers use
complex functions to translate a physical address into
a DRAM address. We therefore present a new alloca-
tor, called ALIS (ALlocations ISolated), which uses a
novel approach to translate between physical address-
space and DRAM address-space and safely allocates the
DMA buffers and their guard zones. Since we need to
protect only a limited number of DMA buffers, doing so
is inexpensive as we show using microbenchmarks and
two real-world applications.

Contributions We make the following contributions:

• We describe Throwhammer, the first Rowhammer
profiling tool that scans a host over the network for
bit flips. We evaluate Throwhammer using differ-
ent configurations (i.e., different link speeds and
DIMMs). We then show how an attacker can use
these bit flips to exploit a remote memcached server.

• We design and implement ALIS, a new allocator
for safe allocation of network buffers. We show
that ALIS correctly finds guard rows at the DRAM
address space level, provided an address mapping
that satisfies certain prerequisites. Furthermore, we
show that ALIS is compatible with existing soft-
ware. We further evaluate ALIS using microbench-
marks and real-world applications to show that it in-
curs negligible performance and memory overhead.

• We release Throwhammer and ALIS as open-source
software in the URL that follows.

https://vusec.net/projects/throwhammer

Concerned parties can use Throwhammer to check
for remote bit flips and ALIS for protecting their
applications against remote Rowhammer attacks.

2 Background

With software becoming increasingly more difficult due
to a variety of defenses deployed in practice [11, 25,
30, 39, 55, 57], security researchers have started ex-
ploring new directions for exploitation. For example,
CPU caches can be abused to leak information [19,
26, 37, 42, 48, 61] or wide-spread reliability issues in
hardware [18, 36] can be abused to compromise soft-
ware [29, 52, 59]. These attacks require code execution
on the victim machine. In this paper, we show for the
first time that this requirement is not strictly necessary,
and it is possible to trigger reliability issues in DRAM
by merely sending network packets. We provide nec-
essary background on DRAM and its unreliabilities and
high-speed networks that expose them remotely.

2.1 Unreliable DRAM

DRAM Organization The basic unit of storage in
DRAM is cell made out of a capacitor used to hold the
value of a single bit of information. Since capacitors
leak charge over time, the memory controller should fre-
quently (typically every 64 ms) recharge them in order to
maintain the stored values, a process known as refresh-
ing. DRAM cells are ganged together to form what is
known as a row (typically 1024 cells or columns wide).
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Figure 1: Trends in network performance and Rowhammer.

Whenever a row is accessed the contents of that partic-
ular row are put on a special buffer, called row buffer,
and the row is said to be activated. Once access is fin-
ished, the activated row is written (i.e., recharged) with
the contents of the row buffer. Multiple rows along with
a row buffer are stacked together to form a bank. There
are multiple banks on a DRAM integrated circuit (IC).
Multiple DRAM ICs are laid out to for a DRAM rank.
The DRAM chips are accessed in parallel when reading
a memory word. For example, with a DIMM that has 8
bit wide ICs, eight ICs are accessed in parallel to form a
64 bit memory word.

DRAM addressing Addressing a memory word
within a DRAM rank is done by the system memory
controller using three addresses: bank, row and column.
Further parallelism can be added by having two ranks
on a single memory module (DIMM), adding multiple
DIMMs on the same memory bus (also known as chan-
nel), and providing multiple independent memory chan-
nels. Hence, to address a specific word of memory,
the memory controller uses a <channel, DIMM, rank,
bank, row, column> hextuple. This hextuple, which we
call a DRAM address is constructed from the physical
memory address bits using formulas which are either
documented [10] or have been (partially) reverse engi-
neered [49]. An important take-away here is that con-
tiguous physical address space is not necessarily contigu-
ous in the DRAM address space where Rowhammer bit
flips happen. This information is important when devel-
oping our defense discussed in §6.

Rowhammer As DRAM chips become denser, the
charge used for each capacitor to denote the two bit states
is reduced. A reduced charge level increases the pos-
sibility of errors. Kim et al. [36] show that intention-
ally activating a row many times in a short duration (i.e.,
Rowhammering) can cause the charge in the capacitors
to leak in close-by rows. If this happens fast enough,
before the memory controller can refresh the adjacent
rows, this charge leakage passes a certain threshold and
as a result bits in these adjacent, or victim, rows will flip.
To exploit these flips, the attackers need to first find bit

flips in interesting offsets within a memory page and then
force the system to store sensitive information on that
memory page. For instance, the first known exploit by
Seaborn [52] finds a memory page with a bit flip that can
affect page table entries. It then frees that memory page
and sprays the system with page table pages. The hope
is that the page that is now freed is used by a page table
page and the bit flip causes the page table entry to point
to another page table page, effectively giving the attacker
control over all of physical memory. Similarly, Rowham-
mer.js [29], Drammer [59] and Xiao et al. [60] target
page table pages but focus on browser, mobile and cloud
environments respectively. Other attacks target crypto-
graphic keys [51] or JavaScript objects [15, 24].

2.2 Fast Networks
Figure 1 shows the evolution of network performance
over time. Since 2010, the trend follows an exponen-
tial increase in the amount of available network band-
width. This is putting a lot of pressure on other compo-
nents of the system, namely the CPU and the memory
subsystem, and has forced systems engineers to rethink
their software stack in order to make use of all this band-
width [22, 23, 33, 34, 43, 44].

Figure 1 also shows that DIMMs with the Rowhammer
vulnerability have been produced since 2010 and their
production continues to date [40, 59]. As we will show
in §4, we observed bit flips with capacities available in
10 Gbps or faster networks, suggesting that already back
in 2010, Rowhammer was exploitable over the network.

While faster than 10 Gbps networks are very common
in data centers on bare metal [45, 53, 62], even today’s
clouds offer high-speed networking. Amazon EC2 pro-
vides VMs with 20 Gbps connectivity [2] and Microsoft
Azure provides VMs with 56 Gbps [1]. As we will soon
show 10 Gbps networks already make remote bit flips a
dangerous threat to regular users today.

Remote DMA To achieve high-performance network-
ing, some systems entirely remove the interruptions and
expensive privilege switching from the fast path and de-
liver network packets directly to the applications [13, 31,
50]. Such approaches often resort to polling in order
to guarantee high-performance, wasting CPU cycles that
are becoming more precious as Moore’s law stagnates
and the available network bandwidth per core increases.

To reduce the load on the CPU, some networking
equipment include the possibility for Remote Direct
Memory Access (RDMA). Figure 2 compares what hap-
pens when a client application sends a packet in a normal
network compared to one with RDMA support. Without
RDMA, the client machine’s CPU first needs to copy the
packet’s content (e.g., an HTTP request) from an applica-
tion buffer to a DMA buffer. The client machine’s oper-
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Figure 2: RDMA allows zero-copy network communication.

ating system then signals the NIC that the packet is ready
for network transfer. The NIC then reads the packet us-
ing DMA and sends it over the wire. On the server side,
the server’s NIC receives the packet from the wire and
copies it to a DMA buffer that is pre-configured to the
NIC. It then signals the server’s CPU that a packet has
arrived. The CPU then copies the packet’s content to the
server application’s buffer.

With RDMA, there is no need to involve the CPU on
both client and server for packet transfer. The server
and client applications both configure DMA buffers to
the NIC through interfaces that are provided by the oper-
ating system. When the client application wants to send
a packet to a server application, it directly writes it to its
buffer. It then signals its NIC that the packet is ready for
transfer. The NIC then sends the packet over the wire.
On the server side, the NIC receives the packet and di-
rectly writes it to the buffer that has previously been con-
figured by the server application. The server application
can then be notified that a new packet has arrived or it
can poll its own buffer. RDMA can boost existing pro-
tocols such as NFS [46] and new applications can use
its functionalities to achieve better performance. Exam-
ples include databases [43], distributed hash tables and
in-memory key-value stores [22, 23, 33, 34, 44].

RDMA’s prevalence Data centers and cloud providers
such as Google [45] and Microsoft [1, 62, 20] use RDMA
to improve the performance of their clusters. Microsoft
very recently announced RDMA support for SMB file
sharing in the workstation edition of Windows [5], sug-
gesting RDMA-enabled networks are spreading into the
workstation market. Cloud providers are already selling
virtual machines with RDMA support. For example, Mi-
crosoft Azure [3] and ProfitBricks [8] provide offerings
with high-speed RDMA networks.

3 Threat Model

We consider attackers that generate and send legitimate
traffic through a high-speed network to a target server.
A common example is a client that sends requests to a

cloud or data center machine that runs a server appli-
cation. We assume that the target machine is vulnera-
ble to Rowhammer bit flips [51, 60]. We further assume
that the target system benefits from IOMMU protection.
With IOMMU, the server’s NIC is not allowed to write
to memory pages that are not part of the pre-configured
DMA areas by the server application. The end goal of the
attacker is to bypass RDMA’s security model by modify-
ing bits outside of memory areas that are registered for
DMA in order to compromise the system.

4 Bit Flipping with Network Packets

To investigate the possibility of triggering bit flips over
the network, we built the first Rowhammer test tool that
scans for bit flips by repeatedly sending or receiving
packets to/from a remote machine, called Throwham-
mer. Throwhammer is implemented using 1831 lines of
C code and runs entirely in user-space without requiring
any special privileges. We will make this tool available
so that interested parties can check for remote bit flips.

4.1 Throwhammer’s Implementation

Throwhammer makes use of RDMA capabilities for
transferring packets efficiently. Throwhammer has two
components: a server and a client process running on two
nodes connected via an RDMA network. On the server
side, we allocate a large virtually-contiguous buffer and
configure it as a DMA buffer to the NIC. We set all bits
to one when checking for one-to-zero bit flips and do the
reverse when checking for zero-to-one bit flips.

On the client side, we repeatedly ask the server’s NIC
to send us packets with data from various offsets within
this buffer. Given the remote nature of our attack, we
cannot make any assumption on the physical addresses
that map our target DMA buffers and cannot rely on side
channels for inferring this information [28]. Fortunately,
on the server side, the Linux kernel automatically turns
the memory backing our RDMA buffer into huge pages
with its khugepaged daemon. This allows us to perform
double-sided Rowhammer similar to Rowhammer.js [29]
and Flip Feng Shui [51]. Periodically, we check the en-
tire buffer at the server for bit flips.

To make the best possible use of the network capacity,
we spawn multiple threads in Throwhammer. At each
round, two aggressor addresses are chosen and all the
threads send/receive packets that read from these two ad-
dresses for a pre-defined number of times. We make no
effort in synchronization between these threads, so mul-
tiple network packets may hit the row buffer. While we
leave potential optimizations for selecting aggressor ad-
dresses more carefully and better synchronization to fu-
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Figure 3: Number of unique Rowhammer bit flips over time
using two sets of DIMMs over a 40 Gbps Ethernet network.

ture work, we show that Throwhammer already can trig-
ger bit flips in 10 Gbps networks and above.

4.2 Results
Testbed We use two machines each with 8-core
Haswell i7-4790 processors connected using Mellanox
ConnectX-4 single port NICs as our evaluation testbed.
Note that these cards are already old: at the time of
this paper’s submission, two newer generations of these
cards (ConnectX-5 and ConnectX-6) are available, but
we show that it is already possible to trigger bit flips with
our older generation cards. We experiment with different
DIMMs and varying network performance.

DIMMs We chose two pairs of DDR3 DIMMs con-
figured in dual-channel mode, one from Hynix and one
from Corsair. These DIMMs already show bit flips when
we run the open source Rowhammer test [6]. We config-
ured our NICs in 40 Gbps mode and ran Throwhammer
for 30 minutes. Figure 3 shows the number of unique bit
flips as a function of time over these two sets of DIMMs
on the server triggered by transmitting packets. We could
flip 464 unique bits on the Hynix DIMMs and 185 unique
bits on the Corsair DIMMs in 30 minutes. While these
bit flips are already enough for exploitation, we believe
that it is possible to trigger many more bit flips with a
more optimized version of Throwhammer.

Network performance To understand how the net-
work performance affects bit flips, we used the Hynix
modules. We first configured our NICs in 10 Gbps Ether-
net which can be saturated with 2 threads. We then con-
figured our NICs in 40 Gbps Ethernet which can be satu-
rated with 10 threads. The number of bit flips depends on
the number of packets that we can send over the network
(i.e., how many times we force a row to open) rather than
the available bandwidth. For example, to trigger a bit
flip that happens by reading 300,000 times from each ag-
gressor address in the refresh window of 64 ms locally, in
perfect conditions (e.g., proper synchronization) we need
to be able to transmit 1000

64 ×300,000×2= 9.375 million
packets per second (pps). Unfortunately our NICs do not
provide an option to reduce the bandwidth (or pps for
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Figure 4: Number of unique Rowhammer bit flips on Hynix
DIMMs over time using different network configurations.

that matter) in between 40 Gbps and 10 Gbps. We can
however use fewer threads to emulate what the number
of bit flips in networks that provide a bandwidth between
10 Gbps and 40 Gbps (e.g., Amazon EC2 [2]). We mea-
sure the pps for each configuration and use it to extrapo-
late the network bandwidth. Figure 4 shows the number
of unique bit flips in different configurations as a function
of time. With 10 Gbps, we managed to trigger one bit flip
after 700.7 seconds, showing that commodity networks
found in companies or university LANs are fast enough
for triggering bit flips by transmitting network packets.
Starting with faster networks than 10 Gbps, Throwham-
mer can trigger many more bit flips during the 30 minutes
window. Again, we believe a more optimized version of
Throwhammer can potentially generate more bit flips, es-
pecially on 10 Gbps networks.

5 Exploiting Bit Flips over the Network

We now discuss how one can exploit remote bit flips
caused by accessing RDMA buffers quickly. The ex-
ploitation is similar to local Rowhammer exploits: the at-
tacker needs to force the system to store sensitive data in
vulnerable memory locations before triggering Rowham-
mer to corrupt the data in order to compromise the sys-
tem. We exemplify this by building an end-to-end ex-
ploit against RDMA-memcached, a key-value store with
RDMA support [32].

5.1 Memcached architecture
Memcached stores key/value pairs as items within mem-
ory slabs of various sizes. By default, the smallest slab
class size is 96 bytes, with the largest being 1 MB. Mem-
ory allocated is broken up into 1 MB sized chunks and
then assigned into slab classes as necessary. For rapid
retrieval of keys, memcached uses a hash table, with col-
liding items chained in a singly-linked list.

The main data structure used for storing key/value
items is called struct _stritem, as shown in Fig-
ure 5a. The first 50 bytes are used to store item metadata,
while the remaining space is used to store the key and
the value. Items are chained together into two lists. A
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Figure 5: Memcached Exploit.

first doubly linked list (LRU, identified by the next and
prev pointers) is updated during GET hits by relinking
recent items at the head, and is traversed when freeing
unused items. A second singly linked list (hash chain,
identified by the h_next pointer) is traversed when look-
ing up keys with colliding hashes. Another notable
field is nbytes, the length of the value. Slabs come
in fixed number of classes decided at compile-time with
their metadata stored in a global data structure named
slabclass. Crucially for our purposes, this data struc-
ture contains slots, a pointer to (a list of) “free” items
which are used for subsequent SET operations.

5.2 Exploiting memcached
The attack progresses in four steps. In the first step, we
search for bit flips using GET requests. Once we find an
exploitable bit flip, we perform memory massaging [51]
to land a target struct _stritem on the memory loca-
tion with a bit flip. In the third step, we corrupt the hash
chain to make a h_next value point to a counterfeit item
that we encode inside a valid item. Our counterfeit item
provides us with limited read and write primitives, using
program logic triggered by GET requests. Finally, we tar-
get our limited write primitive towards the slabclass

data structure, escalating it to arbitrary write and code
execution. We describe each of the steps in more detail
next.

Finding exploitable bit flips We spray the entire avail-
able memory with 1 MB sized key-value items with val-
ues made out of binary value one (when looking for 1 to
0 bit flips). Filling up all the available memory makes
sure that some key-value items eventually border on the
initial 16 MB RDMA buffers. Our experiments show that
this is always the case. The attacker now remotely ham-
mers the initial 16 MB RDMA buffers to trigger bit flips
in the pages that belong to the adjacent rows where some
of the 1 MB items are now stored. After that, the attacker
reads back the items with GET requests to find out which
bit offsets have been corrupted. We now discuss which
offsets are exploitable.

Our target is corrupting the hash chain (i.e., the
h_next pointer of a struct _stritem). As shown in
Figure 5b, this allows us to pivot the h_next pointer to a

counterfeit item that we encode inside a legitimate item
— similar to Dedup Est Machina [15] and GLitch [24].
Assuming we can reuse a 1 MB item for smaller items,
we have to see which size class we should pick for our
target items so that one of the items’ h_next pointer
lands on a memory location with a bit flip. We do this
analysis for every bit flip to see whether we can find a
suitable size class for exploitation.

There are two challenges that we need to overcome for
this strategy to work: first, we need to be able to chain
many items together and second, we need to force mem-
cached to reuse memory backing the 1 MB item with an
exploitable bit flip for smaller items of the right size for
corrupting their h_next pointer. We discuss how we
overcome these challenges next.

Memory massaging We first need to craft memcached
items with different keys which hash to the same value.
Items with colliding keys make sure that the h_next

pointer always points to an item that we control. Mem-
cached uses the 32 bit Murmur3 hash function on the key
to find the slot in a hashtable. This hash function is not
cryptographically secure and we could easily generate
millions of colliding 8 byte keys.

The simplest way to address the second challenge, is to
issue a DELETE request on the target 1 MB item. We pre-
viously calculated the exact size class that would allow
us to land an h_next pointer on a location with a bit flip.
We can reassign the memory used by the deleted 1 MB
item to the slab cache of the target item’s size class using
the slabs reassign command from the memcached
client. Even without slabs reassign, we can easily
trigger the reuse by just creating many items of the tar-
get size. The LRU juggler component in the memcached
watches for free chunks in a slab class and reassigns any
free ones to the global page pool.

While it is possible to deterministically reuse 1 MB
items after an exploitable bit flip in a complete im-
plementation of RDMA-memcached, the current ver-
sion of RDMA-memcached does not support DELETE or
slabs reassign. In these cases, we can simply spray
the memory with items with a size that maximizes the of
probability of corrupting the h_next pointer. We later
report on the success rate of both attacks.

Corrupting the target item Once we land our target
item on the desired location in memory, we re-trigger the
bit flip by transmitting packets from the RDMA buffers.
This causes the corruption of the target item’s h_next

pointer. With the right corruption, the pointer will now
point inside another item whose key/value contents we
control. By carefully crafting a counterfeit header inside
the value area, we gain either a limited read or write ca-
pability. Issuing a GET request on our counterfeit item
will now retrieve nbytes contiguous bytes from mem-
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cached’s address space, provided the memory is mapped.
Attempting to read unmapped memory is handled grace-
fully with an error being returned to the client, preventing
unwanted crashes. If our counterfeit item is not LRU-
linked (i.e., next=prev=NULL), the GET handler returns
without any additional side-effects. A linked item, how-
ever, will trigger a relink operation on the next GET. By
controlling the next (n) and prev (p) pointers and tak-
ing advantage of the unlink step, we gain a limited write
primitive, where *p=n and *(n+8)=p, if p and n are re-
spectively non-NULL.

Escalation The RDMA-memcached binary is not
compiled as a Position Independent Executable (PIE);
hence, we know the starting address of the .data

and .got sections. Using this information, we point
our write primitive at the slabclass data structure,
aiming to overwrite the slots pointer of a partic-
ular class. We set up our counterfeit item with
next=&(slabclass[i].slots)-8, where i is the slab
class corresponding to our intended payload’s size, and
with prev to the target address of our choosing. The
first GET operation on our counterfeit item will trigger the
unlinking procedure which overwrites the slots pointer
with prev, with the side effect of writing next to *prev.
The next SET on our chosen class will store the new item
in memory at the target address. Since we control the
key and value of this new item, this gives us an arbitrary
write primitive. We can further use our arbitrary write to
corrupt the GOT to redirect the control flow and achieve
code execution.

Results For the deterministic attack, we can success-
fully exploit 1.17% of 0 to 1 and 1.15% of 1 to 0 all
possible bit flips. On the Hynix DIMMs, it takes us 5.1
minutes to find an exploitable bit flip and on the Corsair
DIMMs it takes us 19.2 minutes to find an exploitable bit
flip. With the non-deterministic attack, the best size class
for spraying is items of size 384 bytes with 0.2% of the
0 to 1 bit flips resulting in a successful exploitation and
0.5% of them resulting in a crash. The results are similar
with 1 to 0 bit flips.

6 Isolated Memory Allocation with ALIS

We now present an effective technique for defending
against remote Rowhammer attacks using DRAM-aware
allocation of network buffers. We first briefly discuss
the main intuition behind our allocator, ALIS, before de-
scribing the associated challenges. We then show how
ALIS overcomes these challenges for arbitrary physical-
to-DRAM address mappings.

6.1 Challenges of Finding Adjacent Rows

The main idea behind ALIS is simple: given that
Rowhammer bit flips happen in victim rows adjacent to
aggressor rows, we need to make sure that all accessible
rows in an isolated buffer are separated from the rest of
system memory by at least one guard row used to absorb
said bit flips. The implementation of this idea, however,
is not simple because finding all possible victim rows
along with their neighbors is not straightforward.

Given that bit flips happen on the DRAM ICs, ALIS
should isolate rows in the DRAM address space. Re-
call from §2.1 that the DRAM address space is defined
using the <channel, DIMM, rank, bank, row, column>
hextuple. We use the term row to refer to memory loca-
tions addressed by <channel, DIMM, rank, bank, row,
*>, where channel, DIMM, rank, bank and row are all
fixed values. Given a singular row R at DRAM address
<C, D, Ra, B, R, *> to be isolated, our aim is to allocate
all DRAM addresses <C, D, Ra, B, R - 1, *> and <C,
D, Ra, B, R + 1, *> (i.e., rows R - 1 and R + 1) as guard.

A common assumption made by both Rowhammer at-
tacks [12, 15, 29, 51, 59] and defenses [12, 16] is that
rows sharing the same row address (i.e., <*, *, *, *, row,
*> memory locations) are contiguously mapped in phys-
ical memory. That is to say, while accessing physical
memory addresses in an ascending order, the memory
controller would activate the same numbered row across
all its available banks, ranks, DIMMs and channels be-
fore moving on to the next. This assumption, however,
does not hold for most real-world settings, since mem-
ory controllers have considerable freedom in translating
physical addresses to DRAM addresses. One such exam-
ple is presented in Figure 6a, which shows physical-to-
DRAM address translation on an AMD CPU with 4 GB
of single-rank memory [10]. Another example is shown
in Figure 6b, with a non-linear physical address space
to DRAM address space translation on an Intel Haswell
CPU with dual-channel, dual-ranked memory with rank-
mirroring [54]. As a result, existing attacks can become
much more effective in finding bit flips if they take the
translation between physical and DRAM address spaces
into account. Similarly, current defenses only protect
against bit flips caused by existing attacks that do not
take this translation into account.

A correct solution must therefore be conservative in
its assumptions about physical to DRAM address trans-
lation. In particular, we cannot assume that the contents
of a DRAM row will be mapped to a contiguous area
of physical memory. Similarly, we cannot assume that a
physical page frame will be mapped to a single DRAM
row. As an example of the latter, Figure 6c shows the
physical to DRAM address space translation on an AMD
CPU with channel-interleaving enabled by default [10].
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Figure 6: Examples of nonlinear DRAM address mappings taken from real systems [10, 49, 54].

6.2 Design
We now discuss how ALIS addresses these challenges.
We define the row group of a page to be the set of rows
that page maps onto. Similarly, the page group of a row
is the set of pages with portions mapped to that row. In
addition, in the context of a user-space process, we say
a page is allocated if it is mapped by the system’s MMU
into its virtual address space. Likewise, we say a row is
full if all pages in its page group are allocated, and partial
if only a strict subset of these are allocated. If no page is
allocated we call a row empty.

ALIS requires a physical to DRAM address mapping
that satisfies the following condition: any two pages of
an arbitrary row’s page group have identical row groups
themselves. If this condition holds, we can prove the
following two properties:

(1) Enumeration property: To list all rows accessible
by owning pages in a page group, it is sufficient to list
any such page’s row group.

(2) Fullness property: Rows that share page groups
have the same allocation status — a row is full, partial or
empty if and only if all rows in its pages’ row group are
respectively full, partial or empty.

For the interested reader we present a formal descrip-
tion of these properties, along with sufficiency criteria
and proof that they hold for common architectures in [7].

Assuming a mapping where these properties hold, we
now discuss how ALIS allocates isolated RDMA buffers.

6.3 Allocation Algorithm
Preparatory Steps. Initially, ALIS reserves a buffer and
locks it in memory, so that any virtual memory map-
pings are not changed through the course of allocation
or usage. Subsequently, ALIS translates the physical
pages that back the reserved buffer into to their respective
DRAM addresses. Translating from physical addresses
to DRAM addresses is performed using mapping func-
tions either available through manufacturer documenta-
tion [10] or previously reverse-engineered [49]. At the

end of this step, we have a complete view of the allo-
cated buffer in DRAM address space.

Pass 1: Marking. ALIS iterates through the rows of
the buffer in DRAM address order and marks all (allo-
cated) pages of a row as follows: Partially allocated rows
have their pages marked as UNSAFE. Completely allo-
cated (i.e. full) rows preceded or followed by a partially
allocated or empty row are marked EDGE. Due to the
fullness property we can be certain that any partial row
groups have their pages marked UNSAFE at the first oc-
currence of one of its members in the enumeration. We
can therefore be certain that a row, once concluded safe,
will not be marked otherwise later. In addition, the enu-
meration property guarantees that if an edge row is found
later in the pass, such as block 4 in Figure 6b, previous
rows containing the same pages will be correctly “back-
marked” as EDGE.

Pass 2: Gathering. ALIS now makes a second pass
over the DRAM rows, searching for contiguous row
blocks of unmarked pages, bordered on each side by rows
with marked EDGE. We add each of these row blocks
to a list while marking all their pages as USED. At the
end of this step we have a complete list of all guard-
able memory areas immediately available for allocation.
Note these row blocks are isolated from each other and
all other system memory by a padding of at least one
guard row.

Pass 3: Pruning. In this final cleanup pass, ALIS it-
erates through allocated pages, unmapping and returning
to the OS pages that aren’t marked as USED, freeing up
any non-essential memory locked by the previous steps.

Reservation and Mapping. ALIS can now use the data
structure obtained in the previous steps to allocate iso-
lated buffers using one or more row blocks. Applications
can map the (physical) pages in these buffers into the
virtual address space at desired locations to satisfy the
allocation request.

220    2018 USENIX Annual Technical Conference USENIX Association



6.4 Implementation

We have implemented ALIS on top of Linux as a user-
space library using 2518 lines of C code. ALIS reserves
memory by mapping a file descriptor associated with
anonymous shared memory (i.e., a memfd on Linux).
ALIS uses the /proc/self/pagemap interface [35], to
translate the buffer’s virtual addresses to physical ad-
dresses. Finally, ALIS maps particular page frames into
the process’ virtual address space using the mmap system
call by providing specific offsets into the memfd to spe-
cific virtual addresses using the MAP FIXED flag. These
mechanisms allow ALIS to seamlessly replace memory
allocation routines used by applications with an isolated
version. ALIS supports translation between the physical
address space to the DRAM address space for the mem-
ory controller of all major CPU architectures.

7 Protecting Applications with ALIS

In this section, we show how we used ALIS to protect
two popular applications that provide distributed key-
value services, namely memcached [32] and HERD [34]
against remote Rowhammer attacks. One key observa-
tion is that there are a few different ways to allocate
space for the RDMA buffer. Since we are interested in
isolating the memory used as the RDMA buffer for con-
taining RDMA bit flips, it is crucial to understand the
way each application manages memory for its RDMA
buffers. Our allocator is capable of handling common
cases such as when the memory is allocated with mmap

or posix_memalign while it can be extended to support
additional constructs. We now discuss the specifics of
the applications which we tried with our custom alloca-
tor. We evaluate the performance of both systems when
deployed using our custom allocator in §8.2.

7.1 Memcached
Many large-scale Internet services use DRAM-based
key-value caches like memcached. Usually, memcached
serves as a cache in front of a back-end database. Mem-
cached with RDMA support [32] provides lower latency
and higher throughput compared to the original mem-
cached. This is done by introducing traditional RDMA-
enabled set and get APIs. Given that memcached is a
popular application, exploitable bit flips caused over the
network as we discussed in §5 can affect many users.

RDMA-memcached is not open-source. We hence
reverse engineered its binary to discover that it uses
posix_memalign for allocating the RDMA buffers.
Total size of these RDMA-buffers is approximately
5 MB. Unfortunately, instead of using the standard libc-
provided posix_memalign, memcached-rdma uses its

own statically-linked implementation. We hence needed
to perform a simple binary instrumentation to instead
jump to our implementation of posix_memalign which
allocates isolated buffers.

7.2 HERD

HERD [34] is a key-value store that leverages RDMA
to deliver low latency and high throughput. Unlike sim-
ilar systems, HERD has been designed with RDMA in
mind. The system offers clean RDMA primitives, and
heavily relies on RDMA to reduce round-trip times, re-
duce latency, and maximize throughput. As a case-study,
HERD is ideal, since simply turning RDMA off is not an
option; the system is primarily designed around the con-
cept of RDMA. Thus, if anyone needs to take advantage
of the performance of HERD, they additionally need to
secure its RDMA buffer, otherwise its users run the se-
curity risks of remote Rowhammer attacks.

HERD’s initializer process uses shmget to allocate the
RDMA buffer and share it with its worker process. While
we could extend ALIS to support shmget, instead we
opted to declare a global variable in HERD’s initializer
process to store allocated the RDMA buffer address and
pass it to the worker process. This required modifying
10 lines of code in HERD.

8 Evaluation

We use the same testbed that we used in §4 for our evalu-
ation. Firstly we made sure ALIS was indeed protecting
our system from bit flips. We modified Throwhammer’s
client to allocate isolated RDMA buffers using ALIS.
Hammering remotely for extended periods of time with
different strategies did not generate any bit flips outside
the RDMA buffers unlike previously, thus enforcing the
RDMA security model (§3).

We now evaluate in detail the memory overhead and
performance impact of protecting applications.

8.1 Allocation Overhead

To calculate the overhead of ALIS, we wrote a simple
test program that allocates an isolated buffer of a given
size and reports how long it took for the allocation to suc-
ceed. Note that in most cases, we only pay this (modest)
overhead once at application initialization time. Given
that ALIS pools these allocations, in cases where an ap-
plication re-allocates these buffers (e.g., [9, 46]), the sub-
sequent allocations of the same size will be fast. We also
collected statistics from our allocator on the number of
extra pages that we had to allocate for guard rows.
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(a) Two 4 GB (single rank, dual channel).
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(b) Single 8 GB (two ranks).
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(c) Four 4 GB (single rank, dual channel).
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(d) Two 8 GB (two ranks, single channel).
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(e) Two 8 GB (two ranks, dual channel).
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Figure 7: The allocation time and memory overhead of isolating RDMA buffers of various sizes in different configurations.

Configurations We experimented with all possible
configurations including multiple DRAM modules,
channels, and ranks. We assume that up to half of the
memory can be used for RDMA buffers, but nothing
stops us from increasing this limit (e.g., 80%). We run
each measurement 5 times and report the mean value.

Figure 7 shows two general expected trends in all con-
figurations: 1. the allocation time increases as we request
a larger allocation due to the required extra computation,
2. the amount of extra memory that our allocator needs
for guard rows increases only modestly as we allocate
larger safe buffers. In fact, the relative overhead becomes
much smaller as we allocate larger buffers.

We also make a number of other observations:

1. The size of installed memory does not affect the al-
location performance (Figure 7a vs. Figure 7c),

2. Increasing the number of ranks and channels in-
creases the allocation time.

3. The number of ranks increases the allocation time
more than the number of channels (Figure 7a vs.
Figure 7b and Figure 7c vs. Figure 7d). Given that
column address bits slice the DRAM address space
into finer chunks than the channel bits, our alloca-
tor requires more computation to find safe memory
pages when rank mirroring is active.

In general, allocating larger buffers slightly increases
the amount of memory required for isolating the buffers
given that our allocator stitches multiple safe blocks to-
gether to satisfy the requested size. Interestingly, as we
allocate more memory, the allocator requires fewer areas
and in some cases, this reduces the amount of memory
required for guard rows (Figure 7a and Figure 7b).
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Figure 8: Secured memcached performance.

8.2 RDMA Performance

We now report on the performance implications of using
ALIS on RDMA-memcached and HERD (§7). We use
the same testbed that we used in our remote bit flip study
(§4) and use the benchmarks provided by the applica-
tions. The benchmark included in RDMA-memcached
measures the latency of SET and GET requests with
varying value sizes. Figure 8 shows that our custom allo-
cator only introduces negligible performance overhead in
memcached-rdma. This is expected because ALIS only
introduces a small overhead during initialization.

The benchmark included with HERD reports the
throughput of HERD in terms of number of requests
per second. Our measurements show that isolating
RDMA buffers in HERD reduces the performance by
0.4% which is negligible. The original HERD paper [34]
achieves the throughput of 26 million requests per sec-
ond by using multiple client machines and a server ma-
chine with two processors. The authors of HERD ver-
ified that our throughput baseline is expected with our
testbed. Hence, we conclude that ALIS does not incur
any runtime overhead while isolating RDMA buffers.
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9 Related work

Attacks Rowhammer was initially conceived in 2014
when researchers experimentally demonstrated flipping
bits in DDR3 for x86 processors by just accessing other
parts of memory [36]. Since then, researchers have pro-
posed increasingly sophisticated Rowhammer exploita-
tion techniques, on browsers [52, 15, 29], clouds [14, 51,
60], and ARM-based mobile platforms [59]. There have
also been reports of bit flips on DDR4 modules [41, 59].
Finally, recent attacks have focused on bypassing state-
of-the-art Rowhammer defenses [27, 56].

In all of these instances, the attacker needs to find a
way to trigger the right bit flips that can alter critical data
(page tables, cryptographic keys, etc.) and thus affect
the security of the system. All these cases assume that
the attacker has local code execution. In this paper, we
showed how an adversary can induce bit flips by merely
sending network packets.

Defenses Although we have plenty of advanced at-
tacks exploiting bit flips, defenses are still behind. We
stress here that for some of the aforementioned attacks
that affect real products, vendors often disable software
features. Linux kernel disabled unprivileged access to
pagemap [35] in response to Seaborn’s attack [52], Mi-
crosoft disabled deduplication [21] in response to the
Dedup Est Machina attack [15], Google disabled the
ION contiguous heap [58] in response to the Dram-
mer attack [59] and further disabled high-precision GPU
timers [4] in response to the GLitch attack [24]. A similar
reaction to Throwhammer could be potentially disabling
RDMA, which (a) in not realistic, and (b) does not solve
the problem entirely. Therefore, we presented ALIS, a
custom allocator that isolates a vulnerable RDMA buffer
(and can in principle isolate any vulnerable to hammer-
ing buffer in memory). ALIS is quite practical, since,
compared to other proposals [12, 16], it is completely im-
plemented in user-space, compatible with existing soft-
ware, and does not require special hardware features.

More precisely, CATT [16] can only protect kernel
memory against Rowhammer attacks. We showed, how-
ever, that it is possible to target user applications with
Rowhammer over the network. Furthermore, CATT re-
quires kernel modification which introduce deployment
issues (especially in the case of data centers). In particu-
lar, it applies a static partitioning between memory used
by the kernel and the user-space. The kernel, however,
often needs to move physical memory between different
zones depending on the currently executing workload. In
comparison, our proposed allocator is flexible, does not
require modification to the kernel, and unlike CATT, can
safely allocate memory by taking the physical to DRAM
address space translation into account.

Another software-based solution, ANVIL [12] also
lacks the translation information for implementing a
proper protection. It relies on Intel’s performance moni-
toring unit (PMU) that can capture precisely which phys-
ical addresses cause many cache misses. By access-
ing the neighboring rows of these physical addresses,
ANVIL manually recharges victim rows to avoid bits
to flip. An improved version of ANVIL with proper
physical to DRAM translation can be an ideal software
defense against remote Rowhammer attacks. Unfortu-
nately, Intel’s PMU (or AMD’s) does not capture pre-
cise address information when memory accesses bypass
the cache through DMA. Hence, our allocator can pro-
vide the necessary protection for remote DMA attacks
(or even local DMA attacks [59]) while processor ven-
dors extend the capabilities of their PMUs.

10 Conclusion

Thus far, Rowhammer has been commonly perceived as
a dangerous hardware bug that allows attackers capable
of executing code on a machine to escalate their privi-
leges. In this paper, we have shown that Rowhammer is
much more dangerous and also allows for remote attacks
in practical settings. Remote Rowhammer attacks place
different demands on both the attackers and the defend-
ers. Specifically, attackers should look for new ways to
massage memory in a remote system. Meanwhile, de-
fenders can no longer prevent Rowhammer by banning
local execution of untrusted code. We showed how an
attacker can exploit remote bit flips in memcached to ex-
emplify a remote Rowhammer attack. We further pre-
sented a novel defense mechanism that physically iso-
lates the RDMA buffers from the rest of the system. This
shows that while it may be hard to prevent Rowham-
mer bit flips altogether without wide-scale hardware up-
grades, it is possible to contain their damage in software.
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[23] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. SOSP’15.

[24] FRIGO, P., GIUFFRIDA, C., BOS, H., AND RAZAVI, K. Grand
pwning unit: Accelerating microarchitectural attacks with the
gpu. SP’18.

[25] GEORGE, V., PIAZZA, T., AND JIANG, H. Technology insight:
Intel R© next generation microarchitecture codename ivy bridge.
In Intel Developer Forum (2011).

[26] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the Line: Practical Cache Attacks on the
MMU. NDSS’17.

[27] GRUSS, D., LIPP, M., SCHWARZ, M., GENKIN, D., JUFFIN-
GER, J., O’CONNELL, S., SCHOECHL, W., AND YAROM, Y.
Another flip in the wall of rowhammer defenses. In S&P’18.

[28] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR. CCS’16.

[29] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.
DIMVA’16.

[30] INTEL, I. Intel-64 and ia-32 architectures software developer’s
manual. Volume 3A: System Programming Guide, Part 1, 64
(2013).

[31] JEONG, E. Y., WOO, S., JAMSHED, M., JEONG, H., IHM, S.,
HAN, D., AND PARK, K. mTCP: A Highly Scalable User-level
TCP Stack for Multicore Systems. NSDI’14.

[32] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J.,
WASI-UR RAHMAN, M., ISLAM, N. S., OUYANG, X., WANG,
H., SUR, S., AND PANDA, D. K. Memcached Design on High
Performance RDMA Capable Interconnects. ICPP’11.

[33] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-
sided (RDMA) Datagram RPCs. OSDI’16.

[34] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA Efficiently for Key-value Services. SIGCOMM’14.

[35] KERNEL, L. https://www.kernel.org/doc/

Documentation/vm/pagemap.txt, Retrieved 31.05.2018.

[36] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D.,
WILKERSON, C., LAI, K., AND MUTLU, O. Flipping Bits in
Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. ISCA’14.

[37] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203 (2018).

[38] KURMUS, A., IOANNOU, N., PAPANDREOU, N., AND PAR-
NELL, T. From random block corruption to privilege esca-
lation: A filesystem attack vector for rowhammer-like attacks.
WOOT’17.

[39] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer Integrity. OSDI’14.

224    2018 USENIX Annual Technical Conference USENIX Association

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/a8-a9-a10-a11-specs
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/a8-a9-a10-a11-specs
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
http://www.chromium.org/chromium-os/glitch-vulnerability-status
http://www.chromium.org/chromium-os/glitch-vulnerability-status
https://blogs.windows.com/business/2017/08/10/microsoft-announces-windows-10-pro-workstations/
https://blogs.windows.com/business/2017/08/10/microsoft-announces-windows-10-pro-workstations/
https://github.com/google/rowhammer-test
https://www.vusec.net/download/?t=papers/dram-formal.pdf
https://www.vusec.net/download/?t=papers/dram-formal.pdf
https://www.profitbricks.com/technical-info
https://www.profitbricks.com/technical-info
https://software.intel.com/en-us/blogs/2014/08/06/one-sided-communication
https://software.intel.com/en-us/blogs/2014/08/06/one-sided-communication
https://software.intel.com/en-us/blogs/2014/08/06/one-sided-communication
https://technet.microsoft.com/en-us/library/security/ms16-092.aspx
https://technet.microsoft.com/en-us/library/security/ms16-092.aspx
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt


[40] LANTEIGNE, M. A Tale of Two Hammers: A Brief Rowham-
mer Analysis of AMD vs. Intel. http://www.thirdio.com/

rowhammera1.pdf, May 2016.

[41] LANTEIGNE, M. How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware. http://www.thirdio.

com/rowhammer.pdf, March 2016.

[42] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.,
HAAS, W., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown. arXiv preprint
arXiv:1801.01207 (2018).

[43] LIU, F., YIN, L., AND BLANAS, S. Design and Evaluation of
an RDMA-aware Data Shuffling Operator for Parallel Database
Systems. EuroSys’17.

[44] MITCHELL, C., GENG, Y., AND LI, J. Using One-sided RDMA
Reads to Build a Fast, CPU-efficient Key-value Store. USENIX
ATC’13.

[45] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL,
H., GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D.,
AND ZATS, D. TIMELY: RTT-based Congestion Control for the
Datacenter. SIGCOMM’15.

[46] NORONHA, R., CHAI, L., TALPEY, T., AND PANDA, D. K. De-
signing NFS with RDMA for Security, Performance and Scala-
bility. ICPP’07.

[47] OLIVERIO, M., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Secure Page Fusion with VUsion. SOSP’17.

[48] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. CCS’15.

[49] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. SEC’16.

[50] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D.,
KRISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Ar-
rakis: The Operating System is the Control Plane. OSDI’14.

[51] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUF-
FRIDA, C., AND BOS, H. Flip Feng Shui: Hammering a Needle
in the Software Stack. SEC’16.

[52] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges. BHUS’15.

[53] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDER-
MAN, B., GERMANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HÖLZLE, U., STUART,
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Abstract

Numerous recent works have experimentally shown that
Intel Software Guard Extensions (SGX) are vulnerable to
cache timing and page table side-channel attacks which
could be used to circumvent the data confidentiality guar-
antees provided by SGX. Existing mechanisms that pro-
tect against these attacks either incur high execution costs,
are ineffective against certain attack variants, or require
significant code modifications.

We present Varys, a system that protects unmodified
programs running in SGX enclaves from cache timing
and page table side-channel attacks. Varys takes a prag-
matic approach of strict reservation of physical cores to
security-sensitive threads, thereby preventing the attacker
from accessing shared CPU resources during enclave exe-
cution. The key challenge that we are addressing is that
of maintaining the core reservation in the presence of an
untrusted OS.

Varys fully protects against all L1/L2 cache timing
attacks and significantly raises the bar for page table side-
channel attacks—all with only 15% overhead on average
for Phoenix and PARSEC benchmarks. Additionally, we
propose a set of minor hardware extensions that hold the
potential to extend Varys’ security guarantees to L3 cache
and further improve its performance.

1 Introduction

Intel Software Guard Extensions (SGX) enclaves provide
a shielded environment to securely execute sensitive pro-
grams on commodity CPUs in the presence of a privileged
adversary. So far, no successful direct attack on SGX
has been reported, i.e., none that compromises SGX’s
security guarantees. However, numerous works demon-
strate that SGX is vulnerable to several types of side
channel attacks (SCAs), in particular, traditional cache
timing and page table SCA that reveal page-level memory
accesses [9, 39, 21, 47, 43, 45, 24], as well as specula-
tive attacks [29, 12] that use the side channels as a way
of retrieving information. Although Intel explicitly ex-

cludes side channels from the SGX threat model, SCAs
effectively circumvent the SGX confidentiality guarantees
and impede SGX adoption in many real-world scenarios.
More crucially, a privileged adversary against SGX can
mount much more powerful SCAs compared to the un-
privileged one in canonical variants of the attacks. For ex-
ample, a malicious OS can dramatically reduce the noise
levels in cache timing attacks via single-stepping [24] or
by slowing down the victim.

In this paper, we investigate practical ways of protect-
ing SGX programs from page table and cache timing
SCAs. Specifically, we focus on the case where unmodi-
fied general-purpose applications are executed in enclaves
in order to protect their secrets, as it is the case with
Haven [4], Graphene-SGX [11], or SCONE [3].

We postulate that a practical solution should have
low performance overheads, require no modifications to
application source code, and impose no restrictions on
the application’s functionality (such as restricting multi-
threading). We assume that recompilation of source code
is acceptable as long as it does not require code changes.

Existing mitigation techniques, however, fall short of
satisfying our requirements. Traditional hardening tech-
niques against cache timing attacks [5, 23] require rewrit-
ing the application; recent defenses [22] based on Intel
TSX technology also require code changes; memory ac-
cesses obfuscation approaches, such as DR.SGX [8], in-
cur high performance cost (at least 3× and up to 20×);
T-SGX [40] prevents controlled OS attacks, but it is in-
effective against concurrent attacks on page tables and
caches. Déjà Vu [14] protects only against page table
attacks and is prone to false positives.

In Varys, we strive to achieve both application perfor-
mance and user convenience while making page table and
cache timing SCAs on enclaves much harder or entirely
impossible to mount. The basic idea behind Varys design
is trust but verify. A potentially malicious OS is requested

to execute the enclave in a protected environment that pre-
vents all known cache timing and page fault attacks on
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SGX enclaves. However, the Varys trusted runtime inside
the enclave verifies that the OS fulfills the request.

Our main observation is that all published page table
and L1/L2 cache timing attacks on SGX require either
(1) a high rate of enclave exits, or (2) control of a sib-
ling hyperthread on the same CPU core with the victim.
Consequently, if an enclave is guarded against frequent
asynchronous exits and executes on a dedicated CPU core
without sharing it with untrusted threads, it would be pro-
tected against the attacks. The primary challenge that
Varys addresses is in maintaining such a protected envi-
ronment in face of a potentially malicious OS. It achieves
this goal via two mechanisms: asynchronous enclave exits

monitoring and trusted reservation.
First, Varys monitors when asynchronous enclave exits

(AEX) occur (e.g., for scheduling another process on the
core or handling an exception) and restricts the frequency
of such exits, terminating the enclave once the AEX fre-
quency bound is exceeded. Varys sets the bound to the
values that render all known attacks impossible. Notably,
the bound is much higher than the frequency of exits in
an attack-free execution, thereby minimizing the chances
of false positives as we explain in §4.

Second, Varys includes a mechanism for trusted core

reservation such that the attacker cannot access the core
resources shared with the enclave threads while they are
running, nor can it recover any secrets from the core’s
L1 and L2 caches afterward. For example, consider an
in-enclave execution of a multi-threaded application with
two threads. Assuming a standard processor with hyper-
threading (SMT), all it takes to prevent concurrent attacks
on L1/L2 caches is to guarantee that the two enclave
threads always run together on the same physical core.
As a result, the threads occupy both hardware threads of
the core, and the attacker cannot access the core’s caches.
Note that this simple idea prevents any concurrent attacks
on core’s resources shared between its hyperthreads, such
as branch predictor and floating point unit. It also prevents
exit-less SCAs on page table attributes [43] because they
require attacker’s access to the core’s TLB—available
only if the attacker thread is running on that core. Addi-
tionally, to ensure that the victim leaves no traces in the
caches when de-scheduled from the core, Varys explicitly
evicts the caches when enclave threads are preempted.

While conceptually simple, the implementation of the
trusted reservation mechanism is a significant challenge.
An untrusted OS may ignore the request to pin two en-
clave threads to the same physical core, may re-enable
CPU hyperthreading if disabled prior to enclave execution,
and may preempt each of the enclave threads separately
in an attempt to break Varys’s defense.

Our design offers a low-overhead mechanism for

trusted core reservation under an untrusted OS. Appli-
cation threads are grouped in pairs, and the OS is re-

quested to co-locate these pairs on the same physical CPU
core. The trusted application threads are instrumented
(via a compiler pass) to periodically verify that they are in-
deed co-scheduled and running together on the same core.
Varys terminates the enclave if co-scheduling is violated
or if any of the threads in the pair gets preempted too of-
ten. To reduce the frequency of legitimate exits and lower
the false positives, Varys uses exitless system calls [3]
and in-enclave thread scheduling such that multiple appli-
cation threads can share the same OS thread. Moreover,
Varys configures the OS to reduce the frequency of in-
terrupts routed to the core in order to avoid interference
with attack-free program execution. However, if the OS
ignores the request, this will effectively lead to denial of
service without compromising the enclave’s security.

Varys primarily aims to protect multi-threaded pro-
grams by reserving complete cores and scheduling the
application threads on them, i.e., protection against SCAs
translates into an allocation policy that allocates or frees
computing resource with a granularity of one core. We
believe that Varys exercises a reasonable trade-off be-
tween security and throughput for services that require
the computational power of one or more cores. For single-
threaded applications Varys pairs the application thread
with a service thread to reserve the complete core.

Due to the lack of appropriate hardware support in
today’s SGX hardware, Varys remains vulnerable to tim-
ing attacks on Last Level Cache (LLC) as we explain
in §8. We suggest a few minor hardware modifications
that hold the potential to solve this limitation and addi-
tionally, eliminate most of the runtime overhead. These
extensions allow the operating system to stay in control
of resource allocations but permit an enclave to determine
if its resource allocation has changed.

Our contributions include:

• Analysis of attack requirements.
• A set of measures that can be taken to protect against

these attacks using existing OS features.
• Varys, an approach to verifying that the OS correctly

serves our request for a protected environment.
• Implementation of Varys with 15% overhead across

PARSEC [7] and Phoenix [38] benchmark suites.
• Proposal for hardware extensions that improve

Varys’s security guarantees and performance.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions is an ISA extension that
adds hardware support for Trusted Execution Environ-
ments. SGX offers creation of enclaves—isolated mem-
ory regions, with code running in a novel enclave execu-
tion mode. Also, Intel SGX provides a local and remote
attestation systems that is used to establish whether the
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software is running on an SGX-capable CPU.
SGX has hardware-protected memory called Enclave

Page Cache (EPC). Accesses to the EPC go through the
Memory Encryption Engine (MEE), which transparently
encrypts and applies MAC to cache lines on writes, and
decrypts and verifies cache lines on reads. Access permis-
sions of the pages inside an enclave are specified both in
page tables and in EPC Metadata, and permissions can
be only restricted via page tables. The enclave’s memory
contents in the caches are stored as plaintext.

Enclaves can use more virtual memory than can be
stored by the EPC. In this case, EPC paging will happen
when a page not backed by physical memory is accessed.
The CPU, in coordination with the OS kernel, can evict
a page to untrusted memory. Currently, the EPC size
available to user applications is around 94 MB.

2.2 Side-channel attacks

In this work, we focus mainly on cache timing and page
table attacks as they provide the widest channel and thus,
are the most practical to be used to attack enclaves.

Cache timing attacks [36, 32, 27, 25, 2, 48] infer the
memory contents or a control flow of a program by learn-
ing which memory locations are accessed at fine granu-
larity. The adversary uses the changes in the state of a
shared cache as a source of information. In particular, she
sets the cache to a predefined state, lets the victim interact
with the cache for some time, and then reads from the
cache again to determine which parts were used by the
victim. Accordingly, for this attack to work, the adversary
has to be able to access the victim’s cache.

Page table attacks reveal page-level access patterns of
a program. They are usually considered in the context
of trusted execution environments as they are possible
only if privileged software is compromised, hence they
are also called controlled-channel attacks [47].

These attacks can be classified into page-fault based

and page-bit based. Page-fault based attacks [47, 41]
intercept all page-level accesses in the enclave by evict-
ing the physical pages from the EPC. Page-bit based at-
tacks [45, 43] use the Accessed and Dirty page table bits
as an indication of access to the page, without page faults.
However, these bits are cached in a TLB, so to achieve
the required fidelity, the adversary has to do both, i.e., to
clear the flags and to flush the victim’s TLB.

3 Threat Model

We assume the standard SGX threat model. The adversary
is in complete control of privileged software, in particular,
the hypervisor and the operating system. She can spawn
and stop processes at any point, set their affinity and
modify it at runtime, arbitrarily manipulate the interrupt
frequency and cause page faults. The adversary can also
read and write to any memory region except the enclave

memory, map any virtual page to any physical one and
dynamically re-map pages. Together, it creates lab-like
conditions for an attack: it could be running in a virtually
noise-free environment.

4 System footprint of SGX SCAs

In this section we analyze the runtime conditions required
for the known SCAs to be successful. Varys mitigates the
SCAs by executing an enclave in a protected environment
and preventing these conditions from occurring.

Cache attacks [36, 42, 32, 2, 48, 50, 10, 17] can be
classified into either concurrent, i.e, running in parallel
with the victim, or time-sliced, i.e., time-sharing the core
(or a hyperthread) with the victim.

Time-sliced cache attacks =⇒ high AEX rate. For
a time-sliced attack to be successful, the runtime of the
victim in each time slice must be short; otherwise, the
cache noise will become too high to derive any mean-
ingful information. For example, the attack described by
Zhang et al. [49] can be prevented by enforcing minimal
runtime of 100us [44], which translates into 10kHz inter-
rupt rate. It is dramatically higher than the preemption
rate under normal conditions—below 100Hz (see §5.3).
If the victim is an enclave thread, its preemption implies
an asynchronous enclave exit (AEX).

Concurrent cache attacks =⇒ shared core. The ad-
versary running in parallel with the victim must be able to
access the cache level shared with it. Thus, L1/L2 cache
attacks are not possible unless the adversary controls a
sibling hyperthread.

We note that with the availability of the Cache Alloca-
tion Technology (CAT) [26], the share of the Last Level
Cache (LLC) can also be allocated to a hardware thread,
preventing any kind of concurrent LLC attacks [31]. How-
ever, this defense is ineffective for SGX because the allo-
cation is controlled by an untrusted OS. We suggest one
possible solution to this problem in §8.

Page-fault page table attacks =⇒ high AEX rate.

These attacks inherently increase the page fault rate, and
consequently AEX rate, as they induce page faults to infer
the accessed addresses. For example, as reported by Wang
et al. [45], a page table attack on EdDSA requires approx-
imately 11000 exits per second. In fact, high exit rates
have been already used as an attack indicator [40, 22].

Interrupt-driven page-bit attacks =⇒ high AEX rate.

If the attacker does not share a physical core with the
victim, these attacks incur a high exit rate because the
attacker must flush the TLB on a remote core via Inter-
Processor Interrupts (IPIs). The rate is cited to be around
5500Hz [43, 45]. While lower than other attacks, it is still
above 100Hz experienced in attack-free execution (§5.3).

Exit-less page-bit attacks =⇒ shared core. The only
way to force TLB flushes without IPIs is by running an

USENIX Association 2018 USENIX Annual Technical Conference    229



adversary sibling hyperthread on the same physical core to
force evictions from the shared TLB [45]. These attacks
involve no enclave exits, thus are called silent.

In summary, all the known page table and L1/L2 cache
timing SCAs on SGX rely on (i) an abnormally high rate
of asynchronous enclave exit, or/and (ii) an adversary-
controlled sibling hyperthread on the same physical core.
The only exception is the case when the victim has a
slowly-changing working set, which we discuss in §7.2.
These observations drive the design of the Varys system
we present next.

5 Design

Varys provides a side-channel protected execution envi-

ronment for SGX enclaves. This execution environment
ensures that neither time-sliced nor concurrent cache tim-
ing as well as page table attacks can succeed. To establish
such an environment, we (i) introduce a trusted reserva-
tion mechanism, (ii) combine it with a mechanism for
monitoring enclave exits, and (iii) present a set of tech-
niques for reducing the exit rate in an attack-free execu-
tion to avoid false positives.

5.1 Trusted reservation

The simplest way to ensure that an adversarial hyperthread
cannot perform concurrent attacks on the same physical
core would be to disable hyperthreading [33]. However,
doing so not only hampers application performance but
may not be reliably verified by the enclave: One can
neither trust the operating system information nor can one
execute the CPUID instruction inside of enclaves.

An alternative approach is to allow sharing of a core
only by benign threads. Considering that in our threat
model only the enclave is trusted, we allow core sharing
only among the threads from the same enclave. We can
achieve this goal by dividing the application threads in
pairs (if the number of threads is odd, we spawn a dummy
thread) and requesting the OS to schedule the pairs on
the same cores. Since we do not trust the OS, we ensure
collocation by establishing a covert channel in the L1
cache as follows.

The idea is to determine whether the threads share L1
cache or only last level cache. The later would imply
the threads are on different physical cores. We refer to
the procedure that determines the threads co-location on
the core as handshake. To perform the handshake, we
establish a simple covert channel between the threads via
L1: One of the two threads writes a dummy value to a
shared memory location, thus, forcing it to L1. Then,
the sibling thread reads the same memory location and
measures the timing. If the reading is fast (up to 10 cycles
per read), both threads use the same L1 cache, otherwise
(more than 40 cycles) they share only LLC, implying
they are on different cores. If the threads indeed run

on different cores, the OS did not satisfy the scheduling
request made by Varys. We conclude that the enclave is
under attack and terminate it. Since the current version of
SGX does not provide trusted fine-grain time source, we
implement our own as we explain in §6.2.

Of course, immediately after we established that the
two threads are executing on the same core, the operating
system could reschedule these threads on different cores.
However, this rescheduling would cause an asynchronous
enclave exit (AEX), which we detect via AEX monitoring
as we discuss next.

5.2 AEX monitoring

To detect an asynchronous enclave exit, we monitor the
SGX State Save Area (SSA). The SSA is used to store the
execution state of an enclave upon an AEX. Since some
parts of the enclave execution state are deterministic, we
can detect an AEX by overwriting one of the SSA fields
with an invalid value and monitoring it for changes.

For example, in the current implementation of SGX,
the EXIT_TYPE field of an SSA frame is restricted to
values 011b and 110b [26]. Thus, if we write 000b to
EXIT_TYPE, SGX will overwrite it with another, prede-
fined value at the next AEX. To detect an AEX, we peri-
odically read and compare this field with the predefined
value. Note that it is not the only SSA field that we could
use for this purpose; many other registers, such as Pro-
gram Counter, could be used too.

Now that we have a detection mechanism, it is suffi-
cient to count the AEX events and abort the application if
they are too frequent. Yet, to calculate the frequency, we
need a trusted time source which is not available inside
an enclave. Fortunately, precise timing is not necessary
for this particular purpose as we would only use the time
to estimate the number of instructions executed between
AEXs. It is possible to estimate it through the AEX moni-
toring routine that our compiler pass adds to the applica-
tion. Since it adds the routine every few hundred LLVM
IR instructions, counting the number of times it is called
serves a natural counter of LLVM IR instructions. In
Varys, we define the AEX rate as number of AEXs per
number of executed IR instructions.

Even though IR instructions do not correspond to ma-
chine instructions, one IR instruction maps on average
to less than one x86-64 machine instruction1. Thus, we
overestimate the AEX rate, which is safe from the security
perspective.

Originally, we considered using TSX (Transactional
Synchronization Extensions) to detect AEXs—similar to
the approach proposed by Gruss et al. [22]. The main
limitation of TSX is, however, that it does not permit

1In our experience with Phoenix and PARSEC benchmark suites,
calling the monitoring routine every 100 IR instructions resulted in the
polling period of 70–150 cycles.
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non-transactional memory accesses within transactions.
Hence, a) handshaking is not possible within a TSX
transaction—this would lead to a transaction abort, and b)
the maximum transaction length is limited and we would
need to split executions in multiple transactions.

5.3 Restricting Enclave Exit Frequency

Ensuring that protected applications exit as rarely as pos-
sible is imperative for our approach. If the application has
a high exit rate under normal conditions, not only does it
increase the overhead of the protection, but also makes it
harder to distinguish an attack from the attack-free exe-
cution. In the worst case, if the application’s normal exit
rate is sufficiently high (i.e., more than 5500 exits/second,
see below), the adversary does not have to introduce any
additional exits and can abuse the existing ones to retrieve
information. Therefore, we have to analyze the sources
of exits and the ways of eliminating or reducing them.

Under SGX, an application may exit the enclave for
one of the following reasons: when the application needs
to invoke a system call; to handle system timer interrupts,
with up to 1000 AEX/s, depending on the kernel config-
uration; to handle other interrupts, which could happen
especially frequently if Varys runs with a noisy neigh-
bor (e.g., a web server); to perform EPC paging when
the memory footprint exceeds the EPC size; to handle
minor page faults, which could happen frequently if the
application works with large files.

We strive to reduce the number of exits as follows. We
use asynchronous exit-less system calls implemented, for
example, in Eleos [35] and SCONE [3] (which we use in
our implementation). Further, we combine asynchronous
system calls with user-level thread scheduling inside the
enclave to avoid reliance on the OS scheduling. We avoid
the timer interrupt by setting the timer frequency to the
lowest available —100 Hz—and enabling the DynTicks
feature. Regular interrupts are re-routed to non-enclave
cores. Last, we prevent minor page faults when accessing
untrusted memory via MAP_POPULATE flag to mmap calls.

To evaluate the overall impact of these changes, we
measure the exit frequencies of the applications used in
our evaluation (see §7 for the benchmarks’ description).
The results are shown in Figure 1.

As we see, the rate is (i) relatively stable across the
benchmarks and (ii) much lower than the potential attack
rate of more than 1000 exits per second. Specifically,
the attack presented by Van Bulck et al. [43] has one
of the lowest interrupt rates among the published time-
sliced attacks. We ran the open-sourced version of the
attack and observed the rate of at least 5500 exits per
second, which is in line with the rate presented in the
paper. Correspondingly, if we detect (see §6.2) that the
AEX rate is getting above 100 Hz, we can consider it a
potential attack and take appropriate measures. To avoid
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Figure 1: AEX rates under normal system configuration
and with re-configured system.

while(true):
wait_for_request()
if (secret == 0): response = ∗a
else: response = ∗b

Figure 2: An example of code leaking information in
cache side-channel even with low frequency of enclave
exits. If a and b are on different cache lines and the
requests are coming infrequently, it is sufficient to probe
the cache at the default frequency of OS timer interrupts.

false positives, we could set the threshold even higher—
around 2kHz—without compromising security (see §7.2).

5.4 Removing residual cache leakage

As we explained in §4, even with low frequency of en-
clave exits some leakage will persist if the victim has a
slowly changing working set. Consider the example in
Figure 2: the replies to user requests depend on the value
of a secret. If requests arrive infrequently (e.g., 1 per
second), restricting the exit frequency would not be suffi-
cient; even if we set the bar as low as 10 exits per second
(the rate we achieved in §5.3), the victim will touch only
one cache line and thus, will reveal the secret.

To completely remove the leakage at AEX, we should
flush the cache before we exit the enclave. This would
remove any residual cache traces that an adversary could
use to learn whether the enclave has accessed certain
cache lines. Unfortunately, this operation is not avail-
able at user-space on Intel CPUs [26] nor do we have the
possibility to request a cache flush at each AEX. More-
over, Ge et al. [18] have proven that the kernel-space flush
commands do not flush the caches completely. CLFUSH
instruction does not help either as it flushes a memory
address, not the whole cache set. Thus, it cannot flush
the adversary’s eviction set residing in a different virtual
address space, as it is the case in Prime+Probe attacks.

Instead, on each enclave entry, we write a dummy value
to all cache lines in a continuous cache-sized memory
region (e.g., 32KB for L1), further called eviction region.
In case of L1, for which instruction and data are disjoint,
we also execute a 32KB dummy piece of code to evict the
instruction cache. This way, regardless of what the victim
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Figure 3: State diagram of a Varys-protected application.

does in between the exits, external observer will see that
all the cache sets and all the cache ways were accessed
and no information will be leaked.

6 Implementation

We implement Varys as an LLVM compiler pass that
inserts periodic calls to a runtime library. We use SCONE
to provide us with asynchronous system calls as well as
in-enclave threading such that we minimize the need for
an application to exit the enclave.

6.1 LLVM compiler pass

The cornerstone of Varys is the enclave exit detection.
As discussed in §5.2, it requires all application threads to
periodically poll the SSA region. Although we implement
the checks as a part of a runtime library (§6.2), calls to the
library have to be inserted directly into the application. To
do this, we instrument the application using LLVM [30].

The goal of the instrumentation pass is to call the li-
brary and do the SSA polling with a predictable and con-
figurable frequency. We achieve it by inserting the fol-
lowing sequence before every basic block: We increment
a counter by the length of the basic block (in LLVM
IR instructions), call the library if the counter reached a
threshold, and skip the call otherwise. If the basic block is
longer than the threshold, we add several calls. This way,
the checks will be performed each time the application
executes a given (configurable) number of IR instructions.
We also reserve one of the CPU registers for the counter,
as it is manipulated every few instructions and having the
counter in memory would cause much higher overheads.

A drawback of SSA polling is that it has a blind zone. If
a malicious OS preempts a thread multiple times in a very
short period of time, they may happen before the counter
reaches the threshold and the thread checks the SSA value.
Hence, they will be all counted as a single enclave exit.
This allows an adversary to launch stealthy cache attacks
on small pieces of code by issuing occasional series of fre-
quent preemptions. Yet, this vulnerability would be hard
to exploit because the blind zone is narrow—on the order
of dozens of cycles, depending on the configuration—and
the adversary must run in tight synchronization with the

victim to retrieve any meaningful information.

Optimization. Adding even a small piece of code to
every basic block could be expensive as the blocks them-
selves are often only 4–5 instructions long. We try to
avoid this by applying the following optimization.

Consider a basic block B0 with two successors, B1
and B2. In a naive version, in the beginning of each
basic block we increment the IR instruction counter
by the length of the corresponding basic block. How-
ever, if B0 cannot jump into itself, it will always pro-
ceed to a successor. Therefore, it is sufficient to in-
crement the counters only in the beginnings of B1
and B2 by, accordingly, length(B0)+length(B1) and
length(B0)+length(B2). If B1 or B2 have more than
one predecessor, it could lead to overestimation and more
frequent SSA polling, which only reduces the blind zone.

6.2 Runtime library

Most of Varys’ functionality is contained in a runtime
library implementing the state machine in Figure 3.

When a program starts, it begins normal execution (S0).
As long as the program is in this state, it counts executed
instructions thus simulating a timer.

When one of the threads is interrupted, the CPU exe-
cutes an AEX and overwrites the corresponding SSA (S1).
As its sibling thread periodically polls the SSA, it eventu-
ally detects the exit. Then, if the program has managed
to make sufficient progress since the last AEX (i.e., if the
IR instruction counter has a large enough value), it trans-
fers to the detected state (S2). Otherwise, the program
terminates. To avoid false positives, we could terminate
the program only if it happens several times in a row.

In S2, the sibling declares that the handshake is pending
and starts busy-waiting. When the first thread resumes, it
detects the pending handshake, and the pair enters state
S3. If the handshake fails, the program is terminated1.
Otherwise, one of the threads evicts L1 and L2 caches,
and the pair continues normal execution.

Software timer. To perform cache measurements dur-
ing the handshake phase, we need a trusted fine-grained
source of time. Since the hardware time counter is not
available in the current version of SGX, we implement it
in software (similar to Schwarz et al. [39]). We spawn an
enclave thread incrementing a global variable in a tight
loop, giving us approximately one tick per cycle.

However, the frequency of the software timer is not
reliable. An adversary can abuse the power management
features of modern Intel CPUs and reduce the timer tick
frequency by reducing the operational frequency of the
underlying core. If the timer becomes slow enough, the
handshake will be always succeeding. To protect against

1In practice, timing measurements are noisy and the handshake may
fail for benign reasons. Therefore, we retry it several times and consider
it failed only if the timing is persistently high.
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.align 64
label1: jump label2 // jump to the next cache line

.align 64
label2: jump label3

Figure 4: A code snippet evicting cache lines in the L1
instruction cache. For evicting a 32 KB cache, the pattern
is repeated 512 times.

it, we measure the timing of a constant-time operation
(e.g., a series of in-register additions). Then, we exe-
cute the handshake only if the measurement matches the
expected value.

Instruction cache eviction. Writing to a large memory
region is not sufficient for evicting L1 or L2 caches. L1
has distinct caches for data (L1d) and instructions (L1i),
and L2 is non-inclusive, which means that evicting L2
does not imply evicting L1i. Hence, the attacks targeting
execution path are still possible.

To evict L1i, we have to execute a large piece of code.
The fastest way of doing so is depicted in Figure 4. The
code goes over a 32 KB region and executes a jump for
each cache line thus forcing it into L1i.

L2 cache eviction. Evicting L2 cache is not as straightfor-
ward as L1 as it is physically-indexed physically-tagged
(PIPT) [46]. For the L2 cache, allocating and iterating
over a continuous virtual memory region does not imply
access to continuous physical memory, and therefore does
not guarantee cache eviction. A malicious OS could apply
cache colouring [6, 28] to allocate physical pages in a way
that the vulnerable memory locations map to one part of
the cache and the rest of the address space—to another.
This way, the vulnerable cache sets would not be evicted,
and the leakage would persist.

With L2 cache, we do two passes over the eviction
region. The first time, we read the region to evict the L2
cache. The second time, we read and measure the timing
of this read. If the region is continuous, the first read
completely fills the cache and the second read should be
relatively fast as all the data is in the cache. However,
if it is not the case, some pages of the eviction region
would be competing for cache lines and evicting each
other, thus making the second read slower. We use this as
an indicator that L2 eviction is not reliable and we should
try to allocate another region. If the OS keeps serving us
non-continuous memory, we terminate the application as
the execution cannot be considered reliable anymore.

6.3 SCONE

We base our implementation on SCONE [3], a shield-
ing framework for running unmodified application inside
SGX enclaves. Among other benefits, SCONE provides
two features that make our implementation more efficient
and compact. First, it implements user-level threading,

which significantly simplifies thread pairing. As the num-
ber of enclave threads is independent of the number of
application threads and fixed, it suffices to allocate and ini-
tialize thread pairs at program startup. Second, it provides
asynchronous system calls. They not only significantly
reduce the rate of enclave exits but also make this rate
more predictable and application agnostic.

We should note, that Varys is not conceptually linked
to SCONE. We could have avoided user-level threading
by modifying the standard library to dynamically assign
thread pairs. The synchronous system calls are also not
an obstacle, but they require a mechanism to distinguish
different kinds of enclave exits.

7 Evaluation

In this section, we measure the performance impact of
Varys, the efficiency of attack detection and prevention,
as well as the rate of false positives.

Applications. We base our evaluation on the
Fex [34] evaluation framework, with PARSEC [7] and
Phoenix [38] benchmark suites as workloads. The follow-
ing benchmarks were excluded: raytrace depends on the
dynamic X Window System libraries not shipped together
with the benchmark; freqmine is based on OpenMP;
facesim and ferret fail to compile under SCONE due
to position-independent code issues. Together with the
benchmarks, we recompile and instrument all the libraries
they depend upon. We also manually instrument the most
frequently used libc functions so that at least 90% of the
execution time is spend in a protected code. We used the
largest inputs that do not cause intensive EPC paging as
otherwise, they could lead to frequent false positives.

Methodology. All overheads were calculated over the
native SGX versions build with SCONE. The reported
results are averaged over 10 runs and the “mean” value is
a geomean across all the benchmarks.

Testbed. We ran all the experiments on a 4-core (8 hyper-
threads) Intel Xeon CPU operating at 3.6 GHz (Skylake
microarchitecture) with 32 KB L1 and 256 KB L2 pri-
vate caches, an 8 MB L3 shared cache, 64 GB of RAM,
and a 1TB SATA-based SSD. The machine was running
Linux kernel 4.14. To reduce the rate of enclave exits, we
configure the system as discussed in §5.3.

7.1 Performance Evaluation

Runtime. Figure 5 presents runtime overheads of differ-
ent Varys security features. On average, the overhead is
~15%, but it varies significantly among benchmarks.

A major part of the overhead comes from the AEX
detection, which we implement as a compiler pass. Since
the instrumentation adds instructions that are not data
dependent on the application’s data flow, they can run in
parallel. Therefore, they highly benefit from instruction
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Figure 6: IPC (instructions/cycle) numbers for native and protected versions.

level parallelism (ILP), which we illustrate with Figure 6.
The applications that have lower ILP utilization in the
native version (e.g., canneal and stream cluster) can run
a larger part of the instrumentation in parallel, thus amor-
tizing the overhead.

Since we apply instrumentation per basic block, an-
other factor that influences the overhead is the average
size of basic blocks. The applications dominated by long
sequences of arithmetic operations (e.g., linear regres-

sion) tend to have longer basic blocks and lower number
of additional instructions (53% in this case), hence the
lower overhead. At the same time, the applications with
tight loops on the hot path cause higher overhead. There-
fore, string match has higher overhead than kmeans, even
though they have approximately the same level of IPC.

The second source of overhead is trusted reservation. It
does not cause a significant slowdown because the hand-
shake protocol is relatively small, including ten memory
accesses for the covert channel and the surrounding code
for the measurement. The overhead could be higher as
the headshake is synchronized, i.e., two threads in a pair
can make progress only if both are running. Otherwise, if
one thread is descheduled, the second one has to stop and
wait. Yet, as we see in Figure 5, it happens infrequently.

Finally, cache eviction involves writing to a 256 KB
data region and executing a 32 KB code block. Due to
the pseudo-LRU eviction policy of Intel caches, we have
to repeat the writing several times (three, in our case).
Together, it takes dozens of microseconds to execute, de-
pending on the number of cache misses. Fortunately, we
evict only after enclave exits, which are infrequent under

normal conditions (§5.3) and the overhead is low.

Multithreading. As Varys is primarily targeted at multi-
threaded applications, it is crucial to understand its impact
on multithreaded performance. To evaluate this parameter,
we measured the execution time of all benchmarks with
2, 4, and 8 threads with respect to native versions with
the same number of threads. Mind that these are user-
level threads; the number of underlying enclave threads
is always 4. The results are presented in Figure 7.

Generally, Varys does not have a significant impact
on multithreaded scaling. However, there are a few ex-
ceptions. First, larger memory consumption required for
multithreading causes EPC paging, thus increasing the
AEX rate and sometimes even causing false positives. We
can see this effect in dedup and x264: the higher AEX rate
makes the flushing more expensive and eventually leads
to false positives with higher numbers of threads. For the
same reason, we excluded linear regression, string match,
and word count from the experiment.

Another interesting effect happens in multithreaded
kmeans. The implementation of kmeans that we
use frequently creates and joins threads. Internally,
pthread_join invokes memory unmapping, which in
turn causes a TLB flush and an enclave exit. Correspond-
ingly, the more threads kmeans uses, the more AEXs
appear and the higher is the overhead.

Case Study: Nginx. To illustrate the impact of Varys
on a real-world application, we measured throughput and
latency of Nginx v1.13.9 [1] using ab benchmark. Nginx
was running on the same machine as previous experiments

234    2018 USENIX Annual Technical Conference USENIX Association



pca
mmult

kmeans
btra

ck

bscholes

canneal

dedup
x264

scluster
flu

id
swap

vips
mean

1.0

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e
(w

.r
.t
. 
n

a
ti
v
e

)

1.87

1.692 threads 4 threads 8 threads

Figure 7: Runtime overhead with different number of threads. (Lower is better.)

0 10 20 30 40 50 60 70

Throughput (×103 msg/s)

0.2

0.3

0.4

0.5

0.6

0.7

L
a
te

n
c
y
 (

m
s
)

SCONE

Varys

Default config.

Over-assign.
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low-exit system configuration, Default conf.: default con-
figuration of Linux, Over-assign.: another process is com-
peting for a core with Nginx.

and the load generator was connected via a 10Gb network.
The results are presented in Figure 8.

In line with the previous measurements, Varys reduces
the maximum throughput by 19% if the system is con-
figured for a low AEX rate. Otherwise, the AEX rate
becomes higher, cache flushing has to happen more fre-
quently and the overhead increases. The higher rate comes
from two sources: disabling DynTicks increases the fre-
quency of timer interrupts and disabling interrupt redi-
rection adds exits caused by network interrupts. Finally,
the “Over-assignment” line is the throughput of Nginx
in the scenario, when we do not dedicate a core exclu-
sively to Nginx and assign another application that com-
petes for the core (in our case, we use word_count from
Phoenix). Since the Nginx threads are periodically sus-
pended, the cost of the handshake becomes much higher
as both threads in a pair have to wait while one of them is
suspended.

7.2 Security Evaluation

Violation of trusted reservation. To evaluate how ef-
fective Varys is at ensuring trusted reservation (i.e., if
a pair of threads is running on the same physical core),
we performed an experiment that emulates a time-sliced
attack. We launch a dummy Varys-protected application
in normal configuration (all threads are correctly paired)

Time threshold,
SW timer ticks

False positives,

%

False negatives,

%

140 4.0 0.0
160 0.0 0.0
250 0.0 0.1

Table 1: Rate of false positives and false negatives depend-
ing on the value of handshake threshold. The threshold is
presented for 10 memory accesses.

and then, at runtime, change affinity of one of the threads.
Additionally, to evaluate the rate of false positives, we
run the application without the attack. As trusted reserva-
tion is implemented via a periodic handshake, the main
configuration parameter is the time limit distinguishing
cache hits from cache misses.

The results are presented in Table 1. False negatives
represent the undetected attacks and false positives—the
cases when there was no attack, but a handshake still
failed. The results are aggregated over 1000 runs.

As we see, trusted reservation can be considered reli-
able if the limit is set to 160 ticks of the software timer
(§6.2). The fact that we neither have false positives nor
false negatives is caused by the difference in timing of
L1 and a LLC cache hits. If the threads are on the same
core, the handshake will have timing of 10 L1 cache hits.
Yet, if they are on different cores, the only shared cache
is LLC and all 10 accesses would miss both L1 and L2.

Increased rate of AEX. To evaluate Varys’s effectiveness
at detecting attacks with high AEX frequencies, we ran
a protected application under different system interrupt
rates and counted the number of aborts (i.e., detected
potential attacks). For the purity of the experiment, the
victim was a dummy program that does not introduce
additional AEXs on top of the system interrupts. In each
of the measurement, we tested several limits on minimal
runtime (MRT), inverse of the AEX rate. Similar to the
previous experiment, we had 1000 runs.

The results are presented in Table 2. Here, the “Normal
rate” is 100Hz (see §5.3); “Low-AEX attack” is 5.5kHz
as in the attacks from Wang et al. [45] and Van Bulck et
al. [43]; “Common attack” is 10kHz which corresponds
to the rate required for cache attacks. We can see that
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MRT, IR
instructions

Normal

execution

Low-AEX

attack

Common

attack

60M 0.2% 100% 100%
62M 1.2% 100% 100%
64M 10% 100% 100%

Table 2: Varys abort rate depending on the system inter-
rupt rate and on the value of minimum runtime (MRT).

for (Set in L1_Cache_Sets):
for (Very Long):

for (CLine in CacheLine1..CacheLine8):
Read(Set, CLine)

Figure 9: An example of worst-case victim for a defense
mechanism based solely on interrupt frequency.

if we set the threshold on the number of IR instructions
between enclave exits to 60 millions, it achieves both low
level of false positives (0.2%) and detects all simulated
attack attempts.

Residual cache leakage. For small applications (i.e., ap-
plications with small or slowly changing working set),
cache leakage may persist even after we limit the fre-
quency of enclave exits.

As a worst case, we consider the following application
(see Figure 9): it iterates over cache sets, accessing all
cache lines in a set for a long time. With such applications,
limiting the interrupt frequency will not help, because
even a few samples are enough to derive the application
state. We use this application to evaluate effectiveness of
the cache eviction mechanism proposed in §5.2.

We use a kernel module to launch a time-slicing cache
attack on the core running the victim application. The
attack delivers an interrupt every 10 ms, and does an L1d
cache measurement on all cache sets. We normalize the
results into the range of [0,1]. Additionally, we disables
CPU prefetching both for the victim and attack code to
reduce noise. Essentially, it is a powerful kernel-based
attack that strives to stay undetected by Varys.

The results of the measurements are on Figure 10a.
Without eviction, the attack succeeds and the state of ap-
plication can be deducted even with a few samples. Then,
we apply Varys with L1i and L1d cache eviction to the
application (Figure 10b). Even though the amount of
information leaked decreases greatly, we can still distin-
guish some patterns in the heatmap due to residual L2
cache leakage. When we enable L2 eviction in Varys, the
results contain no visible information about the victim
application (Figure 10b).

8 Hardware Extensions

Many parts of Varys’s functionality could be implemented
in hardware to improve its efficiency and strengthen the

security guarantees. In this section, we propose a few
such extensions. We believe that introducing such a func-
tionality would be rather non-intrusive and should not
require significant architectural changes.

8.1 Userspace AEX handler

Varys relies on the SGX state saving feature for detec-
tion of enclave exits. However, this approach has certain
drawbacks: it requires the application to monitor the SSA
value, thus increasing the overhead, and it introduces a
window of vulnerability (§6.1). An extension to the AEX
protocol could solve both of the issues.

Normally during an AEX, the control is passed to the
OS exception handler, which further transfers control to
the userspace AEX handler, provided by the user. The
user AEX handler then executes ERESUME instruction,
which re-enters the enclave. However, there is no possibil-
ity for an in-enclave handler. Our proposed extension adds
a hardware triggered callback to the ERESUME instruction,
specified in the TCS: TCS.eres_handler. After each
ERESUME executed by unprotected code, the enclave is
re-entered, and the control is passed to code located at
the address TCS.eres_handler. To continue executing
interrupted in-enclave code, the ERESUME handler will
execute the ERESUME instruction once again, this time,
inside the enclave. Note that calling ERESUME inside of
an enclave is right now not permitted. One difficulty of
this extension would be an AEX during the processing of
a handler. We would allow recursive calls since handlers
could be designed to deal with such recursions.

8.2 Intel CAT extension

Although Intel CAT could be used to prevent concurrent
LLC attacks, the OS has complete control over the CAT
configuration, which renders the defense ineffective. It
can be solved by associating the CAT configuration reg-
isters with version numbers that are automatically incre-
mented each time the configuration changes. The applica-
tion could check the version number in the AEX handler
after each AEX and thus easily detect the change. In case,
no support for AEX handlers is added, the application
could perform periodic checks within the enclave instead.

To estimate the potential impact of the extension, we
ran an experiment where Nginx was protected by Varys
and had a slice of LLC exclusively allocated to it (see Fig-
ure 11). As we see, allocating 4 and 2 MB of cache did not
cause a significant slowdown for the given workload. The
difference in throughput comes mainly from the larger
eviction region: Varys had to flush 4 MB instead of 256
KB. However, allocating this large part of the cache can
significantly reduce the overall system performance. At
the same time, if we try a more modest allocation, we risk
causing a much higher rate of cache misses, which is what
happened with the 1 MB allocation in our experiment.
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Figure 10: An experiment proving the effectiveness of cache eviction. Without eviction, we can easily see the program
behavior. With L1 eviction, the L2 residual leak exposes some information. With L2 eviction, no visible information is
exposed. Graphs have different time scales due to different overhead from L1/L2 measurement and presence of eviction
mechanism. Color reflects normalized values, with different absolute minimum and maximum values for every graph.
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Figure 11: Impact of different cache allocation sizes on
throughput and latency of Nginx protected by Varys.

8.3 Trusted HW timer

Since the hardware timer (RDTSC/P instruction) is not
available in SGX1, we use a software timer, which wastes
a hyperthread. SGX2 is going to introduce the timer, but
we cannot rely on it either as privileged software can
overwrite and reset its value.

We see two ways of approaching this problem: We
may introduce a monotonically increasing read-only timer
which could be used as-is. Alternatively, we could intro-
duce a version number that is set to a random value each
time the timer is overwritten. To ensure the timer correct-
ness, the application would have to compare the version
of this register before and after the measurement.

9 Related Work

The idea of restricting minimal runtime was proposed by
Varadarajan et al. [44], although they relied on features
of privileged software. Similarly, Déjà Vu [14] relies on
measuring execution time of execution paths at run-time.

T-SGX [40] uses Transactional Synchronization Exten-
sions (TSX) to detect and hide page faults from the OS. It
protects against page fault attacks, but not page-bit and
cache timing attacks. Cloak [22] strives to extend T-SGX

guarantees to cache attacks by preloading sensitive data,
but requires source code modifications.

Concurrently with our work, an alternative approach
to establishing thread co-location was proposed in Hyper-
Race [13]. It uses data races on a shared variable as a way
of distinguishing L1 from LLC sharing. Accordingly, it
does not require a timer thread.

Zhang et al. [51] and Godfrey at al. [19] employ flush-
ing as a defense against cache attacks, and Cock [15]
proposed to used lattice scheduling [16] as an optimiza-
tion. All of them rely on privileged software.

Among the alternatives, Racoon [37] builds on the idea
of oblivious memory [20] and makes enclaves’ memory
accesses independent of the input by introducing fake ac-
cesses, but requires manual changes in code. Dr. SGX [8]
automates the obfuscation. Shinde et al. [41] make the
accesses deterministic at the page level. Both introduce
high overheads (in the range of 3–20×).

10 Conclusion

We presented Varys, an approach to protecting SGX en-
claves from side channel attacks. Varys protects from
multiple side channels and causes low overheads. Con-
ceptually, Varys protects against side channels by limiting
the sharing of core resources like L1 and L2 caches. We
have shown that implementing it in software is possible
with reasonable overhead. With additional hardware sup-
port, we would not only expect a more straightforward
implementation of Varys but also lower overhead and
protection against a wider range of side channel attacks,
including LLC-based ones.
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Abstract

The Linux Audit system is widely used as a causality
tracking system in real-world deployments for problem
diagnosis and forensic analysis. However, it has poor
performance. We perform a comprehensive analysis on
the Linux Audit system and find that it suffers from high
runtime and storage overheads due to the large volume
of redundant events. To address these shortcomings, we
propose an in-kernel cache-based online log-reduction
system to enable high-performance audit logging. It fea-
tures a multi-layer caching scheme distributed in various
kernel data structures, and uses the caches to detect and
suppress redundant events. Our technique is designed to
reduce the runtime overhead caused by transferring, pro-
cessing, and writing logs, as well as the space overhead
caused by storing them on disk. Compared to existing
log reduction techniques that first generate the huge raw
logs before reduction, our technique avoids generating re-
dundant events at the first place. Our experimental results
of the prototype KCAL (Kernel-supported Cost-effective
Audit Logging) on one-month real-world workloads show
that KCAL can reduce the runtime overhead from 40+%
to 15-%, and reduce space consumption by 90% on aver-
age. KCAL achieves such a large reduction with 4% CPU
consumption on average, whereas a state-of-the-art user
space log-reduction technique has to occupy a processor
with 95+% CPU consumption all the time.

1 Introduction

Understanding system provenance is an important and
challenging task, especially in forensic analysis and prob-
lem diagnosis. A common approach is to perform operat-
ing system-level audit logging, which is one of the core
functionalities required in enterprise-level infrastructures.
The Linux Audit system is the most widely used audit
system. It resides in the kernel, collects information for
predefined kernel events, and records them in log files.

Following incidents, investigators use automated tools
(e.g., ausearch) to analyze audit logs to search for sus-
picious system objects (e.g., files, sockets) and subjects
(e.g., processes), and identify causal dependencies among
them. Such information is critical to locating root causes
and assessing damages. Then they use such information
to hunt for suspicious activities such as policy violations.
In practice, the Linux Audit system has been known to
have poor performance, and other researchers have been
working on improving the Linux Audit system for a long
time. Many works [8, 9, 22, 24, 31, 41, 42] proposed en-
hancement or alternative designs to provide fast logging
infrastructures or highly compressed logs. However, ex-
isting solutions do not fundamentally solve the high space
and runtime overhead problems. And this motivates us to
deeply analyze and understand the overhead problems in
the Linux Audit framework.

In this paper, we first describe a comprehensive analy-
sis on the Linux Audit system, and show that the runtime
and the storage overheads are essentially caused by trans-
ferring and processing huge raw logs that contain substan-
tial redundancies. Previous research failed to solve the
problems because methods required first generating the
redundant logs. Our key idea is to remove redundancies
inside the kernel so that we can prevent the huge raw logs
from being generated at the first place. Inspired by hard-
ware/software cache system designs, we propose KCAL,
a kernel-level, cost-effective, memory-cache-based audit
logging system. It caches important dependencies and
events, and detects redundancy on the fly using the caches.
If redundant events indicated by cache hits are detected,
they are immediately discarded. Only events that intro-
duce new system objects/subjects or new dependencies
are retained. Dependency caches and event caches are dis-
tributed in individual kernel data structures. The caches
are carefully designed such that the kernel memory con-
sumption is kept reasonably low, avoiding perturbation
of normal kernel functionality. In summary, in this paper,
we make the following contributions:
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• We describe a comprehensive analysis on the Linux
Audit system, which revealed that the root cause of
its high runtime and storage overheads is the need
to transfer, process, and store the huge raw log, and
identify this can be solved by removing the redun-
dant events.

• We propose a kernel-level, cache-based, log-
reduction system. The key idea is to prevent the
kernel from generating redundant raw logs in the first
place. The design features a multi-layered and dis-
tributed cache scheme that leverages the autonomous
execution sub-structures (i.e., units) in individual
processes (e.g., sub-executions serving individual
requests in Apache), and indexes largely scattered
syscall events belonging to the same object.

• We built a prototype KCAL based on the Linux
Audit system. Our experimental results showed
that KCAL is capable of reducing the runtime over-
head from 40+% to 15-%, log files by 90+%, and it
does not introduce significant memory pressure on
the existing kernel. The comparison with the state-
of-the-art, user-space log-reduction technique Pro-
Tracer [24] shows that ProTracer fully occupies an
idle processor with 95% constant CPU consumption
whereas KCAL only requires 4% CPU consumption
on average.

2 Motivation and Related Works

2.1 Audit Logging Systems
There are many existing audit logging systems [2, 5, 7, 24,
28, 31] from commercial companies and research com-
munities. Prior works [13, 14, 16, 35, 37, 43] proposed
many different general logging infrastructures. Some of
them [11, 27, 28, 34] monitor the whole file system at
the inode level, while others [31, 36] leverage the Linux
Security Module (LSM) to monitor operations on kernel
data structures. Many of the techniques [12,17,18,19,20]
use record-and-replay techniques to record system wide
events for system replay. They require logging of syscalls
including the concrete values such as the content of files
or packets. Hence, they tend to be expensive and are
mostly used in single application execution. Bates et al.
provide a general and secure framework for writing a
provenance system at the operating system level. Among
these provenance systems, the Linux Audit framework [2]
is the most practical and widely used. The framework
provides a general logging infrastructure that allows the
integration of plugins to enhance the system. As such,
it is widely used and has been adopted by many other
research projects and real-world products [3, 4, 6].

Linux Audit Architecture. Figure 1 shows the archi-

Figure 1: The audit framework architecture

tecture of the Linux Audit framework. It contains a few
user-space utilities (brown boxes) and a kernel component.
The kernel component contains a number of filters (blue
circles). Based on the execution order, i.e., before/dur-
ing/after the syscall processing logic, the filters are named
User/Task/Exit, respectively. The Exclude filter de-
fines exceptions to the filtering rules; namely, any syscall
that falls into the Exclude category will not be filtered.
The auditctl program helps administrators manage fil-
ters. If these filters determine that a syscall needs to be
recorded, the kernel component sends the information
to the user-space daemon program auditd through the
Netlink device. Auditd collects syscall records and
writes them to the log file.

State-of-the-Art Causality Analysis. An important fea-
ture of an audit logging system is the dependency analysis
support. As demonstrated by previous researchers [21,23],
the Linux Audit system suffers from the dependency ex-
plosion problem because of the large number of fan-outs
in process-level analysis. Process execution partitioning
techniques [21, 23] were proposed to enable fine-grained
dependency analysis in audit logging, and to help remove
redundant log information. They partition process ex-
ecutions into execution units. Each execution unit is a
part of the whole process execution serving a specific
task. MPI [23] partitions process execution based on user-
defined tasks, e.g., individual tabs in Firefox. BEEP [21]
partitions process execution based on event-handling loop,
namely, and an execution unit is essentially an iteration of
the event handling loop. Execution units are considered
largely autonomous. Therefore, an output syscall event in
a unit is considered only dependent on the preceding input
events within the same unit unless there are dependencies
across units (e.g., through in-memory data structures).
In contrast, Linux Audit considers that an output event
depends on all the preceding events in the same process,
causing numerous bogus dependencies [14,18,20,21]. An
execution unit is delimited by a special UnitEnter event
indicating the start of the unit, and a UnitExit event
denoting the end in these systems. An execution unit may
depend on another through variable reads/writes. Such
variables/data-structures are treated as Inter-Process Com-
munication (IPC) objects, and exposed to the audit system
via the MemWrite and MemRead syscall events [21, 23].

Figure 2 shows an example of using Firefox to open
webpages and download a file (File-N). It also shows the
simplified log events. In each line, we show the events
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File-M

Queue
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……

U8: [UnitEnter] [MemWrite Queue] [UnitExit]

U9: [UnitEnter] [MemRead Queue] [Socket c] [Open(File-N)] [Read(c)] [Write(File-N)] [UnitExit]

File-N

(A) Process level provenance (B) Download action provenance (C) U0 Provenace

Figure 2: Comparison of different dependency granularity

that belong to a unit marked with the unit ID. Without unit
information, we will get a graph shown in (A). The file
object File-M (transitively) depends on all the socket read
by Firefox before the write to the file, which introduces
many bogus dependencies. With partitioning, the events
are properly grouped. For example, the first unit, U0
represents a unit for opening a web page. It creates a
socket, fetches a page, stores it, and then renders it on
screen. The dependency relationship is shown in (C). The
multiple page loading tasks are separated to units, and the
resulting provenance graph is accurate. Downloading in
Firefox causes explicit dependencies between units (U8,
U9). U8 first inserts the download request to a queue, and
then U9 fetches it from the queue and downloads the file.
These units are connected through MemWrite/MemRead
events as shown in (B).

2.2 Linux Audit System Performance

To motivate our technique, we perform a few experiments
to measure the overhead of Linux Audit and explain the
limitations of existing overhead reduction techniques. We
run 20 virtual machines with Ubuntu 14.04 as the guest
OS on the Kernel-based virtual Machine (KVM) plat-
form, and each virtual machine has two cores and 4 GB
main memory. The machines are classified into two cat-
egories: servers running server programs (e.g., HTTP
server Apache, FTP server ProFTPd), and clients run-
ning client programs (e.g., Firefox and Vim) for daily use.
Each group has 10 virtual machines.

Figure 3 shows the log size growth along time. We
configure the audit system to only record 60 provenance-

Figure 3: The audit framework log sizes growth in 30 days

Figure 4: The audit framework runtime overhead

related syscalls [24, 31]. These system calls are related
to process creation/termination, file/socket creation/read-
/write/deletion and IPCs and so on. Observe that in the
worst case, a machine generates 1100+GB log in 30 days.
Even in the best case, 60 GB log is generated within 30
days. On average, a server machine can generate about
130GB data per day, whereas a client machine generates
about 5GB data per day. The data is also consistent with
previous research [22, 41]. Such a large volume of data
causes many problems. First, it is expensive to store or
transmit log files. By default, the audit log is stored on the
local disk and consumes substantial storage space. It can
be sent to external servers for storage and inspection, but
this incurs runtime overhead, network traffic, and mainte-
nance efforts on servers. Second, processing such large
files can be extremely challenging. It may take hours to
days to answer a provenance query as it requires searching
through log files in the size of GBs to TBs. The situation
becomes worse in the enterprise environment, where there
are hundreds to thousands of inter-connected machines,
which increases the problems associated with storing, cor-
relating, and processing audit logs. Compressing the log
is one way to reduce the storage overhead, but causes
more runtime overhead for compressing/decompressing
the logs to investigate an attack. Zhang et al. [41] also
demonstrated that in an enterprise environment, using
databases to store the logs is also very challenging in such
scenarios.

Figure 4 shows the runtime overhead (caused by Linux
Audit) for a few programs including both server programs
like Apache and client programs like Vim. We leverage
existing workloads to test the performance if possible. For
programs that support batch mode (e.g., Vim), we write
scripts to test the performance. Some of the programs
generate frequent system calls (e.g., Apache), and natu-
rally cause higher runtime overhead. As we can see, the
overhead for some programs like Vim is tolerable. But
for I/O intensive programs such as browsers and server
programs, the overhead can be rather high.
Understanding the Overheads. The Linux Audit frame-
work has three parts: the kernel part (filtering rules etc.),
the Netlink data transmission channel, and the user
space logger (i.e., auditd). Figure 5 shows the runtime
overhead of each component. Similar observations are
made on both Hard Disk Drives (HDDs) and Solid State
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Figure 5: Audit framework runtime overhead

Drives (SDDs). The graph tells us the kernel filters are
relatively lightweight, and the other two parts, Netlink
and auditd, are the dominant factors of the overhead.
Netlink provides a socket-like channel for transmitting
data, and auditd is responsible for writing the log data to
disk. The major factor that affects the time spent on these
two components is the size of log data that needs to be
processed (transferred/written). Considering the amount
of data we need to handle (Figure 3), it is understandable
these two parts dominate the overhead. As such, we can
say the root cause of both runtime and storage overheads
is the large amount of data generated by the Linux Audit
framework.

2.3 Log Redundancy

Previous works addressed the storage overhead problem
by shrinking the log size. Most of them [10, 15, 25, 29, 30,
32, 33, 38, 39, 40] generated the dependency graph first,
and then used various graph visualization or compression
algorithms to help causality analysis. These techniques
ignore the importance of reducing the redundancy of audit
logs, and cannot solve the runtime overhead problem
caused by such redundancy.

Existing Linux Audit generates highly redundant logs.
Based on our analysis (see §4), over 89% log entries
are redundant. Previous research [22, 24, 41] has also
presented similar observations. Thus pruning the log
could improve the performance of the Linux Audit sys-
tem. Some existing works [8, 41] suggest removing re-
dundancy by various analysis techniques, e.g., rule-based
filtering. However, this requires human effort to create
and maintain the rules. ProTracer [24] leverages execu-
tion partitioning for log reduction. It has a kernel module,
which simply receives syscall events, filters them, and
then sends the remaining event records including unit-
related events to the user-space daemon, which consists
of multiple processes. These processes run in parallel to
remove redundant events. The ProTracer views system
objects as taints and monitor their propagation during ex-
ecution by performing syscall level taint analysis while
processing the log. Each unit/object is associated with a
taint set denoting the set of data sources that it depends
on. The causalities denoted by the taint sets (instead of
individual events) are emitted to the log. Therefore events

leading to the same taint set are essentially reduced.
All these techniques first generate the full-fledged log

and then reduce it. It is the huge raw log that causes the
substantial overhead. These techniques cannot be applied
in the kernel space because it has rather limited resources
that prevents loading and processing huge raw logs. For
instance, the parallel (tainting-based) processing required
by ProTracer cannot be ported to the kernel space due
to its high CPU consumption (See data in §4). An ideal
solution is to prevent redundant log entries from being
generated by the kernel in the first place. This is the
motivation behind KCAL, a kernel-supported log cache
and reduction system.

3 Design

3.1 Overview
We propose a cache-based, cost-effective audit logging
system inside the kernel called KCAL. It leverages ex-
ecution partitioning and is orthogonal to the underlying
partitioning scheme. Any partitioning scheme [21, 23]
that generates unit boundary syscalls and cross-unit mem-
ory dependency events can be seamlessly integrated with
KCAL, and we use BEEP. Upon a new syscall event,
KCAL determines if there is a cache hit, which means
the new event reveals the same causal information as
some event(s) that have been recorded before and hence
can be safely discarded. Since the cache is positioned
at the kernel, redundant log events are prevented from
being generated in the first place, leading to highly suc-
cinct raw logs without any information loss. KCAL is
not a monolithic caching system like traditional memory
caches because different subjects/objects have diverse life
times and various numbers of associated syscall events
distributed in their life spans. Due to the nature of audit
logging, we cannot be certain if events belonging to a sub-
ject/object are redundant before it is closed or terminated.
A monolithic cache design would require complex data
structure support for indexing and removing sparse and
highly distributed log events. Therefore, we propose a
distributed cache design so each process/object (e.g., a
file) has its own cache storing associated events, and these
caches are encapsulated as part of the kernel data struc-
tures. Figure 6 shows the overall architecture of KCAL.

Figure 6: Overview of KCAL architecture
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Figure 8: Performance of 3 data channels (kernel to user-space)

First, we enhance the Linux Audit module with an online
cache-based log-reduction algorithm, and modify the ker-
nel data structures for processes and objects (e.g., files
and sockets) to insert caches. Second, we use shared
memory instead of Netlink as the transfer channel.

In-kernel Architecture and Workflow. Figure 7 shows
a simplified view of the kernel part of KCAL. The first
modification is in the task_struct data structure ( 1 ),
which stores process specific information such as the pid.
We add more pointer fields. The first one is a pointer to a
unit dependency cache (box 2 ). The cache uses a Read-
Set to store the objects that have been read by the current
unit (box 4 ), and also maintains the detected dependen-
cies in the current unit (e.g., A → B shown inside 2 ).
Each object in the cache also has a pointer (e.g., PA0 and
PB0) to the corresponding kernel data structure instance
such as a File structure. The second pointer points to a
process-level dependency cache (box 3 ), which stores
the dependencies detected in this process (box 5 ) by ag-
gregating the unique dependencies from individual units.
The unit cache is needed for in-unit redundancy and the
process cache is for cross-unit redundancy.

We also enhance the kernel data structures representing
objects (resources). For example, we enhance the File
data structure that contains file-specific information, such
as its inode, by adding two pointers. The first one points
to a cache that stores the syscall events operating on the
object with timestamps (box 8 ). Redundant events are

removed at the unit/process level before being added to
the object cache. We do not directly send these events
to the user space but rather cache them because all the
events in the object cache may be deemed redundant if
the resource is determined as temporary. More details
will be discussed in §3.3. The second pointer points to an
automaton used to detect if the resource is temporary (box
9 ). Box 10 shows the states and the transitions. De-
tails will be discussed in §3.3. KCAL does not cause any
compatibility issues as it does not change the meanings
of existing fields in these data structures. More impor-
tantly, our method is general, and one could easily use
stand-alone hash tables that map a process/object to its
auxiliary data structures and avoid touching any kernel
data structures. As we will show in §4, although KCAL
is mainly kernel based, its perturbation to the normal ker-
nel functionalities is negligible due to its small memory
footprint and limited instrumentation inside the kernel.

The Linux Audit module is enhanced with an on-the-
fly reduction algorithm that interacts with the caches to
determine if an event is redundant. When a syscall event
occurs, it first goes through the filters. Non-provenance
related syscalls like time-related system calls are filtered
out. The remaining syscalls (i.e., reads/writes) are passed
to the reduction component. This component checks if
there is a cache hit for the dependency represented by
the event. Note the caches are accessible through the
current variable, which points to the task_struct of
the current process that contains direct or transitive point-
ers to multiple layers of caches. If hit, the event is safely
discarded. Otherwise the dependence is inserted to the
dependence cache, and the event is inserted to the event
cache of the object that is being operated on. Eventually,
non-redundant events will be emitted to the shared mem-
ory and saved to the disk by the user-space component.

Transfer Channels. Netlink provides a socket-like
communication method between the kernel space and

USENIX Association 2018 USENIX Annual Technical Conference    245



the user space and was widely adopted by SELinux as
it provides a simpler interface and better performance as
compared with its competitors (printk, ioctl etc.). We com-
pare three general ways of transferring bulk data from the
kernel space to the user space: Netlink, message queues,
and shared memory. Figure 8 shows the performance
comparison of these channels. The X-axis represents the
size of each message. We use four configurations: 512,
1024, 2048, and 4096 bytes. For each message size, we
generate 10,000 random messages and perform the exper-
iments 10 times. The Y-axis is the performance measured
by the average time (CPU cycles) used to transfer one
message. Shared memory has the best performance. In
the past, due to the memory size limits made it practical to
use shared memory as the transfer channel as it requires
reserving a memory pool, but this is no longer a problem
in modern computers.

3.2 Redundancy in the Linux Audit Log

Our definition of redundancy is with respect to the attack
investigation, which is based on a causal graph according
to the latest Open Provenance Model (OPM) [26]. OPM
standardizes the forensic analysis procedure and is the
most widely adopted provenance model. A causal graph
is generated by first starting from a given subject or object
(e.g., a suspicious file) and then performing forward/back-
ward traversal along dependencies to find all the reachable
subjects and objects. Backward traversal is used when
the inspector wants to trace back the root cause of an
attack starting from some observed symptom. In contrast,
forward traversal is used when the inspector has already
identified the root cause and now wants to understand
the damage caused by the attack. It starts with the root
cause and finds all the affected subjects/objects. In this
context, we consider an event redundant if the derived
causal graph contains the same dependency information
with and without the event. That is, we can reach the same
set of objects and subjects with and without the event. As
such, an event is redundant if it leads to some dependency
that was induced in a previous unit. This is because the
previously recorded events and the entailed dependence
render the same reachability. Events denoting the same
dependency may be in the same or different execution
units, and they are referred as in-unit redundancy and
cross-unit redundancy, respectively.

Another type of redundancy is what we call temporary
files. We define the term temporary file from the prove-
nance analysis perspective. A temporary file is a file that
is created, edited, and deleted by the same owner and
during its whole life cycle; the file is not “shared” with
any other process. These files only temporarily exist in
the system and are used internally by applications. For
example, editors with auto-saving features often use a

temporary file to keep the newly edited contents to sup-
port recovery. These files are deleted when the user saves
the file explicitly. Another example is that browsers like
Firefox use a large number of temporary files to store
downloaded web elements. The browser regularly re-
moves such files to save space. Temporary files do not
lead to useful forensic information as they do not have
interactions with other system objects or subjects and can
be removed. Many programs use temporary files because
they need to save a large amount of contents locally, and
memory is not sufficient for them to do so. From the
provenance point of view, the temporary files are a part of
the program execution just like the runtime variables in
memory. As all the information source and sink points are
the same, it can be viewed part of the program execution.

Our definition of temporal files is different from that of
traditional temporary files that usually refers to the files in
the tmp file system. Many of these files can interact with
other processes and generate new provenance informa-
tion, and thus the corresponding events are not redundant
according to our design. For example, Firefox has one
open with option for many types of files such as torrent
files in its download dialog. It will first download the
selected file (e.g., one torrent file), and then open the file
using the system default program for this file type. In this
case, the downloaded file is stored in the tmp file system,
but it will be kept in our design as it is read by another
process, which is new provenance information.

Therefore, KCAL guarantees the information com-
pleteness from the provenance graph point of view.
Namely, the log files before and after reduction will out-
put the same provenance graph for the same provenance
query. As a provenance tracking system, it does not guar-
antee information completeness for other audit purposes
such as the total number of syscalls in a time range.

3.3 Redundancy Reduction
In this section, we explain the details of the KCAL design.
There are three important design choices: a two-layer
dependency cache (the unit layer and the process layer)
for a process, a distributed event cache for objects, and
methods for handling cross-unit memory dependencies.
Two-layer Dependency Cache For Process. As shown
in Figure 7, we cache two-layer dependencies for a pro-
cess, the dependencies detected in the current unit (box
2 ) and those in the whole process (box 3 ). The former
is to remove in-unit redundancy, and the latter is to reduce
cross-unit redundancy.
• In-unit Redundancy. Read/write syscalls use buffers
with limited sizes to transfer data. To load/edit a file larger
than the buffers, an application has to issue a sequence of
read/write syscalls. For example, Vim reads a file piece
by piece and adds the pieces to the in-memory content
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tree. This produces a sequence of events in the audit log
(without reduction) containing tens to hundreds of read
syscalls on the target file in the same execution unit. These
syscalls denote the same dependency and are redundant.
Such redundancy is detected by the unit cache in KCAL.
KCAL only keeps one instance of them. At the first read
event, the object is added to the ReadSet. If it is already
in the ReadSet, the event is simply discarded. When a
write event happens, it is considered dependent on all
the objects in the ReadSet as the information from these
objects can affect the content it writes. KCAL checks
if these dependencies are present in the unit-dependency
cache. If not, it adds the write event and the read events
of objects in the unit cache to the event caches of the
corresponding objects. Otherwise, the event is discarded.
• Cross-unit Redundancy. Processes usually perform re-
peated actions on the same system objects. Some of them
are because of repeated user actions. For example, editors
usually work on a few files for a long time with repeated
editing operations. And some of them are due to built-in
application functionalities. For example, Firefox writes to
the recovery.js file every 15 seconds (through a unit)
to support purpose. As a result, the same dependency
can appear in the log file across different units repeatedly,
leading to cross-unit redundancy.

An example in Figure 9 on the left-hand-side, (A)
shows the simplified log entries. There are three
units. Unit 0 (U0) reads File-A, File-B, and writes
File-S; U1 reads File-B and writes File-T; and U3 reads
File-A and writes File-S. The blue entries are the
UnitEnter/UnitExit events. The yellow entries are the
in-unit redundant events. In particular, U0 keeps loading
contents from File-A. Events U0TS03 to U0TS05 all rep-
resent the same action, and are redundant. The red entries
are the cross-unit redundant events. In this case, the causal
dependency between File-A and File-S in U3 is already
detected in U0, and hence is redundant. The graphs in
(B) show the generated backward analysis graphs starting
from File-S and File-T (in gray), and the graphs in (C) rep-
resent the generated forward analysis graphs starting from
File-A and File-B (in gray). Events U3TS01 and U3TS02
do not induce any new dependencies and removing them
does not affect the reachable objects and subjects in both
forward and backward analyses. Without the execution
partitioning, File-T would depend on File-A because the
process loads File-A before writing to File-T. As shown
later in §4, our reduced logs generate the same casual
graphs as using the original BEEP logs (with redundancy
reduction).
Distributed-event Cache. In KCAL, dependencies are
cached in processes and syscall events are cached in ob-
jects. KCAL features a distributed-event cache mecha-
nism in which each object caches the syscall events that
operate on the object. They are not transferred to the user

U0TS00: UnitEnter
U0TS01: Read A
U0TS02: Read B
U0TS03: Read A
U0TS04: Read A
U0TS05: Read A
U0TS06: Write S
U0TS07: UnitExit

U

A

S

(A) Log
(B) Backward Analysis 

from S/T

U1TS00: UnitEnter
U1TS01: Read B
U1TS02: Write T
U1TS03: UnitExit
U3TS00: UnitEnter
U3TS01: Read A
U3TS02: Write S
U3TS03: UnitExit

B

U

T

B

U

A

S

U

T

(C) Forward Analysis 
from A/B

B

S

Figure 9: In-unit and cross-unit redundancy removal example
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Figure 10: Cross-unit memory causality example

space for storage until the object is no longer needed or
the process terminates. This is to handle the substantial
redundancy caused by temporary files (defined in §3.2).

We detect temporary files using the automaton shown in
box 10 in Figure 7. Each File data structure maintains
its own state. At first, when a file is opened by the owner
process, KCAL checks the creator of the file. If the file
exists and was created by another process, it is marked as
a non-temporary file. Otherwise, it can potentially be a
temporary file (i.e., the UNCERTAIN state). Normal file
editing operations by the owner such as read/write/close
do not change the state of the file. Any operation from
a different process indicates that information propagates
beyond the current process through the file, and hence
the file must not be temporary. If the file is deleted by its
owner without being read/edited by other processes, it is
temporary. If the file is not deleted by its owner process
(and hence is persistent), it is not temporary.

As KCAL cannot be certain if a file is temporary or
not until the file is deleted, edited by other processes, or
the owner process terminates, it buffers all the events for
a file it created (after redundancy reduction) in the cache
associated with the file until either condition is satisfied.
Then, KCAL discards all the events in the cache or emits
them to the user space. The emission order of events may
be different from the temporal order due to the distributed
caching. It is not problematic, however, as all events have
global time stamps.

Cross-unit Memory Causality. As mentioned earlier,
there may be dependencies across units caused by vari-
ables or data structures. For example, in Vim’s built-in
clipboard, a piece of memory (known as registers) is used
to support copy/cut-and-paste operation across units.

Existing execution partitioning schemes generate spe-
cial syscalls MemWrite/MemRead to denote the write/read
operations on cross-unit, dependency-inducing variables,
respectively. The nature of these memory operations is
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very similar to file reads and writes. Hence, KCAL mod-
els these events in a similar way. Particularly, each unique
memory location is considered as a separate object. The
difference is we do not remove events that cause the same
memory dependencies across units. Instead, KCAL treats
the memory object as a new object each time it is rede-
fined. This is because each memory write to a location
is considered as a complete redefinition of the memory
object, which is different from a file write. For such an
object, each read only depends on the latest write.

For example, in the syscall sequence in Figure 10, unit
U1 receives a request through the memory queue from
U0 at location M and then forwards another request to U2
through a different memory location N. KCAL detects a
dependency from N to M. Later, the same procedure hap-
pens again and hence the same dependence is detected
inside unit U8. The same memory locations are observed
due to memory reuse, and we cannot unify the multiple in-
stances of the memory locations and throw away the mem-
ory events in U8. Otherwise, bogus dependencies would
be introduced. In the shown example, D only depends on
C. If the dependency introduced by U8 is removed and
the two M nodes are unified, D would depend on {C,A}.
In KCAL, the variables M, N associated with U8 and the
ones associated with U1 are treated as a new set of system
objects even though they are using the same memory ad-
dresses. KCAL leverages existing execution partitioning
techniques and existing execution partitioning techniques
only instrument a very small number of memory opera-
tions through sophisticated analysis [21, 23]; and hence,
the number of memory events generated at run time is
small.

3.4 Implementation and Discussion

KCAL is implemented on the long-supported Linux ker-
nel 3.19 and the Linux Audit framework 2.3. By default,
each system object cache size is 32 events. The number
of dependencies a process can cache is capped at 256,
and the number of dependencies a unit can cache is 8.
These values are configurable in KCAL. If the cache is
full, and we use the Least Recently Used (LRU) cache
replacement policy to evict entries. It is important to note
the consequence of cache eviction is merely that some
redundancy cannot be removed. It does not affect infor-
mation completeness. The study of the effect of various
cache sizes can be found in §4.

KCAL is a provenance tracking system built on top
of the Linux Audit framework. The audit log message
format is still the same. This makes it compatible with
existing audit log processing tools such as aureport and
ausearch. On the other side, the generated messages
are for provenance tracking only, and the number of such
messages is significantly reduced. This will affect audit

Figure 11: The space overhead of KCAL in a month

tools that calculate the sysall frequencies or concretely an-
alyze individual syscalls such as aureport. Also, KCAL
modifies the Linux kernel source code including many
data structures. As a result, porting it to other kernel
versions requires extra human effort. We also port our
prototype from Linux kernel 3.19 to kernel 3.2, and most
of the patches can be directly applied. The new modifi-
cation is less than 10 lines. We expect that the porting
efforts will be limited as long as the kernel data structure
change is not significant. KCAL also depends on exist-
ing execution partitioning techniques such as BEEP [21]
or MPI [23]. Without the execution partitioning support,
cross-unit redundancies cannot be removed, which affects
the reduction effectiveness (see §4).

4 Evaluation

We evaluate our prototype to answer the following re-
search questions (RQ):
RQ1: How efficient is KCAL? (§4.1)
RQ2: Can KCAL remove the redundancy while keeping
the accuracy of the forensic analysis? (§4.2, §4.3)
RQ3: What are the rationales of our design choices, and
what are the benefits? (§4.4)

4.1 KCAL Performance

Space Overhead. The space overhead is shown in Fig-
ure 11. The experimental environments and workloads
are the same with the ones in §2. The orange shows the
growth of log size for the machine that has the maximum
size. In our case, the log file is less than 120GB after
30 days, while the old log size was almost 1TB without
our technique (Figure 3). The gray line represents the
average log size for the server machines, and the yellow
line shows the average log size for the client machines.
Compared with the original audit log (Figure 4), the log
size is less than 10%. The workloads also include many
applications that do not have the execution partitioning in-
strumentation, and thus do not benefit from log reduction.
The blue lines show the log size of the machine that has
the minimal log size. The log now is only about 6GB for
30 days. This shows that KCAL generates much smaller
log files than the Linux Audit system.
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Figure 12: The KCAL runtime overhead analysis

Runtime Overhead. We used the same configuration
and the same set of applications with the experiments
used in §2 to measure the runtime overhead. Figure 12
shows the results. The bottom bars show the runtime over-
head caused by the instrumentation, and the upper bars
show the overhead caused by KCAL. For most client
programs, the overhead caused by KCAL is less than 1%.
The overhead for server programs is about 5% to 10%.
This is because a server program needs to serve many
clients at the same time, causing a large number of depen-
dencies. Firefox has the most significant overhead, about
15%. This is because Firefox dynamically creates and ter-
minates hundreds of threads, and uses many sockets and
files for DNS queries, browsing history, cache, page pref-
erences, and so on. It generates more events within the
same duration compared with other applications, leading
to higher overhead.

4.2 KCAL Log Reduction Effects

Table 1 summarizes the effects of using our log-reduction
algorithm. The first two columns show the experimen-
tal environment. The third column shows the number of
raw audit logs. We also present the number of log events
and the corresponding percentage of in-unit redundancy
(columns 4-5), cross-unit redundancy (columns 6-7), and
temporary files (columns 8-9). The last two columns show
the number of log entries and the percentages after reduc-
tion. We first ran the system on five machines for one
month, collected the numbers (rows 3-7), and calculated
the average (row 8, in gray). For different settings and
runs, the reduction effects are different. Some of them
have substantial in-unit redundancy (machines 1,2) while
others have more cross-unit dependency (machines 4,5).
Overall, KCAL keeps only 8% to 14% of the original
logs, and on average the number is 11%. We also collected
the reduction effects for some representative applications.
The results are shown in rows 9-20 in Table 1. For differ-
ent programs, the effects of the algorithm are significantly
different. For example, most server programs do not have
temporary files. On the contrary, browsers like Firefox
use temporary files a lot. Server programs, especially FTP
servers, need to read large files, and generate a huge num-
ber of in-unit redundant events, while this is not true for
most client programs. For many programs like Vim, the

dependency relationships are simple because they work
on a limited number of system objects, and we can reduce
the events to a very small number. For other programs
like Bash, most of their events are related to process ma-
nipulations, which cannot be reduced. Thus, most of the
logged events are kept. These process-related events will
not be cached as they cannot be reduced, and they will not
flood the cache. KCAL directly generates such reduced
logs from the kernel, leading to substantial savings in
raw log transfer from the kernel to the user space and in
log processing compared to existing user-space reduction
techniques [22, 24, 41].

4.3 Support for forensic analysis
We also performed a few experiments to verify the cor-
rectness of our log-reduction algorithm and the benefit
for forensic analysis. We reproduced the attack cases
used by previous research works [21, 23] and compared
the generated graphs and the analysis time. In another
set of experiments, we randomly selected 100 objects,
and performed backward analysis to identify all of its
dependencies. The results are summarized in Table 2. We
show the number of nodes and edges in the graphs, the
size of the log file, and the analysis time spent using the
Linux Audit log, BEEP log, and KCAL log measured
by log size. Note that BEEP logs are usually 10-30%
larger than the Linux Audit logs due to the additional
unit-related events. The last row shows the average num-
ber of nodes and edges, the average size of the log files,
and the average analysis time for the randomly selected
objects. We manually inspected and compared the graphs.
The results show that all generated graphs contain the
needed and complete information. The graphs generated
by the Linux Audit framework usually contain redundant
nodes/edges (representing wrong dependencies), whereas
graphs generated by the other two methods generated
the same graphs. This shows our reduction algorithm is
lossless. Because of the complex dependency relation-
ships, it takes far longer time to perform the analysis on
the Audit log. BEEP benefits from simpler dependency
relationships, but it spends more time inspecting the large
number of log entries and checking and updating the de-
pendency sets for each event including many redundant
operations. The KCAL log provides simplified and ac-
curate provenance information, enabling faster forensic
analysis.

4.4 Understanding KCAL
Cache Behavior. Table 3 shows summarized data for
cache behaviors. It shows the name of applications
(column-1), the average/maximum number of dependen-
cies in unit cache (column-2), the average/maximum num-
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Table 1: KCAL log reduction effects

In-Unit Redundancy Cross-Unit Redundancy Temporary Files KCAL
Scenario Audit (#logs) #logs (%) #logs (%) #logs (%) #logs (%)

Machine 1 62,384,284 42,887,843 69% 4,594,385 7% 9,827,394 16% 5,074,662 8%
Machine 2 137,121,400 97,384,284 71% 13,428,384 10% 12,398,283 9% 13,910,449 10%
Machine 3 152,385,284 85,727,385 56% 15,228,384 10% 32,299,384 21% 19,130,131 13%
Machine 4 87,837,384 18,395,394 21% 40,293,293 46% 20,923,283 24% 8,225,414 9%
Machine 5 93,284,284 27,485,743 29% 40,293,842 43% 12,238,482 13% 13,266,217 14%

Monthly
Execution

Average 106,602,527 54,376,130 51% 22,767,658 21% 17,537,365 16% 11,921,375 11%

Firefox 6,284,385 1,128,384 18% 3,238,478 52% 1,248,284 20% 669,239 11%
Apache 8,942,845 4,829,423 54% 2,684,284 30% 0 0% 1,429,138 16%

Sendmail 63,284 32,493 51% 12,284 19% 16,293 26% 2,214 3%
Vim 123,485 36,827 30% 52,284 42% 33,235 27% 1,139 1%
MC 83,495 16,283 20% 21,384 26% 2,942 4% 42,886 51%
Bash 20,495 2,342 11% 0 0% 0 0% 18,153 89%
Pine 10,294 1,023 10% 8,348 81% 494 5% 429 4%

ProFTPd 3,485,924 3,128,385 90% 100,242 3% 0 0% 257,297 7%
Yafc 924,395 801,384 87% 39,274 4% 0 0% 83,737 9%

Transmission 88,384 5,394 6% 80,283 91% 1,482 2% 1,225 1%
W3M 2,485,395 423,242 17% 1,024,385 41% 743,284 30% 294,484 12%

Apps

MiniHTTP 98,285 78,283 80% 12,384 13% 0 0% 7,618 8%

Table 2: Forensic analysis cases

Cases Audit BEEP KCAL

#Node #Edge Size(MB) Time(s) #Node #Edge Size(MB) Time(s) #Node #Edge Size(MB) Time(s)

Phishing 317 354 1905 2234 18 23 2096 142 18 23 168 16
Intrusion 860 2135 1626 30864 5 4 1888 162 5 4 226 18
InfoTheft 51 51 1148 823 7 6 1286 92 7 6 154 10
Random 412 683 2345 3349 14 32 1532 122 14 32 169 14

Table 3: KCAL cache summary (avg/max)

Application #Deps/Unit #Deps/Pr #Events/Obj

Firefox 0.8/4 123/256 7.4/18
Apache 1.8/4 52/69 8.6/12

Sendmail 0.6/3 7/12 8.2/16
Vim 0.2/2 5/13 6.9/14
MC 0.2/2 6/11 7.2/11
Bash 1/1 4/7 3/6
Pine 0.3/3 8/16 9.3/16

ProFTPd 0.9/2 21/63 7.8/18
Yafc 0.8/2 42/66 8.2/14

Transmission 1.2/5 64/172 12.4/18
W3M 0.7/4 134/199 8.7/15

MiniHTTP 1.4/2 46/88 9.2/14

ber of dependencies in process cache (column-3), and the
average/maximum number of events cached in a system
object (column-4). From the table, it is clear that the num-
ber of dependencies in the unit cache is quite small thanks
to execution partitioning. The number of dependencies
in the process caches varies for different applications. In
most cases, the number of dependencies is less than 200.
Firefox is the only one that reaches the size limit (256)
and triggers the cache replacement. For the cache in each
object, the average number is less than 10 events for most
programs. Even for the maximum values, the average
number is still less than 32 (the cache size).

To understand the behaviors of the caches, we ran
Apache and Firefox, and counted the number of depen-
dencies they cached over time. We set the process cache
bound to a large number to observe the cache pressure.

Figure 13 shows the results. For Apache, we used the
ab benchmark [1] with 10 concurrent clients to generate
the workload. For Apache, the number of dependencies
varies in a small range and remains < 70. This is because
each request has just a few read/write operations on the
requested file and the socket (with the client), and cached
dependencies are discarded when the corresponding files
and sockets are closed. For Firefox, we performed two dif-
ferent experiments. The first one was a normal browsing.
The blue line shows the result of this experiment. Fire-
fox uses many system objects when it loads pages. After
loading the page, many dependencies can be discarded as
sockets are closed and temporary files are deleted. In our
test scenario, the number of dependencies (in the process
dependency cache) is around 150. The other experiment
used a script to open a new web page in a new tab every
second. The gray line shows the results. At the begin-
ning, each new page caused a peak, and the script opened
pages more frequently than the normal user. The number
of dependencies is hence larger. After 10 minutes with
500+ pages opened, Firefox reached its capacity. The
number of dependencies in the cache becomes flat. Even
in this extreme situation, the number of dependencies is
still reasonable due to the elimination of redundant and
bogus dependencies.

Kernel Memory Consumption. Figure 14 shows the
maximum kernel memory footprint caused by KCAL
for each application. Since our cache sizes are fixed,
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Figure 13: Number of dependencies in process dep. cache

Figure 14: Max memory usage for individual applications

the memory overhead for each process including all its
opened system resources (e.g., files/sockets) is fixed at
4224 bytes. In comparison, the original task struct
itself is 3520 bytes and it has a lot of pointers for opened
system resources. One of its pointer fields mm pointing
to a mm struct is 952 bytes. Depending on the total
number of system objects accessed to a process, the total
memory footprint may vary a lot. However, since the
number of events cached in an object tends to be small
(Table 3), the kernel memory consumption is reasonably
small, which ensures that KCAL does not perturb normal
kernel functionalities.

Cache Size vs. Reduction Rate. The dependency cache
sizes affect the reduction rate because evicting caches
can result in keeping some redundant events. Previous
experimental results indicate a small cache size is suffi-
cient for many programs. In this experiment, we chose
Firefox, whose dependency caches, especially the process
cache, vary a lot over time, and we tested the effects of
using different cache sizes. The results are presented in
Figure 15. Even when the cache size is small, KCAL
can still reduce many redundant events such as in-unit
redundancies. With larger cache sizes, KCAL is able to
detect and remove more cross-unit dependencies. If the
cache is large enough (e.g., 1200 entries), all redundant
dependencies are detected and the reduction rate is flat.

Comparison with State-of-the-Art ProTracer Pro-
Tracer can achieve a high reduction rate with a low run-
time overhead (7% according to [24]). However, since
ProTracer demands first generating the raw log before
reduction, it requires parallel user-space processes to load
and reduce the raw log. As a result, although its runtime
overhead is low, the CPU consumption is substantial, be-
cause tainting on the large raw log files. Here we use the
ab benchmark as an example to compare the CPU con-
sumption of the two systems. Figure 16 shows the results.

Figure 15: KCAL reduction results with different cache sizes

Figure 16: CPU consumption of ProTracer and KCAL

As seen in the graph, ProTracer uses the CPU consistently,
and consumes almost all the cycles. In contrast, KCAL
uses the CPU periodically. The average consumption is
4%. Even for the peaks, the CPU usage is about 40%,
much less than ProTracer. This is because KCAL avoids
generating the huge raw log in the first place and hence
examines far fewer events for the same workload. In
fact, ProTracer has to be pinned to a CPU to achieve the
low runtime overhead. In contrast, KCAL’s user-space
processes just run as normal processes.

5 Conclusion

We analyzed the Linux Audit system and found the root
cause of its high runtime and space overheads is its re-
dundancy events. To solve this problem, we propose
KCAL, a kernel-supported, cost-effective audit logging
system for causality tracking. It caches dependencies and
system events in the kernel and performs online log redun-
dancy reduction. KCAL removes the overhead caused
by transferring, processing, writing, and storing the re-
dundant events. Our evaluation shows that KCAL can
significantly reduce the log sizes and speed up the system.
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Abstract
The Meltdown vulnerability, which exploits the inher-

ent out-of-order execution in common processors like
x86, ARM and PowerPC, has shown to break the fun-
damental isolation boundary between user and kernel
space. This has stimulated a non-trivial patch to mod-
ern OS to separate page tables for user space and kernel
space, namely, KPTI (kernel page table isolation). While
this patch stops kernel memory leakages from rouge user
processes, it mandates users to patch their kernels (usu-
ally requiring a reboot), and is currently only available
on the latest versions of OS kernels. Further, it also in-
troduces non-trivial performance overhead due to page
table switching during user/kernel crossings.

In this paper, we present EPTI, an alternative approach
to defending against the Meltdown attack for unpatched
VMs (virtual machines) in cloud, yet with better per-
formance than KPTI. Specifically, instead of using two
guest page tables, we use two EPTs (extended page ta-
bles) to isolate user space and kernel space, and unmap
all the kernel space in user’s EPT to achieve the same
effort of KPTI. The switching of EPTs is done through
a hardware-support feature called EPT switching within
guest VMs without hypervisor involvement. Meanwhile,
EPT switching does not flush TLB since each EPT has
its own TLB, which further reduces the overhead. We
have implemented our design and evaluated it on Intel
Kaby Lake CPU with different versions of Linux kernel.
The results show that EPTI only introduces up to 13%
overhead, which is around 45% less than KPTI.

1 Introduction

The recently discovered Meltdown [16] and Spectre [14]
vulnerabilities allow unauthorized processes to read data
of privileged kernel or other processes, which brings se-
vere security threat especially to cloud platforms. Cur-
rently, Intel has released micro-code patches to fix the

Spectre vulnerability. However, in order to fix the Melt-
down vulnerability, which is much more serious and eas-
ier to exploit, users are required to apply a kernel patch
named KPTI (kernel page table isolation) [30] that uses
two page tables to host kernel and user programs to iso-
late kernel address space from any user process. While
this patch can effectively defend the Meltdown attacks,
it brings three issues, which leaves thousands of millions
of unpatched machines in danger.

First, the patch has to be applied manually by every
user. In cloud environment, although the cloud adminis-
trators can patch the host OS, they cannot directly patch
guest OS running in VMs (virtual machines) since they
are not allowed to do so. For example, Amazon “recom-
mend that customers patch their instance operating sys-
tems to address process-to-process or process-to-kernel
concerns of this issue” [12]. However, many cloud users
are not capable of doing such system maintenance.

Second, the patch may depend on specific versions of
kernel, especially for Linux. Till now, Linux community
just released version 4.15 that contains the patch. The
patch may not work on some early versions of kernel like
4.4 [28]. It is expected to take a long time before the
patch can be applied to all the versions of Linux kernel.

Third, the patch may incur non-trivial performance
slowdown. The KPTI patch makes the kernel and
user process use different page tables, which causes
TLB-flush during the switching between user-mode and
kernel-mode and thus increases the rate of TLB miss.
Prior evaluation results show that for some system-call
intensive workload, the performance penalty may be
high as 30% in VMs [22]; our own experiments con-
firmed such performance slowdown (Section 6).

In this paper, we present an alternative approach to
defending against Meltdown attack for VMs in cloud.
Our approach, namely EPTI, can be applied to unpatched
guest VMs without users’ awareness and can achieve bet-
ter performance than KPTI at the same time. First, in-
stead of using two gPTs (guest page tables) as in KPTI,
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EPTI uses two EPTs (extended page tables), namely
EPTk and EPTu, to run the kernel and user processes,
correspondingly. The guest kernel and user still share
one gPT, but in user mode, the gPT entries for mapping
kernel address space are set to zero in EPTu, which for-
bids any translation of address within kernel space to mit-
igate the Meltdown attack. Second, we leverage one of
Intel’s hardware features for virtualization, named EPT
switching, to switch the two EPTs within the VM itself
without causing any VMExit. We use binary instrumen-
tation to insert two trampolines at the entrance and exit
of guest kernel to do the EPT switching, which does not
require kernel’s source code and has little (if any) de-
pendence on kernel versions. Third, through a detailed
micro-architectural analysis, we find that EPT switching
can be more efficient than gPT switching. Since each
EPT has its own TLB, when switching the EPTs there
will be no TLB flushing by hardware, which is the main
reason of performance degradation of KPTI. We also
adopt several optimizations to minimize the number of
VMExits to further reduce the overhead. Fourth, EPTI
can be seamlessly deployed in the cloud by combining
with live VM migration [5]: a host can migrate away all
the guest VMs, patch the host hypervisor with EPTI, and
then migrate all the VMs back.

We have implemented EPTI on KVM and use unmod-
ified Ubuntu distribution as guest VM for evaluation. We
conduct a detailed security analysis as well as evalua-
tion to show that our EPTI can achieve the same security
guarantee as KPTI. We also evaluate real-world bench-
marks to measure the performance overhead. The results
show that the average performance overhead on server
applications of EPTI is about 6%, which is 45% lower
than KPTI whose average overhead is 11%.

To summarize, this paper makes the following contri-
butions:

• An EPT-level isolation of kernel’s and user’s
address spaces to defend against Meltdown attack
for unpatched guest VMs.

• Several optimizations to achieve better performance
than the current solution KPTI.

• A prototype of our design on real hardware for
performance and security evaluation.

2 Motivation and Background

2.1 Meltdown Attack and KPTI
The Meltdown vulnerability was published in January
2018, known to affect Intel’s x86 CPU, ARM Cortex-
A75 [16] and some versions of PowerPC processor [11].
Through this attack, a malicious user application can
steal contents of kernel memory in two steps. Step-1:

Kernel 

space

User 

space

User-mode

Kernel-mode

Kernel-mode User-mode Kernel-mode User-mode

Origin KPTI EPTI

Mapped in both gPT and EPT

Not mapped  in gPT 

Mapped in gPT, not mapped in EPT

Figure 1: Page table isolation. For a VM, KPTI uses two
gPTs and one EPT, while EPTI uses one gPT (since VM is not
patched) and two EPTs.

to access kernel address A and to leverage its data as an
index to access the cache; step-2: to get the data through
cache covert channel. The key problem here is that the
Step-1 is executed reordered and will be canceled even-
tually, but the cache layout is affected without rollback.
Since the kernel will typically map all the physical mem-
ory within its memory space, the malicious application
can potentially get all of the memory contents.

KPTI (kernel page table isolation) [30] is based on
KAISER (kernel address isolation to have side-channels
efficiently removed) [19], which is proposed to defend
against the Meltdown attack. This patch separates user
space and kernel space page tables entirely, as shown in
Figure 1. The one used by kernel is the same as before,
while the one used by application contains a copy of user
space and a small set of kernel space mapping with only
trampoline code to enter the kernel. Since the data of ker-
nel are no longer mapped in the user space, a malicious
application cannot directly de-reference kernel’s data ad-
dress, and thus cannot issue Meltdown attack. KPTI has
been merged to the mainstream Linux kernel 4.15, which
was released on 28 Jan, 2018. However, the patch still
has problems on previous Linux kernel versions. For
example, it is reported that some Ubuntu user “just got
the Meltdown update to kernel linux-image-4.4.0-108-
generic but this does not boot at all” [28]. Considering
the patch needs to be applied manually by system ad-
ministrators, it may take a long time before most of the
machines getting the patch deployed.

2.2 Overhead of KPTI

KPTI introduces performance overhead since both
entering-kernel and exiting-kernel require additional
page table switching. The switching is done by loading
the CR3 register, which takes around 300 cycles. Mean-
while, since TLB (translation lookaside buffer) will be
flushed during CR3 changing, the performance will fur-
ther be affected due to higher TLB miss rate. There
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Figure 2: Process of translating GVA to HPA in an x86-64 guest
VM. The gCR3 of CPU points to gPT and hCR3 points to EPT.

are many reports on evaluations of KPTI’s overhead,
which show that KPTI could lead to significant perfor-
mance cost (up to 30%), particularly in syscall-heavy and
interrupt-heavy workloads [30, 25, 18].

On processors that support PCID (process-context
identifiers) feature, a TLB flush can be avoided and the
performance overhead of KPTI can be reduced. PCID
is a 12-bit tag of page table and is saved as a part of
a TLB entry. For two page tables with different tags,
their TLB entries can co-exist in the CPU and no TLB
flush is needed when switching between the two page
tables. Existing report shows that after enabling PCID,
the overhead of KPTI on PostgreSQL’s read-only test
on Intel Skylake processor reduces from 17-23% to
7-17% [18]. However, Linux does not support PCID
until version 4.14 released on 12 Nov 2017.

2.3 gPT, EPT and TLB
In native environment, PT (page table) is used for trans-
lating virtual address to physical address. In virtualiza-
tion environment, the guest VM (virtual machine), run-
ning in non-root mode, only controls its GVA (guest vir-
tual address) to GPA (guest physical address) mapping
by gPT (guest page table). The hypervisor, running in
root mode, controls each VM’s GPA to HPA (host phys-
ical address) mapping through a hPT (host page table),
which is called EPT (extended page table) on Intel plat-
form 1.

Figure 2 shows the procedure of GVA-to-HPA trans-
lation on an x86-64 machine with 4 level gPT and EPT.
The value of guest CR3 and addresses inside gPT are

1The hPT of AMD is called NPT (nested page table). Since the
Meltdown attack only affects Intel’s processor, we use “EPT” instead
of “hPT” in the rest of the paper.

GPAs, while the value of EPTP and address inside EPT
are HPAs. When CPU walks the gPT, it needs to translate
all the GPA of needed gPT pages to HPA through EPT.

In order to minimize memory footprint during page
walk, the processor has two types of TLB in virtualized
environment: EPT-TLB and combined-TLB. The EPT-
TLB is used for accelerating translation from GPA to
HPA, while the combined-TLB stores entries of trans-
lation from GVA to HPA.

2.4 EPTP Switching with VMFUNC

VMFUNC is an Intel hardware virtualization extension,
which provides VM functions for guest VMs, running in
non-root mode, to directly invoke without VMExit. Cur-
rently, there is only one VM function provided by VM-
FUNC, named “EPTP switching”, which allows software
(either in the kernel mode or user mode) in guest VM to
load a new EPTP (EPT pointer). Guest can only switch
to the EPEP from a list of valid EPTP values configured
by the hypervisor. The EPTP switching is supported on
all Intel CPUs starting from Haswell architecture.

Performance of EPTP switching: We compare the
latency of loading CR3 and EPTP switching. Writing
the same value to the CR3 in guest VM costs around 300
cycles, with PCID enabled. While the “EPTP switching”
takes about 160 cycles (two different EPTP values, but
have the same mappings).

TLB behavior of EPTP switching: We further test
the TLB behavior of EPTP switching and find how CPU
constructs address mapping in TLB for different EPTs.
The operations performed with one EPT will not affect
other EPTs, Table 1 shows test results. In the table, “In-
valid both EPTs’ TLBs then fill EPT-0’s TLB” means
we first invoke invlpg instruction (which is used to flush
TLB) in both EPT-0 and EPT-1, and then access the tar-
get memory in EPT-0. After that, we access the target
memory again in both EPT-0 and EPT-1, and test the ac-
cess latency. The result means that the EPT-0’s is filled
while the EPT-1’s is not. We also test whether invoking
flush TLB operations (write CR3 and invlpg) in one EPT
will influence the other’s TLB or not. We find that both
of them flush other EPT’s TLB.

3 System Overview

EPTI has three goals:

• Goal-1: To achieve the same security level as KPTI.

• Goal-2: To support protection on unpatched VMs
seamlessly.

• Goal-3: To get better performance than KPTI.
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Table 1: TLB behaviors of different EPTs during VMFUNC.

Action Access again
in EPT-0

Access again
in EPT-1

Conclusion

Invalid both EPTs’ TLBs then fill EPT-0’s TLB 3-5 cycles 120+ cycles Each EPT has its own mapping in TLB.
Fill both EPTs’ TLBs then write CR3 in EPT-0 120+ cycles 120+ cycles Writing CR3 will flush TLB of all EPTs.
Fill both EPTs’ TLBs then invlpg in EPT-0 120+ cycles 120+ cycles invlpg will flush TLB of all EPTs.

We first construct two EPTs for each guest VM: EPTk
for kernel and EPTu for user. The mapping of EPTk is the
same as original EPT (but with different permissions,
which will be introduced later), so that the kernel will
run just as before. When user applications are running,
we need to ensure that they cannot access (even specula-
tively) any data in the kernel address space.

One intuitive way is to remove all the mappings of
HPA of pages used by guest kernel in EPTu, so that all
kernel pages are not mapped when a user process is run-
ning. However, this solution does not work since typi-
cally Linux kernel will map the entire GPA to its GVA
space, which is known as direct mapping, as shown in
Figure 3. It means that we have to remove all of the GPA
mappings from EPT, which will also disable the execu-
tion of user processes.

Instead, we just remap all the gPT’s pages that map
kernel space in EPTu to a zeroed page, as shown in Fig-
ure 3. Thus, once a user process tries to access kernel ad-
dress using its GVA, the GVA will never be translated to
GPA since the CPU cannot find the corresponding map-
ping in gPT (refer to the left part of Figure 2). The secu-
rity guarantee is the same as KPTI (Goal-1).

Next, we need to find a way to switch the EPTs at ap-
propriate points. When a user process traps to kernel, the
processor should immediately switch to EPTk by VM-
FUNC. It also switches to EPTu before the kernel returns
to user process. In Linux kernel, there are limited entry
points and exit points. The entry points can be located
through IDT (interrupt descriptor table) and some spe-
cific MSRs (model-specific registers) 2. The exit points
must contain specific instructions (e.g., sysretq). Thus,
we use binary instrumentation to re-write the kernel code
on-the-fly to insert two pieces of trampoline code at the
entry and exit points, which are mainly used to do the
EPT switching. Leverage this method, EPTI can be used
together with live migration to seamlessly protect a guest
without rebooting it. More details are described in Sec-
tion 4.3 (Goal-2).

In order to unmap the kernel space in EPTu, we need
to track which gPT pages are used for mapping kernel
space, and zero them in EPTu. EPTI tracks the gL3
pages, which are used to translate kernel GVA, and zero
them (details in Section 4). We further present our opti-
mizations in Section 5 to reduce the number of VMExits

2E.g., IA32 LSTAR controls syscall entry.
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Figure 3: The difference of mapping of EPTu and EPTk.

and get better performance (Goal-3).
Challenges: There are still many challenges on secu-

rity and performance in the above design. For example,
since it is allowed for a user process to invoke VMFUNC,
a malicious process may try to switch to EPTk before is-
suing Meltdown attack. We will describe our design with
more details and present solutions to these challenges in
the following text.

4 Design of EPT Isolation

In this section, we introduce the basic design of EPTI.
Firstly, we need to construct the EPTu, which removes
all the kernel address mappings. Then, we introduce the
basic method of how to track kernel gPT pages and add
trampoline code for EPT switching. Finally we construct
the EPTk so that a malicious user cannot switch to it.

4.1 Zeroing gPT for Kernel Space in EPTu

We remove all the GVA-to-GPA mappings of kernel ad-
dress space in user mode by zeroing the gPT pages used
for address translation in EPTu. As shown in Figure 3,
to zero a gPT page, we remap it to a new zeroed physi-
cal page in EPTu. There are 4 page levels (from gL4 to
gL1) in a 64-bit Linux kernel which uses 48-bit virtual
address. Since each process has different gL4 pages , to
minimize the modification to EPTu, we only zero the gL3
pages used for kernel address translation (gPT structure
is shown in Figure 5).
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After zeroing the gL3 pages for kernel space in EPTu,
accessing kernel memory from user mode will trigger a
guest page fault since the target GVA is not mapped (al-
though Meltdown attack can bypass permission check, it
cannot access non-mapped pages). Since the kernel runs
in EPTk, it can never fill the zeroed gL3 page in EPTu
and the attacker’s user process can never access the ker-
nel memory (even speculatively).

4.2 Tracking gPT Pages in EPTk

In order to zero all the gL3 pages that map kernel space in
EPTu, EPTI first needs to track all the gL3 pages for the
kernel. Specifically, by setting the CR3 LOAD EXITING
bit in VMCS (virtual machine control structure), when a
guest kernel changes CR3 it will trap to the hypervisor,
which will then walk through the gPT to get a list of all
gL3 pages for kernel space mapping. Meanwhile, the
guest kernel may allocate new gL3 pages and add them
to gL4. In order to track new kernel gL3 pages, all the
gL4 pages will be mapped as read-only in EPTk, so that
each time a guest kernel adds a new gL3 page to gL4, it
will trap to the hypervisor to update the monitored gL3
page list. We will present some optimization of tracking
in Section 5.

4.3 Trampoline for EPT Switching

Listing 1 EPT switching to EPTk

1: SWITCH_EPT_K:

2: SAVE_RAX_RCX

3: movq $0, %rax

4: movq $0, %rcx

5: vmfunc

6: RESTORE_RAX_RCX

The trampoline code contains instructions for EPT
switching. Listing 1 shows the assembly code for switch-
ing from EPTu to EPTk. The %rax and %rcx contain the
VMFUNC index and arguments passed to the VMFUNC.
Line 3 means to call the first VMFUNC function (EPTP
switching, index 0), and line 4 means to switch to EPT-0.
Both %rax and %rcx are caller-saved, so the values need
to be saved and restored in the trampoline. The process
of SWITCH EPT U is similar but in the other direction.

Since the trampoline code is used to switch between
EPTk and EPTu, it needs to be invoked in both EPTs. We
need to ensure that: (1) the trampoline is executable in
both EPTs and (2) there is a suitable place to store the
caller-saved registers.

Mapping trampoline as executable in both EPTs:
In EPTu, only one page with the trampoline code will
be mapped in the kernel space. To ensure that, EPTI
remaps all the gPT pages (except gL4), which are used to

translate the GVA for the trampoline, to new host phys-
ical pages. Then all the entries of these pages are set
to zero, except those that used for mapping the trampo-
line (as shown in Figure 4). Entries of the guest IDT and
the syscall entry MSR (IA32 LSTAR) will be changed to
point to the trampoline code. In EPTk, EPTI inserts the
trampoline code to the end of direct map region of guest
kernel, and re-writes the binary of kernel to change the
exit points to jmp instructions that transfer control to the
trampoline.

Saving caller-saved registers: Since VMFUNC will
not save any register by hardware (which makes it fast),
the trampoline code cannot use any register before saving
them. One challenge to save these caller-saved registers
is to support multi-core. For single CPU core, the value
of %rax and %rcx can be saved to a memory page with
a fixed address. However, for multi-core, one core may
overwrite the saved register values of another core since
they write to the same address.

Linux solves this problem by using gs-based per cpu
value. During system boot, it allocates a per cpu memory
region for each core. The base addresses of these regions
will be recorded through gs registers of different cores
after entering the kernel (through swapgs instruction) 3.
The following access of per cpu values is performed by
%gs:index. EPTI cannot leverage this method because:
(1) it needs to know some specific semantics of the ker-
nel and (2) it needs to map kernel’s per cpu region into
EPTu.

EPTI provides a per vCPU memory page to save and
restore the caller-saved registers. Specifically, a mem-
ory page is mapped into the kernel space in both EPTu
and EPTk. To enable concurrent accesses from multi-
ple cores, the page will be mapped to different physical
pages for different vCPUs, so that when one vCPU saves
%rax and %rcx, the values are written to its own page. In
our implementation, we modify gPT to map this page to
an unused GPA (e.g., the GPA out of the guest’s DRAM
range). In the EPTs for different vCPUs, we map this
GPA to different HPA. In both EPTk and EPTu of one
vCPU, it is mapped to the same HPA.

Seamless protection: Combined with live migration,
EPTI can seamlessly protect a guest VM without reboot-
ing it. The cloud provider can migrate away all the VMs,
update the host hypervisor to enable EPTI and migrate all
the VMs back. To resume a VM on EPTI, we need to: (1)
map the trampoline into the guest; (2) rewrite the entries
for interrupts and syscalls (stored in IDT and MSR), as
well as the exit points (contain specific instructions e.g.,
sysretq), to jump to the trampoline; (3) enable the trap-
ping of gPT and guest EPTP switching.

3The swapgs instruction exchanges the current gs value with the
value stored in MSR KERNELGSbase.
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Figure 4: Contents of kernel space of EPTu, which includes
trampoline code page, register saving page, and gPT for map-
ping these two pages.

4.4 Malicious EPT Switching
The above design relies on an assumption that only the
kernel can switch EPT. Unfortunately, the VMFUNC in-
struction can be invoked in either guest kernel mode
or guest user mode, which enables an attacker to mali-
ciously switch to EPTk by VMFUNC, issue Meltdown
attack and switch back to EPTu. To defend this attack,
EPTI needs to make EPTk useless for the user process.

By performing real Meltdown attacks, we find that al-
though Meltdown can read the memory without access
permission, it cannot fetch code without executable per-
mission even in reorder-execution. Base on this observa-
tion, we map all user memory as execute-never in EPTk.
Thus, once the user maliciously switches to EPTk, all its
code will be non-executable.

Specifically, EPTI only maps the guest physical mem-
ory (including kernel’s code and kernel modules) as ex-
ecutable in EPTk, and all other guest physical memory
is mapped as execute-never. The kernel code is loaded
during system booting and will not be changed during
execution, EPTI can detect all the corresponding GPAs
by searching gPT. The kernel modules are loaded/re-
moved dynamically during runtime, EPTI needs to mon-
itor all the guest physical pages used for them. This
is done by trapping all write operations on gPT pages
which translates GVA-to-GPA mapping of kernel mod-
ules. Since Linux kernel reserves a fixed GVA region
for kernel modules, trapping modifications to the corre-
sponding gPT pages will only influence the performance
of installing/removing kernel modules.

5 Optimizations

As mentioned in the previous section, EPTI needs to trap
both the load-CR3 operation and the write-gL4 in guest
VMs. These trapping methods have three performance
problems:

• Useless traps of load-CR3: EPTI traps guest VM’s

load-CR3 operations for getting all the gPTs. In
fact, EPTI only needs to trap the new gPTs, but
most of the load-CR3 operations just load old gPTs,
which causes a lot of useless VMExits.

• Access/Dirty bits update: To trap the modification
of a gPT page, EPTI marks it as read-only in EPTk.
However, for each memory access (including read,
write and fetch), the CPU will update the A/D bits
(access/dirty bits) in the gPT entries which are used
for translating the target GVA, even when the A/D
bits are already set by previous operations. Thus,
whenever the kernel accesses any of its data, it
will trigger an EPT violation, which causes a huge
number of VMExit.

• Additional traps of write-gPT: In Section 4.2,
EPTI traps all write-gL4 operations to track all
enabled gL3 for kernel space mapping. However,
each process has one gL4 page, which means EPTI
needs to trap thousands of gL4 pages. Since kernel
address mappings are the same for each process,
trapping all these gL4 can be optimized.

In this section, we give several optimizations to solve
all these performance problems.

5.1 Selectively Tracking Guest CR3
EPTI leverages a hardware feature to reduce the number
of VMExit caused by trapping loading old CR3. Intel
provides four CR3 TARGET VALUE fields in VMCS. A
load-CR3 in guest does not cause a VMExit if its source
operand matches one of these values. We write the CR3
value, which 1) causes more than threshold A VMExits
per second or 2) totally causes more than threshold B
VMExits, to the CR3 TARGET VALUE (A and B can be
configured by the VMM).

5.2 Setting gPT Access/Dirty-Bit
In order to eliminate VMExit when CPU setting A/D-bit,
we need to allow CPU to write gPT while disallowing
kernel to do so. We find that the access path of them are
different: the kernel writes gPT through its GVA (using
both gPT and EPT), while the CPU writes gPT through
its GPA (using EPT only). Thus, EPTI maps gPT pages
with write permission in the EPT to allow CPU updat-
ing the A/D bits. To trap kernel modifying a gPT page,
we redirect the GVA of this page to a new GPA which is
mapped as read-only in EPTk. This is done by (1) modi-
fying the gL1 entry that is used for GVA-to-GPA transla-
tion of the target gPT page and remapping the gPT page
to a new GPA; (2) mapping the new GPA to the original
HPA as read-only, which contains the target gPT page.
Thus, only the write access to the gPT page from kernel
will trigger a VMExit.
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Figure 5: gPT of Linux. The kernel gL3 entries are shared by
different gPTs.

5.3 Trapping gL3 Pages Instead of gL4
We adopt another optimization according to the follow-
ing observations:

• Most kernel virtual address regions are never
changed. Linux kernel reserve memory regions for
different usages 4, and it never changes the mapping
of most of these regions (e.g., direct map region is
never changed).

• Each gL3 pages can translate a large virtual space
(512GB). In a guest, it is almost impossible for the
kernel to allocate so much virtual memory, so the
number of kernel gL3 pages is rarely changed.

• In Linux kernel implementation, kernel only creates
a new gL3 page when all entries of existing gL3
pages are in use, or the continuous free entries are
not enough.

Based on the above observations, EPTI directly traps
the modification of gL3 pages for kernel by default.
When the last entry of a gL3 is used, which means the
kernel may allocate a new gL3 page later, EPTI starts to
trap the load-CR3 and write-gL4 until a new gL3 page is
allocated. With this optimization, EPTI almost does not
need to trap the operations of load-CR3 and write-gL4,
which will reduce most (if not all) of VMExits.

6 Evaluation

In the evaluation, we try to answer these seven questions:
4e.g., In Linux with 48-bit VA, range from 0xffff880000000000

to 0xffffc7ffffffffff is used for direct map, and range from
ffffc90000000000 to ffffe8ffffffffff is used for vmalloc and ioremap.

• Question-1: Can EPTI prevent Meltdown attacks?

• Question-2: How EPTI influences the performance of
kernel critical operations (e.g., syscalls)?

• Question-3: How EPTI influences the performance of
real server applications?

• Question-4: How EPTI influences the performance of
multiple guest VMs?

• Question-5: How many VMExits are reduced by different
optimizations of EPTI?

• Question-6: Can EPTI work on different kernel versions
and how about the performance?

• Question-7: Can a guest VM be live migrated to hyper-
visor with EPTI and what is the performance?

6.1 Evaluation Environment
We do the evaluation on an x86-64 machine with an 8-
core Intel Core i7-7700 CPU, 16GB memory and a Sam-
sung 512GB SSD. We implemented EPTI with KVM
based on Linux kernel 4.9.75 running in Ubuntu 14.04.
We assigned 4 vCPUs (virtual CPUs) and 8GB memory
to the guest VM, which runs an Ubuntu 16.04. The Linux
kernel 4.9.75 is used as the guest kernel by default. In
Section 6.4, we also test the overhead of multiple guest
VMs. In Section 6.6, we test various kernel versions in
the guest VM.

We isolate four physical cores on the host and each
vCPU of the guest is pinned to a physical core. We
use virtio to virtualize guest disk. During the evaluation,
all the clients and server applications are running in the
guest VM to reduce the influence of network.

In the performance evaluation, we test five systems:
“Linux” (without KPTI), “KPTI” and EPTI with differ-
ent optimizations, in which “EPTI-No” means EPTI with
A/D bits updating, “EPTI-CR3” means applying A/D-bit
updating and CR3 TARGET VALUE to reduce VMExit
caused by frequently loaded CR3, and “EPTI-CR3+L3”
means applying all three optimizations.

6.2 Security Evaluation
First we implemented a PoC (proof of concept) of Melt-
down attack, which has three steps: step-1: reads secret
S from kernel address; step-2: uses S as an index to ac-
cess memory (covert channel); and step-3: probes the
cache and gets the value of S. The PoC also registers a
signal handler of the segmentation fault to continuously
perform the attack.

We use this PoC to steal linux proc banner, a value
stored in kernel space (the PoC can also steal any other
data in the kernel address space). It succeeds on Linux
without KPTI, but is failed when using KPTI and EPTI.
We then insert a VMFUNC in the PoC to make it switch
to EPTk just before step-1. The attack does not work
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Table 2: Evaluation results of LMBench, in µs.

Operation Linux KPTI EPTI-
No

EPTI-
CR3

EPTI-
CR3+L3

Null syscall 0.04 0.16 0.12 0.12 0.12
Null I/O 0.07 0.2 0.17 0.17 0.16
Open/Close 0.70 0.93 0.84 0.84 0.83
Signal Handle 0.68 0.81 0.76 0.76 0.76
Fork syscall 72.9 79 80 80 75
Exec syscall 212 243 242 234 221
ctsw 16P/64K 6.07 7.37 7.66 7.66 6.39

on EPTI due to the defense mentioned in Section 4.4.
We also try to pass a constant value through the covert
channel after switching to EPTk, which also fails.

The security evaluation shows that our system can suc-
cessfully defend against existing Meltdown attacks, even
if a malicious process switches to EPTk first. Actually,
a user process cannot execute any code in EPTk. Log-
ically, both EPTI and KPTI isolate the address space of
user and kernel mode, so both of them can defend against
Meltdown attacks.

6.3 Micro Benchmark

LMBench [21]: To answer Question-2, we use LM-
Bench to test the time of some critical operations, e.g.,
syscall like fork and exec. As shown in Table 2, the null
syscalls of unmodified Linux and KPTI take 0.04µs and
0.16µs, respectively. For EPTI, the time is about 0.12µs,
which is smaller than KPTI due to the benefit of no-
TLB-flushing of VMFUNC. The Null I/O, Open/Close
and Signal Handle have the similar results as the null
syscall. In all cases, EPTI performs better than KPTI.
There is no difference between EPTI with different opti-
mizations, because these operations do not involve load-
CR3 or write-gL4.

For other three operations (fork, exec and context
switch), EPTI-No and EPTI-CR3 take more time than
EPTI-CR3+L3 because these operations contain many
load-CR3 and write-gL4 operations. In LMBench, the
EPTI-CR3 (optimized with CR3 TARGET VALUE) has
the same result with EPTI-No since a process is termi-
nated before being identified as trapping frequently. The
result of LMBench shows that both EPTI and KPTI have
overhead on single critical operation, and the overhead
of EPTI is smaller than KPTI.

SPEC CPU 2006 [8]: We evaluate all of SPEC CPU
2006 INT applications under five systems. As shown in
Figure 6 (a), there is almost no overhead in both KPTI
and EPTI, since these CPU-related applications rarely in-
teract with the kernel.

6.4 Application Benchmark

To answer that how EPTI influences the performance of
server applications (Question-3), we evaluate the perfor-
mance overhead of file system operations, databases and
web servers.

Fs mark [27] is used for evaluating file system per-
formance. We configure it to continuously create 1MB
files in the guest VM and use synchronization method
1 (call fsync before close a file), with different number
of threads (each thread create 1000 files). The result is
shown in Figure 7 (a), the KPTI has 6.5% overhead in
single thread while our system has 1.1%. The overhead
of both EPTI and KPTI are small because of the slow
disk I/O performance for the guest.

Redis [24] is used for evaluating key-value store work-
loads. We use the standard redis-benchmark to test the
throughput of SET and GET operation of Redis. The
redis-benchmark is configured to use different numbers
of threads (from 1 to 8) and the Redis runs with default
configuration. Figure 7 (b) shows the result. The X-axis
means the test operation and the number of threads used
by the client (e.g., SET-1 means SET operation with one
thread). On the average, KPTI has about 12% of perfor-
mance overhead while EPTI has 6%. In the worst case,
KPTI has more than 20% overhead and our system has
12%.

PostgreSQL [23] is a relational database. We test its
performance with the pgbench (a benchmark provided by
PostgreSQL based on TPC-B). We test the throughput
of read-only and read-write transactions of PostgreSQL
under three different loads: single thread (S): using one
database client; normal (N): opening 4 test threads and
16 database clients; heavy (H): opening 8 test threads
and 64 database clients. The pgbench operates on a small
database table with 1000 records. Each test is performed
on a cleaned table and lasts for 60 seconds. The Post-
greSQL is running with default configuration. The result
is shown in Figure 7 (c). The unit of throughput of RO
transaction is kops and the unit of RW is ops. Both KPTI
and EPTI have small overhead for single thread pgbench.
The overhead increases dramatically in the normal and
heavy loads. In the Heavy-RO test, KPTI has about 12%
overhead while our system has about 4%.

MongoDB [3] is a widely-used non-relational
database. We use YSCB benchmark to test the perfor-
mance of it with different workloads. Each workload is
performed on a table with 10,000 records and we con-
figure YCSB to use 32 test threads. The MongoDB uses
the default configuration. We test all the standard work-
loads of YSCB (from workload-A to workload-F) and
the result is shown in Figure 8 (a). On average, KPTI has
about 7% performance overhead while our system has
about 2%.
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(b) Apache
Figure 6: Figure (a) shows the overhead of all INT applications in SPEC CPU 2006 benchmark, lower the better. Figure (b)
shows the throughput of Apache with different number of clients, higher the better.
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Figure 7: Figure (a) shows the throughput of fs mark with different threads. Figure (b) shows the throughput of SET and GET
operations of Redis with different threads used by the client. Figure (c) shows the throughput of PostgreSQL under different
workloads of RO (read-only) and RW (read-write) transactions. Higher the better.

Apache [1] is a widely-used web server. We use ab
(apache benchmark) to test the throughput of Apache.
It continuously downloads a 1MB static web page from
the Apache, with different client threads (1 to 16). The
Apache server uses default configuration (event mode).
Figure 6 (b) shows the throughput of Apache. The per-
formance drops after 4 client threads since we use 4 vC-
PUs in the VM. The overhead of KPTI is 15%-18%,
while our system (EPTI-CR3+L3) has about 10% over-
head.

Nginx [2] is a lightweight web server. We also test it
by ab benchmark with a 1MB static web page and differ-
ent threads (1 to 16). The Nginx server runs with default
configuration. The throughput of Nginx is shown in Fig-
ure 8 (b). In the worst case, the overhead of KPTI is 18%
and ours is 12%.

Multiple guest VMs: We evaluate the overhead of
EPTI on multiple guest VMs (for Question-4). Each VM
is configured to have 1 vCPU and 1GB memory, and all
the VMs’ vCPUs are pinned on 4 physical cores. We use
linux 4.15 as the guest kernel, and run a Nginx server
as well as an ab benchmark tool in each VM. The result
is shown in Figure 9, the average overhead of KPTI is
about 16% while our system is about 9%

Table 3: Number of VMExit caused by EPTI.

Benchmark EPTI-No EPTI-CR3 EPTI-CR3+L3

Redis 1-thread 540 464 0
Redis 8-thread 385 315 0
Apache 4-thread 45406 225 0
Apache 32-thread 40149 623 0
Compile Kernel -j8 609659 551023 0

6.5 Breakdown of Optimizations

To answer how different optimizations reduce the num-
ber of VMExit of EPTI (Question-5), we test the perfor-
mance of Apache on EPTI with different optimizations.
Figure 6 (b) shows the result. In the best case (1 client
thread), EPTI-No has about 9% performance overhead
which is almost same as KPTI. EPTI-CR3 only has 5%
overhead while EPTI-CR3+L3 has 4%.

To give a detailed breakdown of the performance im-
provement, we analyze the number of VMExits in EPTI
with different optimizations. We calculate the total num-
ber of VMExits caused by EPTI of the whole guest in
three scenarios: (1) running redis-benchmark to test Re-
dis (1,000,000 operations with 1 or 8 threads); (2) run-
ning ab to download 1,000 1MB web pages (with 4 or

USENIX Association 2018 USENIX Annual Technical Conference    263



0.0

5.0

1.0

1.5

2.0

2.5

3.0

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

T
h
ro

u
g
h
p
u
t 

o
f 

M
o
n
g
o
D

B
 (

k
o
p
s)

Linux

KPTI

EPTI-CR3+L3

(a) MongoDB

3.0

4.0

5.0

6.0

7.0

8.0

1 2 4 8 16

T
h
ro

u
g
h
p
u
t 

o
f 

N
g
in

x
 (

k
o
p
s)

Linux

KPTI

EPTI-CR3+L3

(b) Nginx

3.0

4.0

5.0

6.0

7.0

8.0

4.15 4.9.75 4.4.11 4.0.1 3.4.40 2.6.39T
h
ro

u
g
h
p
u
t 

o
f 

A
p
ac

h
e 

o
n
 d

if
f 

k
er

n
el

s 
(k

o
p
s)

Linux

KPTI

EPTI-CR3+L3

(c) Apache on different kernel versions

Figure 8: Figure (a) and (b) show the throughput of MongoDB and Nginx, higher the better. For MongoDB, we test it with
YSCB and X-axis means the different YSCB workloads. For Nginx, we test it by using ab benchmark with different threads.
Figure (c) shows the throughput of Apache on different kernel versions, X-axis means the kernel version.
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Figure 9: Throughput of Nginx on multiple guest VMs. (L
means Linux, K means KPTI, E means EPTI-CR3+L3)

32 client threads); and (3) compiling Linux kernel 4.9.75
with “defconfig” (including kernel modules, “make -j8”).
The result is shown in Table 3.

As shown in the table, the optimization of selectively
trapping load-CR3 does not have much effect on Re-
dis and kernel compilation, but is effective for Apache.
This is because EPTI-CR3 can only reduce the VMExit
caused by frequently loading CR3 value, while both Re-
dis and redis-benchmark are single-process that have
very few load-CR3 or write-gL4 operations. In kernel
compilation, the Makefile creates a gcc process to com-
pile each C file, which produces a huge number of pro-
cesses with different CR3. Since each gcc process works
for a short time, there is no long-term frequently-used
CR3 which means the EPTI-CR3 cannot effectively re-
duce the number of VMExits (theoretically, the result
of EPTI-CR3 can be improved by a better algorithm
for replacing the value of CR3 TARGET VALUE). On
the contrary, Apache with event mode uses a few (typi-
cally 4) child processes to manage all the worker threads.
Most of the VMExits are caused by loading the CR3 of
Apache’s child process, which can be optimized by stor-
ing their CR3 in CR3 TARGET VALUE.

For all scenarios, there is no modification on kernel
gL3, so the number of VMExit can be further reduced to
0 by EPTI-CR3+L3. The reason we still need both op-

Table 4: VM live migration to host with EPTI, in ms.

KVM w/o EPTI KVM w/ EPTI

Total time 15779.5 ±1112.03 15782.6 ±1111.86
Downtime 6.1 ±0.82 9.2 ±1.03

timizations is that operation on kernel gL3 is highly OS
dependent, while the optimization of selectively trapping
CR3 is more general.

6.6 Different Kernel Versions

To answer Question-6 (could EPTI works on different
kernel versions and how about their performance?), we
test the performance of EPTI on different Linux kernel
versions (selected from 2.6 to 4.15). We run Apache
on them and use ab benchmark with 4 client threads to
evaluate the throughput. The result is shown in Figure 8
(c). Our system has higher performance than KPTI in
all the kernel versions (excluding kernels which do not
have KPTI support). In the newest kernel 4.15, which
enabled PCID, the performance of Linux w/o KPTI is
improved obviously. However the KPTI of Linux 4.15
still has about 17% overhead, while our system has 10%.

6.7 VM Migration

To answer the last question, we test the total time and
downtime of VM live migration, from a host without
EPTI to one with EPTI. The source machine deploys an
unmodified Linux kernel 4.9.75 with the same hardware
configuration as mentioned, and the target is the one we
use in previous evaluation. We use both the unmodified
KVM and KVM with EPTI as the target hypervisor. A
guest VM can be seamlessly migrated to a hypervisor
with EPTI and the overhead is small. Table 4 shows the
average migration time together with the stddev (test for
4 times). The downtime increases 3 ms which is caused
by the scanning of code region in memory, preparing for
two EPTs and binary writing.
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7 Related Work

Besides the work mentioned, we now present the systems
that also leverage similar hardware features for enhanc-
ing system security or performance.

KAISER [19] was proposed to defend against attacks
on KASLR [10, 7, 13], which can also prevent Meltdown
since it ensures no valid mapping to kernel space in user
mode. It is later replaced by KPTI [30] and is merged to
Linux kernel from version 4.15.

SecVisor [26] ensures lifetime kernel integrity via set-
ting access permissions in NPT (Nested Page Table, from
AMD, similar to Intel’s EPT). TrustVisor [20] uses NPT
to isolate memory regions used by a security task. Cloud-
Visor [31] de-privileges the hypervisor to non-root mode
and uses a separated EPT to host it. Thus, the hypervi-
sor is isolated from guest VMs and is removed from the
TCB (trusted computing base). InkTag [9] uses EPT to
isolate the address space of a process. SeCage [17] lever-
ages VMFUNC to provide two isolated execution envi-
ronments, one for running security-critical code and the
other for the normal code, to defend against attacks like
heartbleed [29]. Similarly, MemSentry [15] creates do-
mains (VMs) to hide secret data and uses VMFUNC to
switch between different domains.

8 Discussion

Supporting x86-32: To support 32-bit linux, EPTI needs
two steps, 1) trapping and modifying the gPT and 2) in-
serting the trampoline. The existing design can be used
to trap and construct gPT for 32-bit linux. To add the
trampoline, EPTI requires 8KB virtual address region
within guest VM which should not be occupied by the
VM itself. We could use technology like shadow IDT
of ELI [6], which leverages extra pages of devices PCI
BAR (base address register) in guest VM to insert addi-
tional pages.

Supporting five-level page table: 64-bit Linux also
provides five-level page table (the root gPT is gL5). EPTI
can trap all enabled gL4 pages and zero them in EPTu to
perform the user-kernel isolation. All the trap and zero
methods are same as the four-level page table.

Supporting Windows: Technically, the design of
EPTI can be applied to Windows or other OSes. All
the kernel entries of Windows kernel can be detected by
trapping the modification of IDT and MSRs, so that a
trampoline can further be added. After that, EPTI can
construct the EPTu and EPTk after knowing the virtual
memory layout of Windows kernel.

Transparency to guest VMs: EPTI modifies the
code and gPT of the guest. In current implementation,
these modifications are not transparent to the guest VM.
These modifications will not affect functionalities like

VMI (virtual machine introspection) and kernel integrity
check. For the VMI case, we keep the original address
mapping with only different permission so the address
translation in VMI can be done as before. For the kernel
integrity check case, we do not change existing kernel
code, so that its hash value will not be changed. More-
over, the VMM can make the modifications transparent
to the guest. Features like XnR (execute-no-read) [4] can
be used to prevent kernel from reading the trampoline
code page while still allowing to execute the code, and
the access to the modified gPT pages can also be trapped.

Compared with KPTI: EPTI has three advantages
compared with KPTI: compatibility, performance and
seamless deployment. Even when the KPTI is patched
on all Linux versions, EPTI is still valuable for its low
performance overhead and seamless deployment without
guest rebooting.

9 Conclusion

The publish of Meltdown vulnerability makes public
servers in danger, especially those in cloud. The KPTI
solution requires server owners to apply the patch man-
ually, which currently supports only a few of kernel
versions and may introduce non-negligible performance
overhead. This paper presents EPTI, a new solution to
Meltdown vulnerability that can be applied to unpatched
VMs and with less overhead. Specifically, our solution
uses two EPTs (extended page tables) to isolate user
space and kernel space, and unmaps all the kernel space
in user’s EPT to achieve the same effort of KPTI. EPTI
leverages two hardware features to reduce the perfor-
mance overhead: first, the switching of EPTs is done
through a hardware-support feature called EPTP switch-
ing within guest VMs without hypervisor involvement.
Second, EPTP switching does not flush TLB since each
EPT has its own TLB, which further reduces the over-
head. By leveraging live migration, EPTI can seamlessly
protect a guest VM without rebooting it. We have im-
plemented our design and evaluated on Intel Kaby Lake
CPU with different versions of Linux kernel. The re-
sults show that EPTI only introduces up to 13% over-
head, which is around 45% less than KPTI.
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Abstract
In clouds where CPU cores are time-shared by vir-
tual CPUs (vCPU), vCPUs are scheduled and de-
scheduled by the virtual machine monitor (VMM)
periodically. In each virtual machine (VM), when
its vCPUs running I/O bound tasks are desched-
uled, no I/O requests can be made until the vC-
PUs are rescheduled. These inactivity periods of
I/O tasks cause severe performance issues, one of
them being the utilization of I/O resources in the
guest OS tends to be low during I/O inactivity peri-
ods. Worse, the I/O scheduler in the host OS could
suffer from low performance because the I/O sched-
uler assumes that I/O tasks make I/O requests con-
stantly. Fairness among the VMs within a host can
also be at stake. Existing works typically would ad-
just the time slices of vCPUs running I/O tasks, but
vCPUs are still descheduled frequently and cause
I/O inactivity.

Our idea is that since each VM often has ac-
tive vCPUs, we can migrate I/O tasks to active vC-
PUs, thus mitigating the I/O inactivity periods and
maintaining the fairness. We present VMIGRATER,
which runs in the user level of each VM. It in-
corporates new mechanisms to efficiently monitor
active vCPUs and to accurately detect I/O bound
tasks. Evaluation on diverse real-world applications
shows that VMIGRATER can improve I/O perfor-
mance by up to 4.42X compared with default Linux
KVM. VMIGRATER can also improve I/O perfor-
mance by 1.84X to 3.64X compared with two re-
lated systems.

1 Introduction

To ease management and save energy in clouds,
multiple VMs are often consolidated on a physical
host. In each VM, multiple vCPUs often time-share

  

 vCPU
activity 

Active

Inactive

I/O activity
w/ default
VMMs

Active

Inactive

Active

 I/O activity
(bare-metal)

I/O Request

Figure 1: I/O inactivity.

a physical CPU core (aka. pCPU). The VMM con-
trols the sharing by scheduling and descheduling
the vCPUs periodically. When a vCPU is sched-
uled, tasks running on it become active and make
progress. When a vCPU depletes its time slice, it
is descheduled, and tasks on it become inactive and
stop making progress.

vCPU inactivity leads to a severe I/O inactivity
problem. After the vCPU is descheduled, the I/O
tasks on it become inactive and cannot generate I/O
requests, as shown in the first two curves in Fig-
ure 1. The inactive periods can be much longer
than the latencies of storage devices. Typical time
slices can be tens of milliseconds; the storage de-
vice latencies are a few milliseconds for HDDs and
microseconds for SSDs. Thus, during the I/O in-
active periods, I/O devices (both physical and vir-
tual devices) may be under-utilized. The under-
utilization becomes more serious with a higher con-
solidation rate (i.e., the number of vCPUs shared
on each pCPU), because a vCPU may need to wait
for multiple time slices before being rescheduled.
The I/O throughput of a VM drops significantly
with a consolidation rate of 8 as recommended by
VMware [47], based on our evaluation in Section 5.

The I/O inactivity problem becomes even more
pronounced when I/O requests are supposed to be
processed by fast storage devices (e.g., SSDs). Usu-
ally, a vCPU remains active during I/O requests, so
it can quickly process them. A similar situation is
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when a computation task and an I/O task run on the
same vCPU. When the I/O task issues a read request
and then waits for the request to be satisfied, the
computation task is switched on. At this moment,
the vCPU is still running; thus, when the read re-
quest is satisfied, the vCPU can quickly respond to
the event and switch the I/O task back. However, if
the time slice of the vCPU is used up by the com-
putation task in one scheduling period, the I/O task
cannot proceed until the next period, causing the I/O
task to be slowed down significantly.

Worse, the I/O inactivity problem causes the I/O
scheduler running in the host OS to work extremely
ineffectively. To fully utilize the storage devices,
based on the latencies of I/O devices, system de-
signs would carefully control the factors affecting
the latencies experienced by I/O workloads (e.g.,
wake-up latencies and priorities). Thus, I/O work-
loads running on bare-metal can issue the next re-
quest after the previous request is finished. I/O
inactive periods make these mechanisms ineffec-
tive. Moreover, non-work-conserving I/O sched-
ulers [40] would often hold an I/O request until
the next request from the same I/O task comes in
(refer to §2.2). By serving the requests from the
same task continuously, which have better locality
than requests from different tasks, such I/O sched-
ulers [40] can improve I/O throughputs. However,
since an I/O workload cannot continue to issue I/O
requests after its vCPU becomes inactive, the I/O
scheduler in the host OS must switch to serve the
requests from other I/O tasks, which greatly reduces
locality and I/O throughput, as we will show in our
evaluation.

Last but not least, the I/O throughput of a VM can
be “capped” by its amount of CPU resources. If the
vCPUs in a VM (V Ma) are assigned with smaller
proportions of CPU time on each pCPU than the
vCPUs on another VM (V Mb), the I/O workloads
on V Ma will get less time to issue I/O requests and
may only be able to occupy a smaller proportion
of the available I/O bandwidth. Since the actual
I/O throughputs of the VMs are affected by both
I/O scheduling and vCPU scheduling, it is difficult
for the I/O scheduler to ensure fairness between the
VMs.

All the above problems share the same root cause,
I/O inactivity, and existing works mainly try to curb
vCPU inactivity but ignore this root cause. Existing
works primarily follow two approaches: 1) shorten-
ing vCPU time slices (vSlicer [49]); and 2) assign-
ing higher priority to I/O tasks running on active
vCPUs (xBalloon [44]). Unfortunately, vCPUs with
either approach are still descheduled frequently and

cause I/O inactivity.
Since a VM often has active vCPUs, our idea to

mitigate I/O inactivity is to try to efficiently migrate
I/O tasks to active vCPUs. By evenly redistribut-
ing I/O tasks to active vCPUs in a VM, I/O inac-
tivity can be greatly mitigated and I/O tasks can
make progress constantly. This maintains both per-
formance and fairness for I/O tasks as they are run-
ning on bare-metal. The fairness of I/O bandwidth
among VMs on the same host is also maintained.

We implement our idea in VMIGRATER, a user
level tool working in each VM. It is transparent as
it does not need to modify application, OS in VM,
or VMM. VMIGRATER carries simple and efficient
mechanisms to predict whether a vCPU will be de-
scheduled and to migrate the I/O tasks on this vCPU
to another active vCPU.

VMIGRATER adds only small overhead to appli-
cations for two reasons. First, I/O bound tasks
use little CPU time, so the I/O tasks migrated by
VMIGRATER hardly affect the co-running tasks on
the active vCPUs. Second, VMIGRATER migrates
more I/O bound tasks to the active vCPUs with
more remaining time slices, so all vCPUs’ loads in
the same VM are well balanced. By reducing I/O
inactivity with low overhead, VMIGRATER makes
applications run in a fashion similar to what they do
on bare-metal, as shown in Figure 1.

VMIGRATER has to address three practical issues.
First, it needs to identify I/O tasks. To address this
issue, VMIGRATER uses an event-driven model to
collect I/O statistics and to detect I/O bound tasks
quickly. Second, VMIGRATER needs to determine
when an I/O bound task should be migrated. To
minimize overhead, VMIGRATER only migrates an
I/O bound task when the vCPU running this task
is about to be descheduled. VMIGRATER monitors
each vCPU’s time slice and uses the length of the
previous time slice to predict the length of the cur-
rent time slice. Third, VMIGRATER needs to decide
where a task should be migrated to keep it active.
Based on the collected time slice and I/O task infor-
mation, VMIGRATER migrates I/O tasks from to-be-
descheduled vCPUs to the active vCPUs with light
workload.

We implemented VMIGRATER in Linux and eval-
uated it on KVM [30] with a collection of micro-
benchmarks and 7 widely used or studied programs,
including small programs (sequential, random and
bursty read) from SysBench [7], a distributed file
system HDFS [5], a distributed database Hbase [2],
a mail server benchmark PostMark [6], a database
management system LevelDB [3], and a document-
oriented database program MongoDB [35]. Our
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evaluation shows that:

1. VMIGRATER can effectively improve appli-
cation throughput. Compared to vanilla
KVM, VMIGRATER can improve applica-
tion throughputs by up to 4.42X. With
VMIGRATER, application throughput is 1.84X
to 3.64X higher than vSlicer and xBalloon.

2. The effectiveness of VMIGRATER increases
with consolidation rate. Compared to
vanilla KVM, VMIGRATER improves applica-
tion throughput from 1.72X to 4.42X when the
number of consolidated VMs increases from 2
to 8.

3. VMIGRATER can maintain the fairness of the
I/O Scheduler in VMM. Compared to vanilla
KVM, VMIGRATER reduces unfairness be-
tween VMs by 6.22X. When VMs are assigned
with the same I/O priority but different CPU
time shares, the VMs can still utilize similar
I/O bandwidth.

The paper makes the following contributions.
First, the paper identifies I/O inactivity as a major
factor degrading I/O throughputs in VMs, and quan-
tifies the severity of the problem. Second, it designs
VMIGRATER, a simple and practical user-level solu-
tion, which greatly improves the throughput of I/O
applications in VMs. Third, VMIGRATER is im-
plemented in Linux, and is evaluated extensively to
demonstrate its effectiveness.

The remainder of this paper is organized as fol-
lows. §2 introduces the background and motiva-
tion of VMIGRATER. §3 presents the design prin-
ciples, architecture, and other design details of
VMIGRATER. §4 describes implementation details.
§5 presents evaluation results. §6 introduces related
work, and §7 concludes the paper.

2 Background and Motivation
This section first introduces vCPU scheduling
(§2.1) and I/O request scheduling (§2.2) as the
background. Then it explains three performance
problems caused by I/O inactivity in virtualized sys-
tems (§2.3) to motivate our research.

2.1 vCPU Scheduling
To improve resource utilization in virtualized sys-
tems, a pCPU is usually time-shared by multiple
vCPUs. A vCPU scheduler is used to periodically
deschedule a vCPU and schedule another vCPU.
For instance, KVM uses completely fair scheduler
(CFS) [13, 44] to schedule vCPUs onto pCPUs.
CFS uses virtual runtime (vruntime) to keep track
of the CPU time used by each vCPU and to make

scheduling decisions. With a red-black tree, it sorts
vCPUs based on their vruntime values, and period-
ically schedules the vCPU with the smallest vrun-
time value. In this way, CFS distributes time slices
to vCPUs in a fair way.

2.2 I/O Request Scheduling
I/O requests are scheduled by the I/O scheduler in
the VMM. There are two types of I/O schedulers:
work-conserving schedulers [19, 38] and non-work-
conserving schedulers [51, 27]. A work-conserving
I/O scheduler always keeps the I/O device busy by
scheduling pending I/O requests as soon as possible.

Non-work-conserving I/O schedulers, such as an-
ticipatory scheduler (AS) [27] and Completely Fair
Queuing (CFQ) [12], are now widely used. A non-
work-conserving scheduler waits for a short pe-
riod after scheduling a request from a task, expect-
ing that other requests from the same task may ar-
rive. Because requests from the same task usu-
ally show good locality (i.e., requesting the data
at the locations close to each other on the disk),
if there are requests from the same task arriving,
the scheduler may choose to schedule these re-
quests, even when there are requests from other
tasks arriving earlier. It switches to serve the re-
quests from other tasks when the waiting period
expires and there are not requests from the same
task. Compared to work-conserving I/O schedulers,
non-work-conserving schedulers can improve I/O
throughput by exploiting locality. The length of
waiting periods is selected to balance improved lo-
cality and the utilization of I/O devices. To enforce
fairness between I/O tasks, an I/O request sched-
uler controls the distribution of disk time among the
tasks.

2.3 Performance Issues Caused by I/O
Inactivity

We use experiments to show that serious per-
formance issues will be caused by I/O inactiv-
ity. Specifically, we use SysBench [7] to test I/O
throughput in three settings. In the Bare-metal set-
ting, we run SysBench on the host. In the No shar-
ing setting, we run SysBench in a VM; the VM is
the only VM in the host; In the Vanilla setting, we
consolidate 2 VMs on the same host. In the exper-
iments, each VM has 4 vCPUs, and the host has
4 cores. Thus, in the No-sharing setting, there is
one vCPU on each core, and in the Vanilla setting,
each core is time-shared by 2 vCPUs. The VMs are
configured to have the same I/O bandwidth quota in
KVM [30]. In each VM, the CPU workload in Sys-
Bench [7] is run as a compute-bound task, and keep
the vCPUs always busy. Note that we select these
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Figure 2: Three performance issues caused by I/O inactivity. “Bare-metal” means physical server; “No sharing” means
only one VM running on the host; “Vanilla” means two VMs consolidated and managed by vanilla KVM on one host.
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Figure 3: I/O inactivity makes Non-Work-Conserving
(NWC) I/O scheduler used in VMM ineffective and inef-
ficient because costly disk seeks and waiting time cannot
be effectively reduced.

workloads and settings mainly to ease the demon-
stration and analysis of the performance issues. Our
evaluation with real workloads and normal settings
(§5) show that these performance issues can actually
be more severe.

Figure 2 (a) and Figure 2 (b) show that I/O in-
activity significantly reduces I/O throughput in two
different ways. In the experiment shown in Fig-
ure 2 (a), we run only one instance of I/O bound
task (i.e., I/O workload of SysBench). Among the
three settings, No sharing has roughly the same I/O
throughput as Bare-metal; but the I/O throughput in
the vanilla setting is about half of those of the other
two settings. This is because the VM running the
I/O bound task only obtains 50% of CPU time on
each core. Thus, the I/O bound task is only active
for 50% of the time, as illustrated in Figure 1.

In the experiment shown in Figure 2 (b), we run
two instances of I/O bound task, one in each VM.
For brevity, we refer to the I/O bound task in the
first VM as I/O bound task 1, and refer to the task
in the other VM as I/O bound task 2. The bars in
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Figure 4: I/O inactivity causes unfairness issue. The I/O
task in a VM with more CPU time gets more I/O bandwidth.
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Figure 5: The workflow of vanilla, xBalloon and vS-
licer. xBalloon and vSlicer still experience frequent
I/O inactivity periods.

the figure show the throughputs of these tasks, as
well as the total I/O bandwidth. As shown in the fig-
ure, in the Vanilla setting, the total throughput drops
by 72.1% compared to bare-metal and no sharing,
which is more than 50%.

Figure 3 explains the reason. The non-work-
conserving I/O scheduler in the VMM serves an
I/O bound task in a VM for a short period before
the vCPU running the task is descheduled. Then,
it waits for 8ms without seeing any requests from
I/O bound task 1. Thus, it has to switch and start
to serve the I/O-bound task in the other VM (i.e.,
I/O-bound task 2). The changes between tasks are
caused by I/O inactivity. They incur costly disk
seeks. The wasted waiting time further reduces I/O
throughput.

Figure 2 (c) illustrates the unfairness issue caused
by I/O inactivity. It shows that two I/O bound tasks
on two VMs with the same I/O priority achieve
quite different I/O throughputs because the two
VMs are assigned with different CPU time shares.
In the experiments, for the Vanilla setting, we
launch two VMs with the same I/O priority, and run
an instance of I/O bound task on each of the VMs.
We assign to the VMs with 20% and 80% of CPU
time, respectively. For the Bare-metal setting and
No sharing setting, we launch two instances of I/O
bound task on the host and the VM, respectively.
The two instances of I/O bound task are assigned
with the same I/O priority but different CPU time
shares (20% and 80%, respectively).

As shown in the figure, the two I/O bound tasks
achieve similar I/O throughputs in the Bare-metal
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and No sharing settings. However, in the Vanilla
setting, the I/O bound task in the VM with a larger
CPU time share achieves a much higher (5.8x)
throughput than that of the I/O bound task in the
other VM. Figure 4 explains the cause of this fair-
ness issue. Since VM1 is allocated much less
CPU time than VM2, it experiences much longer
I/O inactivity periods. As a result, the I/O scheduler
serves VM2 for much longer time than VM1.

There are two approaches that may be used to im-
prove I/O throughput. One approach [48, 10, 49]
uses smaller time slices (e.g., vSlicer), such that
vCPUs are scheduled more frequently, and thus be-
come more responsive to I/O events. As shown in
Figure 5 with the curve labeled with vSlicer, this ap-
proach reduces the length of each vCPU inactivity
period. But I/O inactivity periods become more fre-
quent, and the portion of time in which an I/O task is
inactive may not be reduced. Moreover, vSlicer in-
curs frequent context switches between vCPUs and
increases the associated overhead. The other ap-
proach [31, 44] lifts the priority of I/O tasks. For
example, xBalloon controls how vCPUs consume
time slices such that more CPU time can be reserved
for the execution of I/O bound tasks on the vCPUs.
While this actually lengthens I/O active periods, as
shown in Figure 5 with the curve labeled with xBal-
loon, vCPUs still must be descheduled when they
run out of time slices, and I/O inactivity problems
are still incurred.

3 VMIGRATER Design
In this section, we first introduce the design princi-
ples and overall architecture of VMIGRATER. Then,
we present the design details of each key com-
ponent, focusing on how VMIGRATER monitors
the scheduling and descheduling of vCPUs to keep
track of their time slices (§3.2), quickly detects I/O-
bound tasks (§3.3), and migrates I/O-bound tasks
with low overhead (§3.4). Finally, we analyze the
performance potential of VMIGRATER (§3.5).

3.1 Design Principles and Overall Ar-
chitecture

The design of VMIGRATER follows three princi-
ples:
• Fair: the design of VMIGRATER must not af-

fect vCPU scheduling (e.g., allocating more
CPU time to the vCPUs running I/O tasks) or
I/O scheduling in the VMM to avoid any po-
tential unfairness between VMs.
• Non-intrusive: For the wide adoption of

VMIGRATER, the design must be non-
intrusive. It should minimize or avoid the
modifications to VMM and guest OSs, and

VMM

Virtual Machine

. . .

User
Kernel

vCPU
Monitor vMigrater
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. . .
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I/O-bound Task

CPU-bound Task
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Task 
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. . .

Descheduled vCPUvCPU

Scheduled  vCPUvCPU

Figure 6: Overall Architecture of VMIGRATER.

should be transparent to applications. Thus,
we choose to design VMIGRATER in the user
space of guest OSs. This also helps main-
tain the original vCPU scheduling and I/O
scheduling decisions of the VMM. However,
this poses a few challenges, since the migration
of I/O bound tasks relies on some key informa-
tion about vCPU scheduling (e.g., remaining
time slice of a vCPU), which is not easy to ob-
tain in the user space.
• Low overhead: VMIGRATER needs to migrate

I/O bound tasks. Frequent migrations may in-
cur high overhead. The design of VMIGRATER
must effectively control the frequency of mi-
grations.

Figure 6 shows the overall architecture of
VMIGRATER and its position in the software stack.
VMIGRATER resides in each VM, and runs at the
user level. Following the above principles, three key
components are designed as follows.

vCPU Monitor (§3.2) monitors the scheduling
and descheduling of vCPUs. The objective is to
measure time slice lengths for each vCPU and use
the lengths to predict whether a vCPU is about to
be preempted. The prediction is then used to make
decisions on when an I/O bound task should be mi-
grated and where it should be migrated.

Task Detector (§3.3) detects I/O activities to
quickly determine whether a task is I/O-bound.

Task Migrater (§3.4) makes migration decisions
and actually migrates I/O-bound tasks. It makes mi-
gration decisions based on the vCPU scheduling in-
formation from the Task Migrater and I/O activities
of the tasks from the Task Detector. Specifically, it
tries to migrate an I/O bound task detected in the
Task Detector when the vCPU running the task is
about to be descheduled. It migrates the task to an-
other vCPU which may not be descheduled in near
future.

3.2 vCPU Monitor Design
The vCPU Monitor uses a heartbeat-like mecha-
nism to detect whether a vCPU is running or has
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been descheduled, with timer events being heart-
beats. The idea is that, when a vCPU is desched-
uled, it cannot process timer events, and the heart-
beat pauses. Specifically, vCPU Monitor runs a
sleeping thread, namely vCPU Monitor thread, on
each vCPU. The sleeping thread is woken up by a
timer periodically. When it is woken up, it checks
the current clock time, and compare the time with
the time it observes last time. A time difference
longer than the period for waking up the thread in-
dicates that the vCPU was descheduled earlier, and
has just been rescheduled.

This mechanism is as shown in Figure 7. The
vCPU Monitor thread can detect that the vCPU is
rescheduled at time t2 and time t6. The thread keeps
track of the timestamps when the vCPU is resched-
uled (e.g., t2 and t6) and the timestamps immedi-
ately before them (e.g., t1 and t5). The time slice
lengths can be estimated from these timestamps
(e.g., t5− t2).

Note that, since a vCPU may be scheduled or de-
scheduled while its vCPU Monitor thread is sleep-
ing, the exact time of the vCPU being resched-
uled/descheduled cannot be obtained, and thus ac-
curate time slice lengths cannot be measured with
this method. Waking up the vCPU Monitor thread
more frequently improves the accuracy of estima-
tion; but it increases the overhead at the same time.
Considering that typical time slice lengths are tens
of miliseconds, VMIGRATER sets the length of the
periods for waking up vCPU Monitor threads to 300
µs to make a trade-off between accuracy and over-
head.
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Active
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Figure 7: vCPU Monitor workflow.

3.3 Detecting I/O bound Tasks
Some applications have bursty I/O operations.
Thus, VMIGRATER needs to quickly respond
to workload changes in each application.
VMIGRATER migrates an application when it
becomes I/O bound, and stops migration when its
I/O phase finishes. However, traditional methods
(e.g., Linux top [45] and iotop [26]) for detecting
tasks’ I/O utilization usually take long time (e.g.,
seconds). Using these methods may miss the I/O
phases in such applications. For instance, the time
for an SSD to handle 100MB sequential read is only
100ms. Thus, a much faster method for detecting
I/O bound tasks is needed.

VMIGRATER uses an event-driven method to de-
tect I/O-bound tasks quickly. This method monitors
the I/O events triggered by I/O requests, and col-
lects the time spent on processing these I/O events.
VMIGRATER periodically calculates the fraction of
time spent on processing I/O events. (The duration
of each period in our design is 5 milliseconds.) It
determines that a task becomes I/O bound when the
fraction exceeds a threshold.

3.4 Migrating I/O bound Tasks
Task Migrater relies the information from vCPU
Monitor and Task Detector to make migration deci-
sions. It first needs to decide which I/O tasks should
be migrated. To minimize the overhead, Task Mi-
grater only migrates I/O bound tasks when vCPUs
running them are to be descheduled shortly. To find
these tasks, Task Migrater estimates the remaining
time slice for each vCPU1. If the remaining time
slice is shorter than the length of two periods for
waking up vCPU Monitor threads (i.e., 600 µs)2,
Task Migrater determines that the vCPU is about to
be descheduled. Task Migrater then checks the tasks
scheduled on the vCPU. If there is an I/O bound task
reported by Task Detector, Task Migrater migrates
the task.

Second, Task Migrater needs to decide which
vCPU the I/O bound tasks should be migrated to. A
naı̈ve approach is to migrate I/O tasks to the vCPU
with the longest remaining time slice. However, this
method has two problems if Task Migrater needs to
migrate multiple I/O bound tasks: (1) the I/O bound
tasks are migrated to the same vCPU and cannot
make progress concurrently; (2) the vCPU might be
overloaded by accepting all these tasks, and the per-
formance of its existing tasks is degraded.

Task Migrater migrates I/O tasks to vCPUs in
a globally balanced way. Specifically, Task Mi-
grater ranks active vCPUs based on the lengths of
their remaining time slices, and ranks the I/O bound
tasks to be migrated based on their I/O load lev-
els. It migrates the I/O bound tasks with heavier
I/O load levels to the vCPUs with longer remain-
ing time slices. This migration mechanism can pre-
vent the above problems because it distributes I/O
bound tasks among active vCPUs. At the same time,
it helps maintain high I/O throughput because the

1The remaining time slice of a vCPU at a moment (e.g., t7 in
Figure 7) is estimated using the length of time slice assigned to
the vCPU before the most recent descheduling of the vCPU (e.g.,
t5 − t2) and the CPU time that has already been consumed by
the vCPU after the most recent rescheduling of the vCPU (e.g.,
t7− t6).

2This is to tolerate the inaccuracy in the estimation of time
slices and remaining time slices.
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tasks with the most I/O activities are scheduled on
the vCPUs that are least likely to be descheduled
shortly.

3.5 Performance Analysis
We use Equation (1) to show the performance po-
tential of VMIGRATER. For simplicity, we assume
each VM has at least one active vCPU at any given
time. Thus, an I/O application can be kept ac-
tive with VMIGRATER, except when it is being mi-
grated.

SpeedupvMigrater =
Tns×N

Tns +Nmigrate×Cavg

=
N

1+ Nmigrate×Cavg
Tns

(1)

Equation (1) calculates the speedup of an I/O ap-
plication with VMIGRATER relative to its execution
without VMIGRATER on a VM. N is the number of
vCPUs consolidated on each pCPU (i.e., consolida-
tion rate). Tns is execution time of the I/O appli-
cation on a VM when its execution is not affected
by I/O inactivity problem. This can be achieved
by running the application on a vCPU with a dedi-
cated pCPU. It reflects the best performance that an
I/O application can achieve on a VM. Nmigrate is the
number of migrations conducted by VMIGRATER.
Cavg is the average time cost incurred by each mi-
gration.

The numerator of equation (1) is the execu-
tion time of an I/O application on a VM without
VMIGRATER. With N vCPUs consolidated on a
pCPU, in each period of N time slices, the I/O ap-
plication can be active only for a period of one
time slice. Thus, its execution time is roughly
N × Tns. The denominator is the execution time
with VMIGRATER, which is determined by the time
spent on application execution and the time spent on
migration.

Equation (1) shows that Nmigrate must be reduced
to improve the performance of VMIGRATER. Sup-
pose VMIGRATER migrates the I/O application by a
minimum number Nmin of times in an optimal sce-
nario. Thus, Nmin = Tns/Tts, where Tts is the length
of a time slice allocated to a vCPU. In this optimal
scenario, the I/O application is moved to a vCPU
when the vCPU is just rescheduled; it stays there
until the timeslice of the vCPU is used up; it is then
moved to another vCPU which is newly resched-
uled.

Replacing Tns with Tts×Nmin in equation (1), we
get:

SpeedupvMigrater =
N

1+ Nmigrate×Cavg
Nmin×Tts

(2)

Equation 2 shows that the speedup is determined
by N and Nmigrate×Cavg

Nmin×Tts
; N, Carg, and Tts are con-

stants for an application. We denote Nmigrate
Nmin

as
PvMigrater, which has a value greater than 1. The
speedup is mainly determined by PvMigrater. When
PvMigrater approaches to 1, the speedup approaches
to N. Our experiments show that the speedup with
VMIGRATER matches the speedup calculated by
Equation 1.

4 Implementation Details
We have implemented VMIGRATER on Linux. The
implementation of vCPU Monitor relies on a re-
liable and accurate clock source to generate timer
events. The traditional system time clock can-
not satisfy this need when vCPUs time-share a
pCPU [44]. Instead, we use the clock source
CLOCK MONOTONIC [18], which is more reli-
able and can provide more accurate time measure-
ment. The implementation of Task Detector lever-
ages BCC [11, 24] to monitor I/O requests. BCC
is a toolkit supported by Linux kernel for creating
efficient kernel tracing and manipulation programs.

The implementation of Task Migrater uses two
mechanisms, PUSH and PULL, to migrate tasks.
A PUSH operation is conducted by the source
vCPU of a task to move the task to the destina-
tion vCPU, while a PULL operation is initiated by
the destination vCPU to move a task to it from the
source vCPU. Usually PUSH operations are used.
PULL operations are only used when source vCPUs
are descheduled and cannot conduct PUSH opera-
tions. VMIGRATER’s source codes are available on
github.com/hku-systems/vMigrater.

5 Evaluation
Our evaluation is done on a DELLTM PowerEdgeTM

R430 server with 64GB of DRAM, one 2.60GHz
Intel R© Xeon R© E5-2690 processor with 12 cores,
a 1TB HDD, and a 1TB SSD. All VMs (unless
specified) have 12 vCPUs and 4GB memory. The
VMM is KVM [30] in Ubuntu 16.04. The guest
OS in each VM is also Ubuntu 16.04. The length
of a vCPU time slice is 11ms, as recommended by
Red Hat [41]. The I/O scheduler in VMM is CFQ
with wait time set to 8ms, as recommended by Red
Hat [42, 40].

We evaluate VMIGRATER using a collection
of micro-benchmarks and 7 widely used applica-
tions. Micro- benchmarks include SysBench [7] se-
quential read, SysBench random read, and bursty
read implemented by us. As summarized in Ta-
ble 1, applications include HDFS [5], LevelDB [3],
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MediaTomb [9], HBase [2], PostMark [6],
Nginx [37], and MongoDB [35]. To be close to real-
world deployments, PostMark is run with ClamAV

(antivirus program) [17] to generate the workload
of a complete mail server with antivirus support;
LevelDB and MongoDB are deployed as the back-
end storage of a Spark [52] system.
ApplicationWorkload
HDFS Sequential read 16GB with HDFS TestDFSIO [25].
LevelDB Random scan table with db bench [4].
MediaT Concurrent requests on transcoding a 1.1GB video.
HBase Random read 1GB with HBase PerfEval [25].
PostMark Concurrent requests on a mail server.
Nginx Concurrent requests on watermarking images [1].
MongoDB Sequential scan records with YCSB [8].

Table 1: 7 applications and workloads.
Most of the experiments are conducted with the

SSD. Only the experiments in §5.4 (fairness of
I/O scheduler) use the HDD, because they need a
non-work-conserving I/O scheduler (e.g., CFQ) and
CFQ is used in Linux to schedule HDD requests.

We compare VMIGRATER with two related so-
lutions: xBalloon [44] and vSlicer [49]. Because
they do not have open-source implementations, we
implemented them based on the description in their
papers.

Our evaluation aims to answer the following
questions:
§5.1: Is VMIGRATER easy to use?
§5.2: How much performance improvement can be

achieved with VMIGRATER, compared with
vanilla KVM and two related solutions? What
is the overhead incurred by VMIGRATER.

§5.3: What is VMIGRATER’s performance when the
workload in a VM varies over time?

§5.4: Can VMIGRATER help the I/O scheduler in the
VMM to achieve fairness between VMs?

5.1 Ease of Use
With VMIGRATER, all 7 real applications we evalu-
ated could run smoothly without any modification.
When we evaluate these applications, VMIGRATER
runs in the user-level of the guest OS. There is no
need to change any parts of the VM or the VMM.

5.2 Performance Improvements
We first demonstrate that VMIGRATER can greatly
improve the throughput of I/O intensive applica-
tions in each VM. For this purpose, we vary the
number of VMs hosted on the server from 1 to 8,
and run the workload with the micro-benchmarks
and the workloads with the real applications sum-
marized in Table 1. In each experiment, we run
one instance of the workload in each VM. So the
co-located VMs have the same workload. We mea-
sure the throughputs of the benchmarks and real ap-
plications. When only one VM is hosted on the

server, the I/O inactivity problem does not happen;
the benchmarks and applications achieve the highest
performance. We refer to this setting as No shar-
ing, and use the performance under this setting as
reference performance. We normalize the perfor-
mance under other settings (i.e., 2/4/8 VMs con-
solidated on the server) against the reference per-
formance, and show the normalized performance.
Thus, the normalized performance of 1 is the best
performance that can be achieved. The closer the
normalized performance is, the better the perfor-
mance is.

Figure 8 shows the normalized throughputs for
micro-benchmarks when the number of consoli-
dated VMs is varied from 2 to 8. With VMIGRATER,
the benchmarks consistently achieve better perfor-
mance than they do on vanilla KVM. At the same
time, the performance advantage with VMIGRATER
becomes more prominent when more VMs are con-
solidated. On average, with VMIGRATER, the
throughputs of these benchmarks are improved by
97%, 225%, and 431% than those on vanilla KVM
for the settings with 2 VMs, 4 VMs, and 8VMs, re-
spectively.

Similar performance improvements are also ob-
served with real applications, as shown in Figure 9.
On average, with VMIGRATER, the throughputs of
these applications are improved by 72%, 192%, and
342% than those on vanilla KVM for the settings
with 2 VMs, 4 VMs, and 8VMs, respectively.

Compared to vSlicer and xBalloon, the appli-
cations can also achieve better performance with
VMIGRATER. As shown in Figure 9, On aver-
age, with VMIGRATER, the throughputs of these ap-
plications are improved by 88.41%, 74.86%, and
121.22% than those with vSlicer for the settings
with 2 VMs, 4 VMs, and 8VMs, respectively; and
the throughputs are improved by 3.29%, 83.78%,
and 175.37% than those with xBalloon under these
three settings.

While VMIGRATER can significantly improve the
throughput of I/O applications when all the consol-
idated VMs are equipped with VMIGRATER. Since
VMIGRATER is designed at the user space, it is
possible that not all the VMs have VMIGRATER
deployed. We wonder whether VMIGRATER can
still effectively improve I/O throughput in this sce-
nario. To answer this question, we run the work-
loads with HDFS and LevelDB in one VM and en-
ables VMIGRATER in this VM; in other colocated
VM(s), we run the IS benchmark in NPB bench-
mark suite [36], and disable VMIGRATER in the
VM(s). Figure 10 shows that the effectiveness of
VMIGRATER is not affected. On average, with
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Figure 8: Normalized throughputs of micro-benchmarks
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Figure 9: Normalized throughput of real applications
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Figure 10: Normalized throughput of HDFS and Lev-
elDB when VMIGRATER is enabled in one of the con-
solidated VMs.
VMIGRATER, the throughputs of these applications
are improved by 62.72%, 176.92%, and 218.75%
than those on vanilla KVM for the settings with 2
VMs, 4 VMs, and 8VMs, respectively.

To understand how the performance improve-
ments are achieved with VMIGRATER, we profile
the executions of the real applications. We collect
the number of migrations and the time during which
I/O bound tasks “run” on descheduled vCPUs (i.e.,
I/O inactivity time). We show the data in Table 2
and Table 3.

VMIGRATER greatly improves application per-
formance by first dramatically reducing I/O inac-
tivity time. As shown in Table 2, on average, for
the applications, VMIGRATER reduces I/O inactiv-
ity time by 860.27%, 657.87%, 562.92%, respec-
tively, relative to vanilla KVM, vSlicer, and xBal-
loon.

When I/O inactivity time has been dramatically
reduced, as we have analyzed in Section 3.5,
VMIGRATER maintains high throughputs by min-
imizing the time spent on migrating tasks, which

is determined by the number of migrations and the
time to finish each migration. As shown in Ta-
ble 3, for most applications, the PvMigrater values are
very close to 1. This confirms that the migration
mechanisms in VMIGRATER are well designed. On
one hand, they have effectively migrated I/O bound
tasks to keep them active and minimize I/O inactiv-
ity. On the other hand, they only migrate the tasks
for close-to-minimal times, so as to keep the time
spent on migration low. We notice that the PvMigrater
value is the highest (1.34) for MediaTomb among
these applications, and its Speedup is the lowest
(1.41). This confirms our performance analysis in
Section 3.5.

We also notice that the effectiveness of
VMIGRATER slightly reduces when the con-
solidation rate increases. This is caused by the
special design with the vCPU scheduler in KVM
(i.e., CFS in Linux), which allocate smaller time
slices with higher consolidation rates. This reduces
the opportunity to migrate I/O bound tasks. This
problem can be mitigated by waking up Task
Detector threads more frequently.

Figure 11 shows the response time of the three
systems normalized to no sharing. For 7 appli-
cations, the response times of VMIGRATER and
xBalloon are almost the same. Since each VM
has 50% CPU resource, xBalloon has good per-
formance (mentioned above). For MediaTomb, all
three systems incur high response time because
MediaTomb combines I/O and compute in one task.

Figure 12 shows three systems’ overhead to co-
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Application Vanilla vSlicer xBalloon vMigrater Ratio
HDFS 121.82s 92.91s 75.27s 6.62s 18.39
LevelDB 129.45s 101.55s 79.84s 17.86s 7.25
HBase 98.13s 69.37s 75.71s 18.93 5.19
MongoDB 39.49s 30.34s 40.57s 3.49s 11.31
PostMark 225.32s 168.01s 113.01s 12.92s 17.44
MediaTomb 108.61s 89.46s 116.96s 34.95s 3.11
Nginx 59.15s 61.72s 42.37s 8.03s 7.37

Table 2: I/O inactivity time (seconds) of 7 applica-
tions. Four VMs are used. The last column is the ratio be-
tween the I/O inactive time with vanilla KVM and that with
VMIGRATER.

Application Nmigrate Nmin PvMigrater Speedup
HDFS 3363 3181 1.05 1.86
LevelDB 2154 2003 1.07 1.75
HBase 3454 3181 1.08 1.76
MongoDB 1545 1363 1.13 1.70
PostMark 5181 4818 1.07 1.82
MediaTomb 2454 1818 1.34 1.41
Nginx 4181 4090 1.02 1.73

Table 3: VMIGRATER only migrates I/O bound tasks
for close-to-minimal times. Two VMs are used.
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Figure 12: Execution time normalized to “Vanilla”.
“Hadoop” means each VM is running Hadoop stan-
dard TeraSort workload; “Spark” means each VM is
running standard WordCount workload; “ClamAV”
means each VM is scanning virus for the whole OS.
Each VM has 12 vCPUs.

running compute-bound applications in the same
VM. xBalloon’s overhead is much higher than
VMIGRATER and vSlicer because xBalloon pri-
oritizes I/O-bound tasks and delays compute-
bound tasks. vSlicer’s overhead is higher than
VMIGRATER because it incurs much more con-
text switching overhead for compute-bound tasks.
Unlike xBalloon and vSlicer, VMIGRATER almost
would not delay co-running applications (§3).

5.3 Robustness to Varing Workloads
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Figure 13: Throughput scalability on the loads of VMs,
normalized to vanilla. Each client consumes around
20% CPU resources; two 2-vCPU VMs share two pC-
PUs; the more concurrent clients, the more faster
VMIGRATER than vSlicer and xBalloon.

Figure 13 shows the three systems’ through-
put under varing workloads. When the num-
ber of clients is lower than 10, the through-
put of VMIGRATER is almost the same as vS-
licer and xBalloon because VMs are not shared.
VMIGRATER is not started when there is no shar-
ing. As the number of clients increased to 40,
VMIGRATER outperforms the other two systems
significantly because VMIGRATER can efficiently
avoid I/O inactivity periods by migrating I/O tasks
to scheduled vCPUs. vSlicer and xBalloon do not
work when vCPU is inactive. xBalloon has almost
the same performance as VMIGRATER for around
20 clients (each VM has 50% CPU resource). How-
ever, VMIGRATER is much more scalable than vS-
licer and xBalloon when workloads increase.
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Figure 14: VMIGRATER’s performance on handling
the load change of vCPUs by adding clients dynami-
cally. 8 clients at the time 0; each client exhausts 20%
CPU resource; two 2-vCPU VMs share two pCPUs.

Figure 14 shows the robustness of VMIGRATER
in the face of suddenly changing workloads. There
are 8 clients at 0s, and the VMs are not over-
loaded. At around 4s, 8s and 11s , 4, 8 and 16
more clients are added, VMIGRATER’s throughput
decreases to around 240MB/s, but it becomes stable
(peak, around 430MB/s) again after a short period
because VMIGRATER needs some time to precisely
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re-estimate the time slices of vCPUs and then mi-
grate the I/O bound tasks (§7).

5.4 Fairness for I/O Scheduler

 0
 20
 40
 60
 80

 100
 120
 140
 160

 w/o vMigrater   w/ vMigrater
(a) VM1: 90%; VM2: 10% CPU

Th
ro

ug
hp

ut
 (M

B
/s

) VM1
VM2

 0
 20
 40
 60
 80

 100
 120
 140
 160

 w/o vMigrater   w/ vMigrater
(b) VM1: 80%; VM2: 20% CPU

Th
ro

ug
hp

ut
 (M

B
/s

) VM1
VM2

 0
 20
 40
 60
 80

 100
 120
 140
 160

 w/o vMigrater   w/ vMigrater
(c) VM1: 70%; VM2: 30% CPU

Th
ro

ug
hp

ut
 (M

B
/s

) VM1
VM2

 0
 20
 40
 60
 80

 100
 120
 140
 160

 w/o vMigrater   w/ vMigrater
(d) VM1: 60%; VM2: 40% CPU

Th
ro

ug
hp

ut
 (M

B
/s

) VM1
VM2

Figure 15: VMIGRATER improves the fairness of I/O
Scheduler. Two 12-vCPU VMs share 12 pCPUs; each
VM is allocated different CPU resources but the same
I/O bandwidth.

Figure 15 shows the fairness of the VMM I/O
scheduler among VMs. In Figure 15 (a), (b), (c) and
(d), VM1’s CPU resource decreases from 90% to
60%, and VM2’s CPU resource increases from 10%
to 40%. Each VM runs TestDFSIO (I/O-bound
task) and TeraSort (compute-bound task) concur-
rently, and each VM is allocated with the same
I/O bandwidth. Without VMIGRATER, TestDFSIO
throughput is related to the CPU resource allo-
cated to the VM, which shows that vanilla hurts
the fairness of the I/O scheduler in the host OS.
With VMIGRATER, two VMs in each figure achieve
roughly the same TestDFSIO throughput, which
implies VMIGRATER maintains fairness (roughly
the same I/O bandwidth) for the two VMs.

6 Related Work
Shortening time slices. Many efforts have focused
on shortening the time slices of vCPUs [10, 49, 48]
for vCPUs to process I/O requests more frequently.
This solution has two drawbacks: (1) the I/O inac-
tivity period still exits and could degrade I/O perfor-
mance; (2) it suffers from performance degradation
because of frequent context switches [21, 46, 32].
[48] uses the same idea to reduce the delay of IRQ
processing. These solutions require intensive modi-
fications to both the VMM and guest OS kernel.
Dedicating CPUs. Dedicating CPUs [43, 14] aims
to solve the resource contention problem. This solu-
tion makes fewer vCPUs share one pCPU in order to
reduce contention. These systems are complemen-
tary to VMIGRATER because they focus on reduc-
ing the vCPU sharing, while VMIGRATER focuses
on improving performance in the shared setting.

Task-aware Priority Boosting. Existing sys-
tems [21, 31, 15, 44, 39, 20, 29, 50, 23, 34, 22, 33,
16, 28] focus on prioritizing latency-sensitive tasks
to improve overall performance. Task aware VM
scheduling [31] improves the performance of work-
loads by prioritizing I/O bound VMs. [31] works
in the VMM layer and may require changing the
source codes of the host OS. xBalloon preserves the
priority of I/O tasks by preserving CPU resource for
I/O tasks. However, the vCPUs are still desched-
uled so the I/O inactivity periods still exist. xBal-
loon works best for VMs with single vCPUs, while
VMIGRATER is designed for multi-vCPU VMs.

7 Conclusion and Future Work

This paper identifies I/O inactivity problem in VMs
which has not been adequately studied before. It
presents VMIGRATER, a simple, fast and transpar-
ent system that can greatly mitigate I/O inactivity.

VMIGRATER has two limitations, and we leave
them as future work. First, when VMIGRATER
runs in a VM, the performance of an application
in the VM may drop temporarily when the appli-
cation’s workload changes suddenly. Our evalu-
ation (see §5.3) shows that, when the number of
clients for HDFS increased from 16 to 32, HDFS’s
throughput dropped by 45.6% for 1.3 seconds and
then went back to the peak throughput immedi-
ately. The reason is that the sudden changing work-
load makes time slices of some vCPUs not stable,
and VMIGRATER needs some time to precisely re-
estimate the time slices of vCPUs and then mi-
grate the I/O bound tasks. Second, VMIGRATER
mainly aims to mitigate the performance degrada-
tion caused by disk (HDD or SSD) I/O inactivity
periods in VMs, and it is not designed to handle
network I/O. Comparing to disk I/O, network I/O
is much more sparse, and we have not come across
any situation where VMIGRATER affects the perfor-
mance of network I/O in our evaluation.
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Abstract

Our work addresses the problem of placement of threads,
or virtual cores, onto physical cores in a multicore
NUMA system. Different placements result in varying
degrees of contention for shared resources, so choosing
the right placement can have a large effect on perfor-
mance. Prior work has studied this problem, but either
addressed hardware with specific properties, leaving us
unable to generalize the models to other systems, or mod-
eled much simpler effects than the actual performance in
different placements.

Our contribution is a general framework for reasoning
about workload placement on machines with shared re-
sources. It enables us to build an accurate performance
model for any machine with a hierarchy of known shared
resources automatically, with only minimal input from
the user. Using our methodology, data center operators
can minimize the number of NUMA (CPU+memory)
nodes allocated for an application or a service, while en-
suring that it meets performance objectives.

1 Introduction

We address the problem of placing a virtual container on
a multicore NUMA system. Hardware resources allo-
cated to a container determine how well it performs and
how much energy it consumes. Roughly speaking, there
are two decisions affecting which hardware resources are
allocated to a container. First, the user decides how many
cores, memory and perhaps other resources the container
requires. Second, the system software decides, when
launching the container, how to map the container’s vir-
tual cores onto physical cores. Our work proposes a so-
lution for automatically making this second decision.

The placement of virtual cores onto physical cores can
have a large and unpredictable effect on performance.
Consider the following experiment, where we use Mon-
goDB’s WiredTiger key-value store [3] running a B-tree
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Figure 1: Throughput of the WiredTiger key-value store
on two NUMA systems.

search using 16 threads. We run this application in a lxc
container on an Intel NUMA system and on an AMD
NUMA system (Fig. 2 provides their overview). Sup-
pose our goal is to maximize the throughput. How should
we place this container? Assuming that each virtual core
gets its own physical core, how do we place virtual cores
onto NUMA nodes? Do we squeeze them onto as few
nodes as possible?, do we spread them evenly across all
nodes?, or do we use a middle ground?

As Fig. 1 shows the right answer can vary greatly from
one system to the next. On the Intel system, the applica-
tion performs significantly better when all of its threads
run on a single node. On the AMD system, four nodes
are better than two, only if we do not use SMT, but using
eight nodes does not buy you better performance1.

There is a number of factors responsible for this dis-
similar behaviour. When all threads are squeezed into
a single NUMA node, they experience more resource
sharing: on the Intel system they have no choice but to
share the SMT pipeline and the L3 cache. Resource shar-
ing can be contentious (where threads compete for cache
space and hardware queues [34]) or cooperative (where
threads pre-fetch data for each other [27]). Furthermore,
with all the threads running on a single NUMA node,

1A single-node configuration for AMD is not shown: we used 16
virtual cores, so we could not fit them onto a single node (with 8 cores)
while ensuring that each virtual core gets its own physical core.
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cross-thread communication has a lower latency, because
it occurs via the L3 cache, as opposed to a slower cross-
chip interconnect. Apparently, the benefits of faster com-
munication and cooperative resource sharing outweigh
the cost of resource contention on the Intel system, but
not on the AMD system.

The best-performing placement for a container, there-
fore, is difficult to predict. The problem becomes even
harder if the goal is to not only pick the best-performing
placement, but to achieve a trade-off between the num-
ber of used nodes and performance. Our work proposes
a solution that works as follows:
Step 1: The user provides a simple abstract specification
of the shared resources present on the target hardware.
Identifying the right level of abstraction was key to be-
ing able to automatically construct models for different
target systems. The abstraction we propose in this work
is called scheduling concerns (§4).
Step 2: Using shared resource specification, our algo-
rithm generates, for a given container size, a list of im-
portant placements – placements that will likely yield
different performance on the target hardware2. This step
is crucial for automatically training a model: while the
total number of potential placements is measured in bil-
lions (making training infeasible), the number of impor-
tant placements is only a couple dozen. We introduce the
concept of important placements and propose the algo-
rithms for automatically generating them (§4).
Step 3: Using our script, the user trains a machine learn-
ing model for the target hardware and the target number
of vCPUs (§5). Unlike prior work, we do not rely on
hardware performance events (HPE) as model features.
Manual selection of the right HPEs puts too much bur-
den on the user. Automatic selection turned out to be im-
practical on modern machines with 1000s of HPEs. In-
stead, our model uses as inputs actual performance mea-
surements obtained in two different placements. This
approach makes our model-building methodology easier
to port across hardware, reduces the training time and
achieves higher accuracy, compared to using HPEs.
Step 4: The scheduler runs the virtual container in two
different placements, for a couple of seconds in each,
feeds their performance into the model and obtains a vec-
tor of predicted performance values in each important
placement. Using this vector, the system decides what
placement to use and remaps the virtual cores. Since the
container needs to run in two placements, its memory
may need to be migrated if these placements do not use
the same NUMA nodes. We improve on memory migra-
tion in Linux and evaluate its overhead in §7.

Our solution enables determining the best placement
for a specific virtual container, but not how to interleave

2§4 defines the important placement.

different containers on the same NUMA node. Some
data center operators we spoke to do not interleave con-
tainers, others do, so we leave that decision up to the
operator. Going back to the scenario in Fig.1, using our
tools the scheduling system can quickly decide that on
the Intel host it is sufficient to provide a single NUMA
node for the key-value store in order to maximize its
throughput. Then the remaining nodes can be used to
host other containers. We believe that our techniques can
be used to build scheduling systems that pack virtual con-
tainers onto physical hardware more efficiently.

Our main contribution is abstractions and methodol-
ogy for constructing accurate and portable models for
predicting performance of a container in various place-
ments on NUMA systems, regardless of what shared
resources are present. We evaluate it by automatically
generating performance models for two different hard-
ware systems and measuring their accuracy using cross-
validation (§6). We also present a use case demonstrating
how the model could be used in practice (§7).

2 Background and Related Work

Workload placement on multicore systems has been ex-
plored for over a decade. Early studies examined con-
tention between single-threaded applications for a spe-
cific resource, such as the SMT instruction pipeline [25,
14], or shared caches and memory controllers [34, 12,
21, 31]. Later work extended the techniques to multi-
threaded workloads and to additional resource combina-
tions, such as SMT and shared caches [33], memory con-
trollers and the shared interconnect [9, 18]. While laying
a crucial foundation for our work, these prior techniques
did not provide a general solution for reasoning about
such systems. For instance, while the work of Zhuravlev
et al. [34] showed us how to avoid interference for shared
memory controllers and the work of Lepers et al. [18]
showed us how to place applications on machines with
asymmetric interconnects, we still do not know how to
build a model that combines both concerns.

Techniques used in prior work did not allow for auto-
matic combination of several models. Every model re-
quired manual design: careful selection of hardware per-
formance events [34, 17, 18, 9, 12] or even manual craft-
ing of artificial “probe” workloads or “Rulers” [31, 33]
that must be run side-by-side with the target workloads
to determine their sensitivity to contention.

Dwyer used an automated model-building method-
ology, where automatically selected features (from all
HPEs available on the machine) were fed into a variety of
machine-learning models [11]. However, the model pre-
dicted a rather simple outcome: a performance degrada-
tion when a target workload was co-scheduled with an in-
terfering one, and not the performance in different place-
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ments. Consistent with our finding that HPEs observed
in a single placement are poor model features, Dwyer’s
study reported rather poor prediction accuracy.

A recent system, Pandia [15] not only accurately pre-
dicts performance of different workload placements on
a multicore NUMA machine, but also predicts how an
application would perform with different numbers of
threads. Unforunately, to make predictions, Pandia re-
quires performance observations of six runs with dif-
ferent thread counts, which is difficult to do online be-
cause most real applications cannot easily reconfigure
their thread count on demand. Despite addressing many
limitations of previous work, fundamentally Pandia still
relies on the machine-specific modelling methodology
that prevents easily transferring results to other systems.
Pandia’s authors capture factors that contribute to perfor-
mance, such as cache contention, latency of communi-
cation, and load balancing, in a set of machine-specific
equations. If the model had to be adapted to another ma-
chine, the equations would have to be manually reformu-
lated.

We believe that investing that much effort into design-
ing new models for every new type of hardware puts an
unreasonable burden on system engineers. Instead, we
sought a future-proof methodology that uses easily avail-
able information about a machine’s shared resources and
automatically builds an accurate performance model.

There are two recent studies that address a different
problem, but use techniques that could be adopted in our
work. CherryPick [4] handles cloud configuration op-
tions, like CPU count, amount of RAM, disk speed, and
network speed, but not multicore resources. CherryPick
uses Bayesian optimization to minimize the number of
search configurations needed and achieves high accuracy
despite the non-linearity of performance. The Bayesian
optimization approach could potentially work well with
our goal and resources, and is a possible avenue of fu-
ture work. PARIS [30] is similar to CherryPick in that it
handles the same type of resources and its goal is to help
cloud customers choose the correct cloud configuration.
It does not abstract or handle multi-core resources.

3 Assumptions and Limitations

Identically scored placements yield identical perfor-
mance. As we explain in §4, a placement is identified
by the degree of sharing for each hardware resource, to
which we refer as the score. A vector of scores identi-
fies a placement. Placements with identical score vectors
are deemed to yield identical performance for a given
workload. This assumes that our machine model must
be informed about all shared resources that might affect
performance. Most solutions in this space also assume
awareness of all shared resources. A radically different

approach would be a statistical technique that searches
for an optimally performing placement by trying a suffi-
cient number of random placements [23]. Unfortunately,
the best known techniques require trying thousands of
placements and assume that performance in all place-
ments fits a Generalized Pareto distribution — an as-
sumption that does not hold in our case.

A workload is encapsulated in a virtual container.
Data centers use virtualization for a variety of reasons,
so this assumption dovetails with our target environment.
Managed cloud environments present their offerings as
a menu of virtual instances with a fixed number of vC-
PUs per instance (see [1], for example). As a result, we
can feasibly train a separate model for each type of hard-
ware and each vCPU count; we do not have to incor-
porate the effects of varying number of threads into the
model, which would make it more complicated. We are
not addressing the problem of finding the optimal num-
ber of threads or vCPUs for the workload; for that, users
can resort to other tools [15, 26].

A NUMA node is a unit of resource allocation. Our
solution predicts the performance of a container in all
important placements, provided that the target container
does not share NUMA nodes with other containers. Un-
used NUMA nodes can be safely used to run other con-
tainers without interference as long as those nodes do not
share the interconnect – a condition that can be automati-
cally checked using the machine specification3. Suppose
that the “best” number of NUMA nodes chosen for a con-
tainer gives us more physical cores than the container
needs. Then the remaining cores would be left idle if no
other containers used them. Some data center operators
find this acceptable, reasoning that the cost of leaving
cores idle is negligible relative to missing performance
targets; others contend that maximizing the utilization of
physical cores is very important. Our solution does not
dictate the decision. If the operator chose to interleave
containers on NUMA nodes, our modeling techniques
would need to be extended to provide performance pre-
dictions under interleaving. Another alternative would
be to only interleave with “safe” containers, e.g., those
with low CPU utilization or otherwise known to cause
negligible interference. We leave the exploration of these
scenarios to future work.

We consider only balanced placements. A balanced
placement is one where the number of vCPUs is evenly
divisible by any number of shared resource units consid-
ered for placement. For instance, if we have shared L3
caches on the system, we will only consider placements
where the number of vCPUs sharing each L3 cache is
equal. Uneven sharing can cause unpredictable perfor-
mance effects on the workload, for example by creating

3Experimental results confirming this statement are available [13].
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stragglers, so we choose to not model these effects.

4 Abstract machine model

A major obstacle to a solution to the placement prob-
lem is the sheer number of possible placements. For 16
virtual cores on a 64 core system, the number of possi-
ble placements is the combinations of 16 objects chosen
from a set of 64, which is on the order of 1014. It is es-
sential to exploit the symmetry in the system to reduce
the number of placements to a manageable number. By
this we mean that for most types of shared resources it
does not matter which shared resources are being used
but how much of the shared resources is available to the
workload. For instance, for the workload in Fig. 1 on the
AMD system, it does not matter which L3 cache it uses,
all that matters is whether it has two, four or eight L3
caches at its disposal.4

We tackle this with the concept of scheduling con-
cerns. A single scheduling concern is responsible for
a single hardware resource, or an inseparable set of
hardware resources that affect the performance of vCPU
placements. The primary purpose of a scheduling con-
cern is to provide a numerical score when given a vCPU
placement. The score represents the static utilization
of the particular resource, meaning that it only depends
on the vCPU placement, not the dynamic behavior of a
workload. A simple example is an “L2 cache” resource.
If in a given placement all the virtual cores share a single
L2 cache, the score for the L2 cache scheduling concern
will be equal to one. If in another placement the cores
are spread over two L2 caches, the score will be equal to
two, and so on. So, two placements might use completely
different NUMA nodes and physical cores, but if they
use the same number of L2 caches then they will both
have the same L2 cache score. From the vantage point of
the L2 cache, these placements will be identical in terms
of performance. For non-symmetrical resources, such as
the cross-chip interconnect on some systems, instead of
counting how many links are used by a placement in or-
der to obtain the score, we would add up the total avail-
able bandwidth of all links used by a placement. A vector
of numeric scores for all scheduling concerns uniquely
identifies each placement that is distinct with respect to
sharing of resources. Placements with identical vectors
are deemed identical with respect to resource sharing, so
we can discard the duplicates when training our model.
By considering only the placements with distinct score
vectors, we substantially reduce the space of relevant
placements and make the problem tractable.

4The exception is asymmetric resources, for instance if one NUMA
node is positioned closer to the system NIC than others; our model
allows caputring this asymmetry.

There are two additional pieces of information a
scheduling concern needs in order to identify the im-
portant placements. The first is whether the concern’s
score is proportional to the user’s cost, which is the case
for resources like NUMA nodes because fewer nodes
(lower score) means more containers can be packed onto
a system. If a lower score for a resource only meant
worse performance, we could simply discard placements
with a lower score for that resource (all other scores be-
ing equal) from our list of important placements. But
since we want users to be able to make cost-performance
trade-offs, placements with lower scores but potentially
lower cost could still be relevant. The second piece of
information needed by a scheduling concern is whether
the resource encompassed by a concern can ever have
an inverse relationship with performance. For some re-
sources, like the L2 cache, a higher score is usually bet-
ter, but for some workloads such as those showing co-
operative cache sharing, a smaller score (using fewer L2
caches) may actually improve performance. For other re-
sources, like the shared interconnect described below, a
lower score will never improve performance and would
not result in a lower cost for the user, so we can safely ig-
nore placements with lower scores when all else is equal.

In practice, a single scheduling concern may cover
multiple shared resources because some resources are
inseparable with respect to thread placement. Threads
sharing a physical core via SMT typically share a cache,
the instruction front-end, and functional units. In cases
like this, a single scheduling concern is still sufficient.

Our AMD system (Fig. 2) has multiple NUMA nodes,
an asymmetric interconnect, and a form of SMT. For this
system we developed the scheduling concerns shown in
Table 1. For the L2/SMT and L3 concerns, the score for
a particular placement can be calculated directly from in-
formation provided by the operating system. The OS also
provides information on the interconnect topology, but it
is simpler and more accurate to measure the aggregate
bandwidth with a benchmark (e.g. stream [20]) for each
possible combination of nodes.

For example, for a 16-vCPU container in an eight-
node placement without SMT the score vector for the
AMD system is [16, 8, 35000], because this placement
uses 16 L2 caches (16 hardware threads, one per cache),
eight L3 caches (8 nodes) and has an IC bandwidth of
35GB/s. For the same placement, but with SMT, the
score vector would be [8, 8, 35000], because on each
node two hardware threads would be collocated on the
same L2 cache, so we would use half the L2 caches than
in the case without SMT.

Each concern is relatively easy to implement, and can
be developed independently. Since it does not require
a performance expert, we envision the specification of
concerns being provided as part of system BIOS. Over-
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(a) AMD Opteron 6272 node

Node 0

Node 6

Node 5

Node 3

Node 4

Node 2

Node 1

Node 7

(b) AMD interconnect (c) Intel Xeon E7-4830 v3 node

Figure 2: The two systems used in our study. The first is a quad AMD Opteron 6272. It has eight NUMA nodes
(schematically shown in Figure 2a) connected with an asymmetric interconnect (Figure 2b) and a total of 64 cores.
Pairs of cores share the instruction front-end, L2 cache, and floating point units. The second system is a quad Intel
Xeon E7-4830 v3 with four NUMA nodes (Figure 2c) and 96 hardware threads (12 physical cores per node with
SMT). The interconnect (not shown) is symmetric.

Concern Score Resources Cost? Inverse Perf Possible?

L2/SMT Number of L2 caches in use
L2 cache, instruction fetch
and decode, and floating point
units

Y Y

L3 Number of L3 caches in use L3 cache, memory controller,
and bandwidth to DRAM Y Y

Interconnect
Aggregate bandwidth between
nodes in use Interconnect bandwidth N N

Table 1: Scheduling concerns used on our AMD test system (shown in Figure 2).

all, we found scheduling concerns to be a powerful ab-
straction that enables encoding shared resources on a
variety of hardware and makes the model easy to port
to new hardware.

Next, from the concerns and hardware topology we
need to derive the important placements. An important
placement must have a score that ensures it satisfies three
properties: (1) conform to our balanced assumption, (2)
be feasible: i.e., not assign more than one vCPU to a
single hardware thread, and (3) not be superseded by a
strictly better placement.

Given a score s and the number of vCPUs v, the bal-
ance property is encoded as v mod s = 0, and the feasi-
bility property is encoded as v/s ≤Capacity, where ca-
pacity is the number of hardware threads available in a
single instance of the resource if applicable: e.g. there
are eight hardware threads per L3 cache on our AMD
test system. We also define the Count of a concern as
the total number of that resource on the system, so our
AMD test system has an L2Count of 32 for example. The
first step in generating important placements is generat-
ing the possible scores that satisfy the balance and fea-
sibility requirements individually. This is done for each
scheduling concern that can affect cost or have an inverse
relationship with performance. For our AMD test system
this step is shown in Algorithm 1.

Now that we have all balanced and feasible place-
ments, and before filtering the duplicates, we need to
enumerate all possible placements whose performance
the scheduler might want to predict if more than one
container were running on the system. For example,
suppose that after placing one container onto two nodes
on the system, the scheduler might want to place other
containers on the remaining nodes, so it should be able
to predict the performance on any combination of those
nodes. Therefore, we must keep track of possible place-
ments on those remaining nodes in order to properly train
the model. The packings are generated with a recursive
method shown in Algorithm 2. On our AMD system,
we use the L3 scores because the L3 scheduling concern
corresponds to NUMA nodes, and NUMA nodes are our
unit of resource allocation (see §3).

Next, as shown in Algorithm 3, packings that are du-
plicates and packings that are not Pareto-efficient with
respect to the interconnect score are filtered out (since
the interconnect concern does not affect cost and cannot
have an inverse relationship with performance). Because
the L2 and L3 scores can affect cost or have an inverse re-
lationship with performance, placements are not filtered
based on them.

As an example of a Pareto-efficient packing, on our
AMD system we need to keep the 4-node placement that
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Algorithm 1 Generating possible L2 and L3 scores
L3Scores = List()
for i← 1,L3Count do

if v/i≤ L3Capacity∧ v mod i = 0 then
L3Scores.append(i)

end if
end for
L2Scores = List()
for i← 1,L2Count do

if v/i≤ L2Capacity∧ v mod i = 0 then
L2Scores.append(i)

end if
end for
return L3Scores, L2Scores

Algorithm 2 Generating packings of placements
Packings = List()
procedure GENPACK(L3Scores, NodesLeft, Current)

for all L3S in L3Scores do
if L3S > len(NodesLeft) then

continue
end if
for all n in Combinations(NodesLeft, L3S) do

Remaining = NodesLeft - n
NewPacking = Current.append(n)
if len(Remaining) > 0 then

GenPack(L3Scores, Remaining,
NewPacking)

else
Packings.append(NewPacking)

end if
end for

end for
end procedure
return Packings

uses nodes {2,3,4,5} because it is the 4-node placement
with the highest interconnect score. Therefore the place-
ment using nodes {0,1,6,7} is also an important place-
ment and will be kept because it is the placement that
can be packed with the best 4-node placement. Contin-
uing, suppose that we consider a 4-node placement that
uses nodes {0,1,4,5}. If we were to use this placement
at runtime, the remaining set of four nodes, potentially
used for another workload, is {2,3,6,7}. Both of these
placements have poor interconnect scores, in part be-
cause there is a two-hop distance between nodes {0,5}
and nodes {3,6}. Instead, we can pack the machine with
a better combination of 4-node placements: {0,2,4,6}
and {1,3,5,7}. Using this observation, the vectors for
placements {0,2,4,6} and {1,3,5,7} will be kept over
the worse pair of 4-node placements.

Algorithm 3 Generating important placements
Nodes = range(0, L3Count)
Packings = GenPack(L3Scores, Nodes, List())
Remove duplicates from Packings
for all (a,b) in Permutations(Packings, 2) do

if L3 Scores in a 6= L3 Scores in b then
continue

end if
aIC = Sorted interconnect scores of a placements
bIC = Sorted interconnect scores of b placements
ToRemove = True
for i in range(0, len(aIC)) do

if aIC[i]> bIC[i] then
ToRemove = False

end if
end for
if ToRemove then

Remove a from Packings
end if

end for
ImportantPlacements = List()
for all Placements p in Packings do

n← L2Count/L3Count
L3S = L3 Score of p
for all L2S in L2Scores do

if n ·L3S≥ L2S then
ImportantPlacements.append(p)

end if
end for

end for
return ImportantPlacements

After this process is complete, we are left with the im-
portant placements. For our AMD system we have 13
of them: two 8-node placements (one sharing L2 caches
and one not), three 2-node placements (with the best and
second-best interconnect score, and one placement used
to pack when specific 4-node placements are used), and
eight 4-node placements (half sharing L2 caches, half
not, and various interconnect scores relevant for pack-
ing). Our Intel test system (Fig. 2), on the other hand,
only uses an L2/SMT concern and an L3 concern. With
24 virtual cores per container, it has seven important
placements which are all of the placements that satisfy
the balance and feasibility constraints: a one node place-
ment sharing L2 caches, two 2-node placements, two 3-
node placements, and two 4-node placements.

5 Performance Predictions

Automatic model-building techniques learn how to map
a set of features describing data to a predicted outcome.

286    2018 USENIX Annual Technical Conference USENIX Association



The outcome we would like to model is a vector of per-
formance values in all important placements, relative to
a baseline placement. For example, if there are three
important placements, and the performance in the sec-
ond and third is 20% and 30% better than that in the
first baseline placement, the performance vector will be:
[1.0,0.8,0.7]. Our data elements are executions of work-
loads in different placements, and the features are some
metrics describing the execution.

Model-building methodology and feature selection.
To build a model, we use a multi-output Random For-
est regressor (RF). RF is a machine learning technique
known for its ability to learn non-linear functions with
very little or no tuning. More complex techniques, like
deep neural networks, can yield slightly higher accuracy,
but require substantial tuning and are prone to overfitting,
especially if not given the “right” features.

Any modelling technique requires predictive input fea-
tures. Feature selection turned out to be a challenge. In
the past, to model performance on multicore systems, re-
searchers used hardware performance events as inputs to
the model. In most cases, the HPEs were selected man-
ually5, which required substantial insight into the intri-
cacies of hardware architecture and its effects on soft-
ware. Our goal was to make model training automatic,
so manual HPE selection was not an option. Automatic
selection, on the other hand, turned out to be impractical.

Modern machines have many hundreds of HPEs, some
more than 1000 [32]. Automatic feature selection would
measure all HPEs during training and use feature selec-
tion to identify the best predictors. Only four HPEs can
be measured at a time, because there is usually only four
hardware counter registers, so measuring all the HPEs
for the entire training set can take weeks (66 days on our
Intel machine), even if we use sampling.

In an effort to find an acceptable compromise, we first
used a combination of the manual and automatic ap-
proaches. We started with a set of plausible features (41
HPEs on the Intel test system and 25 the AMD) cov-
ering cache, memory, TLB, interconnect, and pipeline
behaviour, which are metrics commonly used in sim-
ilar work. We then used Sequential Forward Selec-
tion [10, 16] (SFS) to pick the best ones. The final RF
model would take a vector of selected HPEs observed in
a single baseline placement as the input and produce the
performance vector as the output. Even after this rigor-
ous feature selection process, we were not happy with
the accuracy (see §6).

Finally, we designed a solution that is more robust, re-
quires little training time, and is largely automatic. In-
stead of relying on HPEs describing various architec-

5Dwyer’s [11] and Zellweger’s [32] works are the only exceptions
known to us.

tural events, we rely on observations of actual perfor-
mance in two different configurations from the set of im-
portant placements. Performance can be measured using
instructions per cycle (IPC), transactions per second, or
any other application-specific metric – the only require-
ment is that it must be possible to obtain this metric on-
line. Specifying the performance metric for a container
is the only manual part of the process. Beyond that, the
training process automatically finds the two of the im-
portant placements that give the highest accuracy when
used as inputs to the model. The final model takes as
inputs the performance observations in these two place-
ments and outputs the predicted performance vector. A
separate model is trained for each number of vCPUs used
in virtual containers.

The downside of this approach is that at runtime we
have to run the container in two placements instead of
one before obtaining the predictions, but the advantage
is that the predictions are more accurate and we do not
have to use the time-consuming feature selection process
for each new target hardware.

Figure 3: Performance relative to the baseline placement
(#2) for workloads in two example clusters on Intel.

Why do performance observations have good predic-
tive ability? Empirical evidence suggests that workloads
naturally fall into several categories, according to the
shapes of their performance vectors. Figure 3 shows two
example categories on the Intel system. As we can see,
the vectors within the category are almost identical, but
the vectors in different categories are very distinct.

To generate these categories we used k-means cluster-
ing. To automatically determine the best value for k, we
select the k that maximizes the average Silhouette coef-
ficient [24, 2] over all data points, which is the standard
practice in the field. This clustering method produced
six categories on our systems (full results are reported
in [13]). This suggests that workloads may naturally
form distinct categories depending on their performance
trends. For example, workloads that are not memory in-
tensive and are not adversely affected by sharing SMT
contexts could belong to the same category (where thread
placement does not matter). Another category could be
one where using fewer NUMA nodes and fewer phys-
ical cores greatly hurts performance, and so on. Then
there is no surprise that a ML model could quickly nar-
row down the category, and hence the shape of the per-
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formance vector, from two observations of performance.

6 Evaluation

In this section we focus on evaluating the accuracy of
predictions. Since our training method does not require
automatic feature selection, training the model takes sec-
onds. The algorithms used to determine important place-
ments also run in a matter of seconds. The inference time
is negligible (milliseconds).

We had three model variants to compare: the first
one used as inputs the actual performance measurements
observed in two important placements, the second used
only the HPEs observed in a single placement, the third
used both. The third variant did not improve accuracy
over the first one, so we do not include the data for it.

The set of applications we experimented with are
drawn from the NAS Parallel Benchmark suite [6], Par-
sec suite [7], the Metis map-reduce benchmarks [19], and
BLAST [5]. Also included are the Linux kernel compile
gcc benchmark, two Spark graph workloads, TPC-C [28]
and TPC-H [29] on Postgres and a WiredTiger [3] BTree
benchmark. Workloads were run using lxc containers
and configured to use 16 vCPUs on the AMD system
and 24 vCPUs on the Intel system (Fig. 2). Within con-
tainers, the number of application threads is set so as to
achieve >70% CPU utilization on each core, typical of
what is done in practice.

Figure 4 show the actual and predicted performance
for each workload for important placements on the AMD
and Intel systems. The x-axis shows the IDs of the im-
portant placements, numbered 1–13 on the AMD sys-
tem and 1–7 on the Intel system. The y-axis shows the
performance in the placements relative to the baseline.
Placement #1 was used as the baseline for the AMD sys-
tem, and placement #2 for the Intel system – the baseline
placement can be any of the two placements whose per-
formance is required as the input to the model.

The results are per-application cross-validated. For
example, when training the model that will be used for
predicting a Spark workload neither the data from spark-
cc (a Spark connected components algorithm run on the
LiveJournal database) nor spark-pr-lj (a PageRank al-
gorithm run on the LiveJournal database) is included in
the training. We cross-validated every workload, but for
space constraints we omit the results for most of the NAS
and Parsec benchmarks. They are qualitatively similar to
others and we are happy to provide them upon request.

Overall the accuracy when using only the actual per-
formance measurements as model features is high. The
predicted performance is within 4.4% of actual on av-
erage on the AMD system, and within 6.6% on Intel.
A couple of exceptions are the cases where the train-
ing set did not include any workloads that behaved simi-

larly to the predicted benchmark, for example kmeans on
the AMD system, which was the only benchmark in our
training set that preferred SMT, or canneal on Intel.

Prediction accuracy when using only the HPEs from
a single placement was a lot less reliable. On the AMD
system it produced good results overall, but the accuracy
was still noticeably worse compared to the model vari-
ant that relied only on actual performance measurement.
On Intel the model relying only on HPEs produced many
poor predictions. It completely missed the performance
trend for ft.C and freqmine, produced errors of over 40%
for kmeans and WTbtree, and is noticeably worse for sev-
eral other workloads.

An example of why HPEs observed in a single place-
ment could have poor predictive power, and one of the
reasons why the Intel system produced worse predic-
tions, is predicting the effect of inter-thread communica-
tion latency. There is a huge latency difference for com-
munication between a single-node placement and place-
ments including more than one node. For some applica-
tions, reduced inter-thread communication latency when
all threads are running on a single node has a major per-
formance impact, as is the case for WTbtree. Separating
the sensitivity to latency from overall memory intensive-
ness (which can be measured by the cache miss rate) is
difficult to do with HPEs. Similarly, it is also very dif-
ficult to determine if a workload’s working set will fit in
a given number of L3 caches by only measuring HPEs
on a single placement. We conclude that using actual
performance observations as model features is likely to
produce higher accuracy, in addition to being a more
practical method of training the model, than using se-
lected architectural events.

7 Using the model in practice

There are many ways in which data center operators can
use our model. To illustrate one potential use case we
set up a scenario, where the user would like to pack as
many instances of a given virtual container into a phys-
ical server while respecting a performance target. For
demonstration of the complete solution we implemented
its prototype (covering steps 1-4 in §1). To assess the
overheads, we measure the costs of container migration.

We use virtual containers of three types: WiredTiger
running a B-tree search workload, Postgres running
TPC-H, and Spark running PageRank on a LiveJournal
database. For clarity, we present the results of homoge-
neous configurations, where many containers of the same
type are packed into each system. Performance results
with our model in heterogeneous configurations can be
inferred from these figures, because different containers
collocated on the same system do not interfere with our
approach. Actual data can be provided upon request.
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Figure 4: Accuracy of predictions.
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(c) Spark(PageRank)/AMD
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Figure 5: Instances per machine (left y-axis, higher is better) and % performance goal violation (right y-axis, lower is
better).

The performance goal can be specified in terms of an
application-level metric such as transactions per second
or a generic metric such as instructions-per-cycle. The
placement policy is agnostic to the metric used and only
requires that the application make this metric available at
runtime. For simplicity, we set the performance goals to
correspond to 90%, 100% and 110% of the performance
observed in the baseline placement.

We compare four hypothetical container placement
policies. The first policy, referred to as ML, is based on
our techniques. It decides how many nodes to allocate to
the container based on performance observations in two
placements and the model presented in the previous sec-
tion. It runs the workload in two placements during the
first few seconds of the execution without interrupting
the workload, and then migrates it into the best predicted
placement. To separate various aspects of performance,
the results shown here do not include the migration over-
head; it is studied separately in the next section. The sec-
ond policy, Conservative, is a naı̈ve policy that allocates
the entire machine to each instance, allowing only one
instance per machine. The third policy, Aggressive, is
another simple policy that fills the system with as many
instances as possible, maximizing machine utilization at
the risk of performance violations. For example, our
AMD system allows up to four 16-core instances and our
Intel system up to four 24-core instances. Neither Con-
servative nor Aggressive pin vCPUs to cores, allowing
Linux to perform the mapping in the way it wishes, and
possibly creating unneeded contention. We also evaluate
a more sophisticated fourth policy, Smart-Aggressive.
This policy is similar to Aggressive, except each instance

is pinned to the best minimum set of nodes, which we de-
fine as having the highest interconnect bandwidth. This
policy requires an analysis of the interconnect topology
in order to find the correct set of nodes.

We could not make a fair comparison to any other
method presented in earlier work. As we explained in §2,
most earlier models targeted very different systems and
most did not predict performance vectors, so we could
not apply them directly.

We evaluate the policies by measuring how many in-
stances of the same workload they were able to pack per
machine (higher is better) and the degree of violation of
the performance goal as the percent of the target (lower is
better). All workloads were run using lxc containers and
configured to use 16 vCPUs on the AMD system and 24
vCPUs on the Intel system. Figure 5 show the results for
the three container types. The bars show the number of
instances packed (left y-axis), while the “stars” shows the
deviation from the target performance goal, expressed as
percentage (right y-axis).

The ML policy always meets the performance goal
while in most cases packing more instances per machine
than the conservative scheduler. The conservative policy
almost always packs fewer instances per machine than
ML, but also, surprisingly, may cause performance tar-
get violations, because Linux may map vCPUs unevenly
to shared resources, causing unnecessary contention.

The aggressive policy packs a maximum possible
number of containers per machine, at the cost of perfor-
mance target violations, up to 46% with WiredTiger on
AMD, and 43% with Spark on Intel. It is surprising that
even when the aggressive policy packs the same num-
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ber of containers per machine as the model-based pol-
icy, it still often reports a higher violation percent. That
is because this policy allows virtual containers to share
NUMA nodes. Smart-aggressive addresses this short-
coming, but even that policy can cause performance vi-
olations (e.g., 20% for WiredTiger on AMD), because it
does not take into account all ways in which workload
placement might affect performance.

Memory migration overhead. Memory migration in
Linux is known to be inefficient [18]. Since we need
to measure the performance of workloads in two or three
configurations, fast memory migration is needed in that
phase to reduce overheads. Lepers et al. [18] propose a
method that freezes the application and migrates pages
with concurrent worker threads. We improve on this
by migrating the page cache and reducing locking over-
head. Table 2 shows migration times for the workloads
of §5. We observed similar results on the Intel system.
Note that page cache migration time is counted with our
method only since Default Linux doesn’t support it – and
yet, it can be a large part of migration overhead (93%
with BLAST, 75% with TPC-C and 62% on TPC-H). We
are able to migrate a large amount of memory in a few
seconds, usually one order of magnitude faster than De-
fault Linux (38× faster for Spark). Linux is especially
inefficient for workloads with many processes such as
TPC-C, since it has per-task overhead linked to updating
the cpuset at each migration.

A drawback of our method is that it requires freezing
the container during migration in order to reduce con-
tention on some critical kernel locks. It is therefore suit-
able for non-latency-sensitive workloads. For latency-
sensitive workloads, we have the option of not freezing
the container and to instead throttle the bandwidth given
to the migration process so as to reduce the impact on
the running application. Thus, the migration takes more
time but with a smaller impact on the running container.
Using this method, the overhead of migration for the
WiredTiger workload6 is between 3% and 6%, and the
migration takes 60 seconds. In comparison, Linux takes
43.8 seconds, has a overhead of 20% at best and com-
pletely freezes the applications for several seconds. It
also does not migrate the page cache.

Overall, we observe that the migration overhead is
proportional to the amount of memory used by the con-
tainer, except in cases with extremely high thread counts.
Using the container’s memory footprint, the user can es-
timate whether the migration cost warrants an online de-
ployment of the placement algorithm, or if it is preferable
to use it offline for placement of recurring jobs.

6We picked WiredTiger for this evaluation since other the other
workloads we use don’t report the evolution of performance during the
execution.

Benchmark Memory
(GB)

Fast
Migration (s)

Default
Linux (s)

BLAST 18.5 3.0 5.9
canneal 1.1 0.3 3.9

fluidanimate 0.7 0.3 2.3
freqmine 1.3 0.3 4.2

gcc 1.4 0.3 2.8
kmeans 7.2 1.5 6.5

pca 12.0 2.8 10.0
postgres-tpch 26.8 5.8 117.1
postgres-tpcc 37.7 14.9 431.0

spark-cc 17.0 3.7 139.9
spark-pr-lj 17.1 3.8 137.0

streamcluster 0.1 0.1 0.4
swaptions 0.01 0.1 0.0

ft.C 5.0 1.3 19.4
dc.B 27.3 5.4 51.7

wc 15.4 3.4 19.5
wr 17.1 3.6 18.9

WTbtree 36.3 6.3 43.8

Table 2: Migration performance on the AMD system,
compared to the default Linux migration method. The
amount of memory includes processes’ memory and the
page cache associated with the container.

8 Conclusion

Modern multicore systems have a complex hierarchy of
shared resources and performance can vary wildly de-
pending on how virtual CPUs are mapped to hardware
contexts. Operators waste resources and money by us-
ing conservative and sub-optimal placement policies. We
have shown a solution to this problem using a methodol-
ogy to abstract a system’s shared resources, identify im-
portant placements, and predict their performance. Our
method can lead to very significant advantages in ma-
chine utilization while keeping performance guarantees.

CPU architecture is continually changing, often by
sharing resources between cores in new ways, in order
to continue scaling the core count. AMD’s newly intro-
duced Zen architecture [8] has L3 cache sharing separate
from sharing the memory controller. Intel’s Haswell-E
architecture has asymmetric links between NUMA nodes
through its cluster-on-die feature [22], which has unique
performance implications different from other asymmet-
ric architectures. The flexibility of our methods means
that they can be used on systems like these or future ar-
chitectures without significant retooling by an expert.
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Abstract
Many systems rely on optimistic concurrent search trees
for multi-core scalability. In principle, optimistic trees
have a simple performance story: searches are read-only
and so run in parallel, with writes to shared memory oc-
curring only when modifying the data structure. However,
this paper shows that in practice, obtaining the full perfor-
mance benefits of optimistic search trees is not so simple.

We focus on optimistic binary search trees (BSTs)
and perform a detailed performance analysis of 10 state-
of-the-art BSTs on large scale x86-64 hardware, using
both microbenchmarks and an in-memory database sys-
tem. We find and explain significant unexpected perfor-
mance differences between BSTs with similar tree struc-
ture and search implementations, which we trace to subtle
performance-degrading interactions of BSTs with systems
software and hardware subsystems. We further derive a
prescriptive approach to avoid this performance degrada-
tion, as well as algorithmic insights on optimistic BST
design. Our work underlines the gap between the the-
ory and practice of multi-core performance, and calls for
further research to help bridge this gap.

1 Introduction
Many systems rely on optimistic concurrent search
trees for multi-core scalability. (For example, in-memory
databases [35], key/value stores [29], and OS virtual mem-
ory subsystems [10].) Optimistic search trees seem to
have a simple performance story, based on the observa-
tion that to scale well a workload must contain sufficient
high-level parallelism (e.g., operations should not all mod-
ify the same key [21]). Optimistic search trees therefore
strive to avoid synchronization contention between oper-
ations that do not conflict semantically, such as updates
to different keys. In particular, optimistic trees use read-
only searches, which do not lock or otherwise write to
traversed nodes, with writes to shared memory occurring
only to modify the data structure [7, 29]. This design is
considered key to search tree performance [12, 18].

We show, however, that realizing the full performance
benefits of optimistic tree designs is far from simple, be-
cause their performance is affected by subtle interactions
with systems software and hardware subsystems that are
hard to identify and solve. To demonstrate this issue, con-
sider the problem faced by systems designers who need to

reason about data structure performance. Given that real-
life search tree workloads operate on trees with millions
of items and do not suffer from high contention [3, 26, 35],
it is natural to assume that search performance will be
a dominating factor. (After all, most of the time will be
spent searching the tree, with synchronization—if any—
happening only at the end of a search.) In particular, we
would expect two trees with similar structure (and thus
similar-length search paths), such as balanced trees with
logarithmic height, to perform similarly.

In practice, however, this expectation turns out to be
false. We test the above reasoning on optimistic binary
search trees (BSTs), since there are BST designs with var-
ious tree structures [2, 7, 14, 15, 22, 23, 32, 33]. We find
significant performance differences between BSTs with
similar structure and traversal techniques. Figure 1a de-
picts examples of such anomalies. (We show a read-only
workload, consisting only of lookups, to rule out syn-
chronization as a cause. We detail the studied BSTs and
experimental setup in § 2.) For instance, one unbalanced
internal BST (edge-int-lf ) outperforms other BSTs with
the same tree structure (log-int and citrus). There is even
a significant difference between two implementations of
the same BST algorithm (occ-avl and occ-avl-2).

The goal of this work is to explain and solve such un-
expected performance results. We perform a detailed per-
formance analysis of 10 state-of-the-art optimistic BST
implementations on large scale x86-64 hardware, in which
we uncover the root causes of the observed anomalies. Us-
ing microbenchmarks, we find that performance anoma-
lies are caused by multiple performance-degrading in-
teractions of BSTs with systems software and hardware
subsystems, mostly related to cache effects. These cache
effects are due either to cache-unfriendly implementa-
tion oversights or, more interestingly, to memory layout
pathologies that are caused by interactions between the
BST and the memory allocator. To determine whether our
observations are only artifacts of micro benchmarking, or
whether similar issues appear in more complex software,
we deploy the BSTs as the index structure in DBx1000, an
in-memory database [4, 27, 39, 40]. We find that similar
anomalies exist in DBx1000 as well. Most importantly,
we find that a simple approach of segregating BST-related
allocations, so that BST data is not mixed with application
data, improves performance of the BSTs by up to 20%
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a. Current state: Multiple anomalies. b. Following our analysis and fixes.

Figure 1: Unexpected BST performance results: Aggregated throughput (BST operations/second) of a 64-thread read-only (100%
lookup) workload on 1 M-item tree executed on a 64-core AMD machine.

and of the overall application by up to 10%. Figure 1b
demonstrates part of our results.

Our work underlines the gap between the theory and
practice of multi-core performance. As we show, it is
non-trivial to understand a search tree’s performance, and
specifically, whether performance is due to fundamental
algorithmic factors or to implementation issues. While
we focus on BSTs, the effects we uncover are relevant to
other optimistic concurrent data structures, as they stem
from general principles of memory allocator and systems
design. (But we leave such analysis for future work.) Our
results therefore call for further research to help bridge the
gap between the principles and practice of multi-core per-
formance, to simplify the task of deploying a concurrent
data structure and reasoning about its performance.

2 Scope
2.1 BSTs
We analyze C implementations of 8 BST algorithms, two
of which have independent implementations, for a to-
tal of 10 implementations. The algorithms implement
the standard key/value-map operations, lookup, insert
and remove. 1 Table 1 lists the implementations stud-
ied. These BSTs span the known points in the design
space, covering combinations of synchronization tech-
niques, tree types (internal vs. external), and balancing
choices (unbalanced vs. self-balancing algorithms).

All BSTs but int-lf feature read-only traversals; in
int-lf , a traversal might synchronize with a concur-
rent update. In the lock-free BSTs, updates manipulate
the data structure using atomic instructions, such as
compare-and-swap (CAS), instead of synchronizing
with locks. Both int-lf and ext-lf use operation descriptor
objects to implement helping between their operations.
A descriptor details the memory modifications that an
update operation needs to perform. Before performing
its modifications, the update operation CASes a pointer
to its descriptor in each of the nodes it needs to update.
Other operations that encounter the descriptor use the in-
formation therein to help the update complete. edge-int-lf

1Two implementations [32, 33] originally implemented set seman-
tics, storing only keys, but we modify them to hold values as well.

name synchronization tree self- impl.
technique type balance? source†

occ-avl [7] fine-grained locks part. 3 [22]
ext

occ-avl-2 3 ASCYLIB
edge-int-lf [33] lock-free int authors
log-int [14] fine-grained locks int ASCYLIB
citrus [2] fine-grained locks int authors
int-lf [23] lock-free int ASCYLIB
edge-ext-lf [32] lock-free ext authors
edge-ext-lf-2 ASCYLIB
ticket [12] fine-grained locks ext authors
ext-lf [15] lock-free ext ASCYLIB
† authors refers to original authors’ implementation, and ASCYLIB to the
implementation in the ASCYLIB library [12].

Table 1: BST implementations studied (ordered by the expected
performance of searches).

and edge-ext-lf avoid descriptors by “stealing” some bits
from node left/right pointers to encode helping-related
information.

An internal BST stores an item in every node, whereas
an external BST stores items only in leaves. Internal
BSTs have different solutions for removing a node with
two children while maintaining consistency of concurrent
searches. edge-int-lf and int-lf searches use validation to
detect such a concurrent removal and restart the search.
log-int avoids restarts by having an unsuccessful search
(i.e., that fails to find its target key) traverse an ordered list
which links all nodes, to verify that the key is indeed not
present. Finally, occ-avl marks a node with two children
as logically removed instead of physically removing it
from the data structure, resulting in a partially external
tree. occ-avl uses validation to restart a search that could
take the wrong path due to a concurrent tree rotation.

The BSTs appear in Table 1 according to their expected
relative performance in workloads where search time dom-
inates performance: all else being equal, one expects self-
balancing BSTs, which maintain logarithmic height, to
outperform unbalanced BSTs; and internal BSTs to out-
perform external BSTs.

The original implementation of two of the BSTs [7, 14]
is in Java. We choose, however, to evaluate 3rd-party C
implementations of these BSTs, to obtain an apples-to-
apples comparison and to simplify the analysis.

We fixed incorrect use of the C volatile keyword
in some of the evaluated implementations. In general, to
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system name abu-dhabi haswell

processors 4× AMD Opteron 6376 2× Intel Xeon E7-4830
(Abu Dhabi) v3 (Haswell)

# cores/proc 16 (2 dies w/ 4 modules, 12 (24 hyperthreads)
2 cores per module)

core freq. 2.3 GHz 2.1 GHz
L1d cache 16 KiB, 4-way 32 KiB, 8-way
L2d cache 2 MiB, 16-way (per mod.) 256 KiB, 8-way
last-level cache 2×8 MiB, 64-way 30 MiB, 20-way
(LLC) (shared, per die) (shared)
interconnect 6.4 GT/s HyperTransport 6.4 GT/s QuickPath

(HT) 3.0 Interconnect (QPI)
memory 128 GiB Sync 128 GiB Sync

DDR3-1600 MHz DDR3-1600 MHz

Table 2: Hardware platforms.

avoid such problems, one should either use C atomics,
or place the volatile keyword correctly: a volatile
pointer to a node is written node * volatile ptr, not
volatile node * ptr.

2.2 Experimental setup
We perform experiments on two multi-socket x86 plat-
forms, by AMD and Intel. Table 2 details the hardware
characteristics of these platforms. Both machines are
NUMA platforms, configured so that DRAM is equally
divided between the NUMA nodes. When running exper-
iments, we use the standard practice of interleaving the
benchmark’s memory pages across the system’s NUMA
nodes (using the numactl command) to prevent any
NUMA node from becoming a bottleneck. We compile
the benchmarks with gcc v4.8. As in prior work, we use
a scalable memory allocator (jemalloc [16]) to prevent
memory allocation from becoming a bottleneck.

3 BST performance in isolation
We begin by analyzing BST performance on the standard
microbenchmark used in the concurrency literature [2,
7, 11, 14, 22, 23, 32, 33], which models an application
using a BST. The benchmark consists of a loop in which
each thread repeatedly performs a random BST operation
on a random integer key, and its performance metric is
the obtained aggregate throughput of BST operations. We
find that several implementations make simple oversights
that lead to inefficient BST searches, but that fixing these
problems still leaves many unexpected results (§ 3.1).
These remaining anomalies occur due to cache behaviour
differences due to BST memory layout (§ 3.2) and due to
subtle interactions with the prefetching units (§ 3.3).

3.1 BST implementation issues
Most of the BST implementations contain one or more
of three implementation oversights that negatively impact
the performance of BST searches. Table 3 summarizes
our findings, which we discuss next:

Bloated nodes Most implementations unnecessarily bloat
the tree nodes, reducing the amount of the tree that can fit
in each level of the cache hierarchy. Some lock-based im-

name bloated nodes scattered fields heavy traversals
occ-avl 3 3

occ-avl-2 A3
†

edge-int-lf 3
log-int 3 3
citrus 3
int-lf 3
edge-ext-lf
edge-ext-lf-2 3
ticket 3
ext-lf 3 3
† occ-avl-2 has a search field not at the start of the node, but this does not
cause extra cache misses, as the nodes are cache line-sized.

Table 3: BST implementation issues.

plementations use pthread mutex locks, which occupy
40 bytes, instead of pthread spin locks, which occupy 4
bytes. Several implementations pad BST nodes to cache
line size, presumably to avoid false sharing.

Scattered fields Fields commonly read by traversals
(key/left/right, as well as fields related to detecting concur-
rent tree modifications) should be located first in the node
structure, to minimizes the chance that a search accesses
two cache lines when traversing a node.

Heavy traversals edge-int-lf and ext-lf base all oper-
ations on one shared traversal method, and so end up
burdening lookup operations with the book-keeping re-
quired only for updates, such as maintaining pointers to
the parent/grandparent of the current node.

3.1.1 Evaluating impact of implementation issues

We fix the above implementation issues by replacing
pthread mutex locks with spin locks, removing padding
and reordering node fields in the affected implementa-
tions, and evaluate the impact of these fixes.

Methodology Our benchmark is parameterized by the
distributions that the operation types and keys are chosen
from, the size of the key space, and the number of items
(key/value pairs) initially present in the tree. Following
the practice in the concurrency research literature, we (1)
choose operation keys uniformly at random; (2) perform
insert and remove with equal probability throughout
the benchmark; and (3) initialize the BSTs (using concur-
rent insert()s) with U/2 random items, where U is the
size of the key space. We report averages of five 3-second
runs on an otherwise idle system.

Results Figure 2 shows the performance impact of our
changes on trees that initially contain 1 M and 10 M items,
to model realistic working sets. We show results from
read-only (100% lookup) workloads so that we can rea-
son about search performance and remove synchroniza-
tion effects as a confounding factor. We have, however,
verified that read-only workloads are a good proxy for
read-dominated workloads on this benchmark: e.g., in
workloads with 90% lookups, the relative performance
order of the BSTs matches that of the read-only case al-
most perfectly and most comparison points remain similar
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a. abu-dhabi (64 threads): 1 M-item BSTs b. haswell (48 threads): 1 M-item BSTs

c. abu-dhabi (64 threads): 10 M-item BSTs d. haswell (48 threads): 10 M-item BSTs

Figure 2: Impact of fixing BST implementation issues. Numbers on top of the bars show the BST node size.

even at a 70% lookup rate.
We show results from executions with the maximum

number of threads on each platform, as all BSTs scale
with the amount of concurrency. On the 1 M-item tree,
our fixes improve the throughput of the BSTs by up to
86% on abu-dhabi and by up to 43% on haswell, with a
geo mean improvement of 11% on abu-dhabi and 23% on
haswell. Moreover, reducing occ-avl’s node size brings
its performance to the level of occ-avl-2.
Unexpected results Several unexpected results remain
even after fixing the BST implementation issues, and we
uncover their cause in the remainder of this section:
• Why does decreasing node size hurt throughput for
10 M-item int-lf , ticket and ext-lf on abu-dhabi? (§ 3.2.2)
• Why does int-lf benefit from a reduction of 64-byte
nodes to 48-byte nodes much more than ticket on haswell?
Why does log-int perform worse than the other unbal-
anced internal BSTs? (§ 3.2.3)
•Why does edge-ext-lf outperform other external BSTs,
when they all have the same tree structure? (§ 3.2.4)
• Why do occ-avl and occ-avl-2, self-balancing BSTs,
behave differently on abu-dhabi and haswell? On abu-
dhabi they significantly outperform unbalanced trees (as
expected), whereas on haswell they do not. (§ 3.3)

3.2 Memory layout issues
We trace most of the anomalies to memory layout is-
sues that lead to different cache behaviours between the
BSTs. These memory layout issues result from subtle in-
teractions between the BST’s allocation pattern and the
policies of the memory allocator, particularly the use of
segregated free lists [24] for satisfying allocations.

3.2.1 Segregated free list allocation

At a high level, scalable memory allocators [5, 16, 17]
avoid contention by providing each thread with its

own heap. These heaps are implemented as a set
of free lists [24], one for each possible size class.
Free lists are generally implemented as superblocks,
which contain an array of blocks. To satisfy an n-byte
allocation request, the allocator rounds n up to the
nearest size class, s, and returns an s-byte block
obtained from the relevant free list. In the jemalloc

memory allocator we used for our experiments, the
size classes used for allocations of up to 1 KiB are
8,16,32,48,64,80,96,112,128,192,256,320,384,448,
512, and 1024. In addition to size classes, allocators differ
in the structure and size of superblocks, the algorithm for
mapping a block to its superblock, policies for allocating
and releasing superblocks, and synchronization schemes.
The important point in our context is that we can model
the behaviour of the memory allocator as satisfying
allocations of size s from an array of blocks of size s.

3.2.2 Crossing cache lines

In the BSTs we study, visiting a node should in principle
incur at most one cache miss: the size of the searched
fields (key, child pointer, and any fields used to synchro-
nize with concurrent updates) fit in one cache line. We
find, however, that the memory allocator might place a
node in memory so that these search fields straddle a
cache line boundary, causing a visit to the node to incur 2
cache misses.

Consider, for example, a BST whose searches access
the first 24 bytes of a node (8-byte key and 8-byte left or
right child pointer). If its node size is 48 bytes and the
memory allocator’s block array is cache line-aligned, then
nodes will start at offsets 0, 16, 32, and 48 within cache
lines. For the nodes at offset 48, the last 8 bytes of these
searched fields extend into the next line, possibly leading
to a cache miss. Such a miss occurs with probability 1/8,
as one in 4 nodes straddles a cache line boundary, and a
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search reads each next pointer with probability 1/2.
Originally, int-lf , ticket and ext-lf do not experience

such cache line crosses, as they have padded 64-byte
nodes that the memory allocator allocates from a size class
of 64-byte blocks. Decreasing their node size introduces
this issue, whose performance impact is a trade-off that
depends on the workload. At one end of the spectrum, if a
smaller node size allows the entire tree to fit into the LLC,
then one can eliminate cache misses altogether. At the
other end, if the workload is such that almost every node
traversed incurs a cache miss, then it is better to increase
the node size to avoid crossing cache lines, as otherwise
the expected number of cache misses per search increases
by the expected number of nodes whose search incurs an
extra miss (e.g., by 1 1

8× for 48-byte nodes).
In our workloads, we observe a 17% (geo mean)

throughput degradation on the 10 M-item tree on abu-
dhabi, but negligible overhead on the 1 M-item tree. We
do not observe this anomaly on haswell because it has an
adjacent-line prefetcher [36] that effectively doubles the
cache line size and hides the effect of misses caused by
cache line crossings.

3.2.3 Underutilized caches due to allocation pattern

We find that BST allocation patterns can lead to cache
set underutilization,2 in which the workload uses some
cache sets more than others, thereby leading to increased
associativity misses on the overused cache sets. We iden-
tify two causes for underutilized cache sets. First, the
memory allocator might place allocated nodes in memory
so that they map to just a subset of the cache sets. More
insidiously, even if the nodes cover all cache sets but are
allocated next to cache lines containing useless data, then
prefetching this data evicts useful nodes from the cache.

We demonstrate cache set underutilization that occurs
in int-lf ; log-int has a similar issue, whose description we
omit due to space constraints.
int-lf analysis We observe an anomaly on haswell, in
which int-lf benefits from a reduction of 64-byte nodes
to 48-byte nodes much more than ticket. We focus on
the 1 M-item tree experiment. While performance counter
data shows that int-lf ’s throughput improvement with
smaller nodes is correlated with reduced LLC miss rates,
the 1 M-item tree should almost fit into haswell’s 30 MiB
LLC even with bloated nodes. This points to a cache set
underutilization problem, in which int-lf effectively runs
as if with a smaller cache. We verify this hypothesis by
computing the cache set indexes of each node,3 finding
that the original int-lf implementation uses only 50% of

2An 2n-way associative cache of size 2C bytes with 2l cache lines
groups its slots into sets of size 2C−l−n. Bits l +1, . . . ,C−n+1 of an
address determine its set index.

3 We compute LLC set indexes using the physical addresses of the
nodes. Specifically, we use the techniques of [30, 38] to reverse engineer
the mapping from physical address to haswell LLC cache slices.

int-lf ops/sec unused unused unused
variant L1 sets L2 sets L3 sets
64 b node 42.5M 1.6% 50.8% 50.8%
64 b node, w/ allocs 42.5M 1.6% 1.6% 1.6%
64 b node, w/ allocs, 60.0M 1.6% 1.6% 1.6%
no prefetching
40 b node 60.0M 1.6% 1.6% 1.6%

Table 4: int-lf on haswell cache set usage (1 M-item BST).

the L2 and LLC sets. Next, we analyze int-lf ’s allocation
pattern to find the cause for this problem.

Like many lock-free algorithms, int-lf uses operation
descriptors so that threads can help each other to complete
their operations (see § 2.1). Each thread’s allocation pat-
tern during the BST initialization is thus NDNDND . . . ,
as each insert operation allocates a new node of size N
and a descriptor of size D. The size of both descriptors
and int-lf ’s original padded nodes is 64 bytes, the cache
line size. Both allocation types are thus satisfied from the
same allocator size class, and consequently, nodes occupy
only even (or only odd) cache set indexes, utilizing only
50% of the available cache sets. (We note that int-lf in-
tentionally does not free descriptors, to avoid an ABA
problem4 on the descriptor-pointer field in the nodes. The
idea is that if the content of this field only changes from
one descriptor to another, an ABA problem cannot occur.)
Fixing cache set underutilization Shrinking int-lf ’s
node size as part of fixing its implementation oversights
has the serendipitous effect of segregating node and de-
scriptor allocations. As nodes and descriptor allocations
become satisfied from different size classes, nodes occupy
all cache sets. Moreover, only nodes are allocated from
their size class, and so no prefetching of useless data oc-
curs. To prevent cache set underutilization in a principled
way, we explicitly segregate BST nodes by allocating
them from a dedicated memory pool; see § 4 for details.

It remains to show that cache set underutilization is not
only caused by mapping nodes to a strict subset of the
cache. To this end, we modify the microbenchmark to add
allocation calls of random sizes between BST operations.
These random allocations break the benchmark’s regu-
lar allocation pattern, causing int-lf nodes to map to all
cache sets. Nevertheless, unless we additionally disable
prefetching,5 int-lf performs poorly. Table 4 shows the re-
sult of our experiments. Fixing cache set underutilization
improves throughput by 40% on the 1 M-item tree.

3.2.4 Collocated children

We find that the high throughput obtained by edge-ext-lf
compared to the other external BSTs is due to a fortu-
nate allocation pattern, which causes many leaves to be

4An ABA problem occurs when a thread reads the same value (A)
from a location twice, interpreting this to mean that the location has
contained (A) at all times between the two reads, whereas between the
two reads, the location was actually changed to (B) and back to (A).

5Specifically, the L1 data cache prefetcher.
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Figure 3: Collocated and shifted nodes in edge-ext-lf .

collocated on the same cache line with their parent.
edge-ext-lf is an external BST with immutable 32-byte

nodes: an insert whose search completes at leaf u allo-
cates a new internal (routing) node v and a new leaf node
(with the inserted item) w, which is a child of v. It then
replaces u with v. The memory allocator satisfies node al-
locations from a superblock of 32-byte blocks. Therefore,
v and w might be collocated on the same cache line.

We analyze the node addresses in the evaluated trees
and find that 75% of the internal nodes which have a leaf
child are also collocated in the same cache line with one
of their children. (This collocation can only occur for
leaves. Whenever edge-ext-lf extends a path, it breaks the
previous parent/child collocation.)

To evaluate the performance impact of the collocation
property, we implement shifted versions of edge-ext-lf ,
where we add one 32-byte allocation before the initializa-
tion of the tree. This shifts the cache line offsets of all later
allocations, moving the child nodes to a different cache
line (Figure 3). As expected, we find that in the shifted
implementations, 75% of internal nodes which have a leaf
child have a child located on the adjacent cache line. On a
1 M-item BST, we observe throughput slowdowns of 14%
and 11% on abu-dhabi and haswell, respectively.

The reason that prefetching does not hide this problem
is again due to the allocation pattern. We examine the
node addresses and find that 100% of the nodes which
have a leaf child in the next cache line are themselves
located on an odd cache line (Figure 3). The adjacent-
line prefetcher on haswell “fetches the cache line that
comprises a cache line pair” [36]. This appears to imply
that it is only triggered on accesses to an even cache line,
and thus is ineffective in this case.

3.3 Prefetching issues
Bronson et al.’s relaxed balance AVL BST [7] (occ-avl
and occ-avl-2) is considered as one the fastest BSTs.
While on abu-dhabi the AVL tree indeed outperforms
the other BSTs by a geo mean of 40% in both tree sizes,
on haswell it is not the best performer on the 1 M-item
tree experiment. We trace this anomaly to a novel interac-
tion of the BST’s optimistic concurrency control (OCC)
and the L2 prefetcher, which is exposed after removing a
different bottleneck in the OCC implementation.

The algorithm uses versioning—an OCC implementa-
tion technique—to detect concurrent tree modifications
during searches. Glossing over some details, each child
pointer has an associated version number that increases

Figure 4: Impact of OCC changes in occ-avl-2 (haswell).

when the pointer is updated. Observing that this version
has not changed between time t0 and t1 allows a search
to verify that the associated pointer has not changed as
well. Searches use this property to verify that they traverse
through a node only if both the inbound pointer to u and
the outbound pointer to the next node on the path were
valid together at the same point in time.

When the validation at some node u fails, the search
starts ascending along the traversed path, revalidating at
each node, until it returns to a consistent state from which
it resumes the search. Both occ-avl and occ-avl-2 use
recursive calls to visit nodes, thereby recording this book-
keeping data on the stack. This information, however,
is used only if a search encounters a concurrent update,
which is expected to be a rare event. We therefore change
occ-avl-2 to restart the search from the root when valida-
tion fails, yielding the occ-avl-2-ret implementation.

In the 1 M-item tree experiment, occ-avl-2-ret outper-
forms occ-avl and occ-avl-2 by 17% on haswell. We ob-
serve, however, that it generates many L2 prefetch misses.
Our workload does not benefit from hardware prefetching,
since the next cache line a BST search visits is random.
Prefetching thus hurts BST throughput, as it evicts poten-
tially useful tree nodes (e.g., nodes at the top of the tree)
from the cache.

We find that reading the version stored in the nodes trig-
gers an L2 prefetch. While reading twice from the cache
line (key and next pointer) does not trigger prefetching,
any additional read from the node does. To evaluate the
impact of prefetching, we implement a variant of the al-
gorithm without the version reads, occ-avl-2-unsafe. This
variant is safe to run only in a read-only workload; we use
it just to estimate the performance lost due to prefetching.
Figure 4 shows the results: On a 1 M-item tree, occ-avl-
2-unsafe improves a further 12% over occ-avl-2-ret, for
an overall 31% improvement over occ-avl-2; its total im-
provement over occ-avl-2 on a 10 M-item BST is 21%.

4 BST performance in an application
The next logical step is to ask whether these performance
issues are simply artifacts of micro benchmarking, or
whether similar issues appear in more complex software.
To this end, we study an in-memory database management
system called DBx1000 [39] (henceforth, simply DBx),
which is used in multi-core database research [4, 27, 39,
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40]. In this section, we focus on the haswell machine.

DBx DBx implements a single relational database, which
contains one or more tables, each of which consists of
a sequence of rows. It offers a variety of different con-
currency control mechanisms for allowing processes to
access tables and rows. We use its 2-phased locking op-
tion, which locks individual rows of tables, and has been
shown to scale on simulated systems containing up to one
thousand cores [39].

Each table can have one or more key fields and asso-
ciated indexes. Each index allows processes to query a
specific key field, quickly locating any rows in which
the key field contains a desired value. Any thread-
safe data structure can serve as an index in DBx, as
long as it implements a multimap. A multimap rep-
resents a set of keys, each of which maps to one
or more values (pointers to rows of a table), and of-
fers three operations: search(key), insert(key,value)
and remove(key,value). search(key) returns all of
the values to which key maps in the multimap.
insert(key,value) adds a mapping from key to value. If
key maps to value, then remove(key,value) removes the
mapping from key to value, and returns true. Otherwise,
it simply returns false.

Methodology We replace the default index implementa-
tion in DBx with each of the BSTs that we study. To do
so, we had to overcome a minor complication: each of
these BSTs implements a map, not a multimap. That is,
each key maps only to a single value. We transformed
these maps into multimaps as follows. Instead of storing
keys and pointers to rows in the map, each key maps to
the head of a linked list that is protected by a lock. (The
locks are stored in a separate lock table.) Then, to per-
form insert(key,value) on the multimap, where value
is a pointer to a row, we simply insert row into the appro-
priate linked list in the underlying map.

Workloads To analyze the performance of the various
BST implementations in DBx, we use the well known Ya-
hoo! Cloud Serving Benchmark (YCSB), and the Trans-
action Processing Performance Council’s TPC-C bench-
mark. The relatively simple transactions in YCSB com-
prise a read-mostly workload on a large table with a single
index. TPC-C has more complex transactions, many in-
dexes, and many writes.

In all of our experiments, we measure the number of
committed transactions, the number of index operations
performed, the time needed to perform all transactions
(total time), and the time spent accessing the index(es)
(index time). Timing measurements were performed using
x86-64 RDTSC instructions. The overall performance of
a benchmark is measured in terms of transaction through-
put, the total number of committed transactions divided
by total time. We define dbx time as the time in an exe-

cution that is not spent accessing the index(es) (i.e., total
time−index time).

4.1 YCSB
Following the approach in [39], we run a subset of the
YCSB core with a single table containing ten million
rows. Each thread performs a fixed number of transactions
(100,000 in our runs), and the execution terminates when
the first thread finishes performing its transactions. Each
transaction accesses 16 different rows in the table, which
are determined by index lookups on randomly generated
keys. Each row is read with probability 0.9 and updated
with probability 0.1. The keys are generated according to
a Zipfian distribution following the approach in [19].

Segregating tree data When we use a BST implementa-
tion as the index in YCSB, we are effectively merging the
memory address space of YCSB with the address space of
the BST. In doing so, we may change the memory layout
of objects in YCSB (for example, by interleaving nodes
with table rows in YCSB), which can have a significant
impact on performance. We can isolate and study these
memory layout changes, and selectively eliminate them,
by using segregation to effectively separate parts of the
address spaces for the BST and YCSB.

In a real application, it can be difficult to segregate
simply by changing object sizes, so we implement segre-
gation by using several separate instances of the memory
allocator: one for YCSB, and one for each type of objects
we would like to segregate from other object types. In our
case, this means one for BST nodes, one for BST descrip-
tors, and one for other implementation specific tree data.
Consequently, when we segregate tree data, nodes are
allocated consecutively in each page, descriptors are not
interleaved with nodes (avoiding the performance prob-
lem with int-lf in § 3.2.3), and tree data is not interleaved
with YCSB data.

4.2 Comparison with the microbenchmark
We first address the question: to what degree do the re-
sults of YCSB match our microbenchmark results? We
compare with microbenchmark results for trees contain-
ing 10 million keys, since this is approximately the size
of the index in YCSB. The left side of Figure 5 contains
the results of running the microbenchmark for all of the
BSTs we studied, after fixing all of the performance is-
sues described. To make the results easier to understand,
we sort the BSTs by performance and group them into the
following equivalence classes: (occ-avl, occ-avl-2), (log-
int, edge-int-lf , citrus, int-lf , edge-ext-lf-2, edge-ext-lf ),
(ticket), (ext-lf ). Within each of these equivalence classes,
the performance differences are not significant.

The results of our YCSB experiments appear in Fig-
ure 5. The BSTs are listed in the same order as they appear
in the microbenchmarks. Without segregation (middle
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Figure 5: Microbenchmark compared to YCSB results: (left) Microbenchmark for 10M item BSTs (middle) YCSB without
segregation, (right) YCSB with segregation.

graph) there are several differences between the YCSB
results and the microbenchmark results. First, log-int per-
forms about as well as occ-avl and occ-avl-2, which were
significantly faster than log-int in the microbenchmarks.
Here, it appears that log-int belongs in the same equiv-
alence class as occ-avl and occ-avl-2. Second, edge-ext-
lf-2 is significantly slower than edge-ext-lf , whereas they
have the same performance in the microbenchmark. Third,
ticket and ext-lf have the same performance, whereas
ticket is significantly faster in the microbenchmark. As
the graph on the right shows, segregating the tree data
bring the results closer to the original behaviour observed
in the microbenchmark.

4.3 Memory layout issues
In our analysis of YCSB, we found several memory layout
issues that were similar to the issues we found in our
microbenchmarks. We describe a few key examples.

4.3.1 Underutilized caches due to allocation pattern

When we add all of our BST implementations to YCSB,
several of them exhibit very poor cache set utilization. We
find that their nodes map to only 1/3rd of the L3 cache sets,
rendering 2/3rds of the L3 cache unusable for the storing
nodes. These implementations include occ-avl and occ-
avl-2, which have 64-byte nodes. Only implementations
with 64-byte nodes were affected.

Since we did not observe this behaviour in the mi-
crobenchmarks, we hypothesize it is the result of adding
these trees to YCSB (more specifically, merging each
tree’s memory space with the memory space of YCSB).
We analyze the allocations performed by YCSB, and find
that it allocates a large number (millions) of objects in size
classes: 8, 32, 48, 64, 128, 192 and 384. In the 64-byte
size class, it allocates only row and row wrapper objects.
In particular, it always allocates a row, followed by a row
wrapper, and then inserts the row into the index (BST). In
the BSTs that exhibit this memory layout problem, index
insertion allocates one 64-byte node. Thus, the allocation
pattern in memory is RWNRWNRWN... where R is a row,

W is a row wrapper, and N is a node. Consequently, rows
have addresses satisfying addr = 0 (mod 192), row wrap-
pers have addresses satisfying addr = 64 (mod 192) and
nodes have addresses satisfying addr = 128 (mod 192).
That is, each object type has a 192-byte stride.

This pattern turns out to have a pathological interac-
tion with the processor’s internal hash function that maps
physical addresses to L3 cache sets, resulting in an exe-
cution where rows, row wrappers and nodes each map to
only 1/3rd of the L3 cache sets. (This is similar to how
we saw a memory layout anomaly with a 128-byte stride
in § 3.2.3.) In contrast, if a particular object type appears
with a 256-byte stride, the L3 hash function will map
objects approximately uniformly over all cache sets.

We break up this deleterious allocation pattern by seg-
regating the tree data. This segregation results in a sig-
nificant speedup for these data structures, since it allows
nodes to occupy the entire cache. For example, in occ-
avl, it reduces index time from 121 to 108 seconds (a
13 second difference), and total time from 188 to 178
seconds (a 10 second difference). Note, however, that it
increases dbx time by 3 seconds. Further timing measure-
ments demonstrate that the increase in dbx time is due to
added contention on row locks. In fact, we can show that
whenever segregation increased dbx time in YCSB, the
increase is due to added contention on row locks.

Perhaps surprisingly, the deleterious allocation pattern
we saw above did not affect ticket, which has 64-byte
nodes, or a variant of ext-lf with 64-byte nodes. (These
were the only other implementations with 64-byte nodes.)
The explanation turns out to be fairly simple. Although
their nodes are 64 bytes, these trees are external, so they al-
locate two nodes per insertion operation, producing the al-
location pattern RWNNRWNNRWNN. The second node
allocation breaks up the (pathological) 192-byte strides
that we saw above.

4.3.2 Accidentally fixing a memory layout problem

In the previous section, we saw how merging two ad-
dress spaces can cause a memory layout issue. In this
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section, we see how merging two address spaces can fix a
preexisting memory layout issue.

When adding BSTs with 48-byte nodes to YCSB, and
experimenting to see how much segregation helps, we
find that segregating tree data for these BSTs caused sig-
nificant increases in dbx time. For example, segregation
increases dbx time for edge-int-lf by 9 seconds, from
58 to 67. Analyzing executions of YCSB, we find that
approximately ten million row locks (implemented with
pthread mutexes) and 4,000 other miscellaneous objects
are allocated in the 48-byte size class (in addition to any
48-byte nodes).

If there are no 48-byte node allocations, then these
48-byte row locks experience false sharing. Since the
locks are smaller than a cache line, and they are allocated
consecutively, a single cache line contains parts of two
different locks. Thus, write contention on one lock ad-
ditionally creates write contention on another lock. This
is exacerbated by the adjacent line prefetcher, which ef-
fectively causes accesses to a lock to contend with the
(three to four) locks stored in two cache lines. By merging
the address space of a BST with 48-byte nodes with the
address space of YCSB, we accidentally mitigated this
false sharing by interleaving row locks with nodes. Of
course, this unfairly favours the BSTs with 48-byte nodes
over the other BSTs. Thus, we fix this problem in a more
principled way by padding the row locks to eliminate false
sharing. (The same effect was seen, and fixed, in TPC-C.)

4.3.3 Unnecessary page scattering

So far, we have seen that segregation can improve per-
formance by breaking up deleterious memory layouts,
and generally improving cache behaviour. Our results
have thus far suggested that we can reasonably expect
to see some change in performance due to segregation
whenever nodes are allocated from the same size class as
some other objects. However, it turns out that segregation
can improve performance, even when nodes are the only
allocations performed from a given size class.

Once the row locks in YCSB are padded, YCSB only
performs about 4,000 miscellaneous allocations from the
48-byte size class. Thus, in BSTs with 48-byte nodes,
nodes are the only significant source of allocations in their
size class. We were quite surprised to find that segregation
significantly improved performance for these trees.

One interesting difference caused by segregation is a
substantial reduction in the TLB miss rate for algorithms
with 48-byte nodes. This improvement comes from an
interaction between huge pages and the allocator. When
huge pages are enabled in Linux, pages occupy 2MB
instead of 4096 bytes. This generally improves TLB miss
rates, since a program’s working set can be represented
using fewer pages.

However, we found that the allocator jemalloc di-

Figure 6: Layout of pages without segregation: all chunks used
to store nodes by occ-avl-2 in YCSB (haswell).

vides each huge page into 512 chunks of 4096 bytes
each, and distributes these into different size classes. More
specifically, during its initialization, jemalloc allocates
a bank of chunks for each thread. Each thread distributes
these chunks on-demand to its individual size classes.
Whenever a thread runs out of space in the current chunk
for one of its size classes, it fetches one (or more) chunks
from its bank, and assigns them to this size class. In our
experiments, we observed that threads fetch one chunk at
a time for the 32-, 48- and 64-byte size classes.

In YCSB, this has the following effect. Before perform-
ing insertion on a BST, a transaction allocates a 64-byte
row, followed by 128 bytes of data, a 64-byte row wrap-
per, a 192-byte (padded) pthread mutex, and a 32-byte
value. Thus, for each node allocated by an insertion opera-
tion, several objects are allocated in several different size
classes. Consequently, each thread regularly takes chunks
from its bank and assigns them to these size classes, al-
most in round-robin fashion, but with more chunks going
to the size classes that exhaust them more quickly.

As a result, in the small size classes used for nodes, the
chunks often do not have consecutive addresses. For ex-
ample, in a variant of edge-int-lf with 48-byte nodes, we
found that threads would allocate full 4096-byte chunks
of nodes, but would only store nodes in approximately
one out of every 10 chunks that it allocated. As another
example, in occ-avl-2, which has 64-byte nodes, threads
would use up to three consecutive chunks to store nodes,
and then the next chunk used to store nodes would typi-
cally appear five or six chunks later in the address space.
Figure 6 visualizes the actual layout of chunks used to
store nodes in an execution of YCSB with occ-avl-2.

We now consider what happens when the tree data
for occ-avl-2 is segregated. Figure 7 shows the resulting
layout of chunks used to store nodes. The difference is
striking. Since the nodes are allocated by a separate in-
stance of jemalloc, each thread uses its entire bank of
chunks to store nodes. Consequently, the chunks allocated
for nodes almost always have consecutive addresses. This
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Figure 7: Layout of pages with segregation: all chunks used to
store nodes by occ-avl-2 in YCSB (haswell).

significantly reduces the number of pages needed to store
the tree, and results in far fewer TLB misses. In YCSB
with occ-avl-2, the average number of TLB misses per
YCSB transaction decreases from 412 to 161 (a 61% re-
duction). Segregation reduces TLB misses in all of the
BSTs we studied.

4.4 TPC-C
TPC-C simulates a large scale online transaction pro-
cessing application for the order-entry environment of a
wholesale supplier. According to the Transaction Process-
ing Performance Council, it represents the business activ-
ity of “any industry that must manage, sell, or distribute a
product or service.” At a high level, TPC-C assumes that
business operations are organized around a fixed number
of warehouses, which each service a number of districts.
For each warehouse and district, the database stores in-
formation about customers, orders, payments, items for
sale, and warehouse stock. TPC-C features complex trans-
actions over nine tables with widely varying row types
and population sizes, and with varying degrees of non-
uniformity in the data. These tables are indexed by up to
three different indexes on different key fields.

Our implementation of TPC-C executes a representa-
tive subset of the TPC-C transactions. In particular, we
include the new-order and payment transactions, which
comprise 88% of all transactions executed in the full TPC-
C benchmark. This same approach was taken in [39].

Note that payment transactions update data in the ware-
house table, and thus contend with all transactions operat-
ing on the same warehouse. Consequently, concurrency
in TPC-C is limited by the number of warehouses. Thus,
it is common to run with at least as many warehouses as
there are concurrent threads in the experimental system.
We run with 48 warehouses.

Segregating tree data As in YCSB, we segregate the tree
data by using several allocator instances: one for TPC-
C, one for BST nodes, one for descriptors, and one for
other implementation specific tree data. All indexes share
the same allocators. So, for example, all indexes use the
same allocator for nodes. Thus, nodes for all indexes are
interleaved with one another, but not with TPC-C data.

Figure 8: TPC-C: baseline vs. improved implementations.

4.5 Impact of improved BSTs on TPC-C
We now present an experiment that demonstrates the im-
pact of our improvements to the BSTs on the performance
of TPC-C. The results appear in Figure 8. We obtain each
data point by dividing the throughput of TPC-C when
the final BST implementation is used for indexes (with
segregation) by the throughput when the baseline BST
implementation (without segregation) is used for indexes.

By improving the BST implementations, we obtain an
overall improvement of up to 7.6%. Initially, this improve-
ment might seem somewhat small, but TPC-C is a large,
complex workload that takes over 200 seconds to run,
and allocates over 30 GiB of memory. Accesses to the
indexes comprise a relatively small part of the work, and
Amdahl’s law limits the improvement we can see, so a
7.6% overall improvement is actually fairly substantial.
Source of the improvement Let us drill down into the
details of where this improvement comes from. As an
example, we consider occ-avl (which obtains the full
7.6% improvement). With the baseline implementation
of occ-avl, the total time to run TPC-C is 249 seconds.
This breaks down into 108 seconds of index time and 141
seconds of dbx time. If we follow the recommendations
in § 3, then total time decreases by 9 seconds to 240.
This breaks down into 105 seconds of index time and
135 seconds of dbx time. If we additionally segregate tree
data, then total time further decreases by 8 seconds to 232.
This breaks down into 95 seconds of index time and 137
seconds of dbx time.

Interestingly, segregation causes a slight increase in
dbx time. It turns out that, when the indexes in DBx speed
up significantly, a new bottleneck appears. This manifests
as increased contention on row locks. However, this is
not the only component of the increase in dbx time. DBx
and TPC-C are quite complex, and there is an additional
component that we are unable to identify. We leave it as
future work to perform additional profiling of DBx.

4.6 Impact of segregation on TPC-C
We now study the effect of segregation on the other BSTs.
Figure 9 shows the breakdown of TPC-C total time into
index time and dbx time both with and without segregation
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Figure 9: Impact of segregation on TPC-C.

of tree data. Note that the x-axis starts at 75 seconds. The
BSTs that are not shown in the graph do not experience
significant changes in either index time or dbx time.

As we saw above, segregation improves the index time
of occ-avl by 10 seconds, and hurts its dbx time by 2
seconds. That is, it helps index time much more than it
hurts dbx time. In contrast, consider edge-ext-lf , for which
segregation improves index time by 10 seconds, but hurts
dbx time by 6 seconds, negating most of the benefit. In
this case, approximately 2 seconds of the change in dbx
time is due to increased contention on row locks.

Although the benefit of segregation is somewhat lim-
ited in Figure 9, it is important to remember that we are
starting from optimized implementations that follow the
recommendations in § 3. Different implementations will
interact with TPC-C’s memory layout in different ways,
and may see more significant benefits. For example, we
ran TPC-C with a variant of int-lf that has 64-byte nodes
and 112-byte descriptors, instead of 48-byte nodes and 64-
byte descriptors. For this BST, segregation does increase
dbx time by 5 seconds from 135 to 140, but it greatly
improves index time by 16 seconds from 113 to 97.

5 Related work
Memory layout issues Some of the phenomena we find
are reported in other contexts [1, 28, 37], but these works
do not consider the combination of all factors and their
effect on BST performance. Earlier research proposed
compiler and library techniques for improving cache uti-
lization by careful placement of objects in memory [8, 9],
but these techniques are not deployed and so it is not clear
whether they would address the anomalies we consider.
Segregated allocations Region-based memory manage-
ment [20, 34] allocates each object type from a dedicated
memory pool. However, its motivation is to speed up
memory allocation and freeing, not to improve cache and
TLB utilization. Lattner and Adve [25] propose a com-
piler algorithm for segregating distinct instances of data
structures into separate pools. Their approach does not
segregate allocations within a data structure, which may

be required to avoid underutilizing cache sets.

Understanding performance Several studies compare
the performance of concurrent data structures [12, 18], but
do not analyze the root causes of performance differences.
Our work is complementary to research on the difficulties
of understanding experimental evaluation results [6, 13,
31], which does not consider concurrent data structures.

6 Discussion
We believe that the lessons learned in this work can be
applied to other concurrent data structures, as they stem
from general performance principles. Here, we attempt to
distill these lessons into concrete recommendations.
Data structure designers and implementers: Study the
memory layout of the data structure. If cache lines ad-
jacent to nodes often contain other objects, then the
cache may be underutilized by nodes. Pad objects to sep-
arate them into different allocator size classes. Padding
should also be used to avoid false sharing, particularly be-
tween frequently-accessed nodes and other program data.
Such padding should take prefetching (e.g., the adjacent
line prefetcher) into account. However, indiscriminately
padding all nodes may reduce performance, since this
reduces the number of nodes that fit in the LLC. Finally,
watch for and avoid the implementation problems in § 3.1.
Programmers using a data structure: Importing a data
structure into a program merges two memory spaces, and
may create or eliminate false sharing or cache underuti-
lization problems. Thus, one should either (a) inspect the
combined memory layout of the data structure and the
program, and fix such problems, or (b) segregate the data
structure’s memory by using a separate allocator.
Memory allocator designers and implementers: The
above recommendations would be substantially easier to
put into practice with additional support from memory
allocators: First, providing an interface for allocation seg-
regation. Second, providing interfaces or tools for memory
layout inspection, to allow determining (1) the mapping
of objects to size classes; (2) which object types are fre-
quently located close to one another in memory (where
close could mean in the same cache line, or in adjacent
cache lines, or in the same page); and (3) the distribution
of objects into cache sets in the LLC (for each object type).
Such queries could also lead to high quality automated
tools for identifying memory layout problems.
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Abstract

This work is the first systematic investigation of

stream processing with data compression: we have not

only identified a set of factors that influence the bene-

fits and overheads of compression, but have also demon-

strated that compression can be effective for stream pro-

cessing, both in the ability to process in larger windows

and in throughput. This is done through a series of (i)

optimizations on a stream engine itself to remove ma-

jor sources of inefficiency, which leads to an order-of-

magnitude improvement in throughput (ii) optimizations

to reduce the cost of (de)compression, including hard-

ware acceleration, and (iii) a new technique that allows

direct execution on compressed data, that leads to a fur-

ther 50% improvement in throughout. Our evaluation is

performed on several real-world scenarios in cloud ana-

lytics and troubleshooting, with both microbenchmarks

and production stream processing systems.

1 Introduction

Stream processing [7, 18, 22, 41, 1, 10, 11, 66, 48,

56, 57, 65, 21, 17] is gaining popularity for continu-

ous near real-time monitoring and analytics. It typi-

cally involves continuous processing of huge streams of

machine-generated, timestamped measurement data. Ex-

amples include latency measurements [35], performance

counters, and sensor readings in a wide variety of sce-

narios such as cloud systems and Internet of Things

(IoT) [2, 3]. In order to meet near real-time requirements,

stream processing engines typically require that stream-

ing data (coming in huge volumes) reside in the main

memory to be processed, thereby putting enormous pres-

sure on both the capacity and bandwidth of the servers’

main memory systems. Having high memory bandwidth

while preserving capacity is known to be difficult and

costly in modern DRAM [44, 19, 63]. It is therefore im-

portant to explore ways, such as data compression, to re-

lieve this memory pressure.

This paper presents the first systematic investiga-

tion of stream processing with data compression. The

low-latency, mostly in-memory processing characteris-

tics make data compression for stream processing dis-

tinctly different from traditional data compression. For

example, in database or (archival) file systems, a sophis-

ticated compression scheme with high compression ra-

tio [68, 27, 37, 47] is often desirable because its over-

head can be overshadowed by high disk latency. We

start by observing opportunities for significant (orders of

magnitude) volume reduction in production cloud mea-

surement data streams and real-world IoT data streams,

processed in real stream queries for cloud analytics and

troubleshooting purposes, as well as for IoT scenarios.

The high redundancy in the streaming data sets is pri-

marily due to the synthetic and numerical nature of these

data sets, including, but not limited to, timestamps, per-

formance counters, sensor, and geolocation data. This

key observation creates an opportunity to explore effi-

cient encoding mechanisms to explore streaming data re-

dundancy, including lossless and lossy compression (that

is harmless with respect to specific queries output). For

example, timestamps in the data streams are highly com-

pressible even through simple lossless encoding mecha-

nisms, such as variable-length coding [54] and base-delta

encoding [53, 60]. By knowing the semantics of generic

window-based streaming operators, we can further im-

prove the benefits of compression by reducing the over-

provisioning of the timestamps accuracy without affect-

ing the produced results. The potential we have identified

(for several representative streaming datasets) is likely to

apply to other machine-generated time series as well.

Volume reduction, however, does not necessarily lead

to proportional improvement in end-to-end through-

put, even on a state-of-the-art stream engine such as

Trill [21]. Our evaluation shows that an 8× reduction in

data volume translates to less than 15% improvement in

throughput on Trill, even without considering any encod-

ing cost. This is because memory bandwidth is not yet
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the bottleneck thanks to significant overhead elsewhere

in the system. We therefore build TerseCades1, a lean

stream processing library that optimizes away the other

major bottlenecks that we have identified in the existing

stream engines, using techniques such as array reshap-

ing [67], static memory allocation and pooling [42, 26],

and hashing. TerseCades provides a vastly improved

and competitive baseline (by an order of magnitude in

throughput over Trill), while making a strong case for

compression in streaming context.

Driven by real streaming queries on production data,

we have identified factors that influence the benefits

and overheads due to data compression, and proposed

a series of optimizations to make compression effective

for stream processing. This includes the use of SIMD

instructions for data compression/decompression, hard-

ware acceleration (using GPUs and FPGAs), as well as

supporting execution directly on compressed data when

it is feasible. To demonstrate the end-to-end benefits of

our design, we have implemented compression support

with the optimizations on TerseCades. Our evaluation

shows that, altogether, these optimizations can improve

the throughput by another 50% in TerseCades, on top

of the order of magnitude improvement over Trill, while

significantly improving processing capacity diverse tem-

poral windows due to reduced memory footprint.

In summary, our contributions are as follows. (1) We

identify major bottlenecks in a state-of-art stream engine

and develop TerseCades that provides an order of mag-

nitude higher throughput. (2) We characterize represen-

tative data streams and present compression algorithms

for effective in-memory stream processing. (3) We im-

plement these compression algorithms along with a set of

optimizations (e.g., direct execution on compressed data)

on TerseCades, improving throughput by another 50%.

2 Is Compression Useful for Streaming?

A natural starting point to assess the usefulness of com-

pression for streaming is to check (i) whether data

streams are compressible and (ii) whether data volume

reduction from compression improves the throughput of

stream processing. To do so, we perform a set of analysis

using the Pingmesh data streams of network reachability

measurements [35] from production data centers, with

respect to motivating real data set for data-center network

diagnosis. We then use Trill [21], a state of the art high-

performance streaming library, and the STREAM [13]

benchmark suite to evaluate the effect of data volume re-

duction on throughput.

1TerseCades = Terse (for compression) + Cascades (for streaming).

Appropriately several characters in Cascades get ‘compressed’.

2.1 Streaming Data Compressibility

For compressibility, we examine the Pingmesh data

records. Major fields are listed in Table 1, and here

we focus on two important fields: (i) 8-byte integer

timestamp to represent the time when the request was

issued, and (ii) 4-byte integer rtt values to represent

request round-trip-time (in microseconds).

Stream processing operates on batches of data records

that form windows. Our analysis on those batches re-

veals the potential of significant volume redundancy that

can be easily exploited. For example, the timestamp

values are often within a small range: more than 99% of

the values in a 128-value batch differ in only 1 lower-

order byte. This potentially allows efficient compression

with simple lossless compression schemes such as Base-

Delta encoding [53, 60] and variable-length coding [54]

to achieve a compression ratio around 8× or more. Sim-

ilarly, the rtt values for successful requests are usually

relatively small: 97% values need only two bytes. This

data can be compressed by at least a factor of 2.

While lossless compression can be effective in reduc-

ing data redundancy, we observe that in many real sce-

narios it is profitable to explore lossy compression with-

out affecting the correctness of the query results. For

example, in queries where timestamps are used in a win-

dowing operator only for assigning a record to a time

window, we can replace multiple timestamps belonging

to the same window with just one value that maps them

to a particular window. We provide more details on lossy

compression in Section 3.3.

2.2 Compressibility 6⇒ Performance Gain

We further study the effect of data volume reduction on

stream processing using Trill, driven by a simple Where

query that runs a filter operator on a single in-memory

data field. We use two versions of the data field (8 and

1 bytes) to simulate an ideal no-overhead compression

with a compression ratio of 8. This query performs min-

imum computation, does not incur any compression/de-

compression overhead, allowing Trill to focus on the ac-

tual query computation. Figure 1 shows the results.2
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Figure 1: Throughput with data compression in Trill.

2Section 4 describes the methodology and system configurations.
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As expected, the 1-byte compressed (Comp) version

consistently outperforms the 8-byte non-compressed

(NoComp) version. However, the amount of the improve-

ment is relatively small (only 13-15%), compared to a

factor of 8 reduction in memory traffic. This indicates

that query processing in Trill is not memory-bound even

when the query executes simple computation (e.g., a fil-

ter operator).

To understand the source of such inefficiency, we have

run and profiled a diverse set of queries (including fil-

ter query and groupby query) using Trill. Our profiling

shows that for the filter query (and similarly for other

stateless queries), most of the execution time is spent

in functions that generalize semantics in streaming data

construction. In particular, for each incoming event, the

filter query (1) performs just-in-time copy of payloads to

create a streameable event (memory allocation) and (2)

enables flexible column-oriented data batches (memory

copying and reallocation). These operations account for

more than two-thirds of the total query processing time,

with limited time spent on the query operator itself. The

second major overhead is inefficient bit-wise manipula-

tion; 46% of the time is spent on identifying what bit

should be set when the previous bottleneck is fully re-

moved. For the groupby query, more than 90% of the

time is spent on manipulating the hash table (e.g., key

lookups), which holds the status of the identified groups.

While adding concurrency mitigates such costs, they re-

main the largest.

In summary, we conclude that the state-of-the-art

streaming engines such as Trill are not properly opti-

mized to fully utilize the available memory bandwidth,

limiting the benefit of reduced memory consumption

through data compression. In our work, we will address

this issue by integrating several simple optimizations that

make streaming engines much more efficient and conse-

quently memory sensitive (Section 3.1).

2.3 Compressibility ⇒ Performance Gain

To understand whether the limitations we observe with

Trill are fundamental, we look at the performance of the

STREAM [13] benchmark suite, which performs simple

streaming operators such as copy, add, and triad on large

arrays of data3, without the overhead we observe in Trill.

Figure 2 shows the throughput of the Add benchmark

for three different cases: (i) Long – 64-bit unsigned in-

teger, (ii) Char – 8-bit char type (mimic 8× compres-

sion with no compression/decompression overhead, (iii)

CharCompr. – compressing 64-bit values to 8-bit using

Base-Delta encoding [53].

We draw two major conclusions from this figure. First,

3For our purposes, we evaluate STREAM not only on float/double

data, but also for different integer types.
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Figure 2: Add results.

when the amount of data transferred is reduced 8× (go-

ing from Long to Char), the resulting throughput also

increases proportionally, from the maximum of around

7 Billion elements/sec for Long all the way to the max-

imum of 52 Billion elements/sec with Char). The sig-

nificant throughput improvement indicates that, due to

the absence of other artificial bottlenecks (e.g., mem-

ory allocation/deallocation, inefficient bit-wise manip-

ulation, and hashmap insertions/searches), the through-

put of this simple streaming engine is limited only by

the main memory bandwidth, and compression reduces

the bandwidth pressure proportionally to the compres-

sion ratio. Second, using a realistic simple compression

mechanism, e.g., CharCompr. with Base-Delta encod-

ing, still provides a lot of benefits over uncompressed

baseline (the maximum increase in throughput observed

is 6.1×), making simple data compression algorithms an

attractive approach to improve the performance of stream

processing. At the same time, it is clear that even simple

compression algorithms incur noticeable overhead that

reduces the benefits of compression, hence the choice of

compression algorithm is important.

3 Efficient Compression with TerseCades

In this section we first describe the key optimizations

(which we refer to as first-order) that are needed for a

general streaming engine to be efficient. We then de-

scribe the design of a single-node streaming system that

supports generic data compression. Finally, we show the

reasons behind the choice of compression algorithms we

deploy in TerseCades, hardware-based strategies to min-

imize the (de)compression overhead (using SIMD, GPU

and FPGA), as well as less intuitive (but very powerful)

optimizations such as direct execution on compressed

data.

3.1 Prerequisites for Efficient Streaming

Our initial experiments with Trill engine (§2) show that

in order to make streaming engines more efficient, sev-

eral major bottlenecks should be avoided. First, dynamic

memory allocation/deallocation is costly in most operat-

ing systems, and permanent memory allocation for every
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window (or even batch within a window) in streaming

engine significantly reduces the overall throughput. This

happens because the standard implementation of stream-

ing with any window operator would require dynamic

memory allocation (to store a window of data). One

possible strategy to address this problem is to identify

how much memory is usually needed per window (this

amount tends to be stable over time as windows are nor-

mally the same size), and then use fixed memory alloca-

tion strategy – most of the memory allocation happens

once and then reused from the internal memory pool. In

TerseCades we use profiling to identify how much mem-

ory is usually needed for a particular size window, al-

locate all this memory at the beginning, and then only

allocate more memory if needed during the execution.

Second, implementation of certain streaming opera-

tors, e.g., GroupApply, requires frequent operation on

hashmap data structures. Similarly, many common in-

tegral data types such as strings, might require a lot of

memory if stored fully (e.g., 64 bytes for the server IDs),

but can be efficiently hashed to reduce space require-

ments. Unfortunately, the standard C++ STL library does

not provide this efficiency. To address this problem, we

implement our own hashmap data structure with corre-

sponding APIs taking into the account specifics of our

streaming data.

Third, efficient implementation of filtering operators

(e.g., Where) requires efficient bit-vector manipulation.

For example, when running a simple Where query with

a single comparison condition (e.g., Where (error

Code == 0) ) with Trill streaming engine, we observe

that about 46% of the total execution time is now related

to simple bit-wise manipulation (1 line of the source code

using standard C# data structures). Unfortunately, this

huge overhead limits the benefits of any further perfor-

mance optimizations. In our design, we implemented our

own simple bit-wise representation (and the correspond-

ing APIs) for filtering operators using C++ that signifi-

cantly reduces the overhead of filtering. Altogether, these

optimizations allows us to improve the performance our

system more than 3× as we will show in Section 5.

3.2 System Overview

Compressor

Compressed

data store

Event 

stream

Decompressor

Op1

Decompressor

Opn

Operator 1

on compressed data

Operator n

on compressed data

Figure 3: The streaming processing pipeline with com-

pression and decompression.

Figure 3 shows our proposed TerseCades streaming

processing pipeline in a single node. We will defer

the discussion on how TerseCades is applied in the dis-

tributed system setting for monitoring and troubleshoot-

ing for a large cloud provider in Section 5.4, and in this

section we focus on making this system efficient. We

also note that single-node TerseCades system is generic,

and both its design and optimizations behind it can be

applied in other distributed streaming systems.

The major difference from traditional streaming pro-

cessing, in Figure 3, is that external streaming events

are first compressed before they are stored (typically in

a column-oriented format that is usually more preferable

for applications with high spatial locality). Note that the

streaming operators also need to carry out decompres-

sion on all the compressed data before they access it (ex-

cept for the cases where we use direct execution on com-

pressed data described in Section 3.3).

The operators are chained together to form a pipeline.

Different operators may work on different columns of the

data, hence they may need to perform different decom-

pression operations. Furthermore, some operators may

need to produce new data sets from their input, and the

newly generated data sets need to be compressed as well.

This flow highlights the fact that compression/decom-

pression operations are now on the critical path of the

streaming engine execution, and have to be efficient to

provide any benefits from tighter data representation .

3.3 Practical Compression for Streaming

One of the key contributions of this work is the efficient

utilization of the existing memory resources (both band-

width and capacity) by using simple yet efficient data

compression algorithms. We observe that the dominant

part of the data we use in stream processing is synthetic

in nature, and hence it has a lot of redundancy (see Sec-

tion 2 and 5) that can be exploited through data compres-

sion. In this section, we describe the key design choices

and optimizations that allowed us to make data compres-

sion practical for modern streaming engines.

Lossless Compression. The key requirement of lossless

compression is that the data after decompression should

be exactly the same as before compression. The classi-

cal lossless compression algorithms include different fla-

vors of Lempel-Ziv algorithm [68], and Huffman encod-

ing [37, 27, 28, 47] and arithmetic coding [60, 36, 54,

4, 59]. These algorithms were proven to be efficient for

disk/storage or virtual memory compression [62, 29, 9]

and graphics workloads [60, 36, 54], but unfortunately

most of these algorithms are too slow for compressing

active data in memory. 4 As we will show in Section 5.1,

4Memory latencies are usually on the order of tens of nanosec-

onds [39]. Even when these algorithms were implemented as an ASIC

design, e.g., IBM MXT design [8, 61], the overhead more than double

the latency for main memory accesses.
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software implementations of these algorithms are usually

impractical.

To address this challenge, rather than using sophis-

ticated dictionary-based algorithms, we decided to use

simple arithmetic compression algorithm that was re-

cently proposed in the area of computer architecture –

Base-Delta encoding [53]. The primary benefits of this

algorithm include its simplicity (e.g., only one addition is

needed for decompression), and its competitive compres-

sion ratio for a wide range of data (e.g., rtts, timestamps,

pixels, performance counters, geolocation data). Fig-

ure 4 shows how timestamp data can be compressed with

Base-Delta encoding (8-byte base and 1-byte deltas).

5/23/2016 12:00:01 AM 5/23/2016 12:00:03 AM ... 5/23/2016 12:00:07 AM

5/23/2016 12:00:00 AM
Base

8 bytes

0x001 3 ... Saved Space7

8 bytes 1 byte

Figure 4: Base-Delta encoding applied to timestamps.

It turns out that this simple algorithm has several other

benefits. First, it can be easily extended to a more ag-

gressive lossy version that can still provide the output

results that match lossless and uncompressed versions.

Second, this algorithm is amenable to hardware acceler-

ation using existing hardware accelerators such as GPUs

and FPGAs, and using SIMD vector instructions avail-

able in commodity CPUs. Third, Base-Delta encoding

preserves certain properties of the data (e.g., order) that

can enable further optimizations such as direct execution

on compressed data (Section 3.3).

Lossy Compression without Output Quality Loss.

Lossy compression is a well-known approach to increase

the benefits of compression at the cost of some precision

loss. It is efficiently used in the areas where there is a

good understanding of imprecision effect on the output

quality, e.g., audio encoding, image compression. We

observe that similar idea can be useful for some common

data types in stream processing when the data usage and

the effect of imprecision is also well understood.

For example, in troubleshooting scenario (§5.1), every

record has a timestamp (8-byte integer) that is usually

used only to check whether this timestamp belongs to a

particular time window. As a result, storing the precise

value of the timestamp is usually not needed and only

some information to check whether the record belongs

to a specific window is needed. Luckily, if the value al-

ready compressed with Base-Delta encoding, this infor-

mation is usually already stored in the base value. Hence,

we can avoid storing the delta values in most cases and

get much higher compression ratio. For a batch of 128

timestamp values, the compression ratio can be as

high as 128× for this data field, in contrast to about 8×

compression ratio with lossless version. While this ap-

proach is not applicable in all cases, e.g., server IDs need

to be precise, its impressive benefits while preserving the

output quality made us consider using modified (lossy)

version of Base-Delta encoding in our design.

Lossy Compression for Floating Point Data. The na-

ture of floating point value representation makes it diffi-

cult to get high compression ratio from classical Base-

Delta encoding. Moreover, getting high compression

ratio with lossless compression algorithms on floating

point data is generally more difficult [20, 14, 15]. Luck-

ily, most of the scenarios using floating point values in

streaming do not usually require perfect accuracy. For

example, in several scenarios that we evaluated (§5),

floating point values are used to represent performance

counters, resource utilization percentage, geolocation co-

ordinates, and sensor measurements (e.g., wind-speed or

precipitation amount). In these cases, you usually do not

need the precise values for all data fields to get the cor-

rect results, but certain level of precision is still needed.

We consider two major alternatives: (i) fixed point rep-

resentation that essentially converts any floating point

value into an integer value and (ii) using lossy float-

ing point compression algorithms (e.g., ZFP [45]). The

primary advantage of the first option is low overhead

compression/decompression, because we can use Base-

Delta encoding to compress the converted values. The

primary benefit of the lossy floating point compression

algorithms is that they usually provide higher accuracy

than fixed-point representation. The lossy compression

algorithm, called ZFP [45] that we use in our experi-

ments, has the option to provide an accuracy bound for

every value compressed. This option simplifies the us-

age of lossy compression since we only need to reason

about data accuracy in simple terms (e.g., error bound per

value is 10−6). Moreover, this algorithm proved to have

a very competitive throughput for both compression and

decompression and allows to access the compressed data

without decompressing it fully. Hence, in our design, we

decided to use ZFP algorithm for floating point data.

Reducing the Compression/Decompression Cost. As

we show in Section 2.3, even simple compression al-

gorithms like Base-Delta encoding can add significant

overhead. In this section, we will demonstrate how those

overheads can be significantly reduced if we use the ex-

isting hardware to accelerate the major part of this over-

head – data decompression.

Acceleration using SIMD instructions. Our original

software implementation of Base-Delta encoding algo-

rithm uses a simple add instruction to decompress a value

based on its corresponding base and delta values. In

streaming, usually many values are accessed at the same

time, hence it is possible to reduce decompression over-

head by using SIMD instructions, e.g., Intel AVX in-
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structions (256-bit versions are available on most modern

CPUs). By using SIMD instructions, we can reduce the

overhead of decompression at least 4×, as four decom-

pressions can be replaced with a single one. As we will

show in Section 4.2, this optimization can significantly

reduce the overhead of decompression that leads to the

throughput close to the ideal compression case (with no

compression/decompression overhead).

Hardware Acceleration: GPUs/FPGAs. Modern hard-

ware accelerators such as Graphics Processing Units

(GPUs) and Field-Programmable Gate Arrays (FPGAs)

can be very efficient computational substrate to perform

bulk compression/decompression operations [50, 31].

These accelerators are now available in commodity data

centers for general-purpose use [55, 12, 16]. In our

work, we also evaluate such a possibility by implement-

ing Base-Delta encoding algorithm using CUDA 8.0 [49]

on a GPU and using SystemVerilog on an FPGA. Our re-

sults (see Section 4.2) shows that by utilizing these accel-

erators, it is possible to perform the required data decom-

pression (and potentially compression) without slowing

down the main computation.

Direct Execution on Compressed Data. Many data

compression algorithms require compressed data to be

decompressed before it is used. However, performing

each operation after data decompression can potentially

lead to significant performance penalty. In streaming an-

lytics, many operations are relatively simple and regular,

allowing direct execution on the compressed data itself.5

We find that we can run a set of stateless operators (e.g.,

Where) as well as aggregation operators (e.g., sum, min/-

max, average, standard deviation, argmax/argmin, coun-

tif, distinct count, percentiles) on top of compressed data

(assuming Base-Delta Encoding) more efficiently.

1

Value1 Value2 Value3 ValueN

8 bytes

1 byte 1 byte

Value0 N 8-byte comparisons

Value0
1 comparison with base 

8 bytes

Base ∆1 ∆2 ∆3 ∆N

N/8 8-byte comparisons 
(8 deltas per comparison)

Figure 5: Direct execution on the data compressed with

Base-Delta encoding.

Consider a simple Where query that performs a linear

scan through an array on N values searching for a certain

value0 (see Figure 5). If this data is already compressed

with Base-Delta encoding, then one simple strategy is to

try to represent the searched value in the same base-delta

format as batches of values in this array. If value0 cannot

5This idea has some similarity with the execution on encrypted data

in homomorphic encryption [32], however in our case it is possible get

performance even better than the uncompressed baseline.

be represented in this form (one comparison needed to

test this), then this value is not in this batch, and there

is no need to do any per-value comparisons. This avoids

multiple (e.g., hundreds) comparisons per batch.

In cases where the search value can be represented

similarly to the values in the batch, we still need to do

value-by-value comparisons, but these values are now

stored in a more narrow format (1-byte deltas in Fig-

ure 5). Instead of 8-byte comparisons, we can now group

the deltas to do more efficient comparisons using SIMD

instructions. This would reduce the number of compar-

isons by 8×. In summary, we can significantly improve

the execution time for some common queries by utiliz-

ing the fact that data is stored in a compressed format to

perform some operations more efficiently.

Generality of the Proposed Approach. There is a po-

tential concern with the proposed approach due to lim-

ited generality and whether the benefits will be preserved

when additional layers of indirection are added. Our cur-

rent implementation supports a subset of queries from

a LINQ-like proviver (e.g., Where, Window, GroupBy,

Aggregate wih different operators inside of it, Reduce,

Process and other operators are already supported), and

is designed in a way, where it is possible to add support

for new operators without significantly affecting the per-

formance of existing ones. We currently leave it to the

programmer to decide on whether they want their data

being compressed using different proposed compression

algo- rithms (similarly to how data compression is sup-

ported in Oracle databases). Our design favors column-

oriented data allocation as it allows to get higher benefit

from data locality in both DRAM and caches. It might

not be al ways the best choice of each query, so we also

leave the choice of memory allocation to the program-

mer (we pro- vide both row- and column-oriented op-

tions). Given these two inputs from the programmer, the

framework then automatically allocates the memory in

the form optimized for both streaming and compression,

and performs execution on compressed data where appli-

cable.

Our original intent was to perform our optimizations

on top of existing state-of-the-art frameworks such as

Trill, but as we show in Section 2, these frameworks

are not properly tuned to exploit the full potential of ex-

isting memory subsystems. While we agree that their

generality and ease of programming makes them a de-

sirable choice in many situations, but we also envision

TerseCades being further extended to be as general as

these frameworks without sacrificing its performance.

4 Methodology and Microbenchmark

In this section, we will provide the detailed perfor-

mance analysis of several key microbenchmarks and
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demonstrate how different optimizations proposed in

Section 3.3 affect their performance.

4.1 Methodology

In our experiments, we use two different CPU configura-

tions. The first is a 24-core system based on Intel Xeon

CPU E5-2673, 2.40GHz with SMT-enabled, and 128GB

of memory, which is used in all microbenchmarks studies

to have enough threads to put reasonable pressure on the

memory subsystem. The second is a 4-core system based

on Intel Xeon CPU E5-1620, 3.50GHz, SMT-enabled,

and 16GB of memory. This system is used in all real ap-

plications experiments as it has better single-thread per-

formance (especially higher per thread memory band-

width). For our GPU experiments, we use NVIDIA

GeForce GTX 1080 Ti with 11GB of GDDR5X memory.

For FPGA prototyping, we use Altera Stratix V FPGA,

200MHz. In our evaluation, we use real applications

scenarios (§5) and microbenchmarks from the STREAM

suite [13]. We use Throughput (Millions of elements per

second) and Latency (milliseconds) to evaluate stream-

ing system performance; and Compression Ratio defined

as uncompressed size divided by compressed size as the

key metric for compression effectiveness.

4.2 Microbenchmark and Optimizations

SIMD-based Acceleration. To realize the full poten-

tial of data compression, it is critical to minimize the

overhead due to data compression and especially decom-

pression (that can be called multiple times on the same

data). Luckily, the simplicity and inherent parallelism of

the Base-Delta encoding algorithm allow to use SIMD

vector instructions (e.g., Intel AVX) to perform multiple

compressions/decompressions per instruction. Figure 6

shows the result of this optimization for Add benchmark

from the STREAM benchmarks. We make two key ob-

servations from this figure.

First, when the number of threads is relatively small,

this benchmark is more compute than memory lim-

ited. Hence reducing the computational overhead allows

the CharCompr.+V version (compression plus vectoriza-

tion) to almost completely match the ideal compression

version (Char).6 Second, when the number of threads

increases (from 16 to 36), the additional overhead due to

compression associated metadata becomes more impor-

tant, and eventually when memory bandwidth becomes

the only bottleneck, vectorization is not as useful in re-

ducing the overhead anymore.

GPU/FPGA-based Acceleration. There are other hard-

ware accelerators that can perform compression/decom-

pression for Base-Delta encoding efficiently. For ex-

6Some additional overhead such as metadata and base storage over-

head does not play a significant role here.
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Figure 6: Add results with vectorization added.

ample, modern GPUs are suitable for massively parallel

computations. We implemented the code that can per-

form multiple decompression operations in parallel us-

ing CUDA 8.0 [49] and tested this implementation using

GeForce GTX 1080 Ti Graphics Card. Our results show

that we can perform more than 32 Billion decompres-

sions per second that is sufficient to satisfy the decom-

pression rates required in realistic applications we will

explore in Section 5. Note that this massive compute ca-

pability is frequently limited by the PCIe bandwidth that

for our system was usually around 5-6 GB/sec.

Another option we explore is FPGA. We used Sys-

temVerilog to implement the decompression logic and

were able to run decompression at 200 MHz on a Stratix

V FPGA board. We are able perform up to 744 Billion

decompressions per second using this FPGA. Unfortu-

nately, the bandwidth available through the PCIe again

becomes the critical bottleneck limiting the number of

decompressions we can perform. Nevertheless, it is clear

that both GPUs and FPGAs can be efficiently used to

hide some of the major data compression overheads.

Execution on Compressed Data. As we discussed in

Section 3.3, the fact that the data is compressed usually

comes with the burden of decompressing it, but it does

not always have to be this way. There are several com-

mon scenarios when compressed data with Base-Delta

encoding, can allow us to not only avoid decompression,

but even execute the code faster. To demonstrate that, we

take one benchmark called Search that essentially per-

forms an array-wide search of a particular value (mim-

icking a very common Where operator in streaming). As

we described in Section 3.3, when the data is represented

in Base-Delta encoding, we take advantage of this fact

and either completely avoid per value comparison within

a batch (if the searched value is outside of the value range

for this batch) or perform much more narrow 1-byte com-

parisons (8× less than in the original case).

Figure 7 presents the results of this experiment where

Compr.+Direct is the mechanism that corresponds to

compression with Base-Delta encoding and direct exe-

cution on compressed data as described in Section 3.3.

Our key observation from this graph is that direct execu-

tion can not only dramatically boost the performance by
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Figure 7: Search results with Direct Execution.

TimeStamp (8, BD) ErrorCode (4, EN+BD)

SrcCluster (4, HS+BD) DstCluster (4, HS+BD)

RoundTripTime(RTT) (4, BD)

Table 1: Pingmesh record fields. Numbers in parenthesis

are the bytes used to represent the field while letters are

the compression algorithms we apply for that field. BD:

base+delta; HS: string hashing; EN: enumeration.

avoiding the overhead of decompression (this is the per-

formance gap between Char, ideal 8× compression with

no overhead, and CharCompr.), but also significantly

outperform the ideal compression case of Char (up to

4.1×). Moreover, it can reach almost the peak perfor-

mance at just 8 threads, at which point it becomes fully

memory bottlenecked, in contract to other cases where

the peak performance is not reached until 44 threads are

used. In summary, we conclude that direct execution

on compressed data is a very powerful optimization that,

when applicable, can by itself provide the relative perfor-

mance benefits higher than that from data compression.

5 Applications

5.1 Monitoring and Troubleshooting

Pingmesh Data. Pingmesh [35] lets the servers ping

each other to measure the latency and reachability of the

data center network. Each measured record contains the

following fields: timestamp, source IP address, source

cluster ID, destination IP address, destination cluster ID,

round trip time, and error code. Table 1 shows several

of the fields that will be used in the queries in this pa-

per. The measured records are then collected and stored.

Data analysis is performed for dashboard reporting (e.g.,

the 50th and 99th latency percentiles), and anomaly de-

tection and alerting (e.g., increased latency, increased

packet drop rate, top-of-rack (ToR) switch down).

Pingmesh Queries. Here we describe implementation

of several real queries on the Pingmesh data.

The query C2cProbeCount counts the number of error

probes for the cluster-to-cluster pairs that take longer

than certain threshold:

C2cProbeCount = Stream

.HopWindow(windowSize, period)

.Where(e => e.errorCode != 0 && e.rtt >= 100)

.GroupApply((e.srcCluster, e.dstCluster))

.Aggregate(c => c.Count())

The T2tProbeCount query is similar to the previous one,

but uses Join to count the number of error probes for the

ToR-to-ToR pairs:

T2tProbeCount = Stream

.HopWindow(windowSize, period)

.Where(e => e.errorCode != 0 && e.rtt >= 100)

.Join(m, e => e.srcIp, m => m.ipAddr,

(e,m)=> {e, srcTor=m.torId})

.Join(m, e => e.dstIp, m => m.ipAddr,

(e,m)=> {e, dstTor=m.torId})

.GroupApply((srcTor, dstTor))

.Aggregate(c => c.Count())

In the query, m is a table which maps server IP address

to its ToR switch ID.

Compression Ratio, Throughput and Latency. In our

experiments, we compare different designs that employ

various compression strategies and optimizations: (i) No

Compression, baseline system with all first-order opti-

mizations described in Section 3.1, (ii) Lossless com-

pression mechanism that employs Base-Delta encoding

with simple mechanisms such as hashing and enumera-

tion, (iii) LosslessOptimized mechanism that combines

lossless compression described above with the SIMD ac-

celation and direct execution on compressed data, (iv)

Lossy compression mechanism that uses lossy version

of Base-Delta encoding in the cases where precise val-

ues are not needed, (v) LossyOptimized mechanism that

combines lossy compression with the two major opti-

mizations described in (iii). In addition, we evaluate two

other designs: Trill streaming engine as a backend and

NonOptimized design where we use TerseCades without

any of the proposed optimizations.

The average compression ratio for these designs is as

follows: Lossless* designs have an average compression

ratio on 3.1×, Lossy* designs – 5.3×, and all other de-

signs have no compression benefits (as compression is

not used). Figure 8 compares the throughput of all the

designs. First, as expected, first-order optimizations are

critical in getting most of the benefits of implementing

more specialized streaming engine in C++, leading to

performance improvement of 9.4× over Trill streaming

engine. As we remove most of the redundant computa-

tional overheads from the critical path, the memory band-

width becomes a new major bottleneck. The four designs

with data compression support overcome this bottleneck

that limits systems’ throughput – 32.3 MElems/s (Mil-

lions of elements-records per second).

Second, both Lossless and Lossy compression can pro-

vide significant throughput benefits as they have high av-

erage compression ratios (3.1× and 5.3×, correspond-

ingly). However the full potential of these mechanisms
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Figure 8: Throughput for the Pingmesh C2cProbeCount

query. Optimized versions include both direct execution

and SIMD optimizations.
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Figure 9: Execution times for Where and GroupApply

operators used in the Pingmesh C2cProbeCount query.

Optimized versions include direct execution and SIMD

optimizations.

is only uncovered when they are used in conjunction with

vectorization (that reduces the overhead of compres-

sion/decompression) and direct execution on compressed

data that for certain common scenarios (such as Where

operator) can dramatically reduce the required computa-

tion (over the baseline). We conclude that efficient data

compression through simple yet efficient compression al-

gorithms and with proper optimizations can lead to dra-

matic improvement in streaming query throughput (e.g.,

14.2× for troubleshooting query we analyzed).

Figure 9 shows similar results on the performance

(execution time) of two major operators, Where and

GroupApply for first five designs. Two observations are

in order. First, both operators significantly reduce their

execution time due to efficient usage of data compres-

sion, and the highest benefit is coming again from the

most aggressive design, LossyOptimized. Second, the

benefits due to compression and corresponding optimiza-

tions are more significant for Where operator – 4.6× im-

provement between NoCompression and LossyOptimized

designs. This happens because Where operator benefits

dramatically from the possibility of executing directly on

compressed data (reducing the number of comparisons

instructions needed to perform this operator).

Join Operator: Throughput and Execution Time. In

order to demonstrate the generality of our approach, we

also evaluate another scenario (T2tProbeCount query)

that uses the Join operator. Table 2 shows the through-

put and the execution time of this scenario for two de-

signs: NoCompression and LossyOptimized. In this sce-

Mechanism Throughput Time

NoCompr. 27.7 MElems/s 2031 ms

LossyOptimized 38.3 MElems/s 1813 ms

Table 2: Throughput and Time (Join only) to perform the

Pingmesh T2tProbeCount query that has Join operator.
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Figure 10: Throughput for the Pingmesh C2cProbeCount

query with varying (a) window and (b) batch sizes.

nario, the throughput benefits are still significant (almost

1.4×), but the reduction in the operator’s execution time

is relatively small (around 12%). This is because most

of the benefits are coming from the reduction in band-

width consumption that happens mostly outside of Join

– in HopWindow operator, while most of the computa-

tion performed to implement the Join operator is coming

from hash table lookups.

Sensitivity to the Window Size. The window size used

in the HopWindow operator can significantly affect the

performance of the operators running after it. In order to

understand if it is also a case for the troubleshooting sce-

nario we consider, we study the performance of the two

designs (NoCompression and LossyOptimized) on vary-

ing window size (from 1 second to 5 minutes).

Figure 10 (a) shows the results of this study. We make

two observations. First, we observe that our proposed

design, LossyOptimized, demonstrates stable throughput

(around 50 MElems/sec) across different window sizes

(from 1 to 120 seconds), with the variation below 5% in

this range, and performance drops only at the 5-minute

window. Second, in contrast to LossyOptimized design,

the NoCompression design has a much shorter window

of efficient operation (from 1 to 30 seconds).The primary

reason for this is data compression that not only reduces

the bandwidth consumed by the streaming engine, but

also significantly reduces its memory footprint, allowing

it to run on larger windows. Hence we conclude that

compression allows to handle substantially larger win-

dows (e.g., 4× larger) than the windows that can be effi-

ciently handled without data compression.

Sensitivity to the Batch Size. In order to minimize the

overhead of processing individual data elements, those

elements are usually grouped by the streaming engines in

batches. Hence the batch size becomes another knob to

tune. We conduct an experiment where we vary the size
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Mechanism Throughput Where Group

NoCompr. 32.2 MElems/s 625 ms 828 ms

FrameRef.[33] 21.6 MElems/s 2453 ms 4078 ms

XPRESS [47] 8.5 MElems/s 7328 ms 13671 ms

LosslessOptimized 37.5 MElems/s 297 ms 469 ms

LossyOptimized 49.1 MElems/s 141 ms 453 ms

Table 3: Total throughput and time to perform Pingmesh

query with optimized baseline without compression, two

other compression algorithms, and our designs.

of the batch from 1K to 1M elements, and the results are

shown in Figure 10 (b). We observe that in most cases the

throughput of streaming engines are not very sensitive to

the batch sizes in this range, except for one data point –

the throughput of uncompressed design drop from 32.3

to 24.7 when going from 100K to 1M elements. Addi-

tional investigation shows that without compression for

1M elements the batch working set size exceeds the size

of the available last level cache, limiting the benefits of

temporal locality in the case of data reuse.

Sensitivity to the Compression Algorithms. In this

work, we strongly argue that in order for compression al-

gorithm to be applicable for streaming engine optimiza-

tion, its complexity (compression/decompression over-

head) should be extremely low and the algorithm itself

has to be extensively optimized. We already showed

that heavily optimized versions of arithmetic-based al-

gorithm such as Base-Delta encoding can be efficient in

providing significant performance benefits for streaming

engines. We now compare our proposed designs with

two well-known lossless compression algorithms used

for in-memory data: FrameOfReference algorithm [33],

arithmetic-based compression for low-dynamic range

data, and XPRESS algorithm [47], dictionary-based al-

gorithm that is based on LZ77 algorithm [68].

Our first comparison point is compression ratio, and

as expected, both FrameOfReference and XPRESS out-

perform our LosslessOptimized algorithm in this aspect

(compression ratios of 4.1× and 5.1×, respectively, vs.

3.1× for our design). However more importantly, as re-

sults in Table 3 indicate, both these algorithms prove not

to be very practical for streaming engines, as their effect

on throughput and execution time puts them below not

only our proposed designs, but also significantly below

uncompressed scenario. This happens because the cost

of compression and decompression that are both on the

critical path of execution outweighs the benefits of lower

memory bandwidth consumption. We conclude that al-

though it is important to have a compression algorithm

with high compression ratio to provide reasonable per-

formance improvements for streaming engines, it is even

more critical to make sure those algorithms are efficient.

TimeStamp (8, BD) Datacenter (3, HS)

Cluster (11, HS) NodeId (10, HS)

VmId (36, HS) CounterName (15, EN)

SampleCount (4, BD) AverageValue (8, ZFP)

MinValue (8, ZFP) MaxValue (8, ZFP)

Table 4: VM performance counter data fields. Num-

bers in parenthesis are the original sized of these fields,

letters – compression algorithms used for them. BD:

base+delta; HS: string hashing; EN: enum; ZFP [45].

5.2 IaaS VM Perf. Counter

Data. The cloud vendor regularly samples performance

counters of an IaaS VM to determine a VM’s health. If

a VM is in an unhealthy state, recovery actions (e.g., re-

locate) will be taken to improve VM availability. Table 4

shows the fields for a performance counter record with

the size to in-memory representations in the original an-

alytics system. Each record contains the data source in-

formation (e.g., from which cluster, node and VM) and

the actual values. At each regular interval, multiple such

records of different types of counters will be emitted:

e.g., CPU, network, disk. We use five datasets, i1 to i5,

from different set of VMs in different timespan.

Queries. When processing these records, the data

stream is grouped by timestamp and sources to get all

the counters for a particular VM at each time point. We

use a query to find the time and duration for a VM los-

ing network activity: it first classifies the health of each

perf counter group into different types (e.g., CPU active

but network flat) and then scans the classified groups in

ascending time for each unique VM to detect any type

changes (e.g., from active to flat) and their durations.

Compressibility. Each performance counter record is

represented with 111 bytes in memory in the original

format, and a large portion of it can be compressed ef-

ficiently. For example, the VmId is a 36-character UUID

string so that a VM can be universally uniquely identi-

fied across lifetime. But in the streaming scenario, in

a given processing time window, the number of unique

VMs tends not to be so large that they can be safely

hashed to a 8-byte index. Note that absolute number of

performance counters being emitted is large enough so

that the hash table’s overhead is amortized.

The compressibility can also come from batches of

records rather than individual records. For example, the

performance counter value is originally represented as a

8-byte double. The compressibility of a single record is

not big (e.g., 2× if converted to integers). But efficient

floating-point compression algorithm like ZFP can be ap-

plied across a stream of these counters to achieve high

compression ratio. As Figure 11 shows, in certain runs,

we can achieve near 6× compression ratio! The reason is

that some VMs exhibit very regular performance patterns
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Figure 11: Compression ratio for various performance

counters from VMs in a commercial cloud provider.
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Figure 12: QoS metric loss for different compression ra-

tios of performance counters.

(sometimes even constant) that can be exploited by ZFP.

Of course, there are also some VMs that exhibit highly

variable patterns, which will yield lower compression ra-

tios (2.5× to 3× seen in our experiments).

Quality of Service. Algorithms like ZFP on floating-

point values are lossy that can lose precisions when de-

compressed. Depending on the queries, the precision

loss might sacrifice the QoS. This creates a trade-off

between the compression ratio and the QoS level. We

evaluated this trade-off using several queries on a set of

real data coming from different regions’ VMs in different

timespan. The QoS loss metric is defined by the differ-

ences between the originally detected performance drop

sessions with the new drop sessions: e.g., 1 additional

session or missing session for a originally 100-session

result is a 1% QoS loss. Figure 12 shows the result. We

can see that for most datasets, the QoS loss level is low

(below 5%), meaning that even aggressive lossy com-

pression might be adopted without sacrificing QoS. For

certain dataset, there is a high penalty (20% and more)

because the absolute number of drop sessions are small.

5.3 IoT Data

Geolocation Data. This dataset contains GPS coordi-

nates from the GeoLife project [2] by 182 users in a pe-

riod of over three years. Figure 13 shows the average

compression ratio of the dataset by using compression

algorithms listed in Table 5. As we can see, these sensor

data have significant redundancies because user move-

ments tend not to have drastic changes. Even with an er-

ror bound of 10−6, we can still achieve more than 4.5×

compression ratio on average, creating significant oppor-

tunity for efficient real-time analytics over IoT data.

Latitude (8, ZFP) Longitude (8, ZFP)

Altitude (4, BD) TimeStamp (8, BD)

Table 5: Geolocation IoT data fields. Numbers and let-

ters in parenthesis have the same meaning as Table 4.
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Figure 13: Compression ratio for GeoLocation IoT data.

Weather Data. We use another type of IoT data,

18,832,041 observations of weather data generated by

various sensors during Hurricane Katrina in 2005 [3].

The measurements are stored as floating points in the

data files but most of them are essentially integers due

to the limited precisions of the sensors. Some metrics

have a fixed number of digits after decimal points. They

can be converted to integers as well to use integer com-

pression algorithms like Base-Delta encoding. Across 18

metrics in the dataset, we can obtain an average of 3-4×

compression ratios for each metric.

5.4 Real-World Implementation

We have built a distributed streaming system in our pro-

duction data centers and implemented Pingmesh [35] us-

ingTerseCades. In the original system, we used Trill [21]

for streaming processing, which is now completely re-

placed with our new design. The whole system is com-

posed of 16 servers each with two Xeon E5-2673 CPUs

and 128G DRAM, running Windows Server 2016. Every

server runs a frontend service and a backend service. The

frontend services receive real-time Pingmesh data from a

Virtual IP behind a load-balancer, and then partition the

data based on the geo-region ID of the data and shuffle

the data to the backend.

The whole system is designed to be fault tolerant –

works well even if half services are down. The opera-

tions we perform are latency heatmap calculation at the

50th and the 99th percentiles, and several anomaly de-

tections including ToR (Top of Rack) switch down de-

tection. The aggregated Pingmesh input streaming is 2+

Gb/s, making it bandwidth-sensitive when properly opti-

mized. The busiest server needs to process 0.5 millions

events per second and uses 50% CPU cycles and 35GB

memory. Using TerseCades to replace Trill, we reduce

the sixteen servers to only one.

6 Related Work

Streaming System. Numerous streaming systems have

been developed in both industry and literature [7, 18, 22,
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41, 1, 10, 11, 66, 48, 56, 57, 65] to address the various

needs for streaming processing: to name a few, Spark

Streaming [66] applies stateless short-task batch compu-

tation to improve fault tolerance, MillWheel [10] sup-

ports user-defined directed graph of computation, Na-

iad [48] provides the timely dataflow abstraction to en-

able efficient coordination. One common requirement

for these systems is to handle massive amount of un-

bounded data with redundancies. This motivates us to

look into efficient data compression support in stream

processing. Complimentary to these work, which fo-

cuses on high-level programming models in distributed

environment, we focus on data compression in lower

level core streaming engines that can potentially benefit

these systems regardless of their high-level abstractions.

Memory Compression: Software and Hardware Ap-

proaches. Several mechanisms were proposed to per-

form memory compression in software (e.g., in the com-

piler [43] or the operating system [62]). While these

techniques can be quite efficient in reducing applica-

tions’ memory footprint, their major limitation is slow

(usually software-based) decompression. This limits

these mechanisms to compressing only “cold” pages

(e.g., swap pages). Hardware-based data compression

received some attention in the past [64, 8, 24, 30, 52].

However, proposed general-purpose designs had limited

practical use either due to unacceptable compression/de-

compression latency or high design complexity, or be-

cause they require non-trivial changes to existing operat-

ing systems and memory architecture design.

Compression in Databases and Data Stores. Compres-

sion has been widely used to improve performance of

databases [34, 58, 38, 25, 69, 5, 51, 46] and recent data

stores [23, 9, 40] usually by trading-off overhead due to

decompression for improved I/O performance and buffer

hit rate. Some recent work investigates compression

in the context of column-oriented databases [5, 6]that

makes a few similar observations to our work: (i) adja-

cent entries in a column are often similar, (which helps

improving compressibility), and (ii) some operators can

run directly on compressed data to mitigate decompres-

sion costs (e.g., SUM aggregate on a run-length encoded

column). The key difference in our work is that we apply

compression in the streaming setting, and this puts sig-

nificant limitations on the compression algorithm used

(compared to offline data processing where latency is

way less critical) that is now on the critical execution

path. The proper choice of compression algorithm for

streaming, reducing the key overheads of compression

by using hardware acceleration, and using direct execu-

tion on compressed data (which not only avoids decom-

pression, but actually executes faster than the baseline)

are key contributions of our work that distinguish Ter-

seCades from prior work on database compression.

One recent work, Succinct [9], supports queries that

execute directly on compressed textual data (without in-

dexes), significantly improving both memory efficiency

and latency, but at the cost of complete redesign of how

the data is stored in the memory. This is complementary

to our work as our primary target is machine-generated,

numerical data sets that proved to be more dominant in

the streaming scenarios compared to textual data.

7 Conclusion

TerseCades is the first that attempts to answer the ques-

tion of “Can data compression be effective in stream pro-

cessing?”. The design and optimizations of TerseCades

answer these questions affirmatively. Our thorough stud-

ies and extensive evaluations using real stream work-

loads on production data further shed light on when and

why compression might not be effective, as well as what

can be done to make it effective. While our current

implementation supports only a subset of operators sup-

ported by mature frameworks like Trill, we hope that by

demonstrating the feasibility of data compression effi-

ciency for streaming we will open the door for incorpo-

rating data compression in the next generation of stream

processing engines.
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M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N.,

AND ZDONIK, S. B. Aurora: A new model and architecture for

data stream management. VLDB J. 12, 2 (2003), 120–139.

[8] ABALI, B., FRANKE, H., POFF, D. E., JR., R. A. S., SCHULZ,

C. O., HERGER, L. M., AND SMITH, T. B. Memory Expansion

Technology (MXT): Software Support and Performance. IBM

J.R.D. (2001).

[9] AGARWAL, R., KHANDELWAL, A., AND STOICA, I. Succinct:

Enabling queries on compressed data. In Proceedings of the 12th

USENIX Conference on Networked Systems Design and Imple-

mentation (2015), NSDI’15, pp. 337–350.

[10] AKIDAU, T., BALIKOV, A., BEKIROGLU, K., CHERNYAK, S.,

HABERMAN, J., LAX, R., MCVEETY, S., MILLS, D., NORD-

STROM, P., AND WHITTLE, S. MillWheel: Fault-tolerant stream

processing at Internet scale. PVLDB 6, 11 (2013), 1033–1044.

318    2018 USENIX Annual Technical Conference USENIX Association

http://storm.apache.org
https://www.microsoft.com/en-us/research/project/geolife
https://www.microsoft.com/en-us/research/project/geolife
http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData


[11] AKIDAU, T., BRADSHAW, R., CHAMBERS, C., CHERNYAK, S.,
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[59] STRÖM, J., WENNERSTEN, P., RASMUSSON, J., HASSEL-

GREN, J., MUNKBERG, J., CLARBERG, P., AND AKENINE-
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Abstract
Many problems in production systems are transiently re-
curring — they occur rarely, but when they do, they recur
for a short period of time. Troubleshooting these prob-
lems is hard as they are rare enough to be missed by sam-
pling techniques, and traditional postmortem analyses of
runtime logs suffers either from low-fidelity of logging
too little or from the overhead of logging too much.

This paper proposes AUDIT, a system specifically
designed for troubleshooting transiently-recurring prob-
lems in cloud-based production systems. The key idea is
to use lightweight triggers to identify the first occurrence
of a problem and then to use its recurrences to perform
blame-proportional logging. When a problem occurs,
AUDIT automatically assigns a blame rank to methods
in the application based on their likelihood of being rel-
evant to the root-cause of the problem. Then AUDIT
enables heavy-weight logging on highly-ranked methods
for a short period of time. Over a period of time, logs
generated by a method is proportional to how often it is
blamed for various misbehaviors, allowing developers to
quickly find the root-cause of the problem.

We have implemented AUDIT for cloud applications.
We describe how to utilize system events to efficiently
implement lightweight triggers and blame ranking algo-
rithm, with negligible to < 1% common-case runtime
overheads on real applications. We evaluate AUDIT with
five mature open source and commercial applications,
for which AUDIT identified previously unknown issues
causing slow responses, inconsistent outputs, and appli-
cation crashes. All the issues were reported to develop-
ers, who have acknowledged or fixed them.

1 Introduction
Modern cloud applications are complex. Despite tremen-
dous efforts on pre-production testing, it is common for
applications to misbehave in production. Such misbe-
haviors range from failing to meet throughput or latency
SLAs, throwing unexpected exceptions, or even crash-

ing. When such problems occur, developers and opera-
tors most commonly rely on various runtime logs to trou-
bleshoot and diagnose the problems.

Unfortunately, runtime logging involves an inherent
tradeoff between logging sufficient detail to root-cause
problems and logging less for lower overhead (see for
instance [1, 2, 3, 4, 5]). Our experiments show (§6) that
even for web applications that are not compute intensive,
logging parameters and return values of all methods can
increase latency and decrease throughput by up to 7%.
Moreover, determining what to log is made harder by the
fact that modern cloud and web applications involve mul-
tiple software components owned by different software
developer teams. As a result, most logs generated today
are irrelevant when root-causing problems [6].

To solve this problem, we make an important obser-
vation that many misbehaviors in production systems are
transiently-recurring. As many frequent problems are
found and fixed during initial phases of testing and de-
ployment, we expect many problems in production sys-
tems to be rare and transient (the rarity makes it challeng-
ing to troubleshoot using sampling techniques [1, 2]).
However, when they occur, they recur for a short amount
of time for a variety of reasons, e.g., the user retrying a
problematic request or a load-balancer taking some time
to route around a performance problem (§2.2).1

Contributions. In this paper, we utilize the re-
currence of these misbehaviors and present the de-
sign and implementation of AUDIT (AUtomatic Drill-
down with Dynamic Instrumentation and Triggers): a
blame-proportional logging system for troubleshooting
transiently-recurrent problems in production systems.
The basic idea is as follows. AUDIT uses lightweight
triggers to detect problems. When a problem occurs,
AUDIT automatically assigns a blame rank to methods
in the application based on their likelihood of being rel-

1A notable exception to transient-recurrence are Heisenbugs which
occur due to thread-interleaving or timing issues. AUDIT is not de-
signed to troubleshoot these problems.
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evant to the root-cause of the problem. Then AUDIT
drills-down—it dynamically instruments highly-ranked
methods to start heavy-weight logging on them until a
user-specified amount of logs are collected. Over a pe-
riod of time, logs generated by a method is proportional
to how often the method is blamed for various misbehav-
iors and the overall logging is temporally correlated with
the occurrence of misbehaviors. Developers analyze the
logs offline, and thus AUDIT is complementary to exist-
ing techniques that help in interactive settings [7, 8].

We demonstrate the feasibility and benefits of AUDIT
with the following contributions. First, AUDIT intro-
duces lightweight triggers that continuously look for tar-
get misbehaviors. Developers can declaratively specify
new triggers, describing target misbehaviors, the set of
metrics to collect, and the duration for which to collect.
The design of the trigger language is motivated by recent
studies on misbehaving issues in production systems and
when/where developers wish to log [3, 9, 10].

To evaluate the triggers and to blame-rank methods,
AUDIT uses continuous end-to-end request tracing. To
this end, our second contribution is a novel tracing tech-
nique for modern cloud applications built using Task
Asynchronous Pattern (TAP), an increasingly popular
way to write asynchrnous programs with sequential con-
trol flow and found in many languages including .NET
languages, Java, JS/Node.js, Python, Scala, etc. AUDIT
leverages system events at thread and method boundaries
provided by existing TAP frameworks for monitoring
and debugging purposes. AUDIT correlates these readily
available events for lightweight end-to-end tracing. As a
result, AUDIT introduces acceptable (from negligible to
< 1%) overhead in latency and throughput during nor-
mal operations. Note that AUDIT can also support non-
TAP applications using known techniques based on in-
strumentation and metadata propagation [8, 11, 12] that
are shown to have acceptable overheads in production
systems.

Our third contribution is a novel ranking algorithm
that assigns blame scores to methods. After a trigger
fires, AUDIT uses the algorithm to identify high-ranked
methods to initiate heavy-logging on them. AUDIT’s
blame ranking algorithm uses lessons from recent stud-
ies on where and what developers like to log for success-
ful troubleshooting [3, 13]. It prioritizes methods where
misbehavior originates (e.g., at a root exception that later
causes a generic exception), that slow down requests,
and that are causally related to misbehaving requests. It
addresses key limitations of existing bottleneck analysis
techniques that ignore critical path [14] or methods not
on critical paths [15, 16, 17].

Our final contribution is an evaluation of AUDIT. We
used AUDIT on a Microsoft production service and 4
popular open source applications. AUDIT uncovered
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Figure 1: Timeline of AUDIT finding a performance bug
in Forum.

previously-unseen issues in all the applications (§6.1).
Many of the issues manifest only on production, as they
are triggered based on user inputs and concurrency. All
the issues have been reported to and acknowledged by
developers of the applications. Some of them have al-
ready been fixed by developers with insights from logs
generated by AUDIT.

2 Overview
2.1 A motivating case study

Microsoft Embedded Social. We start with an example
demonstrating how AUDIT helped troubleshoot a prob-
lem in Microsoft Embedded Social (hereafter referred to
as Social for brevity), a large-scale social service at Mi-
crosoft. Social is written in C#, deployed on Microsoft
Azure, and is used by several applications and services
in production. Social lets users add/like/search/delete
posts, follow each other, and see feeds.2

Enabling AUDIT. AUDIT is easy to use. AUDIT works
with unmodified application binaries and is enabled by
simply setting a few environment variables. AUDIT
comes with a set of triggers targeting common perfor-
mance and exception-related problems. Social develop-
ers enabled AUDIT with these default triggers.
The problem. Figure 1 shows a performance problem
that occurred in production: the latency of retrieving
global feeds increased for a few hours. The developer
was offline during the entire time and later relied on AU-
DIT logs to troubleshoot the issue.
AUDIT in operation. An AUDIT trigger fired shortly
after the sudden spike in latency ((2) in Figure 1). For
all misbehaving requests, AUDIT logged end-to-end re-
quest trace consisting of the request string, names and
caller-callee relationship of executed methods. In ad-
dition, its blame ranking algorithm selected top-k (k =
5 by default) ranked methods and dynamically instru-
mented them to log their parameters and return values.

2Open source SDKs are available on GitHub, e.g., https://github.
com/Microsoft/EmbeddedSocial-Java-API-Library
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The heavyweight logging continues for a short time (5
minutes by default, stage (3) in Figure 1). This spatially-
and temporally-selective logging helped the developer to
root-cause of the problem, even long after the problem
disappeared (stage (4) in Figure 1).

Troubleshooting with AUDIT logs. AUDIT’s request
traces showed that the misbehaving request was retriev-
ing the global feed. The feed consists of a list of
post-ids and contents; the latter is stored in a back-end
store (Azure Table Storage) and is cached (in Redis) to
achieve low-latency and high-throughput. Request trac-
ing showed that the spike was due to post contents con-
sistently missing the cache, albeit without revealing the
cause of cache misses.

Among the methods AUDIT selected for heavyweight
logging was a method that queries the backing store
(Azure Table Storage). The logged arguments showed
that the spike was caused by one particular post id, which
according to logged return value didn’t exist in the back-
ing store. This inconsistency lead to the root-cause of
the bug — a post id was present in the global feed but its
contents were missing.

This inconsistency occurred when a user deleted a
post. Social deleted its content from cache and backing
store but failed to delete its id from the global feed due
to a transient network failure. This inconsistency was
not visible to users as missing posts are omitted in feeds,
but it created a persistent performance spike. The incon-
sistency eventually disappeared when the problematic id
was moved out of the global feed by other posts.

In addition to pinpointing the inconsistency, AUDIT
also helped the developer root-cause the inconsistency to
the failure in the delete operation through its detailed fail-
ure logging. We discuss the bug in more detail in §6.1.1.
The developer chose to fix the problem by implement-
ing negative caching, where Redis explicitly stores that a
post is deleted from the backing store.

The case study demonstrates the value of AUDIT: it
can capture useful logs for relatively rare issues that may
appear in production or large-scale tests when the devel-
oper is absent. Moreover, logs are collected only for a
short period after the issue occurs, reducing the log col-
lection overhead and making it suitable even for expen-
sive logging operations.

2.2 Transiently-recurring Problems

We argue that many problems in cloud-based produc-
tion systems are transiently-recurring. First, if an er-
ror is frequent, it will most likely be detected and fixed
during pre-production testing and staging of the appli-
cation. Second, many problems are due to infrastruc-
ture problems such as transient network hardware is-
sues [9, 18]; SLAs from cloud service providers ensure
that such problems are rare and fixed within a short win-

dow of time. Therefore, cloud applications commonly
use the “retry pattern” [19, 20] where the application
transparently retries a failed operation to handle transient
failures. Third, some problems are due to user inputs
(e.g., malformed). Such errors are rare in well-tested pro-
duction systems; however, once happened, they persist
till the user gives up after several retries [21].

Note that AUDIT is also useful for troubleshooting er-
rors that appear frequently—as long as they persist for a
small window of time (e.g., not Heisenbugs).

3 AUDIT design
At a high level, AUDIT consists of four components:
(1) declarative triggers for defining misbehaving con-
ditions (§ 3.1), (2) a light-weight always-on monitoring
component that continuously evaluates trigger conditions
and collects request execution traces (§3.2 and § 4), (3)
a blame assignment algorithm to rank methods based on
their likelihood of being relevant to the root cause of a
misbehavior (§ 3.3), and (4) a selective logger that uses
dynamic instrumentation to enable and disable logging
at top-blamed methods (§ 3.4).

3.1 AUDIT triggers

Trigger Language. AUDIT triggers are similar to
Event-Condition-Action rules that are widely used in tra-
ditional databases [22] and in trigger-action program-
ming such as IFTTT [23]. A key challenge in design-
ing AUDIT’s trigger language is to make it concise, yet
expressive enough for a developer to specify interesting
misbehaviors and useful logs. Before we elaborate on
the rationale behind our choice, we first describe the four
key components of an AUDIT trigger:

(1) ON. It specifies when (RequestStart, RequestEnd,
Exception, or Always) the trigger is evaluated.

(2) IF. It describes a logical condition that is evalu-
ated on the ON event. The condition consists of sev-
eral useful properties of the request r or the excep-
tion e such as r.Latency, e.Name, r.ResponseString,
r.URL, etc. It also supports several streaming aggregates:
r.AvgLatency(now,−1min) is the average latency of
request r in the last 1 min, e.Count(now,−2min) is the
number of exception e in the last 2 mins, etc.

(3) LOG. It describes what to log when the IF condition
satisfies. AUDIT supports logging RequestActivity3

and method of a request. A key component of LOG is
ToLog, which indicates target metrics to log: e.g., args,
retValue, exceptionName, latency, memoryDump.
Logs can be collected for requests matching (or not
matching) the IF condition with a sampling probability
of MatchSamplingProb (or UnmatchSamplingProb,

3A request activity graph (§3.3) consists of all methods invoked by
the request as well as their causal relationship.
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1 DEFINE TRIGGER T
2 ON RequestEnd R
3 IF R.URL LIKE ’http:*GetGlobalFeed*’
4 AND R.AvgLatency(-1min, now) > 2 * R.

AvgLatency(-2min, -1min)
5 LOG RequsetActivity A, Top(5) Methods M
6 WITH M.ToLog=args, retValues
7 AND MatchSamplingProb = 1
8 AND UnmatchSamplingProb = 0.3
9 UNTIL (10 Match,10 Unmatch) OR 5 Minutes

Figure 2: An AUDIT trigger that fires when the latency
of the global feed page in Social increases.

respectively). This enables comparing logs from “good”
and “bad” requests. Finally, AUDIT supports logging all
or a specified number of top performance-critical meth-
ods (with the Top() keyword). The later is useful when
the request involves a large number of methods and in-
strumenting all of them would incur a high runtime over-
head. Users can also define custom logging library that
AUDIT can dynamically load and use.
(4) UNTIL. It describes how long or how many times the
LOG action is performed.
Language Rationale. As mentioned, AUDIT’s trigger
language is motivated by prior works [3, 9, 10]. The
general idea of enabling logging on specific misbehaving
conditions (specified by ON and IF) and disabling it after
some time (specified via UNTIL) addresses a key require-
ment highlighted in a recent survey of 54 experienced de-
velopers at Microsoft by Fu et. al [3]. The authors also
analyzed two large production systems and identified
three categories of unexpected situation logging. AU-
DIT’s triggers support all of them: (1) exception logging,
through exceptionName and RequestActivity, (2)
return-value logging, via retValue, and (2) assertion-
check logging, via args. The ToLog metrics are chosen
to support common performance and reliability issues in
production systems [9]. Logging both “good” and “bad”
requests is inspired by statistical debugging techniques
such as Holmes [10].
An Example Trigger. Figure 2 shows a trigger that can
be used by Social for the scenario described in §2.1. The
trigger fires when the average latency of the global feed
page computed over a window of 1 minute increases sig-
nificantly compared to the previous window. AUDIT
starts logging all requests matching the IF condition and
30% of requests not matching the condition (for compar-
ison) once the trigger fired. For each such request, AU-
DIT logs the request activity, consisting of all sync/async
methods causally related to the request. Additionally, it
assigns a blame rank to the methods and logs parame-
ters and return values of 5 top-ranked methods. AUDIT
continues logging for 10 matched and 10 unmatched re-
quests, or for a maximum of 5 minutes.

Specifying Triggers. The trigger in Figure 2 may look
overwhelming, with many predicates and parameters.
We use this trigger for illustration purpose. In practice, a
developer does not always need to specify all trigger pa-
rameters, letting AUDIT use their default values (all nu-
merical values in Figure 2 are default values). Moreover,
AUDIT comes with a set of predefined triggers that a de-
veloper can start with in order to catch exceptions and
sudden spikes in latency and throughput. Over time, she
can dynamically refine/remove existing triggers or install
new triggers as she gains more operational insights. For
example, the trigger in Figure 2 minus the predicate in
Line 3 is a predefined trigger; Social developers modi-
fied its scope to global feed requests.

3.2 Always-on monitoring

AUDIT runtime continuously evaluates installed trig-
gers. AUDIT instruments application binaries to get noti-
fied of triggering events such as exceptions, request start
and end, etc. AUDIT automatically identifies instrumen-
tation points for web and many cloud applications that
have well-defined start and end methods for each re-
quest; AUDIT users can declaratively specify them for
other types of applications. The handlers of the events
track various request and exception properties supported
by AUDIT trigger language. In addition, if needed by
active triggers, AUDIT maintains lightweight streaming
aggregates such as Count, Sum, and AvgLatency over a
window of time.

In addition, AUDIT uses end-to-end causal tracing
to continuously track identity and caller-callee relation-
ships of methods executed by each request. For gen-
eral applications, AUDIT uses existing tracing tech-
niques based on instrumentation and metadata propa-
gation [1, 8, 24, 25, 26, 27, 28]. For cloud applica-
tions using increasingly popular Task Asynchrnous Pat-
tern (TAP), AUDIT uses a more lightweight and novel
technique that we describe in §4.

AUDIT represents causal relationships of methods
with a request activity graph (RAG), where nodes repre-
sent instances of executed methods and (synchronous or
asynchrnous) edges represent caller-callee relationships
of the nodes. A call chain to a node is the path from
the root node to that node. (A call chain is analogous to
a stack trace, except that it may contain methods from
different threads and already completed methods.)

For multi-threaded applications, a RAG can contain
two special types of nodes. A fork node invokes multiple
asynchronous methods in parallel. A join node awaits
and starts only after completion of the its nodes. A join
node is an all-join node (or, any-join node), if it waits
for all (or, any, respectively) of its parents node to com-
plete. For each method in the RAG, AUDIT also tracks
four timestamps: a (tstart , tend) pair indicating when the

324    2018 USENIX Annual Technical Conference USENIX Association



method starts and ends, and a (tpwStart , tpwEnd) pair indi-
cating when the method’s parent method starts and ends
waiting for it to complete (more details in §4).

3.3 Blame assignment and ranking

After a misbehaving request fires a trigger, AUDIT uses
a novel algorithm that ranks methods based on their
blames for a misbehavior – the higher the blame of a
method, the more likely it is responsible for the mis-
behavior. Thus, investigating the methods with higher
blames are more likely to be helpful in troubleshooting
the misbehavior.

To assign blames, AUDIT relies on RAGs and call
chains of misbehaving requests, as tracked by the
always-on monitoring component of AUDIT.

3.3.1 Exception-related triggers

On an exception-related trigger, AUDIT uses the call
chain ending at the exception site to rank methods (on
the same or different threads). Methods on the call chain
are ranked based on their distance from the exception –
the method that throws the exception has the highest rank
and methods nearer to the exception are likely to contain
more relevant information to troubleshoot root causes of
the exception (as suggested by the survey in [3]).

3.3.2 Performance-related triggers

On a performance-related trigger, AUDIT uses a novel
bottleneck analysis technique on the RAGs of mis-
behaving requests. Existing critical path-based tech-
niques (e.g., Slack [15], Logical Zeroing [16], virtual
speedup [17]) fall short of our purpose because they ig-
nore methods that should be logged but are not on a crit-
ical path or have very little exclusive run time on crit-
ical path. Techniques that ignore critical paths (e.g.,
NPT [14]) also miss critical methods that developers
wish to log. §6 shows several real-world examples that
illustrate these limitations.

Blame assignment. AUDIT addresses the above limita-
tions with a new metric called critical blame that com-
bines critical path, execution time distribution, and join-
node types. Given a RAG, computation of critical blames
of methods consists of two steps.

First, AUDIT identifies critical paths in the RAG. A
critical path is computed recursively, starting from the
last node of the RAG. Critical path to a node includes
the node itself and (recursively computed) critical paths
of (1) all parent non-join nodes, (2) longest parents of
all-join nodes, and (3) shortest parents of any-join nodes.
Each method in the critical path has the property that if
its runs faster, total request latency goes down. See §5
for how these timestamps are derived.

Second, AUDIT assigns to each method on the crit-
ical path a critical blame score, a metric inspired by

Method 1 Method Blame

1 A+H/2

1.1 (B+D+G)/2
1.1.1 C/2
1.1.2 E/3+(F+G+H)/2

1.1.3 E/3+F/2
1.2 (B+C+D)/2+E/3

Method 1.1

Method 1.1.1

Method 1.1.2

Method 1.1.3

Method 1.2
A B C D G HE F

Fork JoinAll

Fork JoinAny

Time

Figure 3: Critical blame assignment to methods. Solid
edges represent methods on the critical path.

NPT[14]. Critical blame for a method consists of its ex-
clusive and fair share of time on the critical path. Fig-
ure 3 illustrates how AUDIT computes critical blames
of various methods in a RAG. Recall that each node in
the RAG has four timestamps: a (tstart , tend) pair and a
(tpwStart , tpwEnd) pair. At a given time t, we consider a
node to be active if t is within its tstart and tend but not
within any of its child method’s tpwStart and tpwEnd .

To compute critical blames of methods, AUDIT lin-
early scans the above timestamps of all methods (includ-
ing the ones not in the critical path) in increasing order.
Conceptually, this partitions the total request lifetime
into a number of discrete segments, where each segment
is bounded by two timestamps. In Figure 3, the segments
are marked as A,B, . . . at the bottom. At each segment,
AUDIT distributes the total duration of the segment to all
methods active in that segment. For example, in the seg-
ment A, Method 1 is the only active method, and hence it
gets the entire blame A. In segment B, methods 1.1 and
1.2 are active, and hence they both get a blame of B/2.
Total blame of a method is the sum of all blames it gets
in all segments (Method 1’s total blame is A+H/2).

Selecting top methods. Given a target number n, AU-
DIT first selects the set B1 of n highest-blamed methods
on the critical path. Let α be the lowest blame of meth-
ods in B1. AUDIT then compute another set B2 of meth-
ods not in the critical path whose execution times overlap
with a method in B1, and whose blame scores are ≥ α .
Finally, AUDIT computes B = B1 ∪B2, and outputs all
unique method names in B. Essentially, the algorithm
includes all slow critical methods and some slow non-
critical methods that interfere with the critical methods.

Note that size of B can be larger (as it takes non-
critical methods in B2) or smaller (as it ignores method
instances) than n. If needed, AUDIT can try different
sizes of B1 to produce a B whose size is close to n.

The intuition behind the above algorithm is as follow:
(1) we want to blame only tasks that are actually running
for the time they use; (2) we want co-running tasks to
share the blame for a specific time period, assuming fixed
amount of resources; (3) we want to first focus on tasks
that are critical path as they affect runtime directly and
(4) we want to include selective non-critical path tasks
as they can be on the next longest path, may interfere
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with tasks on the critical path, and not all critical path
methods can be modified to run faster. §6.2 compares
critical blame to other metrics quantitatively.

3.4 Enabling and disabling logging

AUDIT uses dynamic instrumentation to temporarily in-
ject logging statements into blamed methods. The pro-
cess works with unmodified applications and only re-
quires setting few environment variables pointing to AU-
DIT library. Like Fay [7] and SystemTap [29], AUDIT
supports instrumenting tracepoints at the entry, normal
return, and exceptional exit of any methods running in
the same address space as the application.

Specifically, AUDIT decorates each selected method
with three callbacks. OnBegin is called as the first in-
struction of the method, with the current object and all
arguments. It returns a local context that can be corre-
lated at two other callbacks: OnException, called with
the exception object, and OnEnd, called with the return
value. These callbacks enable AUDIT to collect a va-
riety of drilldown information. To log method parame-
ters, global variables, or system parameters such as CPU
usage, AUDIT uses OnBegin. To log return values, it
uses OnEnd. Latency of a method is computed by taking
timestamps at OnBegin and OnEnd. To collect memory
dumps on exception, AUDIT uses OnException.

4 Optimizations for TAP applications
Task asynchronous pattern (TAP) is an increasingly
popular programming pattern4, especially in cloud
applications that are typically async-heavy. Unlike
traditional callback-based Asynchronous Programming
Model (APM), TAP lets developer write non-blocking
asynchronous programs using a syntax resembling syn-
chronous programs. For example, TAP async functions
can return values or throw exceptions to be used or
caught by callers. This makes TAP intuitive and easier
to debug, avoiding callback hell [30]. Major languages
including .NET languages (C#, F#, VB), Java, Python,
JavaScript, and Scala support TAP. In Microsoft Azure,
for many services, TAP is provided as the only mecha-
nism to do asynchronous I/O. Amazon AWS also pro-
vides TAP APIs for Java [31] and .NET [32].

One contribution of AUDIT is to show that for TAP
applications, it is possible to construct RAG and call
chains extremely efficiently, without extensive instru-
mentation or metadata propagation. Our techniques pro-
vide intra-machine RAG and call chains, where APIs

4To quantify TAP’s popularity, we statically analyzed all C# (total
18K), JavaScript (Node.js) (16K), and Java (Android) (15K) GitHub
repositories created between 1/1/2017 and 6/30/2017. Our conservative
analysis, which may miss applications using 3rd party TAP libraries,
identified 52% of C#, 50% of JavaScript, and 15% of Java projects
using TAP. The fractions are significantly higher than the previous year
(e.g., 35% higher for C#), showing increasing popularity of TAP.

of nodes may cross machine boundaries but edges are
within the same machine. We focus only on such RAGs
as we found them sufficient for our target cloud applica-
tions; if needed, inter-machine edges can be tracked by
using the techniques used by Pivot Tracing [8].

4.1 Continuous tracking of RAGs

AUDIT utilizes async lifecycle events provided by exist-
ing TAP frameworks for constructing RAGs. For debug-
ging and profiling purpose, all existing TAP frameworks
we know provide light-weight events or mechanisms
indicating various stages of execution of async meth-
ods. Examples include ETW events in .NET [33], Asyn-
cHooks [34] in Node.js, Decorators for Python Asyn-
cIO [35], and RxJava Plugin [36] for Java. The events
provide limited information about execution times and
caller-callee relationships between some async methods,
based on which AUDIT can construct RAGs. Using life-
cycle events for tracing is not trivial. Depending on the
platform, the lifecycle events may not directly provide
all the information required to construct a RAG. We de-
scribe a concrete implementation for .NET in § 5.

4.2 On-demand construction of call chains

Even though call chain is a path in the RAG, AUDIT
uses a separate mechanism to trace it for TAP applica-
tions. The advantage is that it lazily constructs a call
chain on-demand, only after an exception-related trig-
ger fires. Thus, the mechanism has zero cost during nor-
mal execution, unlike existing proactive tracking tech-
niques [11, 12, 37]. AUDIT combines several mecha-
nisms to achieve this.

AUDIT exception handler. AUDIT registers AUDIT
event handler (AEH) to system events that are raised on
all application exceptions. Examples of such events are
First Chance Exception [38] for .NET and C++ for Win-
dows, UncaughtExceptionHandler [39, 40] for Java, and
RejectionHandled [41] for JavaScript.

AUDIT’s exception tracing starts whenever the appli-
cation throws an exception that satisfies a trigger con-
dition. Consider foo synchronously calling bar, which
throws an exception. This will invoke AEH with bar as
the call site and a stacktrace at AEH will contain foo.
This enables AUDIT to infer the RAG edge from foo to
bar. If, however, bar runs asynchronously and in a dif-
ferent thread than foo, stacktrace won’t contain foo. To
infer the async edge from foo to bar, AUDIT relies on
how existing TAP frameworks handle exceptions.

Exception propagation in TAP. Recall that TAP allows
an async method to throw an exception that can be caught
at its caller method. When an exception e is thrown
in the async method bar, the framework first handles
it and then revisits or rethrows the same exception ob-
ject e when the caller method foo retrieves the result of
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bar [42]. This action may trigger another first chance
exception, calling the AEH with e.

AUDIT correlates on exception objects to discover
async caller methods in a call chain and uses the order
in which the AEHs are invoked in various methods to es-
tablish their order. In general, a call chain may contain
a combination of synchronous and asynchronous edges.
AUDIT uses stack traces to find small chains of consecu-
tive synchronous edges, and correlates on exception ob-
jects to stitch the chains.

An application may catch one exception e1 and
rethrow another exception e2. This pattern is dominant
especially in middleware, where library developers hide
low-level implementation details and expose higher level
exceptions and error messages. The exception tracing
technique described so far will produce two separate call
chains, one for e1 and another for e2. However, since e1
has triggered e2, causally connecting the two chains can
be useful for troubleshooting and root cause analysis [3].
Inheritable thread-local storage (ITS). AUDIT uses
ITS to connect correlated exceptions. Inheritable thread-
local storage allows storing thread-local contents that au-
tomatically propagate from a thread to its child threads.
This is supported in Java (InheritableThreadLocal),
.NET (LogicalCallContext), and Python (AsyncIO
Task Local Storage[43]). Using ITS is expensive due to
serialization and deserialization of data at thread bound-
aries. Existing causal tracing techniques use ITS all the
time [27]; in contrast, AUDIT uses it only for exception
tracing and on demand.

When e1 and e2 happens in the same thread, AUDIT
can easily correlate them by storing a correlation id at the
AEH of e1, and then using the id at the AEH of e2.

If e2, however, is thrown on a different thread than
e1, the situation is more subtle. This is because e2 is
thrown on the parent (or an ancestor) of e1’s thread, and
the correlation id stored in a thread’s ITS is not copied
backward to the parent thread’s context (it is only copied
forward to child threads).

To address this, AUDIT combines ITS with how TAP
propagates exceptions across threads (described above).
More specifically, AUDIT uses the first exception e1 as
the correlation id and relies on TAP to propagate the id
to the parent thread, which can correlate it to e1. The
AEH for e2 stores e1 in ITS for further correlating it
with other related exceptions on the same thread.

5 Implementation
We here describe our implementation of AUDIT for TAP
applications written in .NET for Windows and cross-
platform .NET Core.
Listening to exceptions. AUDIT listens to AppDo-
main.FirstChanceException to inspect all ex-
ceptions thrown by the application. First chance excep-

tion is a universal debugging concept (e.g., catch point
in GDB, first chance exception in Visual Studio). A first
chance exception notification is raised as soon as a run-
time exception occurs, irrespective of whether it is later
handled by the application.
Request tracing. For efficiently constructing the RAG
of a request, AUDIT uses TplEtwProvider, an ETW-
based [33] low overhead event logging infrastructure in
.NET. TplEtwProvider generates events for the life-
cycle of tasks in TAP.

Specifically, AUDIT uses TraceOperationBe-
gin event to retrieve the name of a task. TaskWait-
Begin is used for timestamp when a parent task
transitions to suspended state and starts to wait on a
child task. TraceOperationRelation is used to
retrieve children tasks of a special join task (WhenAll,
WhenAny), these join tasks are implemented in a
special way such that they do not produce other life
cycle events. At last, TraceOperationCom-
plete, TaskWaitEnd, TaskCompleted,
RunningContinuation, TaskWaitContin-
uationComplete are used to track the completion
of a task. Many events are used because not all tasks
generate the same event.

Constructing RAG based only on TPL ETW events
is challenging for two key reasons, which AUDIT ad-
dresses by utilizing semantics of the events. First, ETW
events are not timestamped by their source, but by the
ETW framework after it receives the event. The times-
tamps are not accurate representation of the event genera-
tion times as the delivery from source to ETW framework
can be delayed or out-of-order. To improve the quality of
timestamps, for each method on the RAG, AUDIT ag-
gregates multiple ETW events. For example, ideally, the
tend timestamp should come from the TaskCompleted

ETW event. However, TPL generates other events im-
mediately after a task completes. AUDIT takes the ear-
liest of the timestamps of any and all of these events,
to tolerate loss and delayed delivery of some events.
AUDIT also uses the fact that in a method’s lifetime,
tstart ≥ tpwStart ≥ tend ≥ tpwEnd . Thus, if, e.g., all ETW
events related to tstart are lost, it is set to tpwStart .

Second, TPL does not produce any ETW events for
join tasks, which are important parts of RAG. AUDIT
uses reflection on the joining tasks (that produce ETW
events) to identify join tasks, as well as their types (all-
join or any-join). The tstart and tend timestamps of a
join task is assigned to the tstart and tend timestamps of
the shortest or the longest joining task, depending on
whether the join task is any-join or all-join, respectively.
Dynamic instrumentation AUDIT uses .NET’s profil-
ing APIs to dynamically instrument target methods dur-
ing runtime. The process is similar to dynamically in-
strumenting Java binaries [44].
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6 Evaluation
We now present experimental results demonstrating:

1. AUDIT can effectively root-cause transiently recur-
ring problems in production systems (§6.1).

2. AUDIT’s blame ranking algorithm is more effective
in root-causing than existing techniques (§6.2)

3. AUDIT has acceptably small runtime overhead for
production systems, and its TAP-related optimiza-
tions further reduce the overhead (§6.3).

6.1 Effectiveness in root-causing bugs

We used AUDIT on five high-profile and mature .NET
applications and identified root causes of several tran-
siently recurring problems and bugs (Table 1). All
the issues were previously unknown and are either ac-
knowledged or fixed by developers. In all cases, AU-
DIT’s ability to trigger heavyweight logging in a blame-
proportional manner were essential to resolve problems.

6.1.1 Case study: Embedded Social

In § 2.1, we described one performance issue AUDIT
found in Embedded Social (Social), a large-scale produc-
tion social service in Microsoft. We now provide more
details about Social and other issues AUDIT found in
it. At the time of writing, Social had millions of users
in production and beta deployments. We deployed So-
cial in a deployment cluster. We enabled AUDIT with a
generic exception trigger and a few performance triggers
for latency-sensitive APIs (e.g. Figure 2).

Social 1: The persistent performance spike (Figure 1)
arose because of an inconsistency caused by a failure
(network timeout) during post deletion – the post id in
the feed was left undeleted. Social swallowed the ac-
tual exception and produced only a high level exception
for the entire delete operation. AUDIT logged the en-
tire chain, pinpointed that post contents were deleted, but
global feed deletion failed. AUDIT also logged the re-
quest URL, which identified the post id that was being
deleted. The RAGs produced by the performance trigger
showed the persistent store being consistently hit for one
post. AUDIT’s blame ranking algorithm top-ranked the
persistent store query method, dynamically instrumented
it, and logged arguments and return value for the next
few requests to the global feed. The logged arguments
showed the problematic post id causing the spike and the
logged return value (NULL) indicated that it was deleted
from the store and pointed to lack of negative caching
as an issue. The post id matched the one logged during
delete operation failure, which explained the bug.

Social 2: AUDIT revealed a few more transiently re-
curring issues related to lack of negative caching. For
example, Social recommends a list of users with high
follower count to follow. In the corner case of a popu-
lar user not following anyone, Social did not create an

entity for the following count in the persistent store (and
thus in the cache). In this case, the main page persis-
tently missed the cache when reporting such users in the
recommended list. AUDIT correctly assigned blame to
the count-query method and logged both the user id (as
part of parameters) and the return value of 0. Social’s
developers implemented negative caching to fix them.

Social 3: AUDIT’s exception trigger in Social helped
root-cause several transiently recurring request failures.
We discuss a couple of them here. “Likes” for a post are
aggregated and persisted to ATS using optimistic concur-
rency. When a specific post became hot, updates to ATS
failed because of parallel requests. Through drill down,
AUDIT pinpointed the post id (parameter) of the hot post
and showed that like requests were failing only for that
particular post id and succeeding for others.

Social 4: As posts are added, Social puts them in a
queue and indexes the content of the posts in a backend
worker. Typical to many systems, when a worker execu-
tion fails, the jobs are re-queued and retried a few times
before being dead-lettered. This model perfectly fits AU-
DIT’s triggered logging approach. After the first time a
worker fails on a request, AUDIT triggers expensive pa-
rameter logging for subsequent retries. By logging their
parameters, AUDIT root-caused many content-related
bugs during indexing due to bad data formats.

We also found AUDIT useful in root-causing rare but
recurrent problems in several open-source projects. Be-
low we summarize the symptoms, AUDIT logs, and root
cause of the problems.

6.1.2 Case study: MrCMS

MrCMS[45] is a content management system (CMS)
based on the ASP.NET 5 MVC framework.
Symptoms. On a rare occasion, after an image is up-
loaded, the system crashed. Then the system became
permanently unusable, even after restarting.
AUDIT logs. The AUDIT log from the first
occurrence of the problem indicated an unhandled
PathTooLongException. This was surprising because
MrCMS checks for file name length. The methods on
the call chain, however, indicated that the exception hap-
pened when MrCMS was creating thumbnail for the im-
age. After AUDIT instrumented methods on the call
chain, recurrence of the problem (i.e., recurrent crashing
after restart) generated logs including method parame-
ters. This included the actual file name for which a file
system API was throwing the exception.
Root cause and fix. When image files are uploaded, Mr-
CMS generates thumbnails with the image file name suf-
fixed with dimensions. Thus, when an input file name is
sufficiently long, the thumbnail file name can exceed the
filesystem threshold which is unchecked and caused the
crash. As most bugs in production systems, the fix for
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Application Issue Root cause based on AUDIT log Status from devs
Social 1 Performance spike when reading global feeds Deleted operation failed to delete the post

from global feeds
Fixed

Social 2 Poor performance reading user profiles with
no following in “Popular users” feed

Lack of caching zero count value Fixed

Social 3 Transient “Like” API failures Concurrent likes on a hot post Acknowledged, open
Social 4 Indexing failures Bad data formats Some of them fixed
MrCMS Crash after image upload and subsequent

restart of the application (Issue# 43)
Auto-generated thumbnail file name too
long

Acknowledged, investi-
gating

CMSFoundation Failure to save edited image (Issue# 321) Concurrent file edit and delete Acknowledged, open
Massive Slow request (Issue# 270) Unoptimal use of Await Fixed and closed
Nancy Slow request (Issue# 2623) Redundant Task method calls Fixed and closed

Table 1: Summary of previously-unknown issues found by using AUDIT.

the bug once the root cause is known is simple: check
file name lengths after adding the suffixes. The issue was
acknowledged by the developer.

6.1.3 Case study: CMS-Foundation

CMS-Foundation[46] is a top-rated open source CMS
with more than 60K installations worldwide.

Symptoms. When an admin saves after editing an im-
age, they occasionally get a cryptic “Failed to get image
properties: check that the image is not corrupt” message.
The problem recurred as the admin retried the operation.

AUDIT logs. AUDIT log showed a crucial causality
through two exception chains (as the application caught
and rethrew exceptions) to the file being deleted while
the admin was editing the image.

Root cause and fix. While the admin was editing the im-
age, another admin deleted it, leading to a race condition.
One way to fix this behavior is to use locking to prevent
two admins from performing conflicting operations. The
issue was acknowledged by the developers.

We now summarize two case studies demonstrating
AUDIT’s value in diagnosing performance problems.

6.1.4 Case study: Massive

Massive[47] is a dynamic MicroORM and a showcasing
project for ASP .NET. Massive is popular and active on
GitHub, with 1.6K stars and 330 forks.

Symptoms. Slow requests for certain inputs.

AUDIT logs. AUDIT produced RAG for the slow re-
quests, as well as input parameters and return values of 5
top-ranked methods.

Root cause and fix. The top two methods ranked by
AUDIT constituted 80% of the latency for some inputs.
These methods query a backend database. Input param-
eters (i.e., query string) of the methods indicated that the
method calls are independent (we confirmed this by look-
ing at the code), yet Massive runs them in sequence. We
modified the code to call both methods in parallel. This
simple change resulted in a 1.37× speedup of the query
in our deployment. We filed this potential optimization
on GitHub and this issue was acknowledged and fixed.

6.1.5 Case study: Nancy

Nancy[48] is “a lightweight, low-ceremony, framework
for building HTTP based services on .NET Framework/-
Core and Mono”. Nancy is also popular on GitHub, with
5.8K stars, 1.3K forks, and more than 250 contributors.

Symptoms. Some requests were slow.

AUDIT logs. AUDIT’s log identified RAG and top-
blamed method calls for the slow requests.

Root cause and fix. The top-blamed method calls, that
constitued signficant part of the latency, were expensive
and redundant [42]. We therefore changed the code by
simply removing the redundant code, without affecting
semantics of the code. This reduced average latency of
the Nancy website from 1.73ms to 1.27ms with our de-
ployment, a 1.36× improvement. We have reported this
issue to Nancy developers, who have quickly acknowl-
edged and fixed it. This, again, shows effectiveness of
AUDIT’s blame ranking algorithm.

6.2 Blame ranking algorithm

We compare AUDIT’s blame ranking algorithm with
three other algorithms: (1) NPT [14] that distributes run-
ning time evenly among concurrently running methods
and ranks methods based on their total time, (2) Top criti-
cal methods (TCM), which ranks methods based on their
execution time on critical path, and (3) Iterative Logi-
cal Zeroing (ILZ), an extension of Logical Zeroing [16].
ILZ first selects the method that, if finished in zero time,
would have the maximum reduction in end-to-end la-
tency. It then selects the second method after setting the
first method’s execution time to zero, and so on.

We consider four common code patterns observed in
11 different open source TAP applications and tutorials.
Figure 4 shows corresponding RAGs. Two developers
manually studied the applications and RAGs and iden-
tified the methods they would log to troubleshoot per-
formance misbehaviors. Methods identified by both the
developers are used as baseline.

Table 2 shows top-3 methods identified by different
algorithms (and the baseline). TCM and ILZ fail to iden-
tify methods not on critical paths (e.g., Scenario 3). NPT
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Figure 4: Common code patterns in TAP. Scenario 1 (found in Social, [49, 50]) starts parallel tasks with same code
path and awaits all to finish. Scenario 2 (found in [51, 52]) starts several different tasks (which in turns fires up more
children tasks) and they could finish close to each other. Scenario 3 (found in [53, 54]) starts a task and waits for a
timeout. Scenario 4 (found in [20, 55, 56, 57]) retries a failed task a few times, and each trial is guarded with a timeout.

Algorithm Scenario 1Scenario 2Scenario 3Scenario 4 Total
Baseline C3,B3,A3 H,B,A A,C,B A1,A2,A3 −

NPT C3,C2,C1 H,B,A A,D,C D3,D2,D1 6/12
TCM C3,B3,A3 B,A,C D A2,A1,A3 7/12
ILZ C3,C2,C1 B,H,A D A2,A1,A3 7/12

AUDIT C3,B3,A3 H,B,A D,A,B A1,A2,D3 11/12
D1,D2,A3

Table 2: Top 3 blamed methods identified by various al-
gorithms for scenarios in Figure 4. (D = Delay.)

fail to find important methods on the critical path (e.g.,
Scenario 4). Last column of the table shows how many
of the developer-desired methods (baseline) are identi-
fied by different algorithms. Overall, AUDIT performs
better – it identified 11 out of 12 methods marked by de-
velopers; while other algorithms identified 6-7 methods
only. The only scenario where AUDIT failed to identify
an important method C is Scenario 3, where C does nei-
ther fall on a critical path nor overlap or interfere with
any method on the critical path.

6.3 Runtime overhead

We now evaluate runtime overhead of AUDIT running
on a Windows 10 D8S V3 instance, on Microsoft Azure.
Web applications are hosted using ASP.NET 5 on IIS
10.0. SQL Server 2016 is used as database.

6.3.1 Micro benchmark results

Considerable design effort went in reducing the always-
on overhead of AUDIT. We measure the overhead with
a simple benchmark application that waits on two con-
secutive tasks. To measure the overhead of AUDIT’s ex-
ception handling mechanism, we modified the applica-
tion such that the async task throw an exception that the
main task catches. Finally, to measure the lower bound
on the cost of dynamic instrumentation, we instrumented
an empty callback at the beginning and the end of each
function with no parameter.

Table 3 shows AUDIT overhead numbers averaged
over 100k runs. As shown, AUDIT’s always-on ETW
monitoring incurs small overhead – tens of µs per task.

Without Exception With Exception
Always-On ETW 15.56µs 112.2µs
Overhead +13.96µs/task +19.2µs/task
Always-On INST 91.5µs 152µs
Overhead +89.9µs/method +59µs/method
Trigger 29.66µs 283µs
Overhead +28.06µs/task +190µs/task
Logging 93.5µs 148µs
Overhead +90.9µs/method +55µs/method

Table 3: AUDIT overhead on benchmark application.
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Figure 5: AUDIT overhead for Massive.

The overhead is acceptable for modern-day cloud ap-
plications that contain either compute-intensive or I/O-
intensive tasks that typically run for tens of millisec-
onds or more. Always-on monitoring with instrumenta-
tion (Always-On INST) and metadata propagation incurs
higher overhead mainly from instrumentation cost.5 AU-
DIT significant lowers always-on monitoring overhead
by leveraging ETW in TAP applications. The overhead
is also higher immediately after a trigger fires (for con-
structing RAG and computing blames). This cost is ac-
ceptable as triggers are fired infrequently. Finally, log-
ging has the highest overhead. Even an empty callback
incurs hundreds of µs; serializing and logging method
parameters, return values, stacktrace, etc. and writ-
ing to storage will add more overhead. This overhead
clearly motivates the need for blame-proportional log-
ging, which limits the number of logging methods and
the duration of logging.

5Our measurement shows accessing an integer from ITS takes about
100ns and propagating an integer across thread costs 800ns, with a base
cost of 700ns
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6.3.2 Overheads for real applications

We measured AUDIT’s overhead on Massive and Social,
two TAP applications we used in our case studies. To
emulate AUDIT’s overhead on non-TAP applications in
the always-on monitoring phase, we use AUDIT with
and without its TAP optimizations (§4). We report maxi-
mum throughput and average query latency at maximum
throughput over 5000 requests. We use a trigger to fire
when latency is 2× the average latency (over 1 minute)
and to log method parameters and return values.

Figure 5 shows the results for Massive, with a reason-
ably complex request that comes with Massive, involv-
ing 55 method invocations. Without TAP-optimizations,
AUDIT always-on monitoring increases latency by 1.1%
and reduces throughput by 2.8%. The overhead is
smaller for simpler requests (with fewer methods) and
is acceptable in many non-TAP applications in produc-
tion. The overhead is significantly smaller with TAP-
optimizations: latency and throughput are affected only
by < 0.6%, showing effectiveness of the optimizations.

Overhead of the trigger phase is slightly larger
(+2.5% latency and −2.5% throughput). Logging all
methods decreases throughput by 8% and increases la-
tency by 7%. The high overhead is mainly due to serial-
izing method parameters and return values of 55 dynam-
ically invoked methods. Logging at only five top-blamed
methods, however, has much smaller overhead (−0.45%
latency and −1.8% throughput). This again highlights
the value of logging only for a short period of time, and
only a small number of top methods.

For Social, we used a complex request involving 795
method invocations. With TAP optimizations, latency
and throughput overheads of always-on phase is within
the measurement noise (< 0.1%). Without the optimiza-
tions, the overhead of always-on is 4.3%, due to instru-
mentation overhead of 795 method invocations. Trigger
phase incurs 4.1% overhead. Logging, again is the most
expensive phase, causing 5.3% overhead.

7 Related work
In previous sections, we discussed prior work related to
AUDIT’s triggers (§3.1), request tracing (§4), dynamic
instrumentation (§3.4), and blame ranking (§3.3). We
now discuss additional related work.

AUDIT triggers are in spirit similar to datacenter
network-related triggers used in Trumpet [58], but are
designed for logging cloud and web applications.

Collecting effective logs and reducing logging over-
head have been an important topic of research. Er-
rlog [2] proactively adds appropriate logging statements
into source code and uses adaptive sampling to reduce
runtime overhead. In contrast, AUDIT dynamically in-
struments unmodified application binary and uses trig-
gers rather than sampling to decide when to log. Log2 [4]

enables logging within an overhead budget. Unlike AU-
DIT, it uses static instrumentation, continuous logging,
and decides only whether (not what) to log. Several
recent works investigate what should be logged for ef-
fective troubleshooting [3, 13], and AUDIT incorporates
their findings in its design. Several recent proposals en-
hance and analyze existing log messages for failure diag-
nosis [59, 60, 61, 62], and are orthogonal to AUDIT.

Pivot Tracing [8] is closely related, but complimentary
to AUDIT. It gives users, at runtime, the ability to define
arbitrary metrics and aggregate them using relational op-
erators. Unlike AUDIT, Pivot Tracing requires users to
explicitly specify tracepoints to instrument and to inter-
actively enable and disable instrumentation. Techniques
from Pivot Tracing could be used to further enhance AU-
DIT; e.g., if implemented, happen-before join could be
used as a trigger condition and baggage could be used to
trace related methods across machine boundaries.

AUDIT’s techniques for identifying methods related
to a misbehaving request is related to end-to-end causal
tracing [1, 24, 25, 26, 27, 28]. Existing solutions use
instrumentation and metadata propagation; in contrast,
AUDIT can also leverage cheap system events. To keep
overhead acceptable in production, prior works trace
coarse-grained tracepoints [1, 24], or fine-grained but a
small number of carefully chosen tracepoints (which re-
quires deep application knowledge) [26], and/or a small
sample of requests [1]. In contrast, AUDIT traces all re-
quests at method granularity, along with forks and joins
of their execution.

Adaptive bug isolation [63], like AUDIT, adapts in-
strumentation during runtime. However, AUDIT’s adap-
tation can be triggered by a single request (rather than
statistical analysis of many requests, as in many other
statistical debugging techniques [10, 64]), can work at a
much finer temporal granularity (logging only for a small
window of time), and has much better selectivity of log-
ging methods due to causal tracking.

8 Conclusions
We presented AUDIT, a system for troubleshooting
transiently-recurring errors in cloud-based production
systems through blame-proportional logging, a novel
mechanism with which logging information generated by
a method over a period of time is proportional to how of-
ten it is blamed for various misbehaviors. AUDIT lets a
developer write declarative triggers, specifying what to
log and on what misbehavior, without specifying where
to collect the logs. We have implemented AUDIT and
evaluated it with five mature open source and commer-
cial applications, for which AUDIT identified previously
unknown issues causing slow responses and application
crashes. All the issues are reported to developers, who
have acknowledged or fixed them.
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Abstract
NanoLog is a nanosecond scale logging system that is

1-2 orders of magnitude faster than existing logging sys-
tems such as Log4j2, spdlog, Boost log or Event Tracing
for Windows. The system achieves a throughput up to 80
million log messages per second for simple messages and
has a typical log invocation overhead of 8 nanoseconds
in microbenchmarks and 18 nanoseconds in applications,
despite exposing a traditional printf-like API. NanoLog
achieves this low latency and high throughput by shifting
work out of the runtime hot path and into the compila-
tion and post-execution phases of the application. More
specifically, it slims down user log messages at compile-
time by extracting static log components, outputs the log
in a compacted, binary format at runtime, and utilizes an
offline process to re-inflate the compacted logs. Addi-
tionally, log analytic applications can directly consume
the compacted log and see a performance improvement
of over 8x due to I/O savings. Overall, the lower cost
of NanoLog allows developers to log more often, log in
more detail, and use logging in low-latency production
settings where traditional logging mechanisms are too
expensive.

1 Introduction
Logging plays an important role in production soft-

ware systems, and it is particularly important for large-
scale distributed systems running in datacenters. Log
messages record interesting events during the execution
of a system, which serve several purposes. After a crash,
logs are often the best available tool for debugging the
root cause. In addition, logs can be analyzed to provide
visibility into a system’s behavior, including its load and
performance, the effectiveness of its policies, and rates of
recoverable errors. Logs also provide a valuable source
of data about user behavior and preferences, which can
be mined for business purposes. The more events that are
recorded in a log, the more valuable it becomes.

Unfortunately, logging today is expensive. Just for-
matting a simple log message takes on the order of one
microsecond in typical logging systems. Additionally,
each log message typically occupies 50-100 bytes, so
available I/O bandwidth also limits the rate at which log
messages can be recorded. As a result, developers are
often forced to make painful choices about which events
to log; this impacts their ability to debug problems and
understand system behavior.

Slow logging is such a problem today that software de-
velopment organizations find themselves removing valu-

able log messages to maintain performance. According
to our contacts at Google[7] and VMware[28], a consid-
erable amount of time is spent in code reviews discussing
whether to keep log messages or remove them for per-
formance. Additionally, this process culls a lot of useful
debugging information, resulting in many more person
hours spent later debugging. Logging itself is expensive,
but lacking proper logging is very expensive.

The problem is exacerbated by the current trend to-
wards low-latency applications and micro-services. Sys-
tems such as Redis [34], FaRM [4], MICA[18] and
RAMCloud [29] can process requests in as little as 1-2
microseconds; with today’s logging systems, these sys-
tems cannot log events at the granularity of individual
requests. This mismatch makes it difficult or impossible
for companies to deploy low-latency services. One in-
dustry partner informed us that their company will not
deploy low latency systems until there are logging sys-
tems fast enough to be used with them [7].

NanoLog is a new, open-source [47] logging system
that is 1-2 orders of magnitude faster than existing sys-
tems such as Log4j2 [43], spdlog [38], glog [11], Boost
Log [2], or Event Tracing for Windows [31]. NanoLog
retains the convenient printf[33]-like API of existing log-
ging systems, but it offers a throughput of around 80 mil-
lion messages per second for simple log messages, with
a caller latency of only 8 nanoseconds in microbench-
marks. For reference, Log4j2 only achieves a throughput
of 1.5 million messages per second with latencies in the
hundreds of nanoseconds for the same microbenchmark.

NanoLog achieves this performance by shifting work
out of the runtime hot path and into the compilation and
post-execution phases of the application:

• It rewrites logging statements at compile time to re-
move static information and defers expensive mes-
sage formatting until the post-execution phase. This
dramatically reduces the computation and I/O band-
width requirements at runtime.

• It compiles specialized code for each log message
to handle its dynamic arguments efficiently. This
avoids runtime parsing of log messages and encod-
ing argument types.

• It uses a lightweight compaction scheme and out-
puts the log out-of-order to save I/O and processing
at runtime.

• It uses a postprocessor to combine compacted log
data with extracted static information to generate
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NANO_LOG(NOTICE, "Creating table ’%s’ with id %d", name, tableId);

2017/3/18 21:35:16.554575617 TableManager.cc:1031 NOTICE[4]: Creating table ’orders’ with id 11

Figure 1: A typical logging statement (top) and the resulting output in the log file (bottom). “NOTICE” is a log severity level
and “[4]” is a thread identifier.

human-readable logs. In addition, aggregation and
analytics can be performed directly on the com-
pacted log, which improves throughput by over 8x.

2 Background and Motivation
Logging systems allow developers to generate a

human-readable trace of an application during its execu-
tion. Most logging systems provide facilities similar to
those in Figure 1. The developer annotates system code
with logging statements. Each logging statement uses a
printf-like interface[33] to specify a static string indicat-
ing what just happened and also some runtime data asso-
ciated with the event. The logging system then adds sup-
plemental information such as the time when the event
occurred, the source code file and line number of the log-
ging statement, a severity level, and the identifier of the
logging thread.

The simplest implementation of logging is to output
each log message synchronously, inline with the execu-
tion of the application. This approach has relatively low
performance, for two reasons. First, formatting a log
message typically takes 0.5-1 µs (1000-2000 cycles). In
a low latency server, this could represent a significant
fraction of the total service time for a request. Second,
the I/O is expensive. Log messages are typically 50-100
bytes long, so a flash drive with 250 Mbytes/sec band-
width can only absorb a few million messages per sec-
ond. In addition, the application will occasionally have
to make kernel calls to flush the log buffer, which will
introduce additional delays.

The most common solution to these problems is to
move the expensive operations to a separate thread. For
example, I/O can be performed in a background thread:
the main application thread writes log messages to a
buffer in memory, and the background thread makes the
kernel calls to write the buffer to a file. This allows I/O to
happen in parallel with application execution. Some sys-
tems, such as TimeTrace in PerfUtils [32], also offload
the formatting to the background thread by packaging all
the arguments into an executable lambda, which is eval-
uated by the background thread to format the message.

Unfortunately, moving operations to a background
thread has limited benefit because the operations must
still be carried out while the application is running. If
log messages are generated at a rate faster than the back-
ground thread can process them (either because of I/O or
CPU limitations), then either the application must even-
tually block, or it must discard log messages. Neither of
these options is attractive. Blocking is particularly unap-

pealing for low-latency systems because it can result in
long tail latencies or even, in some situations, the appear-
ance that a server has crashed.

In general, developers must ensure that an application
doesn’t generate log messages faster than they can be
processed. One approach is to filter log messages accord-
ing to their severity level; the threshold might be higher
in a production environment than when testing. Another
possible approach is to sample log messages at random,
but this may cause key messages (such as those identi-
fying a crash) to be lost. The final (but not uncommon)
recourse is a social process whereby developers deter-
mine which log messages are most important and remove
the less critical ones to improve performance. Unfortu-
nately, all of these approaches compromise visibility to
get around the limitations of the logging system.

The design of NanoLog grew out of two observa-
tions about logging. The first observation is that fully-
formatted human-readable messages don’t necessarily
need to be produced inside the application. Instead, the
application could log the raw components of each mes-
sage and the human-readable messages could be gener-
ated later, if/when a human needs them. Many logs are
never read by humans, in which case the message for-
matting step could be skipped. When logs are read, only
a small fraction of the messages are typically examined,
such as those around the time of a crash, so only a small
fraction of logs needs to be formatted. And finally, many
logs are processed by analytics engines. In this case,
it is much faster to process the raw data than a human-
readable version of the log.

The second observation is that log messages are fairly
redundant and most of their content is static. For exam-
ple, in the log message in Figure 1, the only dynamic
parts of the message are the time, the thread identifier,
and the values of the name and tableId variables. All
of the other information is known at compile-time and is
repeated in every invocation of that logging statement. It
should be possible to catalog all the static information at
compile-time and output it just once for the postproces-
sor. The postprocessor can reincorporate the static infor-
mation when it formats the human-readable messages.
This approach dramatically reduces the amount of infor-
mation that the application must log, thereby allowing
the application to log messages at a much higher rate.

The remainder of this paper describes how NanoLog
capitalizes on these observations to improve logging per-
formance by 1-2 orders of magnitude.
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Figure 2: Overview of the NanoLog system. At compile time, the user sources are passed through the NanoLog preprocessor,
which injects optimized logging code into the application and generates a metadata file for each source file. The modified
user code is then compiled to produce C++ object files. The metadata files are aggregated by the NanoLog combiner to build
a portion of the NanoLog Library. The NanoLog library is then compiled and linked with the user object files to create an
application executable and a decompressor application. At runtime, the user application threads interact with the NanoLog
staging buffers and background compaction thread to produce a compact log. At post execution, the compact log is passed into
the decompressor to generate a final, human-readable log file.

3 Overview
NanoLog’s low latency comes from performing work

at compile-time to extract static components from log
messages and deferring formating to an off-line process.
As a result, the NanoLog system decomposes into three
components as shown in Figure 2:

Preprocessor/Combiner: extracts and catalogs static
components from log messages at compile-time, re-
places original logging statements with optimized
code, generates a unique compaction function for
each log message, and generates a function to out-
put the dictionary of static information.

Runtime Library: provides the infrastructure to buffer
log messages from multiple logging threads and
outputs the log in a compact, binary format using
the generated compaction and dictionary functions.

Decompressor: recombines the compact, binary log file
with the static information in the dictionary to either
inflate the logs to a human-readable format or run
analytics over the log contents.

Users of NanoLog interact with the system in the fol-
lowing fashion. First, they embed NANO LOG() func-
tion calls in their C++ applications where they’d like
log messages. The function has a signature similar to
printf [17, 33] and supports all the features of printf
with the exception of the “%n” specifier, which requires
dynamic computation. Next, users integrate into their
GNUmakefiles [40] a macro provided by NanoLog that
serves as a drop-in replacement for a compiler invoca-
tion, such as g++. This macro will invoke the NanoLog
preprocessor and combiner on the user’s behalf and gen-
erate two executables: the user application linked against
the NanoLog library, and a decompressor executable to
inflate/run analytics over the compact log files. As the
application runs, a compacted log is generated. Finally,
the NanoLog decompressor can be invoked to read the
compacted log and produce a human-readable log.

4 Detailed Design
We implemented the NanoLog system for C++ appli-

cations and this section describes the design in detail.

4.1 Preprocessor
The NanoLog preprocessor interposes in the compila-

tion process of the user application (Figure 2). It pro-
cesses the user source files and generates a metadata
file and a modified source file for each user source file.
The modified source files are then compiled into object
files. Before the final link step for the application, the
NanoLog combiner reads all the metadata files and gen-
erates an additional C++ source file that is compiled into
the NanoLog Runtime Library. This library is then linked
into the modified user application.

In order to improve the performance of logging, the
NanoLog preprocessor analyzes the NANO LOG() state-
ments in the source code and replaces them with faster
code. The replacement code provides three benefits.
First, it reduces I/O bandwidth by logging only infor-
mation that cannot be known until runtime. Second,
NanoLog logs information in a compacted form. Third,
the replacement code executes much more quickly than
the original code. For example, it need not combine the
dynamic data with the format string, or convert binary
values to strings; data is logged in a binary format. The
preprocessor also extracts type and order information
from the format string (e.g., a "%d %f" format string
indicates that the log function should encode an integer
followed by a float). This allows the preprocessor to gen-
erate more efficient code that accepts and processes ex-
actly the arguments provided to the log message. Type
safety is ensured by leveraging the GNU format at-
tribute compiler extension [10].

The NanoLog preprocessor generates two functions
for each NANO LOG() statement. The first func-
tion, record(), is invoked in lieu of the original
NANO LOG() statement. It records the dynamic in-
formation associated with the log message into an in-
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inline void record(buffer, name, tableId) {
// Unique identifier for this log statement;
// the actual value is computed by the combiner.
extern const int _logId_TableManager_cc_line1031;

buffer.push<int>(_logId_TableManager_cc_line1031);
buffer.pushTime();
buffer.pushString(name);
buffer.push<int>(tableId);

}

inline void compact(buffer, char *out) {
pack<int>(buffer, out); // logId
packTime(buffer, out); // time
packString(buffer, out); // string name
pack<int>(buffer, out); // tableId

}

Figure 3: Sample code generated by the NanoLog pre-
processor and combiner for the log message in Figure 1.
The record() function stores the dynamic log data to a
buffer and compact() compacts the buffer’s contents to
an output character array.

memory buffer. The second function, compact(), is
invoked by the NanoLog background compaction thread
to compact the recorded data for more efficient I/O.

Figure 3 shows slightly simplified versions of the
functions generated for the NANO LOG() statement in
Figure 1. The record() function performs the abso-
lute minimum amount of work needed to save the log
statement’s dynamic data in a buffer. The invocation
time is read using Intel’s RDTSC instruction, which uti-
lizes the CPU’s fine grain Time Stamp Counter [30]. The
only static information it records is a unique identifier
for the NANO LOG() statement, which is used by the
NanoLog runtime background thread to invoke the ap-
propriate compact() function and the decompressor to
retrieve the statement’s static information. The types of
name and tableId were determined at compile-time
by the preprocessor by analyzing the “%s” and “%d”
specifiers in the format string, so record() can invoke
type-specific methods to record them.

The purpose of the compact() function is to re-
duce the number of bytes occupied by the logged data,
in order to save I/O bandwidth. The preprocessor has
already determined the type of each item of data, so
compact() simply invokes a type-specific compaction
method for each value. Section 4.2.2 discusses the kinds
of compaction that NanoLog performs and the trade-off
between compute time and compaction efficiency.

In addition to the record() and compact() func-
tions, the preprocessor creates a dictionary entry con-
taining all of the static information for the log state-
ment. This includes the file name and line number of the
NANO LOG() statement, the severity level and format
string for the log message, the types of all the dynamic
values that will be logged, and the name of a variable that
will hold the unique identifier for this statement.

After generating this information, the preprocessor re-
places the original NANO LOG() invocation in the user

source with an invocation to the record() function.
It also stores the compact() function and the dictio-
nary information in a metadata file specific to the original
source file.

The NanoLog combiner executes after the preproces-
sor has processed all the user files (Figure 2); it reads
all of the metadata files created by the preprocessor and
generates additional code that will become part of the
NanoLog runtime library. First, the combiner assigns
unique identifier values for log statements. It generates
code that defines and initializes one variable to hold the
identifier for each log statement (the name of the variable
was specified by the preprocessor in the metatadata file).
Deferring identifier assignment to the combiner allows
for a tight and contiguous packing of values while al-
lowing multiple instances of the preprocessor to process
client sources in parallel without synchronization. Sec-
ond, the combiner places all of the compact() func-
tions from the metadata files into a function array for
the NanoLog runtime to use. Third, the combiner col-
lects the dictionary information for all of the log state-
ments and generates code that will run during application
startup and write the dictionary into the log.
4.2 NanoLog Runtime

The NanoLog runtime is a statically linked library
that runs as part of the user application and decou-
ples the low-latency application threads executing the
record() function from high latency operations like
disk I/O. It achieves this by offering low-latency staging
buffers to store the results of record() and a back-
ground compaction thread to compress the buffers’ con-
tents and issue disk I/O.
4.2.1 Low Latency Staging Buffers

Staging buffers store the result of record(), which
is executed by the application logging threads, and make
the data available to the background compaction thread.
Staging buffers have a crucial impact on performance as
they are the primary interface between the logging and
background threads. Thus, they must be as low latency as
possible and avoid thread interactions, which can result
in lock contention and cache coherency overheads.

Locking is avoided in the staging buffers by allocat-
ing a separate staging buffer per logging thread and im-
plementing the buffers as single producer, single con-
sumer circular queues [24]. The allocation scheme al-
lows multiple logging threads to store data into the stag-
ing buffers without synchronization between them and
the implementation allows the logging thread and back-
ground thread to operate in parallel without locking the
entire structure. This design also provides a throughput
benefit as the source and drain operations on a buffer can
be overlapped in time.

However, even with a lockless design, the threads’ ac-
cesses to shared data can still cause cache coherency de-
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lays in the CPU. More concretely, the circular queue im-
plementation has to maintain a head position for where
the log data starts and a tail position for where the data
ends. The background thread modifies the head position
to consume data and the logging thread modifies the tail
position to add data. However, for either thread to query
how much space it can use, it needs to access both vari-
ables, resulting in expensive cache coherency traffic.

NanoLog reduces cache coherency traffic in the stag-
ing buffers by performing multiple inserts or removes for
each cache miss. For example, after the logging thread
reads the head pointer, which probably results in a cache
coherency miss since its modified by the background
thread, it saves a copy in a local variable and uses the
copy until all available space has been consumed. Only
then does it read the head pointer again. The compaction
thread caches the tail pointer in a similar fashion, so it
can process all available log messages before incurring
another cache miss on the tail pointer. This mechanism
is safe because there is only a single reader and a single
writer for each staging buffer.

Finally, the logging and background threads store their
private variables on separate cachelines to avoid false
sharing [1].
4.2.2 High Throughput Background Thread

To prevent the buffers from running out of space and
blocking, the background thread must consume the log
messages placed in the staging staging buffer as fast as
possible. It achieves this by deferring expensive log pro-
cessing to the post-execution decompressor application
and compacting the log messages to save I/O.

The NanoLog background thread defers log format-
ting and chronology sorting to the post-execution appli-
cation to reduce log processing latency. For compari-
son, consider a traditional logging system; it outputs the
log messages in a human-readable format and in chrono-
logical order. The runtime formatting incurs computa-
tion costs and bloats the log message. And maintaining
chronology means the background thread must either se-
rialize all logging or sort the log messages from concur-
rent logging threads at runtime. Both of these operations
are expensive, so the background thread performs neither
of these tasks. The NanoLog background thread simply
iterates through the staging buffers in round-robin fash-
ion and for each buffer, processes the buffer’s entire con-
tents and outputs the results to disk. The processing is
also non-quiescent, meaning a logging thread can record
new log messages while the background thread is pro-
cessing its staging buffer’s contents.

Additionally, the background thread needs to perform
some sort of compression on the log messages to reduce
I/O latency. However, compression only makes sense if
it reduces the overall end-to-end latency. In our mea-
surements, we found that while existing compression
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Figure 4: Layout of a compacted log file produced by the
NanoLog runtime at a high level (left) and at the compo-
nent level (right). As indicated by the diagram on the left,
the NanoLog output file always starts with a Header and a
Dictionary. The rest of the file consists of Buffer Extents.
Each Buffer Extent contains log messages. On the right,
the smaller text indicates field names and the digits after
the colon indicate how many bits are required to represent
the field. An asterisk (*) represents integer values that have
been compacted and thus have a variable byte length. The
lower box of “Log Message” indicates fields that are vari-
able length (and sometimes omitted) depending on the log
message’s arguments.

schemes like the LZ77 algorithm [49] used by gzip [9]
were very effective at reducing file size, their computa-
tion times were too high; it was often faster to output the
raw log messages than to perform any sort of compres-
sion. Thus, we developed our own lightweight compres-
sion mechanism for use in the compact() function.

NanoLog attempts to compact the integer types by
finding the fewest number of bytes needed to represent
that integer. The assumptions here are that integers are
the most commonly logged type, and most integers are
fairly small and do not use all the bits specified by its
type. For example, a 4 byte integer of value 200 can be
represented with 1 byte, so we encode it as such. To keep
track of the number of bytes used for the integer, we add
a nibble (4-bits) of metadata. Three bits of the nibble in-
form the algorithm how many bytes are used to encode
the integer and the last bit is used to indicate a negation.
The negation is useful for when small negative numbers
are encoded. For example a −1 can be represented in 1
byte without ambiguity if the negation bit was set. A lim-
itation of this scheme is that an extra half byte (nibble) is
wasted in cases where the integer cannot be compacted.

Applying these techniques, the background thread
produces a log file that resembles Figure 4. The first
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component is a header which maps the machine’s Intel
Time Stamp Counter [30] (TSC) value to a wall time
and the conversion factor between the two. This allows
the log messages to contain raw invocation TSC values
and avoids wall time conversion at runtime. The header
also includes the dictionary containing static information
for the log messages. Following this structure are buffer
extents which represent contiguous staging buffers that
have been output at runtime and contained within them
are log messages. Each buffer extent records the runtime
thread id and the size of the extent (with the log mes-
sages). This allows log messages to omit the thread id
and inherit it from the extent, saving bytes.

The log messages themselves are variable sized due to
compaction and the number of parameters needed for the
message. However, all log messages will contain at least
a compacted log identifier and a compacted log invoca-
tion time relative to the last log message. This means
that a simple log message with no parameters can be as
small as 3 bytes (2 nibbles and 1 byte each for the log
identifier and time difference). If the log message con-
tains additional parameters, they will be encoded after
the time difference in the order of all nibbles, followed by
all non-string parameters (compacted and uncompacted),
followed by all string parameters. The ordering of the
nibbles and non-string parameters is determined by the
preprocessor’s generated code, but the nibbles are placed
together to consolidate them. The strings are also null
terminated so that we do not need to explicitly store a
length for each.
4.3 Decompressor/Aggregator

The final component of the NanoLog system is the
decompressor/aggregator, which takes as input the com-
pacted log file generated by the runtime and either out-
puts a human-readable log file or runs aggregations over
the compacted log messages. The decompressor reads
the dictionary information from the log header, then it
processes each of the log messages in turn. For each
message, it uses the log id embedded in the file to find
the corresponding dictionary entry. It then decompresses
the log data as indicated in the dictionary entry and com-
bines that data with static information from the dictio-
nary to generate a human-readable log message. If the
decompressor is being used for aggregation, it skips the
message formatting step and passes the decompressed
log data, along with the dictionary information, to an ag-
gregation function.

One challenge the NanoLog decompressor has to deal
with is outputting the log messages in chronological or-
der. Recall from earlier, the NanoLog runtime outputs
the log messages in staging buffer chunks called buffer
extents. Each logging thread uses its own staging buffer,
so log messages are ordered chronologically within an
extent, but the extents for different threads can overlap

in time. The decompressor must collate log entries from
different extents in order to output a properly ordered log.
The round-robin approach used by the compaction thread
means that extents in the log are roughly ordered by time.
Thus, the decompressor can process the log file sequen-
tially. To perform the merge correctly, it must buffer two
sequential extents for each logging thread at a time.

Aside from the reordering, one of the most interest-
ing aspects of this component is the promise it holds for
faster analytics. Most analytics engines have to gather
the human-readable logs, parse the log messages into a
binary format, and then compute on the data. Almost
all the time is spent reading and parsing the log. The
NanoLog aggregator speeds this up in two ways. First,
the intermediate log file is extremely compact compared
to its human-readable format (typically over an order of
magnitude) which saves on bandwidth to read the logs.
Second, the intermediate log file already stores the dy-
namic portions of the log in a binary format. This means
that the analytics engine does not need to perform ex-
pensive string parsing. These two features mean that the
aggregator component will run faster than a traditional
analytics engine operating on human-readable logs.
4.4 Alternate Implementation: C++17 NanoLog

While the techniques shown in the previous section are
generalizable to any programming language that exposes
its source, some languages such as C++17 offer strong
compile-time computation features that can be leveraged
to build NanoLog without an additional preprocessor. In
this section, we briefly present such an implementation
for C++17. The full source for this implementation is
available in our GitHub repository[47], so we will only
highlight the key features here.

The primary tasks that the NanoLog preprocessor per-
forms are (a) generating optimized functions to record
and compact arguments based on types, (b) assigning
unique log identifiers to each NANO LOG() invocation
site and (c) generating a dictionary of static log informa-
tion for the postprocessor.

For the first task, we can leverage inlined variadic
function templates in C++ to build optimized functions
to record and compact arguments based on their types.
C++11 introduced functionality to build generic func-
tions that would specialize on the types of the arguments
passed in. One variation, called “variadic templates”, al-
lows one to build functions that can accept an unbounded
number of arguments and process them recursively based
on type. Using these features, we can express meta
record() and compact() functions which accept
any number of arguments and the C++ compiler will au-
tomatically select the correct function to invoke for each
argument based on type.

One problem with this mechanism is that an argument
of type “char*” can correspond to either a “%s” speci-
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CPU Xeon X3470 (4x2.93 GHz cores)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Samsung 850 PRO (250GB) SSDs
OS Debian 8.3 with Linux kernel 3.16.7

OS for ETW Windows 10 Pro 1709, Build 16299.192

Table 1: The server configuration used for benchmarking.

fier (string) or a “%p” specifier (pointer), which are han-
dled differently. To address this issue, we leverage con-
stant expression functions in C++17 to analyze the static
format string at compile-time and build a constant ex-
pression structure that can be checked in record()
to selectively save a pointer or string. This mechanism
makes it unnecessary for NanoLog to perform the ex-
pensive format string parsing at runtime and reduces the
runtime cost to a single if-check.

The second task is assignment of unique identifiers.
C++17 NanoLog must discover all the NANO LOG() in-
vocation sites dynamically and associate a unique iden-
tifier with each. To do this, we leverage scoped static
variables in C++; NANO LOG() is defined as a macro
that expands to a new scope with a static identifier vari-
able initialized to indicate that no identifier has been as-
signed yet. This variable is passed by reference to the
record() function, which checks its value and assigns
a unique identifier during the first call. Future calls for
this invocation site pay only for an if-check to confirm
that the identifier has been assigned. The scoping of the
identifier keeps it private to the invocation site and the
static keyword ensures that the value persists across all
invocations for the lifetime of the application.

The third task is to generate the dictionary required by
the postprocessor and write it to the log. The dictionary
cannot be included in the log header, since the NanoLog
runtime has no knowledge of a log statement until it ex-
ecutes for the first time. Thus, C++17 NanoLog outputs
dictionary information to the log in an incremental fash-
ion. Whenever the runtime assigns a new unique identi-
fier, it also collects the dictionary information for that log
statement. This information is passed to the compaction
thread and output in the header of the next Buffer Ex-
tent that contains the first instance of this log message.
This scheme ensures that the decompressor encounters
the dictionary information for a log statement before it
encounters any data records for that log statement.

The benefit of this C++17 implementation is that it is
easier to deploy (users no longer have to integrate the
NanoLog preprocessor into their build chain), but the
downsides are that it is language specific and performs
slightly more work at runtime.

5 Evaluation
We implemented the NanoLog system for C++ appli-

cations. The NanoLog preprocessor and combiner com-
prise of 1319 lines of Python code and the NanoLog run-
time library consists of 3657 lines of C++ code.

System Name
Static
Chars Integers Floats Strings Others Logs

Memcached 56.04 0.49 0.00 0.23 0.04 378
httpd 49.38 0.29 0.01 0.75 0.03 3711
linux 35.52 0.98 0.00 0.57 0.10 135119
Spark 43.32 n/a n/a n/a n/a 2717
RAMCloud 46.65 1.08 0.07 0.47 0.02 1167

Table 2: Shows the average number of static charac-
ters (Static Chars) and dynamic variables in formatted log
statements for five open source systems. These numbers
were obtained by applying a set of heuristics to identify
log statements in the source files and analyzing the embed-
ded format strings; the numbers do not necessarily reflect
runtime usage and may not include every log invocation.
The “Logs” column counts the total number of log mes-
sages found. The dynamic counts are omitted for Spark
since their logging system does not use format specifiers,
and thus argument types could not be easily extracted. The
static characters column omits format specifiers and vari-
able references (i.e. $variables in Spark), and represents
the number of characters that would be trivially saved by
using NanoLog.

We evaluated the NanoLog system to answer the fol-
lowing questions:

• How do NanoLog’s log throughput and latency
compare to other modern logging systems?

• What is the throughput of the decompressor?
• How efficient is it to query the compacted log file?
• How does NanoLog perform in a real system?
• What are NanoLog’s throughput bottlenecks?
• How does NanoLog’s compaction scheme compare

to other compression algorithms?
All experiments were conducted on quad-core ma-

chines with SATA SSDs that had a measured throughput
of about 250MB/s for large writes (Table 1).
5.1 System Comparison

To compare the performance of NanoLog with other
systems, we ran microbenchmarks with six log messages
(shown in Table 3) selected from an open-source data-
center storage system [29].
5.1.1 Test Setup

We chose to benchmark NanoLog against Log4j2 [43],
spdlog [38], glog [11], Boost log [2], and Event Tracing
for Windows (ETW) [31]. We chose Log4j2 for its pop-
ularity in industry; we configured it for low latency and
high throughput by using asynchronous loggers and ap-
penders and including the LMAX Disruptor library [20].
We chose spdlog because it was the first result in an
Internet search for “Fast C++ Logger”; we configured
spdlog with a buffer size of 8192 entries (or 832KB). We
chose glog because it is used by Google and configured
it to buffer up to 30 seconds of logs. We chose Boost
logging because of the popularity of Boost libraries in
the C++ community; we configured Boost to use asyn-
chronous sinks. We chose ETW because of its simi-
larity to NanoLog; when used with Windows Software
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ID Example Output
staticString Starting backup replica garbage collector thread
stringConcat Opened session with coordinator at basic+udp:host=192.168.1.140,port=12246
singleInteger Backup storage speeds (min): 181 MB/s read
twoIntegers buffer has consumed 1032024 bytes of extra storage, current allocation: 1016544 bytes
singleDouble Using tombstone ratio balancer with ratio = 0.4
complexFormat Initialized InfUdDriver buffers: 50000 receive buffers (97 MB), 50 transmit buffers (0 MB), took 26.2 ms
Table 3: Log messages used to generate Figure 5 and Table 4. The underlines indicate dynamic data generated at runtime.
staticString is a completely static log message, stringConcat contains a large dynamic string, and other messages are a combi-
nation of integer and floating point types. Additionally, the logging systems were configured to output each message with the
context “YY-MM-DD HH:MM:SS.ns Benchmark.cc:20 DEBUG[0]:” prepended to it.

0

10

20

30

40

50

60

70

80

staticString stringConcat singleInteger twoIntegers singleDouble complexFormat

T
h
ro

u
g
h
p
u
t 

(M
il
li
o
n
s
 o

f 
L
o
g
s
/s

e
c
o
n
d
)

NanoLog80

4.9

43

22

17

11

spdlog

1.2 0.9 0.9 0.8 0.8 0.8

Log4j2

2.0 1.9 2.0 1.7 2.1 1.6

boost

0.6 0.5 0.5 0.5 0.6 0.5

glog

1.0 1.0 1.1 0.9 0.9 0.6

ETW

5.3
2.7

4.6 4.4 4.6 3.3

Figure 5: Shows the maximum throughput attained by various logging systems when logging a single message repeatedly.
Log4j2, Boost, spdlog, and Google glog logged the message 1 million times; ETW and NanoLog logged the message 8 and
100 million times repectively to generate a log file of comparable size. The number of logging threads varied between 1-16
and the maximum throughput achieved is reported. All systems except Log4j2 include the time to flush the messages to disk
in its throughput calculations (Log4j2 did not provide an API to flush the log without shutting down the logging service). The
message labels on the x-axis are explained in Table 3.

Trace PreProcessor [23], the log statements are rewrit-
ten to record only variable binary data at runtime. We
configured ETW with the default buffer size of 64 KB;
increasing it to 1 MB did not improve its steady-state
performance.

We configured each system to output similar metadata
information with each log message; they prepend a date/-
time, code location, log level, and thread id to each log
message as shown in Figure 1. However, there are imple-
mentation differences in each system. In the time field,
NanoLog and spdlog computed the fractional seconds
with 9 digits of precision (nanoseconds) vs 6 for Boost-
/glog and 3 for Log4j2 and ETW. In addition, Log4j2’s
code location information (ex. “Benchmark.cc:20”) was
manually encoded due to inefficiencies in its code loca-
tion mechanism [45]. The other systems use the GNU
C++ preprocessor macros “ LINE ” and “ FILE ”
to encode the code location information.

To ensure the log messages we chose were representa-
tive of real world usage, we statically analyzed log state-
ments from five open source systems[22, 42, 19, 44, 29].
Table 2 shows that log messages have around 45 char-
acters of static content on average and that integers are
the most common dynamic type. Strings are the sec-

ond most common type, but upon closer inspection, most
strings used could benefit from NanoLog’s static extrac-
tion methods. They contain pretty print error messages,
enumerations, object variables, and other static/format-
ted types. This static information could in theory be
also extracted by NanoLog and replaced with an iden-
tifier. However, we leave this additional extraction of
static content this to future work.
5.1.2 Throughput

Figure 5 shows the maximum throughput achieved by
NanoLog, spdlog [38], Log4j2 [43], Boost [2], Google
glog [11], and ETW [31]. NanoLog is faster than the
other systems by 1.8x-133x. The largest performance
gap between NanoLog and the other systems occurs with
staticString and the smallest occurs with stringConcat.

NanoLog performs best when there is little dynamic
information in the log message. This is reflected by stat-
icString, a static message, in the throughput benchmark.
Here, NanoLog only needs to output about 3-4 bytes
per log message due to its compaction and static extrac-
tion techniques. Other systems require over an order of
magnitude more bytes to represent the messages (41-90
bytes). Even ETW, which uses a preprocessor to strip
messages, requires at least 41 bytes in the static string
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ID NanoLog spdlog Log4j2 glog Boost ETW
Percentiles 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9 50 90 99 99.9

staticString 8 9 29 33 230 236 323 473 192 311 470 1868 1201 1229 3451 5231 1619 2338 3138 4413 180 187 242 726
stringConcat 8 9 29 33 436 494 1579 1641 230 1711 3110 6171 1235 1272 3469 5728 1833 2621 3387 5547 208 218 282 2954
singleInteger 8 9 29 35 353 358 408 824 223 321 458 1869 1250 1268 3543 5458 1963 2775 3396 7040 189 195 237 720
twoIntegers 7 8 29 44 674 698 807 1335 160 297 550 1992 1369 1420 3554 5737 2255 3167 3932 7775 200 207 237 761
singleDouble 8 9 29 34 607 637 685 1548 157 252 358 1494 2077 2135 4329 6995 2830 3479 3885 7176 187 193 248 720
complexFormat 8 8 28 33 1234 1261 1425 3360 146 233 346 1500 2570 2722 5167 8589 4175 4621 5189 9637 242 252 304 1070

Table 4: Unloaded tail latencies of NanoLog and other popular logging frameworks, measured by logging 100,000 log mes-
sages from Table 3 with a 600 nanosecond delay between log invocations to ensure that I/O is not a bottleneck. Each datum
represents the 50th/90th/99th/99.9th percentile latencies measured in nanoseconds.

case. NanoLog excels with static messages, reaching a
throughput of 80 million log messages per second.

NanoLog performs the worst when there’s a large
amount of dynamic information. This is reflected in
stringConcat, which logs a large 39 byte dynamic string.
NanoLog performs no compaction on string arguments
and thus must log the entire string. This results in an out-
put of 41-42 bytes per log message and drops throughput
to about 4.9 million log messages per second.

Overall, NanoLog is faster than all other logging sys-
tems tested. This is primarily due to NanoLog consis-
tently outputting fewer bytes per message and secondar-
ily because NanoLog defers the formatting and sorting
of log messages.

5.1.3 Latency
NanoLog lowers the logging thread’s invocation la-

tency by deferring the formatting of log messages. This
effect can be seen in Table 4. NanoLog’s invocation
latency is 18-500x lower than other systems. In fact,
NanoLog’s 50/90/99th percentile latencies are all within
tens of nanoseconds while the median latencies for the
other systems start at hundreds of nanoseconds.

All of the other systems except ETW require the log-
ging thread to either fully or partially materialize the
human-readable log message before transferring control
to the background thread, resulting in higher invocation
latencies. NanoLog on the other hand, performs no for-
matting and simply pushes all arguments to the staging
buffer. This means less computation and fewer bytes
copied, resulting in a lower invocation latency.

Although ETW employs techniques similar to
NanoLog, its latencies are much higher than those of
NanoLog. We are unsure why ETW is slower than
NanoLog, but one hint is that the even with the prepro-
cessor, ETW log messages are larger than NanoLog (41
vs. 4 bytes for staticString). ETW emits extra log infor-
mation such as process ids and does not use the efficient
compaction mechanism of NanoLog to reduce its output.

Overall, NanoLog’s unloaded invocation latency is ex-
tremely low.

5.2 Decompression
Since the NanoLog runtime outputs the log in a bi-

nary format, it is also important to understand the perfor-
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Figure 6: Impact on NanoLog’s decompressor perfor-
mance as the number of runtime logging threads in-
creases. We decompressed a log file containing 224

log messages (about 16M) in the format of “2017-04-06
02:03:25.000472519 Benchmark.cc:65 NOTICE[0]: Sim-
ple log message with 0 parameters”. The compacted log
file was 49MB and the resulting decompressed log output
was 1.5GB. In the “Unsorted” measurements, the decom-
pressor did not collate the log entries from different threads
into a single chronological order.

mance implications of transforming it back into a human
readable log format.

The decompressor currently uses a simple single-
threaded implementation, which can decompress at a
peak of about 0.5M log messages/sec (Figure 6). Tra-
ditional systems such as Log4j2 can achieve a higher
throughput of over 2M log messages/second at runtime
since they utilize all their logging threads for formatting.
NanoLog’s decompressor can be modified to use multi-
ple threads to achieve higher throughput.

The throughput of the decompressor can drop if there
were many runtime logging threads in the application.
The reason is that the log is divided into different extents
for each logging thread, and the decompressor must col-
late the log messages from multiple extents into a single
chronological order. Figure 6 shows that decompressor
can handle up to about 32 logging threads with no im-
pact on its throughput, but throughput drops with more
than 32 logging threads. This is because the decompres-
sor uses a simple collation algorithm that compares the
times for the next message from each active buffer ex-
tent (one per logging thread) in order to pick the next
message to print; thus the cost per message increases lin-
early with the number of logging threads. Performance
could be improved by using a heap for collation.

Collation is only needed if order matters during de-
compression. For some applications, such as analytics,
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Figure 7: Execution time for a min/mean/max aggrega-
tion using various systems over 100 million log messages
with a percentage of the log messages matching the tar-
get aggregation pattern “Hello World # %d” and the
rest “UnrelatedLog #%d”. The NanoLog system op-
erated on a compacted file (∼747MB) and the remaining
systems operated on the full, uncompressed log (∼7.6GB).
The C++ application searched for the “Hello World
#” prefix and utilized atoi() on the next word to parse the
integer. The Awk and Python applications used a sim-
ple regular expression matching the prefix: “.*Hello
World # (\d+)”. “Simple Read” reads the entire log
file and discards the contents. The file system cache was
flushed before each run.

the order in which log messages are processed is unim-
portant. In these cases, collation can be skipped; Figure 6
shows that decompression throughput in this case is un-
affected by the number of logging threads.
5.3 Aggregation Performance

NanoLog’s compact, binary log output promises more
efficient log aggregation/analytics than its full, uncom-
pressed counterpart. To demonstrate this, we imple-
mented a simple min/mean/max aggregation in four sys-
tems, NanoLog, C++, Awk, and Python. Conceptually,
they all perform the same task; they search for the tar-
get log message “Hello World #%d” and perform a
min/mean/max aggregation over the “%d” integer argu-
ment. The difference is that the latter three systems op-
erate on the full, uncompressed version of the log while
the NanoLog aggregator operates directly on the output
from the NanoLog runtime.

Figure 7 shows the execution time for this aggrega-
tion over 100M log messages. NanoLog is nearly an or-
der of magnitude faster than the other systems, taking
on average 4.4 seconds to aggregate the compact log file
vs. 35+ seconds for the other systems. The primary rea-
son for NanoLog’s low execution time is disk bandwidth.
The compact log file only amounted to about 747MB vs.
7.6GB for the uncompressed log file. In other words, the
aggregation was disk bandwidth limited and NanoLog
used the least amount of disk IO. We verified this as-
sumption with a simple C++ application that performs

No Logs NanoLog spdlog RAMCloud
Throughput

(kop/s)
Read 994 (100%) 809 (81%) 122 (12%) 67 (7%)
Write 140 (100%) 137 (98%) 59 (42%) 32 (23%)

Read
Latency

(µs)

50% 5.19 (1.00x) 5.33 (1.03x) 8.21 (1.58x) 15.55 (3.00x)
90% 5.56 (1.00x) 5.53 (0.99x) 8.71 (1.57x) 16.66 (3.00x)
99% 6.15 (1.00x) 6.15 (1.00x) 9.60 (1.56x) 17.82 (2.90x)

Write
Latency

(µs)

50% 15.85 (1.00x) 16.33 (1.03x) 24.88 (1.57x) 45.53 (2.87x)
90% 16.50 (1.00x) 17.08 (1.04x) 26.42 (1.60x) 47.50 (2.88x)
99% 22.87 (1.00x) 23.74 (1.04x) 33.05 (1.45x) 59.17 (2.59x)

Table 5: Shows the impact on RAMCloud [29] per-
formance when more intensive instrumentation is en-
abled. The instrumentation adds about 11-33 log state-
ments per read/write request with 1-3 integer log argu-
ments each. “No Logs” represents the baseline with no
logging enabled. “RAMCloud” uses the internal log-
ger while “NanoLog” and “spdlog” supplant the internal
logger with their own. The percentages next to Read-
/Write Latency represent percentiles and all results were
measured with RAMCloud’s internal benchmarks with 16
clients used in the throughput measurements. Throughput
benchmarks were run for 10 seconds and latency bench-
marks measured 2M operations. Each configurations was
run 15 times and the best case is presented.

no aggregation and simply reads the file (“Simple Read”
in the figure); its execution time lines up with the “C++”
aggregator at around 36 seconds.

We also varied how often the target log message
“Hello World #%d” occurred in the log file to see
if it affects aggregation time. The compiled systems
(NanoLog and C++) have a near constant cost for ag-
gregating the log file while the interpreted systems (Awk
and Python) have processing costs correlated to how of-
ten the target message occurred. More specifically, the
more frequent the target message, the longer the execu-
tion time for Awk and Python. We suspect the reason is
because the regular expression systems used by Awk and
Python can quickly disqualify non-matching strings, but
perform more expensive parsing when a match occurs.
However, we did not investigate further.

Overall, the compactness of the NanoLog binary log
file allows for fast aggregation.
5.4 Integration Benchmark

We integrated NanoLog and spdlog into a well instru-
mented open-source key value store, RAMCloud[29],
and evaluated the logging systems’ impact on perfor-
mance using existing RAMCloud benchmarks. In keep-
ing with the goal of increasing visibility, we enabled
verbose logging and changed existing performance sam-
pling statements in RAMCloud (normally compiled out)
to always-on log statements. This added an additional
11-33 log statements per read/write request in the sys-
tem. With this heavily instrumented system, we could
answer the following questions: (1) how much of an
improvement does NanoLog provide over other state-of-
the-art systems in this scenario, (2) how does NanoLog
perform in a real system compared to microbenchmarks

344    2018 USENIX Annual Technical Conference USENIX Association



and (3) how much does NanoLog slowdown compilation
and increase binary size?

Table 5 shows that, with NanoLog, the additional
instrumentation introduces only a small performance
penalty. Median read-write latencies increased only by
about 3-4% relative to an uninstrumented system and
write throughput decreased by 2%. Read throughput sees
a larger degradation (about 19%); we believe this is be-
cause read throughput is bottlenecked by RAMCloud’s
dispatch thread [29], which performs most of the log-
ging. In contrast, the other logging systems incur such a
high performance penalty that this level of instrumenta-
tion would probably be impractical in production: laten-
cies increase by 1.6-3x, write throughput drops by more
than half, and read throughput is reduced to roughly a
tenth of the uninstrumented system (8-14x). These re-
sults show that NanoLog supports a higher level of in-
strumentation than other logging systems.

Using this benchmark, we can also estimate
NanoLog’s invocation latency when integrated in a low-
latency system. For RAMCloud’s read operation, the
critical path emits 8 log messages out of the 11 en-
abled. On average, each log message increased latency
by (5.33-5.19)/8 = 17.5ns. For RAMCloud’s write oper-
ation, the critical path emits 27 log messages, suggesting
an average latency cost of 17.7ns. These numbers are
higher than the median latency of 7-8ns reported by the
microbenchmarks, but they are still reasonably fast.

Lastly, we compared the compilation time and binary
size of RAMCloud with and without NanoLog. Without
NanoLog, building RAMCloud takes 6 minutes and re-
sults in a binary with the size of 123 MB. With NanoLog,
the build time increased by 25 seconds (+7%), and the
size of the binary increased to 130 MB (+6%). The dic-
tionary of static log information amounted to 229KB for
922 log statements (∼ 248B/message). The log message
count differs from Table 2 because RAMCloud compiles
out log messages depending on build parameters.
5.5 Throughput Bottlenecks

NanoLog’s performance is limited by I/O bandwidth
in two ways. First, the I/O bandwidth itself is a bottle-
neck. Second, the compaction that NanoLog performs
in order to reduce the I/O cost can make NanoLog com-
pute bound as I/O speeds improve. Figure 8 explores the
limits of the system by removing these bottlenecks.

Compaction plays a large role in improving
NanoLog’s throughput, even for our relatively fast
flash devices (250MB/s). The “Full System” as de-
scribed in the paper achieves a throughput of nearly 77
million operations per second while the “No Compact”
system only achieves about 13 million operations per
second. This is due to the 5x difference in I/O size; the
full system outputs 3-4 bytes per message while the no
compaction system outputs about 16 bytes per message.
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Figure 8: Runtime log message throughput acheived by
the NanoLog system as the number of logging threads is
increased. For each point, 227 (about 134M) static mes-
sages were logged. The Full System is the NanoLog sys-
tem as described in this paper, No Output pipes the log
output to /dev/null, No Compact omits compaction in the
NanoLog compression thread and directly outputs the stag-
ing buffers’ contents, and No Output + No Compact is a
combination of the the last two.

If we remove the I/O bottleneck altogether by redi-
recting the log file to /dev/null, NanoLog “No Output”
achieves an even higher peak throughput of 138 million
logs per second. At this point, the compaction becomes
the bottleneck of the system. Removing both compaction
and I/O allows the “No Output + No Compact” system to
push upwards of 259 million operations per second.

Since the “Full System” throughput was achieved with
a 250MB/s disk and the “No Output” has roughly twice
the throughput, one might assume that compaction would
become the bottleneck with I/O devices twice as fast
as ours (500MB/s). However, that would be incorrect.
To maintain the 138 million logs per second without
compaction, one would need an I/O device capable of
2.24GB/s (138e6 logs/sec x 16B).

Lastly, we suspect we were unable to measure the
maximum processing potential of the NanoLog com-
paction thread in “No Output + No Compact.” Our ma-
chines only had 4 physical cores with 2 hyperthreads
each; beyond 4-5, the logging threads start competing
with the background thread for physical CPU resources,
lowering throughput.
5.6 Compression Efficiency

NanoLog’s compression mechanism is not very so-
phisticated in comparison to alternatives such as gzip [9]
and Google snappy [37]. However, in this section we
show that for logging applications, NanoLog’s approach
provides a better overall balance between compression
efficiency and execution time.

Figure 9 compares NanoLog, gzip, and snappy using
93 test cases with varying argument types and lengths
chosen to cover a range of log messages and show the
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Figure 9: Shows the number of test cases (out of 93)
for which a compression algorithm attained the highest
throughput. Here, throughput is defined as the minimum of
an algorithm’s compression throughput and I/O through-
put (determined by output size and bandwidth). The num-
bers after the “gzip” labels indicate compression level and
“memcpy” represents “no compression”. The input test
cases were 64MB chunks of binary NanoLog logs with ar-
guments varied in 4 dimensions: argument type (int/long/-
double/string), number of arguments, entropy, and value
range. Strings had [10, 15, 20, 30, 45, 60, 100] charac-
ters and an entropy of “random”, “zipfian” (θ=0.99), and
“Top1000” (sentences generated using the top 1000 words
from [26]). The numeric types had [1,2,3,4,6,10] argu-
ments, an entropy of “random” or “sequential,” and value
ranges of “up to 2 bytes” and “at least half the container”.

best and worst of each algorithm. For each test case
and compression algorithm combination, we measured
the total logging throughput at a given I/O bandwidth.
Here, the throughput is determined by the lower of the
compression throughput and I/O throughput (i.e. time
to output the compressed data). Since the background
thread overlaps the two operations, the slower operation
is ultimately the bottleneck. We then counted the num-
ber of test cases where an algorithm produced highest
throughput of all algorithms at a given I/O bandwidth
and graphed the results in Figure 9.

From Figure 9 we see that aggressive compression
only makes sense in low bandwidth situations; gzip,9
produces the best compression, but it uses so much CPU
time that it only makes sense for very low bandwidth
I/O devices. As I/O bandwidth increases, gzip’s CPU
time quickly becomes the bottleneck for throughput, and
compression algorithms that don’t compress as much but
operate more quickly become more attractive.

NanoLog provides the highest logging throughput for
most test cases in the bandwidth range for modern disks
and flash drives (30–2200 MB/s). The cases where
NanoLog is not the best are those involving strings and
doubles, which NanoLog does not compact; snappy is
better for these cases. Surprisingly, NanoLog is some-
times better than memcpy even for devices with ex-

tremely high I/O throughput. We suspect this is due to
out-of-order execution[16], which can occasionally over-
lap NanoLog’s compression with load/stores of the ar-
guments; this makes NanoLog’s compaction effectively
free. Overall, NanoLog’s compaction scheme is the most
efficient given the capability of current I/O devices.

6 Related Work
Many frameworks and libraries have been created to

increase visibility in software systems.
The system most similar to NanoLog is Event Trac-

ing for Windows (ETW) [31] with the Windows Soft-
ware Trace PreProcessor (WPP) [23], which was de-
signed for logging inside the Windows kernel. This sys-
tem was unbeknownst to us when we designed NanoLog,
but WPP appears to use compilation techniques simi-
lar to NanoLog. Both use a preprocessor to rewrite
log statements to record only binary data at runtime and
both utilize a postprocessor to interpret logs. However,
ETW with WPP does not appear to be as performant as
NanoLog; in fact, it’s on par with traditional logging sys-
tems with median latencies at 180ns and a throughput of
5.3Mop/s for static strings. Additionally, its postproces-
sor can only process messages at a rate of 10k/second
while NanoLog performs at a rate of 500k/second.

There are five main differences between ETW with
WPP and NanoLog: (1) ETW is a non-guaranteed logger
(meaning it can drop log messages) whereas NanoLog is
guaranteed. (2) ETW logs to kernel buffers and uses a
separate kernel process to persist them vs. NanoLog’s
in-application solution. (3) The ETW postprocessor in-
terprets a separate trace message format file to parse the
logs whereas NanoLog uses dictionary information em-
bedded in the log. (4) WPP appears to be targeted at
Windows Driver Development (only available in WDK),
whereas NanoLog is targeted at applications. Finally, (5)
NanoLog is an open-source library [47] with public tech-
niques that can ported to other platforms and languages
while ETW is proprietary and locked to Windows only.
There may be other differences (such as the use of com-
pression) that we cannot ascertain from the documenta-
tion since ETW is closed source.

There are also general purpose, application-level log-
gers such as Log4j2 [43], spdlog [38], glog [11], and
Boost log [2]. Like NanoLog, these systems enable ap-
plications to specify arbitrarily formatted log statements
in code and provide the mechanism to persist the state-
ments to disk. However these systems are slower than
NanoLog; they materialize the human-readable log at
runtime instead of deferring to post-execution (resulting
in a larger log) and do not employ static analysis to gen-
erate low-latency, log specific code.

There are also implementations that attempt to provide
ultra low-latency logging by restricting the data types or
the number of arguments that can be logged [24, 32].
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This technique reduces the amount of compute that must
occur at runtime, lowering latency. However, NanoLog
is able to reach the same level of performance without
sacrificing flexibility by employing code generation.

Moving beyond a single machine, there are also dis-
tributed tracing tools such as Google Dapper [35], Twit-
ter Zipkin [48], X-Trace [8], and Apache’s HTrace [41].
These systems handle the additional complexity of track-
ing requests as they propagate across software bound-
aries, such as between machines or processes. In
essence, these systems track causality by attaching
unique request identifiers with log messages. However,
these systems do not accelerate the actual runtime log-
ging mechanism.

Once the logs are created, there are systems and ma-
chine learning services that aggregate them to provide
analytics and insights [39, 3, 25, 27]. However, for com-
patibility, these systems typically aggregate full, human-
readable logs to perform analytics. The NanoLog aggre-
gator may be able to improve their performance by op-
erating directly on compacted, binary logs, which saves
I/O and processing time.

There are also systems that employ dynamic instru-
mentation [15] to gain visibility into applications at run-
time such as Dtrace [14], Pivot Tracing [21], Fay [6],
and Enhanced Berkley Packet Filters [13]. These sys-
tems eschew the practice of embedding static log state-
ment at compile-time and allow for dynamic modifica-
tion of the code. They allow for post-compilation in-
sertion of instrumentation and faster iterative debugging,
but the downside is that instrumentation must already be
in place to enable post mortem debugging.

Lastly, it’s worth mentioning that the techniques used
by NanoLog and ETW are extremely similar to low-
latency RPC/serialization libraries such as Thrift [36],
gRPC [12], and Google Protocol Buffers [46]. These
systems use a static message specification to name sym-
bolic variables and types (not unlike NanoLog’s printf
format string) and generate application code to en-
code/decode the data into succinct I/O optimized formats
(similiar to how NanoLog generates the record and com-
pact functions). In summary, the goals and techniques
used by NanoLog and RPC systems are similar in flavor,
but are applied to different mediums (disk vs. network).

7 Limitations
One limitation of NanoLog is that it currently can only

operate on static printf-like format strings. This means
that dynamic format strings, C++ streams, and toString()
methods would not benefit from NanoLog. While we
don’t have a performant solution for dynamic format
strings, we believe that a stronger preprocessor/com-
piler extension may be able to extract patterns from C++
streams by looking at types and/or provide a snprintf-like

function for toString() methods to generate a intermedi-
ate representation for NanoLog.

Additionally, while NanoLog is implemented in C++,
we believe it can be extended to any language that ex-
poses source code, since preprocessing and code replace-
ment can be performed in almost any language. The only
true limitation is that we would be unable to optimize any
logs that are dynamically generated and evaluated (such
as with JavaScript’s eval() [5]).

NanoLog’s preprocessor-based approach also creates
some deployment issues, since it requires the prepro-
cessor to be integrated in the development tool chain.
C++17 NanoLog eliminates this issue using compile-
time computation facilities, but not all languages can
support this approach.

Lastly, NanoLog currently assumes that logs are stored
in a local filesystem. However, it could easily be modi-
fied to store logs remotely (either to remotely replicated
files or to a remote database). In this case, the throughput
of NanoLog will be limited by the throughput of the net-
work and/or remote storage mechanism. Most structured
storage systems, such as databases or even main-memory
stores, are slow enough that they would severely limit
NanoLog performance.

8 Conclusion
NanoLog outperforms traditional logging systems by

1-2 orders of magnitude, both in terms of throughput
and latency. It achieves this high performance by stat-
ically generating and injecting optimized, log-specific
logic into the user application and deferring traditional
runtime work, such as formatting and sorting of log mes-
sages, to an off-line process. This results in an optimized
runtime that only needs to output a compact, binary log
file, saving I/O and compute. Furthermore, this log file
can be directly consumed by aggregation and log analyt-
ics applications, resulting in over an order of magnitude
performance improvement due to I/O savings.

With traditional logging systems, developers often
have to choose between application visibility or applica-
tion performance. With the lower overhead of NanoLog,
we hope developers will be able to log more often and
log in more detail, making the next generation of appli-
cations more understandable.
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Abstract
As the influence of machine learning grows over deci-
sions in businesses and human life, so grows the need
for Model Governance. In this paper, we motivate the
need for, define the problem of, and propose a solution
for Model Governance in production ML. We show that
through our approach one can meaningfully track and
understand the who, where, what, when, and how an ML
prediction came to be. To the best of our knowledge, this
is the first work providing a comprehensive framework
for production Model Governance, building upon previ-
ous work in developer-focused Model Management.

1 Introduction
Machine Learning (ML) and Deep Learning (DL) have
recently made tremendous advances in algorithms, ana-
lytic engines, and hardware. However, production ML
deployment is still nascent [17]. While production de-
ployments are always challenging, ML generates unique
difficulties [21, 7, 22]. We focus on the governance chal-
lenge: the management, diagnostic, compliance, and reg-
ulatory implications of production ML models. With re-
cent demands for explainable/transparent ML [9, 3, 16,
5], the need to track provenance and faithfully reproduce
ML predictions is even more serious. Given the strong
data-dependent nature of ML/DL, even small changes in
configurations can have unexpected consequences in pre-
dictions, making Governance critical to production ML.

Previous research has focused on Model Management:
managing these models and enabling efficient reuse by
developers [28, 25, 20]. Production deployment further
complicates governance with i) complex topologies with
retraining, ii) continuous inference programs that run in
parallel with (re)training programs, iii) actions (such as
model approvals) that need to be recorded for auditing,
vi) model rollbacks that may occur in real time, and v)
heterogeneous and distributed environments.

We define Production Model Governance as the abil-
ity to determine the creation path, subsequent usage, and

consequent outcomes of an ML model, and the use of
this information to accomplish a range of tasks includ-
ing reproducing and diagnosing problems and enforcing
compliance. In this paper, we propose and motivate a
generic solution approach that can be adapted across dif-
ferent governance usage examples.

Our goal is to highlight the Model Governance prob-
lem and propose solutions. Our contributions are: i) we
propose a definition for Production Model Governance
and its necessary inclusive elements; ii) We propose a
two-layer model for Governance. The lower layer con-
tains each pipeline as a DAG and tracks everything (such
as features, datasets, and code) similar to what is pro-
posed by prior research. We add a second layer directed
graph where each pipeline or policy invocation is a node
and edges represent cross-pipeline, policy, and human
action dependencies. We temporally track and corre-
late both of these levels to comprehensively cover Model
Governance; iii) Using this model, we build a production
Model Governance system that supports heterogeneous
frameworks (currently, Spark, TensorFlow, Flink); iv)
We propose a robust approach to a wide range of possi-
ble Governance applications via generic access to Gover-
nance metadata; and v) At the pipeline level, we expand
upon prior research by illustrating a generic API-based
instrumentation approach across analytic engines.

2 Motivation
Machine learning algorithms execute as ”pipelines”,
which ingest data (via batch data lakes, stream brokers,
etc.) and compute (feature engineering, model training,
scoring, inference, etc.). Pipelines may run on engines
(Spark, Flink, etc.) or as standalone programs.

To highlight the importance of Model Governance, we
use an example medical application that leverages ML to
recommend to a doctor which tests to run on a patient.
The calling application sends user information to an ML
prediction pipeline which returns a prediction. Figure 1
shows several examples of how this simple scenario can
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Figure 1: Evolution of ML Pipelines in production. (a) The prediction pipeline is executing in production and is
using a model trained offline and uploaded. (b) A more dynamic scenario where the model itself is retrained on a
schedule. (c) Yet another sophistication, where newly trained models undergo an approval process prior to production
deployment. (d) Here an ensemble model is used for prediction (requiring each sub-model to be trained individually).
Finally, (e) shows the scenario if a control pipeline (canary) is used in production to ensure that the primary prediction
pipeline is behaving stably. The control pipeline could also be running a surrogate model to improve explainability.

be put into production. While the basic function requires
only one pipeline, once you add the need to improve ac-
curacy via re-training, the need for human approvals, and
state-of-the-art models, the complexity grows rapidly.
We now illustrate sample Governance scenarios for the
example in Figure 1(e).
Scenario 1: Say we needed to know why a certain pa-
tient was recommended a CT-Scan while another patient
was not. For each recommendation, we would need to
answer: Which model(s) were running in the ensem-
ble? Which code was executing the models? When/How
was each model trained (using which configurations and
which features)? Which model provided the control
pipeline and would its recommendation have differed?
Which operator approved each of the models in the pri-
mary pipeline? Who approved the model in the control
pipeline? Were any errors noted in this time frame? Can
both predictions be reproduced in order to test for bias?
Scenario 2: Assume a data scientist wishes to leverage
some of the models for a new production ML applica-
tion. They would want to know under which circum-
stances the existing models were generated, as well as
which datasets and features were used. These may also
be required for production approval.

3 Model Governance
We define Production Model Governance as the ability to
determine the creation path, subsequent usage, and con-
sequent outcomes of an ML model, and the use of this
information in various ways, as illustrated above. Given
the wide range of usages, we believe any Model Gover-
nance solution should include:
Provenance/Lineage: For any ML prediction, the ability
identify the exact sequence of events (datasets, trainings,
code, pipelines, human approvals) that led to the event.
Reproducibility: The ability to replay the above se-
quence and replicate the prediction, thereby setting the
context to investigate alternatives.
Audit and Compliance: The ability to evaluate all ML

operations in an organization and determine compliance
with regulations.
Leverage: The ability to reuse past ML work (such as
algorithms, models, features) to determine whether the
derived object is appropriate for the new usage.
Scale and Heterogeneity: The ability to work with
many models, pipelines, and varied analytic engines and
languages in a distributed setting such as Cloud/Edge.
Multiple Governance Metadata Usages: The ability to
multi-purpose the metadata. For example, Data Scien-
tists may analyze experiments or reuse models. Opera-
tors may diagnose issues, help address bias concerns, or
ensure compliance to policies.

4 Approach and Design
Our solution must support simple to complex topolo-
gies, parallel pipelines, streaming and batch pipelines,
pipelines changing state mid-run as new models ar-
rive, policy actions and relationships between non-
overlapping pipeline runs. For these we must provide: (i)
Sufficient dependency information to infer provenance;
(ii) Configuration including code and input parameters
for reproducibility; (iii) A durable record of all meta-
data; (iv) Metadata from disjoint pipeline, possibly from
different analytic engines and languages; (v) Metadata
provenance, trends, and policy analysis and beyond.
4.1 The Intelligence Overlay Network
Core to our design is a two layer model we call the In-
telligence Overlay Network (ION). An ION is a logical
model that connects objects such as pipelines, policy ex-
ecution modules, and messages between them. The first
level of an ION is inspired by the traditional graph-based
modeling of message passing parallel programs, where
each node is a execution element and directed edges are
messages between programs (allowing for cycles) [1]. In
our case, execution nodes are ML pipelines or policy ac-
tions, and messages (such as ML models or events) are
passed between them. At the second level of the ION,
each execution node can itself be a DAG of components.
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Figure 2: ION for Flow in Figure 1(c)

An ML pipeline is a single execution node in an ION.
Figure 2 shows how Figure 1(c)’s pattern maps to an
ION. The Inference and Training nodes are pipelines, the
approval is a Policy node, and the edges show the path of
a model. Figure 3 shows how the graph in Figure 2 is
tracked by our system across time.

We apply this approach to ML workflows: (i) All ex-
ecution elements are nodes. Nodes execute on a sched-
ule (batch), continuously (streaming), or are event trig-
gered; (ii) Nodes can pass messages and each message
and send/receive events are recorded; (iii) Within each
node, a DAG can be defined with its stages monitored.

The ION approach delivers important benefits. First,
many ML pipelines map easily to the ION nodes as
DAGs. Statistics from these pipelines are gathered as
time-series variables that support Governance scenarios,
for example, by providing required transparency to com-
plex feature selection within a pipeline.

Second, the ION graph cleanly captures the depen-
dencies and interactions between the pipelines, including
their repeated executions over time, their connections to
human actions, and their relationships to each other.

Finally, the combined statistics of both levels enables
powerful usages, such as (a) tracking pipeline metrics
like confusion matrices across multiple training runs,
(b) comparing Models across multiple training runs, (c)
tracking the approval actions of any human operator and
cross-checking those against the performance of infer-
ence pipelines that ran the approved models.

Figure 3: ION Timeline

4.2 System Design
We use an agent/server architecture. The agents run

on each instance of an analytic engine (for example, a
15 node Spark cluster would have a single agent). Each
agent communicates with its engine via standard inter-
faces. The server receives Governance metadata from

the agents and interlinks the information via the ION.
Currently our server also runs the policy execution code
blocks. The server maintains a metadata database and
manages garbage collection.

While recent Model Management approaches have
been passive [28], we chose an active Agent based ap-
proach to enable disconnected operation (a common oc-
currence in Edge based ML environments [26]). During
disconnections, the agent saves information locally and
transmits it when connectivity is restored. If the agent is
disconnected for long periods of time and runs out of lo-
cal storage resources, some information can be lost. The
agent/server architecture also enables scale and support
of heterogeneous analytic engines.

This approach requires no changes to the analytic en-
gines. We can also connect to existing analytic engines
and can share analytic engines with other programs that
we do not monitor. Any program that already works in
these engines works in this environment. An Agent can
also support custom standalone programs. The required
changes to the programs themselves, for all the cases, are
discussed in Section 4.3.

Figure 4 shows the database schema. The Level 1
schema includes tracked objects within a pipeline. The
Level 2 schema captures the ION pattern as well as spe-
cific elements of each ION instance. Contextual infor-
mation (such as which machines a particular pipeline ran
on) is also captured. All objects are timestamped. All
objects link to an ION and from the ION to each other.
4.3 Information Import and Export

ML pipelines exchange Governance metadata with our
system in three ways (see Figure 5). First, a JSON-based
ION definition which contains links to pipeline code is
uploaded to our server. Second, each pipeline is instru-
mented via an API library to provide runtime metadata.
Pipelines can export time series variables, digests, con-
figuration, models, etc. Supported Model formats are
PMML, SavedModel or opaque. Since our system also
supports opaque model formats, other industry standard
model formats (like ONNX) that we do not yet interpret
can be immediately used. Third, for standard pipelines
and models, we auto-extract metadata (like [25]).

The API library has import and export capabilities.
On the export side, running pipelines send metadata to
our Governance system. On the import side, running
pipelines can query the database for stored metadata and
perform additional analytics (see Section 4). The library
implementation is engine-specific and to date we have
implemented our API library for Spark, Flink, and Ten-
sorflow and in Scala, Java, and Python.

Unlike prior approaches [25], we employ both a fully
declarative approach (where the developer decides what
to instrument) and automatic extraction wherever stan-
dardized pipelines and model formats allow. While train-
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Figure 4: Governance Schema

Figure 5: Interaction of ML Pipelines with our Governance System

ing pipelines can be quite structured (like SparkML),
production inference pipelines have not standardized on
any pipeline or code structure, running the gamut from
auto-generated (via JPMML inference) to latency opti-
mized hand-coded programs. This range of inference
pipeline structures renders approaches that rely only on
automatic extraction impractical for generalized produc-
tion usage. With our approach, even custom written stan-
dalone programs can be instrumented for Governance.

4.4 Correlation and Causality
IONs are used to create a coherent time view of all

metadata by (a) merging the views of multiple concurrent
pipelines or policy blocks and (b) by relating different
executions of the same logical node (e.g., re-training).
Causality: Within each ION node, we assume mono-
tonically increasing timestamps. Across nodes within an
ION, causality is established via messages.
Inter-Node Correlation: Across ION nodes, we assume
correlation based on synchronized timestamps. Prove-
nance is derived directly from messages and not from
time correlation. Correlation is only used if a single se-

quence of statistics from the ION is retrieved for visual-
ization. We have not used logical clocks to date because
the governance usages we have worked with can be ad-
dressed sufficiently with the approaches above.

4.5 Governance Usages
Model Governance metadata has multiple uses. Any

pipeline can use the API library to extract and compute
additional analytics on governance metadata. For exam-
ple, a pipeline can analyze all models approved by a user
and correlate with training accuracy metrics or do addi-
tional model selection or model improvement. Compli-
ance enforcement can be done via functions that period-
ically review recent metadata and confirm adherence to
specific polices (such as human model approval or train-
ing accuracy thresholds for production deployed mod-
els). The metadata information can be used for advanced
optimizations such as Meta-Learning. The applications
of this approach are vast and to date we have only used
our system to explore simple usages. Due to lack of
space, we do not elaborate on this capability further in
this paper but it is an area of our future work.
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Object Occurrence Count Size
Models multiple 24 48KB

Statistics multiple 536K 242MB
Signatures multiple 1.8K 136MB
Pipelines once 3 14KB

Node once 3 1KB
Events multiple 84 140KB
Logs multiple 264 74MB
Total N/A 5̃38K 452MB

Table 1: Governance information captured from the
three node ION after a day of execution.

5 Evaluation
A governance solution should include lineage, repro-
ducibility, audit, leverage, scale, heterogeneity, and mul-
tiple usages (see Section 3). We conduct a simple experi-
ment to illustrate lineage, audit, scale, and heterogeneity
in our solution. Additionally, we measure the overheads
of Governance metadata gathering, including instrumen-
tation and model propagation.

Our experiment consists of a three node ION: a Spark
training pipeline, a Flink inference pipeline, and a pol-
icy module configured to always approve models (Fig-
ure 1c). The training pipeline is batch Logistic Regres-
sion with hyperparameter search in PySpark training a
new model every hour. The selected model propagates
via the Policy node to the Flink streaming inference in
Scala. Governance metadata gathered includes input and
prediction signatures (histograms), ML statistics, code,
libraries, etc. ML statistics are any items reported via the
API, including generic metrics such as accuracy, preci-
sion, recall, etc. and algorithm-specific metrics. Hyper-
parameter search configuration and result information is
also reported via the API.

Figure 6 shows the dashboard view of a model gener-
ated in the ION. The governance dashboard provides the
lineage information for every model generated (or up-
loaded), the training pipeline and the parameters used to
generate the selected model, model approval information
and the subsequent usage of the selected model in in-
ference pipelines. Each hyperlink within the dashboard
provides in-depth information on ION template, pipeline,
configuration, statistics, etc. These in-depth views are
not included due to lack of space.

Table 1 summarizes the list of objects that are captured
in our system during the ION’s execution. The overheads
of our API instrumentation was less then 1% in this ex-
periment and model propagation delay on average was
around 3s for models of size 2KB. We were able to both
replay and reproduce predictions using our system.

6 Related Work
The related work closest to ours includes [28, 25, 20].
We add several fundamental contributions over each.
First we define and implement the ION model which

Figure 6: Model Governance Page: This page high-
lights the lineage, approval/rejection status across IONs,
and usage of the selected model across IONs.

links multiple pipelines and policy actions, including a
full governance metadata and schema. Second, while
both we and [25] integrate with multiple analytic en-
gines, our approach adds a fully declarative instrumenta-
tion approach to the base auto-extraction approach, en-
abling our system to work with changing analytic en-
gines and standalone ML programs. Finally, we have
designed and built an import/export function where pro-
grams can access and compute additional analytics on
Governance metadata, enabling a vast range of Gover-
nance usages which can themselves be tracked and man-
aged. Additional model management approaches have
been presented in [18]. Production ML challenges have
been described in [21, 7, 22, 24, 4, 15, 8]. Meta-
learning is discussed in [23, 13]. Overviews of ana-
lytic engines, libraries, and model serving systems are
in [19, 10, 11, 12, 27, 2, 29, 6, 14].

7 Discussion and Future Work
Our system addresses most of the goals laid out in Sec-
tion 3. We can track any prediction (or other event) to
all related pipelines, datasets, execution configurations,
code and human actions, and reproduce the functional
steps. Via both tracking of input dataset pathnames and
dataset signatures, we identify which data was used to
generate which model. Using the API library, a user can
write a pipeline to extract and analyze any information in
the database to evaluate compliance or do audits. As an-
other example, programs using our API can analyze data
trends and correlate them with model outcomes.

For future work, we plan to explore the possibilities
of meta-learning via Governance metdata and expand on
how Governance relates to AI explainability. We want to
couple the provenance data with explainable ML to help
answer the question of not just how/where/what/when
but also why ML decisions were made.
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Abstract
To deliver fast responses to users worldwide, major In-
ternet providers rely on geo-replication to serve requests
at data centers close to users. This deployment leads to
a fundamental tension between improving system per-
formance and reducing costly cross-site coordination for
maintaining service properties such as state convergence
and invariant preservation. Previous proposals for man-
aging this trade-off resorted to coarse-grained opera-
tions labeling or coordination strategies that were obliv-
ious to the frequency of operations. In this paper, we
present a novel fine-grained consistency definition, Par-
tial Order-Restrictions consistency (or short, PoR consis-
tency), generalizing the trade-off between performance
and the amount of coordination paid to restrict the or-
dering of certain operations. To offer efficient PoR con-
sistent replication, we implement Olisipo, a coordina-
tion service assigning different coordination policies to
various restrictions by taking into account the relative
frequency of the confined operations. Our experimental
results show that PoR consistency significantly outper-
forms a state-of-the-art solution (RedBlue consistency)
on a 3-data center RUBiS benchmark.

1 Introduction
To cope with the demand for fast response times [36]
from an increasingly large user base, many Internet ser-
vice providers such as Google [8], Microsoft [9], Face-
book [13] or Amazon [3] replicate data across multi-
ple geographically dispersed data centers [38, 21, 20, 2].
However, geo-replication also leads to an inherent ten-
sion between achieving high performance and ensur-
ing properties such as state convergence (i.e., all repli-
cas eventually reach the same final state) and invari-
ant preservation (i.e., the behavior of the system obeys
its specification, which can be defined as a set of
application-specific invariants to be preserved) [22, 40,
30, 17, 16].

Some proposals address this fundamental tension in
geo-replication by weakening strong consistency to dif-
ferent extents: some researchers suggest to completely
drop strong consistency and instead adopt some form
of weaker consistency such as eventual consistency [22,
41, 19] or causal consistency [32]; other approaches
allow multiple consistency levels to coexist in a sin-
gle system [30, 17, 12, 4]. As an example of the latter

group, our prior proposal on RedBlue consistency [30],
allows some operations to execute under strong consis-
tency (and therefore incur a high performance penalty)
while other operations can execute under weaker con-
sistency (namely causal consistency). The core of this
solution is a labeling methodology for guiding the pro-
grammer to assign consistency levels to operations. The
labeling process works as follows: operations that either
do not commute w.r.t. all others or potentially violate in-
variants must be strongly consistent, while the remaining
ones can be weakly consistent.

This binary classification methodology is effective for
many applications, but it can also lead to unnecessary co-
ordination in some cases. In particular, as we will later il-
lustrate, there are cases where it is important to synchro-
nize the execution of two specific operations, but those
operations do not need to be synchronized with any other
operation in the system (and this synchronization would
happen across all strongly consistent operations in the
previous scheme). Furthermore, while concepts such as
conflict relation in generic broadcast [34] and token by
Gotsman et al. [24] allow for a finer-grained coordination
of operations, these either lack a precise method for iden-
tifying a set of restrictions to ensure safety or an imple-
mentation that achieves efficient coordination by adapt-
ing to the observed workload.

To overcome these limitations, in this paper, we
propose a novel generic consistency definition, Partial
Order-Restrictions consistency (or short, PoR consis-
tency), which takes a set of restrictions as input and
forces these restrictions to be met in all partial orders.
This creates the opportunity for defining many consis-
tency guarantees within a single replication framework
by expressing consistency levels in terms of visibility re-
strictions on pairs of operations. Weakening or strength-
ening the consistency semantics is achieved by imposing
fewer or more restrictions.

Under PoR consistency, the key to making a geo-
replicated deployment of a given application perform
well is to identify a set of restrictions over pairs of
its operations so that state convergence and invariant
preservation are ensured if these restrictions are enforced
throughout all executions of the system. However, this
is challenging because missing required restrictions may
cause applications to diverge state or violate invariants,
while placing unnecessary restrictions will lead to a per-
formance penalty due to the additional coordination. To
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this end, we design principles guiding programmers to
identify the important restrictions while avoiding unnec-
essary ones.

Furthermore, from a protocol implementation per-
spective, given a set of restrictions over pairs of opera-
tions, there exist several coordination protocols that can
be used for enforcing a given restriction, such as Paxos,
distributed locking, or escrow techniques. However, de-
pending on the frequency over time with which the sys-
tem receives operations confined by a restriction, dif-
ferent coordination approaches lead to different perfor-
mance trade-offs. Therefore, to minimize the runtime co-
ordination overhead, we also propose an efficient coor-
dination service called Olisipo that helps replicated ser-
vices use the most efficient protocol by taking into ac-
count the system workload.

To demonstrate the power of PoR consistency, we ex-
tended RUBiS to incorporate a closing auction function-
ality, determined how to best run it under PoR consis-
tency, replicated it with Olisipo, and compared its perfor-
mance against a RedBlue consistent version. Our experi-
mental results show that PoR consistency requires fewer
restrictions and offers a significantly better performance
than RedBlue consistency.

2 Preliminaries

2.1 System model
We assume a geo-distributed system with state fully
replicated across k sites denoted by site0 . . .sitek−1,
where each site hosts a replica, and each replica runs as a
deterministic state machine. In the rest of the document,
the terms “site” and “replica” are interchangeable.

The system defines a set of operations U manipulating
a set of reachable states S . Each operation u is initially
submitted by a user at one site which we call u’s primary
site and denote site(u). An operation is defined math-
ematically as a function that receives the current state
of the system and returns another function correspond-
ing to its side effects. We refer to the former function
as the generator function, denoted by gu; this generator
function, when applied to a given state S ∈S , returns a
shadow function or shadow operation, denoted hu(S).

Implementation-wise, the generator function will first
execute in a sandbox against the current state of the
replica at the primary site, without interference from
other concurrent operations. In this phase, the execution
only identifies what changes u would introduce to state S
that is observed by u and will not commit these changes.
At the end of executing gu, the identified side-effect or
shadow operation hu(S) will be sent and applied across
all replicas including the primary site.

A desirable property is that all replicas that have
applied the same set of shadow operations are in the

same state, i.e., the underlying system offers state con-
vergence. In addition, the system maintains a set of
application-specific invariants. For instance, an online
shopping service cannot sell more items than those avail-
able in stock. To capture this notion, we define the func-
tion valid(S) to be true if state S satisfies all these invari-
ants and false otherwise.

2.2 RedBlue consistency
Our prior proposal called RedBlue consistency [30] is
based on a division of shadow operations into blue op-
erations, whose order of execution can vary from site to
site, and red operations that must execute in the same rel-
ative order at all sites. For guiding developers in making
use of RedBlue consistency, this work identified that a
condition for ensuring state convergence is that a shadow
operation must be labeled red if it is not globally commu-
tative. For ensuring that invariants are maintained, a suf-
ficient condition was identified, stating that all shadow
operations that may violate an invariant when being ap-
plied against a different state from the one they were gen-
erated must be labeled red. For the remaining shadow
operations, which have passed the two condition checks,
we can safely label them blue.

3 Partial Order-Restrictions consistency
3.1 Motivating example
We illustrate the limitations of coarse-grained labeling
schemes like RedBlue consistency through an eBay-like
auction service in Fig.1, where an operation placeBid

(Fig.1(a)) creates a new bid for an item if the correspond-
ing auction is still open, and an operation closeAuction
(Fig.1(c)) closes an auction and declares a single winner.
In this example, the application-specific invariant is that
the winner must be associated with the highest bid across
all accepted bids. The other two subfigures (Fig.1(b) and
Fig.1(d)) depict the commutative shadow operations of
these two operations.

When applying RedBlue consistency to replicate such
an auction service, we note that the concurrent execu-
tion under weak consistency of a placeBid with a bid
higher than all accepted bids and a closeAuction can
lead to the violation of the application invariant. This
happens because the generation of closeAuction’ will
ignore the highest bid created by the concurrent shadow
placeBid’. Unfortunately, the only way to address this
issue in RedBlue consistency is to label both shadow op-
erations as strongly consistent, i.e., all shadow operations
of either type will be totally ordered w.r.t each other,
which will incur a high overhead in geo-distributed set-
tings. Intuitively, however, there is no need to order pairs
of placeBid’ shadow operations, since a bid coming
before or after another does not affect the winner selec-
tion. This highlights that a coarse-grained operation clas-
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boolean placeBid(int itemId, int clientId, int bid){
boolean result = false;
beginTxn();
if(open(itemId)){
createShadowOp(placeBid’, itemId, clientId, bid);
result = true;

}
commitTxn();
return result;
}

(a) Original placeBid operation.

placeBid’(int itemId, int clientId, int bid){
exec(INSERT INTO bidTable VALUES (bid, clientId, itemId));

}

(b) Shadow placeBid’ operation.

int closeAuction(int itemId){
int winner = -1;
beginTxn();
close(itemId);
winner = exec(SELECT userId FROM bidTable WHERE iId = itemId

ORDER BY bid DESC limit 1);
createShadowOp(closeAuction’, itemId, winner);
commitTxn();
return winner;
}

(c) Original closeAuction operation.

closeAuction’(int itemId, int winner){
close(itemId);
exec(INSERT INTO winnerTable VALUES (itemId, winner));
}

(d) Shadow closeAuction’ operation.

Figure 1: Pseudocode for the placeBid and closeAuction operations of an auction site

sification into two levels of consistency can be conser-
vative, and some services could benefit from additional
flexibility in terms of the level of coordination.

To overcome these limitations of RedBlue consis-
tency, we next propose Partial Order-Restrictions con-
sistency (or short, PoR consistency), a novel consistency
model that allows the developer to reason about various
fine-grained consistency requirements in a single system.
The key intuition behind our proposal is that this model
is generic and can be perceived as a set of restrictions
imposed over admissible partial orders across the opera-
tions of a replicated system.

3.2 Defining PoR consistency
The definition of PoR consistency includes three impor-
tant components: (1) a set of restrictions, which specify
the visibility relations between pairs of operations; (2)
a restricted partial order (or short, R-order), which es-
tablishes a (global) partial order of operations respecting
operation visibility relations; and (3) a set of site-specific
causal serializations, which correspond to total orders in
which the operations are locally applied. We define these
components formally as follows:

Definition 1 (Restriction). Given a set of operations U , a
restriction is a symmetric binary relation on U×U .

For any two operations u and v in U , if there exists a
restriction relation between them, we denote this relation
as r(u,v).

Definition 2 (Restricted partial order). Given a set of
operations U , and a set of restrictions R over U , a re-
stricted partial order (or short, R-order) is a partial or-
der O = (U,≺) with the following constraint: ∀u,v ∈U,
r(u,v) ∈ R =⇒ u≺ v∨ v≺ u.

We say that the restrictions in R are met in the corre-
sponding R-order if this order satisfies the above defini-
tion. This definition places constraints on a global view
of a replicated system; however, it fails to explain how

each individual replica at every site will behave accord-
ing to this global view. When user requests are accepted
by any site, that site executes their generator operations
and creates corresponding shadow operations which will
be replicated across all sites. In addition, every site not
only commits shadow operations created by itself, but
also applies remote ones shipped from all other sites
against its local state. We denote U as the set of shadow
operations produced across all sites, while for a site i, we
denote Vi as its generator operation set. The following
definition models the execution of each site as a growing
linear extension of the global R-order, which incorpo-
rates a notion of causality, due to the fact that the visibil-
ity dependencies that are established when shadow op-
erations are initially generated, are then preserved while
the corresponding shadow operations are replicated.

Definition 3 (Causal legal serialization). Given a site i,
an R-order O = (U,≺) and the set of generator opera-
tions Vi received at site i, we say that Oi = (U ∪Vi,<i)
is an i-causal legal serialization (or short, a causal seri-
alization) of O if
• Oi is a total order;
• (U,<i) is a linear extension of O;
• For any hv(S) ∈U generated by gv ∈ Vi, (1) S is the

state obtained after applying the sequence of shadow
operations preceding gv in Oi; (2) For any hu(S′)∈U ,
hu(S′)<i gv in Oi iff hu(S′)≺ hv(S) in O.

Definition 4 (Partial Order-Restrictions consistency). A
replicated system S spanning k sites with a set of restric-
tions R is Partial Order-Restrictions consistent (or short,
PoR consistent) if each site i applies shadow operations
according to an i-causal serialization of R-order O.

Fig.2 shows a restricted partial order and its causal le-
gal serializations executed at two sites, namely EU and
US, where we restrict pairs of shadow operations where
one corresponds to a and the other to b. When the US
site executes a generator of b, gb, it realizes that the
shadow operation it would generate may need to be re-
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ha(S0) ha(S’0)

hc(S1) hb(S’2)

ha(S4) hd(S’3)

(a) Restricted partial order O

S0 S’0ga ga

S1 S’1
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S2 S’2

S3 S’3

S4 S’4

S5 S’5

S6 S’6
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hb(S’2)
gd

hd(S’3)

hc(S1)

ha(S4)

ha(S’0)

hb(S’2)

ha(S4)

hd(S’3)

ga

(b) Causal legal serializations of O

Figure 2: Restricted partial order of shadow opera-
tions and its causal legal serializations for a sys-
tem spanning two sites. There exists a restriction
r(ha(S),hb(S)) for all valid S. Dotted arrows in Fig.2a
indicate dependencies between shadow operations.
Loops in Fig.2b represent generator operations.

stricted w.r.t a concurrent shadow operation initially trig-
gered at the EU site. As a result, gb at the US site must
wait until the respective concurrent shadow operation
ha(S0) gets propagated from Alice’s site to Bob’s site.
Then gb will read the state introduced by locally apply-
ing ha(S0) from Alice, and produce a shadow operation
hb(S′2). Note that this production will establish a depen-
dency between ha(S0) and hb(S′2) (as shown in Fig.2a),
thus enforcing that they cannot be applied in different
relative orders in all causal legal serializations (as shown
in Fig.2b). Unlike these two shadow operations, we do
not restrict any pair of shadow operations of a; as such,
the first operations issued by both Alice and Bob will be
concurrently executed without being aware of each other.
This example indicates the flexibility and performance
benefits of having PoR consistency, compared with Red-
Blue consistency, since under the latter model all shadow
operations of a and b would be serialized w.r.t each other.

4 Restriction inference
When replicating a service under PoR consistency, the
first step is to infer restrictions to ensure two important
system properties, namely state convergence and invari-

ant preservation. The major challenge we face is to iden-
tify a minimal set of restrictions for making the repli-
cated service converge and not violate invariants. With
regard to state convergence, we take a similar method-
ology adopted in prior research [37, 30, 29], which is to
check operation commutativity.

To preserve application-specific invariants, instead of
totally ordering all non-invariant safe shadow opera-
tions, i.e., those that potentially transition from a valid
state to an invalid one, we try to identify a minimal set
of shadow operations that lead to an invariant violation
when they are running concurrently in a coordination-
free manner. By minimal, we mean that removing any
operation from that set would no longer meet that goal.
Once this set is identified, adding a restriction between
any pair of its operations is sufficient to eliminate the
problematic executions.

4.1 State convergence
A PoR consistent replicated system is state convergent if
all its replicas reach the same final state when the sys-
tem becomes quiescent, i.e., for any pair of causal le-
gal serializations of any R-order, L1 and L2, we have
S0(L1) = S0(L2), where S0 is a valid initial state. We state
a necessary and sufficient condition to achieve this in the
following theorem.

Theorem 5. A PoR consistent system S with a set of
restrictions R is convergent, if and only if, for any pair
of its shadow operations u and v, r(u,v) ∈ R if u and v
don’t commute.1

Unlike RedBlue consistency, under which all opera-
tions that are not globally commutative must be totally
ordered, PoR consistency only requires that an operation
must be ordered w.r.t another one if they do not commute.

4.2 Invariant preservation
In RedBlue consistency, the methodology for identifying
restrictions imposed on RedBlue orders for maintaining
invariants is to check if a shadow operation is invariant
safe or not (meaning whether it can potentially violate
invariants when executed against a different state from
the one that it was generated from). If not, to avoid in-
variant violations, the generation and replication of all
non-invariant safe shadow operations must be coordi-
nated. However, we observed that for some non-invariant
safe shadow operations u, the corresponding violation
only happens when a particular subset of non-invariant
safe shadow operations (including u) are not partially or-
dered. Therefore, to eliminate all invariant violating exe-
cutions with a minimal amount of coordination, we need
to precisely define, for each violation, the minimal set of
non-invariant safe shadow operations that are involved.

1All proofs are in a separate technical report [7].
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We call this set an invariant-conflict operation

set, or short, I-conflict set. Preserving invariants
only requires adding a single restriction over any two
shadow operations from each I-conflict set so that
the concurrent violating executions will be eliminated
from all admissible partial orders. We formally define
I-conflict sets as follows.

Definition 6 (Invariant-conflict operation set). A set of
shadow operations G is an invariant-conflict operation set
(or I-conflict set) if the following conditions are met:
• ∀u ∈ G, u is non-invariant safe;
• |G|> 1;
• ∀u∈G, ∀ sequence P consisting of all shadow opera-

tions in G except u, i.e., P = (G\{u},<), ∃ a reach-
able and valid state S, s.t. S(P) is valid, and S(P+u)
is invalid.

In the above definition, the last point asserts that G
is minimal, i.e., removing one shadow operation from
it will no longer lead to invariant violations. We will
use the following example to illustrate the importance
of minimality. Imagine that we have an auction on an
item i being replicated across three sites such as US,
UK and DE, and having initially a 5 dollar bid from
Charlie. Suppose also that three shadow operations,
namely, placeBid′(i, Bob, 10), placeBid′(i, Alice, 15),
and closeAuction′(i) are accepted concurrently at the
three locations, respectively. After applying all of them
against the same initial state at every site, we end up
with an invalid state, where Charlie rather than Bob and
Alice won the auction. This invariant violating execu-
tion involves three concurrent shadow operations, but
one of the two bid placing shadow operations is not
necessary to be included in G, as even after exclud-
ing the request from either Bob or Alice, the violation
still remains. This is reflected in Definition 6, according
to which {placeBid′,closeAuction′} is an I-conflict

set, while {placeBid′, placeBid′,closeAuction′} is not.
Intuitively, avoiding invariant violations requires pre-
venting all operations from the I-conflict set from
running in a coordination-free manner. The minimality
property enforced in the I-conflict set definition al-
lows us to avoid adding unnecessary restrictions.

Based on the above definition, we formulate the invari-
ant preservation property into the following theorem.

Theorem 7. Given a PoR consistent system S with a
set of restrictions RS , for any execution of S that starts
from a valid state, no site is ever in an invalid state, if the
following conditions are met:
• for any of its I-conflict set G, there exists a re-

striction r(u,v) in RS , for at least one pair of shadow
operations u,v ∈ G; and

• for any pair of shadow operations u and v, r(u,v) in
RS if u and v do not commute.

Algorithm 1 Find state convergence restrictions
1: function SCRDISCOVER(T ) . T : the set of shadow

operations of the target system
2: R←{} . R: the restriction set
3: for i← 0 to |T |−1 do
4: for j← i to |T |−1 do
5: if Ti do not commute with Tj then
6: R← R∪{r(Ti,Tj)}
7: return R

Algorithm 2 Find invariant preserving restrictions
1: function IPRDISCOVER(T )
2: R←{} . R: the restriction set
3: Q← power set of T
4: for all Q′ ∈ Q do
5: if ICONFLICTCHECK(Q′) then
6: if |Q′|== 1 then
7: R← R∪{r(Q′0,Q′0)}
8: else if ∀u,v ∈ Q′,r(u,v) 6∈ R then
9: R ← R ∪ {r(u,v)}, for an arbitrary

choice of u,v ∈ Q′

10: return R
11: function ICONFLICTCHECK(T )
12: if |T |== 1 then
13: if ¬(T0.post =⇒ T0.wpre) then
14: return true

15: if |T |> 1 then
16: subset icon f lict← false

17: for i← 2 to |T |−1 do
18: for all R s.t. |R|== i and R⊂ T do
19: if ICONFLICTCHECK(R) then
20: subset icon f lict← true

21: break
22: if !subset icon f lict then
23: for all t ∈ T do
24: post←∧x∈T\{t}x.post
25: if ¬(post =⇒ t.wpre) then
26: return true

27: return false

4.3 Identifying restrictions
The key to striking a sensible balance between perfor-
mance and consistency semantics is to identify a min-
imal set of restrictions that ensure both state conver-
gence and invariant preservation. With regard to the for-
mer property, inspired by Theorem 5, we design a dis-
covery method for finding restrictions to ensure state
convergence (Alg. 1). This method systematically per-
forms an operation commutativity analysis between pairs
of shadow operations: if two shadow operations do not
commute, then a restriction between them is added to the
returning restriction set (line 5-6).

To discover restrictions for preserving invariants, we
could exhaustively explore all I-conflict sets consist-
ing of concurrent shadow operations that trigger viola-
tions. However, it is very challenging to achieve this
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//each permission consists of a set of operations
Permission p;

//receive a set of operations that need to be monitored
Permission getPermission(TxnId tid, String opName);

//wait until the set of operations in p have been applied
void waitForBeingExecuted(TxnId tid, Permission p);

//clean up all required resources occupied
void cleanUp(TxnId tid);

Figure 3: Olisipo coordination policy interface

since there might exist a large number of violating exe-
cutions containing at least one I-conflict set. To make this
exploration more efficient, we first collapse many similar
executions of a replicated system into a single execution
class, and then perform a weakest precondition and post-
condition analysis over these classes [23].

In particular, for every shadow operation u, we denote
u.wpre as its weakest precondition, a condition on the
initial state ensuring that u always preserves invariants.
We also denote u.post as the postcondition that captures
the side effects of operations through a condition that
always holds after the operation is executed. In Alg. 2,
we flag a set of shadow operations T as I-conflicting
if either of the following two conditions is met: (a) T
contains a single operation t and t is self-conflicting,
i.e., t.wpre is invalidated by t.post (line 12-14); or (b)
|T | > 1, any subset of T is not I-conflicting (but can
be self-conflicting) and there exists an operation u from
T such that u.wpre can be invalidated by the compound
postcondition of all the operations in T \{u} (line 16-26).

Once these I-conflict sets are determined, then for
each such set T , we add a restriction between an arbitrary
pair of shadow operations from T if no pair of operations
from that set was previously restricted (line 8-9). Other-
wise, T will be skipped since the preexisting restriction
suffices to preserve invariants. In addition, for shadow
operations that are self-conflicting, we have to place a re-
striction between pairs of shadow operations of that type
(line 6-7).

5 Design and Implementation of Olisipo
Several coordination protocols can be used for enforcing
a given restriction, such as Paxos, distributed locking, or
escrow techniques. However, depending on the observed
runtime frequency of operations confined by a restric-
tion, different approaches lead to different performance.

In the previously mentioned auction example, main-
taining the invariant that winners always match high-
est successful bidders requires a restriction between any
pair of placeBid’ and closeAuction’ operations. A
simple scheme would be forcing instances of either op-
eration to pay the same coordination cost. However,
since placeBid’ is likely to be more prevalent than
closeAuction’, reducing the latency for placeBid’

and penalizing closeAuction’ is likely to lead to bet-

ter performance.
To address this, we propose a coordination service

called Olisipo offering a range of coordination policies,
each of which presents a trade-off between the cost of
each operation and the overall cost. This service allows
us to use runtime information about the relative fre-
quency of operations to select an efficient coordination
mechanism for a given restriction.

5.1 Coordination protocols
Olisipo supports two built-in protocols, namely
symmetric (Sym) and asymmetric (Asym), but can
be extended with customized coordination policies,
which need to be compatible with our interface (Fig. 3).
The difference between the two protocols is that, in
the case of Sym, given a restriction r(u,v) between two
operations u and v, the protocol requires both u and v
to coordinate with each other for establishing an order
between them, whereas the Asym protocol allows one of
them to proceed by default, while requiring the other to
obtain permission before proceeding.
Sym. This protocol requires to set up a logically central-
ized counter service, which maintains, for each restric-
tion r(u,v), two counters cu and cv. Each one represents
the total number of operations of the corresponding type
that have been accepted by the underlying system. Addi-
tionally, every replica at different data centers maintains
a local copy of these counters, representing the number
of operations of each type that have been executed by that
replica. Initially, all local copies, as well as the global
counters, have all values set to zero. Whenever an op-
eration is received by a replica, that replica contacts the
counter service to increase the corresponding centralized
counter and get a fresh copy of the counter maintained
for both types of operations. Upon receiving the reply
from the counter service, that replica compares the re-
ceived values with its local copy. If they are the same,
then the replica can execute the operation without wait-
ing. Otherwise, the local execution can only take place
when all missing operations have been locally replicated.
To make the counter service fault tolerant, we lever-
age a Paxos-like state machine replication library (BFT-
SMART [18]) to replicate counters across geo-locations.
Asym. Unlike the above centralized solution, the asym-
metric protocol implements distributed barrier in a de-
centralized manner. Assume, for instance, that u is the
barrier. In this case, whenever a replica r receives an op-
eration u it would have to enter the barrier, and contact
all other replicas to request participation. This requires
all replicas in the system to stop processing operations of
type v and enter the barrier. After receiving an acknowl-
edgment of the barrier entrance from all replicas, r can
execute the operation, and then notify all replicas that it
has left the barrier (while at the same time propagating
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Figure 4: Olisipo architecture

the effects of the operation u it has just executed). Such a
coordination strategy might incur a high overhead; how-
ever, this is beneficial when one of the two operations in
the restriction is rarely submitted to the system.

5.2 Implementation details
As depicted in Fig. 4, the Olisipo architecture consists
of a counter service replicated across data centers and
a local agent deployed in each data center. The counter
service is required only for the Sym protocol, whereas
the local agent enforces the coordination that is needed
by both protocols. To this end, every agent also stores
some meta data required for different protocols: for the
Sym protocol, it maintains a local copy of the replicated
counter service, which is used for learning if the local
counters lag behind the global counters, which means the
corresponding data centers have to wait until all miss-
ing operations have been locally incorporated. For the
Asym protocol, every agent maintains a list of active bar-
riers, which are used for locally deciding if relevant op-
erations blocked on such barriers can proceed. Note that
these protocols are not optimized for performance, but
nonetheless suffice to demonstrate the benefits of using
PoR consistency and enforcing it in a way that takes into
account frequency of different operation types.

We implemented Olisipo using Java (2.8k lines of
code), linked with BFT-SMART [39] for replicating the
centralized counter service and MySQL as the backend
storage. We integrated Olisipo with our prior prototypes
for Gemini [5] and SIEVE [6], so that Gemini serves as
the underlying causally consistent replication tier while
SIEVE is used to produce commutative shadow opera-
tions at runtime. The code of Olisipo is available at [11].
Workflow. User requests are directed to an application
server running at the local data center, which executes the
corresponding generator operation. The result is a com-
mutative shadow operation, which is then forwarded to
the local Olisipo agent for placing coordination if needed
before committing; if the coordination allows for that se-
rialization (which is determined according to the specific

protocol for enforcing it) then the shadow operation is
sent to Gemini for replicating it across all data centers;
otherwise the generator operation must be retried in a
new serial order.

6 Evaluation
In our experimental evaluation, we first try to understand
if the methodology for inferring restrictions presented
in Sec. 4 is effective when applied to real world appli-
cations, i.e., it finds a minimal set of restrictions. Fi-
nally, we try to assess the impact on latency and sys-
tem throughput introduced by three factors: adopting
PoR consistent replication, using different protocols, and
adding more restrictions.

6.1 Case study
Next, we report our experience on discovering restric-
tions in RUBiS. RUBiS is a fairly simple auction-like
benchmark. The original benchmark we used as a start-
ing point contained only 16 transactions and did not in-
clude an operation to declare the winner of an auction, so
we added a close auction functionality. In the future, we
intend to explore other benchmarks with more complex
OLTP or OLAP queries.
State convergence. Given that we deploy RUBiS with
SIEVE, all shadow operations generated at runtime com-
mute w.r.t. each other by construction, and there is no
need modify the application nor restrict any pair of
shadow operations for state convergence purposes. All
that is required in SIEVE is to specify the desired con-
flict resolving semantics by choosing from a set of built-
in solutions [29].
Invariant preservation. We manually perform the
procedure of identifying restrictions to make a geo-
replicated RUBiS deployment invariant preserving, as
previously presented in Section 4.3. (We leave the au-
tomation of this step as future work.) In particular, we
determined four invariants of RUBiS, namely (a) identi-
fiers assigned by the system are unique; (b) nicknames
chosen by users are unique; (c) item stock must be non-
negative; and (d) the auction winner must be associated
with the highest bid across all accepted bids. We con-
tinued by manually determining the weakest precondi-
tions and postconditions of all RUBiS shadow opera-
tions. Those conditions are summarized in Tab. 1 and
used by the I-conflict set analysis (Alg. 2). With re-
gard to the first invariant, since we take advantage of the
coordination-free unique identifier generation method
offered by SIEVE, no I-conflict sets were found
for violating it. In turn, for the remaining three invari-
ants, we identified the following I-conflict sets:
• {registerUser′,registerUser′}. Invariant (b) would be

violated if the two operations proposed the same
nickname and were submitted to different sites simul-
taneously;

USENIX Association 2018 USENIX Annual Technical Conference    365



placeBid′

(itId,cId,bid)
wp ∃u ∈ item table. u.id = itId∧u.status = open valid auction
post bidTable = bidTable∪{< itId,cId,bid >} new bid placed

closeAuction′

(itId,wId)
wp ∃w ∈ bidTable. w.cId = wId∧∀v ∈ bidTable\{w}. w.bid > v.bid highest accepted bid
post winnerTable = winnerTable∪{< itId,wId >} winner declared

registerUser′

(uId,username)
wp ∀u ∈ user table. u.name <> username username not seen before
post user table = user table∪{< uId,username >} new user added

storeBuyNow′

(itId,delta)
wp ∃u ∈ item table. u.id = itId∧u.stock >= delta enough stock left
post u.stock−= delta delta applied

Table 1: Weakest preconditions and postconditions of selected shadow operations of RUBiS

RedBlue consistency PoR consistency
r(registerUser′,registerUser′) r(registerUser′,registerUser′)
r(storeBuyNow′,storeBuyNow′) r(storeBuyNow′,storeBuyNow′)
r(placeBid′, placeBid′) r(placeBid′,closeAuction′)
r(closeAuction′,closeAuction′)
r(placeBid′,closeAuction′)
r(registerUser′,storeBuyNow′)
r(registerUser′, placeBid′)
r(registerUser′,closeAuction′)
r(storeBuyNow′, placeBid′)
r(storeBuyNow′,closeAuction′)

Table 2: Restrictions required when replicating the ex-
tended RUBiS under RedBlue or PoR consistency

• {storeBuyNow′,storeBuyNow′}. Invariant (c) would
be violated if both operations simultaneously sub-
tracted some number of items from stock, and the sum
of the purchases exceeded the previous stock value;
• {placeBid′,closeAuction′}. Invariant (d) would be vi-

olated if both operations were submitted at the same
time to different sites, and placeBid′ carried a higher
bid than all accepted bids.
Each I-conflict set above covers a class of

violating executions of the respective invariant. To
eliminate the corresponding violations, we added three
restrictions, namely r(registerUser′, registerUser′),
r(storeBuyNow′, storeBuyNow′) and r(placeBid′,
closeAuction′). In Tab.2 we compare to the PoR con-
sistency solution with using RedBlue consistency. The
latter solution would require more restrictions, since
the definition states that all non-invariant safe shadow
operations must be strongly consistent, i.e., the four
shadow operations presented in the above list must be
restricted in a pairwise fashion.

We assign the Sym protocol to coordinate shadow
operations confined by all these restrictions except
r(placeBid′, closeAuction′). This is because placeBid′

is significantly more prevalent than closeAuction′ in RU-
BiS, e.g., in a bidding mix workload, the ratio of the
number of closeAuction′ to the number of placeBid′

is only 2.7%. Therefore, we assign the Asym proto-
col to coordinate this restriction and additionally make
closeAuction′ act as the barrier.

6.2 Experimental setup
We run experiments on Amazon EC2 [1] using
m4.2xlarge virtual machine instances located in three
sites: US Virginia (US-East), US California (US-West)
and EU Frankfurt (EU-FRA). Table 3 shows the average

US-East US-West EU-FRA

US-East 0.299 ms 71.200ms 88.742 ms
1052.0 Mbps 47.4 Mbps 29.6 Mbps

US-West 66.365 ms 0.238 ms 162.156 ms
47.4 Mbps 1050.7 Mbps 17.4 Mbps

EU-FRA 88.168 ms 162.163 ms 0.226 ms
36.2 Mbps 20.1 Mbps 1052.0 Mbps

Table 3: Average round trip latency and bandwidth be-
tween Amazon data centers

round trip latency and observed bandwidth between ev-
ery pair of sites. Each VM has 8 virtual cores and 32GB
of RAM. VMs run Debian 8 (Jessie) 64 bit, MySQL
5.5.18, Tomcat 6.0.35, and OpenJDK 8 software.

Configuration and workloads. Unless stated otherwise,
in all experiments, we deploy the BFT-SMART library
under the crash-fault-tolerance model (CFT) with 3 repli-
cas across three sites, and assign the replica at EU-FRA
to act as the leader of the consensus protocol. We repli-
cate RUBiS under PoR consistency across three sites us-
ing the previously mentioned combination of Olisipo,
SIEVE, and Gemini. As additional baselines, we run
an unreplicated strongly consistent RUBiS in the EU-
FRA site, and a 3 site RedBlue consistency deployment,
in which we replicate RUBiS via the PoR consistency
framework but with the set of restrictions required by
RedBlue consistency (shown in Tab.2). We refer to these
three setups as “Olisipo-PoR”, “Unreplicated-Strong”,
and “RedBlue”, respectively. For all experiments, emu-
lated clients are equally distributed across three sites and
connect to their closest data center according to physical
proximity.

We choose to run the bidding mix workload of RU-
BiS, where 15% of user interactions are updates. To al-
low the client emulator to issue the newly introduced
closeAuction requests, we have to slightly change the
transition table in the original RUBiS code by assign-
ing a positive probability value for this request. The new
transition table can be found here [10]. For all experi-
ments we vary the workload by increasing the number
of concurrent client threads in every client emulator, and
disable the thinking time option so that there is no
waiting time between two contiguous requests from the
same client thread. We populate the data set via the fol-
lowing parameters: the RUBiS database contains 33,000
items for sale, 1 million users, and 500,000 old items.
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Figure 5: Performance comparison between three system configurations

6.3 Results
6.3.1 Average user observed latency
The main advantage of adopting PoR consistent replica-
tion with Olisipo is to reduce user-perceived latency. To
assess this improvement, we start by analyzing the av-
erage latency for users at each data center. In this set of
experiments, each user issues a single request at a time
in a closed loop.

As shown in Fig.5(a), all users except those in EU-
FRA observe a lower latency in the Olisipo-PoR and Red-
Blue configurations, compared to the users from the same
locations in the Unreplicated-Strong configurations. This
improvement is because, under both PoR and RedBlue
consistency, most requests are handled locally within a
data center, whereas in the unreplicated setting, requests
from users at the two US data centers have to commu-
nicate with EU-FRA, which incurs an expensive inter-
datacenter communication. At a more detailed level, in
the Unreplicated-Strong experiment, the raw latency val-
ues perceived by users at both US-East and US-West are
higher than the round-trip time from the user to the server
site (EU-FRA) because processing each request involves
sending one or more images to the user.

Compared to RedBlue, Olisipo-PoR improves the av-
erage latency for users at the three sites by 38.5%, 37.5%
and 47.1%, respectively. We further observed that users
at EU-FRA in the replicated experiments experience a
higher latency than users from the same region access-
ing an unreplicated RUBiS. This is due to the additional
work required for incorporating remote shadow opera-
tions into the local causal serialization and placing coor-
dination when needed for serializing conflicting requests.
Note that although the user observed latency for Olisipo-
PoR at EU-FRA is almost twice as large as the latency
of the unreplicated setup, the absolute number (9 ms) is
reasonably low.

6.3.2 Peak throughput
We now focus on the improvement in scalability with the
client load achieved by PoR consistency. Fig.5(b) shows
the peak throughput achieved by the three configura-
tions, which is measured when the corresponding system
is saturated. The improvement of the Olisipo-PoR de-
ployment is 1.43X when compared to the Unreplicated-

Strong setup. This increase in throughput is because PoR
consistency offers fine-grained consistency so that only
a minority of requests need to pay the coordination cost,
while the remaining can be processed locally. Compared
to a RedBlue consistent RUBiS, the PoR consistent ver-
sion increases peak throughput by 21.5%, since PoR con-
sistency avoids the cost for coordinating several restric-
tions required by RedBlue consistency (shown in Tab.2).
6.3.3 Per request latency
Next, we evaluate the per request latency of RUBiS re-
quests. For this round of experiments, each site runs a
single user issuing a request at a time.
Latency of non-conflicting requests. Among all RUBiS
non-conflicting requests, we chose one representative re-
quest called storeComment, which places a comment
on a user profile, as the illustrating example. Fig.6(a)
shows that PoR consistent RUBiS makes users across the
three sites observe evenly low latency, and the speedup in
the user observed latency for the remote users located at
US-East and US-West is 84.9x and 106.8x, respectively,
compared to the unreplicated strongly consistent deploy-
ment. These performance gains happen because, under
PoR consistency, the storeComment request requires no
coordination and can be processed locally. In contrast, in
the unreplicated experiment, users at the two US sites
have to contact the server at EU-FRA and thus perceive
a higher latency. We also notice that users from EU-FRA
in both experiments have almost identical latency, which
is different from the results in Fig.5(a), since the cost
of generating and applying the shadow operations of the
storeComment request is modest.
Latency of conflicting requests. Next, we shift our at-
tention from non-conflicting requests to conflicting ones.
As introduced before, Olisipo uses two different proto-
cols (Sym and Asym) to coordinate conflicting requests.
We start by analyzing the latency of requests handled by
the Sym protocol. The illustrative example we selected is
storeBuyNow, which produces self-conflicting shadow
operations. As shown in Fig.6(b), the user observed la-
tency of the storeBuyNow request at all three sites is
significantly higher than the latency of storeComment
(shown in Fig.6(a)), which is a non-conflicting request.
This is because most of the lifecycle of these requests
was spent asking permission to the centralized counter
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Figure 6: Average latency bar graph of four requests for users at three sites. storeComment produces non-conflicting

shadow operations, while the ones of storeBuyNow conflict w.r.t themselves and are regulated by the Sym protocol.
placeBid and closeAuction produce two conflicting shadow operations regulated by the Asym protocol.

service, which consists of 3 replicas spanning three sites
and executing a Paxos-like consensus protocol. Addi-
tionally, user observed latency at EU-FRA is lower than
the remaining two sites, since the leader of the consensus
protocol is co-located with EU-FRA users.

We continue by analyzing the average latency of re-
quests that are coordinated by the Asym protocol. Un-
like the Sym protocol, any pair of operations confined
in a restriction will be treated differently by the Asym

protocol, since one acts as a distributed barrier and
the other proceeds if no active barriers are running. In
Sect. 6.1, we assigned the Asym protocol to regulate
the r(placeBid′,closeAuction′) restriction, while select-
ing the less frequent shadow operation closeAuction′

as a barrier. As shown in Fig.6(c), the average latency
measured for the placeBid request, which produces
placeBid′, is very similar to the results obtained for non-
conflicting requests shown in Fig.6(a). This is because
the ratio of closeAuction to placeBid is very low and
most of the time the placeBid request commits immedi-
ately without waiting for joining or leaving barriers.

Next, we consider the barrier request closeAuction
handled by the Asym protocol. As expected, Fig.6(d)
shows that, compared to placeBid, the average latency
of closeAuction is noticeably higher due to the coordi-
nation across sites, through which this request forces all
sites not to process incoming placeBid requests and col-
lects results of all relevant completed placeBid requests.
We also notice that users issuing closeAuction observed
a latency that is slightly higher than the maximum RTT
between their primary site and the remaining sites. For

example, as shown in Tab.3, the maximum RTT for US-
East users to the other two sites is 88.7 ms, while the
average latency of closeAuction observed by the same
group of users is 96.1 ms.

6.3.4 Impact of different protocols
The purpose of offering different coordination proto-
cols is to improve runtime performance by taking into
account the workload characteristics. To validate this,
we first deploy an experiment denoted by Olisipo-
Correct-Usage, in which we take into account the
runtime information that closeAuction′ occurs sparsely
and assign the Asym protocol to regulate the restric-
tion r(placeBid′,closeAuction′). We then deploy another
experiment denoted by Olisipo-All-Syms, in which
the restriction r(placeBid′,closeAuction′) is handled by
the Sym protocol. Fig. 7 summarizes the comparison of
peak throughput and average latency among three exper-
iments, namely Unreplicated-Strong, Olisipo-All-
Syms and Olisipo-Correct-Usage. The Olisipo-
All-Syms setup improves the peak throughput of the
unreplicated RUBiS system by 105.7%, because of the
coordination-free execution of non-conflicting requests.
However, compared to Olisipo-Correct-Usage, the
performance of Olisipo-All-Syms degrades in two di-
mensions, namely a 15.3% decrease in peak throughput
and a 65.2%, 50.0%, 60.0%, 88.9% increase in request
latency for all, EU-FRA, US-East, US-West users, re-
spectively. The reason for this performance loss is as fol-
lows: every placeBid’ shadow operation in Olisipo-
All-Syms requires a communication step between its
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Figure 7: Peak throughput and overall average latency bar graphs of systems using different protocols.

primary site and the centralized counter service for be-
ing coordinated, while most of time placeBid’ shadow
operations in Olisipo-Correct-Usage work as non-
conflicting requests provided that closeAuction re-
quests sparsely arrive in the system.

7 Related work
In the past decades, many consistency proposals fo-
cused on reducing coordination among concurrent op-
erations to improve scalability in geo-replicated sys-
tems [25, 40, 30, 29, 14, 15, 42, 12, 4, 32]. However,
they only allow the programmer to choose from a lim-
ited number of consistency levels that they support, such
as strong, causal or eventual consistency. Unlike these
approaches, PoR consistency offers a fine-grained tun-
able trade-off between performance and consistency us-
ing the visibility restrictions between pairs of operations
to express consistency semantics. Some of these pro-
posals for consistency models with reduced coordina-
tion also analyzed or even enforced conditions for en-
suring state convergence despite the lack of coordina-
tion [14, 25, 40, 15, 32, 40]. In addition to state conver-
gence, our solution also analyzes invariant preservation.

In the space of consistency proposals that looked into
how to enforce application-specific invariants, Bailis et
al. [16] proposed I-confluence, which avoids coordi-
nation by determining if a set of transactions are I-
confluent, i.e., if the integrity constraints might be vio-
lated when they are executing without coordination. In-
digo [17] defines consistency as a set of invariants that
must hold at any time, and presents a set of mechanisms
to enforce these invariants efficiently on top of eventual
consistency. Similar to Indigo, warranties [31] map con-
sistency requirements to a set of assertions that must hold
in a given period of time, but it needs to periodically in-
validate assertions when updates arrive. Roy et al. addi-
tionally propose a program analysis against transaction
code for producing warranties [35]. In contrast, PoR con-
sistency takes an alternative approach by modeling con-
sistency as restrictions over operations.

A few proposals map consistency semantics to the
ordering constraints defined over pairs of operations.
Generic Broadcast defines conflict relations between

messages for fast message delivery, which are analogous
to visibility restrictions used in our solution [34]. How-
ever, they do not analyze how to determine the conditions
for ensuring invariant preservation. The recent work of
Gotsman et al. [24] encodes the concept of a conflict re-
lation into a proof system, which allows for analyzing
if consistency choices expressed as conflict relations is
sufficient for enforcing application invariants. In com-
parison, our work makes three contributions. First, our
methods allow to find a minimal set of restrictions to be
used. Second, we propose a set of coordination methods
that adapt to the workloads in order to be more efficient.
Third, we present the design and implementation of a
complete system that offers PoR consistency.

Some variants of Paxos [26] have explored operation
semantics to relax the need to process all operations
in the same sequential order. Generalized Paxos allows
replicas to execute commutative operations in different
orders [27]. EPaxos uses dependencies between pairs of
operations to order concurrent conflicting requests [33].
Our work differs from these Paxos variants in that we
develop an analysis to extract pairs of conflicting opera-
tions by considering the impact of concurrent executions
on achieving state convergence and invariant preserva-
tion. Furthermore, unlike these protocols, in our work,
operations that are not confined by conflicting relations
can be first accepted in a single replica and later asyn-
chronously replicated to other replicas.

Finally, our own previous workshop paper described
the motivation and a high-level overview of a solution to
this problem [28].

8 Conclusion
In this paper, we proposed a technique for achieving
convergence and invariant-preservation in geo-replicated
systems with a minimal amount of coordination. This
combines a new generic consistency model called PoR
consistency, an analysis for determining a minimal set of
restrictions, and a coordination service called Olisipo for
efficiently serializing pairs of operations. Our evaluation
of running RUBiS with different setups shows that the
joint work of PoR consistency and Olisipo significantly
improves the performance of geo-replicated systems.
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PREGUIÇA, N., NAJAFZADEH, M., AND SHAPIRO, M. Putting
Consistency Back into Eventual Consistency. In Proceedings
of the Tenth European Conference on Computer Systems (New
York, NY, USA, 2015), EuroSys ’15, ACM, pp. 6:1–6:16.

[18] BESSANI, A., SOUSA, J. A., AND ALCHIERI, E. E. P. State
Machine Replication for the Masses with BFT-SMART. In Pro-
ceedings of the 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (Washington, DC,
USA, 2014), DSN ’14, IEEE Computer Society, pp. 355–362.

[19] BURCKHARDT, S., GOTSMAN, A., AND YANG, H. Understand-
ing Eventual Consistency. Tech. Rep. MSR-TR-2013-39, March
2013.

[20] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., HARIDAS, J., UDDARAJU, C., KHATRI,
H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U., BHARDWAJ, D.,
DAYANAND, S., ADUSUMILLI, A., MCNETT, M., SANKARAN,
S., MANIVANNAN, K., AND RIGAS, L. Windows azure storage:
A highly available cloud storage service with strong consistency.
In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2011), SOSP ’11,
ACM, pp. 143–157.

[21] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner:
Google’s Globally-distributed Database. In Proceedings of the
10th USENIX Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 251–264.

[22] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAP-
ATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s
Highly Available Key-value Store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles
(New York, NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.

[23] DIJKSTRA, E. W. A Discipline of Programming, 1st ed. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1997.

[24] GOTSMAN, A., YANG, H., FERREIRA, C., NAJAFZADEH, M.,
AND SHAPIRO, M. ’Cause I’m strong enough: reasoning about
consistency choices in distributed systems. In Proceedings of the
42nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (New York, NY, USA, 2015), POPL’15,
ACM.

[25] LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. Pro-
viding High Availability Using Lazy Replication. ACM Trans.
Comput. Syst. 10, 4 (Nov. 1992), 360–391.

[26] LAMPORT, L. The Part-time Parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[27] LAMPORT, L. Generalized Consensus and Paxos. Tech. Rep.
MSR-TR-2005-33, Microsoft Research, 2005.
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Abstract
Non-volatile RAM (NVRAM) makes it possible for data
structures to tolerate transient failures, assuming however
that programmers have designed these structures such that
their consistency is preserved upon recovery. Previous ap-
proaches are typically transactional and inherently make
heavy use of logging, resulting in implementations that
are significantly slower than their DRAM counterparts.
In this paper, we introduce a set of techniques aimed
at lock-free data structures that, in the large majority of
cases, remove the need for logging (and costly durable
store instructions) both in the data structure algorithm and
in the associated memory management scheme. Together,
these generic techniques enable us to design what we
call log-free concurrent data structures, which, as we
illustrate on linked lists, hash tables, skip lists, and BSTs,
can provide several-fold performance improvements
over previous transaction-based implementations, with
overheads of the order of milliseconds for recovery after
a failure. We also highlight how our techniques can be
integrated into practical systems, by presenting a durable
version of Memcached that maintains the performance
of its volatile counterpart.

1 Introduction
Fast, non-volatile memory technologies have been in-
tensively studied over the past years, with various alter-
natives such as Memristors [53], Phase Change Mem-
ory [31, 49], and 3D XPoint [39] being proposed. Nev-
ertheless, these technologies are only now starting to be-
come commercially available. Referred to as non-volatile
RAM (NVRAM), they promise byte-addressability and
latencies that are comparable to DRAM, yet also non-
volatility and higher density than DRAM.

From a programmer’s perspective, NVRAM can
be read and written using load and store instructions,
identically to DRAM. However, a significant fraction of
software needs to be redesigned to work with NVRAM.
Unlike DRAM on the one hand, in order to take advantage
of NVRAM’s non-volatility, the stored data needs to be
in a state that allows the resumption of execution after
a transient failure (e.g., a power failure). Unlike block-
based durable storage on the other hand, the granularity
at which data is read and written is much finer, and the
latencies much smaller. Thus, strategies that might have
yielded the best performance in case of block-based
storage might not be appropriate for NVRAM.

∗Supported in part by ERC Grant 339539 (AOC).
†Work done while the author was at EPFL and MSR Cambridge.

In this paper, we focus on adapting to NVRAM the
design and implementation of an essential component of
modern software systems: concurrent data structures [10,
13, 38, 40, 41, 43]. Ideally, in the NVRAM environment,
one would like concurrent data structures that (a) can be
recovered in case of a transient failure with states that
reflect all completed operations up to the failure, yet (b)
whose performance and scalability resemble those of their
counterparts designed for DRAM.

This task is challenging because neither data stored in
registers, nor in caches, is durable in the face of transient
failures. Moreover, by default, the program does not
control the order in which cache lines are evicted and
written to NVRAM. In order to enforce ordering, specific
(and expensive) instructions, which we refer to as sync
operations, must be used to ensure that a store is written
through to NVRAM at the desired point.

Previous approaches [2, 4, 6, 20, 25, 28, 30, 33, 37, 56]
to implementing data structures for NVRAM rely mainly
on transactions (either explicitly, or implicitly derived
from critical sections). With transactions, some form of
logging is necessary to cope with the possibility of a fail-
ure in the middle of a transaction. This log needs to be
reliably written before the transaction is executed. This
entails waiting for stores to be written to NVRAM be-
fore proceeding, which is particularly expensive: whereas
when using DRAM, one would at most wait for data to
be written to the L1 cache, now one has to wait for data
to be written all the way to NVRAM. Logging is thus a
major source of expensive sync operations.

We propose three techniques aimed at lock-free data
structures that remove logging entirely from data structure
operations and dramatically reduce logging in the memory
reclamation scheme. We focus on lock-free algorithms,
because they always keep the data structure in a consistent
state and thus do not inherently require logging in order
to maintain consistency across restarts.

The techniques we propose are: (1) the link-and-persist
technique, which allows atomically changing and per-
sisting a link in a data structure, (2) the link cache,
which allows persisting entire batches of modified links,
thus reducing the number of sync operations and (3) NV-
epochs, a coarse-grained epoch-based memory reclama-
tion scheme. We briefly describe these techniques below.

Link-and-persist applies the pointer marking tech-
nique [15] from concurrent programming to ensure atom-
icity in the face of crashes and recoveries. With link-and-
persist, when a data structure link is modified, a mark is
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added to the link to signify that the value of the link might
not be durable yet. The link can then be persisted, and
the mark removed, by the modifying operation or by any
other operation (helping).

The link cache is an extremely fast, best-effort concur-
rent hash table stored in volatile memory, which contains
data structure links that have not yet been durably written.
When modifying the data structure, instead of ensuring
updated links are written to NVRAM, we add them to
the link cache. Thus, we avoid writing them to NVRAM
one at a time. When the durable write of one of them is
necessary for correctness, we batch the write-backs of all
links stored in our cache, which is significantly faster than
waiting for writes to complete one at a time.

Finally, memory allocation and reclamation is also a
central concern for concurrent data structures. When
working with NVRAM, the traditional approach for avoid-
ing persistent memory leaks or use-after-free problems is
again some form of logging. To avoid this, we propose
NV-epochs, a coarse-grained epoch-based memory recla-
mation scheme for durable and concurrent data structures.
NV-epochs groups memory nodes into memory areas, and
reliably and durably keeps track of the active (recently
used) memory areas instead of individual allocations.
This bookkeeping of active memory areas can be seen
as the only form of logging in our approach. However, we
make the observation that most of the time, allocation and
reclamation exhibit locality1. Therefore, logging can be
sidestepped entirely in this case, because the memory area
an operation accesses will already be marked as active,
and thus we do not have to wait for any additional store
for memory leak prevention. When recovering after a
failure, we simply need to traverse the memory areas that
were active at the moment of the crash and detect which
objects belonging to these areas are still linked in the
data structures. This is significantly faster than generic
mark-and-sweep garbage collection for instance [1].

Each of these three techniques is of independent inter-
est, and can be applied individually while maintaining
its associated benefits. Together, these techniques can be
used to produce what we call by abuse of language log-
free durable concurrent data structures, namely, durable
concurrent data structures that, in the large majority of
cases described above, require no logging whatsoever. As
we show in the paper, these data structures provide up to
an order of magnitude faster updates than a traditional log-
based approach, both in single-threaded and in concurrent
environments. Moreover, we achieve these benefits while
maintaining low recovery times in case of restarts: even
for gigabyte-sized structures, the time required to recover
the structure is of only a few milliseconds. In terms of
correctness, our implementations guarantee durable lin-

1For small and medium sized data structures, as we show, this covers
more than 99% of memory operations.

earizability [26]. Briefly, all the operations completed
before a crash are reflected after recovery.

We also highlight the practicality of our techniques by
developing NV-Memcached, a durable version of Mem-
cached [38] that is based on a lock-free, durable hash
table. NV-Memcached performs similarly to the volatile
memory version of Memcached.

Still, our approach is not a silver bullet. While it largely
removes the cost of logging for all data structure sizes, this
is especially beneficial for small and medium-sized data
structures. Indeed, (1) these data structures exhibit high
locality in memory allocation/deallocation, as we show
in the paper, and (2) the relative cost of sync operations
is higher for these data structures, as opposed to larger
structures, where other costs, such as traversal, dominate.

To summarize, the contributions of this paper are:
1. Link-and-persist: a methodology for designing data

structures with no logging in the main operations;
2. Link cache: a component that largely eliminates sync

operations in durable data structures;
3. NV-epochs: a durable memory management scheme

in which only a fraction of operations do any logging;
4. NV-Memcached, a durable version of Memcached

based on our techniques;
5. A library of log-free durable data structures, as well as

the link cache, NV-epochs, and NV-Memcached imple-
mentations, all available at go.epfl.ch/nvram.
The rest of the paper is organized as follows. In § 2

we recall relevant background. We describe our link-and-
persist technique in § 3. We discuss our link cache in § 4,
and memory management in § 5. We show experimental
results in § 6 and discuss related work in § 7.

2 Background
Traditionally, storage has either been fast, but volatile (i.e.,
data is lost in case of a power failure), as is the case with
DRAM, or non-volatile, but slow, as is the case with flash
storage for instance. However, more recently, a new class
of storage that promises low latency, byte-addressability,
and non-volatility is becoming available. NVRAM la-
tencies are expected to be somewhat larger than those
of DRAM, with writes being more expensive than reads.
Table 1 compares expected PCM and Memristor latencies
[51, 54, 59] to those of DRAM and caches.

As highlighted in the introduction, one of the main dif-
ficulties when working with NVRAM stems from the fact
that, by default, we do not control the order in which cache
lines to which we have performed stores are evicted from
the caches, and actually written to NVRAM. However,
there are current and upcoming instructions [21, 23] on In-
tel processors2, which allow us to ensure that a cache line
is indeed written to memory. In this paper, we consider

2In this work, we assume a TSO-like memory model; our work can
be extended to more relaxed memory models as well.
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L1 L2 LLC DRAM PCM Memristor
Read 2 6 15 50 50-70 100
Write 2 6 15 50 150 100

Table 1: Caches, DRAM, and NVRAM (projected) laten-
cies (ns).

the clwb instruction, because it (a) writes-back a cache
line without invalidating it—as opposed to clflushopt—
and (b) it is only ordered with respect to fences (or to
instructions that have an implied store fence, such as,
for example, Compare-and-Swap)—as opposed to clflush.
Property (b) is especially beneficial to performance, since
it allows multiple cache-line write-backs to proceed in
parallel [22]. We refer to one or more such instructions
followed by a store fence as a sync operation.

A machine may fail at any point in time (e.g., due to a
power failure), but can be expected to restart and resume
normal operation (transient failure). We assume, as is
commonly done in practice, that only the data stored in
durable main memory is still available after a crash. The
data that was in a processor’s registers or in the write-back
caches at the moment of the crash is not available after a
restart. Nevertheless, our approach would be highly bene-
ficial and remove the need for logging on an architecture
that maintains enough residual energy to flush the register
and the caches in case of a power failure as well.

Similar to related work [1], we assume that a region
of NVRAM can be mapped to the same region of virtual
memory across restarts. Alternatively, if this is not the
case, we can update persistent pointers at recovery time.

In the context of concurrent software, it is important to
define correctness conditions in the face of restarts. For
this purpose, we use the concept of durable linearizability
introduced by Izraelevitz et al. [26]. Essentially, a durably
linearizable implementation guarantees that the state of
the data structure after a restart reflects a consistent opera-
tion subhistory that includes all the completed operations
at the moment of the crash.

3 The Link-and-Persist Technique
In this section, we present our link-and-persist technique
for designing concurrent and durable data structures. We
first argue that such data structures should be lock-free,
then we detail the technique itself and how it can be used
to obtain correct lock-free data structure implementations
for NVRAM. We focus on implementations of linked
lists, skip lists, hash tables, and search trees, which are
commonly used in practice [10, 13, 38, 40, 41, 43]. Never-
theless, our techniques also apply to other data structures.
The Case for Lock-Free Algorithms. As noted by pre-
vious work [7, 26, 29, 46, 47], lock-free algorithms are a
good fit for the NVRAM environment. This is because
in lock-free algorithms, threads must ensure that the data
structure is in a consistent state at all times, so that the fail-
ure of any number of threads does not prevent remaining

threads from making progress. A beneficial consequence
is that, when used with NVRAM, lock-free algorithms
ensure that as long as threads’ stores are persisted in the
order in which they are issued (we show how this can be
relaxed), regardless of when a crash occurs, upon a restart
the data structure is in a consistent state that allows the
execution to resume. Therefore, we remove the need for
logging for the data structure itself, as opposed to transac-
tional approaches which inherently require logging.
Our Technique. In linked data structures, a new node
becomes visible when a link to it from an existing node is
atomically inserted. Once this happens, other operations
can see that the new node is present. Furthermore, in
many algorithms, a node becomes logically deleted when
a mark is atomically inserted on a link to signal deletion.
After this, all operations enquiring about the state of this
node will consider the node as no longer in the structure.
A node becomes unreachable when the last link to it from
another node in the data structure is atomically removed.

All these operations change the state of the node, and
determine the return value of other operations which de-
pend on the particular node. In the context of NVRAM,
in order to ensure durable linearizability, it is therefore
essential that all direct dependencies of an operation be
durably written before the operation is performed. Other-
wise, a scenario in which the user receives a return value,
the system restarts, and the stored data no longer reflects
the state observed by the user is possible.

In order to deal with this issue, the most straight-
forward approach is what we call the link-and-persist
operation. Essentially, when performing a link update
that changes the state of a node, the link is atomically up-
dated normally, but contains a mark to signal that there is
no guarantee its state is persisted. The updating operation
then persists the newly modified link, and once the link
is guaranteed to be persisted, it atomically removes the
mark. If another operation whose result depends on the
marked link occurs before the updating thread can persist
it and remove the mark, the second operation will try to
do these steps itself. This method involves no blocking,
and introduces bounded overhead, thus being suitable for
all concurrent algorithm classes, including lock-free and
wait-free algorithms [17].

We illustrate our technique through the example of a
lock-free linked list that uses the algorithm proposed by
Tim Harris [15]. In the original (volatile) algorithm, in
the case of inserts, once a node is properly allocated and
initialized, we simply have to set the next pointer of its
predecessor to point to it. In the case of a delete, we
must first atomically flag the next pointer of the node to
be deleted to signal logical deletion, after which the next
pointer of its predecessor is set such that it bypasses the
node to be deleted. Figure 1 shows the extra steps taken
when inserting a new node using link-and-persist.
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Figure 1: Stages of inserting a node in a linked list using
link-and-persist. 1.) The new node (b) is created and its
predecessor’s (a) adjacent links (indicated by downward
arrows) are persisted. 2.) The predecessor node’s next
pointer is atomically made to point to the new node. A
mark (?) is added to the link to indicate it is not durable
yet. 3.) The new node’s incoming link is persisted. 4.)
The mark is removed from the incoming link.

Durable Implementations. We have used link-and-
persist to implement several durable data structures:
linked lists, hash tables, skip lists, and BSTs. These
structures model the set abstraction, and have methods to
insert, remove, and search for elements identified through
a unique key. We consider one implementation per data
structure type, starting from the concurrent algorithm
that has been shown to provide the best performance and
scalability [8]. Our linked list is based on Harris’ algo-
rithm [15], the hash table uses one Harris linked list per
bucket, the skip list uses the lock-free algorithm by Her-
lihy et al. [19], while the BST uses the algorithm proposed
by Natarajan and Mittal [45]. Other algorithms and data
structures can be similarly modified.

Correctness. Our data structures are linearizable, since
we start from linearizable algorithms and add only flushes,
which do not impact linearization points. We also ensure
two additional properties [12]. First, each update opera-
tion ensures that its changes are durable before returning.
Second, each operation O ensures that all operations O de-
pends on (that involve some of the same nodes and were
already linearized) are also durably linearized before O
makes changes. Together, these two properties ensure
durable linearizability, because they ensure that after a
restart, the data structure reflects a consistent cut [26] of
the history including all operations that completed be-
fore the crash and potentially some operations that were
ongoing when the crash occurred.

The first property is easily ensured by durably writing
any new edges or nodes introduced by an operation. Mak-
ing sure an edge e is durably written just means checking
if e is marked, and issuing write-backs only if e is not
yet durable. The second property is achieved because
operations ensure that (1) before an edge is modified, the
edge is durably written and (2) incoming and outgoing
edges (adjacent edges) of nodes involved in the operation
are durable before proceeding.

We detail point (2) on a linked list (similar consider-
ations apply for the other linked data structures). For a

successful search, we make sure adjacent edges to the
returned node are durably written before returning. For a
failed search, we make sure the node is durably unreach-
able before returning (e.g., in the case where a node is
marked but not yet durably unlinked). For the parse phase
of a modify operation (insert or delete) [8], we take the
same steps as for a search. For an insert, we also ensure
that adjacent edges to the predecessor are durable before
linking the new node. For a delete, we ensure that adja-
cent edges to the target node T and to T ’s predecessor
are durable before unlinking the target node. In all cases,
if an edge e has changed between the time e is read and
the time we try to durably write e, then the operation that
changed e made sure e was durable.

4 Limiting Write-Backs: the Link Cache
We now introduce our second technique, aimed at further
reducing the number of sync operations in durable data
structures.

4.1 Link Cache Overview
As discussed in § 2, batching multiple cache line write-
backs is significantly faster than persisting them one at
a time. Therefore, we propose the following scheme:
when doing an update, do not immediately persist links,
but place them in a fast, volatile cache (the link cache),
and write back all the links in this cache when an oper-
ation that directly depends on one of them occurs. Of
course, this means that clients which have inserted links
into the link cache can only consider the operation com-
pleted once the link cache is flushed to NVRAM. The
changes of a link and the insertion of a corresponding
entry in the link cache must occur atomically (achievable
in a non-blocking manner by using hardware transactional
memory, or by marking the pointers to be inserted in the
link cache while the operation is ongoing). If a restart hap-
pens, modified links currently in the link cache might be
lost. However, this is not problematic: the fact that these
link addresses were in the cache at the moment of restart
means that no operation that directly depends on them
completed, and thus its outcome may or may not be visi-
ble. We thus maintain the durable linearizability property.
In addition, an atomic update of an ongoing operation not
being durably recorded does not leave the data structure
in an incorrect state after a restart. Where ordering of
durable updates is necessary, we enforce it in the data
structure algorithm (see § 3). The link cache is practical
as long as inserting an entry in the cache is faster than
waiting for a cache line to be written back to NVRAM.

4.2 Link Cache Implementation
Our main aims for the link cache are small memory foot-
print, non-blocking operation, and fast insertions. With
these requirements in mind, we chose to make insertions
in the cache best effort. The cache is only useful if it can
improve the time updates spend waiting. Therefore, if an
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Figure 2: A bucket in the link cache.

update attempts to insert an entry in the cache, but does
not succeed on the first try, it gives up and persists the
modified link itself instead of waiting. Thus, link cache
insertions have constant worst case performance.

Our hash table has a configurable (but fixed throughout
the execution) number of buckets. Each bucket spans
exactly one cache line, and can store up to 6 links. Links
concerning a particular key map to one and only one
bucket. Figure 2 details the contents of a bucket. The
first two bytes are used to signal whether the bucket is
currently being flushed. The next two bytes are used to
store the current state of each of the entries in the bucket.
An entry can be free, pending or busy. We next store the
6 keys associated with the links in the bucket. In order to
be able to fit 6 entries in a single cache line, instead of
storing the entire key, we only store a 2-byte hash for each
of the keys. While this might result in false collisions,
they are extremely unlikely. With 32 buckets, we have a
hash space of size 2M. Even if false collisions do occur,
this is not problematic: we would simply be triggering a
flush of the links in the cache when this might not have
been strictly necessary. The hashes therefore require 12
bytes in each bucket. The remaining 48 bytes in the cache
line are used to store the addresses of the 6 links.

The interface of the link cache has three operations,
which we discuss in the following.
Try Link and Add. If there is space in the link cache,
this operation atomically modifies the link in the data
structure and inserts an entry in the link cache. The
operation first tries to reserve an entry in the link cache.
To this effect, it tries to atomically change the state of an
entry from free to pending. If no free entry exists, the link
cache is being flushed, or the attempt to reserve an entry
is not successful, the caller is notified that the operation
did not succeed and that it should persist the link itself.
Once an entry is reserved, we set the corresponding key
and link address in the link cache. Next, we try to update
the link in the data structure. We insert the new link, but
use a bit to mark the fact that for now, this link has been
neither persisted, nor has its addition to the link cache
been marked as completed. If the link update fails, we set
the state of the link cache entry to free and return failure
to the caller. We next set the state of the entry in the link
cache to busy (to mark the fact that we have added the
key and link address, and that the link address in fact
contains the value that we want to persist). Finally, we
remove the mark from the link in the data structure.

The fact that this operation is best effort, and the fact
that we do several atomic updates (link marking, transi-

tioning between multiple states) just in order to be able
to handle concurrent readers make this operation an ideal
candidate for the use of hardware transactional memory
(HTM). In fact, we first try to execute a fast-path HTM-
based operation before reverting to the code presented
above. In the HTM path, we do not need to insert a
marked link into the data structure, and we can avoid
going through the pending state in the link cache.

Flush. This operation writes all the finalized entries
in a bucket to NVRAM. The operation first atomically
increments the corresponding flushing counter to signal
that it is in the process of flushing a bucket. The flush
operation then issues write-backs for the link addresses
in the busy entries in the bucket one by one (without
waiting for the write-backs to complete) and sets the state
of these entries to free. Next, the operation checks if any
of the entries we have not written back have become busy
(completed) in the meanwhile, and if yes, issues write-
backs for them as well. This is repeated until no new busy
entries appear. The thread then waits for the write-backs
to complete by issuing a fence, decrements the flushing
counter, and returns.

Scan. The scan operation is given a key and searches for
any link pertaining to this key in the link cache. If such an
entry is found in busy state (i.e., the insertion of the link
was finalized), a flush is triggered. If an entry is found but
is in pending state, the operation checks whether the new
pointer has been inserted into the data structure. If this is
the case, the current operation’s linearization point should
be after that of the operation currently inserting into the
link cache, and therefore the current operation triggers a
write-back of the new value of the link. Otherwise, the
current operation’s linearization point is before that of the
update, and no further action needs to be taken. In order
to guarantee durable linearizability, every data structure
operation needs to call the scan method for its key, as well
as for its predecessor in the structure in case of updates.
However, this is as fast as reading two cache lines.

Illustration: Link Cache Effectiveness. We illustrate
the effectiveness of the approach using the same linked list
example employed in the previous section. The schedule
of operations in our example, as well as the way the
link cache is constructed are presented in Figure 3. We
assume an initially empty link cache, and we only depict
the effects of operations that change the state of the data
structure or the link cache. Normally, updates would
have to wait for one link to be persisted in the case of
the insert operations, and two links in the case of the
delete operation (one for marking and one for deletion).
However, in this example, by using the link cache, we
have replaced writing back 4 cache lines one at a time by
a single batch of 3 cache line write-backs.
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Figure 3: Example of how the link cache is constructed.

5 Memory Management with NV-Epochs
We now address another issue that is unavoidable when-
ever inserting or removing nodes in a linked concurrent
data structure: memory management.

5.1 Overview
Two separate steps need to be performed both when insert-
ing and removing a node: in case of an insertion, memory
for the new node is first allocated and initialized, after
which the node is linked into the data structure; in case of
a deletion, the node is first unlinked from the data struc-
ture, and later, when we are sure no references to it exist,
its memory is freed. If a restart occurs between these two
main steps both in case of an insertion and a removal, a
persistent memory leak occurs: we have allocated data
that is not linked anywhere in our data structure.

The typical way of addressing the issue in the context
of NVRAM is to use some form of logging: before allo-
cating and linking, we log our intention, as we do before
unlinking and freeing memory. Once the operation has
(durably) completed, the log entry can be removed. How-
ever, this entails an extra write to NVRAM per update.
In addition, this write needs to complete before we can
proceed with the update, thus producing a non-negligible
increase in the latency of updates.

In order to avoid waiting for the durable log to be writ-
ten at each allocation or deallocation, we propose keeping
track of coarser-grained active memory areas instead
of keeping track of individual allocations/deallocations.
Intuitively, when allocating, threads often reserve larger
contiguous memory areas from which they serve user
requests; thus, consecutive allocations tend to belong to
the same memory area. In addition, memory reclamation
schemes keep track of which objects have been unlinked,
and periodically free those to which no references are held.
This reclamation step is only run periodically for perfor-

Active areas
0xa000

Insert(k1)
Allocate 

new node n1
n1 will be allocated

at addr. 0xa720
mem_area(0xa720) 
not marked as active

persistently mark 
mem_area( 0xa720) as active;

mark 0xa720 as allocated
(no waiting for persistence)

Active areas
0xa000

Insert(k2)
Allocate 

new node n2
n2 will be allocated

at addr. 0xa740
mem_area(0xa740) 

already marked as active

mark 0xa740 as allocated
(no waiting for persistence)

Active areas
Thread T

return

return

Figure 4: Illustration: thread T performs two inserts.
While both allocate memory, with our approach, only the
first allocation performs a durable write.

mance considerations (typically, when a certain number
of unlinked objects have been collected). Therefore, we
tend to free multiple nodes at the same time. Out of these,
it is usually the case that several of them map to the same
memory area. Thus, there is a certain degree of locality
in deallocation as well. Hence, if instead of logging every
node we unlink from the data structure, we only keep
track of the memory areas from which the unlinked nodes
come from, we can expect significant savings in term of
write-backs to NVRAM: most of the time, the memory
area will already be marked as active. We illustrate the
potential benefits of the approach in Figure 4.

While allowing us important time savings at run time,
this method does defer some work for when we need to
recover. In particular, we need to go over the allocated
memory addresses in the active areas at the time of shut-
down, and check if they indeed represent nodes that are
linked into the data structure. To be able to do this, we also
make the assumption data structure nodes belong to mem-
ory areas which store no other type of data. To achieve
this, we use an allocator specifically for such nodes.

We first briefly describe the principles of the memory
reclamation scheme that we employ, after which we go
into more details into how we keep track of the active
memory page set, and how we recover after a failure.

5.2 Epoch-Based Memory Reclamation
Epoch-based memory reclamation [11] is based on the
following principle: if an object is unlinked, then no refer-
ences to the object are held after the operations concurrent
with the unlink have finished. One method of using this
principle in practice (and which we use in our reclamation
scheme) is to provide each thread with a local counter,
keeping track of the epoch the current thread finds itself
in. The epoch of a thread is incremented when the thread
starts an operation, and when it completes it. Thus, if the
current epoch number of a thread is odd, the thread is cur-
rently active and in the middle of an operation. We collect
multiple objects, and free them when the vector formed
by the current epochs of the threads is larger than the one
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when any of the objects were unlinked (only the epochs
of threads that were active at the moment of unlinking
need to be larger). We refer to the set of unlinked nodes
which we attempt to free together as a generation.

5.3 Interface with NVRAM Allocators
Memory allocators usually reserve a large contiguous
address space, which is then recursively split into smaller
chunks. The chunk from which an object is allocated
depends on the object’s size. These chunks of contiguous
memory are generally referred to as allocator pages. Since
smaller pages from which data structure nodes are directly
allocated are part of larger pages, we can configure the
granularity of the pages which we keep track of. High-
performance concurrent allocators usually partition the
memory space for allocations among threads, such that
there is minimal communication necessary between them:
pages are assigned to individual threads.

Existing persistent allocators provide the capability of
atomically allocating and linking (or unlinking and deallo-
cating) objects, which, as discussed, is generally achieved
through some form of logging. We do not require this
capability: we only require that the persistent allocator
is able to correctly maintain its durable metadata when
allocating or deallocating. Moreover, in our case, the last
write-back (which marks the memory as allocated or free
in a thread’s local allocator metadata, and is usually the
only write-back the allocator issues) does not have to be
completed before proceeding: in the case of an allocation,
the data structure algorithm will have to wait for the write-
backs to complete after the memory is initialized, while in
the case of deallocations the memory reclamation scheme
waits for all the deallocations it issues at once to be com-
pleted. Thus, in most cases, when the allocator only does
one store to thread-local data, we do not have to issue
a sync operation for the allocator metadata. Based on
its metadata and our structures maintaining active pages,
the allocator can recover its state in case of a restart. An
existing persistent concurrent allocator can be used with
our system, with the small changes we mentioned. We
also require the allocator to provide a method that re-
turns the next node address to be allocated. As allocators
generally assign larger chunks of memory to individual
threads, and threads do not “steal” memory from one an-
other, adding this method is trivial. We use a modified
version of jemalloc [27], with write-backs inserted when
updates to allocator metadata occur to model the run-time
performance of persistent allocators.

5.4 Tracking Active Memory Areas
In our approach, each thread keeps a set of active memory
pages in a structure called the active page table (APT). For
each memory page, we also store some metadata deter-
mining when the page can be considered as no longer ac-
tive and can thus be removed from the set. This metadata

consists of (i) the largest epoch at which this thread has un-
linked memory belonging to the page from the data struc-
ture, and (ii) the largest epoch at which this thread has
allocated memory belonging to this page. The addresses
of the memory pages need to be stored durably (meaning
that when we insert a new page, we have to wait for the
write-back of the address of the page to complete before
continuing), while the metadata is only needed for remov-
ing table entries, and is not needed in case of a restart.

We attempt to trim a thread’s active page table when
it exceeds a certain size. For this purpose, the metadata
associated with each page is used as follows. A page
from which unlinks have happened is active until the
epoch-based memory reclamation scheme is guaranteed
to have freed all unlinked nodes. This can be verified by
having the reclamation scheme keep track of the epoch
vector of the most recent generation of objects that were
collected. A page from which allocations have happened
is active until the insert operation has finished, i.e., while
the current epoch of the thread is equal to the last epoch at
which a node allocation from this page took place. When
using a link cache, we also have to ensure that it contains
no entries pertaining to the page under consideration. For
this reason, the operation that attempts to trim the active
page table issues a link cache flush as well. If all the un-
linked nodes have been freed, and all the allocated nodes
have been linked, the page can be removed from the table.

We use a separate persistent allocator for the active
memory page table. Allocations for the table happen very
infrequently (we preallocate a number of entries for each
thread at start-up, and allocate multiple entries at once
when more space is needed; in addition, tables usually do
not grow beyond a certain size, and thus no allocations are
needed from a certain point). We require that this second
allocator provide the interface previous work on NVRAM
memory allocators does [6, 24, 42, 51, 56]. In this
instance, we used the allocator provided with nvml [24].

5.5 Recovery after Transient Failures
On recovery, we must make sure that there are no nodes
that are not linked in the data structure but are allocated.

There are two approaches to verifying this, both of
which can be parallelized in order to decrease recovery
time. The efficiency of each method depends on the size
of the data structure, the complexity of the search method,
and the size of the memory space that needs to be verified.
In both cases, we assume a well-formed data structure.
That is, the recovery procedure should first ensure that
the data structure is brought to a consistent state before
attempting to remove memory leaks. This step is not
necessary for any of the data structures we developed.

The first approach is to go over all the node addresses
in the active memory pages at the moment of the crash,
and, if an address n is allocated, search the data structure
for n’s key. If (i) the search returns a result and (ii) the
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Figure 5: Update throughput of data structures implemented using our techniques (1 and 8 threads). Values are
normalized to throughput of redo log based implementations (1 and 8 threads, respectively).

address of the returned node is the same as n, we leave the
node as allocated. Otherwise, we free the node. Condition
(ii) is necessary because we might have an allocated but
uninitialized node. Therefore, a node with the key that
we retrieve from that uninitialized memory might indeed
exist in the data structure, but it might not be pointing
to this uninitialized memory. The second approach is to
traverse the structure only once, and for each node check
if its address belongs to the set of active pages. If this is
the case, store the address of the node in a volatile memory
buffer. Next, go over all the allocated node addresses in
the active memory pages, and check if they are in the
volatile memory buffer. If they are not, it means they are
not linked in the data structure and can be deallocated.
Both of these approaches can be parallelized.

We note that in our implementation, it cannot be the
case that a node is linked into the data structure, but not
marked as allocated. This is because before linking a node
in the data structure, we issue a store fence that ensures
that the contents of the node, as well as the allocator
metadata (for which we issue write-backs, but do not
wait for last one to complete when calling the allocation
method) are durably written.

6 Evaluation
We now study the impact our proposed techniques have
in practice. We look at the overall performance improve-
ments, as well as at the benefits of individual techniques.

6.1 Experimental Setup
We run experiments on an Intel Xeon machine having four
E7-4830 v3 12-core processors operating at 2.1–2.7 GHz,
with cache sizes of 32KB (L1), 256KB (L2), and 30MB
(LLC, per die). We work with key-value pairs, both of
which are 8B in size. Nodes are cache-aligned to 64B.
Larger values can be accommodated by using indirection
instead of directly storing values inside nodes. Shown
values are the median of 5 repetitions.

As neither NVRAM with latencies comparable to
DRAM, nor processors providing the clwb instruction
are available yet, we simulate clwb by writing data nor-
mally, and then pausing for an appropriate number of cy-
cles, similar to previous work [3, 6, 33, 55, 56]. The num-
ber of cycles to pause is chosen so as to account for the
increased latency of NVRAM (we assume an NVRAM

write latency of 125ns, which is an average of the pro-
jected values). Intel reports issuing several flushes with
clflushopt can be up to an order of magnitude faster
than flushing them one at a time using clflush [22].
We assume similar performance characteristics for the
clwb instruction. In order to account for the benefit
of flushing several cache lines at a time over flushing
them one by one, we inject the artifical pause described
above only once per batch of cache lines being written to
NVRAM (e.g., only once per flush of the link cache).

6.2 Data Structure Performance
We look at the run time behavior of our data structures.
We focus on updates, as it is these operations that must
be durably recorded in NVRAM. We compare our imple-
mentations with alternatives that use lock-based critical
sections (and thus use logging). We find that for such data
structures, an approach that uses redo logging provides
good performance in addition to ensuring durable lineariz-
ability. We use the algorithms that we find perform best
for each data structure: the lazy linked list [16], a lock-
based skip list by Herlihy et al. [18], bst-tk [8], and a
hash table with a lazy linked list per bucket. We manually
apply logging to each data structure, taking advantage
of knowledge of the algorithms so as to minimize the
number of syncs while maintaining correctness. We do
this for fairness of comparison, as the alternative of using
a generic transactional/logging framework would have
likely resulted in more syncs and thus worse performance.

In Figure 5, we show the increase in the number of up-
dates per second obtained by using our structures relative
to log-based implementations. We use a workload where
50% of the operations are inserts of random keys, while
50% are removes of random keys, and show results for 1
and 8 concurrent updating threads. We show relative im-
provements, as the precise latencies are dependent on the
assumptions made about clwb instruction performance,
as well as NVRAM store latencies.

Our method yields important benefits regardless of the
data structure type. In particular, for the skip list, where
in a log-based implementation a logarithmic number of
locks are held while a logarithmic number of updates
must be logged, our approach results in an order of mag-
nitude increase in performance. We note that for small
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Figure 6: Update throughput compared to redo log based
implementation for various NVRAM write latencies.

and medium sized data structures, we obtain significant
improvements by applying our techniques. For large struc-
tures however, our improvements become less impressive.
There are two main reasons for this. The first is that as
the structure size increases, the latency of an update be-
comes dominated by the time needed to reach the point
in the data structure where the modification needs to be
made, both due to the need to traverse more pointers, and
because when the structure does not fit in the caches any-
more, reads become more expensive. In the case of the
linked list in this experiment, it is in fact the only factor
that is responsible for the decrease in latency improve-
ment. The second reason has to do with a decrease in the
efficiency of our active page tables for deallocations as
the structures become large. We discuss why this is, as
well as ways of alleviating the issue in § 6.3. In addition,
as the number of concurrent updating threads increases,
the link cache becomes somewhat less efficient (also dis-
cussed in § 6.3). Thus, for high degrees of concurrency,
we can turn the link cache off.

In our experiments, we use NVRAM latencies compara-
ble to those of DRAM. Nevertheless, current technologies
still have significantly larger latencies. We therefore also
perform a simulation where we increase write latency
(Figure 6). These measurements are representative of
structures which are small enough for reads to be served
from cache. As NVRAM write latency increases, our ap-
proach becomes much more effective: the ratio between
our throughput and that of a log-based implementation
becomes inversely proportional to the ratio between the
number of sync operations in the two approaches.

To summarize, it is important to note that while the pre-
cise magnitude of the improvements of our approach may
depend on the characteristics of the NVRAM technology
being used, these experiments show that our approach is
beneficial for all the situations we have considered.
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Figure 7: Update throughput compared to an implemen-
tation oblivious of NVRAM.

We also compare our approach to algorithms aimed
at volatile memory, which do not concern themselves
with data durability. Briefly, the per-operation overheads
related to durability introduced by our approach are con-
stant. While these might account for a non-negligible frac-
tion of the operation latency for small structures, for larger
structures, as total operation latency increases, these be-
come less apparent. This is illustrated on a linked list in
Figure 7. Thus, in terms of performance, our approach
represents a middle ground between volatile data struc-
tures and log-based durable approaches.

6.3 Performance: a Closer Look
We now explore the impact each of our techniques has on
overall performance.
Link-and-Persist and Link Cache. We evaluate the
individual impact on performance of the link-and-persist
technique and of the link cache. We measure the through-
put of each data structure with the log-based implemen-
tation, with a log-free implementation that uses link-
and-persist and with a log-free implementation that uses
the link cache (all using identical memory management
schemes). We then normalize the throughput of the log-
free implementations with respect to the log-based imple-
mentation to determine the change in performance. We
use an update-only workload, with 1024-element data
structures. The link cache occupies 32 cache lines.

Figure 8 shows the results. As a result of removing
logging, algorithms using link-and-persist outperform
log-based alternatives for all structures, both in single-
threaded and in concurrent scenarios. Moreover, in
most cases, the link cache brings an additional increase
in performance with respect to the link-and-persist
implementation, due to its batching of write-backs.
NV-Epochs. We evaluate the efficiency of our active
page table. The active page table is only efficient if it
saves sync operations: i.e., if an important fraction of
updates do not have to write active page table entries.

We consider 4KB memory pages, and we try to trim
an active page table when it exceeds 16 elements. We
measure the fraction of allocations and deallocations that
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Figure 9: Active page table hit rates and throughput
improvements due to NV-epochs.

do not need to add an entry to the active page tables (that
is, the fraction of hits in the active page table). Results
are shown in Figure 9.a. In this experiment, we have used
a skip list. Results are similar for other data structures, as
the important factor is the data structure size.

We note that the hit rate is close to 100% for alloca-
tions, regardless of structure size. In case of deallocations,
the hit rate starts decreasing after the structure exceeds
64 MB (more than 1M nodes). This is because as the
amount of used memory increases, there is less locality
in memory reclamation steps. However, fast memory
allocation and deallocation is particularly important for
small data structures that fit in the write-back caches,
which have small access latencies. In such situations, our
approach is effective for both types of operations.

This conclusion is reflected in the throughput ob-
served when using NV-epochs (Figure 9.b): for small
and medium-sized structures, NV-epochs can increase
throughput several-fold. For large structures, when keep-
ing track of memory at 4KB granularity, NV-epoch’s ef-
fectiveness decreases. However, the granularity at which
we keep track of active memory areas is adjustable. Larger
memory areas result in higher hit rates and throughput
improvements, at the expense of increased recovery time.

6.4 Recovery
We now measure the time it takes to recover a data
structure. We simulate a crash by first stopping execution
of the algorithm at an arbitrary point. Then, we ensure
the structure’s data is not in the write-back caches (by
purging the caches). Next, we run the recovery process
which first brings the data structure to a consistent state
and then traverses its active pages to free allocated-but-
not-reachable nodes3. We show recovery times for the
various structures as a function of their size in Figure 10.

For hash tables, BSTs, and skip-lists, which have fast
search methods, recovery is extremely efficient: even in
structures with 4M elements, we can recover in less than
5ms. Recovery time for such structures is two orders

3After recovery, new threads can spawn and resume execution at a
"safe" point (a point in the instruction stream from which execution can
continue regardless of when the crash occurred). Determining such safe
points in general is outside the scope of this paper, but for our specific
case, any point in-between two data structure operations is a safe point.
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Figure 10: Data structure recovery times.
of magnitude lower than doing a full mark-and-sweep
pass in this environment [1]. In the case of the linked
list, which has a linear search method, in order to avoid
repeated passes over the entire structure, we employ a
strategy similar to mark-and-sweep. Recovery in this case
is somewhat slower: a linked list with 64K elements can
be recovered in 16ms. For all structures, recovery time
increases with data structure size. Small structures tend to
have a smaller number of active pages at any point in time.
In addition, search operations must traverse more pointers
for larger structures, and data is less frequently present in
the higher-level caches. We believe the observed recovery
times are acceptable in case of a reboot.

6.5 NV-Memcached
We now show how our techniques can be applied in a
larger context by developing an object caching system
for durable memory: NV-Memcached. The main idea
behind NV-Memcached is to make Memcached durable
by replacing its core data structures—the hash table
and the slab allocator—with durable versions. This
transformation entails interesting technical challenges.

First, Memcached uses a lock-protected sequential hash
table; thus replacing it with our durable non-blocking hash
table would negate the latter’s lock-freedom. We solve
this challenge by basing NV-Memcached on memcached-
clht [34], a version of Memcached that avoids protecting
the hash table with locks by employing a concurrent hash
table—CLHT [8], and replacing CLHT with our log-free
durable hash table.

The second challenge is related to the recovery of items.
With a naive implementation of a durable slab allocator,
it is possible for memory leaks to occur after a restart.
An item can be allocated, but not yet linked in the hash
table, or an item can be unlinked from the hash table but
not yet marked as free in the allocator. We address this
issue with a similar approach to our active page technique
(§ 5): we keep track of active slabs. During recovery, we
iterate over each thread’s active slab table and free any
memory which is marked as allocated but not yet or no
longer reachable from the hash table.

We compare the performance of NV-Memcached
to that of Memcached and memcached-clht using
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Figure 11: Performance and warm-up time comparison
of Memcached and NV-Memcached.

memtier-benchmark [50]. The benchmark runs for a
predetermined amount of time, issuing a mix of get and
set operations using keys drawn uniformly at random
from a given key range. The key range and the ratio of
get to set operations are configurable. Before each
experiment, we warm up the cache by inserting items
covering half of the key range. Both the server and the
client are run with the default number of threads (4). The
results are averaged over 5 runs for each configuration.

The first experiment compares the throughput of the
three systems for different key ranges, under a 1:4 set to
get ratio. Figure 11 shows that there is no notable perfor-
mance drop between Memcached, memcached-clht and
NV-Memcached. Thus, our techniques remain practical
when applied to real-world applications.

The second experiment compares, for three different
key range sizes, the warm-up time of Memcached and
memcached-clht (the time it takes to populate the cache
with half of the key range) to the recovery time of NV-
Memcached (the time it takes to recover after a restart).
Figure 11 shows that populating a (volatile) Memcached
or memcached-clht instance with items can take up to
three orders of magnitude more time than recovering a
NV-Memcached instance of the same size. This justifies
the practicality of a non-volatile memory caching service—
recovering such a service after a machine restart takes just
a fraction of the time necessary for its volatile counterpart
to get re-populated (and thus be useful again).

7 Related Work
Several approaches have used transactions as a means
of interaction with NVRAM [2, 6, 9, 14, 25, 28, 30, 33,
37, 56]. The benefits of transaction-based approaches
are generality and ease of use. Yet, their inherent and
significant overhead has been recently highlighted (e.g.,
[52]), and several attempts to alleviate the problem
have been proposed. Izraelevitz et al. [25] introduce an
approach in which by reliably keeping track of the last
executed store instruction at each thread, one is able to
simply complete the execution of critical sections after a
restart. While efficient if write-back caches are persistent,
the approach otherwise requires a write to the log for
each store in critical sections. Kolli et al. [30] focus on
static transactions in lock-based applications, and attempt
to minimize persist dependencies in order to limit waiting

time. The authors also show how the commit stage of
transactions can be performed while not holding any
locks. Similarly, Kamino-Tx [37] uses a copy-on-write
technique, and avoids logging in critical sections.
DudeTM [33] optimizes redo logging by first executing
the transaction and obtaining a redo log in volatile mem-
ory, then atomically flushing the redo log to persistent
memory, and only then modifying the original data.

In this paper, we go beyond optimizations to logging:
we provide a method that in the common case when lo-
cality is preserved, allows us to circumvent such logging
altogether in the context of concurrent data structures.

A number of efforts [2, 4, 20] have been dedicated
to the generation of correct durable applications for
NVRAM from existing code. These approaches generally
assume lock-based code. Due to their general-purpose
nature, they incur additional overheads when compared
to our method, in particular due to logging.

Several proposals for indexing trees for NVRAM have
been made [5, 32, 48, 54, 58]. However, they either re-
quire logging in some form, or do not address potential
memory leaks during new node creation. In addition,
the techniques cannot be easily generalized to other data
structures. Friedman et al. [12] introduce lock-free algo-
rithms for durable queues, but do not go beyond this data
structure, or consider memory management. Other work
advocating lock-free algorithms either assumes durable
caches [46, 47], or automatically generates durable algo-
rithms that issue syncs after each update [26].

The problem of general memory allocation and recla-
mation for NVRAM has also received attention. Generic
persistent memory frameworks [2, 6, 35, 56] handle
allocation and reclamation as part of the transaction
mechanisms they provide, and thus rely on logging.
nvm_malloc [51] provides an interface to allocate and
free persistent memory, but because of fine-grained ac-
counting, incurs significant overheads for each allocation
and deallocation. Makalu [1] and NVthreads [20] also
keep track of allocator metadata at a coarser-grain level.
However, they incur higher costs at recovery time, as they
require a garbage collection pass over the entire memory.
Unlike all these approaches, we propose a method that is
highly tuned to concurrent data structures. Thus, we are
able to minimize overheads at both run time and recovery
time. Our approach in fact builds upon basic memory
allocators, and handles concurrent memory reclamation
as well. Thus, our scheme can take advantage of an
efficient durable memory allocator at its core.

Other Memcached adaptations for NVRAM have been
proposed, but they use transactions extensively [6, 36, 44]
or they do not guarantee all completed requests are
durable [57], whereas NV-Memcached ensures all com-
pleted requests are durable and limits transactions to the
slab allocator code by using our log-free hash table.
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Abstract

We present the design and evaluation of Rapid, a
distributed membership service. At Rapid’s core is a
scheme for multi-process cut detection (CD) that re-
volves around two key insights: (i) it suspects a fail-
ure of a process only after alerts arrive from multiple
sources, and (ii) when a group of processes experience
problems, it detects failures of the entire group, rather
than conclude about each process individually. Imple-
menting these insights translates into a simple member-
ship algorithm with low communication overhead.

We present evidence that our strategy suffices to drive
unanimous detection almost-everywhere, even when
complex network conditions arise, such as one-way
reachability problems, firewall misconfigurations, and
high packet loss. Furthermore, we present both empir-
ical evidence and analyses that proves that the almost-
everywhere detection happens with high probability. To
complete the design, Rapid contains a leaderless consen-
sus protocol that converts multi-process cut detections
into a view-change decision. The resulting membership
service works both in fully decentralized as well as logi-
cally centralized modes.

We present an evaluation of Rapid in moderately scal-
able cloud settings. Rapid bootstraps 2000 node clusters
2-5.8x faster than prevailing tools such as Memberlist
and ZooKeeper, remains stable in face of complex failure
scenarios, and provides strong consistency guarantees. It
is easy to integrate Rapid into existing distributed appli-
cations, of which we demonstrate two.

1 Introduction

Large-scale distributed systems today need to be pro-
visioned and resized quickly according to changing de-
mand. Furthermore, at scale, failures are not the excep-
tion but the norm [21, 30]. This makes membership man-
agement and failure detection a critical component of any
distributed system.

Our organization ships standalone products that we
do not operate ourselves. These products run in a wide
range of enterprise data center environments. In our ex-
perience, many failure scenarios are not always crash
failures, but commonly involve misconfigured firewalls,
one-way connectivity loss, flip-flops in reachability, and

some-but-not-all packets being dropped (in line with ob-
servations by [49, 19, 37, 67, 41]). We find that existing
membership solutions struggle with these common fail-
ure scenarios, despite being able to cleanly detect crash
faults. In particular, existing tools take long to, or never
converge to, a stable state where the faulty processes are
removed (§2.1).

We posit that despite several decades of research and
production systems, stability and consistency of existing
membership maintenance technologies remains a chal-
lenge. In this paper, we present the design and imple-
mentation of Rapid, a scalable, distributed membership
system that provides both these properties. We discuss
the need for these properties below, and present a formal
treatment of the service guarantees we require in §3.

Need for stability. Membership changes in distributed
systems trigger expensive recovery operations such as
failovers and data migrations. Unstable and flap-
ping membership views therefore cause applications to
repeatedly trigger these recovery workflows, thereby
severely degrading performance and affecting service
availability. This was the case in several production
incidents reported in the Cassandra [10, 9] and Con-
sul [26, 25, 27] projects. In an end-to-end experiment,
we also observed a 32% increase in throughput when re-
placing a native system’s failure detector with our solu-
tion that improved stability (see §7 for details).

Furthermore, failure recovery mechanisms may be
faulty themselves and can cause catastrophic failures
when they run amok [42, 40]. Failure recovery work-
flows being triggered ad infinitum have led to Amazon
EC2 outages [5, 6, 4], Microsoft Azure outages [7, 48],
and “killer bugs” in Cassandra and HBase [39].

Given these reasons, we seek to avoid frequent oscilla-
tions of the membership view, which we achieve through
stable failure detection.

Need for consistent membership views. Many sys-
tems require coordinated failure recovery, for example,
to correctly handle data re-balancing in storage systems
[3, 28]. Consistent changes to the membership view sim-
plify reasoning about system behavior and the develop-
ment of dynamic reconfiguration mechanisms [65].

Conversely, it is challenging to build reliable clustered
services on top of a weakly consistent membership ser-
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vice [11]. Inconsistent view-changes may have detri-
mental effects. For example, in sharded systems that rely
on consistent hashing, an inconsistent view of the clus-
ter leads to clients directing requests to servers that do
not host the relevant keys [12, 3]. In Cassandra, the lack
of consistent membership causes nodes to duplicate data
re-balancing efforts when concurrently adding nodes to
a cluster [11] and also affects correctness [12]. To work
around the lack of consistent membership, Cassandra en-
sures that only a single node is joining the cluster at any
given point in time, and operators are advised to wait
at least two minutes between adding each new node to a
cluster [11]. As a consequence, bootstrapping a 100 node
Cassandra cluster takes three hours and twenty minutes,
thereby significantly slowing down provisioning [11].

For these reasons, we seek to provide strict consis-
tency, where membership changes are driven by agree-
ment among processes. Consistency adds a layer of
safety above the failure detection layer and guarantees
the same membership view to all non-faulty processes.

Our approach

Rapid is based on the following fundamental insights
that bring stability and consistency to both decentralized
and logically centralized membership services:

Expander-based monitoring edge overlay. To scale
monitoring load, Rapid organizes a set of processes (a
configuration) into a stable failure detection topology
comprising observers that monitor and disseminate re-
ports about their communication edges to their subjects.
The monitoring relationships between processes forms a
directed expander graph with strong connectivity prop-
erties, which ensures with a high probability that healthy
processes detect failures. We interpret multiple reports
about a subject’s edges as a high-fidelity signal that the
subject is faulty.

Multi-process cut detection. For stability, processes
in Rapid (i) suspect a faulty process p only upon re-
ceiving alerts from multiple observers of p, and (ii) de-
lay acting on alerts about different processes until the
churn stabilizes, thereby converging to detect a global,
possibly multi-node cut of processes to add or remove
from the membership. This filter is remarkably simple
to implement, yet it suffices by itself to achieve almost-

everywhere agreement – unanimity among a large frac-
tion of processes about the detected cut.

Practical consensus. For consistency, we show that
converting almost-everywhere agreement into full agree-
ment is practical even in large-scale settings. Rapid’s
consensus protocol drives configuration changes by a
low-overhead, leaderless protocol in the common case:
every process simply validates consensus by counting the
number of identical cut detections. If there is a quorum
containing three-quarters of the membership set with the

same cut, then without a leader or further communica-
tion, this is a safe consensus decision.

Rapid thereby ensures all participating processes see a
strongly consistent sequence of membership changes to
the cluster, while ensuring that the system is stable in the
face of a diverse range of failure scenarios.

In summary, we make the following key contributions:
• Through measurements, we demonstrate that pre-

vailing membership solutions guarantee neither stability
nor consistency in the face of complex failure scenarios.

• We present the design of Rapid, a scalable member-
ship service that is robust in the presence of diverse fail-
ure scenarios while providing strong consistency. Rapid
runs both as a decentralized as well as a logically cen-
tralized membership service.

• In system evaluations, we demonstrate how Rapid,
despite offering much stronger guarantees, brings up
2000 node clusters 2-5.8x faster than mature alternatives
such as Memberlist and ZooKeeper. We demonstrate
Rapid’s robustness in the face of different failure scenar-
ios such as simultaneous node crashes, asymmetric net-
work partitions and heavy packet loss. Rapid achieves
these goals at a similar cost to existing solutions.

• Lastly, we report on our experience running Rapid to
power two applications; a distributed transactional data
platform and a service discovery use case.

2 Motivation and Related work

Membership solutions today fall into two categories.
They are either managed for a cluster through an auxil-
iary service [15, 43], or they are gossip-based and fully
decentralized [45, 44, 8, 69, 62, 59, 70, 64].

We studied how three widely adopted systems behave
in the presence of network failure scenarios: (i) of the
first category, ZooKeeper [15], and of the second, (ii)

Memberlist [47], the membership library used by Con-
sul [45] and Serf [44] and (iii) Akka Cluster [69] (see
§7 for the detailed setup). For ZooKeeper and Mem-
berlist, we bootstrap a 1000 process cluster with stand-
alone agents that join and maintain membership using
these solutions (for Akka Cluster, we use 400 processes
because it began failing for cluster sizes beyond 500).
We then drop 80% of packets for 1% of processes, sim-
ulating high packet loss scenarios described in the litera-
ture [19, 49] that we have also observed in practice.

Figure 1 shows a timeseries of membership sizes, as
viewed by each non-faulty process in the cluster (every
dot indicates a single measurement by a process). Akka
Cluster is unstable as conflicting rumors about processes
propagate in the cluster concurrently, even resulting in
benign processes being removed from the membership.
Memberlist and ZooKeeper resist removal of the faulty
processes from the membership set but are unstable over
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Figure 1: Akka Cluster, ZooKeeper and Memberlist ex-
hibit instabilities and inconsistencies when 1% of pro-
cesses experience 80% packet loss (similar to scenarios
described in [19, 49]). Every process logs its own view
of the cluster size every second, shown as one dot along
the time (X) axis. Note, the y-axis range does not start at
0. X-axis points (or intervals) with different cluster size
values represent inconsistent views among processes at
that point (or during the interval).

a longer period of time. We also note extended periods
of inconsistencies in the membership view.

Having found existing membership solutions to be un-
stable in the presence of typical network faults, we now
proceed to discuss the broader design space.

2.1 Comparison of existing solutions

There are three membership service designs in use
today, each of which provides different degrees of re-
siliency and consistency.

Logically centralized configuration service. A com-
mon approach to membership management in the indus-
try is to store the membership list in an auxiliary service
such as ZooKeeper [15], etcd [33], or Chubby [23].

The main advantage of this approach is simplicity: a
few processes maintain the ground truth of the member-
ship list with strong consistency semantics, and the re-
maining processes query this list periodically.

The key shortcoming here is that relying on a small
cluster reduces the overall resiliency of the system: con-
nectivity issues to the cluster, or failures among the small
set of cluster members themselves, may render the ser-
vice unavailable (this led Netflix to build solutions like
Eureka [58, 61]). As the ZooKeeper developers warn,
this also opens up new failure modes for applications that
depend on an auxiliary service for membership [17].

Gossip-based membership. van Renesse et al. [72,
71] proposed managing membership by using gossip
to spread positive notifications (keepalives) between all
processes. If a process p fails, other processes eventu-
ally remove p after a timeout. SWIM [29] was proposed

as a variant of that approach that reduces the communica-
tion overhead; it uses gossip to spread “negative” alerts,
rather than regular positive notifications.

Gossip-based membership schemes are widely
adopted in deployed systems today, such as Cassan-
dra [8], Akka [69], ScyllaDB [64], Serf [44], Redis
Cluster [62], Orleans [59], Uber’s Ringpop [70], Net-
flix’s Dynomite [56], and some systems at Twitter [55].

The main advantage of gossip-based membership is
resiliency and graceful degradation (they tolerate N − 1
failures). The key disadvantages include their weak con-
sistency guarantees and the complex emergent behavior
that leads to stability problems.

Stability is a key challenge in gossip-based member-
ship: When communication fails between two processes
which are otherwise live and correct, there are repeated
accusations and refutations that may cause oscillations
in the membership views. As our investigation of lead-
ing gossip-based solutions showed (Figure 1), these con-
flicting alerts lead to complex emergent behavior, mak-
ing it challenging to build reliable clustered services
on top of. Indeed, stability related issues with gossip
are also observed in production settings (see, e.g., Con-
sul [26, 25, 27] and Cassandra [11, 12, 10]).

Lastly, FireFlies [50] is a decentralized membership
service that tolerates Byzantine members. FireFlies orga-
nizes monitoring responsibilities via a randomized k-ring
topology to provide a robust overlay against Byzantine
processes. While the motivation in FireFlies was differ-
ent, we believe it offers a solution for stability; accusa-
tions about a process by a potentially Byzantine moni-
tor are not acted upon until a conservative, fixed delay
elapses. If a process does not refute an accusation about
it within this delay, it is removed from the membership.
However, the FireFlies scheme is based on a gossip-
style protocol involving accusations, refutations, rank-
ings, and disabling (where a process p announces that
a monitor should not complain about it). Furthermore,
FireFlies’ refutations resist process removals as much as
possible, which is undesirable in non-Byzantine settings.
For example, in the 80% packet loss scenario described
in Figure 1, a faulty process p may still succeed in dis-
seminating refutations, thereby resisting removal from
the membership. As we show in upcoming sections, our
scheme is simple in comparison and requires little book-
keeping per process. Unlike FireFlies, we aggregate re-
ports about a process p from multiple sources to decide
whether to remove p, enabling timely and coordinated
membership changes with low overhead.

Group membership. By themselves, gossip-based
membership schemes do not address consistency, and al-
low the membership views of processes to diverge. In
this sense, they may be considered more of failure detec-
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tors, than membership services.
Maintaining membership with strict consistency guar-

antees has been a focus in the field of fault tolerant state-
machine replication (SMR), starting with early founda-
tions of SMR [52, 60, 63], and continuing with a va-
riety of group communication systems (see [24] for a
survey of GC works). In SMR systems, membership is
typically needed for selecting a unique primary and for
enabling dynamic service deployment. Recent work on
Census [28] scales dynamic membership maintenance to
a locality-aware hierarchy of domains. It provides fault
tolerance by running the view-change consensus proto-
col only among a sampled subset of the membership set.

These methods may be harnessed on top of a stable
failure detection facility, stability being orthogonal to the
consistency they provide. As we show, our solution uses
an SMR technique that benefits from stable failure detec-
tion to form fast, leaderless consensus.

3 The Rapid Service

Our goal is to create a membership service based on
techniques that apply equally well to both decentralized
as well as logically centralized designs. For ease of pre-
sentation, we first describe the fully decentralized Rapid
service and its properties in this section, followed by its
design in §4. We then relax the resiliency properties in
§5 for the logically centralized design.

API Processes use the membership service by using
the Rapid library and invoking a call JOIN(HOST:PORT,
SEEDS, VIEW-CHANGE-CALLBACK). Here, HOST:PORT

is the process’ TCP/IP listen address. Internally, the join
call assigns a unique logical identifier for the process
(ID). If a process departs from the cluster either due to a
failure or by voluntarily leaving, it rejoins with a new ID.
This ID is internal to Rapid and is not an identifier of the
application that is using Rapid. SEEDS is an initial set of
process addresses known to everyone and used to contact
for bootstrapping. VIEW-CHANGE-CALLBACK is used to
notify applications about membership change events.

Configurations A configuration in Rapid comprises a
configuration identifier and a membership-set (a list of
processes). Each process has a local view of the con-
figuration. All processes use the initial seed-list as a
bootstrap configuration C0. Every configuration change
decision triggers an invocation of the VIEW-CHANGE-
CALLBACK at all processes, that informs processes about
a new configuration and membership set.

At time t, if C is the configuration view of a majority of
its members, we say that C is the current configuration.
Initially, once a majority of C0 start, it becomes current.

Failure model We assume that every pair of correct
processes can communicate with each other within a

known transmission delay bound (an assumption re-
quired for failure detection). When this assumption is
violated for a pair of (otherwise live) processes, there is
no obvious definition to determine which one of them
is faulty (though at least one is). We resolve this using
the parameters L and K as follows. Every process p (a
subject) is monitored by K observer processes. If L-of-
K correct observers cannot communicate with a subject,
then the subject is considered observably unresponsive.
We consider a process faulty if it is either crashed or ob-
servably unresponsive.

Cut Detection Guarantees Let C be the current con-
figuration at time t. Consider a subset of processes F ⊂C

where |F |

|C|
<

1
2 . If all processes in C \ F remain non-

faulty, we guarantee that the multi-process cut will even-
tually be detected and a view-change C \F installed 1:
• Multi-process cut detection: With high probability,

every process in C \F receives a multi-process cut de-
tection notification about F . In Rapid, the probability is
taken over all the random choices of the observer/subject
overlay topology, discussed in §4. The property we use
is that with high probability the underlying topology re-
mains an expander at all times, where the expansion is
quantified in terms of its second eigenvalue.

A similar guarantee holds for joins. If at time t a set J

of processes join the system and remain non-faulty, then
every process in C∪ J is notified of J joining.

Joins and removals can be combined: If a set of pro-
cesses F as above fails, and a set of processes J joins,
then (C \F)∪ J is eventually notified of the changes.
• View-Change: Any view-change notification in C

is by consensus, maintaining Agreement on the view-
change membership among all correct processes in C;
and Liveness, provided a majority of C∪J (J = /0 if there
are no joiners) remain correct until the VC configuration
becomes current.

Our requirements concerning configuration changes
hold when the system has quiesced. During periods of
instability, intermediate detection(s) may succeed, but
there is no formal guarantee about them.

Hand-off Once a new configuration C j+1 becomes cur-
rent, we abstractly abandon C j and start afresh: New fail-
ures can happen within C j+1 (for up to half of the mem-
bership set), and the Cut Detection and View Change
guarantees must hold.

We note that liveness of the consensus layer depends
on a majority of both C j and C j+1 remaining correct to
perform the ‘hand-off’: Between the time when C j be-
comes current and until C j+1 does, no more than a mi-
nority fail in either configuration. This dynamic model

1The size of cuts |F | we can detect is a function of the monitoring
topology. The proof is summarized in §8, and a full derivation appears
in a tech report [51].
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Figure 3: Solution overview, showing the sequence of
steps at each process for a single configuration change.

borrows the dynamic-interplay framework of [35, 66].

4 Decentralized Design

Rapid forms an immutable sequence of configurations
driven through consensus decisions. Each configuration
may drive a single configuration-change decision; the
next configuration is logically a new system as in the vir-
tual synchrony approach [22]. Here, we describe the al-
gorithm for changing a known current configuration C ,
consisting of a membership set (a list of process identi-
ties). When clear from the context, we omit C or explicit
mentions of the configuration, as they are fixed within
one instance of the configuration-change algorithm.

We start with a brief overview of the algorithm, break-
ing it down to three components: (1) a monitoring over-
lay; (2) an almost-everywhere multi-process cut detec-
tion (CD); and (3) a fast, leaderless view-change (VC)
consensus protocol. The response to problems in Rapid
evolves through these three components (see Figure 3).

Monitoring We organize processes into a monitoring
topology such that every process monitors K peers and
is monitored by K peers. A process being monitored is
referred to as a subject and a process that is monitoring
a subject is an observer (each process therefore has K

subjects and K observers). The particular topology we
employ in Rapid is an expander graph [38] realized us-
ing K pseudo-random rings [34]. Other observer/subject
arrangements may be plugged into our framework with-
out changing the rest of the logic.

Importantly, this topology is deterministic over the
membership set C ; every process that receives a noti-
fication about a new configuration locally determines its
subjects and creates the required monitoring channels.

There are two types of alerts generated by the moni-
toring component, REMOVE and JOIN. A REMOVE alert
is broadcast by an observer when there are reachability
problems to its subject. A JOIN alert is broadcast by an

observer when it is informed about a subject joiner re-
quest. In this way, both types of alerts are generated by
multiple sources about the same subject. Any best-effort
broadcast primitive may be used to disseminate alerts
(we use gossip-based broadcast).

Multi-process cut detection (CD) REMOVE and JOIN

alerts are handled at each process independently by
a multi-process cut detection (CD) mechanism. This
mechanism collects evidence to support a single, stable
multi-process configuration change proposal. It outputs
the same cut proposal almost-everywhere; i.e., unanimity
in the detection among a large fraction of processes.

The CD scheme with a K-degree monitoring topol-
ogy has a constant per-process per-round communication
cost, and provides stable multi-process cut detection with
almost-everywhere agreement.

View change (VC) Finally, we use a consensus proto-
col that has a fast path to agreement on a view-change. If
the protocol collects identical CD proposals from a Fast

Paxos quorum (three quarters) of the membership, then it
can decide in one step. Otherwise, it falls back to Paxos
to form agreement on some proposal as a view-change.

We note that other consensus solutions could use CD
as input and provide view-change consistency. VC has
the benefit of a fast path to decision, taking advantage of
the identical inputs almost-everywhere.

We now present a detailed description of the system.

4.1 Expander-based Monitoring

Rapid organizes processes into a monitoring topology
that is an expander graph [38]. Specifically, we use the
fact that a random K-regular graph is very likely to be a
good expander for K ≥ 3 [34]. We construct K pseudo-
randomly generated rings with each ring containing the
full list of members. A pair of processes (o, s) form an
observer/subject edge if o precedes s in a ring. Duplicate
edges are allowed and will have a marginal effect on the
behavior. Figure 2 depicts the neighborhood of a single
process p in a 4-Ring topology.

Topology properties. Our monitoring topology has
three key properties. The first is expansion: the number
of edges connecting two sets of processes reflects the rel-
ative sizes of the set. This means that if a small subset F

of processes V are faulty, we should see roughly |V |−|F |

|V |

fraction of monitoring edges to F emanating from the set
V \F of healthy processes. This ensures with high proba-
bility that healthy processes detect failures, as long as the
set of failures is not too large. The size of failures we can
detect depends on the expansion of the topology as quan-
tified by the value of its second eigenvalue (§ 8). Second,
every process monitors K subjects, and is monitored by
K observers. Hence, monitoring incurs O(K) overhead
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Figure 4: Almost everywhere agreement protocol exam-
ple at a process p, with tallies about q,r,s, t and K =

10,H = 7,L = 2. K is the number of observers per sub-
ject. The region between H and L is the unstable region.
The region between K and H is the stable region. Left:

stable = {r,s, t}; unstable = {q}. Right: q moves from
unstable to stable; p proposes a view change {q,r,s, t}.

per process per round, distributing the load across the en-
tire cluster. The fixed observer/subject approach distin-
guishes Rapid from gossip-based techniques, supporting
prolonged monitoring without sacrificing failure detec-
tion scalability. At the same time, we compare well with
the overhead of gossip-based solutions (§7). Third, every
process join or removal results only in 2 ·K monitoring
edges being added or removed.

Joins New processes join by contacting a list of K tem-
porary observers obtained from a seed process (deter-
ministically assigned for each joiner and C pair, until
a configuration change reflects the join). The temporary
observers generate independent alerts about joiners. In
this way, multiple JOIN alerts are generated from distinct
sources, in a similar manner to alerts about failures.

Pluggable edge-monitor. A monitoring edge between
an observer and its subject is a pluggable component
in Rapid. With this design, Rapid can take advantage
of diverse failure detection and monitoring techniques,
e.g., history-based adaptive techniques as used by popu-
lar frameworks like Hystrix [57] and Finagle [68]; phi-
accrual failure detectors [31]; eliciting indirect probes
[29]; flooding a suspicion and allowing a timeout period
for self-rebuttal [50]; using cross-layer information [54];
application-specific health checks; and others.

Irrevocable Alerts When the edge-monitor of an ob-
server indicates an existing subject is non-responsive, the
observer broadcasts a REMOVE alert about the subject.
Given the high fidelity made possible with our stable
edge monitoring, these alerts are considered irrevocable,
thus Rapid prevents spreading conflicting reports. When
contacted by a subject, a temporary observer broadcasts
JOIN alert about the subject.

4.2 Multi-process Cut Detection

Alerts in Rapid may arrive at different orders at each
process. Every process independently aggregates these
alerts until a stable multi-process cut is detected. Our ap-

proach aims to reach agreement almost everywhere with
regards to this detection. Our mechanism is based on
a simple key insight: A process defers a decision on
a single process until the alert-count it received on all
processes is considered stable. In particular, it waits
until there is no process with an alert-count above a
low-watermark threshold L and below a high-watermark
threshold H.

Our technique is simple to implement; it only requires
maintaining integer counters per-process and comparing
them against two thresholds. This state is reset after each
configuration change.

Processing REMOVE and JOIN alerts Every process
ingests broadcast alerts by observers about edges to their
subjects. A REMOVE alert reports that an edge to the sub-
ject process is faulty; a JOIN alert indicates that an edge
to the subject is to be created. By design, a JOIN alert can
only be about a process not in the current configuration
C , and REMOVE alerts can only be about processes in C .
There cannot be JOIN and REMOVE alerts about the same
process in C .

Every process p tallies up distinct REMOVE and JOIN

alerts in the current configuration view as follows. For
each observer/subject pair (o, s), p maintains a value
M(o, s) which is set to 1 if an alert was received from
observer o regarding subject s; and it is set to (default) 0
if no alert was received. A tally(s) for a process s is the
sum of entries M(∗, s).

Stable and unstable report modes We use two pa-
rameters H and L, 1≤ L≤H ≤K. A process p considers
a process s to be in a stable report mode if |tally(s)| ≥ H

at p. A stable report mode indicates that p has received
at least H distinct observer alerts about s, hence we con-
sider it “high fidelity”; A process s is in an unstable re-

port mode if tally(s) is in between L and H. If there are
fewer than L distinct observer alerts about s, we consider
it noise. Recall that Rapid does not revert alerts; hence, a
stable report mode is permanent once it is reached. Note
that, the same thresholds are used for REMOVE and JOIN

reports; this is not mandatory, and is done for simplicity.

Aggregation Each process follows one simple rule
for aggregating tallies towards a proposed configuration
change: delay proposing a configuration change un-

til there is at least one process in stable report mode

and there is no process in unstable report mode. Once
this condition holds, the process announces a configura-
tion change proposal consisting of all processes in sta-
ble report mode, and the current configuration identi-
fier. The proposed configuration change has the almost-
everywhere agreement property, which we analyze in §8
and evaluate in §7. Figure 4 depicts the almost every-
where agreement mechanism at a single process.

392    2018 USENIX Annual Technical Conference USENIX Association



Ensuring liveness: implicit detections and reinforce-

ments There are two cases in which a subject process
might get stuck in an unstable report mode and not accrue
H observer reports. The first is when the observers them-
selves are faulty. To prevent waiting for stability forever,
for each observer o of s, if both o and s are in the un-
stable report mode, then an implicit-alert is applied from
o to s (i.e., an implicit REMOVE if s is in C and a JOIN

otherwise; o is by definition always in C ).
The second is the case when a subject process has

good connections to some observers, and bad connec-
tions to others. In this case, after a subject s has been in
the unstable reporting mode for a certain timeout period,
each observer o of s reinforces the detection: if o did not
send a REMOVE message about s already, it broadcasts a
REMOVE about s to echo existing REMOVEs.

4.3 View-change Agreement

We use the result of each process’ CD proposal as in-
put to a consensus protocol that drives agreement on a
single view-change.

The consensus protocol in Rapid has a fast, leaderless
path in the common case, that has the same overhead
as simple gossip. The fast path is built around the Fast
Paxos algorithm [53]. In our variation, we use the CD re-
sult as initial input to processes, instead of having an ex-
plicit proposer populating the processes with a proposal.
Fast Paxos reaches a decision if there is a quorum larger
than three quarters of the membership set with an identi-
cal proposal. Due to our prudent almost-everywhere CD
scheme, with high probability, all processes indeed have
an identical multi-process cut proposal. In this case, the
VC protocol converges simply by counting the number
of identical CD proposals.

The counting protocol itself uses gossip to disseminate
and aggregate a bitmap of “votes” for each unique pro-
posal. Each process sets a bit in the bitmap of a proposal
to reflect its vote. As soon as a process has a proposal for
which three quarters of the cluster has voted, it decides
on that proposal.

If there is no fast-quorum support for any proposal
because there are conflicting proposals, or a timeout is
reached, Fast Paxos falls back to a recovery path, where
we use classical Paxos [52] to make progress.

In the face of partitions [36], some applications may
need to maintain availability everywhere (AP), and oth-
ers only allow the majority component to remain live to
provide strong consistency (CP). Rapid guarantees to re-
configure processes in the majority component. The re-
maining processes are forced to logically depart the sys-
tem. They may wait to rejoin the majority component,
or choose to form a separate configuration (which Rapid
facilitates quickly). The history of the members forming
a new configuration will have an explicit indication of

these events, which applications can choose to use in any
manner that fits them (including ignoring).

5 Logically Centralized Design

We now discuss how Rapid runs as a logically central-
ized service, where a set of auxiliary nodes S records the
membership changes for a cluster C . This is a similar
model to how systems use ZooKeeper to manage mem-
bership: the centralized service is the ground truth of the
membership list.

Only three minor modifications are required to the pro-
tocol discussed in §4:

1. Nodes in the current configuration C continue mon-
itoring each other according to the k-ring topology
(to scale the monitoring load). Instead of gossiping
these alerts to all nodes in C , they report it only to
all nodes in S instead.

2. Nodes in S apply the CD protocol as before to iden-
tify a membership change proposal from the incom-
ing alerts. However, they execute the VC protocol
only among themselves.

3. Nodes in C learn about changes in the membership
through notifications from S (or by probing nodes in
S periodically).

The resulting solution inherits the stability and agree-
ment properties of the decentralized protocol, but with
reduced resiliency guarantees; the resiliency of the over-
all system is now bound to that of S (F =

S
2 −1) – as with

any logically centralized design. For progress, members
of C need to be connected to a majority partition of S.

6 Implementation

Rapid is implemented in Java with 2362 lines of code
(excluding comments and blank lines). This includes all
the code associated with the membership protocol as well
as messaging and failure detection. In addition, there are
2034 lines of code for tests. Our code is open-sourced
under an Apache 2 license [2].

Our implementation uses gRPC and Netty for messag-
ing. The counting step for consensus and the gossip-
based dissemination of alerts are performed over UDP.
Applications interact with Rapid using the APIs for join-
ing and receiving callbacks described in §3. The logical
identifier (§3) for each process is generated by the Rapid
library using UUIDs. The join method allows users to
supply edge failure detectors to use. Similar to APIs of
existing systems such as Serf [44] and Akka Cluster [69],
users associate application-specific metadata with the
process being initialized (e.g., "role":"backend").

Our default failure detector has observers send probes
to their subjects and wait for a timeout. Observers mark
an edge faulty when the number of communication ex-
ceptions they detect exceed a threshold (40% of the last
10 measurement attempts fail). Similar to Memberlist
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Figure 5: Bootstrap convergence measurements showing
the time required for all nodes to report a cluster size of
N. Rapid bootstraps a 2000 node cluster 2-2.32x faster
than Memberlist, and 3.23-5.81x faster than ZooKeeper.

and Akka Cluster, Rapid batches multiple alerts into a
single message before sending them on the wire.

7 Evaluation

Setup We run our experiments on a shared internal
cloud service with 200 cores and 800 GB of RAM (100
VMs). We run multiple processes per VM, given that the
workloads are not CPU bottlenecked. We vary the num-
ber of processes (N) in the cluster from 1000 to 2000.

We compare Rapid against (i) ZooKeeper [15] ac-
cessed using Apache Curator [13], (ii) Memberlist [47],
the SWIM implementation used by Serf [44] and Con-
sul [45]. For Rapid, we use the decentralized variant
unless specified otherwise (Rapid-C, where a 3-node en-
semble manages the membership of N processes).

We also tested Akka Cluster [69] but found its boot-
strap process to not stabilize for clusters beyond 500 pro-
cesses, and therefore do not present further (see §2.1
and Figure 1). All ZooKeeper experiments use a 3-
node ensemble, configured according to [16]. For Mem-
berlist, we use the provided configuration for single data
center settings (called DefaultLANConfig). Rapid uses
{K,H,L} = {10,9,3} for all experiments and we also
show a sensitivity analysis. We seek to answer:

• How quickly can Rapid bootstrap a cluster?

• How does Rapid react to different fault scenarios?

• How bandwidth intensive is Rapid?

• How sensitive is the almost-everywhere agreement
property to the choice of K,H,L?

• Is Rapid easy to integrate with real applications?

Bootstrap experiments We stress the bootstrap proto-
cols of all three systems under varying cluster sizes. For
Memberlist and Rapid, we start each experiment with a
single seed process, and after ten seconds, spawn a sub-
sequent group of N −1 processes (for ZooKeeper, the 3-
node ZooKeeper cluster is brought up first). Every pro-
cess logs its observed cluster size every second. Every
measurement is repeated five times per value of N. We
measure the time taken for all processes to converge to
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Figure 6: Bootstrap latency distribution for all systems.

Figure 7: Timeseries showing the first 150 seconds of all
three systems bootstrapping a 2000 node cluster.

a cluster size of N (Figure 5). For N = 2000, Rapid im-
proves bootstrap latencies by 2-2.32x over Memberlist,
and by 3.23-5.8x over ZooKeeper.

ZooKeeper suffers from herd behavior during the
bootstrap process (as documented in [18]), resulting in
its bootstrap latency increasing by 4x from when N=1000
to when N=2000. Group membership with ZooKeeper is
done using watches. When the ith process joins the sys-
tem, it triggers i − 1 watch notifications, causing i − 1
processes to re-read the full membership list and regis-
ter a new watch each. In the interval between a watch
having triggered and it being replaced, the client is not
notified of updates, leading to clients observing differ-
ent sequences of membership change events [17]. This
behavior with watches leads to the eventually consistent
client behavior in Figure 7. Lastly, we emphasize that
this is a 3-node ZooKeeper cluster being used exclusively

to manage membership for a single cluster. Adding even
one extra watch per client to the group node at N=2000
inflates bootstrap latencies to 400s on average.

Memberlist processes bootstrap by contacting a seed.
The seed thereby learns about every join attempt. How-
ever, non-seed processes need to periodically execute a
push-pull handshake with each other to synchronize their
views (by default, once every 30 seconds). Memberlist’s
convergence times are thereby as high as 95s on average
when N = 2000 (Figure 7).

Similar to Memberlist, Rapid processes bootstrap by
contacting a seed. The seed aggregates alerts until it
bootstraps a cluster large enough to support a Paxos quo-
rum (minimum of three processes). The remaining pro-
cesses are admitted in a subsequent one or more view
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System N=1000 N=1500 N=2000
ZooKeeper 1000 1500 2000
Memberlist 901 1383 1858

Rapid-C 9 10 7
Rapid 4 8 4

Table 1: Number of unique cluster sizes reported by pro-
cesses in bootstrapping experiments.

Figure 8: Experiment with 10 concurrent crash failures.

changes. For instance, in Figure 7, Rapid transitions
from a single seed to a five node cluster, before forming
a cluster of size 2000. We confirm this behavior across
runs in Table 1, which shows the number of unique
cluster sizes reported for different values of N. In the
ZooKeeper and Memberlist experiments, processes re-
port a range of cluster sizes between 1 and N as the clus-
ter bootstraps. Rapid however brings up large clusters
with very few intermediate view changes, reporting four
and eight unique cluster sizes for each setting. Our log-
ically centralized variant Rapid-C, behaves similarly for
the bootstrap process. However, processes in Rapid-C
periodically probe the 3-node ensemble for updates to the
membership (the probing interval is set to be 5 seconds,
the same as with ZooKeeper). This extra step increases
bootstrap times over the decentralized variant; in the lat-
ter case, all processes participate in the dissemination of
votes through aggregate gossip.

Crash faults We now set N = 1000 to compare the dif-
ferent systems in the face of crash faults. At this size, we
have five processes per-core in the infrastructure, leading
to a stable steady state for all three systems. We then fail
ten processes and observe the cluster membership size
reported by every other process in the system.

Figure 8 shows the cluster size timeseries as recorded
by each process. Every dot in the timeseries represents
a cluster size recording by a single process. With Mem-
berlist and ZooKeeper, processes record several different
cluster sizes when transitioning from N to N −F . Rapid
on the other hand concurrently detects all ten process
failures and removes them from the membership using a
1-step consensus decision. Note, our edge failure detec-
tor performs multiple measurements before announcing
a fault for stability (§6), thereby reacting roughly 10 sec-
onds later than Memberlist does. The results are identical
when the ten processes are partitioned away completely

Figure 9: Asymmetric network failure with one-way net-
work partition on the network interface of 1% of pro-
cesses (ingress path).

Figure 10: Experiment with 80% ingress packet loss on
the network interface of 1% of processes.

from the cluster (we do not show the plots for brevity).

Asymmetric network failures We study how each
system responds to common network failures that we
have seen in practice. These scenarios have also been
described in [49, 19, 37, 67, 41].

Flip-flops in one-way connectivity. We enforce a “flip-
flopping" asymmetric network failure. Here, 10 pro-
cesses lose all packets that they receive for a 20 sec-
ond interval, recover for 20 seconds, and then repeat the
packet dropping. We enforce this by dropping packets
in the iptables INPUT chain. The timeseries of cluster
sizes reported by each process is shown in Figure 9.

ZooKeeper does not react to the injected failures be-
cause clients do not receive packets on the ingress path,
but send heartbeats to the ZooKeeper nodes. Reversing
the direction of connectivity loss as in the next experi-
ment does cause ZooKeeper to react. Memberlist never
removes all the faulty processes from the membership,
and oscillates throughout the duration of the failure sce-
nario. We also find several intervals of inconsistent views
among processes. Unlike ZooKeeper and Memberlist,
Rapid detects and removes the faulty processes.

High packet loss scenario. We now run an experi-
ment where 80% of outgoing packets from the faulty pro-
cesses are dropped. We inject the fault at t = 90s. Fig-
ure 10 shows the resulting membership size timeseries.
ZooKeeper reacts to the failures at t = 200s, and does
not remove all faulty processes from the membership.
Figure 10 also shows how Memberlist’s failure detec-
tor is conservative; even a scenario of sustained high
packet loss is insufficient for Memberlist to conclusively
remove a set of processes from the network. Further-

USENIX Association 2018 USENIX Annual Technical Conference    395



KB/s (received / transmitted)
System Mean p99 max
ZooKeeper 0.43 / 0.01 17.52 / 0.33 38.86 / 0.67
Memberlist 0.54 / 0.64 5.61 / 6.40 7.36 / 8.04
Rapid 0.71 / 0.71 3.66 / 3.72 9.56 / 11.37

Table 2: Mean, 99th percentile and maximum network
bandwidth utilization per process.
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Figure 11: Almost-everywhere agreement conflict prob-
ability for different combinations of H, L and failures F
when K=10. Note the different y-axis scales.

more, we observe view inconsistencies with Memberlist
near t = 400s. Rapid, again, correctly identifies and re-
moves only the faulty processes.

Memory utilization. Memberlist (written in Go) used
an average of 12MB of resident memory per process.
With Rapid and ZooKeeper agents (both Java based), GC
events traced using -XX:+PrintGC report min/max heap
utilization of 10/25MB and 3.5/16MB per process.

Network utilization. Table 2 shows the mean, 99th
and 100th percentiles of network utilization per sec-
ond across processes during the crash fault experiment
(1000 processes). Rapid has a peak utilization of 9.56
KB/s received (and 11.37 KB/s transmitted) versus 7.36
KB/s received (8.04 KB/s transmitted) for Memberlist.
Rapid therefore provides stronger guarantees than Mem-
berlist for a similar degree of network bandwidth utiliza-
tion. ZooKeeper clients have a peak ingress utilization of
38.86 KB/s per-process on average to learn the updated
view of the membership.

K, H, L sensitivity study We now present the effect of
K, H and L on the almost-everywhere agreement prop-
erty of our multi-process detection technique. We ini-
tialize 1000 processes and select F random processes to
fail. We generate alert messages from the F processes’
observers and deliver these alerts to each process in a
uniform random order. We count the number of pro-
cesses that announce a membership proposal that did not
include all F processes (a conflict). We run all parame-
ter combinations for H = {6,7,8,9},L= {1,2,3,4},F =
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Figure 12: Transaction latency when testing an in-house
gossip-style failure detector and Rapid for robustness
against a communication fault between two processes.
The baseline failure detector triggers repeated failovers
that reduce throughput by 32%.

{2,4,8,16} with 20 repetitions per combination.
Figure 11 shows the results. As our analysis (§8) pre-

dicts, the conflict rate is highest when the gap between
H and L is lowest (H = 6,L = 4) and the number of fail-
ures F is 2. This setting causes processes to arrive at a
proposal without waiting long enough. As we increase
the gap H −L and increase F , the algorithm at each pro-
cess waits long enough to gather all the relevant alerts,
thereby diminishing the conflict probability. Our system
is thereby robust across a range of values; for H −L = 5
and F = 2, we get a 2% conflict rate for different values
of H and L. Increasing to H−L= 6 drops the probability
of a conflict by a factor of 4.

Experience with end-to-end workloads We inte-
grated Rapid within use cases at our organization that
required membership services. Our goal is to understand
the ease of integrating and using Rapid.

Distributed transactional data platform. We worked
with a team that uses a distributed data platform that
supports transactions. We replaced the use of its in-
house gossip-based failure detector that uses all-to-all
monitoring, with Rapid. The failure detector recom-
mends membership changes to a Paxos-based reconfig-
uration mechanism, and we let Rapid provide input to
the re-configuration management instead. Our integra-
tion added 62 and removed 25 lines of code. We also
ported the system’s failure detection logic such that it
could be supplied to Rapid as an edge failure detector,
which involved an additional 123 lines of code.

We now describe a use case in the context of this sys-
tem where stable monitoring is required. For total or-
dering of requests, the platform has a transaction serial-
ization server, similar to the one used in Google Megas-
tore [20] and Apache Omid [14]. At any moment in time,
the system has only one active serialization server, and
its failure requires the cluster to identify a new candidate
server for a failover. During this interval, workloads are
paused and clients do not make progress.
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Figure 13: Service discovery experiment. Rapid’s batch-
ing reduces the number of configuration reloads during a
set of failures, thereby reducing tail latency.

We ran an experiment where two update-heavy clients
(read-write ratio of 50-50) each submit 500K read/write
operations, batched as 500 transactions. We injected a
failure that drops all packets between the current seri-
alization server and one other data server (resembling a
packet blackhole as observed by [41]). Note, this fault
does not affect communication links between clients and
data servers. We measured the impact of this fault on the
end-to-end latency and throughput.

With the baseline failure detector, the serialization
server was repeatedly added and removed from the mem-
bership. The repeated failovers caused a degradation of
end-to-end latency and a 32% drop in throughput (Fig-
ure 12). When using Rapid however, the system contin-
ued serving the workload without experiencing any in-
terruption (because no node exceeded L reports).

Service discovery. A common use case for member-
ship is service discovery, where a fleet of servers need
to be discovered by dependent services. We worked
with a team that uses Terraform [46] to drive deploy-
ments where a load balancer discovers a set of backend
servers using Serf [44]. We replaced their use of Serf
in this workflow with an agent that uses Rapid instead
(the Rapid specific code amounted to under 20 lines of
code). The setup uses nginx [1] to load balance requests
to 50 web servers (also using nginx) that serve a static
HTML page. All 51 machines run as t2.micro instances
on Amazon EC2. Both membership services update ng-
inx’s configuration file with the list of backend servers on
every membership change. We then use an HTTP work-
load generator to generate 1000 requests per-second. 30
seconds into the experiment, we fail ten nodes and ob-
serve the impact on the end-to-end latency (Figure 13).

Rapid detects all failures concurrently and triggers a
single reconfiguration because of its multi-node mem-
bership change detection. Serf, which uses Memberlist,
detects multiple independent failures that result in sev-
eral updates to the nginx configuration file. The load bal-
ancer therefore incurs higher latencies when using Serf
at multiple intervals (t=35s and t=46s) because nginx is

reconfiguring itself. In the steady state where there are
no failures, we observe no difference between Rapid and
Serf, suggesting that Rapid is well suited for service dis-
covery workloads, despite offering stronger guarantees.

8 Summary of Proofs

In the interest of space, we report the complete proof
of correctness in a tech report [51], and only present the
key take aways here. Our consensus engine is standard,
and borrows from known literature on consensus algo-
rithms [53, 32, 52]. We do not repeat its proof of Agree-
ment and Liveness.

It is left to prove that faced with F failures in a config-
uration C, the stable failure detector detects and outputs
F at all processes with high probability. We divide the
proof into two parts.

Detection guarantee For parameters L and K, we can
detect a failure of a set F as long as |F | is bounded by the

relationship |F |

|C|
≤ (1− L

K
− λ

2K
). Here, λ is the second

eigenvalue of the underlying monitoring topology, and is
tied to the expansion properties of the topology. In our
experiments, with K = 10, we have observed consistently

that λ
2K

< 0.45 (which, for L = 3, yields |F |

|C|
≤ 0.25).

Almost-everywhere agreement Second, we prove the
almost-everywhere agreement property about our multi-
process cut protocol. We assume that there are t fail-
ures, and that nodes receive alerts about these failures in
a uniform random order. Let Pr[B(z)] be the probability
that the CD protocol at z outputs a subset of t that differs
from the output at other nodes. We show that if multi-
ple processes fail simultaneously, Pr[B(z)] exponentially

decreases with increasing K.

9 Conclusions

In this paper, we demonstrated the effectiveness of de-
tecting cluster-wide multi-process cut conditions, as op-
posed to detecting individual node changes. The high fi-
delity of the CD output prevents frequent oscillations or
incremental changes when faced with multiple failures.
It achieves unanimous detection almost-everywhere, en-
abling a fast, leaderless consensus protocol to drive
membership changes. Our implementation successfully
bootstraps clusters of 2000 processes 2-5.8x times faster
than existing solutions, while being stable against com-
plex network failures. We found Rapid easy to integrate
end-to-end within a distributed transactional data plat-
form and a service discovery use case.
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Abstract

We study online graph queries that retrieve nearby nodes

of a query node in a large network. To answer such

queries with high throughput and low latency, we par-

tition the graph and process in parallel across a cluster of

servers. Existing distributed graph systems place each

partition on a separate server, where query answering

over that partition takes place. This design has two major

disadvantages. First, the router maintains a fixed rout-

ing table (or, policy), thus less flexible for query routing,

fault tolerance, and graph updates. Second, the graph

must be partitioned so that the workload across servers is

balanced, and the inter-machine communication is min-

imized. To maintain good-quality partitions, it is also

required to update the existing partitions based on work-

load changes. However, graph partitioning, online moni-

toring of workloads, and dynamically updating the parti-

tions are expensive.

We mitigate these problems by decoupling graph stor-

age from query processors, and by developing smart

routing strategies with graph landmarks and embedding.

Since a query processor is no longer assigned any fixed

part of the graph, it is equally capable of handling any re-

quest, thus facilitating load balancing and fault tolerance.

Moreover, due to our smart routing strategies, query pro-

cessors can effectively leverage their cache, reducing the

impact of how the graph is partitioned across storage

servers. Our experiments with several real-world, large

graphs demonstrate that the proposed framework gRout-
ing, even with simple hash partitioning, achieves up to an

order of magnitude better query throughput compared to

existing distributed graph systems that employ expensive

graph partitioning and re-partitioning strategies.

1 INTRODUCTION

Graphs with millions of nodes and billions of edges are

ubiquitous to represent highly interconnected structures

including the World Wide Web, social networks, knowl-

edge graphs, genome and scientific databases, medical
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Figure 1: State-of-the-art distributed graph querying systems

(e.g., SEDGE [35], Trinity [28], Horton [26])

and government records. To support online search and

query services (possibly from many clients) with low la-

tency and high throughput, data centers and cloud opera-

tors consider scale-out solutions, in which the graph and

its data are partitioned horizontally across cheap com-

modity servers. We assume that the graph topology and

the data associated with nodes and edges are co-located,

since they are often accessed together [34, 16, 17]. Keep-

ing with the modern database trends to support low-

latency operations, we target a fully in-memory system,

and use disks only for durability [35, 26, 28]. In this pa-

per, we study online queries that explore a small region

of the entire graph, and require fast response time. These

queries usually start with a query node, and traverse its

neighboring nodes up to a certain number of hops (we

shall formally introduce our queries in Section 2). For

efficiently answering online queries in a distributed envi-

ronment, state-of-the-art systems (e.g., [35, 28, 26]) first

partition the graph, and then place each partition on a

separate server, where query answering over that parti-

tion takes place (Figure 1). Since the server which con-

tains the query node can only handle that request, the

router maintains a fixed routing table (or, a fixed routing

strategy, e.g., modulo hashing). Hence, these systems are

less flexible with respect to query routing and fault tol-
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erance, e.g., adding more machines will require updating

the routing table. Besides, an effective graph partitioning

in these systems must achieve: (1) workload balancing to

maximize parallelism, and (2) locality of data access to

minimize network communication. It has been demon-

strated [35] that sophisticated partitioning schemes im-

prove the performance of graph querying, compared to

an inexpensive hash partitioning.

Due to power-law degree distribution of real-world

graphs, it is difficult to get high-quality partitions [6].

Besides, a one-time partitioning cannot cope with later

updates to graph structure or variations in query work-

loads. Several graph re- partitioning and replication-

based strategies were proposed, e.g., [35, 18, 16].

However, online monitoring of workload changes, re-

partitioning of the graph topology, and migration of

graph data across servers are expensive; and they reduce

the efficiency and throughput of online querying [25].

Our Contribution. In contrast to existing systems, we

consider a different architecture, which relies less on an

effective graph partitioning. Instead, we decouple query

processing and graph storage into two separate tiers (Fig-

ure 2). In a decoupled framework, the graph is parti-

tioned across servers allocated to the storage tier, and

these storage servers hold the graph data in their main

memory. Since a query processor is no longer assigned

any fixed part of the graph, it is equally capable of han-

dling any request, thus facilitating load balancing and

fault tolerance. At the same time, the query router can

send a request to any of the query processors, which adds

more flexibility to query routing, e.g., more query pro-

cessors can be added (or, a query processor that is down

can be replaced) without affecting the routing strategy.

Another benefit due to decoupled design is that each tier

can be scaled-up independently. If a certain workload is

processing intensive, more servers could be allocated to

the processing tier. On the contrary, if the graph size in-

creases over time, more servers can be added in the stor-

age tier. This decoupled architecture, being generic, can

be employed in many existing graph querying systems.

The idea of decoupling, though effective, is not

novel. Facebook implemented a fast caching layer,

Memcached on top of a graph database that scales

the performance of graph query answering [19].

Google’s F1 [29] and ScaleDB (http://scaledb.com/

pdfs/TechnicalOverview.pdf) are based on a decoupling

principle for scalability. Recently, Loesing et. al. [14]

and Binnig et. al. [3] demonstrated the benefits of a de-

coupled, shared-data architecture, together with low la-

tency and high throughput Infiniband network. Shalita

et. al. [27] employed de-coupling for an optimal assign-

ment of HTTP requests over a distributed graph storage.

Our contribution lies in designing a smart query rout-
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Figure 2: Decoupled architecture for graph querying

ing logic to utilize the cache of query processors over

such decoupled architecture. Achieving more cache hits

is critical in a decoupled architecture – otherwise, the

query processors need to retrieve the data from stor-

age servers, which will incur extra communication costs.

This is a non-trivial problem, e.g., exploiting cache local-

ity and balancing workloads are conflicting in nature. For

example, to achieve maximum cache locality, the router

can send all the queries to the same processor (assum-

ing no cache eviction happens). However, the workload

of the processors will be highly imbalanced, resulting

in lower throughput. In addition, graph workloads are

significantly different from traditional database applica-

tions. The interconnected nature of graph data results

in poor locality, and each query usually accesses mul-

tiple neighboring nodes spreading across the distributed

storage. Therefore, to maximize cache hit rates at query

processors, it is not sufficient to only route the queries

on same nodes to the same processor. Rather, succes-

sive queries on neighboring nodes should also be routed

to the same processor, since the neighborhoods of two

nearby nodes may significantly overlap. To the best of

our knowledge, such smart query routing schemes for

effectively leveraging the cache contents were not con-

sidered in existing graph querying systems.

We summarize our contributions as follows.

1. We study for the first time the problem of smart

query routing aimed at improving the throughput

and efficiency of distributed graph querying.

2. In contrast to many distributed graph querying sys-

tems [35, 28, 26], we consider a different archi-

tecture that decouples query processors from stor-

age layer, thereby achieving flexibility in system de-

ployment, query routing, scaling up, load balancing,

and fault tolerance.

3. We develop smart, lightweight, and adaptive query

routing algorithms that improve cache hit rates

at query processors, thus reducing communication
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with storage layer, and making our design less re-

liant on a sophisticated graph partitioning scheme

across storage layer.

4. We empirically demonstrate throughput and ef-

ficiency of our framework, gRouting on three

real-life graphs, while also comparing with two

existing distributed graph processing systems

(SEDGE/Giraph [35] and PowerGraph [6]). Our

decoupled implementation, even with its simple

hash partitioning, achieves up to an order of mag-

nitude higher throughput compared to existing sys-

tems with expensive graph partitioning schemes.

2 PRELIMINARIES
2.1 Graph Data Model
A heterogeneous network can be modeled as a labeled,

directed graph G = (V,E,L ) with node set V , edge set

E , and label set L , where (1) each node u∈V represents

an entity in the network, (2) each directed edge e ∈ E

denotes the relationship between two entities, and (3) L

is a function which assigns to each node u and every edge

e a label L (u) (and L (e), respectively) from a finite

alphabet. The node labels represent the attributes of the

entities, e.g., name, job, location, etc, and edge labels the

type of relationships, e.g., founder, place founded, etc.

We store the graph as an adjacency list. Every node

in the graph is added as an entry in the storage where

the key is the node id and the value is an array of 1-hop

neighbors. If the nodes and edges have labels, they are

stored in the corresponding value entry. For each node,

we store both incoming and outgoing edges. Both in-

coming and outgoing edges of a node can be important

from the context of different queries. As an example, if

there is an edge founded from Jerry Yang to Yahoo! in

a knowledge graph, there also exists a reverse relation

founded by from Yahoo! to Jerry Yang. Such informa-

tion could be useful in answering queries about Yahoo!.

2.2 h-Hop Traversal Queries
We discuss various h-hop queries over heterogeneous, di-

rected graphs in the following.

1. h-hop Neighbor Aggregation: Count the number

of h-hop neighbors of a query node.

2. h-step Random Walk with Restart: The query

starts at a node, and runs for h-steps — at each step,

jumps to one of its neighbors with equal probability,

or returns to the query node with a small probability.

3. h-hop Reachability: Find if a given target node is

reachable from a given source node within h-hops.

The aforementioned queries are often used as the ba-

sis for more complex graph operations. For example,

neighborhood aggregation is critical for node labeling

and classification, that is, the label of an unlabeled node

could be assigned as the most frequent label which is

present within its h-hop neighborhood. The h-step ran-

dom walk is useful in expert finding, ranking, discover-

ing functional modules, complexes, and pathways. Our

third query can be employed in distance-constrained and

label-constrained reachability search, as well as in ap-

proximate graph pattern matching queries [16].

2.3 Decoupled Design

We decouple query processing from graph storage. This

decoupling happens at a logical level. As an example,

query processors can be different physical machines than

storage servers. On the other hand, the same physical

machine can also run a query processing daemon, to-

gether with storing a graph partition in its main mem-

ory as a storage server. However, the logical separation

between the two layers is critical in our design.

The advantages of this separation are more flexibility

in query routing, system deployment, and scaling up, as

well as achieving better load balancing and fault toler-

ance. However, we must also consider the drawbacks of

having the graph storage apart. First, query processors

may need to communicate with the storage tier via the

network. This includes an additional penalty to the re-

sponse time for answering a query. Second, it is possible

that this design causes high contention rates on either the

network, storage tier, or both.

To mitigate these issues, we design smart routing

schemes that route queries to processors which are likely

to have the relevant data in their cache, thereby reduc-

ing the communication overhead between processing and

storage tiers. Below, we discuss various components of

our design, including storage, processing tier, and router.

Graph Storage Tier. The storage tier holds all graph

data by horizontally partitioning it across cheap com-

modity servers. Sophisticated graph partitioning will

benefit our decoupled architecture as follows. Let us as-

sume that the neighboring nodes can be stored in a page

within the same storage server, and the granularity of

transfer from storage to processing tier is a page con-

taining several nodes. Then, we could actually ship a set

of relevant nodes with a single request if the graph is par-

titioned well. This will reduce the number of times data

are transferred between the processing and storage tier.

However, our lightweight and smart query routing

techniques exploit the notion of graph landmarks [12]

and embedding [36], thereby effectively utilizing the

cache of query processors that stores recently used graph

data. As demonstrated in our experiments, due to our

smart routing, many neighbors up to 2∼3-hops of a query

node can be found locally in the query processors’ cache.

Therefore, the partitioning scheme employed across stor-

age servers becomes less important.

Query Processing Tier. The processing tier consists of
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servers where the actual query processing takes place.

These servers do not communicate with each other [14].

They only receive queries from the query router, and also

request graph data from the storage tier if necessary.

To reduce the amount of calls made to the storage tier,

we utilize the cache of the query processors. Whenever

some data is retrieved from the storage, it is saved in

cache, so that the same request can be avoided in the near

future. However, it imposes a constraint on the maxi-

mum storage capacity. When the addition of a new entry

surpasses this storage limit, one or more old entries are

evicted from the cache. We select the LRU (i.e., Least

Recently Used) eviction policy because of its simplic-

ity. LRU is usually implemented as the default cache re-

placement policy, and it favors recent queries. Thus, it

performs well with our smart routing schemes.

Query Router. The router creates a thread for each pro-

cessor, and opens a connection to send queries by follow-

ing the routing schemes which we shall describe next.

3 QUERY ROUTING STRATEGIES

When a query arrives at the router, the router decides

the appropriate query processor to which the request

could be sent. For existing graph querying systems, e.g.,

SEDGE [35] and Horton [26], where each query proces-

sor is assigned a graph partition, this decision is fixed and

defined in the routing table; the processor which contains

the query node handles the request. With a decoupled ar-

chitecture, no such mapping exists. Hence, we design

novel routing schemes with the following objectives.

3.1 Routing Algorithm Objectives

1. Leverage each processor’s cached data. Let us con-

sider t successive queries received by the router. The

router will send them to query processors in a way such

that the average number of cache hits at the processors

is maximized. This, in turn, reduces the average query

processing latency. However, as stated earlier, to achieve

maximum cache hits, it will not be sufficient to only route

the queries on same nodes to the same processor. Rather,

successive queries on neighboring nodes should also be

routed to the same processor, since the neighborhoods of

two nearby nodes may significantly overlap. This will be

discussed shortly in Requirement 1.

2. Balance workload even if skewed or contains

hotspot. As earlier, let us consider a set of t successive

queries. A naı̈ve approach will be to ensure that each

query processor receives equal number of queries, e.g.,

a round-robin way of query dispatching by the router.

However, each query might have a different workload,

and would require a different processing time. We, there-

fore, aim at maximizing the overall throughput via query

stealing (explained in Requirement 2), which automati-

cally balances the workload across query processors.

3. Make fast routing decisions. The average time at the

router to dispatch a query should be minimized, ideally a

small constant time, or much smaller than O(n), where n

is the number of nodes in the input graph. This reduces

the query processing latency.

4. Have low storage overhead in the router. The

router may store auxiliary data to enable fast routing de-

cisions. However, this additional storage overhead must

be a small fraction compared to the graph size.

3.2 Challenges in Query Routing
It is important to note that our routing objectives are not

in harmony; in fact, they are often conflicting with each

other. First, in order to achieve maximum cache local-

ity, the router can send all the queries to the same pro-

cessor (assuming no cache eviction happens). However,

the workload of the processors will be highly imbalanced

in this case, resulting in lower throughput. Second, the

router could inspect the cache of each processor before

making a good routing decision, but this will add net-

work communication delay. Hence, the router must infer

what is likely to be in each processor’s cache.

In the following, we introduce two concepts that are

directly related to our routing objectives, and will be use-

ful in designing smart routing algorithms.

Topology-Aware Locality. To understand the notion of

cache locality for graph queries (i.e., routing objective 1),

we define a concept called topology-aware locality. If u

and v are nearby nodes, then successive queries on u and

v must be sent to the same processor. It is very likely that

the h-hop neighborhoods of u and v significantly overlap.

But, how will the router know that u and v are nearby

nodes? One option is to store the entire graph topology

in the router; but this could have a high storage over-

head. For example, the WebGraph dataset that we ex-

perimented with has a topology of size 60GB. Ideally,

a graph with 107 nodes can have up to 1014 edges, and

in such cases, storing only the topology itself requires

petabytes of memory. Thus, we impose a requirement on

our smart routing schemes as follows.

Requirement 1 The additional storage at the router for

enabling smart routing should not be asymptotically

larger than O(n), n being the number of nodes; how-

ever, the routing schemes should still be able to exploit

topology-aware locality.

Achieving this goal is non-trivial, as the topology size

can be O(n2), and we provision for only O(n) space to

approximately preserve such information.

Query Stealing. Routing queries to processors that

have the most useful cache data might not always be

the best strategy. Due to power-law degree distribu-

tion of real-world graphs, processing queries on differ-

ent nodes might require different amount of time. There-

fore, the processors dealing with high-degree nodes will
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have more workloads. Load imbalance can also happen

if queries are concentrated in one specific region of the

graph. When that happens, all queries will be sent to one

processor, while other processors remain idle. To rec-

tify such scenarios, we implement query stealing in our

routing schemes as stated next.

Requirement 2 Whenever a processor is idle and is

ready to handle a new query, if it does not have any other

requests assigned to it, it may “steal” a request that was

originally intended for another processor.

Query stealing is a well established technique for load

balancing that is prevalently used by the HPC commu-

nity, and there are several ways how one can implement

it. We perform query stealing at the router level. In par-

ticular, the router sends the next query to a processor

only when it receives an acknowledgement for the pre-

vious query from that processor. The router also keeps

a queue for each connection in order to store the future

queries that need to be delivered to the corresponding

processor. By monitoring the length of these queues, it

can estimate how busy a processor is, and this enables

the router to rearrange the future queries for load balanc-

ing. We demonstrate the effectiveness of query stealing

in our experiments (Section 4.6).

We next design four routing schemes — the first two

are naı̈ve and do not meet all the objectives of smart rout-

ing. On the other hand, the last two algorithms follow the

requirements of a smart routing strategy.

3.3 Baseline Methods
3.3.1 Next Ready Routing

Next Ready routing is our first baseline strategy. The

router decides where to send a query by choosing the

next processor that has finished computing and is ready

for a new request. The main advantages are: (1) It is

easy to implement. (2) Routing decisions are made in

constant time. (3) No preprocessing or storage overhead

is required. (4) The workload is well balanced. However,

this scheme fails to leverage processors’ cache.

3.3.2 Hash Routing

The second routing scheme that we implement is hash,

and it also serves as a baseline to compare against our

smart routing techniques. The router applies a fixed hash

function on each query node’s id to determine the proces-

sor where it sends the request. In our implementation, we

apply a modulo hash function.

In order to facilitate load balancing in the presence

of workload skew, we implement query stealing mech-

anism. Whenever a processor is idle and is ready to han-

dle a new query, if it does not have any other requests

assigned to it, it steals a request that was originally in-

tended for another processor. Since queries are queued

in the router, the router is able to take this decision, and

ensures that there are no idle processors when there is

still some work to be done. Our hash routing has all the

benefits of next ready, and very likely it sends a repeated

query to the same processor, thereby getting better lo-

cality out of the cache. However, hash routing cannot

capture topology-aware locality.

3.4 Proposed Methods

3.4.1 Landmark Routing

Our first smart routing scheme is based on landmark

nodes [12]. One may recall that we store both incom-

ing and outgoing edges of every node, thus we consider

a bi-directed version of the input graph in our smart rout-

ing algorithms. We select a small set L of nodes as land-

marks, and also pre-compute the distance of every node

to these landmarks. We determine the optimal number of

landmarks based on empirical results. Given some land-

mark node l ∈ L, the distance d(u,v) between any two

nodes u and v are bounded as follows:

|d(u, l)− d(l,v)| ≤ d(u,v)≤ d(u, l)+ d(l,v) (1)

Intuitively, if two nodes are close to a given landmark,

they are likely to be close themselves. Our landmark

routing is based on the above principle. We first select

a set of landmarks that partitions the graph into P re-

gions, where P is the total number of processors. We

then decide a one-to-one mapping between those regions

and processors. Now, if a query belongs to a specific re-

gion (decided based on its distance to landmarks), it is

routed to the corresponding processor. Clearly, this rout-

ing strategy requires a preprocessing phase as follows.

Preprocessing. We select landmarks based on their node

degree and how well they spread over the graph [1].

Our first step is to find a certain number of landmarks

considering the highest degree nodes, and then compute

their distance to every node in the graph by performing

breadth first searches (BFS). If we find two landmarks to

be closer than a pre-defined threshold, the one with the

lower degree is discarded. The complexity of this step

is O(|L|e), due to |L| number of BFS, where |L| is the

number of landmarks, and e is the number of edges.

Next, we assign the landmarks to query processors as

follows. First, every processor is assigned a “pivot” land-

mark with the intent that pivot landmarks are as far from

each other as possible. The first two pivot landmarks

are the two that are farthest apart considering all other

landmark pairs. Each next pivot is selected as the land-

mark that is farthest from all previously selected pivot

landmarks. Each remaining landmark is assigned to the

processor which contains its closest pivot landmark. The

complexity of this step is O(|L|2 + |L|P), where P is the

number of processors.

Finally, we define a “distance” metric d between the

graph nodes and query processors. The distance of a

USENIX Association 2018 USENIX Annual Technical Conference    405



node u to a processor p is defined as the minimum dis-

tance of u to any landmark that is assigned to processor

p. This information is stored in the router, which requires

O(nP) space and O(nL) time to compute, where n is the

number of nodes. Therefore, the storage requirement at

the router is linear in the number of nodes.

Routing. To decide where to send a query on node u,

the router verifies the pre-computed distance d(u, p) for

every processor p, and selects the one with the smallest

d(u, p) value. As a consequence, the routing decision

time is linear in the number of processors: O(P). This is

very efficient since the number of processors is small.

In contrast to our earlier baseline routings, this method

is able to leverage topology-aware locality. It is likely

that query nodes that are in the neighborhood of each

other will have similar distances to the processors; hence,

they will be routed in a similar fashion. On the other

hand, the landmark routing scheme is less flexible with

respect to addition or removal of processors, since the

assignment of landmarks to processors, as well as the

distances d(u, p) for every node u and each processor p

needs to be recomputed.

The distance metric d(u, p) is useful not only in find-

ing the best processor for a certain query, but it can also

be used for load balancing, fault tolerance, dealing with

workload skew, and hotspots. As an example, let us as-

sume that the closest processor for a certain query is very

busy, or is currently down. Since the distance metric

gives us distances to all processors, the router is able

to select the second, third, or so on closest processor.

This form of load balancing will impact the nearby query

nodes in the same way; and therefore, the modified rout-

ing scheme will still be able to capture topology-aware

locality. In practice, it can be complex to define exactly

when a query should be routed to its next best query pro-

cessor. We propose a formula that calculates the load-

balanced distance dLB(u, p) as given below.

dLB(u, p) = d(u, p)+
Processor Load

Load Factor
(2)

Thus, the query is always routed to the processor with

the smallest dLB(u, p). The router uses the number of

queries in the queue corresponding to a processor as the

measure of its load. The load factor is a tunable param-

eter, which allows us to decide how much load would

result in the query to be routed to another processor. We

find its optimal value empirically.

Dealing with Graph Updates. During addition/ dele-

tion of nodes and edges, one needs to recompute the dis-

tances from every node to each of the landmarks. This

can be performed efficiently by keeping an additional

shortest-path-tree data structure [31]. However, to avoid

the additional space and time complexity of maintain-

ing a shortest-path-tree, we follow a simpler approach.

When a new node u is added, we compute the distance of

this node to every landmark, and also its distance d(u, p)
to every processor p. In case of an edge addition or dele-

tion between two existing nodes, for these two end-nodes

and their neighbors up to a certain number of hops (e.g.,

2-hops), we recompute their distances to every landmark,

as well as to every processor. Finally, in case of a node

deletion, we handle it by considering deletion of multiple

edges that are incident on it. After a significant number

of updates, previously selected landmark nodes become

less effective; thus, we recompute the entire preprocess-

ing step periodically in an off-line manner.

3.4.2 Embed Routing

Our second smart routing scheme is the Embed routing,

which is based on graph embedding [36, 4]. We embed a

graph into a lower dimensional Euclidean space such that

the hop-count distance between graph nodes are approxi-

mately preserved via their Euclidean distance (Figure 3).

We then use the resulting node co-ordinates to determine

how far a query node is from the recent history of queries

that were sent to a specific processor. Clearly, embed

routing also requires a preprocessing step.

Preprocessing. For efficiently embedding a large graph

in a D-dimensional Euclidean plane, we first select a set

L of landmarks and find their distances from each node

in the graph. We then assign co-ordinates to landmark

nodes such that the distance between each pair of land-

marks is approximately preserved. We, in fact, minimize

the relative error in distance for each pair of landmarks,

defined below.

ferror(v1,v2) =
|d(v1,v2)−EuclideanDist(v1,v2)|

d(v1,v2)
(3)

Here, d(v1,v2) is the hop-count distance between v1

and v2 in the original graph, and EuclideanDist(v1,v2)
is their Euclidean distance after the graph is embedded.

We minimize the relative error since we are more inter-

ested in preserving the distances between nearby node

pairs. Our problem is to minimize the aggregate of such

errors over all landmark pairs — this can be cast as

a generic multi-dimensional global minimization prob-

lem, and could be approximately solved by many off-the-

shelf techniques, e.g., the Simplex Downhill algorithm

that we apply in this work. Next, every other node’s co-

ordinates are found also by applying the Simplex Down-

hill algorithm that minimizes the aggregate relative dis-

tance error between the node and all the landmarks. The

overall graph embedding procedure consumes a mod-

est preprocessing time: O(|L|e) due to BFS from |L|

landmarks, O(|L|2D) for embedding the landmarks, and

O(n|L|D) for embedding the remaining nodes. In ad-

dition, the second step is completely parallelizable per

node. Since each node receives D co-ordinates, it re-

quires total O(nD) space in the router, which is linear in

the number of nodes. Unlike landmark routing, a benefit
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Figure 3: Example of graph embedding in 2D Euclidean plane

of embed routing is that the preprocessing is indepen-

dent of the system topology, allowing more processors to

be easily added at a later time.

Routing. The router has access to each node’s co-

ordinates. By keeping an average of the query nodes’

co-ordinates that it sent to each processor, it is able to

infer the cache contents in these processors. As a con-

sequence, the router finds the distance between a query

node u and a processor p, denoted as d1(u, p), and de-

fined as the distance of the query node’s co-ordinates to

the historical mean of the processor’s cache contents. As

recent queries are more likely to influence the cache con-

tents due to LRU eviction policy, we use the exponential

moving average to compute the mean of the processor’s

cache contents. Initially, the mean co-ordinates for each

processor are assigned uniformly at random. Next, as-

suming that the last query on node v was sent to proces-

sor p, its updated mean co-ordinates are:

MeanCo-ordinates(p) = α ·MeanCo-ordinates(p)

+ (1−α) ·Co-ordinates(v) (4)

The smoothing parameter α ∈ (0,1) in the above

Equation determines the degree of decay used to discard

older queries. For example, α close to 0 assigns more

weight only to the last query, and α close to 1 decreases

the weight on the last query. We determine the optimal

value of α based on experimental results. Finally, the

distance between a query node u and a processor p is

computed as given below.

d1(u, p) = ||MeanCo-ordinates(p)−Co-ordinates(u)||
(5)

Since we embed in an Euclidean plane, we use the L2

norm to compute distances. We select the processor with

the smallest d1(u, p) distance. One may observe that the

routing decision time is only O(PD), P being the number

of processors and D the number of dimensions.

Analogous to landmark routing, we now have a dis-

tance to each processor for a query; and hence, we are

able to make routing decisions taking into account the

processors’ workloads and faults. As earlier, we define a

load-balanced distance dLB1 (u, p) between a query node

u and a processor p, and the query is always routed to the

processor with the smallest dLB1 (u, p) value.

dLB1 (u, p) = d1(u, p)+
Processor Load

Load Factor
(6)

The embed routing has all the benefits of smart rout-

ing. This routing scheme divides the active regions

Dataset # Nodes # Edges Size on Disk (Adj. List)

WebGraph 105 896 555 3 738 733 648 60.3 GB

Memetracker 96 608 034 418 237 269 8.2 GB

Freebase 49 731 389 46 708 421 1.3 GB

Table 1: Graph datasets

(based on workloads) of the graph into P partitions in

an overlapping manner, and assigns them to the proces-

sors’ cache. Moreover, it dynamically adapts the parti-

tions with new workloads. Therefore, it bypasses the ex-

pensive graph partitioning and re-partitioning problems

to the existing cache replacement policy of the query pro-

cessors. This shows the effectiveness of embed routing.

Dealing with Graph Updates. Due to pre-assignment

of node co-ordinates, embed routing is less flexible with

respect to graph updates. When a new node is added, we

compute its distance from the landmarks, and then assign

co-ordinates to the node by applying the Simplex Down-

hill algorithm. Edge updates and node deletions are han-

dled in a similar method as discussed for landmark rout-

ing. We recompute the entire preprocessing step peri-

odically in an off-line manner to deal with a significant

number of graph updates.

4 EVALUATION

4.1 Experiment Setup

• Cluster Configuration. We perform experiments on a

cluster of 12 servers having 2.4 GHz Intel Xeon proces-

sors, and interconnected by 40 Gbps Infiniband, and also

by 10 Gbps Ethernet. Most experiments use a single core

of each server with the following configuration: 1 server

as router, 7 servers in the processing tier, 4 servers in the

storage tier; and communication over Infiniband with re-

mote direct memory access (RDMA). Infiniband allows

RDMA in a few microseconds. We use a limited main

memory (0∼4GB) as the cache of processors. Our codes

are implemented in C++.

To implement our storage tier, we use RAMCloud
[20], which provides high throughput and very low

read/write latency, in the order of 5-10 µs for every put/

get operation. It is able to achieve this efficiency because

it keeps all stored values in memory as a distributed key-

value store, where a key is hashed to determine on which

server the corresponding key-value pair will be stored.

• Datasets. We summarize our data sets in Table 1.

As explained in Section 2, we store both in- and out-

neighbors. The graph is stored as an adjacency list —

every node-id in the graph is the key, and the correspond-

ing value is an array of its 1-hop neighbors. The graph is

partitioned across storage servers via RAMCloud’s de-

fault and inexpensive hash partitioning scheme, Mur-
murHash3 over graph nodes.

WebGraph: The uk-2007-05 web graph (http://law.di.

unimi.it/ datasets.php) is a collection of web pages,

which are represented as nodes, and their hyperlinks as

USENIX Association 2018 USENIX Annual Technical Conference    407



edges. Memetracker: This dataset (snap.stanford.edu)

tracks quotes and phrases that appeared from August 1

to October 31, 2008 across online news spectrum. We

consider documents as nodes and hyper-links as edges.

Freebase: We download the Freebase knowledge graph

from http://www.freebase.com/. Nodes are named enti-

ties (e.g., Google) or abstract concepts (e.g., Asian peo-

ple), and edges denote relations (e.g., founder).

• Online Query Workloads. We consider three online

graph queries [35], discussed in Section 2.2 — all require

traversals up to h hops: (1) h-hop neighbor aggregation,

(2) h-step random walk with restart, and (3) h-hop reach-

ability. We consider a uniform mixture of above queries.

We simulate a scenario when queries are drawn from a

hotspot region; and the hotspots change over time. In

particular, we select 100 nodes from the graph uniformly

at random. Then, for each of these nodes, we select

10 different query nodes which are at most r-hops away

from that node. Thus, we generate 1000 queries; every

10 of them are from one hotspot region, and the pairwise

distance between any two nodes from the same hotspot

is at most 2r. Finally, all queries from the same hotspot

are grouped together and sent consecutively. We report

our results averaged over 1000 queries.

To realize the effect of topology-aware locality, we

consider smaller values of r and h, e.g., r = 2 and h= 2.

• Evaluation Metrics.

Query Response Time measures the average time re-

quired to answer one query.

Query Processing Throughput measures the number of

queries that can be processed per unit time.

Cache Hit Rate: We report cache hit rates, since higher

cache hit rates reduce the query response time. Con-

sider t queries q1,q2, . . . , qt received successively by the

router. For simplicity, let us assume that each query re-

trieves all h-hop neighbors of that query node (i.e., h-hop

neighborhood aggregation). We denote by |Nh(qi)| the

number of nodes within h-hops from qi. Among them,

we assume that |Nc
h(qi)| number of nodes are found in

the query processors’ cache.

Cache Hit Rates :=
t

∑
i=1

|Nc
h(qi)| (7)

Cache Miss Rates :=
t

∑
i=1

(|Nh(qi)|− |Nc
h(qi)|) (8)

• Parameter Setting. We find that embed routing per-

forms the best compared to three other routing strategies.

We also set the following parameter values since they

perform the best in our implementation. We shall, how-

ever, demonstrate sensitivity of our routing algorithms

with these parameters in Section 4.6.

We use maximum 4GB cache in each query proces-

sor. All experiments are performed with the cache ini-

tially empty (cold cache). The number of landmarks |L|

is set as 96 with at least 3 hops of separation from each

other. For graph embedding, 10 dimensions are used.

Load Factor (which impacts query stealing) is set as 20,

and the smoothing parameter α = 0.5.

In order to realize how our routing schemes perform

when there is no cache in processors, we consider an ad-

ditional “no-cache” scheme. In this mode, all queries are

routed following the next ready technique; however, as

there is no cache in query processors, there will be no

overhead due to cache lookup and maintenance.

• Compared Systems. Decoupled architecture and our

smart routing logic, being generic, can benefit many

graph querying systems. Nevertheless, we compare

gRoutingwith two distributed graph processing systems:

SEDGE/Giraph [35] and PowerGraph [6]. Other recent

graph querying systems, e.g., [26, 19] are not publicly

available for a direct comparison.

SEDGE [35] was developed for h-hop traversal queries

on top of Giraph or Google’s Pregel system [15]. It fol-

lows in-memory, vertex-centric, bulk-synchronous paral-

lel model. SEDGE employs ParMETIS software [9] for

graph partitioning and re-partitioning. PowerGraph [6]

follows in-memory, vertex-centric, asynchronous gather-

apply-scatter model. In the beginning, only the query

node is active, and each active node then activates its

neighbors, until all the h-hop neighbors from the query

nodes are activated. PowerGraph also employs a sophis-

ticated node-cut based graph partitioning method.

4.2 Comparison with Graph Systems

We compare gRouting (embed routing is used) with two

distributed graph processing systems, SEDGE/Giraph
[35] and PowerGraph [6]. As these systems run on Eth-

ernet, we consider a version of gRouting on Ethernet

(gRouting-E). We consider 12 machines configuration

of SEDGE and PowerGraph, since query processing and

graph storage in them are coupled on same machines. In

contrast, we fix the number of routing, processing, and

storage servers as 1, 7 and 4, respectively. The average

2-hop neighborhood size varies from 10K∼60K nodes

over our datasets.

In Figure 4, we find that our throughput, with hash

partitioning and over Ethernet, is 5∼10 times better than

SEDGE and PowerGraph that employ expensive graph

partitioning and re- partitioning. The re-partitioning in

SEDGE requires around 1 hour and also apriori informa-

tion on future queries, whereas PowerGraph graph par-

titioning finishes in 30 min. On the contrary, gRouting
performs lightweight hash partitioning over graph nodes,

and does not require any prior knowledge of the future

workloads. Moreover, our throughput over Infiniband is

10∼35 higher than these systems. These results show the

usefulness of smart query routing over expensive graph

partitioning and re-partitioning schemes.
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Figure 4: Throughput comparison
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Figure 5: Performance with varying number of query processors and storage servers, WebGraph
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Figure 6: Impact of cache size, WebGraph

Next, we report scalability, impact of cache sizes, and

graph updates over our largest Webgraph dataset, and us-

ing Infiniband network.

4.3 Scalability and Deployment Flexibility

One of the main benefits of separating processing and

storage tiers is deployment flexibility — they can be

scaled-up independently, which we investigate below.

Processing Tier: We vary the number of processing

servers from 1 to 7, while using 1 router and 4 storage

servers. In Figure 5(a), we show throughput with vary-

ing number of processing servers. Corresponding cache

hit rates are presented in Figure 5(b). For these exper-

iments, we assume that each query processor has suffi-

cient cache capacity (4GB) to store the results of all 1000

queries (i.e, adjacency lists of 52M nodes, shown in Fig-

ure 5(b)). Since, for every experiment, we start with an

empty cache, and then send the same 1000 queries in or-

der, maximum cache hit happens when there is only one

query processor. As we increase the number of query

processors, these queries get distributed and processed

by different processors, thus cache hit rate generally de-

creases. This is more evident for our baseline routing

schemes, and we find that their throughput saturates with

3∼5 servers. These findings demonstrate the usefulness

of smart query routing: To maintain same cache hit rate,

queries must be routed intelligently. Since Embed routing

is able to sustain almost same cache hit rate with many

query processors (Figure 5(b)), its throughput scales lin-

early with query processors.

Storage Tier: We next vary the number of storage

servers from 1 to 7, whereas 1 server is used as the router

and 4 servers as query processors (Figure 5(c)). When

we use 1 storage server, we can still load the entire 60GB

Webgraph on the main memory of that server, since each

of our servers has sufficient RAM. The throughput is the

least when there is only one storage server. We observe

that 1∼2 storage servers are insufficient to handle the de-

mand created by 4 query processors. However, with 4

storage servers, the throughput saturates, since the bot-

tleneck is transferred to query processors. This is evi-

dent from our previous results — the throughput with 4

query processors was about 120 queries per second (Fig-

ure 5(a)), which is the same throughput achieved with 4

storage servers in the current experiments.

4.4 Impact of Cache Sizes

In previous experiments, we assign 4GB cache to each

processor, which was large enough for our queries; and

we never discarded anything from the cache. We next

perform experiments when it needs to evict cache entries.

In Figure 6, we present average response times with var-

ious cache capacities. At the largest, with 4GB cache

per processor, no eviction occurs. Therefore, there is no

additional performance gain by increasing the cache ca-

pacity. On the other extreme, having cache with less than
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Landmark Embed
embed per embed

landmark per node

35 sec 36 sec 1 sec

Table 2: Preprocess times

Landmark Embed Input graph

2.8 GB 4GB 60.3GB

Table 3: Preprocess storage
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Figure 8: Impact of embedding dimensionality

64MB per processor results in worse response times than

what was obtained with no-cache scheme, represented

by the horizontal red line (86ms in Figure 6). When the

cache does not have much space, it ends up evicting en-

tries that might have been useful in the future. Hence,

there are not enough cache hits to justify its maintenance

and lookup costs when cache size < 64MB/ processor.

We also evaluate our routing strategies in terms of

minimum cache requirement to achieve a response time

of 86ms, the break-even point of deciding whether or not

to add a cache. Figure 6(c) shows that smart routing

schemes achieve this response time with a much lower

cache, as compared to that of the baselines. These re-

sults illustrate that our smart routings utilize the cache

well; and for the same amount of cache, they achieve

lower response time compared to baseline routings.

4.5 Preprocessing and Graph Updates
Preprocessing Time and Storage: For landmarks rout-

ing, we compute the distance of every node to all land-

marks, which can be evaluated by performing a BFS
from each landmark. This takes about 35 sec for one

landmark in Webgraph (Table 2), and can be parallelized

per landmark. For embed routing, in addition, we need

to embed every node with respect to landmarks, which

requires about 1 sec per node in Webgraph, and is again

parallelizable per node.

The preprocessed landmark routing information con-

sumes about 2.8GB storage space in case of Webgraph.

On the contrary, with embedding dimensionality 10, the

Webgraph embedding size is only 4GB. Both these pre-

processed information are modest compared to the orig-

inal Webgraph size, which is around 60GB (Table 3).

Graph Updates: In these experiments, we preprocess

a reduced subgraph of the original dataset. For exam-

ple, at 20% of the original dataset (Figure 7), we select

only 20% of all nodes uniformly at random, and compute

preprocessed information over the subgraph induced by

these selected nodes. However, we always run our query

over the complete Webgraph. We incrementally compute
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Figure 9: Impact of load factor

the necessary information for the new nodes, as they are

being added, without changing anything on the prepro-

cessed information of the earlier nodes. As an example,

in case of embed routing, we only compute the distance

of a new node to the landmarks, and thereby find the

coordinates of that new node. However, one may note

that with the addition of every new node and its adja-

cent edges, the preprocessed information becomes out-

dated (e.g., the distance between two earlier nodes might

decrease). Since we do not change anything on the pre-

processed information, this experiment demonstrates the

robustness of our method with respect to graph updates.

Figure 7 depicts that our smart routing schemes are

robust for a small number of graph updates. With embed

routing, preprocessed information over the whole graph

results in response time of 34 ms, whereas preprocessed

information at 80% of the graph results in response time

of 37 ms (i.e., response time increases by only 3 ms).

As expected, the response time deteriorates when prepro-

cessing is performed on a smaller amount of graph data,

e.g., with only 20% graph data, response time increases

to 44 ms, which is comparable to the response time of

baseline hash routing (48 ms).

4.6 Sensitivity Analysis
We find that gRouting is more sensitive towards load fac-

tor (due to query stealing) and embedding dimensional-

ity, compared to other parameters, e.g., number of land-

marks and smoothing factor (α). Due to lack of space,

we present sensitivity analysis with respect to load factor

and embedding dimensionality in Figures 8 and 9. Sen-

sitivity results with other parameters can be found in our

extended version [10]. In all figures, we also show our

best baseline — hash routing, for comparison.

Embedding Dimensionality: We consider the perfor-

mance implications of the number of dimensions on em-

bed routing. For these experiments, we create several

embeddings, with dimensionality from 2 to 30. While the

relative error in distance between node pairs decreases

with higher dimensions, it almost saturates after 10 di-

mensions (Figure 8(a)). On the other hand, we observe

that the average response time reduces until dimension

10, and then it slowly increases with more dimensions

(Figure 8(b)). This is because with higher dimensions,

we reduce the distance prediction error, thereby correctly

routing the queries and getting more cache hits. How-

ever, a large number of dimensions also increases the

routing decision making time at the router. Hence, the

least response time is achieved at dimensionality 10.
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Load Factor: This parameter impacts both of our smart

routing schemes. We find from Equations 3 and 7 that

smaller values of load factor diminish the impact of

“smart” routing (i.e., landmarks and node co-ordinates),

instead queries will be routed to the processor having the

minimum workload. On the other hand, higher values

of load factor reduces the impact of load balancing (i.e.,

query stealing) — queries would be routed solely based

on landmarks and node co-ordinates. Therefore, in these

experiments, we expect that the throughput will initially

increase with higher values of load factor, until it reaches

a maximum, and then it would start decreasing. Indeed,

it can be observed in Figure 9 that with load factor be-

tween 10∼20, the best throughput is achieved.

5 Related Work

We studied smart query routing for distributed graph

querying — a problem for which we are not aware of

any prior work. In the following we, however, provide a

brief overview of work in neighborhood areas.

Landmarks and Graph Embedding. Landmarks were

used in path finding, shortest path estimation, and in esti-

mating network properties [12, 24, 1, 23]. Graph embed-

ding [36] was employed in internet routing, such as pre-

dicting internet network distances and estimating mini-

mum round trip time between hosts [4]. To the best of

our knowledge, ours is the first study that applies graph

embedding and landmarks to design effective routing al-

gorithms for distributed graph querying.

Graph Partitioning, Re-partitioning, Replication.

The balanced, minimum-edge-cut graph partitioning di-

vides a graph into k partitions such that each partition

contains same number of nodes, and the number of cut-

edges is minimized. Even for k = 2, the problem is NP-

hard, and there is no approximation algorithm with a

constant approximation ratio unless P =NP [18]. There-

fore, efforts were made in developing polynomial-time

heuristics — METIS, Chaco, SCOTCH, to name a few.

More sophisticated graph partitioning schemes were also

proposed, e.g., node-cut [6], complementary partitioning

[35], and label propagation [33], among many others.

Graph re-partitioning is critical for online queries,

since the graph topology and workload change over time

[16]. The methods in [35, 18, 11] perform re-partitioning

based on past workloads. Incremental partitioning was

developed for dynamic and stream graphs [37, 32, 30].

With the proposed embed routing, we bypass these ex-

pensive graph partitioning and re-partitioning challenges

to the existing cache replacement policy.

Replication was used for graph partitioning, re-

partitioning, load balancing, and fault tolerance. In ear-

lier works, [22, 8] proposed one extreme version by repli-

cating the graph sufficiently so that, for every node in

the graph, all of its neighbors are present locally. Mon-

dal et. al. designed an overlapping graph re-partitioning

scheme [16], which updates its partitions based on the

past read/ write patterns. Huang et. al. [7] designed a

lightweight re- partitioning and replication scheme con-

sidering access locality, fault tolerance, and dynamic up-

dates. While we also replicate the graph data at query

processors’ cache in an overlapping manner, we only

replicate the active regions of the graph based on recent

workloads. Unlike [16, 7] we do not explicitly run any

graph replication strategy at our processors or storage

servers. Instead, our smart routing algorithms automati-

cally perform replications at processors’ cache.

Graph Caching, De-coupling, Multi-Query Opti-

mization. Facebook uses a fast caching layer, Mem-
cached on top of a graph database to scale the perfor-

mance of graph querying [19]. Graph-structure-aware

and workload-adaptive caching techniques were also

proposed, e.g., [2, 21]. There are other works on view-

based graph query answering [5] and multi-query opti-

mizations [13]. Unlike ours, these approaches require

the workload to be known in advance.

Recently, Shalita et. al. [27] employed decoupling

for an optimal assignment of HTTP requests over a dis-

tributed graph storage. First, they perform a static par-

tition of the graph in storage servers based on co-access

patterns. Next, they find past workloads on each par-

tition, and dynamically assign these partitions to query

processors such that load balancing can be achieved.

While their decoupling principle and dynamic assign-

ment at query processors are similar to ours, they still

explicitly perform a sophisticated graph partitioning at

storage servers, and update such partitions in an offline

manner. In contrast, our smart routing algorithms au-

tomatically partition the active regions of the graph in

a dynamic manner and store them in the query proces-

sors’ cache, thereby achieving both load balancing and

improved cache hit rates.

6 CONCLUSIONS

We studied h-hop traversal queries – a generalized form

of various online graph queries that access a small re-

gion of the graph, and require fast response time. To

answer such queries with low latency and high through-

put, we follow the principle of decoupling query pro-

cessors from graph storage. Our work emphasized less

on the requirements for an expensive graph partition-

ing and re-partitioning technique, instead we developed

smart query routing strategies for effectively leveraging

the query processors’ cache contents, thereby improving

the throughput and reducing latency of distributed graph

querying. In addition to workload balancing and deploy-

ment flexibility, gRouting is able to provide linear scala-

bility in throughput with more number of query proces-

sors, works well in the presence of query hotspots, and is

also adaptive to workload changes and graph updates.
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Abstract
This paper tackles the cache thrashing problem caused
by the non-deterministic scheduling feature of bulk syn-
chronous parallel (BSP) execution in GPUs. In the BSP
model, threads can be executed and interleaved in any
order before reaching a barrier synchronization point,
which requires the entire working set to be in cache for
maximum data reuse over time. However, it is not always
possible to fit all the data in cache at once. Thus, we pro-
pose a locality-aware software throttling framework that
throttles the number of active execution tasks, prevents
cache thrashing, and enhances data reuse over time. Our
locality-aware software throttling framework focuses on
an important class of applications that operate on sparse
matrices (graphs). These applications come from the do-
mains of linear algebra, graph processing, machine learn-
ing and scientific simulation. Evaluated on over 200 real
sparse matrices and graphs that suffer from cache thrash-
ing in the Florida sparse matrix collection, our technique
achieves an average of 2.01X speedup, a maximum of
6.45X speedup, and a maximum performance loss≤5%.

1 Introduction

Operations on sparse matrix and graph are important for
solving linear algebra and optimization problems that
arise in data science, machine learning, and physics-
based simulation. In this paper we focus on a fundamen-
tal sparse matrix operation that relates an input vector x
with an output vector y. Let x be an n× 1 vector, y be
an m× 1 vector, and A be a m× n matrix, the relation
between y and x is defined as y = Ax, where

yi = reduce op{Aik
⊙

xk}, 1≤ k ≤ n.

When the operator reduce op is sum and the binary
operator

⊙
is multiplication, the operation is sparse ma-

∗First authors Chen and Hayes have made equal contributions to
this work and are listed alphabetically.

trix vector multiplication (SpMV). When the operator re-
duce op is min and the binary operator

⊙
is +, the oper-

ation is an iterative step in the single source shortest path
(SSSP) problem [13]. An example is shown in Figure 1.

y1 y2 y3 y4

x1 x2 x3

w0 w1 w2
w3 w4 w5

w0
w1
w2 w3

w4 w4

y = Ax where  yi = reduce_op{Aik ⊙ xk, 1 <= k <= N } 

Figure 1: A Fundamental Sparse Matrix Operation

However, poor data reuse is often a problem when run-
ning sparse applications on GPUs. Throttling is a useful
technique to improve data reuse. Unlike other locality
enhancement techniques that focus on spatial data reuse
on many-core, for instance, the memory coalescing tech-
niques [33], throttling improves data reuse over time by
limiting the number of actively executed tasks.

Throttling prioritizes the execution of the tasks that
reuse the data in the cache over those that do not reuse
the data in the cache. Figure 2 shows an example of
how throttling improves cache data reuse. Assuming the
cache capacity is 4, in the original case, the cache can-
not hold all the data elements in the execution list which
will inevitably cause cache (capacity) misses. Throt-
tling helps by dividing the execution into two phases and
scheduling one phase after another. Data elements in
each phase can now fit into cache and be fully reused
so that no cache (capacity) misses will occur.

Throttling for GPU has been studied extensively in
the hardware context. Rogers and others [27] discovered
that limiting the number of active wavefronts (warps) en-
hances cache data reuse over time and alleviates cache
thrashing. The DYNCTA framework [19] limits the
number of CTAs for memory intensive applications and
results in better cache performance. The work by Chen
and others [8] augmented cache bypassing with a dy-
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<X1  Y1>
<X1  Y4>
<X2  Y1>
<X2  Y3>
<X3  Y1>
<X3  Y3>
<X4  Y1>
<X4  Y4>

Cache Capacity: 4

3 Items Cannot Fit in

Capacity Misses Occur

Y3 X3 X4

X1 Y1 X2 Y4

<X1  Y1>
<X1  Y4>
<X4  Y1>
<X4  Y4>

Phase One

Cache Capacity: 4

No Capacity Misses

X1 Y1 X4 Y4

<X2  Y1>
<X3  Y1>
<X2  Y3>
<X3  Y3>

Phase Two

Cache Capacity: 4

No Capacity Misses

X2 Y1 X3 Y3

Figure 2: Throttling Example

namic warp-throttling technique to improve both cache
performance and energy efficiency. However, all these
prior throttling techniques on GPUs have been developed
as hardware modifications.

In this paper, we present a software throttling frame-
work that targets irregular applications operating on
sparse data. Our software throttling framework will first
divide the entire workload into multiple partitions such
that the working set of each partition fits into the cache
and the data communication between different partitions
is minimum (we will refer to each partition as cache-fit
partition or cache-fit work group throughout this paper).
Then we schedule the cache-fit partitions and let each of
them be processed independently to ensure throttling.

There are three main challenges for realizing software
throttling. First, the traditional work partition models
focus on minimizing data reuse among different parti-
tions with load-balancing constraints [2, 6, 29]. How-
ever, cache-fit work partitioning is not necessarily load-
balanced, it should be data-balanced across different par-
titions. Second, inappropriate scheduling of cache-fit
partitions might result in low execution pipeline utiliza-
tion. For each of the cache-fit partitions that have low
data reuse, there may not be enough tasks running con-
currently, which will make the execution pipeline units
not fully utilized and degrade the computation through-
put. Last, reducing the overhead of software throttling
is important and yet challenging, especially for finding
minimum communication cache-fit partitions, which is
the most time-consuming step in software throttling.

To tackle these challenges, we propose the three fol-
lowing techniques. To obtain cache-fit partitions, we de-
velop an efficient data-balanced work partition model.
Our partition model can balance data while minimizing
the communication cost among different partitions. We
also introduce a split-join scheduling model to take ad-
vantage of the trade-off between throttling and through-
put. The split-join scheduling model adaptively merges
partitions to avoid low execution pipeline utilization
and/or use a concurrent queue based implementation for
relaxed barrier synchronization. We reduce the partition
overhead by a coarse-grained partition model which was
built upon a multi-level partition paradigm. Instead of

partitioning the original work matrix (graph), our model
partitions a coarsened matrix (graph) which can signif-
icantly reduce the partition overhead while maintaining
similarly good partition quality.

Our throttling technique is a pure software based im-
plementation. It is readily deployable and highly effi-
cient. Evaluated over 228 sparse matrices and graphs
from Florida matrix collection [11] - the set of matri-
ces which suffer from cache thrashing (their working
set cannot entirely fit into the L2 cache on the Maxwell
GPU and Pascal GPU we tested), our software throttling
method can achieve an average 2.01X speedup (maximal
6.45X speedup).

As far as we know, this is the first work that system-
atically investigates software throttling techniques for
GPUs and is extensively evaluated on real sparse matri-
ces and graphs. The contribution and the outline of our
paper is summarized as follows:

• We introduce an analytical model named data-
balanced work partition for locality-aware software
throttling. Efficient heuristics are developed to
achieve (near-)minimum communication cache-fit
work partitions that can be further scheduled to al-
leviate GPU cache thrashing (Section 2).

• We exploit the trade-off between cache locality
and execution pipeline utilization and provide a set
of practical cache-fit work group scheduling poli-
cies based on adaptive merging and concurrent de-
queuing. We discuss the advantages/disadvantages,
the applicability, and the effectiveness of each
scheduling policy in different settings. (Section 3).

• Our method requires no hardware modification. It
is low overhead and readily deployable. We in-
troduce efficient overhead control mechanisms for
graph(matrix)-based work partition. (Section 4).

• We conduct a comprehensive data analysis for over
200 large real sparse matrices(graphs). Our frame-
work in particular works well for the set of sparse
matrices that have large working sets and suffer
from high GPU cache contention (Section 5).

2 Data-Balanced Work Partition

Our software throttling framework first divides the entire
workload into cache-fit partitions. A cache-fit partition’s
working set fits into the cache such that it will not cause
any cache capacity miss. This section presents the con-
cept and methodology of data-balanced work partition.
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2.1 Graph Representation
In this paper, we focus on a fundamental operation in
sparse linear algebra and optimization applications. It is
defined as follows. Assume we have an m×n matrix A,
an n×1 vector x, and an m×1 vector y such that:

yi = reduce op{Aik
⊙

xk},1≤ k ≤ n (1)

The operator
⊙

is a binary operator, and the operator
reduce op is a reduction operator. When

⊙
is product

× and reduce op is sum, the operation is a sparse matrix
vector multiplication (SpMV). When

⊙
is plus + and

reduce op is min, the operation is a min/product step in
the single source shortest path (SSSP) problem.

We represent a computation unit as a 2-tuple (x j,yi)
which represents (1) one binary

⊙
operation between

x j and Ai j , and (2) one step in the reduction operation
reduce op for obtaining yi. We only focus on vector x
and y, since the matrix entries will be used only once in
Equation (1).

We represent the entire workload as a 2-tuple list. Us-
ing a graph representation, each data element in the 2-
tuple is modeled as a vertex and each tuple is modeled
as an edge that connects the corresponding two vertices.
Performing a work partition is essentially performing an
edge partition on the graph, as illustrated in Figure 3.

2.2 Data-Balanced v.s. Load-Balanced
We formally define the data-balanced work partition
model. The input is a list of 2-tuple modeled as a work
graph and the output is a set of minimum-interaction
work partitions such that the number of unique vertices,
which represent data elements, in every work partition is
less than or equal to the cache capacity.

In contrast to prior load-balanced work partition, we
perform data-balanced work partition. We denote this
problem as a Vertex-balanced Edge-Partition (V-EP)
model and we give the definition below:

Definition 2.1.
Vertex-balanced Edge-Partition (V-EP) Problem
Given a graph G = (V,E) with the set of vertices V and
the set of edges E, and vertex capacity constraint T .
Let x ={e1,e2, ...ek} denote a partition of the edges of
G into k disjoint subsets, and let V (ei) denote the set of
unique vertices in ei. ∀n ∈V , let P(n) denote the number
of subsets that n’s incident edges fall into. We optimize
the total vertex replication cost:

minimize
x

R(x) = ∑
n∈V

(P(n)−1)

subject to ∀i ∈ [1..k], |V (ei)| ≤ T
(2)

In prior work, the Edge-balanced Edge-Partition (E-
EP) problem has been well studied particularly in the dis-

tributed graph processing setting [6, 14] and also for bal-
ancing workloads in GPU [25, 26]. However, the V-EP
problem is not. Both the V-EP and E-EP problems mini-
mize vertex replication cost, while the E-EP model aims
to balance the load among processors in space, and the
V-EP model aims to alleviate cache thrashing and maxi-
mize data reuse over time.

(a) Data-Balanced Work Partition (b) Load-Balanced Work Partition
Partition 1 Partition 2

4 Data Items in Each Partition
4 Data Items in One and  

6 Data Items in the Other Partition

Partition 1 Partition 2

y1 y2

x1 x2

y3 y4y3 y4

x3 x4 x3 x4

y1 y2

x1 x2

Figure 3: Data-Balanced v.s. Load-Balanced

We use an example in Figure 3 to illustrate the dif-
ference between the V-EP work partition and the E-EP
work partition. Assuming the cache capacity is 4, Figure
3 (a) shows a 2-way V-EP work partition: one partition
has 4 edges and the other has 2, the unique vertices of
both (4 vertices) fit into cache. Figure 3 (b) shows an-
other 2-way E-EP partition: Each partition has 3 edges,
however partition 2 has 6 unique vertices and do not fit
into cache. Thus the E-EP model might exacerbate rather
than alleviate the cache thrashing problem.

2.3 Partition Framework
We propose a data-balanced work partition framework
that ensure the working set of each partition is of the
same size and in the meantime the data reuse across dif-
ferent partitions is reduced as much as possible.

Our partition framework is a recursive bisection
framework. Bisection is a 2-way balanced edge partition
that ensures minimum vertex replica between two equal-
size edge partitions. The optimal bisection is a well stud-
ied problem [25]. We take the advantage of the bisection
method and perform hierarchical partitioning.

During the recursive partition process, the framework
bisects a sub-graph that has more unique vertices than
specified by the capacity constraint. It keeps bisecting
until no such sub-graph exists.

We use a tree data structure to keep track of the ob-
tained sub-graphs. Starting from the root node that rep-
resents the entire work graph, the framework bisects the
corresponding graph and generates two children nodes:
each of the child nodes corresponds to a sub-graph that
contains half of the edges from the parent node. If either
or both children nodes violate the capacity constraint, ei-
ther or both will be added to the list of sub-graphs that
need to be further bisected. The process repeats until all
leaf nodes become cache-fit work partitions.
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The detailed algorithm is listed below in Algorithm
1. The data-balanced work partition (DBWP) procedure
takes the work graph G and the cache capacity constraint
T as input, and generates a set of cache-fit partitions P as
output. The bisect function in Algorithm 1 we adopted
is based on the best existing balanced edge partition al-
gorithm named SPAC [26, 24] by Li and others. We will
discuss the implementation details and the overhead con-
trol mechanisms of the bisect function in Section 4.

Algorithm 1 Data-Balanced Work-Partition (DBWP)
Input: work graph G, cache capacity T
Output: cache-fit partition set P

1: procedure DBWP(G, T , P)
2: if |G.data elements|> T then
3: (lchild, rchild) = bisect(G)
4: DBWP(lchild, T , P)
5: DBWP(rchild, T , P)
6: else
7: add G to P
8: end if
9: end procedure

We use an example to illustrate the DBWP procedure
in Figure 4. In this example, the graph has 8 edges and
8 vertices, and the cache capacity constraint is 4. Per-
forming bisect for the sub-graph represented by the tree
root node, we obtain two sub-graphs each of which has 4
edges. The vertex replica cost is optimum: 2, since two
nodes y2 and x2 appear in both partitions.

AllTuples

A  
(x1, y1), (x1, y2) 
(x2, y1), (x2, y2)

B, C

B 
(x2, y3)    
(x3, y3)

C  
(x4, y2)  
(x4, y4)

(a) Bisection Process (b) Tree Representation

Capacity Constraint: 4

{(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x2, y3), (x3, y3), (x4, y2), (x4, y4)}
AllTuples = 

}{

}{ }{

y1

x1

y2 y3 y4

x2 x3 x4

Partition A Partition B Partition C

Figure 4: Hierarchical Bisection Example

The first sub-graph A in Figure 4 (a) has 4 unique ver-
tices and does not violate the capacity constraint, we do
not perform further bisection on sub-graph A. The other
sub-graph, however, has 6 unique vertices and does not
fit into the cache. Therefore we perform the second bi-
section and obtain partitions B and C where the vertex
replica cost is optimum (0 in this case). At this point,
there is no sub-graph that does not fit into the cache,
therefore we terminate the bisection process. The tree
representation is shown in Figure 4 (b).

3 Cache-Fit Partitions Scheduling

DBWP model outputs a set of cache-fit partitions. All
these partitions need to be processed independently to
minimize cache-thrashing interference. However, naive
scheduling of these partitions might result in low exe-
cution pipeline utilization. In this section, we introduce
four different Cache-Fit Partitions Scheduling methods:
Cache-Fit Scheduling (CF), Cache-Fit Queue Schedul-
ing (CF-Q), Split-Join Scheduling (SJ) and Split-Join
Queue Scheduling (SJ-Q).

CF works well when all cache-fit partitions have high
data reuse. SJ is good for cases when the sparsity struc-
ture is already known, for instance, pruned deep leaning
neural networks. Both CF-Q and SJ-Q can loosely en-
force throttling and provide a better performance.

3.1 Cache-Fit Scheduling
A straightforward way to isolate the computation of dif-
ferent cache-fit partitions is to assign each partition a
single kernel function and execute these kernels one by
one. A kernel is a function that is executed on GPU. All
threads within a GPU kernel will need to finish before the
entire kernel complete – there is a strict barrier between
different GPU kernels. Moreover, between two consecu-
tive kernels, the data in the cache will be invalidated.

Here, we propose CF which separates the original ker-
nel functions into multiple kernels, while the number of
which is determined by the number of cache-fit partitions
given by DBWP model. The code of the kernel function
for each cache-fit partition is the same. The only differ-
ence is the input to each kernel. CF ensures that the data
in the cache is fully reused before it was evicted from the
cache within each cache-fit partition.

Original: Kernel<<<blocknum, blockdim>>(TL, N);

Phase 1: Kernel<<<blocknum, blockdim>>(TL’[1], P1);
Phase 2: Kernel<<<blocknum, blockdim>>(TL’[2], P2);……
Phase k: Kernel<<<blocknum, blockdim>>(TL’[k], Pk);

TL is the original tuple list, 
TL[i] is the tuple list corresponding to the ith cache-fit partitions

K is # of cache-fit partitions, N is # of tuples, Pi is # of tuples in TL[i]

Figure 5: Kernel Splitting for Cache-Fit Scheduling

We show the idea of CF in Figure 5. The input 2-
tuple task list T L is split into k 2-tuple lists T L′, which
corresponds to each of the cache-fit partitions. Each new
tuple list will be processed by a single kernel.

3.2 Cache-Fit Queue Scheduling
CF makes sure that each cache-fit partition will be pro-
cessed by one kernel. Although CF can provide good
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throttling performance for a lot of matrices, this schedul-
ing method may cause low execution pipeline utilization
for the type of matrices whose data reuse is low. For ex-
ample, for a given cache size T and average data reuse
ratio r for a cache-fit partition, the total work is T ∗ r/2
using our work graph model. The variable T is fixed for
a given architecture. If r is low, the number of concurrent
tasks in one cache-fit partition p is low and may not keep
the execution pipeline busy.

To avoid this problem, we propose CF-Q, which pro-
cesses the whole tuple list in a single kernel instead of
one invocation per cache-fit partition. However, using a
single kernel means that elements in one cache-fit parti-
tion have no guarantee to be executed without any inter-
ference. To enable throttling, we set up a FIFO queue be-
fore launching the kernel. Each queue entry corresponds
to a chunk of tuples so that adjacent chunks are from the
same cache-fit partition. A warp automatically fetches a
chunk from the queue and process the tuples from that
chunk. We show an example of how CF-Q works in Fig-
ure 6.

Figure 6: Queue Based Scheduling Example

Unlike CF which has explicit barriers to strictly en-
force the independent execution of different cache-fit
partitions, CF-Q uses no barrier. It is possible that the
last chunk in one partition and the first chunk in the
next partition are fetched within a very short time pe-
riod. In Figure 6, chunk 1 and chunk 2 from partition
2 will be running concurrently with chunk N from parti-
tion 1. However, CF-Q can still provide relaxed barriers
between different partitions since chunks from the same
cache-fit partition in the queue will always be retrieved in
consecutive time periods so that no following partitions
can be executed before previous one starts. The pseudo
code of CF-Q is provided in Algorithm 2.

3.3 Split-Join Scheduling
Split-Join (SJ) is another method that exploits the trade-
off between locality and execution pipeline utilization.
SJ dynamically merges the cache-fit partitions that has
low data reuse or combines low data reuse partitions with
a high data reuse partition that is less likely to be inter-
fered. SJ first constructs the tree structure that represents
the hierarchical cache-fit partitions which we discussed

Algorithm 2 Cache-Fit Queue Scheduling
Input: cache-fit partition set P

1: procedure CF-Q(P)
2: for each partition p in P do
3: insert p into queue Q
4: end for
5: Kernel(Q)
6: end procedure
7: procedure KERNEL(Q)
8: while Q is not empty do
9: I ← next queue item (chunk) from Q

10: process I[laneID]
11: end while
12: end procedure

in Section 2.3, we will refer to this as SJ-tree. SJ merges
sibling nodes in the SJ-tree conditionally in a bottom-
up manner. We only consider recombining sibling nodes
as the sibling nodes have better data sharing than non-
sibling nodes and the merging is logarithmic time.

SJ is performed with a fast online profiling process.
We define a profiling pass as a profiling of all the nodes
at one level of the SJ-tree which comprises one traversal
of the entire work graph. So, the entire profiling pro-
cess will take d profiling passes, where d is the depth of
the SJ-tree. It takes at least log(k) and up to k profiling
passes for any given SJ-tree, where k is the number of
leaf nodes in the tree. The lower bound log(k) is reached
when the binary tree is balanced and has log(k) levels.
Moreover, in the worst case scenario, when the tree is
not balanced and at every level there is at most one leaf
node, k profiling passes are needed. We run every work
partition that corresponds to a leaf node in the SJ-tree in
stand-alone mode and record the running time.

We use the first d iterations of the linear algebra and
optimization applications to collect information for pro-
filing. Since those applications we tested take between
50 and 22,000 iterations to converge, the overhead of
profiling can be amortized. For example, G3 circuit need
5 iterations for profiling, and the total profiling time for
Conjugate Gradient (CG) solver takes 0.017 s. The run-
ning time for CG with 22824 iterations is 94.331 s which
gives us 0.018% profiling overhead. In practice, among
all the matrices we used in the experiment, we found that
the SJ-tree had at most 8 levels and thus required at most
8 passes for profiling.

The tree node merging problem can be defined as a
tree-based weighted set cover problem. Merging two sib-
ling nodes is as if choosing their parent node. The prob-
lem becomes how to find a subset of tree nodes P that
will cover all possible cache-fit partitions (leaf nodes)
while minimizing the overall running time:

minimize ∑
x∈P

c(x)

subject to
⋃
x∈P

S(x) = L
(3)
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where L is the set of all leaf nodes, P is the subset of
the tree nodes (both leaf and non-leaf nodes) we want to
find, c(x) is a cost function that denotes the standalone
running time of node x and S(x) is a set function that
returns all leaf nodes of the subtree under node x.

Algorithm 3 Tree Recombination
Input: SJ-tree root
Output: optimal running time of SJ-tree root

1: procedure TREERECOMB(root)
2: return BESTCONFIG(root)
3: end procedure
4: procedure BESTCONFIG(r)
5: le f t t = BESTCONFIG(r.leftChild)
6: right t = BESTCONFIG(r.rightChild)
7: this node t = r.stime
8: r.btime = min(le f t t + right t, this node t)
9: return r.btime

10: end procedure

We develop a linear time algorithm that is capable
of finding the optimum solution for the tree-based set
cover problem. The algorithm processes the tree in post-
topological order. Every node is associated with an at-
tribute btime and an attribute stime. A sub tree’s op-
timum time btime (annotated as an attribute of its root
node) is the minimum of the two items: its root node’s
standalone running time stime and the summation of its
two children subtree’s btime. For a leaf node, its btime
is the same as its standalone running time stime. The
pseudo code is provided in Algorithm 3 together with
an example in Figure 7. This process identifies the best
set cover of the SJ-tree and determines how to recom-
bine cache-fit partitions into every GPU kernel. SJ can
achieve high execution pipeline utilization without sacri-
ficing cache benefits (as data reuse is low for these low
pipeline utilization cases).

stime: 1.2

stime: 0.3

stime: 0.2 stime: 0.2

A

stime: 0.5

B C

D E

A.btime min(A.stime, 
B.btime + C.btime) 0.8

B.btime B.stime 0.5

C.btime min(C.stime, 
D.btime + E.btime) 0.3

D.btime D.stime 0.2

E.btime E.stime 0.2

{B, C} is chosen as the best configuration.

Figure 7: Tree Node Recombination Example

3.4 Split-Join Queue Scheduling
SJ dynamically merges cache-fit partitions that has low
data reuse to ensure high execution pipeline utilization
and good throttling performance. However, although SJ
can provide Strict Barriers between different (merged)

partitions, SJ cannot guarantee the execution order of
those cache-fit partitions inside the merged partitions.

We propose SJ-Q which uses the idea of CF-Q that
places cache-fit partitions in one merged work group
(kernel) into a queue and each kernel will be using one
independent queue. SJ-Q can provide both strict barriers
between different merged partitions and also relaxed bar-
riers between cache-fit partitions from the same merged
partition. In the mean time, it inherits the advantage of
SJ that avoids low execution pipeline utilization.

Sched. Pipeline Prof. Barrier Queue Code
Util. Change

CF Low No Strict (S) No No
CF-Q High No Relaxed (R) Yes Yes

SJ High Yes Strict No No
SJ-Q High Yes S/R Yes Yes

Table 1: Comparison of Four Scheduling Methods:
Sched. refers to Scheduling Method, Prof. refers to if
profiling is needed, and Util. refers to utilization.

Summary CF enforces strict barriers between different
cache-fit partitions to ensure throttling. However, low
execution pipeline utilization may happen which can de-
grade the computation performance; CF-Q uses a queue
based method that can fully utilize the execution pipeline
and loosely enforce barriers between consecutive cache-
fit partitions; SJ merges those low data reuse partitions
into one based on a tree set cover algorithm and online
profiling; SJ-Q enforces strict barriers between different
merged partitions and relaxed barriers between different
cache-fit partitions within one merged partition.

We summarize the features of four scheduling meth-
ods in Table 1. All methods ensure good throttling per-
formance while different methods impose different levels
of barrier synchronization and code change overhead.

4 Implementation

We perform the adaptive overhead control mechanisms
and data reorganization to make our software throttling
method more efficient. We reduce the overhead of bi-
section in the DBWP Model, which is the most time-
consuming part. In particular, we focus on two bisection
algorithms: 1) Coarsened Bisection built upon the SPAC
model by Li and others [25], and 2) K-D tiling built upon
the k-d tree geometric space partitioning method [5].

We also use CPU-GPU pipelining to make the
scheduling overhead transparent [33]: the CPU deter-
mines the best schedule while GPU is doing the actual
computation. We improve the kernel performance by
transforming data layout after we get cache-fit partitions
such that the data access within the same kernel is coa-
lesced as much as possible.
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4.1 Adaptive Overhead Control

Coarsened Bisection Coarsened Bisection is based on
SPAC [25] an effective sequential edge partition model.
SPAC relies on a multi-level partition paradigm, in
which, a graph is coarsened, partitioned, and refined/un-
coarsened level by level. In Coarsened Bisection, we re-
duce the overhead of SPAC by eliminating the last few
levels of refinement steps. We discovered that the last
few coarsened levels (five to seven levels) of refinement
stages in the multilevel partitioning scheme, if omitted,
do not lead to much performance difference for our soft-
ware throttling methods. While at the same time, a large
amount of partition over can be saved.
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Figure 8: Trade-off between Eliminated Refinement
Levels and Scheduling Overhead/Benefits

We show the trade-off between the number of levels
where the refinement step is eliminated, and the SPAC
partition overhead, and the SpMV speedup when apply-
ing the SPAC for scheduling, for the sparse matrix cit-
patents [11] in Figure 8. It can be seen from the figure
that by eliminating the last five to seven levels of refine-
ment, the overhead is reduced by up to 7.5x, while the
SpMV speedup only changed from 1.5x to 1.4x.

The detailed algorithm is showed in Algorithm 4. No-
tice that the input graph is already an coarsened graph,
since we can perform first level coarsening while read-
ing data from file. We also parallelize the merging phase
in the coarsening phase to further reduce overhead. The
merging phase is mainly for reconstructing the coarsened
graph in each level and is amenable to parallelization.

Algorithm 4 Coarsened Bisection
Input: Coarsened Graph G
Output: Partition P

1: procedure COARSENBISECT(G)
2: // we call a set of edges - an entity
3: build entity based adjacent list L of G
4: for level ∈ {1, . . . ,maxLevel} do
5: sort L by entity degree
6: for each entity e do
7: merge e with its heaviest avaliable neighbor ne
8: end for
9: build coarsened L by results from above step

10: end for
11: build coarsened graph G′ from L
12: P←graphPartition(G′)
13: end procedure

K-D Tiling Another bisection method we adopted is
a tiling based method: K-D Tiling. Since any graph
can be converted into a sparse matrix representation,
we treat the partition as a partition in a geometric two-
dimensional space. This method is similar to the k-d tree
structure [5] used for partitioning a k-dimensional space.
Every non-leaf node in a k-d tree represents a division
point along a single spatial dimension, recursively split-
ting the space’s points into two groups.

This partitioning method has even lower overhead than
Coarsened Bisection. Each split can be performed in
O(n) average time via the quickselect algorithm [16], and
the number of rounds of splitting is logarithmic. How-
ever, unlike Coarsened Bisection, the tiling approach
does not consider connectivity of the graph, and so it
generates inferior results. This trade-off makes Coars-
ened Bisection preferable in applications where its over-
head can be hidden via amortization, for instance, in op-
timization problems, and the K-D tiling method is better
for overhead-sensitive applications.

4.2 Data Reorganization

After we perform Data-Balanced Work-Partition on the
work graph, we reorganize the data in memory accord-
ing to cache-fit partitions for efficient memory coalesc-
ing. We prioritize the partition that has the smallest
amount of unique data – indicating a high data reuse if
the amount of work in each partition is the same. We iter-
ate over each partition’s tuple list, and place all their non-
boundary vertices (vertices that only appear in one ker-
nel) consecutively in memory using data packing [12].
After non-boundary vertices for each partition have been
processed, we process boundary vertices. The data re-
ordering algorithm is briefly described in Algorithm 5.

5 Evaluation

We perform experiments on two platforms: an NVIDIA
GTX 745 GPU with Intel Core i7-4790 CPU and an
NVIDIA TITAN X GPU with Intel Xeon CPU E5-2620.
The GPU configurations are detailed in Table 2. We eval-
uate our techniques using important real-world work-
loads including sparse linear algebra, neural networks,
and graph analytics.

Table 2: Experimental Environment
GPU Model Titan X GTX 745
Architecture Pascal Maxwell

Core # 5376 576
L2 Cache 3MB 2MB

CUDA version CUDA 8.0 CUDA 8.0
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Algorithm 5 Data Remapping
Input: Original Partition Set P, Boundary Vertex Set B
Output: Reordered Data D

1: procedure DATAREMAPPING(P,D)
2: for each vertex v in partition p of P do
3: if v /∈ B then
4: unique[p]++
5: end if
6: end for
7: P’ = rank(P, unique[P]); // Rank P by unique[]
8: // Assign non-boundary nodes
9: for each vertex v in partition p of P′ do

10: if !boundary[v] and v is not in D then
11: append v to D
12: end if
13: end for
14: // Assign boundary nodes
15: for each vertex v in partition p of P′ do
16: if boundary[v] and v is not in D then
17: append v to D
18: end if
19: end for
20: end procedure

Sparse Linear Algebra Workloads We use sparse ma-
trix vector multiplication (SpMV) and the conjugate gra-
dient solver (CG). We present performance and sensitiv-
ity analysis, as well as the effectiveness of overhead con-
trol.
Neural Networks We use a pruned form of AlexNet
[15]. The pruned neural network is essentially sparse
matrix operation.
Graph Processing Workloads We use two graph pro-
cessing benchmarks: the Bellman-Ford (BMF) and
PageRank (PR) programs [21]. Bellman-Ford takes a
weighted graph as input and iteratively calculates every
node’s distance – an important, basic operation used in
path and network analysis applications. PageRank takes
a weighted graph as input and calculates the importance
of every node based on its incoming links.
Computational Fluid Dynamics Workloads We use
the CFD benchmark from the Rodinia benchmark suite
[7]. The CFD solver is an unstructured grid finite vol-
ume solver for the three-dimensional Euler equations
for compressible flow. The CFD benchmark is already
highly optimized in terms of data layout [9]. We use
three mesh input sets from Rodinia [7].

5.1 Sparse Linear Algebra

SpMV We treat the sparse matrix as a bipartite graph,
as described in Section 2.1, and then apply our tech-
niques . We use the SpMV kernel function from the cusp
library[10] and the matrix format is COO.

Of the 2757 matrices in the University of Florida col-
lection [11], we extract those where the working set can-
not fit entirely into the L2 (last-level) cache, which leaves
us with 228 matrices on GTX 745, and 192 on Titan X.
Though we optimize for the L2 cache, our techniques can
be generalized to other caches.

The performance summary for SpMV across these ma-
trices is shown in Figure 9. We also include Org+R,
which applies the data reorganization scheme described
in Section 4.2 to the original program to optimize mem-
ory coalescing. Memory coalescing is a technique for en-
hancing spatial locality [33], which is orthogonal to our
technique proposed in this paper. As our work also per-
forms memory coalescing after obtaining and scheduling
cache-fit partitions, we show the performance of memory
coalescing only (Org+R) versus our technique + mem-
ory coalescing for fair comparison and for demonstrat-
ing the significant performance improvement from our
technique.

Among the other methods shown, first is CF, the
Cache-Fit method described in Section 3.1. This splits
the kernel to run each of the cache-fit partitions in stand-
alone mode. Second is SJ, the Split-Join method de-
scribed in Section 3.3 and uses tree-based set cover al-
gorithm to merge cache-fit partitions. Third is CF-Q
from Section 3.2, which applies the concurrent queue
for loosely enforcing cache-fit partition ordering within
a single kernel invocation. Finally we show SJ-Q
from Section 3.4, which applies the concurrent queue to
merged partitions in SJ. We use our Coarsened Bisection
partitioner for all four of these methods. The baseline is
the original program performance.
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Figure 9: Average Speedup for SpMV

All four methods provide significant speedup com-
pared to the original case and the Org+R case. But
each method has trade-offs. The SJ and SJ-Q meth-
ods both require runtime profiling, whereas CF and CF-
Q do not need runtime profiling. CF and SJ are eas-
ier to incorporate to a program as the kernel code does
not change (only the input to each kernel invocation
changes), whereas CF-Q and SJ-Q require code modi-
fication in order to implement the queue.

We find that our techniques provide significantly more
improvement in the high contention environments of
larger matrices with lower hit rates. We demonstrate
the effectiveness of these methods with respect to ma-
trix size, working set size, cache hit rate, and original
running time.
Matrix Size In Figure 10 (a), each group of bars shows
average speedup for sparse matrices with the specified
amounts of non-zeros. Every method except Org+R is

420    2018 USENIX Annual Technical Conference USENIX Association



 0.6

 0.8

 1

 1.2

 1.4

0 - 2M
2M - 8M

8M - 16M
16M - 32M

32M - INFN
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745

Org+R CF SJ CF-Q SJ-Q

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

0 - 2M
2M - 8M

8M - 16M
16M - 32M

32M - INFN
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

TITAN X

Org+R CF SJ CF-Q SJ-Q

(a) The effect of sparse matrix size (# of non-zeros) on speedup
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(b) The effect of working set size (in multiples of cache size) on speedup.
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(c) The effect of cache hit rate (percent) on speedup.
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(d) The effect of original runtime (milliseconds) on speedup.

Figure 10: SpMV Speedup on GTX 745 and Titan X

much more effective on larger matrices than on smaller
ones, but we do see speedup in every group.

Working Set Our techniques become more effective as
the working set grows, alleviating the increased cache
contention. In Figure 10 (b), each group of bars shows
average speedup for matrices with a working set of spec-
ified size. The unit used for the x-axis is the number of
times the working set can completely fill the cache.

We see speedup improve as the working set grows, just
as it tends to do when the matrix size grows. But the
effects are more pronounced, with higher speedup. This
shows working set size is more useful than matrix size for
determining whether we should use locality-aware soft-
ware throttling optimization.

Cache Hit Rate Our techniques are designed to im-
prove matrices that suffer from low hit rates due to cache
thrashing. As such, a lower original hit rate allows us to
achieve higher speedup. In Figure 10 (c), each group of

bars shows average speedup for matrices with a specified
range of cache hit rates for the original case.

For matrices with lowest hit rates, the speedup for the
queue-based approaches is particularly extreme. This
shows that the queue-based approach is especially ef-
fective in environments that have high cache contention.
The implicit communication between thread warps com-
peting for queue reservations allows warps to achieve
higher temporal locality with each other.

Run Time In Figure 10 (d), each group of bars shows the
average speedup for matrices with the specified original
runtime, measured in milliseconds. Since the Titan X
device is much faster than the GTX 745, we use smaller
thresholds for it. In general we can expect that the run-
time correlates highly with the number of non-zeros, and
so this figure shows a similar curve to the others.

CG We show the performance of conjugate gradient
(CG) using SJ-Q. The major computation component
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is sparse matrix vector multiplication (SpMV). It calls
SpMV iteratively until convergence. Therefore the over-
head is amortized across different iterations. We show
the overall performance in Figure 11 for a representa-
tive set of inputs. We find the performance improvement
of CG with overhead is similar to that of SpMV with-
out overhead. The overhead of Coarsened Bisection and
SJ-Q profiling is well amortized.
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Figure 11: CG Speedup on GTX 745 and Titan X

We also show the L2 cache hit rates for CG in Fig-
ure 12. The changes to cache hit rates correlate with the
performance improvement. The matrix rgg n 2 23 s0
(RGG) has a much smaller cache hit rate on Titan X
(0.44%) than on GTX 745 (36.75%), despite its larger
cache size. There is more cache contention on Titan X
since it uses more cores. We are able to improve the hit
rate to 62.92% without changing the thread number or
the implementation of the kernel code. Only the set of
non-zero elements processed by each kernel is changed.
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Figure 12: CG Cache Hit Rate on GTX 745 and Titan X

5.2 Neural Networks
We explore the effectiveness of our techniques on the
AlexNet neural network, achieving an overall speedup
of up to 54% on the Titan X device, which is suited for
deep learning. Each fully connected layer of the neural
network AlexNet operates as a matrix-vector operation;
the matrix is a weight matrix. The work by Han and oth-
ers [15] prunes the AlexNet network to remove elements
of low weight and result in sparse matrices.

Since AlexNet is designed for smaller, embedded de-
vices, we run multiple instances in parallel, allowing the
neural network to analyze 150 different images at once
for our Titan X GPU. This provides a reasonable amount
of computation and data for our more powerful hardware.

In Figure 13, we show the speedup achieved by our
technique on each of the three pruned fc layers of

AlexNet. We include the alternate baseline of the origi-
nal case plus data reorganization, as well as the Cache-
Fit and Split-Join strategies both with and without the
queue-based implementation.
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Figure 13: Speedup for AlexNet layers on Titan X

When only applying data reorganization, we see no
improvement or even some slowdown. But when we ap-
ply any of our partitioning techniques we see speedup up
to 98%, and no degradation on the smaller layers. The
reason for less-speedup in the smaller layers (fc 7 and fc
8) is that their vector size is smaller and can fit into last
level cache entirely in our Titan X GPU. We believe the
performance improvement will be more pronounced for
Alexnet if we test with embedded devices.

5.3 Graph Applications
We show the performance of the Bellman-Ford and
PageRank programs on a set of graphs from the Uni-
versity of Florida Sparse Matrix Collection [11], Stan-
ford Large Network Dataset Collection [23], and DI-
MACS implementation challenge [1]. Information for
each graph is listed in Table 3.

We demonstrate the efficiency of the K-D tiling (SJ-
kdtiling) approach, since both BMF and PR take fewer
iterations to converge compared with sparse linear sys-
tem solvers. Thus we need a fast and approximate par-
titioner so that the overhead can be amortized. We use
SJ rather than SJ-Q, since it still provides good speedup
while avoiding the overhead of the queue.

We summarize the performance with overhead in Ta-
ble 3. We see that our approach improves performance
for both BMF and PR. RoadCal benefits least, due to
small size, but sees improvement in some cases.

Table 3: BMF and PR Performance Summary

Graph GTX 745 TITAN X
BMF PR BMF PR

Pokec [23] 1.62 2.98 1.88 3.17
WebGoogle [23] 2 3.29 1.8 3.37

Wikipedia-051105 [11] 1.24 1.99 1.43 1.97
WikiTalk [11] 1.74 2.57 2.09 2.75

IMDB [11] 2.16 3.22 1.59 2.62
RoadCentral [11] 1.19 1.6 1.69 2.18

RoadCal [1] 1 1 1 1.22

We observe that the speedup for PR is greater than for
BMF. There are more memory accesses in the PR algo-
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rithm than in the BMF algorithm, and so it benefits more
from our locality-aware software throttling.

We show cache hit rates for each program in Figure
14 and Figure 15. We show speedup with and without
overhead for PR on Titan X in Table 4. PR has fewer it-
erations than CG so cannot improve performance with
Coarsened Bisection if overhead is considered. How-
ever, the KD-Tiling method is fast enough that for SJ-
kdtiling’s performance to remain high with overhead.
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Figure 14: Cache Hit Rates for Bellman-Ford
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Figure 15: Cache Hit Rates for PageRank

Table 4: PageRank Speedup with and without Overhead

Graph SJ-kdtiling SJ-kdtiling
w/ Overhead w/o Overhead

Pokec 3.17 3.34
WebGoogle 3.37 3.43
Wikipedia 1.97 1.98
WikiTalk 2.75 2.81

IMDB 2.62 2.27
RoadCentral 2.18 2.48

RoadCal 1.22 1.21

5.4 Computational Fluid Dynamics
The graph structure for CFD is a mesh in which every
node has up to four neighbors. Since these meshes are
small, We use SJ instead of SJ-Q for throttling. In Figure
16 we show the performance on GTX 745. We achieve
speedup of up to 10%. Input fvcorr 097 has the smallest
number of nodes, thus the smallest improvement. CFD
already has an optimized data layout [9]. With our throt-
tling method, we nonetheless see some speedup. This
demonstrates the effectiveness of our approach.

6 Related Work
Modern GPUs are equipped with massive amounts of
parallelism and significant computing horsepower. How-
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Figure 16: CFD Speedup

ever, this also results in higher levels of cache contention.
To achieve high performance, reusing data in cache is
critical. Both software and hardware approaches have
been proposed to address the cache contention problem.
Warp Scheduling Policy Recent works focus on modi-
fying GPU warp scheduling policy to reduce cache con-
tention by throttling threads [18] [27] [20, 19] or to prior-
itize thread execution based on criticality [22]. However,
all those approaches require hardware modification and
require fine-grained thread scheduling which is compli-
cated in a massively parallel system.

Our approach does not require hardware modification
or fine-grained thread scheduling. Moreover, most warp
scheduling policies aim to reduce the number of active
warps for better performance. However, as we discov-
ered in this paper, it is not always good to reduce the
number of simultaneously running tasks for better cache
performance. In some scenarios, i.e., when data reuse is
low, having higher concurrency actually helps.
Computation and Data Layout Transformation On
GPUs, Baskaran et al. [3] developed a compile-time
transformation scheme coalescing loop nest accesses to
achieve efficient global memory access. Zhang et al. [32]
focused on reducing irregular memory accesses and en-
hancing memory coalescing to improve GPU program
performance. These and other works [28, 31, 8, 17, 30, 4]
all focus on improving memory coalescing for spatial lo-
cality. Our method is orthogonal to these approaches, as
we optimize temporal locality.

7 Conclusion
This paper proposes a locality-aware software throttling
framework that targets irregular sparse matrix applica-
tions on GPUs. We perform d

¯
ata-balanced work parti-

tion on the entire workload to get cache-fit partitions and
use scheduling to exploit the trade-off between cache lo-
cality and execution pipeline utilization. Our framework
is practical and effective. It requires no hardware modi-
fication and achieves an average 2.01X (maximal 6.45X)
speedup on more than 200 real sparse matrices.
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Abstract
PageRank is a fundamental link analysis algorithm that
also functions as a key representative of the performance
of Sparse Matrix-Vector (SpMV) multiplication. The tra-
ditional PageRank implementation generates fine granu-
larity random memory accesses resulting in large amount
of wasteful DRAM traffic and poor bandwidth utiliza-
tion. In this paper, we present a novel Partition-Centric
Processing Methodology (PCPM) to compute PageRank,
that drastically reduces the amount of DRAM commu-
nication while achieving high sustained memory band-
width. PCPM uses a Partition-centric abstraction cou-
pled with the Gather-Apply-Scatter (GAS) programming
model. By carefully examining how a PCPM based
implementation impacts communication characteristics
of the algorithm, we propose several system optimiza-
tions that improve the execution time substantially. More
specifically, we develop (1) a new data layout that signif-
icantly reduces communication and random DRAM ac-
cesses, and (2) branch avoidance mechanisms to get rid
of unpredictable data-dependent branches.

We perform detailed analytical and experimental eval-
uation of our approach using 6 large graphs and demon-
strate an average 2.7× speedup in execution time and
1.7× reduction in communication volume, compared to
the state-of-the-art. We also show that unlike other GAS
based implementations, PCPM is able to further reduce
main memory traffic by taking advantage of intelligent
node labeling that enhances locality. Although we use
PageRank as the target application in this paper, our ap-
proach can be applied to generic SpMV computation.

1 Introduction
Graphs are the preferred choice of data representation
in many fields such as web and social network analy-
sis [9, 3, 29, 10], biology [17], transportation [15, 4] etc.
The growing scale of problems in these areas has gen-
erated substantial research interest in high performance
graph analytics. A large fraction of this research is fo-
cused on shared memory platforms because of their low
communication overhead compared to distributed sys-
tems [26]. High DRAM capacity in modern systems fur-
ther allows in-memory processing of large graphs on a
single server [35, 33, 37]. However, efficient utilization

of compute power is challenging even on a single node
because of the (1) low computation-to-communication
ratio and, (2) irregular memory access patterns of graph
algorithms. The growing disparity between CPU speed
and DRAM bandwidth, termed memory wall [42], has
become a key issue in high performance graph analytics.

PageRank is a quintessential algorithm that exem-
plifies the performance challenges posed by graph
computations. It iteratively performs Sparse Matrix-
Vector (SpMV) multiplication over the adjacency ma-
trix of the target graph and the current PageRank vec-
tor
−→
PR to generate new PageRank values. The irregu-

larity in adjacency matrices leads to random accesses to−→
PR with poor spatial and temporal locality. The result-
ing cache misses and communication volume become
the performance bottleneck for PageRank computation.
Since many graph algorithms can be similarly modeled
as a series of SpMV operations [37], optimizations on
PageRank can be easily generalized to other algorithms.

Recent works have proposed the use of Gather-Apply-
Scatter (GAS) model to improve locality and reduce
communication for SpMV and PageRank [43, 11, 5].
This model splits computation into two phases: scatter
current source node values on edges and gather propa-
gated values on edges to compute new values for des-
tination nodes. The 2-phased approach restricts access
to either the current

−→
PR or new

−→
PR at a time. This pro-

vides opportunities for cache-efficient and lock-free par-
allelization of the algorithm.

We observe that although this approach exhibits sev-
eral attractive features, it also has some drawbacks lead-
ing to inefficient memory accesses, both quantitative as
well as qualitative. First, we note that while scattering, a
vertex repeatedly writes its value on all outgoing edges,
resulting in large number of reads and writes. We also
observe that the Vertex-centric graph traversal in [11, 5]
results in random DRAM accesses and the Edge-centric
traversal in [34, 43] scans edge list in coordinate format
which increases the number of reads.

Our premise is that by changing the focus of compu-
tation from a single vertex or edge to a cacheable group
of vertices (partition), we can effectively identify and re-
duce redundant edge traversals as well as avoid random
accesses to DRAM, while still retaining the benefits of
GAS model. Based on these insights, we develop a new
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Partition-Centric approach to compute PageRank. The
major contributions of our work are:

1. We propose a Partition-Centric Processing Method-
ology (PCPM) that propagates updates from nodes
to partitions and reduces the redundancy associated
with GAS model.

2. By carefully evaluating how a PCPM based imple-
mentation impacts algorithm behavior, we develop
several system optimizations that substantially ac-
celerate the computation, namely, (a) a new data
layout that drastically reduces communication and
random memory accesses, (b) branch avoidance
mechanisms to remove unpredictable branches.

3. We demonstrate that PCPM can take advantage of
intelligent node labeling to further reduce the com-
munication volume. Thus, PCPM is suitable even
for high locality graphs.

4. We conduct extensive analytical and experimental
evaluation of our approach using 6 large datasets.
On a 16-core shared memory system, PCPM
achieves 2.1×−3.8× speedup in execution time and
1.3×−2.5× reduction in main memory communi-
cation over state-of-the-art.

5. We show that PCPM can be easily extended
to weighted graphs and generic SpMV computa-
tion (section 3.5) even though it is described in the
context of PageRank algorithm in this paper.

2 Background and Related Work

2.1 PageRank Computation
In this section, we describe how PageRank is calculated
and what makes it challenging for the conventional im-
plementation to achieve high performance. Table 1 lists
a set of notations that we use to mathematically represent
the algorithm.

Table 1: List of graph notations

G(V,E) Input directed graph
A adjacency matrix of G(V,E)

Ni(v) in-neighbors of vertex v
No(v) out-neighbors of vertex v
−→
PRi PageRank value vector after ith iteration
−−→
SPR scaled PageRank vector

(
SPR(v) = PRi(v)

|No(v)|
)

d damping factor in PageRank algorithm

PageRank is computed iteratively. In each iteration,
all vertex values are updated by the new weighted sum
of their in-neighbors’ PageRank, as shown in equation 1.

PRi+1(v) =
1−d
|V |

+ d ∑
u∈Ni(v)

PRi(u)∣∣No(u)
∣∣ (1)

PageRank is typically computed in pull direction [35,
38, 37, 30] where each vertex pulls the value of its in-
neighbors and accumulates into its own value, as shown
in algorithm 1. This corresponds to traversing A in a
column-major order and computing the dot product of
each column with the scaled PageRank vector

−−→
SPR.

Algorithm 1 Pull Direction PageRank (PDPR) Iteration

1: for v ∈V do
2: temp = 0
3: for all u ∈ Ni(v) do
4: temp+= PR[u]

5: PRnext [v] =
(1−d)×|V |−1 + d×temp

|No(v)|
6: swap(PR,PRnext)

In the pull direction implementation, each column
completely owns the computation of the corresponding
element in the output vector. This enables all columns of
A to be traversed asynchronously in parallel without the
need to store partial sums in memory. On the contrary, in
the push direction, each node updates its out-neighbors
by adding its own value to them. This requires a row-
major traversal of A and storage for partial sums since
each row contributes partially to multiple elements in the
output vector. Further, synchronization is needed to en-
sure conflict-free processing of multiple rows that update
the same output element.
Performance Challenges: Sparse matrix layouts like
Compressed Sparse Column (CSC) store all non-zero el-
ements of a column sequentially in memory allowing fast
column-major traversal of A [36]. However, the neigh-
bors of a node can be scattered anywhere in the graph
and reading their values results in random accesses (sin-
gle or double word) to

−−→
SPR in pull direction computa-

tion. Similarly, the push direction implementation uses
a Compressed Sparse Row (CSR) format for fast row-
major traversal of A but suffers from random accesses
to the partial sums vector. These low locality and fine
granularity accesses incur high cache miss ratio and con-
tribute a large fraction to the overall memory traffic as
shown in fig. 1.

2.2 Related Work

The performance of PageRank depends heavily on the
locality in memory access patterns of the graph (which
we refer to as graph locality). Since node labeling has
significant impact on graph locality, many prior works
have investigated the use of node reordering or cluster-
ing [7, 22, 6, 2] to improve the performance of graph
algorithms. Reordering based on spatial and tempo-
ral locality aware placement of neighbors [39, 20] has
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Figure 1: Percentage contribution of vertex value ac-
cesses to the total DRAM traffic in a PageRank iteration.

been shown to further outperform the well known clus-
tering and tree-based techniques. However, such so-
phisticated algorithms also introduce substantial pre-
processing overhead which limits their practicability. In
addition, scale-free graphs like social networks are less
tractable by reordering transformations because of their
skewed degree distribution.

Cache Blocking (CB) is another technique used to ac-
celerate graph processing [41, 32, 45]. CB induces local-
ity by restricting the range of randomly accessed nodes
and has been shown to reduce cache misses [24]. CB
partitions A along rows, columns or both into multiple
block matrices. However, SpMV computation with CB
requires the partial sums to be re-read for each block.
The extremely sparse nature of these block matrices also
reduces the reuse of cached vertex data [31].

Gather-Apply-Scatter (GAS) is another popular model
incorporated in many graph analytics frameworks [23,
34, 13]. It splits the analytic computation into scatter
and gather phases. In the scatter phase, source vertices
transmit updates on all of their outgoing edges and in the
gather phase, these updates are processed to compute
new values for corresponding destination vertices. The
updates for PageRank algorithm correspond to scaled
PageRank values defined earlier in section 2.1.

Binning exploits the 2-phased computation model by
storing the updates in a semi-sorted manner. This in-
duces spatio-temporal locality in access patterns of the
algorithm. Binning can be used in conjunction with
both Vertex-centric or Edge-centric paradigms. Zhou
et al. [43, 44] use a custom sorted edge list with Edge-
centric processing to reduce DRAM row activations and
improve memory performance. However, their sorting
mechanism introduces a non-trivial pre-processing cost
and imposes the use of COO format. This results in
larger communication volume and execution time than
the CSR based Vertex-centric implementations [5, 11].

GAS model is also inherently sub-optimal when used
with either Vertex-centric or Edge-centric abstractions.
This is because it traverses the entire graph twice in

each iteration. Nevertheless, Binning with Vertex-centric
GAS (BVGAS) is the state-of-the-art methodology on
shared memory platforms [5, 11] and we use it as base-
line for comparison in this paper.

3 Partition-Centric Processing

We propose a new Partition-Centric Processing Method-
ology (PCPM) that significantly improves the efficiency
of processor-memory communication over that achiev-
able with current Vertex-centric or Edge-centric meth-
ods. We define partitions as disjoint sets of contigu-
ously labeled nodes. The Partition-Centric abstraction
then perceives the graph as a set of links from each node
to the partitions corresponding to the neighbors of the
node. We use this abstraction in conjunction with the
2-phased Gather-Apply-Scatter (GAS) model.

During the PCPM scatter phase, each thread processes
one partition at a time. Processing a partition p means
propagating messages from nodes in p to the neighbor-
ing partitions. A message to a partition p′ comprises of
the update value of source node (PR[v]) and the list of
out-neighbors of v that lie in p′. PCPM caches the vertex
data of p and streams the messages to the main memory.
The messages from p are generated in a Partition-centric
manner i.e. messages from all nodes in p to a neighbor-
ing partition p′ are generated consecutively and are not
interleaved with messages to any other partition.

During the gather phase, each thread scans all mes-
sages destined to one partition p at a time. A message
scan applies the update value to all nodes in the neighbor
list of that message. Partial sums of nodes in p are cached
and messages are streamed from the main memory. Af-
ter all messages to p are scanned, the partial sums (new
PageRank values) are written back to DRAM.

With static pre-allocation of distinct memory spaces
for each partition to write messages, PCPM can asyn-
chronously scatter or gather multiple partitions in paral-
lel. In this section, we provide a detailed discussion on
PCPM based computation and the required data layout.

3.1 Graph Partitioning

We employ a simple approach to divide the vertex set
V into partitions. We create equisized partitions of size
q where partition Pi owns all the vertices with index
∈ [i ∗ q,(i + 1) ∗ q) as shown in fig. 2a. As discussed
later, the PCPM abstraction is built to easily take ad-
vantage of more sophisticated partitioning schemes and
deliver further performance improvements (the trade-off
is time complexity of partitioning versus performance
gains). As we show in the results section, even the sim-
ple partitioning approach described above delivers sig-
nificant performance gains over state-of-the-art methods.
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Each partition is also allocated a contiguous memory
space called bin to store updates (update bins) and cor-
responding list of destination nodes (destID bins) in the
incoming messages. Since each thread in PCPM scat-
ters or gathers only one partition at a time, the random
accesses to vertex values or partial sums are limited to
address range equal to the partition size. This improves
temporal locality in access pattern and in turn, overall
cache performance of the algorithm.

Before beginning PageRank computation, each parti-
tion calculates the offsets (address in bins where it must
start writing from) into all update bins and destID bins.
Our scattering strategy dictates that the partitions write
to bins in the order of their IDs. Therefore, the offset for
a partition Pi into any given bin is the sum of the number
of values that all partitions with ID < i are writing into
that bin. For instance, in fig. 2, the offset of partition P2
into update bins[0] is 0 (since partitions P0 and P1 do not
write to bin 0). Similarly, its offset into update bins[1]
and update bins[2] is 1 (since P1 writes one update to
bin 1 and P0 writes one update to bin 2). Offset compu-
tation provides each partition fixed and disjoint locations
to write messages. This allows PCPM to parallelize par-
tition processing without the need of locks or atomics.

6

5

4

3

2

1

07

8

0
1
2

3
4
5

6
7
8

Partitions

P0 P1 P2

(a) Example graph with partitions of size 3

PR[3]

PR[6]

PR[6]

PR[7]

2

0

1

2

Bin 0

Updates Dest. ID

4

3

4

5

Bin 1

Updates Dest. ID

PR[2]

PR[7]

8

8

Updates Dest. ID

Bin 2

(b) Bins store update value and list of destination nodes

Figure 2: Graph Partitioning and messages inserted in
bins during scatter phase

Note that since the destination node IDs written in the
first iteration remain unchanged over the course of algo-
rithm, they are written only once and reused in subse-
quent iterations. The reuse of destination node IDs along
with the specific system optimizations discussed in sec-
tion 3.2 and 3.3 enables PCPM to traverse only a fraction
of the graph during scatter phase. This dramatically re-
duces the number of DRAM accesses and gets rid of the
inherent sub-optimality of GAS model.

3.2 Partition-Centric Update Propagation

The unique abstraction of PCPM naturally leads to trans-
mitting a single update from a node to a neighboring par-
tition. In other words, even if a node has multiple neigh-
bors in a partition, it inserts only one update value in
the corresponding update bins during scatter phase (al-
gorithm 2). Fig. 3 illustrates the difference between
Partition-Centric and Vertex-centric scatter for the exam-
ple graph shown in fig. 2a.

PCPM manipulates the Most Significant Bit (MSB)
of destination node IDs to indicate the range of nodes
in a partition that use the same update value. In the
destID bins, it consecutively writes IDs of all nodes
in the neighborhood of same source vertex and sets
the MSB of first ID in this range to 1 for demarca-
tion (fig. 3b). Since MSB is reserved for this function-
ality, PCPM supports graphs with upto 2 billion nodes
instead of 4 billion for 4 Byte node IDs. However, to the
best of our knowledge, this is enough to process most of
the large publicly available datasets.
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Figure 3: PCPM decouples update bins and destID bins
to avoid redundant update value propagation

The gather phase starts only after all partitions are pro-
cessed in the scatter phase. PCPM gather function se-
quentially reads updates and node IDs from the bins of
the partition being processed. When gathering partition
Pi, an update value PR[v] should be applied to all out-
neighbors of v that lie in Pi. This is done by checking the
MSB of node IDs to determine whether to apply the pre-
viously read update or to read the next update, as shown
in algorithm 2. The MSB is then masked to generate the
true ID of destination node whose partial sum is updated.

430    2018 USENIX Annual Technical Conference USENIX Association



Algorithm 2 describes PCPM based PageRank com-
putation using a row-wise partitioned CSR format for ad-
jacency matrix A. Note that PCPM only writes updates
for some edges in a node’s adjacency list, specifically the
first outgoing edge to a partition. The remaining edges to
that partition are unused. Since CSR stores adjacencies
of a node contiguously, the set of first edges to neighbor-
ing partitions is interleaved with other edges. Therefore,
we have to scan all outgoing edges of each vertex dur-
ing scatter phase to access this set, which decreases ef-
ficiency. Moreover, the algorithm can potentially switch
bins for each update insertion, leading to random writes
to DRAM. Finally, the manipulation of MSB in node
indices introduces additional data dependent branches
which hurts the performance. Clearly, CSR adjacency
matrix is not an efficient data layout for graph processing
using PCPM. In the next section, we propose a PCPM-
specific data layout.

Algorithm 2 PageRank iteration in PCPM using CSR
format. Writing of destID bins is not shown here.

q→ partition size, P→ set of partitions
1: for all p ∈ P do in parallel . Scatter
2: for all v ∈ p do
3: prev bin← ∞

4: for all u ∈ No(v) do
5: if bu/qc 6= prev bin then
6: insert PR[v] in update bins[bu/qc]
7: prev bin← bu/qc
8: PR[:]← 0
9: for all p ∈ P do in parallel . Gather

10: while destID bins[p] 6= /0 do
11: pop id from destID bins[p]
12: if MSB(id) 6= 0 then
13: pop update from update bins[p]
14: PR[id & bitmask] += update
15: for all v ∈V do in parallel . Apply
16: PR[v]← (1−d)/|V | + d×PR[v]

|No(v)|

3.3 Data Layout Optimization
In this subsection, we describe a new bipartite Partition-
Node Graph (PNG) data layout that brings out the true
Partition-Centric nature of PCPM. During the scatter
phase, PNG prevents unused edge reads and ensures that
all updates to a bin are streamed together before switch-
ing to another bin.

We exploit the fact that once destID bins are written,
the only required information in PCPM is the connectiv-
ity between nodes and partitions. Therefore, edges going
from a source to all destination nodes in a single parti-
tion can be compressed into one edge whose new desti-
nation is the corresponding partition number. This gives

P2

P2

P1

P0

P12 3
6

7
Graph between P 
and nodes in P0

Graph between P 
and nodes in P1

Graph between P 
and nodes in P2

Figure 4: Partition-wise construction of PNG G′(P,V,E ′)
for graph G(V,E) (fig. 2a).

∣∣E ′∣∣ is much smaller than |E|.

rise to a bipartite graph G′ with disjoint vertex sets V and
P (where P = {P0, . . . ,Pk−1} represents the set of parti-
tions in the original graph), and a set of directed edges
E ′ going from V to P. Such a transformation has the
following effects:

1. Eff1→ the unused edges in original graph are removed

2. Eff2→ the range of destination IDs reduces from |V |
to |P|.

The advantages of Eff1 are obvious but those of Eff2 will
become clear when we discuss the storage format and
construction of PNG.

The compression step reduces memory traffic by elim-
inating unused edge traversal. However note that scatters
to a bin from source vertices in a partition are still in-
terleaved with scatters to other bins. This can lead to
random DRAM accesses during the scatter phase pro-
cessing of a (source) partition. We resolve this problem
by transposing the adjacency matrix of bipartite graph
G′. The rows of the transposed matrix represent edges
grouped by destination partitions which enables stream-
ing updates to one bin at a time. This advantage comes at
the cost of random accesses to source node values during
the scatter phase. To prevent these random accesses from
going to DRAM, we construct PNG on a per-partition ba-
sis i.e. we create a separate bipartite graph for each parti-
tion Pi with edges between P and the nodes in Pi (fig. 4).
By carefully choosing q to make partitions cacheable, we
ensure that all requests to source nodes are served by the
cache resulting in zero random DRAM accesses.

Eff2 is crucial for transposition of bipartite graphs in
all partitions. The number of offsets required to store a
transposed matrix in CSR format is equal to the range
of destination node IDs. By reducing this range, Eff2 re-
duces the storage requirement for offsets of each matrix
from O(|V |) to O(|P|). Since there are |P| partitions, each
having one bipartite graph, the total storage requirement
for edge offsets in PNG is O(|P|2) instead of O(|V |×|P|).

Although PNG construction looks like a 2-step ap-
proach, we actually merge compression and transposi-
tion into a single step. We first scan the outgoing edges
of all nodes in a partition and individually compute the
in-degree of all the destination partitions while discard-
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ing unused edges. A prefix sum of these degrees is car-
ried out to compute the offsets array for CSR matrix. The
same offsets can also be used to allocate disjoint writing
locations into the bins of destination partitions. In the
next scan, the edge array in CSR is filled with source
node IDs completing both compression and transposi-
tion. PNG construction can be easily parallelized over
all partitions to accelerate the pre-processing effectively.

Algorithm 3 shows the pseudocode for PCPM scatter
phase using PNG layout. Unlike algorithm 2, the scat-
ter function in algorithm 3 does not contain data depen-
dent branches to check and discard unused edges. Using
PNG provides drastic performance gains in PCPM scat-
ter phase with little pre-processing overhead.

Algorithm 3 PCPM scatter phase using PNG layout

G′(P,V,E ′)→ PNG, N p
i (p′)→ in-neighbors of par-

tition p′ in bipartite graph of partition p
1: for all p ∈ P do in parallel . Scatter
2: for all p′ ∈ P do
3: for all u ∈ N p

i (p′) do
4: insert PR[u] into update bins[p′]

3.4 Branch Avoidance
Data dependent branches have been shown to have sig-
nificant impact on performance of graph algorithms [14]
and PNG removes such branches in PCPM scatter phase.
In this subsection, we propose a branch avoidance mech-
anism for the PCPM gather phase. Branch avoidance en-
hances the sustained memory bandwidth but does not im-
pact the amount of DRAM communication.

Note that the pop operations shown in algorithm 2 are
implemented using pointers that increment after read-
ing an entry from the respective bin. Let destID ptr
and update ptr be the pointers to destID bins[p] and
update bins[p], respectively. Note that the destID ptr
is incremented in every iteration whereas the update ptr
is only incremented if MSB[id] 6= 0.

To implement the branch avoiding gather function, in-
stead of using a condition check over MSB(id), we add it
directly to update ptr. When MSB(id) is 0, the pointer
is not incremented and the same update value is read
from cache in the next iteration; when MSB(id) is 1,
the pointer is incremented executing the pop operation
on update bins[p]. The modified pseudocode for gather
phase is shown in algorithm 4.

3.5 Weighted Graphs and SpMV
PCPM can be easily extended for computation on
weighted graphs by storing the edge weights along with
destination IDs in destID bins. These weights can be
read in the gather phase and applied to the source node
value before updating the destination node. PCPM can

Algorithm 4 Branch Avoiding gather function in PCPM

1: PR[:] = 0
2: for all p ∈ P do in parallel . Gather
3: {destID ptr, update ptr}← 0
4: while destID ptr < size(destID bins[p]) do
5: id← destID bins[p][destID ptr ++]
6: update ptr += MSB(id)
7: id← id & bitmask
8: PR[id] += update bins[p][update ptr]

also be extended to generic SpMV with non-square ma-
trices by partitioning the rows and columns separately.
In this case, the outermost loops in scatter phase (algo-
rithm 3) and gather phase (algorithm 4) will iterate over
row partitions and column partitions of A, respectively.

4 Comparison with Vertex-centric GAS

The Binning with Vertex-centric GAS (BVGAS)
method allocates multiple bins to store incoming mes-
sages ((update,destID) pairs). If bin width is q, then
all messages destined to v ∈ [i ∗ q,(i+ 1) ∗ q) are writ-
ten in bin i. The scatter phase traverses the graph in
a Vertex-centric fashion and inserts the messages in re-
spective bins of the destination vertices. Number of bins
is kept small to allow insertion points for all bins to fit in
cache, providing good spatial locality. The gather phase
processes one bin at a time as shown in algorithm 5, and
thus, enjoys good temporal locality if bin width is small.

Algorithm 5 PageRank Iteration using BVGAS

q→ bin width, B→ no. of bins
1: for v ∈V do . Scatter
2: PR[v] = PR[v]/

∣∣No(v)
∣∣

3: for all u ∈ No(v) do
4: insert (PR[v],u) into bins[bu/qc]
5: PR[:] = 0
6: for b = 0 to B−1 do . Gather
7: for all (update,dest) in bins[b] do
8: PR[dest] = PR[dest]+update
9: for all v ∈V do . Apply

10: PR[v] = (1−d)
|V | + d×PR[v]

Unlike algorithm 5, in our BVGAS implementation,
we write the destination IDs only in the first iteration.
We also use small cached buffers to store updates before
writing to DRAM. This ensures full cache line utilization
and reduces communication during scatter phase [5].

Irrespective of all the locality advantages and opti-
mizations, BVGAS inherently suffers from redundant
reads and writes of a vertex value on all of its outgoing
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Table 2: List of model parameters

Original Graph G(V,E) PNG layout G′(P,V,E ′)
n no. of vertices ( |V | ) k no. of partitions ( |P| )
m no. of edges ( |E| ) r compression ratio ( |E|/

∣∣E ′∣∣ )
Architecture Software

cmr
cache miss ratio for source

value reads in PDPR dv sizeof (updates/PageRank value)

l sizeof (cache line) di sizeof (node or edge index)

edges. This redundancy manifests itself in the form of
BVGAS’ inability to utilize high locality in graphs with
optimized node labeling. PCPM on the other hand, uses
graph locality to reduce the fraction of graph traversed in
scatter phase. Unlike PCPM, the Vertex-centric traversal
in BVGAS can also insert consecutive updates into dif-
ferent bins. This leads to random DRAM accesses and
poor bandwidth utilization. We provide a quantitative
analysis of these differences in the next section.

5 Analytical Evaluation

We derive performance models to compare PCPM
against conventional Pull Direction PageRank (PDPR)
and BVGAS. Our models provide valuable insights into
the behavior of different methodologies with respect to
varying graph structure and locality. Table 2 defines the
parameters used in the analysis. We use a synthetic kro-
necker graph [28] of scale 25 (kron) as an example for
illustration purposes.

5.1 DRAM Communication

We analyze the amount of data exchanged with main
memory per iteration of PageRank. We assume that data
is accessed in quantum of one cache line and BVGAS
exhibits full cache line utilization. Since destination in-
dices are written only in the first iteration for PCPM and
BVGAS, they are not accounted for in this model.
PDPR: The pull technique scans all edges in the graph
once (algorithm 1). For a CSR format, this requires read-
ing n edge offsets and m source node indices. PDPR
also reads m source node values that incur cache misses
generating mcmrl Bytes of DRAM traffic. Outputting
new PageRank values generates ndv Bytes of writes to
DRAM. The total communication volume for PDPR is:

PDPRcomm = m(di + cmrl)+n(di +dv) (2)

BVGAS: The scatter phase (algorithm 5) scans the graph
and writes updates on all outgoing edges of the source
node, thus communicating (n+m)di +(n+m)dv Bytes.
The gather phase loads updates and destination node IDs
on all the edges generating m(di +dv) Bytes of read traf-
fic. At the end of gather phase, ndv Bytes of new PageR-

ank values are written in the main memory. Total com-
munication volume for BVGAS is therefore, given by:

BV GAScomm = 2m(di +dv)+n(di +2dv) (3)

PCPM with PNG: Number of edge offsets in bipartite
graph of each partition is k. Thus, in the scatter phase (al-
gorithm 3), a scan of PNG reads (k× k + m/r)di Bytes.
The scatter phase further reads n PageRank values and
writes updates on m/r edges. The gather phase (algo-
rithm 4) reads m destination IDs and m/r updates followed
by n new PageRank value writes. Net communication
volume in PCPM is given by:

PCPMcomm = m

(
di

(
1+

1
r

)
+

2dv

r

)
+ k2di +2ndv

(4)
Comparison: Performance of pull technique depends
heavily on cmr. In the worst case, all accesses are
cache misses i.e. cmr = 1 and in best case, only cold
misses are encountered to load the PageRank values in
cache i.e. cmr = ndv/ml. Assuming k2 � n� m, we get
PDPRcomm ∈ [mdi,m(di + l)]. On the other hand, com-
munication for BVGAS stays constant. With θ(m) addi-
tional loads and stores, BV GAScomm can never reach the
lower bound of PDPRcomm. Comparatively, PCPMcomm
achieves optimality when for every vertex, all outgoing
edges can be compressed into a single edge i.e. r = m/n.
In the worst case when r = 1, PCPM is still as good as
BVGAS and we get PCPMcomm ∈ [mdi,m(2di + 2dv)].
Unlike BVGAS, PCPMcomm achieves the same lower
bound as PDPRcomm.

Analyzing equations 2 and 3, we see that BVGAS is
profitable compared to PDPR when:

cmr >
di +2dv

l
(5)

In comparison, PCPM offers a more relaxed constraint
on cmr (by a factor of 1/r) becoming advantageous when:

cmr >
di +2dv

rl
(6)

The RHS in eq. 5 is constant indicating that BVGAS
is advantageous for low locality graphs. With optimized
node ordering, we can reduce cmr and outperform BV-
GAS. On the contrary, r ∈ [1,m/n] in the RHS of eq. 6
is a function of locality. With an optimized node label-
ing, r also increases and enhances the performance of
PCPM. Fig. 5 shows the effect of r on predicted DRAM
communication for the kron graph. Obtaining an optimal
nodel labeling that makes r = m/n might be very difficult
or even impossible for some graphs. However, as can
be observed from fig. 5, DRAM traffic decreases rapidly
for r ≤ 5 and converges slowly for r > 5. Therefore, a
node reordering that can achieve r≈ 5 is good enough to
optimize communication volume in PCPM.
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Figure 5: Predicted DRAM traffic for kron graph with
n= 33.5 M, m= 1070 M, k = 512 and di = dv = 4 Bytes.

5.2 Random Memory Accesses
We define a random access as a non-sequential jump in
the address of memory location being read from or writ-
ten to DRAM. Random accesses can incur latency penal-
ties and negatively impact the sustained memory band-
width. In this subsection, we model the amount of ran-
dom accesses performed by different methodologies in a
single PageRank iteration.
PDPR: Reading edge offsets and source node IDs in pull
technique is completely sequential because of the CSR
format. However, all accesses to source node PageRank
values served by DRAM contribute to potential random
accesses resulting in:

PDPRra = O(mcmr) (7)

BVGAS: In scatter phase of algorithm 5, updates can
potentially be inserted at random memory locations. As-
suming full cache line utilization for BVGAS, for every
l Bytes written, there is at most 1 random DRAM access.
In gather phase, all DRAM accesses are sequential if we
assume that bin width is smaller than the cache. Total
random accesses for BVGAS are then given by:

BV GASra = O
(

mdv

l

)
(8)

PCPM: With the PNG layout (algorithm 3), there are
at most k bin switches when scattering updates from a
partition. Since there are k such partitions, total number
of random accesses in PCPM is bound by:

PCPMra = O(k ∗ k) = O(k2) (9)

Comparison: BVGAS exhibits less random accesses
than PDPR. However, PCPMra is much smaller than
both BV GASra and PDPRra. For instance, in the kron
dataset with dv = 4 Bytes, l = 64 Bytes and k = 512,
BV GASra ≈ 66.9 M whereas PCPMra ≈ 0.26 M.

Although it is not indicated in algorithm 5, the num-
ber of data dependent unpredictable branches in cache

bypassing BVGAS implementation is also O(m). For
every update insertion, the BVGAS scatter function has
to check if the corresponding cached buffer is full (sec-
tion 4). In contrast, the number of branch mispredictions
for PCPM (using branch avoidance) is O(k2) with 1 mis-
prediction for every destination partition (p′) switch in
algorithm 3. The derivations are similar to random ac-
cess model and for the sake of brevity, we do not provide
a detailed deduction.

6 Experimental Evaluation

6.1 Experimental Setup and Datasets

We conduct experiments on a dual-socket Ivy Bridge
server equipped with two 8-core Intel Xeon E5-2650
v2 processors@2.6 GHz running Ubuntu 14.04 OS. Ta-
ble 3 lists important characteristics of our machine.
Memory bandwidth is measured using STREAM bench-
mark [25]. All codes are written in C++ and compiled
using G++ 4.7.1 with the highest optimization -O3 flag.
The memory statistics are collected using Intel Perfor-
mance Counter Monitor [40]. All data types used for
indices and PageRank values are 4 Bytes.

Table 3: System Characteristics

Socket no. of cores 8
shared L3 cache 25MB

Core L1d cache 32 KB
L2 cache 256 KB

Memory
size 128 GB

Read BW 59.6 GB/s
Write BW 32.9 GB/s

We use 6 large real world and synthetic graph datasets
coming from different applications, for performance
evaluation. Table 4 summarizes the size and sparsity
characteristics of these graphs. Gplus and twitter are fol-
lower graphs on social networks; pld, web and sd1 are
hyperlink graphs obtained by web crawlers; and kron is
a scale 25 graph generated using Graph500 Kronecker
generator. The web is a very sparse graph but has high
locality obtained by a very expensive pre-processing of
node labels [6]. The kron graph has higher edge density
as compared to other datasets.

Table 4: Graph Datasets

Dataset Description # Nodes (M) # Edges (M) Degree
gplus [12] Google Plus 28.94 462.99 16
pld [27] Pay-Level-Domain 42.89 623.06 14.53
web [6] Webbase-2001 118.14 992.84 8.4

kron [28] Synthetic graph 33.5 1047.93 31.28
twitter [19] Follower network 61.58 1468.36 23.84

sd1 [27] Subdomain graph 94.95 1937.49 20.4
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6.2 Implementation Details

We use a simple hand coded implementation of algo-
rithm 1 for PDPR and parallelize it over vertices with
static load balancing on the number of edges traversed.
Our baseline does not incur overheads associated with
similar implementations in frameworks [35, 30, 37] and
hence, is faster than framework based programs [5].

To parallelize BVGAS scatter phase (algorithm 5), we
give each thread a fixed range of nodes to scatter. Work
per thread is statically balanced in terms of the num-
ber of edges processed. We also give each thread dis-
tinct memory spaces corresponding to all bins to avoid
atomicity concerns in scatter phase. We use the Intel
AVX non-temporal store instructions [1] to bypass the
cache while writing updates and use 128 Bytes cache line
aligned buffers to accumulate the updates for streaming
stores [5]. BVGAS gather phase is parallelized over bins
with load balanced using OpenMP dynamic scheduling.
The optimal bin width is empirically determined and set
to 256 KB (64K nodes). As bin width is a power of 2,
we use bit shift instructions instead of integer division to
compute the destination bin from node ID.

The PCPM scatter and gather phases are parallelized
over partitions and load balancing in both the phases is
done dynamically using OpenMP. Partition size is empir-
ically determined and set to 256 KB. A detailed design
space exploration of PCPM is discussed in section 6.3.2.

All the implementations mentioned in this section ex-
ecute 20 PageRank iterations on 16 cores. For accuracy
of the collected information, we repeat these algorithms
5 times and report the average values.

6.3 Results
6.3.1 Comparison with Baselines

Execution Time: Fig. 6 gives a comparison of the
GTEPS (computed as the ratio of giga edges in the graph
to the runtime of single PageRank iteration) achieved by
different implementations. We observe that PCPM is
2.1− 3.8× faster than the state-of-the-art BVGAS im-
plementation and upto 4.1× faster than PDPR. BVGAS
achieves constant throughput irrespective of the graph
structure and is able to accelerate computation on low
locality graphs. However, it is worse than PDPR for high
locality (web) and dense (kron) graphs. PCPM is able to
outperform PDPR and BVGAS on all datasets, though
the speedup on web graph is minute because of high per-
formance of PDPR. Detailed results for execution time of
BVGAS and PCPM during different phases of computa-
tion are given in table 5. PCPM scatter phase benefits
from a multitude of optimizations to achieve a dramatic
5× speedup over BVGAS scatter phase.
Communication and Bandwidth: Fig. 7 shows the
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Figure 6: Performance in GTEPS. PCPM provides sub-
stantial speedup over BVGAS and PDPR.

Table 5: Execution time per iteration of PageRank for
PDPR, BVGAS and PCPM

PDPR BVGAS PCPM

Dataset
Total

Time(s)
Scatter
Time(s)

Gather
Time(s)

Total
Time(s)

Scatter
Time(s)

Gather
Time(s)

Total
Time(s)

gplus 0.44 0.26 0.12 0.38 0.06 0.1 0.16
pld 0.68 0.33 0.15 0.48 0.09 0.13 0.22
web 0.21 0.58 0.23 0.81 0.04 0.17 0.21
kron 0.65 0.5 0.22 0.72 0.07 0.18 0.25

twitter 1.83 0.79 0.32 1.11 0.18 0.27 0.45
sd1 1.97 1.07 0.42 1.49 0.24 0.35 0.59

amount of data communicated with main memory nor-
malized by the number of edges in the graph. Average
communication in PCPM is 1.7× and 2.2× less than
BVGAS and PDPR, respectively. Further, PCPM mem-
ory traffic per edge for web and kron is lower than other
graphs because of their high compression ratio (table 6).
The normalized communication for BVGAS is almost
constant and therefore, its utility depends on the effi-
ciency of pull direction baseline.
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Figure 7: Main memory traffic per edge. PCPM commu-
nicates the least for all datasets except the web graph.

Note that the speedup obtained by PCPM is larger
than the reduction in communication volume. This is be-
cause by avoiding random DRAM accesses and unpre-
dictable branches, PCPM is able to efficiently utilize the
available DRAM bandwidth. As shown in fig. 8, PCPM
can sustain an average 42.4 GB/s bandwidth compared
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to 33.1 GB/s and 26 GB/s of PDPR and BVGAS, re-
spectively. For large graphs like sd1, PCPM achieves
≈ 77% of the peak read bandwidth (table 3) of our sys-
tem. Although both PDPR and BVGAS suffer from ran-
dom memory accesses, the former executes very few in-
structions and therefore, has better bandwidth utilization.
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Figure 8: Sustained Memory Bandwidth for different
methods. PCPM achieves highest bandwidth utilization.

Table 6: Locality vs compression ratio r. GOrder im-
proves locality in neighbors and increases compression

Original Labeling GOrder Labeling

Dataset
#Edges in
Graph (M)

#Edges in
PNG (M) r

#Edges in
PNG (M) r

gplus 463 243.8 1.9 157.4 2.94
pld 623.1 347.7 1.79 166.7 3.73
web 992.8 118.1 8.4 126.8 7.83
kron 104.8 342.7 3.06 169.7 6.17

twitter 1468.4 722.4 2.03 386.2 3.8
sd1 1937.5 976.9 1.98 366.2 5.29

The reduced communication and streaming access pat-
terns in PCPM also enhance its energy efficiency result-
ing in lower µJ/edge consumption as compared to BV-
GAS and PDPR, as shown in fig. 9. Energy efficiency is
important from an eco-friendly computing perspective as
highlighted by the Green Graph500 benchmark [16].
Effect of Locality: To assess the impact of locality
on different methodologies, we relabel the nodes in our
graph datasets using the GOrder [39] algorithm. We refer
to the original node labeling in graph as Orig and GOrder
labeling as simply GOrder. GOrder increases spatial lo-
cality by placing nodes with common in-neighbors closer
in the memory. As a result, outgoing edges of the nodes
tend to be concentrated in few partitions which increases
the compression ratio r as shown in table 6. However, the
web graph exhibits near optimal compression (r = 8.4)
with Orig and does not show improvement with GOrder.

Table 7 shows the impact of GOrder on DRAM com-
munication. As expected, BVGAS communicates a con-
stant amount of data for a given graph irrespective of the
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Figure 9: DRAM energy consumption per edge. PCPM
benefits from reduced communication and random mem-
ory accesses.

Table 7: DRAM data transfer per iteration (in GB).
PDPR and PCPM benefit from optimized node labeling

PDPR BVGAS PCPM
Dataset Orig GOrder Orig GOrder Orig GOrder

gplus 13.1 7.4 9.3 9.3 6.6 5.1
pld 24.5 10.7 12.6 12.5 9.4 6.1
web 7.5 7.6 21.6 21.3 8.5 8.4
kron 18.1 10.8 19.9 19.5 10.4 7.5

twitter 68.2 31.6 28.8 28.2 19.4 13.4
sd1 65.1 23.8 37.8 37.8 26.9 15.6

labeling scheme used. On the contrary, memory traf-
fic generated by PDPR and PCPM decreases because
of reduced cmr and increased r, respectively. These ob-
servations are in complete accordance with the perfor-
mance models discussed in section 5.1. The effect on
PCPM is not as drastic as PDPR because after r be-
comes greater than a threshold, PCPM communication
decreases slowly as shown in fig. 5. Nevertheless, for al-
most all of the datasets, the net data transferred in PCPM
is remarkably lesser than both PDPR and BVGAS for
either of the vertex labelings.

6.3.2 PCPM Design Space Exploration

Partition size represents an important tradeoff in PCPM.
Large partitions force neighbors of each node to fit in
fewer partitions resulting in better compression but poor
locality. Small partitions on the other hand ensure high
locality random accesses within partitions but reduce
compression. We evaluate the impact of partition size on
the performance of PCPM by varying it from 32 KB (8K
nodes) to 8 MB (2M nodes). We observe a reduction in
DRAM communication volume with increasing partition
size (fig. 10). However, increases partition size beyond
what cache can accommodate results in cache misses and
a drastic increase in the DRAM traffic. As an exception,
the performance on web graph is not heavily affected by
partition size because of its high locality.
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Figure 10: Impact of partition size on communication
volume. Very large partitions result in cache misses and
increased DRAM traffic.

The execution time (fig. 11) also benefits from com-
munication reduction and is penalized by cache misses
for large partitions. Note that for partition sizes >
256 KB and <= 1 MB, communication volume de-
creases but execution time increases. This is because
in this range, many requests are served from the larger
shared L3 cache which is slower than the private L1 and
L2 caches. This phenomenon decelerates the computa-
tion but does not add to DRAM traffic.
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Figure 11: Impact of partition size on execution time.

Table 8: Pre-processing time of different methodologies.
PNG construction increases the overhead of PCPM

Dataset PCPM BVGAS PDPR
gplus 0.25s 0.1s 0s
pld 0.32s 0.15s 0s
web 0.26s 0.18s 0s
kron 0.43s 0.22s 0s

twitter 0.7s 0.27s 0s
sd1 0.95s 0.32s 0s

6.3.3 Pre-processing Time

We assume that adjacency matrix in CSR and CSC for-
mat is available and hence, PDPR does not need any pre-
processing. Both BVGAS and PCPM however, require a

beforehand computation of bin size and write offsets in-
curring non-zero pre-processing time as shown in table 8.
In addition, PCPM also constructs the PNG layout. For-
tunately, the computation of write offsets can be easily
merged with PNG construction (section 3.3) to reduce
the overhead. The pre-processing time also gets amor-
tized over multiple iterations of PageRank.

7 Conclusion and Future Work

In this paper, we formulated a Partition-Centric Process-
ing Methodology (PCPM) that perceives a graph as a set
of links between nodes and partitions instead of nodes
and their individual neighbors. We presented several fea-
tures of this abstraction and developed data layout and
system level optimizations to exploit them.

We conducted extensive analytical and experimental
evaluation of our approach. Using a simple index based
partitioning, we observed an average 2.7× speedup in
execution time and 1.7× reduction in DRAM communi-
cation volume over state-of-the-art. In the future, we will
explore edge partitioning models [21, 8] to further reduce
communication and improve load balancing for PCPM.

Although we demonstrate the advantages of PCPM
on PageRank, we show that it can be easily extended
to generic SpMV computation. We believe that PCPM
can be an efficient programming model for other graph
algorithms or graph analytics frameworks. In this con-
text, there are many promising directions for further ex-
ploration. For instance, the streaming memory access
patterns of PNG enabled PCPM are highly suitable for
High Bandwidth Memory (HBM) and disk-based sys-
tems. Exploring PCPM as a programming model for het-
erogenous memory or processor architectures is an inter-
esting avenue for future work.

PCPM accesses nodes from only one graph partition
at a time. Hence, G-Store’s smallest number of bits rep-
resentation [18] can be used to reduce the memory foot-
print and DRAM communication even further. Devising
novel methods for enhanced compression can also make
PCPM amenable to be used for large-scale graph pro-
cessing on commodity PCs.
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Abstract
With the fast growing of iterative graph analysis appli-
cations, the graph processing platform has to efficiently
handle massive Concurrent iterative Graph Processing
(CGP) jobs. Although it has been extensively studied to
optimize the execution of a single job, existing solutions
face high ratio of data access cost to computation for the
CGP jobs due to significant cache interference and mem-
ory wall, which incurs low throughput. In this work,
we observed that there are strong spatial and temporal
correlations among the data accesses issued by different
CGP jobs because these concurrently running jobs usu-
ally need to repeatedly traverse the shared graph struc-
ture for the iterative processing of each vertex. Based on
this observation, this paper proposes a correlations-aware
execution model, together with a core-subgraph based
scheduling algorithm, to enable these CGP jobs to effi-
ciently share the graph structure data in cache/memory
and their accesses by fully exploiting such correlations.
It is able to achieve the efficient execution of the CGP
jobs by effectively reducing their average ratio of data
access cost to computation and therefore delivers a much
higher throughput. In order to demonstrate the efficiency
of the proposed approaches, a system called CGraph
is developed and extensive experiments have been con-
ducted. The experimental results show that CGraph im-
proves the throughput of the CGP jobs by up to 2.31
times in comparison with the existing solutions.

1 Introduction
In the past decade, iterative graph analysis has be-
come increasingly important in a large variety of do-
mains [7, 26], which need to iteratively handle the graph
round by round until convergence. Due to the increasing
need of analyzing graph-structured data (e.g., social net-
works and web graphs), many iterative graph algorithms
run as concurrent services on a common platform. These

∗Corresponding Author: Xiaofei Liao
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Figure 1: Information traced on a social network
Concurrent iterative Graph Processing (CGP) jobs are
usually executed on the same graph simultaneously so
as to analyze it for various information. For example,
facebook [2] uses Giraph [13] to handle a large num-
ber of CGP jobs (such as the variants of pagerank [21],
SSSP [20], and k-means [16]) daily over the same graph
(or its different snapshots) to provide various information
for different products, respectively. Figure 1(a) gives the
number of the CGP jobs traced over a large social net-
work and shows that more than 20 CGP jobs may be sub-
mitted to the common platform to concurrently analyze
the same graph in an iterative way at the peak time.

Many systems are recently proposed to support large-
scale graph analytics. They try to fully utilize high se-
quential memory bandwidth [17, 22, 23], improve data
locality [11, 28, 31, 32], spare the redundant data ac-
cesses [6, 25], and reduce the memory consumption [29,
30], etc. Despite of these research efforts, there is a ma-
jor challenge for the efficient execution of the CGP jobs.
When a massive number of CGP jobs are running on the
same underlying graph using the existing systems, each
individual CGP job separately accesses the shared graph
structure along different graph paths, resulting in repeat-
edly loading of the same data into the cache at different
time by different jobs. They suffer from expensive data
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access overhead due to the factors such as serious cache
interference and limited bandwidth. As the result of high
ratio of data access cost to computation in graph algo-
rithm, the current graph processing systems experience
low throughput. This paper investigates whether and how
we can improve the throughput of the CGP jobs.

In practice, the CGP jobs usually need to repeatedly
traverse the shared graph and iteratively process each
vertex for their own purpose. It suggests that there are
a large number of intersections among the graph struc-
ture data being accessed by these jobs in each iteration,
which we call the spatial correlation of data accesses. In
addition, the partition of the shared graph structure may
need to be accessed by multiple jobs within a short time
interval, which we call the temporal correlation of data
accesses. These two correlations indicate that there ex-
ist significant redundant data storing and accessing cost
in the jobs, which leaves us good opportunities to reduce
these unnecessary costs and improve the throughput.

Based on the observation, we propose a data-centric
Load-Trigger-Pushing (denoted by LTP) model to im-
prove the throughput of CGP jobs by fully exploiting the
correlations of their data accesses. It decouples the graph
structure data from the vertex state associated with each
job. Within each iteration, the graph structure partitions
shared by multiple CGP jobs are streamed into the cache
and trigger the related jobs to concurrently process the
data, followed by vertex state pushing for convergence.
In this way, many accesses to the shared graph parti-
tions can be amortized by multiple CGP jobs through
handling them along a common order. The consump-
tion of cache/memory is also reduced since a single copy
of the graph structure data is used to serve multiple jobs
at the same time. It indicates higher throughput thanks
to much lower data access cost. To further improve the
throughput, a core-subgraph based scheduling algorithm
is designed to maximize cache utilization by judiciously
arranging the loading order of the partitions.

We conducted the extensive experiments with our sys-
tem CGraph and compare its performance with those
of three cutting-edge graph processing systems, i.e.,
CLIP [6], Nxgraph [11], and Seraph [29, 30]. Experi-
mental results show that CGraph improves the through-
put of the CGP jobs by up to 3.29 times, 4.32 times, and
2.31 times over CLIP, Nxgraph, and Seraph, respectively.

The remainder of this paper is organized as follows.
Section 2 discusses the the motivation of this work. Sec-
tion 3 outlines our approach, followed by experimental
evaluation in Section 4. Section 5 gives a survey of re-
lated work. Finally, we conclude this paper in Section 6.

2 Problem Presentation and Motivation
A common characteristic of an iterative graph process-
ing job is that the operations are usually operated on

two types of data: graph structure data and vertex state
data. The graph structure data contains the edges be-
tween vertices and the information associated with each
edge, whereas the vertex state data (e.g., ranking scores
for PageRank [21], the distances from the source vertex
for SSSP [20]) is computed by its tasks in a parallel way
within each iteration and typically consumed in the next
iteration. The graph structure data always occupies a ma-
jority of the memory, as compared with the vertex state
data (i.e., job-specific data), and its proportion varies
from 71% to 83% for different datasets [30]. As evalu-
ated in Figure 1, the graph structure data is usually shared
by multiple CGP jobs. However, in existing graph pro-
cessing systems, these CGP jobs handle the shared graph
in an individual manner along different graph paths, in-
curring low throughput for many redundant accesses to
the shared graph and cache interference.

2.1 Data Access Problems of the CGP Jobs
In order to investigate the level of the inefficiency of the
individual data accessing manner of the CGP jobs, we
conducted the benchmark experiments to evaluate the ex-
ecution time of different number of CGP jobs over Ser-
aph [29, 30] on uk-union [3]. The hardware platform and
benchmarks are the same as those described in Section 4.

From Figure 2(a), we made two observations. First,
the concurrent way performs better than the sequential
way of executing the jobs one by one. As observed in
the experiments, it is because that the execution time of
graph processing job is dominated by the data access cost
and the CPU is always underutilized. Seraph is able to
utilize the CPU in a better way by concurrently executing
the jobs and also allowing them to share the in-memory
graph structure data for less average data access cost.
When there are eight jobs, the total execution time of the
concurrent execution way is about 60% of the sequential
way. Note that the total execution time of the concur-
rent way is the maximum value of these jobs’ execution
time, while it is the sum of those of all jobs for the se-
quential way. Second, the average execution time of each
job, however, is significantly prolonged as the number of
jobs increases. It is almost doubled when the number of
jobs increases from four to eight, because of higher data
access cost for each vertex processing.

Figure 2(b) shows the average data access time of the
jobs over Seraph when the number of jobs increases. We
can observe that the increment of the number of jobs
leads to the significant rise of data access cost. It is be-
cause that the shared graph partitions are handled by the
CGP jobs in an individual manner along different graph
paths. As the number of the CGP jobs increases, more
copies of the same data need to be created and loaded
into the cache by the jobs at different time. Thus, more
redundant data accesses are issued by the CGP jobs and
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Figure 2: Normalized performance of each CGP job over
Seraph against that of the sequential way

it also incurs more serious cache interference due to the
fact that more redundant data are stored into the cache
for different jobs at different time. It eventually leads to
low system throughput, since the data accessing cost typ-
ically represents a major proportion of the total execution
time for an iterative graph algorithm.

Take Figure 3 as an example and assume that the cache
can only store a partition for the CGP jobs. With the ex-
isting solutions, the SSSP job may firstly access partition
1 and then partition 2, whereas the PageRank job may
firstly access partition 2 and then partition 1. Besides, the
processing of each partition is various for different jobs,
making their accesses more irregular. As a result, the
partition 1 and partition 2 need to be repeatedly loaded
into the cache. It leads to serious contention among the
jobs for the data access channel, the cache and so on.

2.2 Correlations between the CGP Jobs
It is common that a set of CGP jobs involve in the anal-
ysis of the same graph. Figure 1(b) shows the ratios of a
graph shared by different number of CGP jobs at various
time sampled from the real trace. We discover that there
are strong temporal and spatial correlations between the
data accesses of the CGP jobs due to the repeated tra-
verse of the graph shared by them. It indicates that many
redundant accesses are issued by the CGP jobs and much
cache space is also wasted to store several copies of the
same graph structure data for the jobs at different time.

As described in Figure 1(b), the intersections of the set
of graph partitions to be handled by different CGP jobs
in each iteration are large (more than 75% of all active
partitions on average). This is called the spatial correla-
tion. However, the CGP jobs in existing systems access
the shared graph partitions in different order individually,
inducing much redundant overhead. Ideally, these CGP
jobs should consolidate the accesses to the shared graph
structure and store a single copy of the shared data in the
cache to serve multiple CGP jobs at the same time.

In addition, some graph partitions may be accessed by
multiple CGP jobs (may be more than 16 jobs) within a
short time duration. This is called the temporal corre-
lation. The traced results show that the number of CGP
jobs to access each partition is skewed at any time. The
current solutions, e.g., Least Recently Used (LRU) algo-

rithm, may load the infrequently-used data into the cache
when it is needed. It not only incurs the cost to load the
data, but also swaps out the frequently-used data. A bet-
ter solution should take into account the temporal corre-
lations, e.g., the usage frequency of the graph partitions,
when loading them into the cache.

These observations motivate us to develop a solution
for efficient use of cache/memory and the data access
channel to achieve a higher throughput by fully exploit-
ing the spatial/temporal correlations discussed above.

3 Our Proposed Approach
Although we have identified the correlations between the
CGP jobs, there are still several challenges that need to
be tackled in order to exploit them. First, the shared ver-
tices and edges may be individually handled by different
jobs along different graph paths. Second, the CGP jobs
have different properties (e.g., the rounds for conver-
gence and the submission time), which reduce the chance
of sharing the accesses to the graph structure data within
a short time interval. For example, some graph structure
partitions may be accessed by some jobs (e.g., PageR-
ank) much more frequently than the others (e.g., BFS).
Besides, the CGP jobs that share the same graph structure
may be put into execution at different time. Third, it is
a non-trivial task to design an efficient partition-loading
order that can achieve a high cache utilization ratio.

Thus, we propose a data-centric Loading-Trigger-
Pushing (LTP) model to fully exploit the spatial/temporal
correlations between the CGP jobs, aiming to minimize
the redundant accessing and storing cost of the shared
graph structure data. In our LTP model, the shared graph
is divided into a set of partitions. These partitions are
loaded into the cache in sequence and in the same order
for all jobs, where each partition is concurrently handled
by the related CGP jobs. By such means, the access-
ing and storing of most graph structure partitions can be
shared by multiple CGP jobs, thus significantly reducing
the data access cost. When loading the graph partitions, a
scheduling algorithm is further developed to specify the
loading order of graph partitions (as well as the related
job-specific data). The scheduler aims to maximize the
cache utilization by fully exploiting the temporal corre-
lations among the jobs’ data accesses.

3.1 Data-centric LTP Execution Model
Assume that the data for an iterative graph algorithm is
expressed as D = (V,S,E,W ), where V is the set of ver-
tices, S is the set of states for the vertices, E is the set of
edges, W is the set of weights associated with the edges.
In our LTP model, the data of each job is decoupled as the
graph structure data, i.e., G = (V,E,W ), and job-specific
vertex states, i.e., S, where G= ∪iGi is shared by differ-
ent jobs and Gi is the ith partition of the graph G. Each
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job has its own S, and repeatedly updates its S through
its processing iterations until the calculated results con-
verge. The processing of each iteration is divided into
three stages: graph loading, parallel trigger, and pushing
stage, which are formalized as follows.

Graph Loading. In each iteration, the shared graph
structure partitions, e.g., Gi, are sequentially loaded for
the CGP jobs along an order. It performs the following
operation to load a graph partition: Li ← L(Gi,∪ j∈JSi

j),
where L(∗) denotes an operator that loads the data spec-
ified in the parameter list “*” into the cache, J is the job
set, Si

j denotes the states of the vertices in Gi associated
with the jth job, and Li is the data loaded into the cache.
S j = ∪iSi

j is the set of vertex states related to the jth job.
In this way, it only needs to load a copy of each shared
graph partition, e.g., Gi, for multiple CGP jobs and the
partitions are also loaded for these jobs along a common
order to provide opportunity to the sparing of redundant
accesses by fully utilizing the correlations of these jobs.

Trigger and Parallel Execution. For each loaded graph
partition Gi, the related CGP jobs, which are the jobs
that need to process the vertices in the partition Gi and
have not yet obtained the convergent results, are trig-
gered to concurrently execute the following operator:
Sinew ← ∪ j∈JTj(Gi,Si

j). The function Tj(Gi,Si
j) denotes

the specific graph processing operations performed by
the activated job j on the loaded data (i.e., Gi and Si

j)
towards its own objectives. Its outputs (denoted by Sinew

j )
are the new states related to the vertices in Gi and are as-
sociated with the jth job. Sinew=∪ j∈JSinew

j is the new ver-
tex states that are related to the vertices in Gi for all CGP
jobs. When the processing of Gi is finished for all re-
lated jobs, the next partition then can be loaded. By such
means, it enables multiple jobs to regularly and concur-
rently process the set of shared graph partitions for their
own goals along the same order and efficiently share the
accesses to them for lower overhead.

State Pushing. If a job, e.g., j, has processed all its ac-
tive partitions in an iteration, its new calculated results,
i.e., Snew

j =∪iS
inew
j , at this iteration are pushed for the state

synchronization between the vertices of its different par-
titions (stored in its own job-specific space) for conver-
gence. Then, the job starts a new iteration. Note that
a CGP job will move to the next iteration once it has
processed all active partitions in its current iteration and
therefore different CGP jobs may be in different itera-
tions of their graph processing. For example, BFS [10]
may only need to handle a few active partitions in each it-
eration, while other algorithms, e.g., PageRank [21], may
have to go through all partitions to complete an iteration.

Figure 3 gives an example to illustrate the LTP model.
In this example, the graph in Figure 4(a) is divided into
two partitions, which need to be handled by two jobs, i.e.,

Memory/Disk
Partition 1 Partition 2

...
Scheduler(Arranging the 
Loading order of graph 

structure partitions)

Global Space

v1

v2 v3
2.9

Partition 1

PageRank job

Job specific space of 
PageRank Job

SSSP job

Job specific space of 
SSSP Job

...

IsNotConvergent (vh):
    return |vh.Δvalue|>ε

Acc(value1, value2):
    return value1+value2

Compute(Gi, vh)://Processing of each vertex
    vh.value Acc(vh.value, vh.Δvalue)
    <links> look up outlinks of vh from Gi
    for(each link <vh, ve> <links>){
        Δvalue d× vh.Δvalue/Gi[vh].OutDegree
        ve.Δvalue Acc(ve.Δvalue, Δvalue)
   }

IsNotConvergent (vh):
    return |vh.Δvalue|  0

Acc(value1, value2):
    return min(value1, value2)

Compute(Gi, vh)://Processing of each vertex
    vh.value Acc(vh.value, vh.Δvalue)
    <links> look up outlinks of vh from Gi
    for(each link <vh, ve> <links>){
         Δvalue vh.value+<vh, ve>.distance
         ve.Δvalue Acc(ve.Δvalue, Δvalue)
   }

Cache

v1

v2 v32.9 v3

v4

v51.5

Vertex ID Value

v1 0.2
v2 0.1
v3 0.25

Vertex ID Value

v1 1.2
v2 0
v3 2.9

Figure 3: Illustration of our data-centric LTP model

a PageRank job and a SSSP job. The graph structure data
is stored in the global space and is shared by these two
CGP jobs, while the job-specific space is provided for
each CGP job to store its own vertex states. It can load
the two partitions along the order of partition 1 then 2.
When the partition 1 and the related job-specific data are
loaded into the cache, the related jobs (i.e., the PageRank
job and the SSSP job) are triggered to concurrently han-
dle it and update their own vertex states. When the two
jobs have handled the partition 1, the partition 2 can be
loaded for processing. When both the two partitions are
handled by the jobs, the new iteration of each job begins.

3.2 Correlations-aware Execution of Jobs
This section discusses how to efficiently implement our
LTP model for the execution of multiple CGP jobs.

3.2.1 Graph Storage for Multiple CGP Jobs
We first show how to efficiently store the graph for the
CGP jobs in our approach.

Data Structure of Graph Partition. For parallel pro-
cessing, large-scale graph needs to be divided into parti-
tions. However, the real-world graph usually has highly
skewed power-law degree distributions [12], incurring
imbalanced load among the partitions. Thus, our system
also uses existing vertex-cut partitioning method [31],
and evenly divides the edges of the graph into same-
sized partitions in terms of the number of edges. Note
that a vertex may have multiple replicas (e.g., v3 in Fig-
ure 4(b)), where one of the replicas is nominated as the
master vertex and the others are regarded as the mirror
vertices. In this way, it not only gets balanced load for the
partitions, but also does not incur communication cost
when handling each partition. The communication only
occurs when the replicas of the same vertex in different
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v1

v2 v3

v4

v52.9 1.5
Partition 1 Partition 2

(a) Example graph

Vertex ID Value

v1 0.2
v2 0.1
v3 0.25

PageRank Job

Vertex ID Edge List Flag Master Location Information Associated with Its Edges

v1 v3 Master Partition 1 1.1
v2 v1, v3 Master Partition 1 1.2, 2.9
v3 Ø Master Partition 1 Ø

…

Private Table Partitions

Graph Structure Partitions

Vertex ID Value

v3 0.05
v4 0.1
v5 0.3

Vertex ID Value

v1 1.2
v2 0
v3 2.9

SSSP Job

Private Table Partitions

Vertex ID Value

v3
v4
v5

Vertex ID Edge List Flag Master Location Information Associated with Its Edges

v3 v5 Mirror Partition 1 1.5
v4 v3, v5 Master Partition 2 0.9, 2.5
v5 Ø Master Partition 2 Ø

(b) Details for the related tables
Figure 4: An example to show how to store data for mul-
tiple jobs, where the graph is divided into two partitions.

partitions synchronize their states. In order to effectively
store the graph partitions for the CGP jobs, multiple key-
value tables are established. In detail, a single global
table is created to store the graph structure data for all
CGP jobs. Multiple private tables are used to store the
vertex states of the jobs, i.e., one table for each job.

Each global table entry represents a graph structure
partition indexed by its key and with three other fields to
describe corresponding information. The first two fields
indicate the location of this graph structure partition and
the number of its vertices, respectively. The third field
stores the IDs of the jobs to process it at the next iteration
(along with the locations of the related private tables as-
sociated with these jobs). The information of each graph
structure partition is also stored in a key-value table and
each of its data item indicates a vertex and contains four
fields: vertex ID, edges assigned in this partition, flag,
master location and the information associated with its
edges, e.g., priority. Each private table entry represents
a vertex state and has two fields, i.e., vertex ID and its
state. Figure 4 gives an example to illustrate how to store
the data for multiple jobs.

Suitable Size of Graph Partition. In order to efficiently
use the parallelism of CPU and ensure good cache local-
ity, the cache is expected to be just fully loaded when
each core has data to handle. Therefore, the suitable size
of each graph structure partition, i.e., Pg, is determined
by the number of CPU cores, i.e., N, and the size of the
cache, i.e., C. The value of Pg is expected to be the max-
imum integer such that Pg +

Pg
sg
× sp×N +b≤C, where

Timestamp 1 Timestamp 2 Timestamp3

Job 1 Job 2 Job 3

Partition 4

Partition 2

Partition 4

Partition 1

Partition 2

Partition 3

Partition 4

Time

Figure 5: An example to illustrate how to store evolv-
ing graph structure for the CGP jobs submitted at differ-
ent timestamps, where partitions 2 and 4 are changed at
timestamp 2, and partition 4 is changed at timestamp 3.

sg is the average size of each graph structure partition’s
item, sp is the size of each private table’s item, and b is
the size of reserved buffer.

Details to Store Evolving Graph Structure. In prac-
tice, the graph structure may evolve with time. Thus, we
also maintain a series of snapshots for it, where the graph
updates, e.g., the adding/deleting of vertices and edges,
are only visible to the jobs submitted later than the up-
dates. In this way, different jobs are able to correctly
handle the related snapshots of the graph, respectively.
Because the changes of graph structure are usually very
small at each time, the most part of these snapshots is the
same. Thus, the series of snapshots can be stored in an
incremental way for low overhead. For each snapshot, it
creates a new global table and labels it with a timestamp,
where this table only stores the new version of the parti-
tion with changes. The newly submitted job handles the
graph partitions with the highest timestamp yet less than
its arrival time. Figure 5 gives an example to illustrate it.
Note that most graph structure partitions, e.g., the parti-
tions 1 and 3, are usually shared by the jobs when they
handle different snapshots, respectively.

3.2.2 Loading of Graph Partition
In practice, a partition is to be handled by a job in the
next iteration only when its vertices are activated by the
other ones of this job at the current iteration. Therefore,
it is easy for each partition to identify the set of CGP
jobs to process it within the next iteration through tracing
the partitions activated within the current iteration. This
profiled information, i.e., the temporal correlations of the
jobs, is stored in the global table for each partition. The
spatial correlations between the data accesses issued by
the CGP jobs can be gotten by calculating the intersec-
tion of the set of graph partitions to be processed by dif-
ferent jobs. After that, it is able to load the shared graph
partitions for exactly once along a common order to serve
multiple CGP jobs within each iteration, amortizing the
data access cost. Note that the correctness will not be
affected by any loading order and the runtime loads the
partitions in a round-robin way by default.

For each job, the states of most vertices may have
converged at the early iterations, although some vertices
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Algorithm 1 Details of each trigger
1: procedure TRIGGER(Gi, Si

j)
2: for each vh ∈ Si

j ∧ IsNotConvergent(vh) do
3: Compute(Gi, vh)
4: if vh is a mirror vertex then
5: D← vh.MasterLocation
6: Snew

j .Insert(vh, i, D, vh.∆value)
7: end if
8: end for
9: end procedure

need hundreds of iterations for convergence. The load-
ing and processing of the inactive vertices can be skipped
for the related job for low overhead. In detail, when a
graph structure partition Gi is loaded into the cache, it
only loads the related job-specific private partitions, e.g.,
Si

j, of the CGP jobs which need to process Gi. It does not
load Gi when there is no job to handle Gi, i.e., the states
of the vertices in Gi are inactive for all jobs. Specifically,
when a graph structure partition is not used by any job at
the next iteration, this graph structure partition is labeled
as an inactive one so as to skip its loading. Similarly, it is
relabeled as an active one when it needs to be processed
by some jobs at the next iteration.

3.2.3 Parallel Processing of Graph Partition
After loading a graph partition Gi into the cache, it trig-
gers the related CGP jobs (e.g., j) to concurrently handle
their private vertex states (e.g., Si

j) associated with this
partition, respectively. Note that any newly submitted
job only needs to register the partitions to be processed
by it at its first iteration and waits to be triggered to han-
dle them. It is possible that the number of CGP jobs is
more than the number of CPU cores, i.e., N. Assume a
partition is shared by |J| number of jobs. When the value
of |J| is larger than N, these CGP jobs are assigned to be
processed as different batches, where the shared graph
structure partition is fixed in the cache and only the job-
specific partitions are replaced. A graph structure parti-
tion is swapped out of the cache only when it has been
processed by the related jobs within the current iteration.
Otherwise, the unprocessed jobs need to load it again.

For the processing of each partition, the computation
load of different CGP jobs is usually skewed, leading to
low utilization ratio of hardware. In order to tackle this
problem, it identifies the straggler, i.e., the job with the
most number of unprocessed vertices in its private table
for this partition. Note that the number of unprocessed
vertices can be easily gotten, because the number of ac-
tive vertices for each job in each partition is known as
this partition is handled by the jobs at the previous itera-
tion. Then, as described in Figure 6, it logically divides
the unprocessed vertices in the private partition of the

Cache

Private Partition 1 of Job 1 Private Partition 
1 of Job 2

Private Partition 
1 of Job 3

Graph Structure Partition 1

Core 1

Job 1

Core 2

Job 1

Core 3

Job 2

Core 4

Job 3

Figure 6: An example to illustrate how to get balanced
load, where the core 1 and the core 2 are handling the
partition 1 of the private table of the job 1 together.

straggler into pieces and assigns them to the free cores to
assist its processing.

The processing details for a job are given in Algo-
rithm 1, where each job only computes the new state
for its vertices in Si

j according to their local neighbors
recorded in the graph structure partition Gi (See Lines 2-
8). Therefore, there is no cache miss when handling
a partition, because no communication occurs between
the vertices on different partitions. Obviously, the vertex
with replicas on different partitions needs to synchronize
their states. The mirror vertex needs to push its new state
to its master vertex to get this vertex’s final state at the
current iteration. The new calculated state on the master
vertex needs to be pushed to its mirrors. As a result, for
such a vertex state synchronization, many partitions of
private table are frequently loaded into the cache and in-
cur high cache miss rate. In order to tackle this problem,
for each mirror vertex, its new state is directly buffered
in Snew

j (See Line 6), which will be implicitly sent to the
master replica for batched vertex state synchronization at
the data synchronization stage.

3.2.4 Data Synchronization
When there are multiple CGP jobs to synchronize vertex
state, it is done for the jobs one by one to reduce resource
contention, because there is no data sharing between the
jobs. For efficient vertex state synchronization among
replicas, as depicted in Algorithm 2, they are done to-
gether in batches at this stage for each job, aiming to
avoid the frequent load of private table’s partitions at run-
time. The items buffered in the queue Snew

j (with the new
states of the mirror vertices, e.g., vh) are firstly sorted
according to the IDs (e.g., vh.MasterLocation, which is
described in Figure 4(b)) of the partitions with the related
master vertices (See Line 2), before pushing them.

By such means, it only needs to load fewer partitions
of private table for the state updates of master vertices,
since many updates become successive accesses to the
same partition. Besides, when the successive updates for
a master vertex are done (See Line 7), the final state of
this vertex for the current iteration is gotten. Then, such
a new value can be directly buffered for batched state up-
dating of mirror vertices as well (See Lines 10-12). Note
that, with the traditional solutions, it is impossible to
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Algorithm 2 Details of data synchronization
1: procedure PUSH( j, Snew

j )
2: SortD(Snew

j ) /*Sort the items recorded in Snew
j */

3: for <vh, i, MasterLocation, ∆value> ∈ Snew
j do

4: D← Snew
j [vh].MasterLocation

5: value← Snew
j [vh].∆value

6: SD
j [vh].∆value← Acc(SD

j [vh].∆value,value)
7: if Last update of SD

j [vh].∆value is end then
8: val← SD

j [vh].value
9: SD

j [vh].value← Acc(val,SD
j [vh].∆value)

10: for each Snew
j [vh].MasterLocation=D do

11: Snew
j [vh].∆value← SD

j [vh].∆value
12: end for
13: end if
14: end for
15: SortS(Snew

j ) /*Sort the items recorded in Snew
j */

16: for <vh, i, MasterLocation, ∆value> ∈ Snew
j do

17: i← Snew
j [vh].i

18: Si
j[vh].∆value← Snew

j [vh].∆value
19: end for
20: end procedure

know whether the final state is gotten for a master vertex
until all updates are done. Then, the master vertex needs
overhead to be reloaded for accessing, because it may
have been swapped out of the cache. After that, it is done
in a similar way to update mirror vertices’ states accord-
ing to the related master vertices’ states (See Lines 15-
19), where the items are sorted according to the IDs of
the partitions with the mirror vertices (See Line 15).

3.3 Scheduling Based on Core-subgraph
With existing solutions, the partitions loaded into the
cache may be underutilized. First, some vertices need
more iterations to converge than the others for much
higher degree. They make the partitions containing them
repeatedly loaded into the cache and incur high overhead
to load and store the early convergent vertices in the same
partition. Second, the usage frequency of different par-
titions is also skewed and also evolving with time. In
detail, the same partition of different jobs and different
partitions in the same job all may need various iterations
to converge. Besides, a graph partition is only visible to
the jobs with the arrival time later than its timestamp. As
a result, a loaded partition may need to be processed by
very few (even one) jobs when the partition is arbitrarily
loaded into the cache, inducing poor performance.

In order to maximize the utilization ratio of each parti-
tion loaded into the cache, we propose a scheduling algo-
rithm based on core-subgraph partitioning. The key idea
is to firstly put the core vertices (with degree higher than
a given threshold) together and then make the loaded par-

tition shared by as many jobs as possible on average via
arranging the loading order of graph partitions. In detail,
it firstly identifies a core subgraph, consisting of the core
vertices and the edges on the paths between them, from
the graph. Then it evenly divides the graph based on such
a subgraph, where the edges of this subgraph are put to-
gether into several same-sized partitions and the remain-
ing edges are divided into the other same-sized partitions.
By such means, the frequently loading and processing of
core vertices incur less cost to load the early convergent
vertices in the same partition, sparing the consumption
of bandwidth and the cache space.

After that, it gives each partition P a priority Pri(P)
and schedules the loading order of them based on the dy-
namically profiled priorities of them. The partition with
the highest priority is firstly loaded into cache for the
CGP jobs to handle, so as to improve the cache utiliza-
tion ratio. The basic scheduling rules are as follows:
• First, a partition should be given the highest priority

and be firstly loaded into the cache when it is needed
by the most number of jobs for processing.
• Second, a partition should be set with a higher pri-

ority when it has a higher average vertex degree or
a larger average vertex state changes, because more
vertex states will be propagated to others through
them. Then, most vertices need less iterations (also
less consumption of the cache) to absorb other ver-
tices’ states for convergence.

The above rules are captured by such an equation:

Pri(P) = N(P)+θ ·D(P) ·C(P) (1)
where N(P) is the number of jobs to process P and is
used to capture the temporal correlations for the CGP
jobs. D(P) is the average degree of the vertices in P, and
C(P) is the average state changes of the vertices in P for
all its jobs at the previous iteration. The initial values of
N(P) and C(P) and the value of D(P) are gotten at pre-
processing time, while N(P) and C(P) are incrementally
updated at the execution time. There, 0 ≤ θ < 1

Dmax·Cmax
is the scaling factor set by the runtime system at pre-
processing time to ensure that a partition with the high-
est value of N(P) is firstly processed, where Dmax and
Cmax are the maximum values of any partition’s D(P) and
C(P), respectively. By such means, the partition loaded
into the cache can serve as many jobs as possible, while
the other partitions have more opportunity to be needed
by more jobs after a time interval, further improving the
throughput via reducing the average data access cost.

3.4 Implementation and Interfaces
The implementation details of CGraph are described in
Algorithm 3. It repeatedly loads the unprocessed parti-
tions, e.g., Gi, of the global table into the cache according
to the scheduling algorithm (See Line 4). For each Gi,

USENIX Association 2018 USENIX Annual Technical Conference    447



Algorithm 3 Executor for CGraph
1: procedure EXECUTOR(G, SJobs)
2: while the job set SJobs is not empty do
3: while G has unprocessed Gi for some jobs do
4: Gi ← LoadPartition(G) /*Load Gi*/
5: /*Get the set of jobs to handle Gi*/

J← GetJobs(Gi, SJobs)
6: for each j ∈ J do
7: /*Trigger the job j to handle Gi*/

ParallelTrigger( j, Gi, Si
j)

8: end for
9: for each j ∈ J and Snew

j are gotten do
10: /*Vertex state synchronization for j*/

Push( j, Snew
j )

11: if vertex states of j are inactive then
12: /*Remove j from the set SJobs*/

Remove(SJobs, j)
13: end if
14: end for
15: end while
16: end while
17: end procedure

the job-specific partitions, e.g., Si
j, of the related CGP

jobs are also loaded and these jobs are triggered to con-
currently handle the loaded data (See Lines 5-8), where
each job calculates the new states of its vertices accord-
ing to the states of their local neighbors. When all active
partitions of G have been handled for a job, e.g., j, at
the current iteration (See Line 9), this job synchronizes
the states of the vertices with several replicas distributed
over different partitions (See Line 10). Then, its new it-
eration begins. Each job is repeatedly triggered until all
its vertex states are inactive (See Lines 11-13). Note that
it allows to add new jobs into SJobs at runtime.

For programming, a user only needs to instantiate
three functions, i.e., IsNotConvergent(), Compute(), and
Acc(), which are used in existing systems [23, 30, 31].
The first one indicates whether a vertex is convergent.
Compute() is employed to update a vertex state and cal-
culate the contributions of a vertex for the new states of
its neighbors, and Acc() is utilized for a vertex to accu-
mulate the contributions of its neighbors. Figure 7 gives
two examples to show how to implement iterative graph
algorithm on CGraph. Within each iteration, each vertex
updates its state according to the accumulated contribu-
tions of its neighbors. After that, it calculates and sends
its contributions to its neighbors for their state updates.

4 Experimental Evaluation
The hardware platform used in our experiments is a
server containing 4-way 8-core 2.60 GHz Intel Xeon
CPU E5-2670 and each CPU has 20 MB last-level cache,

IsNotConvergent(vh):
    return |vh.Δvalue|>ε

Acc(value1, value2):
    return value1+value2

Compute(Gi, vh)://Processing of each vertex
    vh.value Acc(vh.value, vh.Δvalue)
    <links> look up outlinks of vh from Gi
    for(each link <vh, ve> <links>){
        Δvalue d× vh.Δvalue/Gi[vh].OutDegree
        ve.Δvalue Acc(ve.Δvalue, Δvalue)
   }

IsNotConvergent(vh):
    return |vh.Δvalue|  0

Acc(value1, value2):
    return min(value1, value2)

Compute(Gi, vh)://Processing of each vertex
    vh.value Acc(vh.value, vh.Δvalue)
     <links> look up outlinks of vh from Gi
    for(each link <vh, ve> <links>){
         Δvalue vh.value+<vh, ve>.distance
         ve.Δvalue Acc(ve.Δvalue, Δvalue)
   }

(a) PageRank (b) SSSP
Figure 7: Instantiation of graph algorithms on CGraph

Table 1: Properties of data sets
Data sets Vertices Edges Sizes

Twitter [3] 41.7 M 1.4 B 17.5 GB
Friendster [4] 65 M 1.8 B 22.7 GB

uk2007 [3] 105.9 M 3.7 B 46.2 GB
uk-union [3] 133.6 M 5.5 B 68.3 GB

hyperlink14 [5] 1.7 B 64.4 B 480.0 GB

running a Linux operation system with kernel version
2.6.32. Its memory is 64 GB and the secondary stor-
age for it is a disk with 1TB. It spawns a worker for each
core to run benchmarks. The program is compiled with
cmake version 2.6.4 and gcc version 4.7.2.

In experiments, four popular iterative graph algo-
rithms from web applications and data mining are em-
ployed as benchmarks: (1) PageRank [21]; (2) single-
source shortest path (SSSP) [20]; (3) strongly con-
nected component (SCC) [14]; (4) breadth-first search
(BFS) [10]. The datasets used for these graph algorithms
are real-world graphs existing on the websites [3, 4, 5]
as described in Table 1. The performance of CGraph is
compared with three cutting-edge graph processing solu-
tions, i.e., CLIP [6], Nxgraph [11], and Seraph [29, 30],
implemented by us on GridGraph [32]. Seraph is the
state-of-the-art system optimized to support the efficient
execution of multiple CGP jobs. Note that the jobs (e.g.,
PageRank, SSSP, SCC, and BFS) in the experiments are
submitted to each system simultaneously.

4.1 Performance of Scheduling Strategy
First, we discuss the contributions of our scheduling al-
gorithm on the performance of CGraph. In order to get
this goal, PageRank, SSSP, SCC and BFS are executed
as four CGP jobs to evaluate the total execution time of
them over CGraph (with our scheduler described in Sec-
tion 3.3) and CGraph-without (without our scheduler),
respectively. Note that the graph partitions in CGraph-
without are loaded in a round-robin way. As shown in
Figure 8, the execution time of CGraph-without is more
than that of CGraph under any circumstances. The ex-
ecution time of CGraph is even only 60.5% of CGraph-
without over hyperlink14. It is because that the schedul-
ing scheme is able to maximize the utilization ratio of
each partition in the cache via firstly loading the most
important partition for the jobs.
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Figure 8: Execution time for the four
jobs without/with our scheduler
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Figure 9: Total execution time for the
four jobs with different solutions
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Figure 10: Execution time breakdown
of different jobs on hyperlink14

Twitte
r

Frie
nd

ste
r

uk
20

07

uk
-un

ion

hy
pe

rlin
k1

4
0

20
40
60
80

100
120

 

 

LL
C

 m
is

s 
ra

te
 (%

)

Data sets

 CLIP      Nxgraph
 Seraph  CGraph

Figure 11: Last-level cache miss rate
for the four jobs
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Figure 12: Volume of data swapped
into the cache for the four jobs
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Figure 13: I/O overhead for the four
jobs with different solutions

4.2 Overall Performance Comparison
To compare CLIP, Nxgraph, Seraph, and CGraph, we si-
multaneously submit PageRank, SSSP, SCC, and BFS as
four jobs to each of these systems. Figure 9 shows the to-
tal execution time of the four jobs over different systems.
We find that the four jobs over CGraph are able to con-
verge with less time, which indicates higher throughput
than the other systems. For example, over hyperlink14,
CGraph can improve the throughput by 2.31 times, 3.29
times, and 4.32 times in comparison with Seraph, CLIP,
and Nxgraph, respectively. We identify that the highest
throughput of CGraph mainly comes from much lower
average data access cost to computation ratio than them.

Figure 10 depicts the execution time breakdown of dif-
ferent jobs evaluated on hyperlink14 with different solu-
tions. We can observe that the pure vertex processing
time of the job over CGraph occupies the most ratio of
its total execution time, while the ratio is very low in
CLIP, Nxgraph, and Seraph. There are two reasons lead-
ing to lower average data access cost to computation ratio
for CGraph than the other solutions. First, through effi-
ciently exploiting the data access correlations between
the CGP jobs, CGraph needs to store less data into the
cache, getting a lower cache miss rate. Second, CGraph
needs to access less volume of data due to efficient share
of data accesses for the jobs, which means less consump-
tion of bandwidth for main memory and the disk.

In order to demonstrate it, we firstly evaluate the last-
level cache miss rates of CLIP, Nxgraph, Seraph, and
CGraph using Cachegrind [1]. The miss rates of the
above four jobs over them are given in Figure 11. As de-
scribed, the cache miss rate of CLIP is larger than that of

Nxgraph, because CLIP tries to trade off locality for the
reduction of the total amount of data accesses while Nx-
graph uses destination-sorted sub-shard structure to store
a graph for better locality. However, the cache miss rate
of Nxgraph is still more than that of CGraph. For exam-
ple, the cache miss rate of Nxgraph is 89.5% for hyper-
link14, while the rate is only 29.6% for CGraph. It is
mainly because that a single copy of graph structure data
in the cache is able to serve multiple jobs of CGraph.

Next, we evaluate the total volume of data swapped
into the cache for the above four jobs over different sys-
tems. The normalized results of them against CLIP are
depicted in Figure 12. We can find that CLIP needs
to swap much smaller volume of data into the cache
than Nxgraph and Seraph, because it is able to reduce
the number of iterations for convergence via reentry of
loaded data and beyond-neighborhood accesses. Note
that the method employed by CLIP can also be used in
Seraph as well as CGraph, rather than Nxgraph.

Besides, from Figure 12, we can observe that the vol-
ume of CGraph is much less than those of the other solu-
tions. For example, the value of CGraph is only 47.1% of
CLIP over hyperlink14, because CGraph does not need
to load and to store the shared graph structure data for
each job, separately. However, CLIP suffers from many
redundant data accesses due to ignoring the data access
correlations between the CGP jobs. Although Seraph can
spare some data accesses from the disk to the main mem-
ory via sharing in-memory data, each job loads data into
the cache in an individual way, incurring high data ac-
cess overhead as well. It also means that Seraph is only
suitable to out-of-core computation.
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Figure 14: Scalability of the four jobs
on hyperlink14
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Figure 15: Utilization ratio of CPU
for the four jobs
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Figure 16: Execution time of the eight
jobs on hyperlink14 with changes

Finally, the I/O overhead of the above four jobs is
also evaluated over different systems. As shown in Fig-
ure 13, the jobs on the first three graphs almost not in-
cur I/O overhead for both CGraph and Seraph, because
they only needs to store one copy of the graph structure
data in the main memory and these graphs can be totally
loaded. When the graph size is larger than the mem-
ory size, CGraph needs less I/O overhead than Seraph
through consolidating data accesses for the jobs. It also
indicates a better performance of CGraph for out-of-core
computation, because the data access time dominates the
total execution time under such circumstances.

4.3 Scalability of CGraph
The scalability of CGraph is evaluated via executing the
above four jobs on hyperlink14 and increasing the num-
ber of workers. Figure 14 gives the results relative to
that of CLIP with only one worker. We can observe that
CGraph has much better scalability than the other ones.
The best scalability of CGraph mainly comes from effi-
cient share of data accesses, while the other systems suf-
fer from limited bandwidth for main memory and mag-
netic disk. Meanwhile, such a limited bandwidth also
induces low utilization ratio of CPU for them.

In Figure 15, we evaluate the average utilization ratio
of CPU for the vertex processing of the four jobs over
different systems. As observed, existing systems suffer
from low CPU utilization ratio, because the long data ac-
cess time leads to the waste of CPU for them. Besides,
from Figure 14 and Figure 15, we can find that the CPU
cores of CGraph are almost fully utilized due to balanced
load and low data access cost to computation ratio. It in-
dicates that the limited computation ability of the CPU
cores becomes the bottleneck of CGraph. GPGPU may
be a suitable accelerator to help CGraph to process the
CGP jobs for its powerful computing ability.

4.4 Performance on Graph with Changes
In real-world applications, several snapshots may be cre-
ated for the graph with changes, and multiple CGP jobs
are generated to handle them, respectively. In this part,
we evaluate CGraph for the graph with structure changes.
In the following experiments, we repeatedly generate the
CGP jobs in the order of PageRank, SSSP, SCC, and BFS

until a given number of jobs are created, where the CGP
jobs are executed over a series of snapshots, respectively.
Note that Seraph-VT is the version of Seraph incorporat-
ing multi-version switching approach [15].

First, we evaluate the total execution time of eight
CGP jobs over different systems for hyperlink14 with the
graph change ratio ranging from 0.005% to 5%. In detail,
the change on the successive two snapshots ranges from
0.005% to 5%. Figure 16 gives the results relative to the
execution time of Seraph-VT when the ratio of changed
edges is 0.005%. We can observe that CGraph always
gets the best performance under different graph change
ratios. It is because CGraph still gets a low average data
access cost to computation ratio, although the snapshots
have differences in graph structure. Besides, we can also
find that CGraph needs longer execution time to handle
the graph when the graph change ratio is larger, because
of less data access correlations between the jobs.

In the following experiments, we take a series of snap-
shots of hyperlink14 as datasets, where the change ratio
between any successive two snapshots is 5% and each
job handles a snapshot. Figure 17 depicts the execution
time breakdown of the jobs over different systems on hy-
perlink14 when the the number of jobs increases. We can
find that the jobs over CGraph have a lower average data
access cost to computation ratio with the increase of the
number of jobs, because there are more jobs to amortize
the data access cost. However, for Seraph-VT and Ser-
aph, the condition with more jobs leads to much more
volume of data loaded into the cache and makes them
suffer from serious cache interference and limited band-
width. Thus, CGraph performs much better than Seraph-
VT and Seraph when the number of jobs is larger.

The last-level cache miss rate is also evaluated for
them on hyperlink14. As depicted in Figure 18, the cache
miss rate of CGraph is significantly reduced when the
number of jobs is increased, because the data in the cache
can be repeatedly used by different CGP jobs. For ex-
ample, in CGraph, the cache miss rate of the condition
with eight jobs is even only 32.8% of the condition with
one job. However, in the other solutions, the cache miss
rate is significantly increased when the number of jobs is
more, because of serious cache interference.
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Figure 17: Execution time breakdown
of different solutions on hyperlink14
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Figure 18: Last-level cache miss rate
of different solutions on hyperlink14
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Figure 19: Ratio of spared accessed
data on hyperlink14

Figure 19 gives the ratio of the total accessed data (in-
cluding the data from the disk to the main memory and
the main memory to the cache) spared by different so-
lutions on hyperlink14 in comparison with the way se-
quentially executing the jobs over Seraph. As expected,
the number of data accesses spared by CGraph is much
more than the other solutions. For example, when the
number of jobs is eight, the ratio is even up to 65.9%
for CGraph, while the ratios of Seraph-VT and Seraph
are only 39.5% and 31.3%, respectively. Besides, as ob-
served, CGraph spares much more data accesses when
the number of jobs increases, due to more opportunity to
share data accesses between different jobs.

5 Related Work
With the explosion of graph scale, many systems [18,
19, 27] have focused on achieving high efficiency for it-
erative graph analysis. However, most of them focus on
supporting single graph processing job. They improve
the efficiency either by fully utilizing the sequential us-
age of memory bandwidth, or by achieving a better data
locality and less redundant data accesses, which conse-
quently reduces the volume of the accessed data.

GraphChi [17] achieves sequential storage access by
employing parallel sliding windows. X-Stream [23] and
Chaos [22] improve GraphChi by using streaming par-
titions for better sequential access of out-of-core data.
Xie etc. [28] propose a novel block-oriented computa-
tion model, in which computation is iterated locally over
blocks of highly connected nodes, which improves the
amount of computation per cache miss. PathGraph [31]
models a large graph using a collection of tree-based par-
titions for better locality. GridGraph [32] proposes 2-
Level hierarchical partitioning scheme to improve the lo-
cality and reduce the amount of I/Os. NXgraph [11] uses
destination-sorted sub-shard structure to store graph for
better locality and adaptively chooses the fastest strategy
to fully utilize memory and reduce data transfer. Instead
of targeting a better locality, CLIP [6] proposes to re-
duce the total data access cost through the reentry of the
loaded data and beyond-neighborhood accesses.

Although these systems can support efficient execu-
tion of a single iterative graph processing job, multiple

separate copies of the same graph need to be created in
the main memory by them for the CGP jobs. Follow-
ing on this direction, Seraph [29, 30] is designed to al-
low multiple jobs to correctly share one copy of the in-
memory graph structure data. However, in Seraph, the
accesses to the same graph partitions are performed sep-
arately by the jobs along different graph paths, incur-
ring redundant accesses and wasting the cache as well.
Note that graph databases [8] are recently proposed to
support concurrent queries over a graph. For example,
TAO [9] provides a simple data model and APIs to store
and query graph data. Wukong [24] uses a RDMA-based
approach to provide low-latency concurrent queries over
large graph-based RDF datasets. However, these graph
database solutions can not efficiently support the execu-
tion of the CGP jobs because they are dedicated to graph
queries which usually only touch different small subsets
of a graph for exactly once, instead of iteratively process-
ing the entire graph for many rounds.

6 Conclusion
This paper discovers that many redundant data accesses
exist in the CGP jobs for their strong temporal and spa-
tial correlations. A novel data-centric LTP model and
an efficient scheduling algorithm is then proposed to ex-
ploit our observed data access correlations in these jobs
and allows multiple CGP jobs to efficiently amortize the
data access cost for higher throughput. Experimental re-
sults show that our approach significantly improves the
throughput for the CGP jobs against the state-of-the-art
solutions. This work mainly focuses on static graph pro-
cessing. In the future, we will research how to further
optimize our approach for evolving graph analysis and
also extend it to distributed platform and also heteroge-
neous platform consisting of GPUs so as to get higher
throughput for the CGP jobs.
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[10] BULUÇ, A., AND MADDURI, K. Parallel breadth-first search
on distributed memory systems. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis (2011), pp. 1–12.

[11] CHI, Y., DAI, G., WANG, Y., SUN, G., LI, G., AND YANG, H.
Nxgraph: An efficient graph processing system on a single ma-
chine. In Proceedings of the 2016 IEEE International Conference
on Data Engineering (2016), pp. 409–420.

[12] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel computa-
tion on natural graphs. In Proceedings of the 10th Usenix Confer-
ence on Operating Systems Design and Implementation (2012),
pp. 17–30.

[13] HAN, M., AND DAUDJEE, K. Giraph unchained: Barrierless
asynchronous parallel execution in pregel-like graph processing
systems. Proceedings of the VLDB Endowment 8, 9 (2015), 950–
961.

[14] HONG, S., RODIA, N. C., AND OLUKOTUN, K. On fast parallel
detection of strongly connected components (scc) in small-world
graphs. In Proceedings of the 2013 International Conference for
High Performance Computing, Networking, Storage and Analysis
(2013), pp. 1–11.

[15] JU, X., DAN, W., JAMJOOM, H., AND KANG, G. S. Version
traveler: Fast and memory-efficient version switching in graph
processing systems. In Proceedings of the 2016 USENIX Annual
Technical Conference (2016), pp. 523–536.

[16] KUMAR, R., KUMAR, R., LU, K., VASSILVITSKII, S., AND
VASSILVITSKII, S. Local search methods for k-means with out-
liers. Proceedings of the VLDB Endowment 10, 7 (2017), 757–
768.

[17] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. Graphchi:
Large-scale graph computation on just a pc. In Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (2012), pp. 31–46.

[18] MAASS, S., MIN, C., KASHYAP, S., KANG, W., KUMAR, M.,
AND KIM, T. Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the 12th European Conference on
Computer Systems (2017), pp. 527–543.

[19] MALICEVIC, J., LEPERS, B. J. E., AND ZWAENEPOEL, W.
Everything you always wanted to know about multicore graph
processing but were afraid to ask. In Proceedings of the 2017
USENIX Annual Technical Conference (2017), pp. 631–643.

[20] MEYER, U. Single-source shortest-paths on arbitrary directed
graphs in linear average-case time. In Proceedings of the 12th
annual ACM-SIAM Symposium on Discrete Algorithms (2001),
pp. 797–806.

[21] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web. Tech. rep.,
Stanford Digital Library Technologies Project, 1998.

[22] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), pp. 410–424.

[23] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
Edge-centric graph processing using streaming partitions. In
Proceedings of the 24th ACM Symposium on Operating Systems
Principles (2013), pp. 472–488.

[24] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (2016), pp. 317–
332.

[25] VORA, K., XU, G., AND GUPTA, R. Load the edges you need:
A generic i/o optimization for disk-based graph processing. In
Proceedings of the 2016 USENIX Annual Technical Conference
(2016), pp. 507–522.

[26] WANG, K., HUSSAIN, A., ZUO, Z., XU, G., AND AMIRI SANI,
A. Graspan: A single-machine disk-based graph system for
interprocedural static analyses of large-scale systems code. In
Proceedings of the 22nd International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (2017), pp. 389–404.

[27] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,
LIN, H., DAI, Y., AND ZHOU, L. Gram: Scaling graph compu-
tation to the trillions. In Proceedings of the 6th ACM Symposium
on Cloud Computing (2015), pp. 408–421.

[28] XIE, W., WANG, G., BINDEL, D., DEMERS, A., AND GEHRKE,
J. Fast iterative graph computation with block updates. Proceed-
ings of the VLDB Endowment 6, 14 (2013), 2014–2025.

[29] XUE, J., YANG, Z., HOU, S., AND DAI, Y. Processing concur-
rent graph analytics with decoupled computation model. IEEE
Transactions on Computers 66, 5 (2017), 876–890.

[30] XUE, J., YANG, Z., QU, Z., HOU, S., AND DAI, Y. Ser-
aph: An efficient, low-cost system for concurrent graph process-
ing. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing (2014),
pp. 227–238.

[31] YUAN, P., ZHANG, W., XIE, C., JIN, H., LIU, L., AND LEE,
K. Fast iterative graph computation: A path centric approach. In
Proceedings of the 2014 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2014),
pp. 401–412.

[32] ZHU, X., HAN, W., AND CHEN, W. Gridgraph: Large scale
graph processing on a single machine using 2-level hierarchical
partitioning. In Proceedings of the 2015 USENIX Annual Techni-
cal Conference (2015), pp. 375–386.

452    2018 USENIX Annual Technical Conference USENIX Association



Don’t share, Don’t lock: Large-scale Software
Connection Tracking with Krononat

Fabien André
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Abstract

To simplify software updates and provide new services,
ISPs are interested in migrating network functions im-
plemented in residential gateways (such as DSL or Cable
modems) to the cloud. Two key functions of residential
gateways are Network Address Translation (NAT) and
stateful firewalling, which both rely on connection track-
ing. To date, these functions cannot be efficiently imple-
mented in the cloud: current OSes connection tracking
is unable to meet the scale and reliability needs of ISPs,
while hardware appliances are often too expensive. In
this paper, we present Krononat, a distributed software
NAT that runs on a cluster of commodity servers, pro-
viding a cost-efficient solution with an excellent relia-
bility. To achieve this, Krononat relies on 3 key ideas:
(i) sharding the connection tracking state across multi-
ple servers, down to the core level; (ii) steering traffic
exploiting the features of entry-level switches; and (iii)
avoiding all locks and data sharing on the data path. Kro-
nonat supports a rate of 77 million packets per second on
only 12 cores, tracking up to 60M connections. It is im-
mune to single node failures, and supports elastic work-
loads by a fast reconfiguration mechanism (< 500ms).

1 Introduction

Over the last years, network and datacenter opera-
tors have started virtualizing network functions such as
routers, firewalls or load balancers. Network Function
Virtualization (NFV) consists in replacing network func-
tions implemented in hardware appliances by software
implementations deployed on commodity servers. Thus,
major companies such as Google or cloud providers such
as Microsoft Azure rely on software implementations for
their load balancing needs [9, 29]. In these cases, soft-
ware implementations bring a number of benefits: (i) a
better scalability than hardware devices, thanks to the
use of a scale-out model, (ii) better redundancy proper-

ties and (iii) a higher flexibility, as new software can be
easily deployed while hardware is hard to change.

Because of its benefits, Internet Service Providers
(ISPs) are also embracing NFV. ISPs have expressed
a growing interest in moving network functions imple-
mented in residential gateways (also known as DSL, ca-
ble or fibre modems) to commodity servers in the core
network. In addition to the physical layer, residen-
tial gateways usually implement tunneling, stateful fire-
walling, and Network Address Translation (NAT). While
the physical layer and tunneling have to be implemented
in the gateway, there is an opportunity for moving the
firewall and NAT functions to commodity servers in the
core network. For an ISP, this brings two main bene-
fits: (i) simplifying updates by running software on a few
servers rather than millions of gateways spread across a
country, (ii) exposing the user’s local network, creating
opportunities for new services or troubleshooting.

If NFV brings many benefits to ISPs, it also comes
with two critical challenges: cost efficiency and relia-
bility. In current OSes, the performance of connection
tracking and firewalls (such as netfilter in Linux) is
such that deploying them at the scale of an ISP would
require a prohibitive amount of servers. Moreover, they
only provide limited options for fault tolerance, making
them unable to meet the reliability requirements of large
ISPs. In this paper, we tackle the problem of connection
tracking at the scale of an ISP. We introduce Krononat,
a distributed high-performance software stateful firewall
and NAT that is able to meet the requirements of an ISP.
This paper makes the following contributions:

• We highlight the features of modern CPUs
and commodity server hardware architectures
that enable the design of a resource-efficient
connection-tracking system. We propose a hard-
ware platform able to serve millions of users.

• We propose three software design principles
that enable the construction of efficient network
functions: (i) sharding the connection-tracking
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Figure 1: Simplified view of an ISP access network

state down to the core level, (ii) using entry
level switches to steer traffic to specific cores in
multi-servers systems and (iii) avoiding all locks
on the data path. We show how these principles are
implemented in Krononat’s software architecture.

• We show that Krononat can manage 60M flows,
corresponding to an aggregated total through-
put of 70 Mpps (equivalent to 155 Gbps Simple
IMIX traffic), on just 12 cores (spread on 4 servers).

2 Background

In this section, we quickly review what NAT and stateful
firewalls are, and explain their relationship with connec-
tion tracking. We then give a simplified overview of an
ISP network to show where our software, Krononat, fits.

Connection Tracking is an essential building block
for numerous network functions. In this paper, we fo-
cus on two of them (i) NAT and (ii) stateful firewall.

We are interested in port-restricted cone NAT [35],
which is commonly implemented in residential gate-
ways. NAT is used to address the scarcity of IPv4 ad-
dresses by making several devices (e.g., laptops, smart-
phones etc.) with local IP addresses (typically in the
192.168.0.0/24 range) appear as a single IP address on
the internet, the public address of the gateway. Once a
connection between (local address; local port) and (ex-
ternal address; external port) has been established, the
NAT: (i) sends every packet from (local address; local
port) through (public address; public port), and (ii) sends
packets sent to (public address; public port) to (local
address; local port) if and only if they go to/originate
from (external address; external port). NAT thus requires
tracking connections by storing entries in a table.

A stateful firewall allows incoming traffic that belongs
to connections established by a local host and rejects all
other incoming traffic. More formally, a stateful fire-
wall allows an incoming packet for an external socket
(external address; external port) if and only if a connec-
tion between a local socket (local address; local port) and
this external socket (external address; external port) was
previously established. Just like NAT, stateful firewalls

172.17.128.1
172.17.128.2
198.51.100.1
203.0.113.1

Tunnel source IP
Tunnel destination IP

Source IP
Destination IP

Payload

Without NFV

172.17.128.1
172.17.128.2
192.168.0.3
203.0.113.1

Payload

With NFV

Figure 2: Tunneled packets on the access network

require to track established connections in a connection-
tracking table. Stateful firewalls are an essential security
measure useful for both IPv4 and IPv6 Internet access.

Residential Access Networks We depict a simplified
architecture of a residential access network on Figure 1.

The first component of an ISP network is the user’s
residential gateway. It is located at the user side and is
known as the Customer Premises Equipment (CPE). Lo-
cal devices (smartphones, laptops etc.) are connected to
the gateway either through wired Ethernet or Wi-Fi. The
gateway also connects to the ISP access network (xDSL,
Cable or Fiber). In addition to implementing the physi-
cal layer, the residential gateway performs a number of
network functions. First, the gateway attributes IP ad-
dresses to local devices through DHCP. The gateway also
restrict incoming traffic to connections established by lo-
cal devices (stateful firewall). Lastly, the gateway per-
forms Network Address Translation (NAT), so that local
devices appear as a single IP address on Internet (Fig. 1).

The access network carries customer traffic from the
DSLAM (DSL Access Multiplexer) or OLT (Optical
Line Termination) to the Broadband Remote Access
Server (BRAS). Customer traffic is tunneled using PPP,
L2TP or GRE and transported over IP, ATM or Ethernet.
Krononat uses GRE but can be easily adapted to other
tunneling protocols. For GRE, the original IP packet (in-
ner, grayed on Figure 2) is encapsulated into another IP
packet (outer, white) for routing on the access network.

The Broadband Remote Access Server (BRAS) also
named Broadband Network Gateway (BNG) collects
customer traffic in a central location. The BRAS decap-
sulates tunneled packets and forwards them to Internet
routers. With NFV, ISPs are moving network functions
from the gateway (DHCP, Firewall, NAT) to the BRAS.
Low-traffic functions (e.g., DHCP which handles a few
packets per hour) are easy to move to the BRAS. By con-
trast, for firewall and NAT, every packet must be checked
against the connection-tracking table, requiring the in-
frastructure to handle millions of packets per second.

ISP Contraints are unique and challenge existing
NAT solutions. We review the most decisive ones.
Scale: ISPs operate at a very large scale: they have
millions of simultaneously connected customers, which
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CPU 2x Intel Xeon E5-2698v4
2x 20 cores, 2.2 Ghz
2x 40 PCIe v3 lanes

Memory 128 GiB (>100 GB/s bandwidth)
NICs 10x Intel XL710 40Gbps

400Gbps Total Throughput
Price $30000

Table 1: Commodity server for high-performance NAT

translates into dozens of millions of connections. In ad-
dition, at peak hours, they forward traffic in excess of
100Gbps. Thus, any solution should be computationally
and cost efficient, i.e., the cost per user should be low.
Reliability: NAT service is crucial for Internet connectiv-
ity, as a disruption of NAT service translates into a loss
of Internet connectivity for users. An ISP NAT solution
must therefore be highly reliable, and should continue
working in the event of a node failure.
Elasticity: ISPs operate in a limited geographical area
and have a load with strong diurnal patterns [21, 12, 32,
36]. Thus, there is an opportunity to reduce the operating
cost by dynamically adapting the number of servers.

Software NAT solutions OSes offer NAT functional-
ity, usually implemented in kernel-mode (e.g., netfilter
on Linux). However, a single node is not able to handle
the load generated by all users of an ISP, and these im-
plementations do not offer easy ways to aggregate multi-
ple servers (i.e., distribute load accross servers). Projects
such as Residential Cord [2] have been started to allow
the use of multiple servers but remain impaired by the
low computational efficiency of OSes NAT implementa-
tions, which translates into a high consumption of com-
puting resources and high costs. In Residential Cord [2],
their Linux-based vSG (virtual Service Gateway) hits a
memory limit at 2000-4000 users per server. In [25],
Linux NAT achieves 200 kpps (kilo packets per second)
using a single core and 1 Mpps with 8 cores while BSDs
achieve 220 kpps using 1 core and 500 kpps using 8 cores
of an Intel Atom C2758 processor.

Appliances Vendor A Vendor B COTS server

Max. Throughput 130 Gbps 140 Gbps 400 Gbps
Max. Connections 76M 180M 1000M
List Price $65000 $200000 $30000
Price / Gbps $500 $1400 $75

Table 2: NAT Hardware Solutions

Hardware NAT solutions Major vendors offer NAT
solutions that can accommodate the traffic generated by
a high number of users. However, these solutions tend to
have a high cost (see Table 2). Also, they lack elasticity:
the addition of a device requires manual configuration.

They offer limited reliability options (often limited to
1+1 redundancy). Lastly, these solutions rely on tightly
coupled specialized processors and specialized software.
They therefore do not offer the flexibility of a full soft-
ware solution, slowing down the addition of new features
and preventing independent sourcing of hardware.

3 Designing a Software NAT

In this paper, we present Krononat, a multi-user state-
ful firewall and NAT service. Krononat is distributed on
multiple servers so that it can handle the load generated
by millions of users. Krononat groups users into shards
that are dynamically mapped on servers. Krononat en-
sures that a server failure does not cause service disrup-
tion by replicating the state for a shard on two servers (a
slave and a master). Krononat sits at the BRAS level and
thus receives IP/GRE tunneled traffic and forwards NAT-
ed packets to the Internet, and handles reverse traffic.

Our implementation builds on DPDK [1] and supports
IPv4; yet our design generalizes to IPv6. We show that
a careful software design and adequate hardware choice,
allows achieving a high performance, and thus low-cost
operations, without jeopardizing fault-tolerance.

3.1 Hardware Architecture
Current commodity servers and switches offer an op-
portunity for building NAT solutions that are competi-
tive in performance with specialized solutions. Gener-
ally, specialized network appliances offer better perfor-
mance than general-purpose servers through the use of
content addressable memories (e.g., TCAM), that are no-
tably used in routers and switches. However, maintaining
connection-tracking tables requires much more memory
than maintaining routing or switching tables: several gi-
gabytes for connection tracking tables compared to tens
of megabytes for routing tables. As TCAM are strongly
limited in size (< 100 Mb), network appliances such as
those of Table 2 must store connection-tracking tables in
DRAM. Thus, for connection tracking, network appli-
ances do not have a decisive advantage over commodity
servers, which also use DRAM. Moreover, modern CPUs
compensate memory latency by caches and out-of-order
execution.

Thus, to minimize the cost, we rely on commodity
servers equipped with a large number of Network Inter-
face Cards (NICs). Current dual Intel Xeon servers offer
40 PCIe lanes, enough to handle 10 40-Gbps NICs, for
a total throughput of 400 Gbps. For a typical Internet
workload (Simple IMIX), this corresponds to 180 Mpps.
An optimal NAT solution must therefore process at least
4.5 Mpps per core, so that one server (Table 1) can for-
ward 400 Gbps, thus saturating its NICs.
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Figure 3: Hardware architecture

3.2 Software Design Principles

Achieving 4.5 Mpps per core or 400 Gbps per server re-
quires an highly efficient implementation: each packet
must be processed in less than 500 CPU cycles. We
achieve this goal by relying on three design princi-
ples that allow an optimal exploitation of the hardware
(servers, switches and NICs).

Sharding to the core To enable a high-performance
implementation of a software NAT, we completely avoid
cross-core data sharing. To this end, in Krononat, we
use the CPU core as the unit of sharding in the overall
system, thus departing from the traditional per-server or
per-NIC sharding scheme. Hence, each CPU core can
use its own dedicated connection-tracking table to pro-
cess the traffic. Each customer is independent and we do
not require a global shared connection-tracking table.

To implement this sharding scheme, each CPU core
is associated with a NIC and exposed to the network
as a distinct entity (i.e., each core has its own dedi-
cated MAC addresses for load balancers to send traffic
to it). The load balancers can thus forward the pack-
ets to a specific core. Our approach of having a ded-
icated network entity per core allows a greater control
of the traffic-to-core mapping compared to commonly-
used hashing-based methods, available on NICs (RSS)
or routers (ECMP). This enables (i) a precise control of
traffic steering whenever a failed master is replaced by its
slave, (ii) sending upstream traffic and downstream traf-
fic, which access the same connection-tracking table, to
the same core. This cannot be achieved by Symmetrical
RSS [40], because of rewritten IP headers.

To use the hardware as efficiently as possible, we do
not dedicate one physical NIC for the input and one to
the output for each core. Instead, we use the multi-queue
capabilities of NICs (e.g., Intel VMDQ, MACVLAN fil-
ter, PCI SR-IOV) to have a dedicated queue for traffic
from/to the input switch and a dedicated queue for traf-
fic from/to the output switch1. Indeed, residential traf-

1For the sake of clarity, Figure 4 shows the NIC queues (dedicated
MAC and VLAN) to which NAT thread of high-performance nodes
are bound rather than the physical network interfaces. Despite the use
of a shared hardware infrastructure, we still provide security isolation
between the access network and the Internet. To this end, we rely on
VLANs (layer 2) and VRF (layer 3) to provide isolated networks such
that no packet can be switched/routed directly from the access network
to the Internet without going through Krononat. Hence, input/output

fic is highly assymetrical, and dedicated NICs would not
evenly use their RX and TX capabilities. Similarly, while
a single core can handle the traffic of a 10 Gbps NIC,
multiple cores are needed to handle the traffic of 40+
Gbps NICs. Thus, we also use the multi-queue capa-
bilities of the NIC to expose one set of queues/identities
per core to implement sharding to the core.

Sharding to the core is therefore highly beneficial for
two main reasons: (i) it obviates the need for cross-core
synchronization and (ii) it naturally provides NUMA-
awareness, as a core never accesses data belonging to
another core, and thus only accesses data on his socket.

Switch-based hardware load balancing To handle
more than 400 Gbps of traffic, we use several servers.
This requires balancing the traffic accross cores and
across servers. To balance the load, we rely on the IP
routing capabilities2 of the input/output switches (Fig-
ure 3) which (i) remain more efficient than software for
routing packets, especially when routing tables are small,
(ii) are already present in the system for interconnection.
Each shard has its own tunnel endpoint IP, and a dedi-
cated subnet of public IPs. For each shard mapped to
a core, a route to this core for the corresponding tunnel
endpoint IP is declared to the input switch (to receive
upstream traffic); and a route to this core for the corre-
sponding subnet of public IPs is declared to the output
switch (to receive downstream traffic). These routes are
declared to the switches via BGP. Furthermore, all cores
of Krononat thus act as IP routers by having their own
IP/MAC addresses and implementing ARP protocol. Our
sharding management is detailed in Section 3.4.

This approach avoids dedicating any CPU resources
to traffic steering by leveraging existing switches. Also,
it allows a more precise traffic steering than hash-based
methods (e.g., ECMP). This precise control is needed by
stateful network functions (e.g., NAT) that (i) require all
packets of a connection to be handled by single core, (ii)
have asymmetric headers for upstream and downstream,
(iii) require controlling the route after a failover (transi-
tioning from the master to the slave).

No locks on data path Our sharding approach ensures
that threads running on different cores can forward or
reject traffic without accessing data structures on other
cores. This approach removes the need to lock the ta-
ble to process traffic. Yet, maintenance or fault tolerance
traditionally require locking data structures. For fault tol-
erance, connection-tracking tables need to be copied to
other nodes. Traditionally, this is done by locking the ta-
ble to ensure it is not modified while it is being copied.
Because lock acquisition is costly and may block pro-

switch designate the input/output VRF on the physical switch.
2All modern entry-level 10/40 Gbps switches offer IP routing capa-

bilities for routing tables of moderate size.
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Figure 4: Software architecture

cessing on a given core, locking the table would strongly
impair forwarding and is therefore not tractable in our
use case. Therefore, we do not use a any lock on the data
path. This requires a careful design of data structures and
fault tolerance mechanisms, detailed in Section 3.5.

3.3 Software Architecture
We now present how these principles are applied to our
system. Krononat comprises software components of its
own (Figure 4, gray background) and uses external com-
ponents (Figure 4, white background). The main func-
tions of each component are detailed below.

NAT Thread The NAT Thread is the central compo-
nent of Krononat and implements the core functionality
of a NAT, as described in Section 2. Each NAT thread
is pinned to a CPU core, and has the exclusive use of a
set of NIC queues for output and input that it reads in
poll-mode. The input switch forwards outbound traffic
(GRE-encapsulated) to one input queue of a given NIC
and server, depending on the Tunnel destination IP (Fig-
ure 2), which is used as the shard identifier (Section 3.2).
The NAT thread associated with this input queue receives
the traffic, and decapsulates GRE packets. It then for-
wards traffic to its output queue, and creates entries in
its connection-tracking table for new connections. Con-
versely, each NAT thread receives inbound traffic for-
warded by the output switch on its output queue. In-
bound traffic is forwarded if and only if it belongs to a
connection that has an entry in the table.

Management Thread The management thread com-
municates with Zookeeper, a strongly-consistent datas-
tore and synchronization service that we use to coordi-
nate all instances of Krononat. It fetches instructions
(e.g., master/slave roles for NAT threads) and subscribes
to asynchronous events sent by Zookeeper. This cannot
be done directly by the NAT threads, because they can-
not be interrupted for performance reasons. The man-
agement thread is also reponsible for most bookkeeping
operations: initialization, statistics collection, etc. It syn-
chronizes with the NAT thread using only non-blocking
primitives (i.e., reads and writes to shared memory with-
out locking nor spining).

Sharding Manager To scale to a large number of cus-
tomers, we divide the load between multiple servers. The
sharding manager allocates several shards on each core
of each server based on the load of machines and on the
traffic. The sharding manager does not directly commu-
nicate with the management thread. Instead, it writes the
requested shard allocation in Zookeeper. The manage-
ment thread reacts to updates in Zookeeper and propa-
gates the allocation changes.

Zookeeper In Krononat, Zookeeper is used as central
point for storing configuration (shard allocation, network
configuration, addressing configuration, routes, etc.) and
communicating configuration changes between servers.
The use of Zookeeper for storing configuration data
greatly simplifies the design of Krononat. For instance,
the sharding manager does not need to persist shard al-
location by itself. It can be easily restarted, or moved
to another server and recover its state from Zookeeper.
Similarly, when we start a new Krononat instance to han-
dle more load it can load the global system configuration
thanks to Zookeeper. We also use Zookeeper as a dis-
tributed lock service, and for detecting server failures.

3.4 Sharding and Fault tolerance
Shard In Krononat, a shard is a fixed-size group of
users. In our experiments, we use shards of 256 users,
but this number can be adapted. Users in the same shard
share the same Tunnel destination IP, but have different
Tunnel source IPs (Figure 2). In our experiments, we
simulate 16384 users in 64 shards. Each user has a tunnel
source IP in the range 172.17.0.0/18, and users belonging
to the same shard share an address in the 172.16.0.0/26
range. Users of shard 0 have a source IP in 172.17.0.0-
255 and share the tunnel destination IP 172.16.0.0; users
of shard 1 have a source IP in 172.17.1.0-255 and share
the tunnel destination IP 172.16.0.1; etc. One could also
use the 10.0.0.0/8 range to support 4096 shards of 4096
users (i.e., a total of 224 or 16M users).

Shard allocation Based on the traffic in each shard
and on the load of each machine, the sharding manager
allocates several shards to each NAT thread running on
each CPU core of each host. The sharding manager then
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writes the shard allocation in Zookeeper. In order to steer
the traffic to the right core, we leverage IP routing. Each
core has its own IP and MAC addresses. Whenever a
given core is a master for a given shard, the routing ta-
bles are updated so that the given core becomes the de-
fault gateway for reaching all subnets associated to the
given shard. Each Krononat core thus appear as an inde-
pendent router in the network. This update is performed
by another process that reads the routes in Zookeeper and
announces them via BGP to the switches. For instance,
if shard 1 has been allocated to a NAT thread (i.e., core)
whose input NIC has the IP 172.27.0.1 and output NIC
has the IP 127.28.0.1, the BGP will instruct the input
switch to route traffic with destination IP 172.16.0.1/32
to 172.27.0.1, and the output switch to route traffic with
destination 172.16.1.0/24 to 172.28.0.1. In this way, traf-
fic for shard 1 will be received by the appropriate thread.

Fault tolerance NAT threads store their connection-
tracking tables in RAM, which means they will be lost
in case of hardware or software failures. One solution
would be to persist the connection tracking table to a
database. However, this solution would induce a high
recovery time. In addition, the database would need to
support a very high insertion rate, as each connection
establishment results in an insertion. Database systems
typically do not support such a high insertion rate
because of the consistency and durability guarantees
they offer. Instead, we choose to replicate the connec-
tion tracking tables in RAM, on another node. More
precisely, each NAT thread is declared as master for a
set of shards, and as slave for a distinct set of shards.
The master NAT thread for a shard receives the traffic,
updates its connection tracking table if necessary and
forwards or rejects traffic. The master NAT thread for
a given shard also forwards connection tracking table
updates to the slave NAT thread of this shard. The slave
NAT thread record these tables updates into its own
connection tracking table so that entries are replicated.
If the server on which the master NAT thread of the
shard runs fails, the slave NAT thread becomes the
master NAT thread for the shard, and a new slave NAT
thread will be assigned for the shard. Server failures
are detected using Zookeeper, and shard re-allocations
are performed by the sharding manager. We design an
ad-hoc replication protocol that allows incremental repli-
cation of the connection tracking table without locking it.

3.5 NAT Thread Implementation
The NAT thread continuously polls the NIC queues. To
increase efficiency, it processes batches of packets using
a run-to-completion model (i.e., packets are not queued
except for sending on the network) [1, 33]. It also batches
lookups in the connection-tracking table [43, 19].

Hash table Each NAT thread has a single connection-
tracking table for all shards it manages either as a mas-
ter or as a slave. The connection-tracking table is com-
posed of two hash tables: one hash table for outgoing
traffic and one hash table for incoming traffic. The out-
going traffic hash table maps 6-tuples identifying a con-
nection (customer, protocol; private source ip; private
source port; destination ip; destination port) to a 2-tuple
(public source ip; public source port) used to rewrite out-
going packets. Symmetrically, the incoming traffic hash
table maps 5-tuples (protocol; public source ip; public
source port; destination ip; destination port) to a 3-tuple
(customer, private source ip; private source port) used to
rewrite incoming packets. We use Cuckoo++ hash ta-
bles [19] to store the incoming traffic table and the out-
going traffic table. Cuckoo hash tables store an entry at
either one of two locations h1(k) or h2(k), where h1 and
h2 are two distinct hash functions, and k the key of the
entry. Therefore, a key lookup takes at most two mem-
ory accesses, allowing Cuckoo hash tables to support a
very high lookup rate. This is key requirement in Kro-
nonat, as every packet triggers a table lookup. Cuckoo++
hash tables augment Cuckoo hash tables with a small
cache-resident bloom filter that avoids checking the sec-
ond location h2(k) in most cases including for negative
lookups. This allows Cuckoo++ hash tables to maintain
their high performance in presence of large volumes of
invalid traffic or Denial-of-Service (DoS) attacks. Fur-
thermore, to support replication without blocking traffic
processing in the NAT thread, Cuckoo++ provide spe-
cific iterators, that support interleaving of updates and it-
eration steps by guaranteeing that all entries are iterated
over at least once during a full hash-table scan.

Replication As ISPs need to provide uninterrupted In-
ternet access, fault tolerance is a fundamental prereq-
uisite for any network function deployed in their core
network. Consequently, Krononat must support single
server failures. We achieve this through replication of
the connection-tracking entries. The master NAT thread
for a shard receives all traffic belonging to the shard,
and updates its hash tables accordingly. The slave NAT
thread of a shard maintains a replica of all connection-
tracking entries corresponding to that shard, so that it
can take ownership of the shard if the master NAT thread
fails. A naive approach for replication would be to lock
the hash table on the master NAT thread, and dump the
whole data structure on the network. This naive approach
has two major defects that make it intractable: (i) lock-
ing the hash tables means stopping accepting new con-
nections, which is obviously impossible for availability
reasons, (ii) constantly dumping the whole data struc-
ture on the network would generate a high replication
traffic, and also consume CPU cycles. To address both
issues, we design a more elaborate replication proto-
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col that has two modes: (i) initial replication, where
we transfer the entire contents of the hash tables with-
out locking them thanks to the aforementionned itera-
tors in Cuckoo++, and (ii) streaming replication, where
the master NAT thread sends incremental updates to the
slave NAT thread, so as to reduce network traffic.
Initial replication When a NAT Thread becomes a
slave for a shard, it has no knowledge of the connection-
tracking entries the master for that shard has: the slave
NAT thread needs to receive a full copy of the entries
for that shard. This is achieved by the initial replica-
tion mode. In this mode, the master NAT thread iter-
ates over hash tables entries, serializes them, and sends
them over the network to the slave NAT thread. Note that
this initial replication is not performed by an additional
thread, it is performed by the NAT thread itself to avoid
locking the table. After processing a batch of packets,
the master NAT thread iterates over a few entries, and
sends them over the network. It then processes the next
batch of packets and iterates over the next group of en-
tries. This procedure is repeated until the whole table has
been replicated. This interleaving ensures that the initial
replication does not preclude packet processing. When
a packet is processed, the master NAT thread may up-
date hash table entries (when creating new connections).
Therefore, the hash table may be modified in the mid-
dle of the initial replication. To support this, Cuckoo++
iterators support modifications. More specifically, we as-
sociate a modification bit with each table entry. When the
iterator sees a table entry, the modification bit is cleared.
When a hash table entry is modified, the modification bit
is set. The initial replication repeatedly iterates over en-
tries as long as it sees a modified entry to guarantee that
no unseen modified entries is left. To accelerate this pro-
cess, multiple levels of modification bits are used to skip
entire groups of unmodified entries.
Streaming replication When the initial replication is
completed, the master NAT thread switches to streaming
replication mode. In streaming replication mode, when-
ever it makes a change to the hash tables, the NAT thread
inserts a description of this change into a changelog. Af-
ter processing a batch of packets, the master NAT thread
extracts remaining entries from the changelog, serializes
them and sends them to the slave NAT thread. Because
it does not constantly iterate over the hash tables, the
streaming replication mode uses less CPU cycles and less

Server CPU Krononat (10G port) Traffic gen.
1x E5-2695v3 1 2
1x E5-2695v3 3 2
1x E5-2643v3 4 0
2x E5-2690v4 4 4

Table 3: Allocation of servers in our testbed

network bandwidth than the initial replication mode. The
replication protocol uses acknowledgments and retrans-
missions and in case of failure the slave is declared out
of sync and must go through initial replication again.

4 Evaluation
Implementation Krononat (see Fig 4) is implemented
in C (30K lines – gcc 5.4) on top of DPDK 17.08. The
sharding manager is implemented in Scala (2K lines).
The BGP part consists of a 500 lines wrapper between
ZooKeeper 3.4.8 and GoBGP 1.18.

Hardware Our hardware testbed consists of four Dell
R730 servers with varying CPU configurations (Table 3).
They are configured in performance mode, with Turbo-
boost disabled and equipped with Intel X540 10Gbps
dual-port NICs. They are interconnected by an entry-
level 10Gbps Alcatel OS6900-T20 switch, which is con-
figured to operate as an IP router with multiple VLANs
and VRFs (Virtual Routing Functions), so as to pro-
vide isolation between access, Internet, and manage-
ment networks. Our testbed uses addresses in the range
172.16.0.0/12 so as not to conflict with the enterprise
networks. This slightly limits the range of some pa-
rameters but our experiments show that those parameters
have very little impact on performance anyway (Subsec-
tion 4.1). The hardware of the testbed is shared between
Krononat and a traffic generator that we designed. Ta-
ble 3 shows the mapping of 10G NIC ports.

Traffic Generator Testing the limits of Krononat re-
quires generating a very large amount of traffic (tens of
Mpps). We did not find a traffic generator that is able
to generate such a load by utilizing several nodes, so we
designed our own traffic generator to test Krononat. Our
traffic generator builds upon DPDK, similarly to Moon-
Gen [10] or pkt-gen [39], and borrows principles from
Krononat such as (i) share-nothing, (ii) sharding to the
core, (iii) switch-based hardware load balancing. It gen-
erates stateful traffic and keeps track of established con-
nections. Each 10 Gbps NIC allocated is managed by
a group of 4 threads (RX/TX Access/Internet). All in-
stances (1 per server) emulate independant users and syn-
chronize using Zookeeper (results, parameters, phase).
This scale-out design allows a close to linear scalability
and generating traffic beyond the scale of one server.

Metrics In our evaluation, we measure:
Rate for Connection initialization correspond to the rate
at which packets (UDP) of new flows/connections are
processed (100% upstream traffic). On actual Internet
traffic, connection initialization packets represent 1-5%
of the traffic [37, 18, 24, 5, 38, 31].
Rate for Established connections is the rate at which
packets (UDP) belonging to existing flows are processed
by the system. Our objective is to exceed 4.5 Mpps. We
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measure for 50% upstream and 50% downstream traffic.
They are reported [7] as: (i) raw is the rate of traffic

going through the system while flooding it; (ii) zero-loss
is the rate which can be sustained without losing pack-
ets during 15 seconds. The zero-loss rate is only relevant
for systems with real-time guarantees/non-blocking im-
plementations (i.e., not for Linux-based NAT).

We also evaluate the duration of service interruption
whenever a server leaves the system or crashes.

4.1 Influence of parameters
First, we evaluate the impact of a few parameters on Kro-
nonat performance. We report the raw rate for both con-
nection initialization and established connections on Fig-
ure 5. Performance is stable at approximately 8 Mpps for
established connections regardless of the number of users
or connections. The performance is reduced as the packet
size is increased: this is because the system achieves line
rate (10 Gbps) and is therefore NIC-bound rather than
CPU-bound. This shows the high efficiency of Krononat.

As we have shown that the packet size, number of
users and number of connections have little to no impact
on performance, we use fixed values in the remainder of
this section: (i) 64-bytes packets, (ii) 16k users, (iii) 5M
connections per core. We use the lowest packet-size (64
bytes without GRE encapsulation) to remain CPU-bound
since we aim at evaluating the CPU-efficiency. This also
allows our traffic generator, which is allocated only 8
NIC ports, to generate as many packets as necessary to
evaluate Krononat on 12 cores without being limited by
the speed of network interfaces.

4.2 Scalability
We benchmark Krononat with multiple cores, on all 4
testbed servers. Krononat is evaluated both with and
without replication to show the overhead of replication.
To give an idea of the achieved performance, we also plot
performance of a trivial NAT system that uses the Linux
kernel implementation and Linux namespaces3. We also
display our performance objective: 400 Gbps/server or
4.5 Mpps per core, which enables the use of dense
servers (i.e., fitted with as many NICs as CPUs support).

The results are reported on Figure 6 using 1 to 12
cores, averaged over 10 runs with random placement of
NAT threads on our 4 servers. Krononat on 12 cores
achieves 15 million connection initialization per second,
with replication enabled (halved from Krononat without
replication). For established connections, Krononat with
replication is able to process packets at 77 Mpps on 12
cores4. The penalty when measuring performance with
the zero-loss constraint is limited.

Krononat offers much higher performance than the
Linux-based NAT. For established connections, Linux
only achieves 0.6 Mpps on 1 core and scales to 2.9 Mpps
on 12 cores. This is because Linux is a general-purpose
system not dedicated to multi-tenant NAT; thus its design

3To maximize Linux performance, we take care to avoid extreme
settings, and limit the experiment to 32 users (i.e., 32 namespaces) and
50000 flows. We distribute traffic accross cores of our Intel Xeon E5-
2690v4 using RSS in a NUMA-aware way (i.e., on cores on the same
socket as the NIC). Despite these advantageous settings, Linux perfor-
mance remains low compared to Krononat.

4The performance for established connections without replication
is lower as in this case, the sharding manager is not able to rebalance
the load by swapping roles between master and slave cores.
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favors configurability and generality over performance.
This shows that Linux is unusable as an ISP-grade NAT
solution. This is even more salient considering that
Krononat also provides by default distribution accross
servers and fault-tolerance. Krononat performance is
well above our objective, reaching 6.3 Mpps/core when
run on 12 cores, with replication enabled. These exper-
iments show the excellent scalability obtained thanks to
our scale-out architecture, consistently with the scalabil-
ity of the underlying hash-table [19].

Running such experiments proved challenging: (i) net-
work requirements inhibits the use of the cloud; (ii)
commodity networking remains relatively expensive for
large-scale experiments, (iii) simulation or virtualization
overhead would make performance evaluation of such
DPDK-based implementation irrelevant. We were thus
limited by the networking equipment that we shared be-
tween traffic generation and Krononat. Nonetheless, our
experiments involve four real servers and up to 12 cores,
reaching up to 76 Mpps (6.3 Mpps/core), which is well
above our target of 4.5 Mpps/core. The scale of these ex-
periments also show the interest of using sharding to the
core and hardware-based traffic steering to implement
stateful multi-core multi-server traffic generators.

4.3 Service interruption duration
Beyond its high-performance and scalability, a major
feature of Krononat is fault tolerance. As the state for
each shard is continuously replicated on a master and a
slave core, Krononat can recover from a server failure
without disrupting service. Replication is also useful for
dynamically adapting the number of servers (e.g., grace-
ful departure) and rebalancing the load (i.e., swapping
master and slave). We inject both graceful departures and
hard failures and measure the durations of service inter-
ruptions in both cases. We report the durations of service
interruptions due to recovery (i.e., the slave replaces the
departed master – red) and to load-rebalancing (i.e., mas-
ter and slave swap their roles – blue) on Figure 7.

Service interruptions due to graceful departure (i.e.,
the server disconnects gracefully from Zookeeper) re-
main below 500ms. This corresponds to the delay for the
sharding manager to compute a new allocation, which
is applied to NAT thread; and to announce routes via

BGP. In the case of hard failures (i.e., the server does
not disconnect gracefully from Zookeeper), the detec-
tion is left to ZooKeeper heartbeat. This increases the
recovery delay to 4-7 seconds. This recovery is auto-
matic, without any human intervention, ensuring that the
system is highly available. Finally, interruptions due to
load rebalancing last less than 100ms. Indeed, to rebal-
ance the load, the sharding manager swaps roles between
some masters and slaves. In this case, the interruption is
mainly the delay for BGP to apply the new routes.

In all cases, these durations are low enough so that
clients retransmit lost packets without declaring connec-
tions dead. This ensures that end users are not impacted.
We performed real-life experiments by redirecting our
own Internet traffic through Krononat for a few hours.
The interruptions due to injected failures remained un-
noticeable in web browsing and video streaming usages.
Indeed, short interruptions are hidden by software buffer-
ing or retransmission, thus avoiding user-visible errors.

4.4 Recovery from failure
To further illustrate the system reaction to a crash, we re-
port how Krononat (4 NAT threads on 4 servers) reacts
step-by-step when one of the servers is electrically pow-
ered down. An electrical failure is triggered at the 7th
second. For a short duration, approximately 16 shards
have lost their master, and 13 have lost their slave. The
service is thus interrupted for 16 shards. The system be-
comes fully available again within 200ms (i.e., no more
shards in slave only mode). Shards that lost their slave or
master are allocated a new slave that is being initialized
(20th to 35th second). This initialization generates lim-
ited replication traffic (< 65 Mbps) and has a very limited
impact on the performance: traffic is still processed at
approximately 24 Mpps. The performance drops slightly
during recovery because the master must read and trans-
mit its state to the new slave, and the new slave must
record this state. The performance drop is limited thanks
to the absence of locking of the connection-tracking ta-
ble allowed by our replication protocol that allows initial
replication to occur without freezing state. Without any
human operator intervention, at the 35th second, the sys-
tem becomes fully tolerant to failures again: all shards
have a master and a synchronized slave.
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Figure 8: Execution on a system with 4 workers, on 4 servers. A server crash is introduced at time t=7s.

5 Discussion

SDN For load-balacing, Krononat relies on IP rout-
ing configured through BGP, and ARP/MAC learning for
the discovery of Krononat instances. This greatly sim-
plified the implementation of hardware-based load bal-
ancing. This choice also allows using VRF-based isola-
tion, as well as easy inspection of routing table (e.g., us-
ing standard switch user interface). Furthermore, many
production-ready BGP libraries are available.

Openflow [23] or P4 [6] could have been an alterna-
tive, but it requires specific models of switches. Also, the
configuration or capabilities of switches for OpenFlow
are not always well documented. Note that BGP requires
routing based on IP addresses : OpenFlow could thus be
advantageous if we want to do traffic steering based on
other criteria (e.g., MAC addresses) or if non-IP proto-
cols were used for tunneling on the access side.

Unavailability delay Krononat relies on Zookeeper
for failure detection. This leads to uncompressible de-
lays for recovery (4-7s) mainly due to Zookeeper failure
detection. To improve this, one could rely on BFD [17]
to monitor links at the switches and declare in BGP a
primary route to the master and a secondary route to the
slave. This way, in case of server or link failure, the
switch could immediately react and route packets to the
slave without waiting for Zookeeper to detect the failure.
Yet, the unavailabilities we observe remain un-noticed in
practice with typical web traffic including live streaming,
mostly hidden by buffering and TCP retransmission.

6 Related Work

Krononat applies techniques such as kernel-bypass, run-
to-completion, and core pinning [33, 1, 4, 8, 20] which
are necessary to achieve high-performance on modern
processors. Krononat shows how to put these in prac-
tice when dealing with a mutable state by relying on
sharding-to-the-core to achieve share-nothing.

Switching or routing NFVs, targetting COTS servers,
have already been studied and implemented [8, 30, 22].
ClickOS [22] also considers advanced middleboxes such
as BRAS and CG-NAT but achieves only 2.3 Mpps with
a 4-core processor. Switching and routing NFVs rely on
a small and static state. They can thus share state be-
tween cores with limited performance penalty, which is
not tractable in connection-tracking systems. Our papers
extends the share-nothing principle beyond NIC queues
and details how to distribute traffic to cores with finer
control than classical hash-based traffic distribution.

NFV frameworks [28, 27, 42, 15, 41] consider the
communication between NFV functions. They show
that context switches have huge overhead and either
(i) avoid containers/VMs by using other types of isola-
tion [28, 42], (ii) optimize communication between con-
tainers/VMs [14, 15, 30]. They provide capabilities to
share resources between multiple VMs running services
consuming only a fraction of the resources. In Krononat,
we do not need to isolate several chained components of
our datapath, nor to share server resources between mul-
tiple small applications. Thus, these frameworks do not
fit our use case and add complexity for little benefits.

Virtual switches [15, 30], can help in providing fea-
tures missing from hardware switches or NICs. In our
case, rather than providing software-based traffic dis-
tribution to address limitations of hardware NIC and
switches, we choose to design our sharding scheme (e.g.,
using IP routing features) so that it can be supported by
entry-level 10 Gbps switches and commodity 10 Gbps
NICs. To avoid context switches, we use a single pro-
cess and the run-to-completion model similarly to Net-
Bricks [28] or BESS [15]. Yet, the modularity they bring
comes at a cost: during prototyping we noticed that dy-
namic dispatch used in BESS or NetBricks can have a
non-negligible overhead compared to static dispatch as it
prevents some compiler optimizations.

The aforementionned frameworks focus on directing
packets within a server, while Krononat provides a solu-
tion for directing packets accross servers through switch-
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based load balancing. Also, these frameworks [15, 28]
have limited features for directing packets for both flow
directions to a single core (e.g., tunneled traffic, rewrit-
ten headers) as they rely on hash-based distribution (e.g.,
RSS), or attach a thread per NIC. By using MAC ad-
dresses to direct packet to per-core queues, we borrow
from SoftBricks [8], an interesting paper that considers
distribution accross server but for routing and VPN appli-
cations. It features an inspiring description of hardware
capabilities and their impact on software router design.

Interestingly, designing for multi-tenancy can impact
efficiency. CORD vSG [2] relies on namespace per
user. This leads to one queue or datastructure per user.
It prevents batching, which is yet key to high perfor-
mance in large hash tables [19]. Indeed, a received
batch is unlikely to contain only packets for a single user.
On the contrary, Krononat relies heavily on batching to
achieve its performance objective as commonly practiced
in high-performance networking [1, 33].

Systems tracking connections such as load-
balancers [9, 13, 29] or NAT/FW [16] also deal
with the difficulty of preserving mutable state. A first
approach is to rely on an external reliable database such
as Memcached [11], RamCloud [26] or Adhoc [13];
while simplifying design, this comes with the cost of
running the database (additional servers) and accessing
it (dedicated NICs consuming PCIe lanes). A second ap-
proach is to rely on consistent-hashing, like the Maglev
load balancer [9]. One enabler for this approach is that
Maglev handles only unidirectionnal traffic as reverse
traffic relies on DSR (Direct Server Return). MagLev
achieves 2-3 Mpps/core. Krononat tackles a more
challenging use case than Maglev (NAT versus load
balancing), which requires handling bidirectional traffic.
The NAT in [16] achieves 5 Mpps on 12 cores using
RAMCloud. Krononat largely exceeds the performance
of [16]. This is because Krononat underlying hash table
is much faster (e.g., 10M insertions/second/core, 35M
lookups/second/core and 350M lookups/second for 12
cores) than a remote RAMCloud (0.7M insertion/second
and 4.7M lookups/second on 12 cores [16]). In addition,
remote database accesses prevent run-to-completion.

Despite not relying on an external database, Krononat
still offers reliability as it passively replicates of all con-
nection entries. This design allows Krononat to offer
a much higher performance than [16], strongly reduc-
ing costs for ISPs. An alternative design [34] to using
a reliable databases is to snapshot the NFV periodically
and log all packets to allow restarting the NFV from a
snapshot and replaying traffic if needed. Interestingly,
this approach allows adding reliability to any middlebox
with little to no modification. Yet, this also comes at
the cost of performance as FTMB is limited to 6 Mpps
using 16 cores. Overall, Krononat favors liveness and

performance over strong consistency. Indeed, for net-
working applications, strong consistency has a high per-
formance impact, and may even be undesirable. A com-
mon choice in databases is to block or delay updates if
they cannot be durably recorded, but for networking this
means dropping any new connection thus interrupting
the service. An alternative choice is thus to favor live-
ness: in the rather unlikely event of simultaneous failure
of two servers, software clients will re-establish connec-
tions, causing little trouble.

Load-balancers [9, 29] often rely on IP routing as a
first layer for traffic distribution from the Internet. Each
load-balancer owns one or several of the VIP (virtual IPs)
to capture traffic from the Internet. This is similar in de-
sign to our Tunnel end point IP addresses. Krononat fur-
ther exploit this to also capture reverse traffic and use a
different granularity by sharding down to the core-level
so as to allow an highly efficient implementation.

Interesting concurrent work by, Araujo et al [3], de-
scribes a load-balancer design that shares a few key ob-
servation with Krononat : (i) commodity switches are in-
credibly efficient at distributing packets, both papers thus
offload as much of their work as possible onto the switch,
(ii) doing so requires to adapt the sharding and the net-
work addressing scheme so that it is supported by com-
modity switches. Yet, as we target different applications
(i.e., NAT and stateful firewall for us and load-balancing
for them), other points of the design differ (e.g., per-
manent replication vs on-demand draining, handling bi-
directional traffic, updating the routing table rather than
updating the ARP table).

7 Conclusion

We presented Krononat, a high performance stateful net-
working service providing NAT and firewall for large-
scale residential access network of ISPs. Krononat has a
close to linear scalability thanks to its design relying on
sharding to the core, and was shown to handle 77 Mpps
on 12 cores, fully exploiting our testbed. It is designed
for scale-out both accross cores and accross servers; it
should scale linearly well beyond 12 cores and 4 servers.

Our design relies on sharding to the core, by expos-
ing each core as an independent entity on the network.
This allows traffic steering accross cores and servers to
be performed by the switches freeing precious CPU re-
sources. Traffic steering is based on IP routing as it
allows a fine control, useful for stateful NFV functions
for which RSS/ECMP offer insufficient control. Beyond
Krononat, these principles proved useful for building the
scale-out traffic generators that we use for the perfor-
mance evaluation. We believe these principles can also
apply widely to high-performance implementations of
stateful NFV functions.

USENIX Association 2018 USENIX Annual Technical Conference    463



References
[1] DPDK: Data Plane Development Kit. http://dpdk.org.

[2] Residential CORD. https://wiki.opencord.org/pages/

viewpage.action?pageId=1278090.

[3] ARAUJO, J. T., SAINO, L., BUYTENHEK, L., AND LANDA,
R. Balancing on the edge: Transport affinity without network
state. In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation (Renton, WA, 2018),
NSDI’18, USENIX Association, pp. 111–124.

[4] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast userspace
packet processing. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (Washington, DC, USA, 2015), ANCS ’15, IEEE
Computer Society, pp. 5–16.

[5] BOCCHI, E., KHATOUNI, A. S., TRAVERSO, S., FINAMORE,
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Abstract
Timeout is widely used for failure detection. This paper
proposes SafeTimer, a mechanism to enhance existing
timeout detection protocols to tolerate long delays in the
OS and the application: at the heartbeat receiver, Safe-
Timer checks whether there are any pending heartbeats
before reporting a failure; at the heartbeat sender, Safe-
Timer blocks the sender if it cannot send out heartbeats
in time. We have proved that SafeTimer can prevent false
failure report despite arbitrary delays in the OS and the
application. This property allows existing protocols to
relax their timing assumptions and use a shorter time-
out interval for faster failure detection. Our evaluation
shows that the overhead of SafeTimer is small and ap-
plying SafeTimer to existing systems is easy.

1 Introduction

This paper presents SafeTimer, a mechanism to enhance
existing timeout detection protocols to prevent false fail-
ure reports caused by long delays in the OS and the ap-
plication. With the help of SafeTimer, existing protocols
can relax their timing assumptions and thus use a shorter
timeout interval for faster failure detection.

Timeout is widely used in distributed systems to detect
failures [1, 6, 13, 24, 29, 45]: a node periodically sends
a heartbeat packet to others and if the receiver does not
receive the heartbeat in time, it may report a failure and
may take actions to recover the failure.

Although this idea is simple, delays of packet transfer
create a problem: if a receiver misses a heartbeat, is it
because the sender has not sent the heartbeat, which in-
dicates a failure, or is it because the heartbeat is delayed
somewhere, which should not indicate a failure?

To address this problem, existing systems use one of
the following approaches: the first is to prevent false
failure reports by setting an appropriate timeout inter-
val. However, such setting requires certain timing as-

sumptions about the communication channel [4, 5, 18]
and creates a dilemma: on one hand, these assump-
tions should be conservative enough to tolerate abnor-
mal events that can cause long delays (e.g., congestion),
which means the timeout interval should be long. On the
other hand, long timeout interval can hurt system avail-
ability, because the system has to wait for a long time
before recovering the failure. A recent study shows that
inappropriate timeout interval is a major cause of timeout
related bugs, leading to various problems like data loss or
system hanging [19]. The second approach is to ensure
correctness despite false failure reports, using protocols
like Paxos [34, 35, 42]. This approach allows short time-
out for better availability, but its cost is usually higher.

SafeTimer enhances the first approach to tolerate a
subset of those abnormal events, without requiring any
timing assumptions. It thus allows existing protocols to
relax their timing assumptions to use a shorter timeout
interval, without sacrificing the accuracy of timeout de-
tection. It is motivated by two insights.

First, conservative assumptions are only necessary if
the communication channel is a blackbox, which cannot
provide any additional information other than receiving a
packet. If the channel can tell whether a packet is pend-
ing or dropped, the receiver can simply check whether
there is a pending or dropped heartbeat when missing a
heartbeat. This approach can prevent false failure reports
without requiring any timing assumptions.

Second, we observe that modeling the whole commu-
nication channel as a blackbox is too pessimistic: the
routing layer usually does not provide the users with in-
formation like packet drops, so it is reasonable to model
routing as a blackbox; the OS and the application, how-
ever, can provide precise information about its packet
processing and thus could be modeled as a whitebox.
Furthermore, in today’s datacenters, the whitebox part
often incurs delays that are comparable to or even larger
than those of the blackbox part: on one hand, intra-
datacenter networking delays usually range from tens of
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microseconds to a few milliseconds and can be further re-
duced to hundreds of nanoseconds with techniques like
Infiniband [31]. Improvement in bandwidth and proto-
cols [14, 46] have significantly reduced the chances of
packet drops. On the other hand, a traditional OS can de-
lay processing by several milliseconds because of time
sharing or page fault, etc. Such delay can occasionally
grow to several seconds for reasons like SSD garbage
collection [32] and can grow even higher in abnormal
cases (see Section 2).

Because of these two insights—1) the delay of the
whitebox part is significant among communication and
2) there exist more effective solutions for the whitebox
part—SafeTimer naturally uses a more effective solution
for the whitebox part; for the blackbox part, SafeTimer
relies on existing protocols and their assumptions.

At the receiver side, SafeTimer guarantees that as long
as the network interface card (NIC) has either delivered
or dropped the heartbeat before the deadline, the re-
ceiver will not report a failure. To achieve this property,
SafeTimer’s receiver module checks whether there are
any pending or dropped heartbeats in the system before
reporting a failure. Implementing this idea, however, is
challenging, because modern OS incorporates a highly
concurrent pipeline for fast packet processing. Naive so-
lutions like pausing all its threads requires an intrusive
modification to kernel, which is undesirable.

To solve this problem, we propose a non-blocking so-
lution: when the timer expires at t, SafeTimer’s receiver
module will send a barrier packet to itself. By crafting
the barrier packet and configuring the OS properly, Safe-
Timer ensures that if the receiver module receives the
barrier, all heartbeats processed by the NIC before t must
have been either delivered to the application or dropped.
Therefore, if the receiver module has neither received the
heartbeat nor observed any packet drops, it can safely re-
port a failure.

At the sender side, SafeTimer guarantees that if the
sender has not sent out a heartbeat in time, the sender
will not be able to send out any new packets. Such
suicide idea is not novel [8, 22], but previous solutions
that actively kill or reboot the sender do not work when
considering long processing delays, because the kill or
reboot operations may be delayed as well, leaving the
sender alive. To solve this problem, SafeTimer incorpo-
rates a passive design: SafeTimer’s sender module main-
tains a timestamp to identify till when it is valid for the
sender to send new packets. The sender module updates
this timestamp when successfully sending a heartbeat
and checks this timestamp before sending any packets.
By doing so, SafeTimer prevents a sender which fails to
send heartbeat in time to affect other nodes in the system.

One can enhance an existing timeout detection pro-
tocol by applying SafeTimer at both the sender and the

receiver. We can prove that, as long as the existing pro-
tocol’s assumptions about the blackbox part hold, Safe-
Timer is accurate (i.e., never report failure for a correct
sender) despite arbitrary delays in the whitebox part and
is complete (i.e., eventually report failure for a failed
sender) when the receiver does not experience slow pro-
cessing or packet drops for sufficiently long [12]. Such
properties indicate that one does not need to make con-
servative assumptions about the whitebox part, and thus
can use a shorter timeout interval to improve availability.

Our evaluation shows that the overhead of SafeTimer
is negligible when processing big packets and at most
2.7% when processing small packets; SafeTimer can pre-
vent false failure reports when long processing delays are
injected; and applying SafeTimer to HDFS [27, 45] and
Ceph [9] is easy.

2 Motivation

2.1 Long delays in OS and application
SafeTimer allows existing timeout detection protocols to
relax their timing assumptions by excluding delays in
the OS and the application. To demonstrate the poten-
tial benefits of such relaxation, we present a number of
abnormal events that can cause long delays.

• Disk access. Disk accesses caused by logging heart-
beats [29, 45] or page faults can block heartbeat pro-
cessing. A typical hard drive has an average latency of
tens of milliseconds and an SSD usually has a lower
average latency. Worst-case latency, however, is much
longer: SSD’s internal garbage collection can delay
an access by more than one second [32]. Our experi-
ment with hard drives shows that when processing fre-
quent random writes, the buffering mechanism in the
file system can occasionally introduce a latency of tens
of seconds, when it flushes many random writes.

• Packet processing. OS kernel can drop packets at dif-
ferent layers when it runs out of buffer space, which
can cause extra delay. Furthermore, handling of ab-
normal packets may cause a significant delay as well.
For example, when Linux receives a packet to an un-
opened port, it will report “port unreachable” to the
router using ICMP [30]. In our experiment, a large
number of such abnormal packets can delay the pro-
cessing of heartbeat by more than two seconds.

• JVM garbage collection. Garbage collection in a
Java Virtual Machine (JVM) can block the execution
of the application. Our experiment on a JVM with
32GB of memory shows that when the memory is
close to be fully utilized, a single garbage collection
can take up to 26 seconds, even when using parallel
GC. A recent survey [19] has observed similar prob-
lems in ZooKeeper and HBase (HBase-3273 [26]).
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• Applicaton specific delays. Applications may have
specific logics that can cause long delays occasionally.
For example, previous works have reported that HDFS
DataNode’s heartbeat sending thread may be blocked
by the task of scanning local data, which could take
long [48]. Although newer versions of HDFS have
fixed this problem, our investigation shows that sim-
ilar problems still exist: the heartbeat sending thread
can also be blocked by the task of deleting directories,
which can take long as well. A similar problem has
been reported in Ceph, in which a heavy rejoin opera-
tion can block heartbeat processing [11].

As shown in these examples, some events in the OS
and the application can cause delays of tens of seconds,
which are comparable to or larger than many systems’
default timeout intervals (e.g., 30 seconds in HDFS [28],
5 seconds in ZooKeeper [25], 20 seconds in Ceph [10]).
Furthermore, some of these delays may grow longer if a
machine has more resource (e.g., more memory for JVM
garbage collection).

Existing timeout detection protocols must make their
timing assumptions conservative enough to cover all the
events mentioned above. For example, to tolerate long
garbage collection in ZooKeeper [26], the developers in-
creased their timeout intervals, which will hurt system
availability as discussed previously. With the help of
SafeTimer, however, they can tolerate these events with-
out requiring any timing assumptions, and thus can use a
shorter timeout for faster failure detection.

2.2 Can we provide timing guarantees?

The above problems would be trivial if the OS and the ap-
plication can provide hard real-time guarantees for heart-
beat processing, but during our failed attempts, we find
this is a challenging task on commodity OS.

Isolated resource for heartbeats. To prevent other
tasks from interfering with heartbeat processing, the ap-
plication can reserve resources (e.g., a socket) for heart-
beat processing. However, this approach cannot prevent
such interference in OS kernel. For example, packets
from different sockets can be handled by the same thread
or CPU core in the kernel; even if heartbeat handling
does not need to make disk I/Os, page fault in the ker-
nel may incur a disk I/O, blocking heartbeat processing.

Processing heartbeats at lower layers. To avoid de-
lays in the OS kernel, one can implement heartbeat send-
ing and checking at lower layers, as close as possible to
the NIC. This approach can avoid many types of delays,
but cannot eliminate them, because heartbeat checking
can only happen after the OS reads a packet, which

App OS NIC

Network

NIC OS App

Sender Receiver

Packet drop 
statistics

Existing protocols need timing assumptions about the whole channel

SafeTimer only needs timing assumptions about the blackbox part

Clock Clock

Figure 1: System model: SafeTimer can tolerate long
delays in the whitebox part without timing assumptions.

means delays in handling interrupts and reading packets
can still cause false failure reports.

Real-time OS. Real-time Linux [43] and other real-
time frameworks for Linux such as RTAI [44] and Xeno-
mai [49] can give higher priority to certain interrupts, so
that they wouldn’t be delayed by other interrupts. How-
ever, this approach can only guarantee an interrupt han-
dler is triggered in time, but cannot guarantee when the
OS can finish reading a packet. The latter requires us to
analyze the worst-case execution time of handling inter-
rupts and reading packets, which is a challenging task on
complicated kernel code with frequent synchronizations.

We find these approaches, even combined, cannot
achieve hard timing guarantees for heartbeat processing.
The fundamental problem is that commodity OSes are
designed with the principles of resource sharing and high
concurrency, which is against the goal of strict timing
guarantees. Therefore, finally we give up the attempts
to provide timing guarantees. Instead, we investigate
whether we can prevent false failure reports assuming
delays in the OS and the application can be arbitrary.

3 Model

The goal of SafeTimer is to enhance existing timeout de-
tection protocols to tolerate long processing delays in the
OS and the application. To achieve this goal, SafeTimer
makes a few assumptions about the existing protocol: at
the receiver side, SafeTimer assumes the receiver defines
multiple time intervals and reports a failure if it does not
receive any heartbeats during an interval. At the sender
side, SafeTimer assumes the application has its own rules
to decide when to send heartbeats and whether heartbeats
are sent successfully, based on its timing assumptions.
Furthermore, SafeTimer assumes these intervals and as-
sumptions are configurable, so that the user can use a
shorter timeout interval with the help of SafeTimer.

SafeTimer enhances existing protocols to tolerate a
subset of abnormal events without requiring timing as-
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sumptions. Figure 1 shows which events SafeTimer can
tolerate: the blackbox part includes the network interface
cards (NICs) at both sides, the clocks at both sides, and
packet routing between two NICs; the whitebox part in-
cludes the OS and the application’s logic to process pack-
ets at both sides. SafeTimer can tolerate long delays in
the whitebox part without requiring any timing assump-
tions. Instead, SafeTimer only assumes that, a node will
eventually finish processing a heartbeat and SafeTimer
can observe the result (either delivered or dropped). For
the blackbox part, SafeTimer relies on existing protocols
and their assumptions.

Abnormal events in the whitebox part may affect the
processing speed of the blackbox part. SafeTimer as-
sumes such effect can be observed at the boundary: a
slow receiver may cause its NIC to drop packets because
the receiver’s buffer is full and SafeTimer assumes the
NICs can provide packet drop statistics. We find this
function is commonly provided by modern NICs.

With the help of SafeTimer, existing timeout detection
protocols only need to make conservative assumptions
about the blackbox part, which means the protocol can
use a shorter timeout interval to accelerate failure detec-
tion. Note that SafeTimer cannot make concrete sugges-
tions about timeout interval: the user still has to estimate
possible delays in the blackbox part. However, consid-
ering the various kinds of abnormal events in the white-
box part (Section 2), SafeTimer should be able to reduce
timeout interval by at least tens of seconds.

Case studies. We present a few existing timeout detec-
tion protocols to show how SafeTimer models them and
how they can benefit from SafeTimer.

Budhiraja et al. [5] discuss how to detect failures in
primary-backup protocols, given different models. In the
simplest model, which assumes clocks are sufficiently
synchronized, links are reliable, and packet delay is
bounded (δ ), the sender can send heartbeats every τ sec-
onds and the receiver reports a failure if it does not re-
ceive a heartbeat for δ +τ seconds. SafeTimer can model
this protocol in the following way: when the receiver re-
ceives a heartbeat at t, it creates a new interval from t to
t + δ + τ and checks whether it receives a heartbeat by
the end of the new interval; the sender can define a suc-
cessful heartbeat sending for interval i as sending a heart-
beat at ti and ti ≤ ti−1 + τ . With the help of SafeTimer,
this protocol may reduce δ because it does not need to
include the delays of the whitebox part. This work also
discusses more complicated models, which consider link
failures and proposes a gossip protocol to route heart-
beats through multiple links, which is adopted in Ceph.
SafeTimer can model it accordingly. For example, to tol-
erate one link failure, the sender can define a successful
heartbeat sending as sending two heartbeats to two nodes

1 /* The application calls safetimer_check when
missing heartbeats from starti to endi */

2 function safetimer_check(starti)
3 send a barrier to itself
4 wait for barrier (with a timeout)
5 if barrier received and tlastHeartbeat < starti
6 read drop count in OS and NIC and reset to 0
7 if (drop count = 0 and tdrop < starti)
8 return TRUE_FAILURE
9 else if (drop count != 0)

10 tdrop = current_time()
11 end
12 end
13 return FALSE_FAILURE

15 function safetimer_recv_thread()
16 when receiving heartbeat
17 tlastHeartbeat = current_time()
18 when receiving barrier
19 notify safetimer_check

Figure 2: Pseudo code of SafeTimer’s receiver module.
For simplicity, it assumes there is only one sender, but
it can easily be extended to support multiple senders.
tlastHeartbeat records the timestamp of the last heartbeat.
tdrop records the timestamp of the last drop event.

by ti−1 + τ . Similarly, SafeTimer may help to reduce δ .
In HDFS, a DataNode sends a heartbeat to the Na-

meNode every three seconds, and the NameNode marks
the DataNode as stale if it misses heartbeats for 30 sec-
onds. In the common case, the NameNode will acknowl-
edge a heartbeat to the DataNode; if the DataNode de-
tects errors, it will send heartbeats more aggressively ev-
ery second. SafeTimer can model it in the following way:
when the receiver receives a heartbeat at t, it creates a
new interval from t to t + 30 and checks whether it re-
ceives a heartbeat by the end of the new interval (note
intervals can overlap in this case); the sender can define
a successful heartbeat sending for interval i as 1) getting
acknowledgement for one heartbeat or 2) sending heart-
beats with an interval of less than one second. SafeTimer
may help to reduce the 30-second interval because it does
not need to consider delays in the whitebox part.

4 Design

SafeTimer enhances existing timeout detection protocols
to tolerate long processing delays in the whitebox part.
In this section, we first present SafeTimer’s mechanisms
and then prove its accuracy and completeness.

4.1 Accurate timeout at the receiver

As discussed in Section 3, SafeTimer assumes the appli-
cation’s heartbeat receiver defines multiple time intervals
(interval i from starti to endi), and reports a failure if no
heartbeat is received during an interval.

SafeTimer guarantees that as long as the receiver’s
NIC has processed (either delivered or dropped) a heart-
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beat during interval i, SafeTimer’s receiver module will
not report a failure for interval i.

Its key idea is simple: if the receiver module does not
receive any heartbeats by the end of an interval, it will
check whether there are any pending or dropped heart-
beats in its whitebox part, and if not, the receiver module
can safely report a failure.

The key challenge, however, is how to implement this
idea in modern OS. For fast packet processing, modern
OS incorporates a highly concurrent design, which in-
volves a pipeline with multiple threads in each stage. To
identify whether some heartbeats are pending, a naive
solution is to pause all threads and check all buffers, but
this solution will have negative impact on performance
and require intrusive modification to the kernel.

To solve this problem, SafeTimer incorporates a non-
blocking design as shown in Figure 2: if the applica-
tion does not receive any heartbeat by endi, it will check
whether any heartbeats are pending or dropped by call-
ing safetimer check, which sends a barrier packet to it-
self (line 3). By crafting the barrier packet and config-
uring the system properly, SafeTimer ensures that a bar-
rier will follow the same execution path of heartbeats.
Therefore, if the receiver module receives the barrier, it
can know that any heartbeats processed by the NIC be-
fore endi must have been processed by the OS and Safe-
Timer as well, either delivered to the receiver module or
dropped. We will present details about how to implement
the barrier mechanism in Section 5. For now, the readers
can simply assume SafeTimer somehow drives the heart-
beats and the barriers into a FIFO channel.

If the receiver module receives the barrier, it will check
again whether it has received a heartbeat (tlastHeartbeat <
starti in line 5). If not, the receiver module will read drop
statistics from both the OS and the NIC: if dropcount =
0 and tdrop < starti (line 7), which means there are no
drops in interval i, the receiver module can safely report
a failure. If the barrier is dropped as well, the receiver
module will not report a failure for interval i. In this
case, the application will perform the same check in the
following intervals and will eventually report a failure.

4.2 Stop sender when missing heartbeat

As discussed in Section 3, SafeTimer assumes that the
application has rules to decide when to send heartbeats
and whether they are sent successfully. In particular,
without losing generality, SafeTimer assumes for each
interval i, the application defines a deadline end′i to send
heartbeats, which should be earlier than endi at the re-
ceiver side because of clock drift and network latency.

SafeTimer guarantees that if a sender cannot success-
fully send heartbeats by end′i , the sender will not be able
to send out any other packets after end′i , because the re-

1 function safetimer_send_heartbeat(end′i, end′i+1)
2 send heartbeats
3 if sending succeeded before end′i
4 tvalid = end′i+1
5 end

7 function safetimer_intercept_sending()
8 if (current_time() > tvalid)
9 drop the packet

10 else
11 perform the send
12 end

Figure 3: Pseudo code of SafeTimer sender module. The
application defines end′i as the deadline to send heart-
beats for interval i; the application defines whether send-
ing succeeds; SafeTimer maintains a timestamp tvalid to
identify till when it is safe to send out packets.

ceiver may report a failure at that time. This is necessary
because the accuracy property requires that if the receiver
reports a failure, the sender must have failed: violating
this property can cause correctness issues. Taking the
primary backup protocol as an example, a backup should
only become active if the primary fails. If a backup re-
ceives a failure report and becomes active while the pri-
mary is still active, there will be two active nodes, creat-
ing a classic “split brain” problem [20].

Killing a sender when it is slow is not a new idea [8,
22], but how to implement it correctly despite arbitrary
processing delays requires careful thought. Existing so-
lutions ask a specific component (e.g., a watchdog [22])
to actively kill the sender. When considering arbitrary
processing delays, however, such active solution is in-
complete, because the delay of processing the “kill”
command may allow the sender to be alive for an arbi-
trary amount of time, violating the accuracy property.

SafeTimer uses a passive solution by utilizing the idea
of output commit [41]: a slow sender may continue pro-
cessing, but as long as other nodes do not observe the ef-
fects of such processing, the slow sender is indistinguish-
able from a failed sender. As shown in Figure 3 (lines 3-
12), SafeTimer’s sender module maintains a timestamp
tvalid , which indicates it is safe for the sender to send
packets before tvalid . During startup, the sender sets tvalid
to end′0. If the sender successfully sends heartbeats for
interval i, the sender extends tvalid to end′i+1 (line 4).
Whenever the sender is about to send a packet, Safe-
Timer will compare the current time with tvalid : if cur-
rent time is larger than tvalid , the sender will discard the
packet (lines 7-12). Since heartbeat is blocked as well in
this case, an invalid sender cannot extend tvalid and send
packets in the future, unless with recovery operations.

Note that since the sending operation itself may take
arbitrarily long, SafeTimer allows a packet generated be-
fore tvalid to be actually sent out after tvalid . This is fine
because the packet is generated when the sender is still
valid (i.e., when the receiver has not reported the failure).

USENIX Association 2018 USENIX Annual Technical Conference    471



4.3 Proof of accuracy and completeness
As discussed in Section 3, SafeTimer relies on the exist-
ing protocol to send and receive heartbeats in the black-
box part. When the existing protocol’s assumptions
about the blackbox part hold, we can prove that Safe-
Timer is accurate (i.e., never report failure for a correct
node) despite arbitrary delays in the whitebox part and is
complete (i.e., eventually report failure for a failed node)
when the receiver does not experience slow processing
or packet drops for sufficiently long. We provide the de-
tailed proof in the appendix.

4.4 Benefit of SafeTimer
Because of the accuracy and completeness properties, the
users of SafeTimer do not need to make conservative tim-
ing assumptions about the whitebox part. They do need
to provide a reasonable estimation of such delay in the
common case, because the sender needs some time to
send out heartbeats. However, this requirement is only
for performance: if the actual delay is longer than estima-
tion, which means the sender cannot send the heartbeat in
time, SafeTimer will block the sender, which may cause
unnecessary recovery and hurt performance, but this will
not violate accuracy. Therefore, SafeTimer only requires
the user to provide a reasonable estimation to make sure
such events are rare. As a comparison, in existing proto-
cols, if the actual delay is longer than estimation, sys-
tem correctness can be violated, and that is why ex-
isting systems require conservative assumptions so that
such events never happen. The gap between “rare” and
“never” is where SafeTimer gains its benefit.

5 Implementation

This section presents the barrier mechanism at the re-
ceiver and the packet checking at the sender in detail.

5.1 Barrier mechanism at the receiver
The goal of the barrier mechanism is to ensure that if
SafeTimer’s receiver module sent a barrier to itself at t
and received it later, then all heartbeats delivered by NIC
before t must have been either delivered to the applica-
tion or dropped. Achieving this property would be trivial
if the OS processes all packets in FIFO order, but unfor-
tunately, this is not true in modern OS. To illustrate the
problem and motivate our design, we first present how
Linux processes incoming packets.

Background. As shown in Figure 4, Linux incorpo-
rates a multi-stage pipeline to process incoming packets.

At the lowest level, an NIC buffers incoming packets
in its RX queues and tries to transfer them to kernel’s ring

buffers: if the ring buffer has empty slots, the NIC will
transfer the packet using DMA and fire an interrupt; if
the buffer is full, the NIC will retry and may drop pack-
ets. For efficiency, modern NIC and Linux incorporate
the Receive Side Scaling (RSS) technique [40] to allow
parallel packet processing: the NIC creates multiple RX
queues and the kernel creates an equal number of ring
buffers so that each RX queue is mapped to a unique
ring. Furthermore, Linux assigns a unique interrupt re-
quest (IRQ) number to each RX queue so that Linux can
handle interrupts from different RX queues in parallel.

For efficiency, Linux separates interrupt handling into
two parts—hard IRQ and soft IRQ—and invokes hard
IRQ first. For an NIC interrupt, its hard IRQ simply
sets some registers and triggers a soft IRQ. The soft IRQ
reads packets from the ring buffer and executes the logic
of the networking protocol, such as TCP/IP. The RSS
technique allows Linux to handle IRQs in parallel.

By default, the soft IRQ reads from the ring buffer and
executes the protocol logic within a single critical sec-
tion protected by the lock of the ring. For more paral-
lelism, Linux incorporates the Receive Packet Steering
(RPS) technique [40]: when RPS is enabled, a soft IRQ
reads a packet from the ring, puts it into a buffer called
backlog, and then releases the lock of the ring. A sepa-
rate thread, which may run on another CPU, will retrieve
packets from the backlog and execute the protocol logic.

Finally the soft IRQ puts packets into socket buffers
and the user-space threads may read from these buffers
in parallel.

Such a multi-stage pipeline may re-order packets.
Modern NIC and Linux preserve FIFO order for TCP
packets with the same (sender IP, sender port, destina-
tion IP, destination port) and UDP packets with the same
(sender IP, destination IP), by directing packets with
same such information to the same RX queue, backlog
and socket buffer. For SafeTimer, such guarantee is not
enough since heartbeats and barriers are from different
senders.

Overview of SafeTimer’s solution. Our implementa-
tion is driven by three principles: 1) for portability, we
hope to minimize modification to OS kernel code; 2) for
performance, it should not incur significant overhead; 3)
for portability, we hope to minimize dependence on spe-
cific NIC features or modification to NIC drivers.

As shown in Figure 4, SafeTimer re-directs heartbeats
and barriers to a separate FIFO queue (called STQueue)
early in the pipeline, so that they are not affected by
re-ordering in later stages. However, since the earliest
place we can perform such re-direction is after the soft
IRQ reads the packets, RSS technique in the earlier stage
may still re-order packets from different ring buffers. To
solve this problem, SafeTimer sends a barrier packet to
each RX queue/ring. If all of them later go through the
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Figure 4: Barrier mechanism at the receiver. The algorithm in Figure 2 reads from STQueue.

STQueue, SafeTimer can know that all previous heart-
beats are processed. The key to the correctness of this
approach is that a soft IRQ needs to grab the lock of
the ring buffer when reading a packet from the ring, and
thus packets from each ring are read in a FIFO manner.
As long as SafeTimer re-directs a packet before the soft
IRQ releases the lock, such per-ring FIFO order will be
retained in the STQueue. Therefore, when SafeTimer re-
trieves a barrier from the STQueue, it knows all previous
heartbeats from the same ring must have been processed.

Next we present each step in detail.

Forcing a barrier to go through NIC. SafeTimer re-
quires a barrier packet to follow the same execution path
of a heartbeat packet. Putting a barrier in the ring buffer
does not work because the OS won’t read from the buffer
until an NIC interrupt is triggered. Therefore, SafeTimer
receiver forces the barrier packet to go through its NIC.
This task, however, is challenging for multiple reasons.

First, Linux has the loopback optimization to route a
local packet by memory copy instead of sending it to the
NIC. SafeTimer bypasses this optimization by sending
the barrier directly to the device driver. This approach,
however, creates a new problem: the NIC will actually
send the packet to the router. To prevent loops, routing
protocols usually have a constraint that a router should
never forward a packet to the port where the packet is
received. Therefore, the router will drop a barrier packet,
whose destination and source are the same.

Our prototype uses an NIC with two ports and sends
a barrier from one port to the other, which eliminates
the above problem. This solution requires the receiver
to have at least two links to the router, but considering
the fact that redundant links are already widely used for
fault tolerance, such requirement often does not incur ad-
ditional cost. If redundant link is not available, another
alternative is to use the virtual LAN (vLAN) technique

to virtualize a physical port into two virtual ports [47].

Sending a barrier to a specific RX queue. A few
NICs provide the “N-tuple filter” feature to direct pack-
ets to specified RX queues, which makes this problem
trivial. However, we find this feature is not common so
far [21]. Most NICs calculate a hash value based on the
IPs and ports information in a packet and then direct the
packet to an RX queue based on the hash value. There-
fore, we propose a general solution based on the assump-
tion that one cannot control which RX queue a packet is
directed to, but packets with same IPs and ports will al-
ways be directed to the same RX queue.

SafeTimer uses a brute-force search approach: during
initialization, its receiver module sends barriers with dif-
ferent sender ports to its NIC to see which RX queue they
are directed to, until SafeTimer can find a port for each
RX queue. Since usually there are not many RX queues,
such procedure could finish quickly. The challenge, how-
ever, is how to know which RX queue (represented by its
IRQ number) a packet is directed to. SafeTimer uses net-
filter [39], which is a tool provided by Linux, to intercept
soft IRQ functions to check whether a packet is a barrier,
but soft IRQ functions do not carry the IRQ number of
the RX queue. We can modify the driver to pass the IRQ
number to the soft IRQ, but this violates our principle to
minimize driver-specific modifications.

To solve this problem, we leverage the irq-cpu affin-
ity configuration provided by Linux, which can configure
the mapping between RX queues and CPUs during RSS.
By default, it is configured to be an all-to-all mapping,
which means any CPU can execute any IRQ to read from
its corresponding RX queue/ring, but Linux also allows
one-to-one mapping. We leverage this option to “test”
whether a barrier is sent to a specific IRQ i: we map IRQ
i to CPU 0 and the other IRQs to the remaining CPUs ar-
bitrarily. When intercepting the soft IRQ function, Safe-
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Timer reads the CPU ID: if the packet is a barrier and
the IRQ function is run on CPU 0, we can know the bar-
rier must be sent to IRQ i; otherwise, SafeTimer tests a
different i until it can find the right one.

Note that since the NIC always directs packets with
same IPs and ports to the same RX queue, we only need
to run the inferring procedure once for one machine. Af-
terwards we can use all-to-all mapping for efficiency.

Re-directing packets to STQueue. As shown in Fig-
ure 4, SafeTimer re-directs heartbeats and barriers to a
FIFO STQueue after packets are read.

To implement this functionality, SafeTimer uses net-
filter to hook the ip local deliver function, and config-
ures iptable to re-direct heartbeats and barriers to a FIFO
netfilter queue, which is called STQueue in SafeTimer.
SafeTimer hooks ip local deliver because this is the ear-
liest point packets can be re-directed in netfilter. Safe-
Timer sends heartbeats and barriers to specific ports so
that they can be efficiently distinguished from normal
packets.

This approach, however, is not fully correct when RPS
is enabled: recall that when RPS is enabled, a soft IRQ
will put a packet into the backlog and then releases the
lock of the ring. In this case, ip local deliver is called af-
ter the lock is released and thus re-direction may not pre-
serve the order of packets from the corresponding ring.
To solve this problem, we use kretprobe [33] to inter-
cept get rps cpu to return -1 for heartbeats and barriers:
doing so essentially disables RPS for heartbeats and bar-
riers. As a result, the re-direction will be executed under
the protection of the lock of each ring and thus STQueue
will preserve the order of packets from each ring. Nor-
mal packets, however, are not affected.

The timeout detection protocol (Figure 2) always reads
heartbeats and barriers from the STQueue. However,
SafeTimer does not remove heartbeats and barriers from
later stages of the pipeline, because the OS needs to ex-
ecute the logic of the network protocol, like congestion
control or sending acknowledgements in TCP.

Reading drop count. SafeTimer’s receiver module
needs to read packet drop counts from both the OS and
the NIC. Linux and most NICs have provided such statis-
tics, but their implementation cannot achieve our goal.

In Linux, the NIC device driver periodically reads the
drop count from the NIC, which can be fetched by read-
ing /proc files system or using tools such as ethtool. Pe-
riodic reading means such statistics may be stale, which
can cause SafeTimer’s receiver module to miss recent
drops and generate a false failure report. To make things
worse, the NIC will reset drop count to 0 after it is read,
so even if SafeTimer reads the drop count directly from
the NIC, it may still get inaccurate results. To solve
this problem, SafeTimer reads drop count from the NIC

and then merges it with the number reported by the NIC
driver. This is the only place SafeTimer requires modifi-
cation to device drivers and OS kernel.

5.2 Blocking slow sender
As shown in Figure 3, SafeTimer’s sender module blocks
the sender if it cannot deliver heartbeats to the NIC in
time. However, when sending a packet, Linux does not
notify users whether or not the packet is delivered to the
NIC successfully. Instead, it may write the packet to a
buffer, return to the user, and send the packet to the NIC
later, which may fail. To solve this problem, we use
kprobe to intercept the function that the NIC driver in-
vokes to reclaim resources after transmission is complete
(e.g., napi consume skb or dev kfree skb any). As
shown in Figure 3, SafeTimer applies the rules of the ex-
isting timeout detection protocol to check whether heart-
beats are sent successfully. If so, SafeTimer’s sender
module will update tvalid . To block invalid packets, we
use netfilter to intercept the ip output function: if current
time is larger than tvalid , the packet will be dropped.

Because of the processing delay, SafeTimer cannot get
the exact time when a packet is sent. Instead, SafeTimer
conservatively uses the timestamp after sending a packet,
ta f ter: when checking whether a heartbeat is sent before
end′i (line 3 in Figure 3), SafeTimer compares ta f ter with
end′i . Such conservative approach ensures a sender fail-
ing to send heartbeats in time must be blocked, but it
may also block a sender that has sent heartbeats in time,
which is unnecessary but does not violate accuracy. Pre-
vious works have discussed how to minimize the impact
of such unnecessary killing [38].

Since a slow sender process may communicate with
other processes on the same machine, SafeTimer needs
to block those processes as well, and thus it provides
two blocking modes: the first blocks all processes on
a machine; the second blocks only the sender process
if the user is sure it does not communicate with other
processes. Automatically tracking the information flow
among different processes is out of the scope of this pa-
per.

5.3 Supporting virtual machine
To maximize the benefit of SafeTimer in a virtual ma-
chine architecture, we could implement SafeTimer in the
host OS or hypervisor and provide related functions to
applications using hypercalls or remote procedure calls.
By doing so, we can model the host OS or hypervisor
as a whitebox. We plan to implement such support in
the future. However, if the user has no control of the
host OS or hypervisor, he/she can still deploy SafeTimer
to the guest OS and model the host OS/hypervisor as a
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blackbox, but this approach of course loses the ability to
tolerate long delays in the host OS/hypervisor.

6 Evaluation

Our evaluation tries to answer three questions:

• What is the overhead of SafeTimer?

• Can SafeTimer achieve the expected accuracy prop-
erty, despite long delays in the OS and the application?

• How much effort does it take to apply SafeTimer to
existing systems?

To answer the first question, we have evaluated Safe-
Timer with a performance benchmark, which can send
packets with different sizes, and compared its throughput
and latency to those without SafeTimer. For the blackbox
part, we use a simple protocol that sends heartbeats peri-
odically with a configurable interval.

To answer the second question, we have injected long
delays and packet drops at different layers at both the
sender and the receiver to observe whether SafeTimer
can prevent false failure report. Of course, this is by
no means a complete test: we have proved the accuracy
of SafeTimer in the appendix. This set of experiments
serves as a sanity check about whether our implementa-
tion has actually achieved the expected properties.

To answer the third question, we have applied Safe-
Timer to HDFS and Ceph to enhance their timeout de-
tection protocols and report our experience.

Testbed setting. We ran all experiments on Cloud-
Lab [15]. Each machine is equipped with two Intel Xeon
E5-2630 8-core CPUs, 128GB of memory, 1.2 TB of
SAS HDD, and a dual-port Intel X520-DA2 10Gb NIC.
All machines are connected to a Cisco Nexus C3172PQs
switch. Linux 4.4.0 is installed on all machines.

6.1 Overhead
SafeTimer incurs overhead for each packet at both the
sender and the receiver: SafeTimer’s sender module
compares current time with tvalid before sending each
packet; SafeTimer’s receiver module re-directs heart-
beats and barriers to the STQueue. To know whether
a packet is a heartbeat or a barrier, the receiver mod-
ule checks the destination port of each packet. When a
sender fails, SafeTimer performs additional operations to
block the sender, send barriers, and read drop counts, but
since failure is rare, we focus on overhead in the failure-
free case.

Since SafeTimer incurs overhead for each packet, such
overhead should be relatively higher for workloads with
smaller packets and thus we measure the overhead of
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Figure 5: Throughput of the ping-pong benchmark with
and without SafeTimer.
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Figure 6: 99 percentile latency of the ping-pong bench-
mark with and without SafeTimer.

SafeTimer with different packet sizes. However, TCP
may merge small packets in the same connection and
thus affect our experiment results. To prevent such effect,
we use a ping-pong benchmark as suggested in a previ-
ous work [2]: we create multiple sender threads at the
sender, each creating a connection to the receiver. The
sender thread sends a packet to the receiver and waits
for the receiver to forward the packet back. In this case,
since each connection has only one outstanding packet,
TCP has no chance to merge packets. To increase load,
we can increase the number of sender threads.

To measure the overhead of SafeTimer, we apply Safe-
Timer to the ping-pong benchmark and measure how it
affects throughput and latency. To measure the maximal
throughput, we increase the number of sender threads till
we cannot gain higher throughput. To measure the la-
tency, we run experiments under two loads: a light load
of about 40% of the maximal throughput and a heavy
load of about 90% of the maximal throughput. We do
not measure the latency under the maximal throughput
because in this case, the latency will be dominated by
queuing delay. We run each setting 20 times to compute
the average and standard deviation. We set the timeout
interval of the blackbox part to be one second.

As shown in Figures 5 and 6, SafeTimer’s overhead
is small: for 4KB and 64KB packets, the overhead is
less than 1%; for 8B and 64B packets, SafeTimer can
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Node Instrument Position Injected Event SafeTimer Vanilla
Receiver System call (recv) Delay No timeout Timeout
Receiver Socket (sock queue rcv skb) Delay/Drop No timeout Timeout
Receiver NFQueue (nfqnl enqueue packet) Delay/Drop No timeout N/A
Receiver IP (ip rcv) Delay No timeout Timeout
Receiver RPS (enqueue to backlog) Delay/Drop No timeout Timeout
Receiver Ethernet (napi gro receive) Delay No timeout Timeout

Sender System call (send) Delay Blocked Alive
Sender Socket (sock sendmsg) Delay Blocked Alive
Sender IP (ip output) Delay/Drop Blocked Alive. Can observe drop.
Sender Ethernet (dev queue xmit) Delay Blocked Alive

Table 1: Verifying accuracy of SafeTimer by injecting long delay or packet drops. Gray cells indicate injection in
kernel. N/A means this test case does not apply.

increase 99p latency by 0.7% to 2.7% and decrease
throughput by 1.6% to 2.4%. Such low overhead is rea-
sonable because SafeTimer’s additional work (i.e., com-
paring tvalid at the sender and reading destination port
at the receiver) is small compared to other work the OS
has to perform for each packet (e.g., interrupt handling,
memory copy). To confirm the result, we run the same
benchmark on another set of machines on CloudLab
(m510 [16]) with different NICs (Mellanox ConnectX-
3 10G) and we find the overhead of SafeTimer is similar.

6.2 Accuracy
Although we have proved the accuracy of SafeTimer, we
hope to sanity check whether our implementation has
achieved the expected property. For this purpose, we in-
ject long delays and packet drops at different layers at
the sender and the receiver. We compare SafeTimer to a
vanilla timeout implementation, which has a user thread
to periodically send heartbeats at the sender and a user
thread to periodically check timeout at the receiver.

Table 1 summarizes the events we injected and how
SafeTimer responds to these events. We inject long de-
lays at all positions but only inject drops if the corre-
sponding function can actually drop packets. In these
experiments, we set timeout interval to be one second
and inject a delay of two seconds. As shown in the table,
SafeTimer correctly prevents false failure report at the
receiver and blocks the sender in all cases. The vanilla
implementation, however, violates accuracy in almost all
cases except when a heartbeat is dropped in ip output: in
this case, the sender receives an error and can retry.

6.3 Case studies
To evaluate how much effort it takes to apply SafeTimer
to real-world applications and its performance overhead,
we have applied SafeTimer to HDFS [45] and Ceph [9].

APIs of SafeTimer. At the sender side, SafeTimer pro-
vides two APIs: safetimer send HB to send a heartbeat

and check whether it is delivered to the NIC in time; safe-
timer extend to extend the t valid value. At the receiver
side, SafeTimer provides one API: safetimer check to
check whether it is safe to report a failure.

HDFS. In HDFS, a DataNode needs to periodically
send a heartbeat to the NameNode and if the NameNode
misses a number of consecutive heartbeats, the NameN-
ode will mark the DataNode as “stale”.

We modified one line of code in NameNode’s isStale
function, which checks whether heartbeats are miss-
ing for a DataNode, to perform the additional safe-
timer check. We modified six lines of code in DataNode
to use SafeTimer’s APIs to send heartbeats and check
whether heartbeats are sent in time. To simplify mod-
ification, we do not remove HDFS’ original heartbeat
mechanism: this leads to duplicate heartbeats but during
our experiments, the overhead is negligible.

We killed a DataNode and found the NameNode can
correctly mark a failed DataNode as stale. We have
measured the performance of an HDFS deployment with
three DataNodes by using Hadoop’s built-in benchmark
tool DFSIO. We ran each experiment five times. With-
out SafeTimer, DFSIO can achieve a write throughput
of 203 MB/s (stdev 12.6) and a read throughput of 627
MB/s (stdev 18.4); with SafeTimer, it can achieve a write
throughput of 206 MB/s (stdev 5.5) and a read through-
put of 632 MB/s (stdev 8.4). The difference is not statis-
tically significant.

Ceph. In Ceph, an Object Storage Daemon (OSD)
sends heartbeats to its two peers every 6 seconds and if
they can’t receive the heartbeat for 20 seconds, they will
send a failure report to the Monitor, which will consider
the OSD as failed if receiving two reports.

In this mechanism, an OSD is both the sender and
receiver of heartbeats. We modified two lines of code
in OSD’s heartbeat check function to perform the safe-
timer check before sending the failure report; we mod-
ified five lines of code to use SafeTimer’s APIs to send
heartbeats and check whether heartbeats are sent in time.
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We killed an OSD and found the Monitor can mark
it as down. We have measured the performance of a
Ceph deployment with three OSDs by using Ceph’s in-
buit benchmark tool RADOS. We ran each experiment
five times. Without SafeTimer, RADOS can achieve a
bandwidth of 43.3 MB/s (stdev 1.6); with SafeTimer, it
can achieve a bandwidth of 42.2 MB/s (stdev 1.1). The
difference is not statistically significant.

7 Related work

Chandra et al. show that many classic problems in dis-
tributed system, such as consensus, can be solved with
an accurate and complete failure detector [12]. In prac-
tice, timeout is widely used for failure detection, whose
accuracy depends on their timing assumptions.

Synchronous systems. Under synchronous assump-
tions (i.e., delay of message transfer and clock devia-
tion are bounded [12]), timeout can achieve both accu-
racy and completeness for failure detection. Many sys-
tems like primary-backup replication and HDFS [4, 5,
18, 24, 45] work under this assumption. To guarantee
accuracy, these systems must make conservative assump-
tions about message delay and clock deviation. Previ-
ous works have tried to improve its accuracy by esti-
mating the upper bound adaptively at runtime [3] and
by killing a node if the failure detector reports the node
has failed [8, 22]. SafeTimer can enhance synchronous
systems to tolerate abnormal events in the OS and the
application, without requiring any timing assumptions.

Asynchronous systems. Under asynchronous assump-
tions (i.e., delay of message transfer and clock deviation
are unbounded), building a failure detector that is both
accurate and complete is proved to be impossible [23].
Paxos [34, 35, 42] is a replication protocol designed for
asynchronous environments: it is always correct (i.e., all
correct replicas process the same sequence of requests)
and is live (i.e., the system can make progress) when the
environment is synchronous for sufficiently long. Paxos
is used as building blocks in larger systems like Span-
ner [17] and Microsoft Azure Storage [7]. Compared to
synchronous replication systems, Paxos is more expen-
sive in terms of number of replicas and messages. Asyn-
chronous systems don’t need accurate failure detection
for correctness, but since there is a cost to recover a fail-
ure, SafeTimer may help to reduce such unnecessary re-
covery by reducing the number of false failure reports.

Lease systems. A number of systems [1, 13] in-
stall a replicated lease manager (e.g., Chubby [6] and
ZooKeeper [29]): a server needs to acquire a lease from
the lease manager before it can service clients; the server
has to renew the lease before it expires, and if not suc-
cessful, the server will stop servicing clients. For accu-

racy, this approach requires the clock speed of servers
and the lease manager to be sufficiently close, but it does
not require the delay of message transfer to be bounded.
Lease systems strike a balance between cost and timing
assumptions, but it has its own limitations: first, the cen-
tralized nature of the lease manager means if a long delay
happens at the lease manager, all leases will expire and
all servers will stop servicing, which does not violate
the accuracy property, but is certainly undesirable. As
a result, lease systems prefer coarse-grained leases [6],
which hurts system availability as well, similar as using
a long timeout. Second, the requirement of a replicated
lease manager makes it less desirable in small-scale sys-
tems. Systems using leases can benefit from SafeTimer
by installing its sender module to ensure a server will not
continue servicing after its lease expires.

Failure detection without timeout. A few systems
implement a failure detector without using timeout. For
example, Falcon [38] and its following works [36, 37]
install probes in routers to monitor servers and install
probes at different layers in a server to monitor upper lay-
ers. This approach essentially converts the whole com-
munication channel into a white box. As a result, it re-
quires intrusive modification to the routing layer, which
makes its deployment challenging and sometimes impos-
sible if the routers are out of the control of the user. To
solve these problems, Falcon uses timeout as a backup.

Real-time OS. Real-time Linux [43] and other real-
time frameworks for Linux such as RTAI [44] and Xeno-
mai [49] can guarantee important tasks or interrupts are
scheduled before given deadlines. However, this is not
sufficient to achieve our goal, because long delay is not
only caused by untimely scheduling, but also caused by
the fact that an important task is occasionally blocked by
a heavy task (Section 2). Real-time scheduling can ad-
dress the former problem, but not the latter one.

8 Conclusion

This paper shows that we do not need to include the max-
imal local processing delay in timeout interval. Because
of the whitebox nature of local processing, we can build
efficient and accurate failure detection for this part, de-
spite arbitrary processing delays. Our prototype Safe-
Timer allows one to use a shorter timeout to improve
system availability, without sacrificing accuracy.
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A Appendix: Proof of accuracy and com-
pleteness

Assumption of the blackbox part. The existing proto-
col can guarantee that if a sender has successfully sent
heartbeats for interval i, at least one of the heartbeats
will be processed (either delivered to the OS or dropped)
by the receiver’s NIC by endi.

Theorem A.1. (Accuracy) If SafeTimer’s receiver mod-
ule reports a failure at time t, the sender will not be able
to send any packets generated after t.

Proof. As shown in the protocol, SafeTimer’s receiver
module reports a failure for interval i if two conditions
are both satisfied: first, the receiver module has received
the barrier but not any heartbeats for interval i. Because
the barrier is sent after endi and because of the barrier’s
semantic, any heartbeats processed by the NIC before
endi must either have been delivered to the receiver mod-
ule or have been dropped. Since the receiver module has
not received any heartbeats, we can conclude that it is
either because the NIC has not processed any heartbeat
by endi or because some heartbeats are dropped at the
receiver side.

The second condition is dropcount = 0 and tdrop <
starti, which means there are no packet drops at the re-
ceiver side in interval i. By combining this condition
with the first one, we can conclude that the receiver’s
NIC must have not processed any heartbeat packets for
interval i before endi. This means the sender must have
not successfully sent the heartbeats for interval i (As-
sumption of the blackbox). In this case, the sender will
not extend its tvalid = end′i , and thus will stop sending any
messages after tvalid .

Since t is larger than endi and tvalid = end′i at the sender
should be earlier than endi at the receiver, we can con-
clude that tvalid < endi < t and thus the sender will not
send any packets generated after t.

Theorem A.2. (Completeness) If the sender has failed,
SafeTimer’s receiver module will eventually report a fail-
ure if the following two conditions both hold for suf-
ficiently long (five consecutive intervals in the worst
case): 1) the receiver’s processing speed is normal,
which means events (e.g., heartbeat, barrier, and read-
ing drop count) generated before or during an interval
can be handled by the end of the interval; 2) the receiver
does not experince any packet drops.

Proof. Suppose the sender fails to send heartbeats in in-
terval i, and afterwards, there are five consecutive inter-
vals j to j+4 ( j > i) during which the receiver’s process-
ing speed is normal and the receiver does not experience
any packet drops.

Since the receiver’s processing speed is normal in in-
terval j, the receiver should be able to handle all delayed

heartbeats from the sender, if any, by the end of inter-
val j, which means the receiver won’t receive any heart-
beats in interval j+ 1. Therefore, the receiver will send
a barrier at the end of interval j+1. Since the receiver’s
processing speed is normal and there are no packet drops
in interval j+2, the receiver will receive the barrier and
read drop count by the end of interval j+2. If drop count
is 0 (tdrop must be smaller than start j+2 because the re-
ceiver does not read drop count in interval j+1), the re-
ceiver will report the failure; otherwise, the receiver will
update tdrop (the new tdrop must be smaller than start j+3)
and repeat the above procedure. At the end of interval
j + 3, the receiver must report a failure because both
conditions to report a failure can be met: 1) since the
processing speed is normal and there are no packet drops
in interval j+ 4, the receiver can receive the barrier for
j+ 3 but it cannot receive any heartbeats; 2) drop count
is 0 because there are no packet drops in interval j + 3
and j+4; tdrop < start j+3.

Note that five intervals are the worst case: if previ-
ously there are no delayed heartbeats or packet drops,
the receiver will report the failure after one interval.
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Abstract

High service availability is crucial for cloud systems. A
typical cloud system uses a large number of physical
hard disk drives. Disk errors are one of the most im-
portant reasons that lead to service unavailability. Disk
error (such as sector error and latency error) can be seen
as a form of gray failure, which are fairly subtle fail-
ures that are hard to be detected, even when applications
are afflicted by them. In this paper, we propose to pre-
dict disk errors proactively before they cause more se-
vere damage to the cloud system. The ability to predict
faulty disks enables the live migration of existing virtual
machines and allocation of new virtual machines to the
healthy disks, therefore improving service availability.
To build an accurate online prediction model, we utilize
both disk-level sensor (SMART) data as well as system-
level signals. We develop a cost-sensitive ranking-based
machine learning model that can learn the characteris-
tics of faulty disks in the past and rank the disks based
on their error-proneness in the near future. We evalu-
ate our approach using real-world data collected from a
production cloud system. The results confirm that the
proposed approach is effective and outperforms related
methods. Furthermore, we have successfully applied the
proposed approach to improve service availability of Mi-
crosoft Azure.

1 Introduction

In recent years, software applications are increasingly
deployed as online services on cloud computing plat-
forms, such as Microsoft Azure, Google Cloud, and
Amazon AWS. As cloud service could be used by mil-
lions of users around the world on a 24/7 basis, high
availability has become essential to the cloud-based ser-
vices. Although many cloud service providers target at
a high service availability (such as 99.999%), in reality,
service could still fail and cause great user dissatisfac-

tion and revenue loss. For example, according to a study
conducted on 63 data center organizations in the U.S,
the average cost of downtime has steadily increased from
$505,502 in 2010 to $740,357 in 2016 (or a 38 percent
net change) [33].

Various software, hardware, or network related prob-
lems may occur in a cloud system. Our experience with
Microsoft Azure shows that disk problem is the most se-
vere one among hardware issues. A typical cloud system
like Azure uses hundreds of millions of hard disk drives.
Disk-related problem has become one of the most sig-
nificant factors that contribute to the service downtime.
The importance of disk problem is also observed by re-
searchers in Facebook and Google, who reported that
20-57% of disks experience at least one sector error in
datasets collected over 4-6 years [27, 35].

To improve service availability, many proactive disk
failure prediction approaches have been proposed [18,
31, 32, 42, 41]. These approaches train a prediction
model from historical disk failure data, and use the
trained model to predict if a disk will fail (i.e., whether a
disk will be operational or not) in near future. Proactive
actions, such as replacement of failure-prone disks, can
then be taken. The prediction model is mainly built us-
ing the SMART [1] data, which is disk-level sensor data
provided by firmware embedded in disk drives.

The existing approaches focus on predicting complete
disk failure (i.e., disk operational/not operational). How-
ever, in a cloud environment, before complete disk fail-
ure, upper-layer services could already be affected by
disk errors (such as latency errors, timeout errors, and
sector errors). The symptoms include file operation er-
rors, VM not responding to communication requests, etc.
Disk errors can be seen as a form of gray failure [22],
which are fairly subtle failures that can defy quick and
definitive detection by a conventional system failure de-
tector, even when applications are afflicted by them. Gu-
nawi et al. also pointed out the impact of fail-slow hard-
ware that is still functional but in a degraded mode [20].
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If no actions are taken, more severe problems or even
service interruptions may occur. Therefore, we advocate
that it is important to predict disk errors so that proactive
measures can be taken before more severe damage to the
service systems incur. The proactive measures include
error-aware VM allocation (allocating VMs to healthier
disks), live VM migration (moving a VM from a faulty
disk to a health one), etc. In this way, service availability
can be improved by predicting disk errors.

In this paper, we develop an online prediction algo-
rithm for predicting disk errors, aiming at improving ser-
vice availability of a cloud service system. We find that
disk errors can be often reflected by system-level sig-
nals such as OS events. Our approach, called CDEF
(stands for Cloud Disk Error Forecasting), incorporates
both SMART data and system-level signals. It utilizes
machine learning algorithms to train a prediction model
using historical data, and then use the built model to pre-
dict the faulty disks. We design the prediction model to
have the following abilities:

• Be able to rank all disks according to the degree
of error-proneness so that the service systems can
allocate a VM to a much healthier one.

• Be able to identify a set of faulty disks from which
the hosted VMs should be live migrated out, under
the constrains of cost and capacity.

However, it is challenging to develop an accurate disk
error prediction model for a production cloud system.
We have identified the following challenges:

1. In real-world cloud service systems, the extremely
imbalanced data make prediction much more diffi-
cult. In average, only about 300 out 1,000,000 disks
could become faulty every day. We need to iden-
tify the faulty disks and be careful not to predict
a healthy disk as faulty. In our work, we propose
a cost-sensitive ranking model to address this chal-
lenge. We rank the disks according to their error-
proneness, and identify the faulty ones by minimiz-
ing the total cost. Using the cost-sensitive ranking
model, we only focus on identifying the top r most
error-prone disks, instead of classifying all faulty
disks. In this way, we mitigate the extreme imbal-
ance problem.

2. Some features, especially system-level signals, are
time-sensitive (their values keep changing drasti-
cally over time) or environment-sensitive (their data
distribution would significantly change due to the
ever-changing cloud environment). We have found
that models built using these unstable features may
lead to good results in cross-validation (randomly

dividing data into training and testing sets) but per-
form poorly in real-world online prediction (divid-
ing data into training and testing sets by time). We
will elaborate this challenge in Section 2.2. To ad-
dress this challenge, we perform systematic feature
engineering and propose a novel feature selection
method for selecting stable and predictive features.

We evaluate our approach using real-world data col-
lected from a production cloud system in Microsoft. The
results show that CDEF is effective in predicting disk er-
rors and outperforms the baseline methods. We have also
successfully applied CDEF in industrial practice. In av-
erage, we successfully reduce around 63k minutes of VM
downtime of Microsoft Azure per month.

In summary, we make the following contributions in
this paper:

• We propose CDEF, a disk error prediction method.
In CDEF, we consider both system-level signals and
disk-level SMART attributes. We also design a
novel feature selection model for selecting predic-
tive features and a cost-sensitive ranking model for
ranking disks according to their error-proneness.

• We have successfully applied CDEF to Azure, a
production cloud system in Microsoft. The results
prove the effectiveness of CDEF in improving ser-
vice availability in industrial practice. We also share
the lessons learned from our industrial practice.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce the background and motivation of
our work. Section 3 describes the proposed approach
and detailed algorithms. The evaluation of our approach
is described in Section 4. We also discuss the results and
present the threats to validity. In Section 5, we share our
experience obtained from industrial practice. The related
work and conclusion are presented in Section 6 and Sec-
tion 7, respectively.

2 Background and Motivation

2.1 Disk Error Prediction
A cloud system such as Microsoft Azure contains hun-
dreds of millions of disks serving various kinds of ser-
vices and applications. Disks are mainly used in two
kinds of clusters, clusters for data storage and clusters
for cloud applications. For the former of clusters, redun-
dancy mechanisms such as RAID [30] could tolerate disk
failures well. The latter form of clusters hosts a tremen-
dous amount of virtual machines, disk errors could bring
undesirable disruptions to the services and applications.
In this paper, we focus on the disks used in the cloud
application cluster.
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For cloud systems such as Microsoft Azure, Amazon
AWS, and Google Cloud, service problems can lead to
great revenue loss and user dissatisfaction. Hence, in
today’s practice, the service providers have made ev-
ery effort to improve service availability. For example,
from “four nines” (99.99%) to “five nines” (99.999%),
and then to “six niness”(99.9999%). Disks are among
the most frequently failing components in a cloud envi-
ronment and have attracted much attentions from both
academia and industry. For example, BackBlaze pub-
lishes quarterly reports and the underlying data for users
to keep track of reliability of popular hard drives in the
market. In their data, disk failure is labelled 0 if the drive
is OK, and 1 if this is the last day the drive was opera-
tional before failing [2].

To mitigate cost incurred by disk failures, researchers
have proposed to automatically predict the occurrence of
disk failure before it actually happens. In this way, proac-
tive measures, such as disk replacement, can be taken.
Disk failure prediction has been a hot subject of study.
Existing work [9, 18, 31, 32, 41, 42] mostly use the
SMART data (Self-Monitoring, Analysis and Reporting
Technology, which monitors internal attributes of indi-
vidual disks) to build a disk failure prediction model.

However, before a disk completely fails, it already
started reporting errors. There are various disk errors
such as disk partition errors (disk volumes and volume
size become abnormal), latency errors (unexpected long
delay between a request for data and the return of the
data), timeout errors (exceeding the predefined disk time-
out value), and sector errors (individual sectors on a drive
become unavailable), etc. Disk failures can be detected
by a conventional system failure detection mechanisms.
These mechanisms often assume an overly simple fail-
ure model in which a component is either correct or
failed. However, such mechanisms are inadequate to deal
with disk errors as they are subtle gray failures [22]. In
our practice, the disk error data is obtained through root
cause analysis of service issues performed by field engi-
neers.

Disk errors are common. For example, a study by
Bairavasundaram et al. [8] reports that 5-20% of hard
disk drives in Netapps storage systems report sector er-
rors over a period of 24 months. The disk errors can
affect the normal operations of upper-layer applications
and can be captured by unexpected VM downtime. The
symptoms include I/O requests timeout, VM or container
not responding to communication requests, etc. If no ac-
tions are taken, more severe problems or even service
interruptions may occur. Therefore, it is important that
disk errors to be captured and predicted before the vir-
tual machines get affected.

2.2 Challenges
In this work, we propose to predict the error-proneness of
a disk based on the analysis of historical data. The ability
to predict disk error can help improve service availability
from the following two aspects:

• VM allocation, which is the process of allocating
a VM (virtual machine) to a host. To enable more
effective VM allocation, we can proactively allocate
VMs to a host with a healthier disk rather than to a
host with a faulty disk.

• Live migration, which is the process of moving a
running VM among hosts without disconnecting the
client or application. To enable more effective live
migration, we can proactively migrate VMs from a
host with a faulty disk to a host with healthy disks.

To achieve so, we can build a prediction model based
on historical disk error data using machine learning tech-
niques, and then use the model to predict the likelihood
of a disk having errors in the near future. There are sev-
eral main technical challenges in designing the disk error
prediction model for a large-scale cloud:

Extremely imbalanced data: For a large-scale cloud
service system such as Microsoft Azure, each day, at
most only 3 disk in ten thousand disks could become
faulty. The extreme 3-in-10,000 imbalanced ratio poses
difficulties in training a classification model. Fed with
such imbalanced data, a naive classification model could
attempt to judge all disks to be healthy, because in this
way, it has the lowest probability of making a wrong
guess. Some approaches apply data re-balancing tech-
niques, such as over sampling and under sampling tech-
niques, to address this challenge. These approaches help
raise the recall, but at the same time could introduce a
large number of false positives, which dramatically de-
crease the precision. In our scenario, the cost of false
positives is high as the cost of VM migration is in-
neglectable and the cloud capacity may be affected by
the false positives.

Online prediction: Existing work [9, 26] usually
deals with prediction problem in a cross-validation man-
ner. However, we found that it is inappropriate for evalu-
ating our disk error prediction model. In cross validation,
the dataset is randomly divided into training and testing
set. Therefore, it is possible that the training set con-
tains parts of future data, and testing set contains parts
of past data. However, when it comes to online predic-
tion (using historical data to train a model and predict
future), training and testing data will have no time over-
lap. Besides, some data, especially system-level signals,
are time-sensitive (their values keep changing drastically
over time) or environment-sensitive (their data distribu-
tion could change due to the ever-changing cloud envi-
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Figure 1: The overview of the proposed approach

ronment). For example, a rack encounters an outage at
time t, all disks on it will experience such a change at
the same time. Using cross validation, the environment-
specific knowledge can spread to both training set and
testing set due to random splitting. The knowledge
learned from the training set could be applied to the test-
ing set, which causes high accuracy in cross validation
but poor result when evaluating new data.

Therefore, to construct an effective prediction model
in practice, we should use online prediction instead of
cross-validation: the future knowledge should not be
known at the time of prediction.

3 Proposed Approach
In this section, we present CDEF (Cloud Disk Error
Forecasting), our proposed approach that can improve
service availability by predicting disk errors. Figure 2
shows the overview of CDEF. First, we collect histori-
cal data about faulty and health disks. The disk label
is obtained through root cause analysis of service issues
by field engineers. The feature data includes SMART
data and system-level signals. We then select for training
those features that are stable and predictive. Based on
the selected features, we construct a cost-sensitive rank-
ing model, which ranks the disks and identifies the top r
ones that minimize the misclassification cost as the pre-
dicted faulty disks.

CDEF addresses the challenges described in the pre-
vious section by incorporating: 1) a feature engineering
method for selecting stable and predictive features 2) a
ranking model to increase the accuracy of cost-sensitive
online prediction. We describe these two components in
this section.

3.1 Feature engineering

3.1.1 Feature Identification

We collect two categories of data, SMART data and
system-level signals. SMART (Self-Monitoring, Analy-
sis and Reporting Technology) is a monitoring firmware
which allows a disk drive to report data about its inter-
nal activity. Table 1 gives some of the SMART features.

Table 1: Examples of SMART features
SMART
ID

Description

S2 Start/Stop Count
S12 Power Cycle Count
S193 Load Cycle Count
S187 The number of read errors that could not be

recovered using hardware ECC
S5 Count of reallocated sectors. When a read

or a write operation on a sector fails, the
drive will mark the sector as bad and remap
(reallocate) it to a spare sector on disk.

S196 The total count of attempts to transfer data
from reallocated sectors to a spare area.
Unsuccessful attempts are counted as well
as successful.

Table 2: The system-level signals

Signal Description
PagingError Windows encounters an error in

creating a paging file.
FileSystem-
Error

An error occurs when trying to read,
write, or open a file.

DeviceReset Device is forced to reset or shut-
down.

TelemetryLoss Telemetry data cannot be captured
over a period.

DataExchange-
Disabled

The data exchange integration ser-
vice cannot be enabled or initial-
ized.

VMFrozen VM is unresponsible to communi-
cation request

Windows
Event 129

A Windows event log caused by
dropped requests.

More information about SMART can be found in [31].
In cloud systems, there are also various system-level

events, which are collected periodically (typically ev-
ery hour). Many of these system-level events, such as
Windows events, file system operation error, unexpected
telemetry loss, etc., are early signals of disk errors. Ta-
ble 2 gives the descriptions of some system-level sig-
nals. For example, the FileSystemError is an event that
is caused by disk related errors, which can be traced back
to bad sectors or disk integrity corruption.

Apart from the features that are directly identified
from the raw data, we also calculate some statistical fea-
tures as follows:

Diff Through data analysis, we have found that the
changes in a feature value over time could be useful for
distinguishing disk errors. We call such a feature Di f f .
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Given a time window w, we define Di f f of feature x at
time stamp t as follows:

Di f f (x, t,w) = x(t)− x(t−w) (1)

Sigma Sigma calculates the variance of attribute val-
ues within a period. Given a time window w, Sigma of
attribute x at time stamp t is defined as:

Sigma(x, t,w) = E[(X−µ)2], (2)

where X = (xt−w,xt−w−1, ...,xt) and µ = ∑(X)
w .

Bin Bin calculates the sum of attribute values within a
window w as follows:

Bin(x, t,w) =
t

∑
j=t−w+1

x( j) (3)

In our work, we use three different window sizes 3, 5,
7 in calculating Di f f , Bin, and Sigma.

3.1.2 Feature Selection

Through the feature identification process described in
the previous section, we have identified 457 features in
total from SMART and system-level data. However, we
have found that not all of the features can well distin-
guish between healthy and faulty disks, especially in the
context of online prediction.

Feature selection proves very useful in selecting rele-
vant features for constructing machine learning models.
Existing feature selection methods fall into two main cat-
egories, statistical indicators (Chi-Square, Mutual Infor-
mation, etc.) and machine-learning based methods like
Random Forest [17]. However, in our scenario, the tra-
ditional feature selection methods cannot achieve good
prediction performance because of the existence of time-
sensitive and environment-sensitive features. These fea-
tures carry information that are highly relevant to the
training period, but may not be applicable for predict-
ing samples in the next time period. We call this kind of
features non-predictive features, meaning they have no
predictive power in online prediction. Our experimental
results (to be described in Section 4.3.2) show that the
traditional feature selection methods lead to poor perfor-
mance in our scenario.

Figure 2(b) illustrates an example of a non-predictive
feature SeekTimePer f ormance. Line G train indicates
the feature values of healthy disks over time in train-
ing set, and Line F train indicates the feature values of
faulty disks in the training set. Clearly, in the training
set, the mean feature value of healthy disks is lower than
that of faulty disks. We expect the same pattern for the
same feature in the testing set (which is collected from
the next time period). However, our data shows that it

is not the case. In Figure 2(b), Lines G test and F test
indicate the feature values of healthy and faulty disks
over time in the testing set, respectively. Clearly, in the
testing set, the mean feature value of healthy disks is
higher than that of faulty disks. Therefore, the behav-
ior of this feature is not stable. We consider this feature
a non-predictive feature and not suitable for online pre-
diction. As a comparison, Figure 2(a) shows a predic-
tive feature ReallocatedSectors, from which we can see
that the behavior of this feature is stable - the values of
healthy disks are always close to zero and the values of
faulty disks keep increasing over time, in both training
and testing sets.

Algorithm 1: Prune non-predictive features
Input : Training data TR with feature set F

( f1, f2, , , , fm)
Output: Reduced feature set F ′

1 Split TR by time equivalently into TR1 and TR2
2 foreach fi in F do
3 // use TR1 to predict TR2, get accuracy result
4 r← train(TR1) and test(TR2)
5 // remove data about fi from TR, then predict
6 r fi ← train(TR1- fi) and test(TR2- fi)
7 if r fi > r then
8 delete fi from F
9 end

10 if number of remaining features <= θ ∗m
then

11 Break
12 end
13 end
14 Return F ′

To select the stable and predictive features, we per-
form feature selection to prune away the features that
will perform poorly in prediction. The idea is to simu-
late online prediction on the training set. The training
set is divided by time into two parts, one for training and
the other for validation. If the performance on validation
set gets better after deleting one feature, then the feature
is deleted until the number of remaining features is less
than θ% of the total number of the features. The details
are described in Algorithm 1. In our experiment, we set
θ = 10% by default, which means that the pruning pro-
cess will stop if the number of remaining features is less
than 10%.

At last, we re-scale the range of all selected features
using zero-mean normalization as follows: xzero−mean =
x−mean(X).
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(a) Predictive features (b) Non-predictive feature

Figure 2: An example of predictive and non-predictive feature

3.2 Cost-sensitive ranking model
Having collected features from historical data, we
then construct a prediction model to predict the error-
proneness of disks in the coming days. In this step, we
formulate the prediction problem as a ranking problem
instead of a classification problem. That is, instead of
simply telling whether a disk is faulty or not, we rank
the disks according to their error-proneness. The ranking
approach mitigates the problem of extreme imbalanced
fault data because it is insensitive to the class imbalance.

To train a ranking model, we obtain the historical fault
data about the disks, and rank the disks according to their
relative time to fail (i.e., the number of days between the
data is collected and the first error is detected). We adopt
the concept of Learning to Rank [24], which automat-
ically learns an optimized ranking model from a large
amount of data to minimize a loss function. We adopt the
FastTree algorithm [28, 14], which is a form of “Multi-
ple Additive Regression Trees” (MART) gradient boost-
ing algorithm. It builds each regression tree (which is
a decision tree with scalar values in its leave) in a step
wise fashion. This algorithm is widely used in machine
learning and information retrieval research.

To improve service availability, we would like to intel-
ligently allocate VMs to the healthier disks so that these
VMs are less likely to suffer from disk errors in near fu-
ture. To achieve so, we identify the faulty and healthy
disks based on their probability of being faulty. As most
of the disks are healthy and only a small percentage of
them are faulty, we select the top r results returned by
the ranking model as the faulty ones. The optimal top r
disks are selected in such a way that they minimize the
total misclassification cost:

cost =Cost1∗FPr +Cost2∗FNr,

where FPr and FNr are the number of false positives and
false negatives in the top r predicted results, respectively.
Cost1 is the cost of wrongly identifying a healthy disk as
faulty, which involves the cost of unnecessary live migra-
tion from the “faulty” disk to a healthy disk. Although
we have very good technology for live migration, the mi-
gration process still incurs an unneglectable cost and de-
creases the capacity of the cloud system. Cost2 is the
cost of failing to identify a faulty disk. The values of
Cost1 and Cost2 are empirically determined by experts
in product teams. In our current practice, due to the con-
cerns about VM migration cost and cloud capacity, Cost1
is much higher than Cost2 (i.e., we value precision more
than recall). The ratio between Cost1 and Cost2 is set
to 3:1 by the domain experts based on their experience
on disk error recovery. The number of false positives
and false negatives are estimated through the false pos-
itive and false negative ratios obtained from historical
data. The optimum r value is determined by minimiz-
ing the total misclassification cost. The top r disks are
predicted faulty disks, which are high-risk disks and the
VMs hosted on them should be migrated out.

4 Experiments

In this section, we evaluate the effectiveness of our ap-
proach. The aim is to answer the following research
questions:

RQ1: How effective is the proposed approach in pre-
dicting disk errors?

RQ2: How effective is the proposed feature engineer-
ing method?

RQ3: How effective is the proposed ranking model?
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4.1 Dataset and Setup

Dataset To evaluate the proposed approach, we collect
real-world data from a large-scale Microsoft cloud ser-
vice system. We use one-month data (October 2017)
for training, and divide the data of November 2017 into
three parts for testing. In each dataset, the ratio between
healthy disks and faulty disks is around 10,000 : 3.

Setup We utilize Microsoft COSMOS [3] to store and
process data collected from product teams. For ranking
algorithm, we use the FastTree algorithm implemented in
Microsoft AzureML [4]. We use 200 iterations in Fast-
Tree setting. The experimental evaluation is performed
on a Windows Server 2012 with (Intel CPU E5-4657L
v2 @2.40GHz 2.40 with 1.0 TB Memory).

4.2 Evaluation Metric

Following the existing work [23, 32, 42], we evaluate the
accuracy of the proposed approach using the FPR and
TPR metrics. We consider faulty disks as positive and
healthy ones as negative. True Positive (TP) denotes the
faulty disks that are predicted as faulty. False Positive
(FP) denotes the healthy disks that are falsely predicted
as faulty. True Negative (TN) denotes the healthy disks
that are predicted as healthy. False Negative (FN) de-
notes the faulty disks that are falsely predicted as healthy.
False Positive Rate (FPR) denotes the proportion of FP
among all healthy disks. FPR = FP/(FP+T N). True
Positive Rate (TPR) denotes the proportion of TP among
all faulty disks. T PR = T P/(T P+FN).

We also use the ROC curve [5] that plots TPR (True
Positive Rate) versus FPR (False Positive Rate), and
compute the Area Under Curve (AUC). Following the
related work [23, 29], we compute the TPR value when
FPR is 0.1%, which indicates how good an algorithm can
predict faulty disks under a high precision requirement.

4.3 Results

4.3.1 RQ1: How effective is the proposed approach
in predicting disk errors?

We evaluate the effectiveness of the proposed CDEF ap-
proach on all three datasets. We also compare CDEF
with the Random Forest and SVM based methods pro-
posed in the related work on disk failure prediction
[26, 32]. These methods use the Random Forest or SVM
classifiers to classify disks based on the SMART data.
We treat them as baseline methods in this experiment.

The experimental results are shown in Figure 3. The
diagonal lines indicate the accuracy obtained by Random
Guess (meaning random prediction with 50% probabil-
ity). The results show that CDEF outperforms the base-
line methods consistently under different FPR/TPR ra-

tios on all datasets. For example, on Dataset 1, the AUC
values for our approach is 0.93, while the AUC value for
Random Guess, Random Forest, and SVM is 0.5, 0.85,
and 0.53, respectively.

We evaluate the effectiveness of the proposed ranking
approach in terms of misclassification cost and the TPR
value (when FPR is 0.1%). The misclassification cost
is obtained as: cost= Cost1*FP+Cost2*FN, where Cost1
and Cost2 are set to 3 and 1 respectively by the prod-
uct team. Table 3 shows the results. Clearly, CDEF ob-
tains better results than the other two methods. The TPR
value is 36.50%, 41.09%, and 29.67% on Dataset 1, 2,
and 3, respectively. CDEF is also cost-effective. In aver-
age, CDEF achieves around 187.92% cost reduction than
Random Forest, and 10.13% cost reduction than SVM.
SVM has low cost because SVM is accurate in predict-
ing healthy disks and induces less false positives. But
SVM performs worse in predicting faulty disks and in-
duces low TPR.

In summary, the experimental results show that CDEF
is effective in predicting disk errors. This is because of
two reasons: the proposed feature engineering method
and the proposed ranking model. We will show the ef-
fectiveness of these two methods in the following RQs.

Table 3: Experimental results of CDEF on three datasets
CDEF RandomForest SVM

Cost TPR Cost TPR Cost TPR
Dataset 1 2508 36.50% 3157 30.51% 2907 15.51%
Dataset 2 234 41.09% 1211 34.11% 258 21.71%
Dataset 3 760 29.67% 1675 18.81% 792 7.20%

4.3.2 RQ2: How effective is the proposed feature en-
gineering method?

In our work, we propose to use system-level signals
in disk error prediction. We also propose a feature
selection method to select the predictive features for
model training. In this RQ, we evaluate the effective-
ness of our proposed feature engineering method. We
experiment with three feature engineering methods: S
(traditional SMART-based features), S+A (SMART and
system-level signals), and S+A+F (SMART and system-
level signals with feature selection, which is used in
CDEF). All other experimental settings remain the same.

The results are shown in Figure 4. We can see that the
results achieved by incorporating system-level signals
outperform those achieved by SMART alone on all the
three datasets. Furthermore, by incorporating SMART
and system-level signals with feature selection, we can
obtain the best results on all the three datasets. In aver-
age, the TPR value (when FPR is 0.1%) is 27.6%, 30.3%,
and 35.8%, for S, S+A, and S+A+F, respectively. These
results confirm the effectiveness of the proposed feature
engineering methods.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 3: ROC of comparative methods

Figure 4: Evaluation results with different features
S: traditional SMART-based features; S+A: SMART and
system-level signals; S+A+F: SMART and system-level sig-
nals with feature selection.

We also evaluate the effectiveness of CDEF using
the features selected by the proposed feature selection
method and the features selected by conventional feature
selection methods Chi-Square, Mutual Information, and
Random Forest [17, 21]. The results are given in Fig-
ure 5, which shows that the proposed feature selection
method outperforms the conventional feature selection
methods on all datasets.

4.3.3 RQ3: How effective is the proposed ranking
model?

In our work, we propose to use a cost-sensitive ranking
method to rank the disks and then select the top r disks
as faulty ones by minimizing the total misclassification
cost. In this RQ, we evaluate the effectiveness of the
proposed ranking approach.

To perform classification for imbalanced data, one
common approach is to apply the over-sampling tech-
nique SMOTE [10] to balance the training data for model
construction. The other approach is weighted classifi-
cation, which is essentially cost-sensitive learning [12]
that learns from extremely imbalanced data and assigns
a larger weight to minority class. The weight is usually

Figure 5: The comparison between the proposed feature
selection method and existing methods

set inversely to the sample portion. In our experiment,
we compare the proposed cost-sensitive ranking method
with these two approaches. To better evaluate the accu-
racy of the proposed method, we also compare with the
random guess method.

We evaluate the effectiveness of the proposed rank-
ing approach in terms of misclassification cost. The
proposed cost-sensitive ranking model achieves the min-
imum cost among all comparative methods on all
datasets. For example, on Dataset 2, the misclassification
cost obtained by our model is 234, while cost obtained
by Random Guess, weighted classification, and classifi-
cation with SMOTE are much higher (1146662, 717, and
7812, respectively).

We also evaluate the effectiveness of the proposed
ranking approach in terms of TPR and FPR values. Fig-
ure 6 shows the ROC curves achieved by the comparative
methods. Table 4 shows the TPR values when FPR is
0.1%, achieved by different methods on all the datasets.
Clearly, our cost-sensitive ranking method achieves the
best accuracy values. For example, on Dataset 2, the
TPR value (when FPR is 0.1%) achieved by our model
is 41.09%, while the values achieved by Random Guess,
weighted classification, and classification with SMOTE
are much lower (0.1%, 27.91%, and 27.94%, respec-
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tively). The AUC value achieved by our model is
88.75%, while the values achieved by Random Guess,
weighted classification, and classification with SMOTE
are 0.5%, 84.22%, and 83.56%, respectively.

In summary, the experimental results confirm the ef-
fectiveness of the proposed cost-sensitive ranking model.

4.4 Discussions of the Results
In our work, we do not use cross-validation to build
and evaluate the proposed approach. Instead, we do on-
line prediction - using the data before a certain date to
train the model and use the data after the date to test
the model. Existing work on failure prediction such as
[9, 26] uses cross-validation to evaluate their machine-
learning based models. In our scenario, cross-validation
can lead to much better results than online prediction,
as shown in Figure 7. For example, on Dataset 1, us-
ing cross-validation we can obtain TPR value of 91.64%
(when FPR is 0.1%), while using online prediction the
TPR value is only 36.50%. However, our experiences
show that cross-validation may not always reflect the ac-
tual effectiveness of a prediction model. Online predic-
tion should be used in practice.

In cross validation, the dataset is randomly divided
into training and testing sets. Therefore, it is possible
that the training set contains parts of future data, and the
testing set contains parts of past data. However, in real-
world online prediction, training and testing sets are di-
vided by time. The past data is used to train the model
and the future data is used to test the model.

The gap is magnified when there are time-sensitive
features and environment-sensitive features. In disk error
prediction, some features have temporal nature and their
values vary drastically over time. Some features may
be easily affected by environmental changes to the cloud
system. For example, the disks on the same rack or the
same motherboard encounter similar attribute changes
caused by unstable voltage. However, such changes may
not happen before the time of prediction. Using cross-
validation we may utilize the knowledge that should not
be known at the time of prediction, thus obtaining bet-
ter evaluation results. Therefore, cross-validation is not
suitable for evaluating our model in practice. The prob-
lem of cross-validation in evaluating an online prediction
model is also observed by others [36].

4.5 Threats to Validity
We have identified the following threats to validities:

Subject systems: In our experiments, we only col-
lect data from one cloud service system of one company.
Therefore, our results might not be generalizable to other
systems. However, the system we studied is a typical,
large-scale cloud service system, from which sufficient

data can be collected. Furthermore, we have applied our
approach in the maintenance of the cloud system. In fu-
ture, we will reduce this threat by evaluating CDEF on
more subject systems and report the evaluation results.

Data noise: After a disk is identified to be faulty, it
could be sent to repair. After that, some disks could be
returned and used again. Therefore, a small degree of
noise may exist in the labeling of a disk.

Evaluation metrics: We used the FPR/TPR metrics
to evaluate the prediction performance. These metrics
have been widely used to evaluate the effectiveness of a
disk fault prediction mode [32]. Prior work [38] points
out that a broader selection of metrics should be used in
order to maximize external validity. In our future work,
we will reduce this threat by experimenting with more
evaluation measures such as Recall/Precision.

5 Lessons Learned from Practice

We have successfully applied CDEF to the maintenance
of Microsoft Azure, which is a large-scale cloud service
system that allows IT professionals to build, deploy, and
manage applications. The cloud service achieves global
scale on a worldwide network of data centers across
many regions. Due to the unreliable nature of the un-
derlying commodity hardware, various issues occur in
Azure every day. Without proper handling of these is-
sues, Azure service availability could be seriously af-
fected. We found disk error is the most severe one among
all hardware issues.

CDEF is currently used by Azure to preferentially se-
lect healthier disks for VM allocation and live migration.
After deploying CDEF, in average, we successfully saved
around 63k minutes of VM downtime per month. Note
that 99.999% service availability means that only 26 sec-
onds per month of VM downtime is allowed. Therefore,
CDEF has significantly improved service availability of
Microsoft Azure.

Currently the training is performed daily over the past
90-day data, and keeps a moving window of 90 days. The
cutting point r in the ranking model is set along with the
training process. When a disk is predicted as faulty, we
mark the host node unallocable and trigger live migration
process. We also run disk stress test on the predicted
disks before they are taken out for replacement.

We have learned the following lessons from our indus-
trial practice:

• Continuous training. Many factors could affect
the distribution of disk error data, such as bugs in
OS driver/firmware, workload on clusters, platform
maintenance, etc. A model trained in the past will
not always work in the future. Therefore, we build
a continuous training pipeline. For every predicted
disk error, we also let the disk go through a disk
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Table 4: The cost and TPR values (when FPR is 0.1%) achieved by the proposed cost-sensitive ranking model
Random Guess Cost-sensitive ranking Weighted Classification Classification+SMOTE
Cost TPR Cost TPR Cost TPR Cost TPR

Dataset 1 1447986 0.1% 2508 36.50% 2910 26.52% 9442 24.63%
Dataset 2 1146662 0.1% 234 41.09% 717 27.91% 7812 27.94%
Dataset 3 1446929 0.1% 760 29.67% 1234 17.42% 8239 17.68%

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 6: ROC of cost-sensitive ranking and classification

Figure 7: Evaluation results - cross validation vs. online
prediction

stress test to check if it is really faulty. This forms
a continuous feedback loop between disk error pre-
diction and disk stress test.

• Cost-effectiveness. Prediction alone may not make
much impact if the cost of recovery operation is re-
ally high (because the cost of leaving the host node
as it is might be cheaper than the cost of taking the
recovery operation). Furthermore, the cost to re-
cover a node with one VM on top is much cheaper
than the cost of recovery with 10 VMs in terms of
VM availability. Thus, the cost of recovery could
vary depending on the state of the host node, the re-
covery operation, etc. The prediction could be even
more useful if we can better estimate the cost.

• Faulty disks will get even worse. Our experience
shows that before a disk completely fails, it may al-
ready start emitting errors that affect upper-layer ap-

plications and services. That is why incorporating
the system-level signals is better than using SMART
alone. We found that disk errors, in average, occur
15.8 days earlier than complete disk failure. Our
experience also shows that, before completely fails,
the status of a disk will actually get worse over time.
For example, for faulty disks, the value of the fea-
ture ReallocatedSectors increases by 3 times dur-
ing the last week of its operation. The value of
system-level signal DeviceReset even increases by
10 times during the same period. This finding con-
firms our intention to detect disk error earlier before
it makes severe impact on application usage.

6 Related Work

6.1 Disk Failure Prediction
There are a large amount of related work on predicting
disk failures. For example, BackBlaze publishes quar-
terly report [6] for users to keep track of reliability of
popular hard drives in the market. Most of the modern
hard drives support Self-Monitoring, Analysis and Re-
porting Technology (SMART), which can monitor inter-
nal attributes of individual drives. SMART is used by
some manufacturers to predict impending drive failure
by simple threshold-based method [31, 34].

As the prediction performance of the thresholding al-
gorithm is disappointing, researchers have proposed vari-
ous machine learning models for predicting disk failures.
For example, Zhu et al. [42] predicted disk failure based
on raw SMART attributes and their change rates, and
neural network and SVM model are applied. Ganguly
et al. [16] utilized SMART and hardware-level features
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such as node performance counter to predict disk failure.
Ma et al. [25] investigate the impact of disk failures on
RAID storage systems and designed RAIDShield to pre-
dict RAID-level disk failures.

Tan et al. [37] proposed an online anomaly prediction
method to foresee impending system anomalies. They
applied discrete-time Markov chains (DTMC) to model
the evolving patterns of system features, then used tree-
augmented naive Bayesian to train anomaly classifier.
Dean et al. [11] proposed an Unsupervised Behavior
Learning (UBL) system, which leverages an unsuper-
vised method Self Organizing Map to predict perfor-
mance anomalies. Wang et al. [41] also proposed an
unsupervised method to predict drive anomaly based on
Mahalanobis distance. There are also other work [19, 40]
in online machine learning [7], which aims to update the
best predictor at each step for steaming data (as opposed
to batch learning techniques). While our “online predic-
tion” focuses on the prediction workflow: always using
a batch of historical data to predict the future (as op-
posed to cross-validation). Furthermore, unlike [37], we
deal with the evolving features by proactively selecting
the consistently predictive features. Unlike [11, 41] that
can be used even when label data is difficult to get, we
adopt a supervised method as we have quality labeled
data. We will compare our method with unsupervised-
learning based methods in our future work.

For feature selection, Botezatu et al. [9] selected
the most relevant features based on statistical measures.
Gaber et al. [15] used machine learning algorithms to ex-
tract features representing the behavior of the drives and
predict the failure of the drives. However, these feature
selection methods are not able to prune non-predictive
features in online prediction scenario.

All these related work focus on disk failure prediction
based on SMART and other hardware-level attributes.
While our work focuses on predicting disk errors that
affect the availability of virtual machines, before com-
plete disk failure happens. We incorporate both SMART
and system-level signals, which proves better than using
SMART data alone. Also, most of the related work eval-
uate their prediction model in a cross validation manner,
which is not appropriate in real-world practice. In our
work, we perform online prediction and propose a novel
algorithm to select stable and predictive features.

6.2 Failures in Cloud Service Systems

Although tremendous effort has been made to maintain
high service availability, in reality, there are still many
unexpected system problems caused by software or plat-
form failures (such as software crashes, network outage,
misconfigurations, memory leak, hardware breakdown,
etc.). There have been some previous studies in the lit-
erature on failures of a data center. For example, Ford

et al. studied [13] the data availability of Google dis-
tributed storage systems, and characterized the sources
of faults contributing to unavailability. Their results indi-
cate that cluster-wide failure events should be paid more
attention during the design of system components, such
as replication and recovery policies. Vishwanath and Na-
gappan [39] classified server failures in a data center and
found that 8% of all servers had at least one hardware
incident in a given year. Their studies could be helpful
to reduce the hardware faults, especially the networking
faults. Huang et al. [22] also found that the major avail-
ability breakdowns and performance anomalies we see in
cloud environments tend to be caused by subtle underly-
ing faults, i.e., gray failure rather than fail-stop failure.
The above-mentioned related work shows that failures
in cloud systems can be triggered by many software or
hardware issues. In our work, we only focus on disk er-
ror prediction. In particular, disk errors can be also seen
as a form of gray failures: the system’s failure detectors
may not notice them even when applications are afflicted
by them.

7 Conclusion
Disk error is one of the most important reasons that cause
service unavailability. In this paper, we propose CDEF,
an online disk error prediction approach that can predict
disk errors proactively before they cause more severe
damage to the cloud system. We collect both SMART
and system-level signals, perform feature engineering,
and develop a cost-sensitive ranking model. We evalu-
ate our approach using real-world data collected from a
cloud system. The results confirm that the proposed ap-
proach is effective and outperforms related methods. The
ability to predict faulty disks enables the live migration
of existing virtual machines and allocation of new vir-
tual machines to the healthy disks, thus improving ser-
vice availability. We have also successfully applied the
proposed approach to Microsoft Azure.

There are many viable ways of extending this work.
We have applied our approach to hard disk drives in pro-
duction. In the future, we will apply it to other disk types
such as Solid State Drive. We will also explore the syn-
ergy between disk error prediction and other cloud fail-
ure detection techniques such as [22], and propose an
integrated solution to service availability improvement.
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Abstract

Data reliability and availability, and serviceability (RAS)
of erasure-coded data centers are highly affected by data
repair induced by node failures. Compared to the re-
covery phase of the data repair, which is widely studied
and well optimized, the failure identification phase of the
data repair is less investigated. Moreover, in a traditional
failure identification scheme, all chunks share the same
identification time threshold, thus losing opportunities to
further improve the RAS.

To solve this problem, we propose RAFI, a novel risk-
aware failure identification scheme. In RAFI, chunk fail-
ures in stripes experiencing different numbers of failed
chunks are identified using different time thresholds. For
those chunks in a high risk stripe (a stripe with many
failed chunks), a shorter identification time is adopted,
thus improving the overall data reliability and availabil-
ity. For those chunks in a low risk stripe (one with
only a few failed chunks), a longer identification time is
adopted, thus reducing the repair network traffic. There-
fore, the RAS can be improved simultaneously.

We use both simulations and prototyping implementa-
tion to evaluate RAFI. Results collected from extensive
simulations demonstrate the effectiveness and efficiency
of RAFI on improving the RAS. We implement a proto-
type on HDFS to verify the correctness and evaluate the
computational cost of RAFI.

1 Introduction

In large-scale erasure-coded data centers, node failures
are the norm rather than the exception [1]. Those fre-
quent node failures can result in numerous chunk fail-
ures (a chunk is the basic unit to organize data). The RAS
(Reliability, Availability, and Serviceability) of data cen-
ters are highly affected by repairing those failed chunks,
which is known as data repair. Many solutions [2–19]
are proposed to improve the RAS, i.e., reduce data loss,

unavailability, and repair network traffic (a typical repair
cost), through optimizing the data repair. However, ex-
isting solutions typically focus on the recovery phase,
which is from the time when a chunk failure is identi-
fied to the time when the failed chunk is recovered. In
contrast, the identification phase, which is from the time
when a chunk failure occurs to the time when the chunk
failure is identified, has not been explored yet. Conse-
quently, the potential to further improve the RAS is not
fully explored.

Traditionally, the failure identification of a chunk de-
pends on the failure identification of its host node. When
a node fails, its failure is not identified until a certain
time threshold. When the node failure is identified, the
failures of all the chunks on that node are identified, and
the states of those chunks transition to lost. In summary,
all chunks share the same time threshold with nodes in a
traditional failure identification (TFI) scheme.

Under the TFI scheme, it is hard to simultaneously im-
prove the RAS through adjusting the time threshold. On
one hand, higher data reliability and availability could
be achieved by lowering the failure identification time
threshold, because of the shortened data repair time. On
the other hand, the data center might suffer from increas-
ing repair network traffic, because more transient node
failures might be identified. In contrast, by increasing
the failure identification time threshold, the repair net-
work traffic could be reduced but the data reliability and
availability might be suffer.

In this paper, we posit that the RAS can be simulta-
neously improved through optimizing the identification
phase. This is rooted in the following dedicated observa-
tion on stripes. Each stripe consists of data chunks and
parity chunks generated from those data chunks. A stripe
is the basic unit for ensuring data reliability and avail-
ability. According to the number of failed chunks in a
stripe, failed stripes can be classified into two types. One
is a stripe which has many failed chunks, e.g., by default
two or more failed chunks in a stripe with three parity
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chunks. This type of failed stripes is referred to as a high
risk stripe. The other is referred to as a low risk stripe,
which has a few failed chunks, e.g., by default one failed
chunk in a stripe with three parity chunks. The more
failed chunks a stripe has, the lower the data reliability
and availability of the stripe are. Hence, most of the data
loss and unavailability occur in high risk stripes. On the
other hand, low risk stripes are much more common than
high risk stripes, and thus induce most of the repair net-
work traffic.

There already exist solutions that improve the RAS in
the failure recovery phase, are rooted in being aware of
the risk of stripes, e.g., prioritizing the recovery of the
chunks in the stripes with multiple lost chunks [3, 7], or
canceling the recovery of the chunks in the stripes with
a few lost chunks [14]. Inspired by these approaches,
we propose a novel Risk-Aware Failure Identification
scheme, named RAFI, to improve the RAS of erasure-
coded data centers. More specifically, RAFI is aware
of not only lost chunks, which are focused on the tra-
ditional risk-aware wisdom, but also unidentified failed
chunks, whose failure has not been identified yet. The
key principle of RAFI is that the more failed chunks a
stripe has, the shorter failure identification time thresh-
old those chunks take. As a result, the aforementioned
conflict between the data reliability and availability, and
the repair network traffic is resolved, and the RAS are
improved simultaneously.

We make the following contributions in this paper.
(1) We propose a risk-aware failure identification

scheme RAFI to simultaneously improve the RAS of
erasure-coded data centers. By deploying RAFI, a chunk
failure is identified through multiple independent iden-
tification thresholds. Therefore, for chunks in high risk
stripes, their failure identification is expedited, thus im-
proving the data reliability and availability. For chunks in
low risk stripes, their failure identification is postponed,
thus reducing the repair network traffic. As a result, the
RAS are improved simultaneously.

(2) A simulator is developed to verify our RAFI. The
simulation results demonstrate that RAFI is very effec-
tive and efficient. For example, cooperating with all
types of the state-of-the-art optimizations on the failure
recovery phase, RAFI can further improve the data relia-
bility by a factor of 9.3, and reduce the data unavailability
and repair network traffic by 43% and 36%, respectively,
at the cost of degraded reads increased by 1.7%.

(3) A prototype of RAFI is implemented in HDFS
to verify the correctness and computational cost of our
RAFI. The experimental results demonstrate that, in the
worst case scenario, the computational cost of RAFI is
still negligible.

The rest of this paper is organized as follows: Sec-
tion 2 presents a model to analyze the relevance among

the data reliability, repair network traffic, and failure
identification. In Section 3, we give the design of RAFI.
The results of prototype experiments and simulations are
illustrated in Section 4 and 5, respectively. Section 6
reviews related work on optimizing the failure recovery
phase, and Section 7 concludes the paper.

2 Background and Motivation

In this section, we first define the terms used in this paper.
Then, we review the background materials of erasure-
coded data centers, and summarize the existing methods
to improve the RAS. Finally, we illustrate our motivation
to propose RAFI.

2.1 Terms

Some terms to facilitate our discussion are summarized
as follows.

A failed node: a node whose heartbeats have been lost.
When a node fails, its heartbeat is lost immediately and
it becomes a failed node. In TFI, the failure of a node is
not identified until its heartbeats have been lost for over
a certain time threshold.

A failed chunk: a chunk whose host node fails. When
a node fails, all chunks on that node become failed. A
failed chunk can be further classified into an unidentified
failed chunk and a lost chunk as described below.

An unidentified failed chunk: a failed chunk whose
failure has not been identified yet. Between the chunk
failure occurs and that failure is identified, the chunk is
treated as unidentified failed.

A lost chunk: a failed chunk whose failure is identified.
After the failure of a chunk is identified, the chunk is
treated as lost.

Si and Si+: a stripe Si is a stripe with i lost chunks, and
a stripe Si+ is a stripe with i and more lost chunks.

2.2 Erasure-coded Data Centers

To tolerate node failures, data redundancy techniques are
usually deployed in data centers. Traditional data redun-
dancy techniques, e.g., replication, suffer from high spa-
tial cost. Hence, erasure coding techniques (e.g., Reed-
Solomon coding) which have a much lower spatial cost
compared to replication techniques, are widely used in
data centers [7, 12, 20, 21].

To apply the erasure coding in data centers, data is
first divided into fixed size data chunks. Then, parity
chunks are generated from those data chunks. To prevent
data loss or unavailability from node failures, all those
data and parity chunks together form a stripe and are dis-
tributed to different nodes.
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Table 1: Methods to Improve the RAS

Time Threshold ↓ Recovery Penalty Factor ↑ Network Bandwidth ↑ Queue Time ↓
Reliability/Availability ↑ ↑ ↑ ↑
Repair Network Traffic ↑ ↓ → →

Node failures are monitored through frequent heart-
beats, e.g., every 3 seconds [3]. However, a node fail-
ure is not immediately identified when the heartbeats are
lost, because most node failures are transient and those
failed nodes can come back in a short period, e.g., 10
minutes [20]. In order to reduce the repair network traf-
fic, only when the heartbeats have been lost over a certain
time threshold, e.g., 15 minutes [20] or 30 minutes [7],
a node failure is identified (a misidentification occurs if
the node comes back).

Traditionally, when a node failure is identified, all the
chunk failures due to that node failure are treated as iden-
tified failures. Surviving data and parity chunks (on other
nodes) of the lost chunks would be fetched to repair those
lost chunks (data repair), thus ensuring the data availabil-
ity and reliability.

2.3 Methods to Improve the RAS
It is cost-effective to improve the RAS by optimizing the
data repair process. Many solutions are proposed follow-
ing this way which are explained below and also summa-
rized in Table 1.

(1) Decreasing the time threshold reduces the repair
time, and thus improves the reliability; however, it in-
creases the repair network traffic;

(2) In erasure-coded data centers, multiple available
chunks are transmitted over the network to recover lost
chunks in the stripe. Recovery penalty factor is a factor
which is between the amount data transmitted for recov-
ering a stripe Si and the size of a chunk. Decreasing the
recovery penalty factor [2, 4, 5, 7–13, 16, 17, 22, 23] re-
duces the repair time, and thus improves the reliability;
in the meanwhile, it reduces the repair network traffic;

(3) Increasing the network bandwidth [6, 24–26] of
each storage node reduces the repair time, and thus im-
proves the reliability; in the meanwhile, the repair net-
work traffic stays almost the same.

(4) The queue time (waiting for recovery) of failed
stripes is affected by recovery schemes. Giving high pri-
ority to Si (i > 1) [7, 27], the queue time of Si (i > 1)
is decreased, and thus the reliability is improved; in the
meanwhile, this method has little effect on the repair net-
work traffic.

According to the above analysis and simulation results
demonstrated in Figure 9a in Section 5.3, the RAS can-
not be improved simultaneously by adjusting the failure
identification time threshold. Therefore, a novel risk-

aware failure identification scheme RAFI is proposed to
explore the huge potential of simultaneously improving
the RAS within the failure identification phase.

2.4 Motivation

When some nodes fail, many stripes are affected, i.e.,
have failed chunks. Due to the randomized chunk layout,
only a small fraction of those affected stripes have many
failed chunks, and the remaining affected stripes only
have a few failed chunks. Hence, most repair network
traffic is induced by repairing the latter type of stripes.

On the other hand, the failure identification time of an
arbitrary affected stripe having i failed chunks is equal
to the failure identification time of its ith failed chunk,
i.e., all the affected stripes share the same failure identi-
fication time. The stripes with many lost chunks usually
entitle high recovery priority, i.e., a short queuing time.
Hence, the repair time of those stripes are usually dom-
inated by the failure identification time. In contrast, the
stripes with a few identified failed chunks usually have a
long queuing time. Hence, the repair time of those stripes
are usually dominated by the recovery time.

If the failure identification of those two types of stripes
can be handled separately, the RAS of data centers can
be improved simultaneously. More specifically, for the
stripes having many failed chunks, we tune down the fail-
ure identification time threshold of those failed chunks,
and thus improving the data availability and reliability
at the cost of slightly increasing repair network traffic.
For the stripes having a few failed chunks, we tune up
the failure identification time threshold of those failed
chunks, and thus reducing the repair network traffic with-
out significantly reducing data reliability and availability.
More importantly, the benefit induced by the above two
operations would be dominant compared to the associ-
ated cost. Hence, the RAS of data centers can be im-
proved simultaneously.

3 RAFI: Design and Analysis

In this section, we first present the design of RAFI; fol-
lowed by a discussion on the benefit and cost of deploy-
ing RAFI.
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(a) In TFI, a fixed threshold T is used to identify failures. The failure
of chunk a1 is not identified until t4, while two failures of chunks b1
and b2 are not identified until t4 and t5, respectively.
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(b) In RAFI, the failure of chunk a1 is identified through the threshold
T1 at t6, which is later than t4. On the other hand, the failures of
chunks b1 and b2 are identified through the threshold T2 at t3, which
is ahead of t4 and t5.

Figure 1: Identification of chunk failures using TFI and RAFI.
We use three sample chunks, where a1 is a random chunk of a
stripe A while b1 and b2 are two random chunks of a stripe B.
Assume chunk a1 fails at time t1 while chunks b1 and b2 fail
at t1 and t2, respectively.

3.1 Design of RAFI

As we discussed above, the key problem of the traditional
failure identification (TFI) scheme is that all chunks
share the same failure identification time threshold. To
simultaneously improve the RAS, we propose RAFI to
identify chunk failures according to the risk level of their
host stripes and apply different time thresholds accord-
ingly. More specifically, dedicated chunk failure identi-
fication time thresholds are set for stripes in different risk
levels, which are determined by the total failed chunks in
the stripes. For chunks in low risk stripes, long failure
identification time thresholds are adopted, thus reducing
the repair cost. For chunks in high risk stripes, short fail-
ure identification time thresholds are adopted, thus im-
proving the data reliability and availability. As a result,
the RAS are simultaneously improved.

In summary, the key design principle of RAFI is that
the more failed chunks a stripe has, the shorter failure
identification threshold those chunks take. For a failed
chunk in a stripe with i failed chunks, there are at most
i identification thresholds to identify the failure of this
chunk, and the jth (0 < j ≤ i) identification threshold is
described as follows. If there are j failed chunks and the
failure durations of these j failed chunks are all longer
than a preset time threshold Tj, all these j chunk failures
are identified and these chunks are denoted as lost imme-
diately. The state of an unidentified failed chunk in these
j chunks transitions to lost, and a lost chunk in these j

chunks remains lost. The states of the remaining (i− j)
chunks do not transition.

In RAFI, a chunk failure is identified by independent
identification thresholds, which is quite different from
the traditional single identification threshold described
in Section 1. For example, in a (6,3)-coded data cen-
ter, stripe A has one failed chunk and is a low risk stripe,
stripe B has two failed chunks and is a high risk stripe.
A time threshold T1 which is larger than the original time
threshold T is set to identify failures of chunks in the low
risk stripe; while a time threshold T2, which is shorter
than the T is set to identify failures of chunks in the high
risk stripe. As shown in Figure 1, using RAFI, the failure
identification of chunk a1 in the stripe A is postponed;
in the meanwhile, the failure identification of chunks b1
and b2 in the stripe B is expedited.

RAFI is flexible. First, all the time thresholds can be
set independently to get proper trade-offs between the
data reliability and availability, and the repair network
traffic for a certain type of stripes. Second, the identifica-
tion thresholds can be merged to get proper trade-offs be-
tween the RAS and the computation cost of RAFI. When
the time thresholds in all identification thresholds are set
to the same T , RAFI becomes TFI.

3.2 Benefit and Cost

Improving the RAS: Using RAFI, we can independently
set different time thresholds to identify failures. First,
short thresholds are used to expedite the identification
of failed chunks in high risk stripes, thus improving the
data reliability and availability. At the same time, long
thresholds are used to postpone the failure identification
of chunks in low risk stripes, thus reducing the repair
network traffic and improve the serviceability. Because
the identification time is dominant in the repair time of
chunks in high risk stripes, the expedition is effective in
improving the data reliability and availability thus com-
pensates the negative impacts induced by the postpone-
ment. Because most repair network traffic is induced by
recovering chunks in low risk stripes, the repair network
traffic is significantly reduced, even under the consider-
ation of the extra repair network traffic induced by the
expedition, thus improving the serviceability.

Compatibility: Because RAFI focuses on the failure
identification phase, it can work together with existing
optimizations which focus on the failure recovery phase.

Increasing Degraded Reads: Degraded read is an op-
eration to read unavailable but recoverable chunks in a
stripe. Because we postpone the failure identification
of chunks in low risk stripes, more failed chunks might
be generated, thus increasing degraded reads. However,
the simulation results in Section 5 show that degraded
reads increase by less than 1.7% due to RAFI. Because
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degraded reads are much fewer than normal reads, the
overhead is very small.

4 Prototyping Evaluation

In this section, we first present the evaluation method-
ology; then we illustrate implementation details of our
prototype RAFI-HDFS; finally we demonstrate results of
prototyping experiments.

4.1 Evaluation Methodology
To verify the effectiveness of RAFI, we propose a hybrid
methodology to comprehensively evaluate RAFI via both
simulation and prototype implementation. The reason is
explained below.

It is difficult to evaluate a technique targeting at the
RAS of data centers because the data loss and unavail-
ability events are very rare and not evenly distributed.
The accuracy problem induced by that uneven distribu-
tion can be mitigated by high accurate simulation, which
is run thousands to millions of iterations, although the
simulator itself might be not that accurate. However,
pure simulation cannot verify the correctness of design
details and might cover fatal defects of the technique.

In our hybrid evaluation, the design details and com-
putational cost of RAFI are verified through prototyping
running on a real distributed storage system; the effec-
tiveness and efficiency of RAFI on the RAS are evaluated
through high accurate Monte-Carlo simulation.

In this section, we evaluate the identification time and
computational cost of RAFI in real world environments.
The simulator and simulation results are discussed in
Section 5.

4.2 RAFI-HDFS
To evaluate the effectiveness of RAFI, we implement
a prototype named RAFI-HDFS on HDFS [27], a rep-
resentative distributed file system widely deployed in
the data centers. Because erasure coding is supported
by HDFS in version 3.0.0, our implementation is based
on HDFS 3.0.0-alpha2. The implementation of RAFI-
HDFS follows the design in Section 3. We only add
about 200 lines of codes to HDFS.

Figure 2 demonstrates the overall architecture of
RAFI-HDFS consisting of two modules: one is a classi-
fication module and the other is an identification module.

The classification module is responsible for convert-
ing the node failures into appropriate input for the iden-
tification thresholds. More specifically, the classification
module receives a node list that contains all failed nodes
and their failure durations from the node monitor mod-
ule. Only those nodes whose failure durations are larger

Node Monitor Module

Classification Module

Identification Module

Recovery Module

(node id, failure  duration) 

Stripes with new 
lost chunk(s)

IT 1

key value

nid1 cid11 cid12 …

nid2 cid21 cid22 …

… … … …

key value

sid1 cid11 cid12 …

sid2 cid21 cid22 …

… … … …

key value

cid1 sid1

cid2 sid2

… …

key value

cid1 nid1

cid2 nid2

… …

node->chunks

chunk->stripe chunk->node

stripe->chunks

IT 2 IT m…

RAFI

query

Existing data structures

node list L1 node list Lm

Figure 2: Architecture of RAFI-HDFS. The right side is exist-
ing data structures which are used in RAFI. The node monitor
module reports failed nodes and their failure durations. The
classification module inserts nodes to different identification
thresholds in the identification module according to their fail-
ure durations. The identification thresholds (IT) in the identifi-
cation module are used to identify chunk failures.

than Ti (1 ≤ i ≤ m) are inserted into the node hash list
Li for the identification threshold (IT) i, thus reducing
the computation cost of that identification threshold. It
is worth noting that the classification module replaces
failed chunk lists with failed node lists. In such a manner,
the memory usage of maintaining the numerous failed
chunks is saved.

The identification module is a universal set of all the
identification thresholds in RAFI. When IT i receives its
node list Li, it begins to calculate the count of failed
chunks in stripes. First, the identification threshold cal-
culates the count of unidentified failed chunks in stripes
through querying the node-chunk mapping table and the
chunk-stripe mapping table, which typically reside in the
main memory of the manager nodes of the data cen-
ters. Second, through querying the stripe-chunk map-
ping table and chunk-node mapping table, the count of
lost chunks is obtained. If the count of failed chunks
(unidentified failed chunks and lost chunks) is larger than
or equal to i, those failed chunks which belong to nodes
in Li, transition to lost.

After working through all identification thresholds, if
new chunk failures are identified, the recovery module
is called to recover stripes containing those lost chunks.
Particularly, for nodes which enter IT 1, the failures of
these nodes are identified and these nodes are removed
from the system at the end of the IT 1.

Complexity. RAFI-HDFS only checks chunks on
failed nodes which newly enter Li to reduce the compu-
tation cost. Assume there are j nodes in Li (2 ≤ i ≤ m)
and there are an average of d chunks to be checked on
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the node. Each stripe has k+m chunks. Because we use
a hash list to track the failed nodes, the total compari-
son time is about (k+m)× d. The time complexity of
identifying chunk failures is O(d).

4.3 Results of Prototyping Experiments

Experimental Setups. The experimental system con-
sists of ninety-seven servers running on the Alibaba
Cloud [28]. One server served as a NameNode contains
an Intel Xeon E5-2682v4 @ 2.5 GHZ CPU (4 vCPU), 16
GB DDR4 memory, 1.5 Gbps network and 40 GB SSD.
The remaining 96 servers are used as DataNodes, each
of which has an Intel Xeon E5-2680v3 @ 2.5 GHZ CPU
(1 vCPU), 1 GB DDR4 memory, 1 Gbps network and
40 GB SSD. The operating system running on all these
servers is Ubuntu 14.04. Each DataNode sends heart-
beats to the NameNode every 3 seconds and the NameN-
ode checks the states of all DataNodes every 5 minutes.
As default in HDFS, the time threshold T = 10.5 minutes
and the erasure coding scheme RS(6,3) is used.

Identification Time of Chunks: The identification time
of a chunk is the period from the time when a chunk be-
comes failed to the time when the chunk is identified
as a lost chunk. In order to evaluate the real identifi-
cation time, we collect the identification times by ran-
domly killing two DataNodes. In order to evaluate the
real identification time of chunks, we collect the iden-
tification times by randomly killing DataNodes in 0, 5,
10, and 20 minutes. Each experiment is conducted 20
times. In RAFI, T2 is set to 1 minute and T1 is set to
60 minutes. The results are consistent with our analysis
in Section 3.2. The results demonstrate that T I2 is ex-
pedited and T I1 is postponed. When we simultaneously
kill two storage nodes, T I1 and T I2 under TFI are 13.1
minutes; however, T I2 under RAFI is 3.6 minutes, while
T I1 under RAFI is 62.6 minutes. Moreover, T I1 and T I2
are not relevant to the time between the failure arrivals.

Burden on the NameNode: Because the computations
run on the NameNode, we record the time spent to iden-
tify chunk failures when nodes fail to further estimate the
impact on the NameNode. The chunk size is shrunk to
1KB in our cluster to generate enough number of chunks.
In the experiments, each DataNode stores about 68,000
chunks. In the experiments, there is no I/O workloads
because the time spent to identify chunk failures under
no I/O workloads is sufficient to indicate the overhead
caused by RAFI on the NameNode. For each result, we
concurrently kill DataNodes. Each experiment is con-
ducted 10 times and we calculate the average results.

We evaluate the time spent to identify chunk failures
from two aspects: the number of DataNodes in the clus-
ter and the number of concurrent node failures.

First, as shown in Figure 3, the time spent to iden-

Figure 3: Time spent to identify chunk failures when when
a DataNode fails. The number of DataNodes in the cluster
changes from 12 to 96. E.g., the NameNode takes 87 ms to
identify 68,000 chunk failures in a cluster of 24 DataNodes.

Figure 4: Time spent to identify chunk failures when DataN-
odes fail. The cluster consists of 96 DataNodes. E.g., the
NameNode spends 889 ms to identify 544,000 chunk failures
when eight DataNodes fail concurrently .

tify all 68,000 chunk failures on one failed DataNode
increases from 74 to 137 milliseconds when the num-
ber of DataNodes increases from 12 to 96. Compared to
time thresholds and check intervals (by default 10.5 and
5 minutes, respectively), the time spent to identify chunk
failures can be negligible in the identification time.

Second, as illustrated in Figure 4, the time spent to
identify chunk failures increases linearly as concurrent
node failures increase. The experiment results are con-
sistent with the analysis in Section 4.2. It is worth noting
that there are no failed nodes in most check time. Thus,
our method has minimal impact on the NameNode.

Moreover, in our evaluation, only one single thread is
used to check all chunks on failed nodes. In fact, we can
use multi-threading technologies to check all chunks on
failed nodes, e.g., each thread is responsible for checking
all chunks on one failed node. Therefore, the time spent
to identify all chunks on failed nodes can be dramatically
reduced when multiple nodes fail concurrently.

5 Simulations and Results Analysis

In this section, we discuss our simulator and simula-
tion results to evaluate the effectiveness and efficiency
of RAFI on the RAS.
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5.1 DR-SIM

We developed a simulator called DR-SIM which is writ-
ten in the R language because it easily runs in parallel.
The source code is approximately 1400 lines [29].

Event-driven simulators are widely used to study the
RAS of data centers [14, 20, 30]. However, those simu-
lators cannot be used in our simulations due to the fol-
lowing two reasons. First, some simulators are not open
source, e.g., the Google’s Cell Simulator [20]. Second,
the RAS cannot be all simulated by some simulators.
For example, limited by performance, the data reliabil-
ity cannot be studied by the ds-sim [14]. As a result, we
develop our own simulator, named DR-SIM, to study the
effect of the data repair on the RAS in data centers.

We summarize important features of DR-SIM as fol-
lows. (1) The trade-off between the performance and ac-
curacy of DR-SIM is carefully tuned. A simulation it-
eration (typically represents five years) can be finished
in tens of seconds. Therefore, we run hundreds of thou-
sands iterations for each simulation configuration, to ac-
curately measure the RAS. (2) Many state-of-the-art op-
timizations on the data repair are integrated into DR-
SIM, and important parameters of the data repair are
considered as variants in DR-SIM. Through modifying
the configuration of DR-SIM, we study the effectiveness
and efficiency of RAFI upon various combinations of the
state-of-the-art optimizations under various typical envi-
ronments of the data centers.

Figure 5 shows the architecture of DR-SIM which in-
cludes four modules: a configuration manager, a failure
generator, a repair calculator, and an event collector.

The configuration manager loads parameters used in
the simulations. The parameters are explained as fol-
lows. (1) System parameters: The target erasure-coded
data center consists of N independent storage nodes.
Each node has d chunks. The chunk size is s. (2) Coding
parameters: Data are coded with (k, m) erasure codes,
i.e., k data chunks and m parity chunks are in a stripe.
The k +m chunks in the same stripe are distributed to
k+m distinct nodes. A random placement policy is used
because it is usually adopted in practice. The recovery
penalty factor of Si (1≤ i≤m) is ri which is between the
amount data transmitted for recovery of Si and s. The re-
covery network bandwidth is b on each node. (3) Failure
parameters: Assume node failure arrivals are indepen-
dent. Let f (x) and F(x) be the probability and cumula-
tive distribution functions of the failure arrivals, respec-
tively. Assume failure durations are independent. Let
g(x) and G(x) be the probability and cumulative distribu-
tion functions of the failure durations, respectively. ρ is
the ratio of permanent node failures to all node failures. τ

denotes the additional proportion of correlated node fail-
ures. (4) Identification parameters: Storage nodes peri-

Configuration 
Manager

Failure Generator

Repair Calculator Event Collector

failure events
data loss events, 
data unavailability events, 
chunk unavailability events, 
data repair events

simulation
parameters

Figure 5: Architecture of DR-SIM

odically send heartbeats to dedicated manager nodes, e.g.
the NameNode [27, 31] or the metadata manager [32].
The manager nodes check states of all nodes at regular
time intervals of Th. The time thresholds for identifying
chunk failures are Ti (1≤ i≤m). (5) Simulation runtime
parameters: Ni denotes the number of iterations. Td is
the simulation duration for each iteration.

The failure generator is responsible for generating fail-
ure arrivals and failure durations of node failures at the
beginning of a simulation iteration. The failure arrivals
are generated according to the distribution function f (x).
Permanent failures and transient failures are generated by
their durations. For the transient failures, their durations
are generated according to the distribution function g(x).
For permanent failures, they are generated according to
the parameter ρ . Technically, failure durations of the per-
manent failures are set to zero (only for handling but not
calculating). In DR-SIM, additional correlated failures
are explicitly generated by adding a random value be-
tween 0 to 120 seconds [20] to existing failure arrivals
according to the parameter τ . It is worth noting that the
comeback of transient failed nodes has been already con-
sidered in DR-SIM.

The repair calculator simulates the data repair process
for lost chunks when failures occur. The repair calcula-
tor identifies the chunk failures according to the Th and Ti
(1≤ i≤m) and calculates the repair time for lost chunks
based on the recovery network bandwidth, the recovery
penalty factors and the recovery priority. The recovery
processes of lost chunks are scheduled depending on the
number of lost chunks in their stripes. For stripes have
the same number of lost chunks, the repair calculator
uses first come first scheduled rule to manage the recov-
ery of those chunks. Moreover, lost chunks are recovered
in parallel by utilizing all available nodes [33, 34].

The event collector is responsible for collecting data
loss events, data unavailability events, chunk unavail-
ability events, and data repair events. At the end of
each iteration, DR-SIM calculates metrics according to
the collected events. The mean time to data loss in the
whole data center (referred as MTTDL) is the metric to
evaluate the data reliability. All the data loss events are
recorded to calculate the MTTDL. The cumulative un-
available time of all stripes (referred as Tus) is the metric
to evaluate the data availability. All the data unavailabil-
ity events are recorded to calculate the Tus. The total re-

USENIX Association 2018 USENIX Annual Technical Conference    501



pair network traffic (referred as RNT) is the metric to
evaluate the serviceability. All the data repair events are
recorded to calculate the RNT. The cumulative unavail-
able time of all chunks (referred as Tuc) is the metric to
evaluate the degraded reads. All the chunk unavailabil-
ity events are recorded to calculate the Tuc. The former
three metrics are widely used in evaluation of the RAS in
the data centers [6, 7, 12, 14, 15, 20, 30, 35, 36]. The latter
one is roughly in proportion to the number of degraded
reads. It is worth noting that chunks and stripes are actu-
ally not simulated in DR-SIM under the consideration of
computation complexity. In fact, the cumulative unavail-
ability time of stripes and cumulative unavailability time
of chunks are estimated from the generated node failures
and data repair events.

5.2 Simulation Testbed
Comparisons between RAFI and TFI are made upon the
testbed described as follows.

The following three state-of-the-art optimizations are
always considered in the testbed. (1) The network adopts
CLOS topologies [24–26]. (2) All lost chunks are paral-
lel recovered via using available recovery network band-
width on all nodes. (3) The chunks in stripes with more
lost chunks have the higher priority to be recovered.

Three kinds of erasure codes are chosen in the simu-
lations to understand the sensitivity to different erasure
codes. RS codes are are a set of popular erasure codes
which are widely used in real world distributed storage
systems [12, 20, 21]. Zigzag codes [10] represent MDS
(Maximum Distance Separable) codes with optimal re-
covery penalty factors. LRC codes [7] are representative
non-MDS codes deployed in Windows Azure Storage.

The 1 Gbps network is chosen as the baseline in the
testbed under the consideration of the cost-effectiveness
in the erasure-coded data center, although we have found
that RAFI is more efficient in reducing the RNT under
the 40 Gbps network during studying the sensitivity of
RAFI to the recovery network bandwidth.

Because chunks in low risk stripes are the optimization
objects of both RAFI and Lazy [14], Lazy is considered
in the testbed when we made dedicated comparisons be-
tween these two techniques in Section 5.3.4.

Default values of most parameters used in the simu-
lations are listed in Table 2. The failure arrivals are as-
sumed to be independent and exponentially distributed
with the mean time to failure (MTTF = 7.1 days) [12,20].
The failure durations are assumed to be independent and
Weibull distributed. We get sample values from [20] and
model the failure durations with Weibull(113 seconds,
0.54), which is shown in Figure 6. The model fits well
starting from 0.5 minutes.

In our simulations, to simplify the comparison

Table 2: Symbols and Their Definitions

Symbol Definition Default Value
N # of storage nodes in a data center 1000
d # of chunks on a node 125,000
s Chunk size 128 MB

Th Check interval of node states 5 minutes

b Recovery network bandwidth 0.1 Gbps
on each node

Td Duration of each iterations 5 years
Ni # of iterations 500,000
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Figure 6: Unavailability Event Duration

complexity, the identification thresholds identification
threshold i (i > 1) are merged to one by sharing the same
threshold value. The features of the erasure codes, and
two time threshold values (one for T1, and the other for Ti
(i> 1)) are represented by an abbreviation, e.g., RS(6,3)-
15-2 denotes a data center employed RS(6,3) with T1 =
15 minutes and T2 = T3 = 2 minutes. r1, r2 and r3 of an
RS(6,3)-coded stripe are 6, 7, and 8, respectively. All
measured metrics including the MTTDL, Tus, RNT and
Tuc, are normalized to that of the RS(6,3)-15-15 (it de-
notes a TFI configuration when the latter two values are
the same). The MTTDL, Tus, and RNT are the metrics to
evaluate the RAS.

5.3 Simulation Results
5.3.1 RAS as Functions of Ti

First of all, we run simulations to find the proper two
threshold values for RAFI. Let T3 = T2 = T1. Figure 9a
illustrates that the data reliability and availability get
worse while the repair network traffic is improved when
T1 increase. The RNT reduces slowly when T1 is larger
than 60 minutes. Thus, T1 of RAFI is set to 60 minutes
in the rest simulations.

Then, to study the impact of T2, let T3 = T2. T2 ranges
from 0.5 to 8 minutes. The results in Figure 9b demon-
strate that RAFI simultaneously improves the RAS in
most configurations. More specifically, the MTTDL is
improved by a factor up to 11. The Tus is reduced by up
to 45%. The RNT is reduced by up to 27%. The RNT
increases with the reduction of T2 because reducing T2
increases the number of S2+, and results in unnecessary
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Figure 7: Impacts of different erasure coding schemes on the RAS. The results are normalized to RS(6,3)-15-15.
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Figure 9: Impacts of T1 and T2. The erasure coding scheme is
RS(6,3), and the results are normalized to RS(6,3)-15-15.

repair network traffic to repair those S2+. Only when T2
is 8 minutes, which is close to the original T of 15 min-
utes, RAFI does not take effect on the data availability.

From the results, we find that the data reliability and
availability are sensitive to the decrease of T2 but the re-
pair network traffic is not sensitive to the decrease of T2.
As a result, both T2 and T3 are set to 0.5 minutes in the
rest simulations.

5.3.2 RAS as Functions of Erasure Coding Schemes

In this section, we examine the effectiveness and effi-
ciency of RAFI under five typical kinds of erasure coding
schemes, RS(6,3), RS(9,3), RS(12,3), Zigzag(6,3) [10],
and LRC(12,2,2) [7]. These erasure coding schemes rep-
resent various recovery penalty factors. T1, T2 and T3
are 60 minutes, 0.5 minutes and 0.5 minutes, respec-
tively. All results are normalized to RS(6,3)-15-15 and
presented in Figure 7. In general, RAFI can cooperate
with all the five kinds of erasure coding schemes, and si-
multaneously further improve the RAS at the cost of the

slightly increased degraded reads.
Improving Reliability: Figure 7a shows that RAFI

improves the MTTDL of Zigzag(6,3), RS(6,3),
LRC(12,2,2), RS(9,3), and RS(12,3) by a factor of
9.3, 11, 7.7, 9.8, and 7.7, respectively. When the
recovery penalty factor increases, the improvements
diminish a little. The reason is that the higher recovery
penalty factor lengthens the recovery time, thus weakens
the effect of the reduction of the identification time.

Improving Availability: Figure 7b illustrates that
RAFI improves the data availability under various era-
sure coding schemes. The Tus of Zigzag(6,3), RS(6,3),
LRC(12,2,2), RS(9,3), and RS(12,3) is reduced by 43%,
45%, 24%,37%, and 30%, respectively.

Improving Serviceability: Figure 7c shows that RAFI
reduces the RNT under various erasure coding schemes.
The Perm represents the RNT induced only by permanent
node failures. Figure 7e shows the composition of the
RNT. In TFI, over 99% of the RNT is induced by the
repair of S1. In RAFI, about 15%-30% of the RNT is
induced by the repair of S2+.

Degraded Reads: When RAFI postpones the recov-
ery of S1, the amount of unidentified failed chunks in-
creases. Figure 7d shows that the degraded reads in-
crease by 1.7% at most, which is very slight.

5.3.3 RAS as Functions of Recovery Network Band-
width

Network bandwidth is very valuable in the data cen-
ters. In this section, simulations are performed to un-
derstand the effect of RAFI under a limited recovery net-
work bandwidth b. Both RS(6,3) and Zigzag(6,3) codes
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are considered in the simulations. T1, T2 and T3 are 60
minutes, 0.5 minutes and 0.5 minutes, respectively. The
simulation results are normalized to RS(6,3)-15-15 and
presented in Figure 8.

Figure 8 shows that the RAS are still improved even
when b is 40 Mbps. However, at the same time, the Tuc
increases by 22%, because a small b significantly extends
the repair time of the lost chunks, thus leads to longer
chunk unavailability time. When b reduces, the reduction
of RNT increases a little.

Table 3: The RAS improvements under 40 Gbps network

Erasure Coding Schemes RS(6,3) Zigzag(6,3)
Improvement of MTTDL 3.4 3.7

Reduction of Tus 54% 56%
Reduction of RNT 79% 86%

40 Gbps network: Nowadays, some data centers are
equipped with 40 Gbps network for each node [26, 37].
In such a scenario, the recovery network bandwidth b is
4 Gbps for each node. Table 3 shows that RAFI still im-
proves the RAS when b is 4 Gbps. When b increases
from 100 Mbps to 4 Gbps, the recovery time reduces.
Because the ratio between the recovery time and the
repair time decreases, the improvement of MTTDL de-
creases. However, when the repair rate increases, there
will be more unnecessary repair network traffic. There-
fore, RAFI is very effective in reducing the repair net-
work traffic.

5.3.4 Comparisons with Lazy

To comprehensively compare RAFI with Lazy, the com-
parisons are made in the form of TFI + Lazy v.s. RAFI +
Lazy v.s. RAFI. RS(6,3) and Zigzag(6,3) codes are con-
sidered in the simulations. Lazy [14] recovers lost chunks
if their host stripes have at least two lost chunks. In TFI +
Lazy, we use the parameters: T1 = T2 = T3 = 15 minutes.
In RAFI + Lazy, T1 = T2 = 15 minutes, T3 = 1 minutes.
In RAFI, T1 = 60 minutes and T2 = T3 = 15 minutes. The
comparison results are shown in Figure 10.

Cooperating with Lazy, compared to TFI, RAFI im-
proves the MTTDL by a factor of 5.1, at the cost of in-
creasing the RNT by 2.5%. Because Lazy even does not
recover some permanent failed chunks, RAFI cannot fur-
ther reduce the RNT.

Compared to TFI + Lazy, RAFI without Lazy increases
the MTTDL by over two orders of magnitude at a higher
RNT cost. An interesting thing is that, RAFI suffers a
much lower increase of the RNT when cooperating with
the Zigzag codes. The reason is that the recovery penalty
factor of a Zigzag(6,3)-coded S1 is only 63% of that of
an RS(6,3)-coded S1. In fact, as mentioned in Section 6,
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many codes [6, 7] are proposed to reduce the recovery
penalty factor of stripes with one lost chunk.

5.3.5 Availability under Correlated Failures

Because transient failures may happen concurrently [20],
we desire to see how data availability is affected by cor-
related failures. From Figure 11, we can see that, as
the proportion of additional correlated failures increases,
RAFI still reduces about 40% of the Tus, demonstrating
that RAFI is very resilient to correlated failures.

6 Related Work

Existing solutions which are proposed to improve the
RAS focus on optimizing the failure recovery phase,
such as reducing recovery penalty factors [2, 4, 5, 7–13,
16, 17, 22, 23], improving recovery rates [6, 18, 19], and
risk-aware recovery scheduling [3, 7, 14].

Reducing recovery penalty factors: Both the recov-
ery time and repair network traffic are improved through
reducing the recovery penalty factors of erasure codes.
Two types of techniques are proposed. One is to de-
sign MDS and non-MDS erasure codes with low recov-
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ery penalty factors [2, 6–12, 15–17, 38]. The other is to
design recovery algorithms to reduce recovery penalty
factors of existing erasure codes [4, 5, 13].

Regenerating Codes [22, 23, 38, 39] are a family of
MDS codes. The recovery penalty factors of the Regen-
erating Codes are much lower than that of the traditional
RS (Reed-Solomon) codes [40]. However, the Regener-
ating Codes are not systematic codes, thus suffer from
high read cost. To maintain low recovery penalty factors
and read cost, systematic MDS codes, such as Zigzag and
Butterfly codes [10, 17] are proposed. Zigzag codes [10]
are proved to be with optimal recovery penalty factors
in all systematic MDS codes. One significant drawback
of Zigzag codes is that the implementation depends on
non-binary algebra.

New trade-off points between storage overheads and
recovery penalty factors are found through non-MDS
codes, such as LRC [7, 11, 16]. Compared to MDS
codes, non-MDS codes dramatically reduce the recovery
penalty factors. However, the cost of non-MDS codes
cannot be ignored, particular when the scale of the data
center is very large, i.e., even 1% extra storage overhead
usually means millions of dollars [41, 42].

Recovery algorithms, such as [4,5,13], are proposed to
reduce recovery penalty factors of existing erasure codes.
The biggest drawback of those recovery algorithms is
that their efficiency on reducing recovery penalty factors
are much lower than that of designing novel codes.

Improving the recovery rate: Another approach to
shorten the recovery time is improving the recovery rate.

It is common to improve the recovery rate through
deploying high-speed networks, i.e., increasing the re-
covery network bandwidth. For example, CLOS net-
works [24–26] are deployed in FDS [6] to provide non-
oversubscribed full bisection bandwidth networks at the
scale of a data center. As a result, the recovery is dramat-
ically accelerated.

The recovery rate is also improved through increasing
the recovery parallelism. Mitra et al. propose a paral-
lel chunk recovery method PPR [18] to improve the re-
covery parallelism. Li et al. propose a pipelined chunk
recovery method ECPipe [19] to further improve that re-
covery parallelism. However, both PPR and ECPipe take
effect when there are only a few chunks be recovered.

Risk-aware recovery scheduling: Besides accelerating
the recovery of all chunks, high data reliability and avail-
ability can also be achieved through scheduling the re-
covery of chunks according to the number of lost chunks
in their host stripes, which indicates the data reliability
and availability risk of those stripes.

The recovery of the chunks in high risk stripes is pri-
oritized in HDFS [3] and WAS [7]. In such a manner, the
repair time of high risk stripes is dramatically reduced.
Meanwhile, the increase of the repair time is relatively

small. Therefore, the data reliability and availability are
improved. It is worth noting that, after being scheduled,
the failure identification time becomes dominant in the
repair time of high risk stripes, because those chunks in
high risk stripes are usually very few. As a result, the re-
duction in the identification time of high risk stripes
is very effective in improving the data reliability and
availability.

Silberstein et al. propose a technique Lazy [14] to re-
duce the repair network traffic. Because chunks in low
risk stripes, e.g., S1, are dominant in all chunks be re-
covered, most of the repair network traffic is generated
by recovering those chunks. Canceling the recovery of
chunks in low risk stripes dramatically reduces the repair
network traffic. However, the data reliability and avail-
ability dramatically decrease.

7 Conclusions

In this paper, we present a risk-aware failure identifica-
tion scheme, named RAFI, to simultaneously improve
the data reliability, availability, and serviceability (RAS)
of erasure-coded data centers. The basic idea of RAFI
is identifying a chunk failure not only according to its
failure duration, but also based on the data reliability and
availability of its host stripe. The benefits of RAFI are:
(1) the identification of failed chunks in high risk stripes
is expedited to improve the data reliability and availabil-
ity; and (2) the identification of failed chunks in low risk
stripes is postponed to reduce the repair network traffic,
thus improving the serviceability. Our results based on
both simulations and prototyping have demonstrated the
effectiveness and efficiency of RAFI in terms of reduced
data loss, unavailability, and repair network traffic.
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Abstract

It is increasingly common that large volumes of produc-
tion data originate from geographically distributed data-
centers. Processing such datasets with existing data par-
allel frameworks may suffer from significant slowdowns
due to the much lower availability of inter-datacenter
bandwidth. Thus, it is critical to optimize the delivery
of inter-datacenter traffic, especially coflows that imply
application-level semantics, to improve the performance
of such geo-distributed applications.

In this paper, we present Siphon, a building block inte-
grated in existing data parallel frameworks (e.g., Apache
Spark) to expedite their generated inter-datacenter
coflows at runtime. Specifically, Siphon serves as a
transport service that accelerates and schedules the inter-
datacenter traffic with the awareness of workload-level
dependencies and performance, while being completely
transparent to analytics applications. Novel intra-coflow
and inter-coflow scheduling and routing strategies have
been designed and implemented in Siphon, based on a
software-defined networking architecture.

On our cloud-based testbeds, we have extensively
evaluated Siphon’s performance in accelerating coflows
generated by a broad range of workloads. With a variety
of Spark jobs, Siphon can reduce the completion time of
a single coflow by up to 76%. With respect to the av-
erage coflow completion time, Siphon outperforms the
state-of-the-art scheme by 10%.

1 Introduction

Big data analytics applications are typically developed
with modern data parallel frameworks, such as Apache
Hadoop [1] and Spark [25], taking advantage of their
out-of-the-box features of scalability. With the trend of
further scaling out, it has been reported that these ap-
plications are deployed across the globe, with their raw
input data generated from different locations and stored

in geographically distributed datacenters [19, 24]. When
processing such geo-distributed data, computation tasks
in different datacenters would transfer their intermedi-
ate results across the inter-datacenter network, which has
much lower bandwidth, typically by an order of magni-
tude [12], than that within a datacenter. As such, appli-
cations that involve heavy inter-datacenter traffic easily
suffer from significantly degraded performance, known
as the wide-area data analytics [23].

To alleviate such performance degradation, existing
work in the literature has largely focused on rearrang-
ing the pattern of inter-datacenter traffic, with the hope
of relieving network bottlenecks. Specifically, one cate-
gory of such efforts [19, 23, 24] attempted to design op-
timal mechanisms of assigning input data and compu-
tation tasks across datacenters, to reduce or balance the
network loads. Another category of the existing work
[12,22] tried to adjust the application workloads towards
reducing demands on inter-datacenter communications.

However, given particular traffic from an application,
improving its performance by directly accelerating the
completion of its inter-datacenter data transfers has been
largely neglected. To fill this gap, we propose a delib-
erate design of a fast delivery service for data transfers
across datacenters, with the goal of improving applica-
tion performance from an orthogonal and complemen-
tary perspective to the existing efforts. Moreover, it has
been observed that an application cannot proceed until
all its flows complete [7], which indicates that its per-
formance is determined by the collective behavior of all
these flows, rather than any individual ones. We incorpo-
rate the awareness of such an important application se-
mantic, abstracted as coflows [8], into our design, to bet-
ter satisfy application requirements and further improve
application-level performance.

Existing efforts have investigated the scheduling of
coflows within a single datacenter [6,8,17,27], where the
network is assumed to be congestion free and abstracted
as a giant switch. Unfortunately, such an assumption no
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longer holds in the wide area inter-datacenter network,
yet the requirement for optimal coflow scheduling to im-
prove application performance becomes even more criti-
cal.

In this paper, we present three inter-datacenter coflow
scheduling strategies that can significantly improve
application-level performance. First, we have designed
a novel and practical inter-coflow scheduling algorithm
to minimize the average coflow completion time, despite
the unpredictable available bandwidth in wide-area net-
works. The algorithm is based on Monte Carlo simu-
lations to handle the uncertainty, with several optimiza-
tions to ensure its timely completion and enforcement.
Second, we have proposed a simple yet effective intra-
coflow scheduling policy. It tries to prioritize a subset
of flows such that the potential straggler tasks can be ac-
celerated. Finally, we have designed a greedy multi-path
routing algorithm, which detours a subset of the traffic
on a bottlenecked link to an alternate idle path, such that
the slowest flow in a shuffle can be finished earlier.

Further, to enforce these scheduling strategies, we
have designed and implemented Siphon, a new build-
ing block for data parallel frameworks that is designed
to provide a transparent and unified platform to expedite
inter-datacenter coflows.

From the perspective of data parallel frameworks,
Siphon decouples inter-datacenter transfers from intra-
datacenter traffic, serving as a transport with full coflow
awareness. It can be easily integrated to existing frame-
works with minimal changes in source code, while being
completely transparent to the analytics applications atop.
We have integrated Siphon to Apache Spark [25].

With Siphon, the aforementioned coflow scheduling
strategies become feasible thanks to its software-defined
networking architecture. For the datapath, it employs ag-
gregator daemons on all (or a subset of) workers, form-
ing a virtual overlay network atop the inter-datacenter
WAN, aggregating and forwarding inter-datacenter traf-
fic efficiently. At the same time, a controller can
make centralized routing and scheduling decisions on
the aggregated traffic and enforce them on aggregators.
Also, the controller can work closely with the resource
scheduler of the data parallel framework, to maintain a
global and up-to-date knowledge about ongoing inter-
datacenter coflows at runtime.

We have evaluated our proposed coflow scheduling
strategies with Siphon. Across five geographical regions
on Google Cloud, we have evaluated the performance of
Siphon from a variety of aspects, and the effectiveness of
intra-coflow scheduling in accelerating several real Spark
jobs. Our experimental results have shown an up to 76%
reduction in the shuffle read time. Further experiments
with the Facebook coflow benchmark [8] have shown an
∼ 10% reduction on the average coflow completion time

as compared to the state-of-the-art schemes.
We make three original contributions in this paper:
•We have proposed a novel and practical inter-coflow

scheduling algorithm for wide-area data analytics. Start-
ing from analyzing the network model, new challenges
in inter-datacenter coflow scheduling have been identi-
fied and addressed.
•We have designed an intra-coflow scheduling policy

and a multi-path routing algorithm that improve WAN
utilization in wide-area data analytics.
• We have built Siphon, a transparent and unified

building block that can easily extend existing data paral-
lel frameworks with out-of-box capability of expediting
inter-datacenter coflows.

2 Motivation and Background

In modern big data analytics, the network stack tradi-
tionally serves to deliver individual flows in a timely
fashion [3, 4, 26], while being oblivious to the applica-
tion workload. Recent work argues that, by leveraging
workload-level knowledge of flow interdependence, the
proper scheduling of coflows can improve the perfor-
mance of applications in datacenter networks [8].

As an application is deployed at an inter-datacenter
scale, the network is more likely to be a system bot-
tleneck [19]. Existing efforts in wide-area data analyt-
ics [12, 19, 22] all seek to avoid this bottleneck, rather
than mitigating it. Therefore, it is necessary to enforce
a systematic way of scheduling inter-datacenter coflows
for better link utilization, given the fact that the timely
completion of coflows can play an even more significant
role in application performance.

However, new challenges arise in inter-datacenter net-
works, which have quite different characteristics as com-
pared to datacenter networks [11,14]. Such unique char-
acteristics can invalidate the assumptions made by exist-
ing coflow scheduling algorithms.

First, inter-datacenter networks have a different net-
work model. Networks are usually modeled as a big
switch [8] or a fat tree [20] in the recent coflow schedul-
ing literature, where the ingress and egress ports at the
workers are identified as the bottleneck. This is no longer
true in wide area data analytics, as the available band-
width on inter-datacenter links are magnitudes lower
than the edge capacity (see Table 1).

Second, the available inter-datacenter bandwidth fluc-
tuates over time. Unlike in datacenter networks, the com-
pletion time of a given flow can hardly be predictable,
which makes the effectiveness of existing deterministic
scheduling strategies (e.g., [8, 27]) questionable. The
reason is easily understandable: though the aggregated
link bandwidth between a pair of datacenters might be
abundant, it is shared among tons of users and their
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Oregon Carolina Tokyo Belgium Taiwan
Oregon 3000 236 250 152.0 194
Carolina 237 3000 83.8 251 45.1
Tokyo 83.8 81.7 3000 89.2 586

Belgium 249 242 86.6 3000 76.0
Taiwan 182 35.8 508 68.0 3000

Table 1: Peak TCP throughput (Mbps) achieved across different re-
gions on the Google Cloud Platform, measured with iperf3 in TCP
mode on standard 2-core instances. Rows and columns represent
source and destination datacenters, respectively. These statistics match
the reports in [12].

Link 1

Time0 1 2 3 4 5 6 7 8

Link 2

A1 B1

A2B2

Figure 1: An example with two coflows, A and B, being sent through
two inter-datacenter links. Based on link bandwidth measurements and
flow sizes, the duration distributions of four flows are depicted with
box plots. Note that the expected duration of A1 and B2 are the same.

launched applications, with varied, unsynchronized and
unpredictable networking patterns.

Third, our ability to properly schedule and route inter-
datacenter flows is limited. We may gain full control via
software-defined networking within a datacenter [28],
but such a technology is not readily available in inter-
datacenter WANs. Flows through inter-datacenter links
are typically delivered with best effort on direct paths,
without the intervention of application developers.

To summarize, it calls for a redesigned coflow
scheduling and routing strategy for wide-area data an-
alytics, as well as a new platform to realize in existing
data analytics frameworks. In this paper, Siphon is thus
designed from the ground up for this purpose. It is an
application-layer, pluggable building block that is readily
deployable. It can support a better WAN transport mech-
anism and transparently enforce a flexible set of coflow
scheduling disciplines, by closely interacting with the
data parallel frameworks. A Spark job with tasks across
multiple datacenters, for example, can take advantage of
Siphon to improve its performance by reducing its inter-
datacenter coflow completion times.

3 Scheduling Inter-Datacenter Coflows

3.1 Inter-Coflow Scheduling

Inter-coflow scheduling is the primary focus of the lit-
erature [6, 8, 21, 27]. In this section, we first analyze
the practical network model of wide-area data analytics.
Based on the new observations, we propose the details of
a Monte Carlo simulation-based scheduling algorithm.

3.1.1 Goals and Non-Goals

Our major objective is to minimize the average coflow
completion time, in alignment with the existing literature.

However, we focus on inter-datacenter coflows, which
are constrained by a different network model. In partic-
ular, based on the measurement in Table 1, we conclude
that inter-datacenter links are the only bottlenecked re-
sources, and congestion can hardly happen at the ingress
or egress port. For convenience, we call it a dumb bell
network structure. In addition, we consider the availabil-
ity of inter-datacenter bandwidth as a dynamic resource.
Scheduling across coflows should take runtime variations
into account, making a scheduling decision that has a
higher probability of completing coflows faster.

Similar to [8,28], we assume the complete knowledge
of ongoing coflows, i.e., the source, the destination and
the size of each flow are known as soon as the coflow ar-
rives. Despite recent work [6, 27] which deals with zero
or partial prior knowledge, we argue that this assump-
tion is practical in modern data parallel frameworks. It
is conceivable that the task scheduler is fully aware the
potential cross-worker traffic before launching the tasks
in the next stage and triggering the communication stage
[1, 7, 25]. We will elaborate further on its feasibility in
Sec. 4.3.

3.1.2 Schedule with Bandwidth Uncertainty

Coflow scheduling in a big switch network model has
been proven to be NP-hard, as it can be reduced to an in-
stance of the concurrent open shop scheduling with cou-
pled resources problem [8]. With a dumb bell network
structure, as contention is removed from the edge, each
inter-datacenter link can be considered an independent
resource that is used to service the coflows (jobs). There-
fore, it makes sense to perform fully preemptive coflow
scheduling, as resource sharing always results in an in-
creased average [10].

The problem may seem simpler with this network
model. However, it is the sharing nature of inter-
datacenter links that complicates the scheduling. The
real challenge is, being shared among tons of unknown
users, the available bandwidth on a certain link is not
predictable. In fact, the available bandwidth a random
variable whose distribution can be inferred from history
measurements. Thus, the flow durations are also random
variables. The coflow scheduling problem in wide-area
data analytics can be reduced to the independent prob-
abilistic job shop scheduling problem [5], which is also
NP-hard.

We seek a heuristic algorithm to solve this online
scheduling problem. An intuitive approach is to make
an estimation of the flow completion times, e.g., based on
the expectation of recent measurements, such that we can
solve the problem by adopting a deterministic scheduling
policy such as Minimum-Remaining Time First (MRTF)
[8, 27].

Unfortunately, this naive approach fails to model the
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Figure 2: The complete execution graph of Monte Carlo simulation,
given 3 ongoing coflows, A, B and C. The coflow scheduling order is
determined by the distributions at the end of all branches.

probabilistic distribution of flow durations. Fig. 1 shows
a simple example in which deterministic scheduling does
not work. In this example, the available bandwidth on
Link 1 and 2 have distinct distributions because users
sharing the link have distinct networking behaviors. With
Coflow A and B competing, the box plots depict the
skewed distributions of flow durations if the correspond-
ing coflow gets all the available bandwidth.

With a naive, deterministic approach that considers av-
erage only, scheduling either A or B will result in a mini-
mum average coflow completion time. However, it is an
easy observation that, with a higher probability, the dura-
tion of flow A1, will be shorter than B2. Thus, prioritiz-
ing Coflow A over B should yield an optimum schedule.

3.1.3 Monte Carlo Simulation-based Scheduling

To incorporate such uncertainty, we propose an online
Monte Carlo simulation-based inter-coflow scheduling
algorithm, which is greatly inspired by the offline algo-
rithm proposed in [5].

The basic idea of Monte Carlo simulation is simple
and intuitive: For every candidate scheduling order, we
repeatedly simulate its execution and calculate its cost,
i.e., the simulated average coflow completion time. With
enough rounds of simulations, the cost distribution will
approximate the actual distribution of average coflow
completion time. Based on this simulated cost distri-
bution, we can choose among all candidate scheduling
orders at a certain confidence level.

As an example, Fig. 2 illustrates an algorithm execu-
tion graph with 3 ongoing coflows. There are 6 poten-
tial scheduling orders, corresponding to the 6 branches
in the graph. To perform one round of simulation, the
scheduler generates a flow duration for each of the node
in the graph, by randomly drawing from their estimated
distributions. By summing up the cost for each branch,
it yields a best scheduling decision instance, which re-
sults in a counter increment. After plenty of rounds, the
best scheduling order will converge to the branch with
the maximum counter value.

One major concern of this algorithm is its high com-
plexity. With n ongoing coflows, there will be up to n!
branches in the graph of simulation. Luckily, thanks to
the nature of coflow scheduling, we can apply the fol-
lowing techniques to limit the simulation search space.

Bounded search depth. In online coflow scheduling,
all we care about is the coflow that should be sched-
uled next. This property makes a full simulation towards
all leaf nodes unnecessary. Therefore, we set an upper
bound, d, to the search depth, and simulate the rest of
branches using MRTF heuristic and the median flow du-
rations. This way, the search space is limited to a poly-
nomial time Θ(nd).

Early termination. Some “bad” scheduling decisions
can be identified easily. For example, scheduling an ele-
phant coflow first will always result in a longer average.
Based on this observation, after several rounds of full
simulation, we cut down some branches where perfor-
mances are always significantly worse. This technique
limit the search breath, resulting in a O(nd) complexity.

Online incremental simulation. As an online simu-
lation, the scheduling algorithm should quickly react to
recent events, such as coflow arrivals and completions.
Whenever a new event comes, the previous job execu-
tion graph will be updated accordingly, by pruning or
creating branches. Luckily, the existing useful simula-
tion results (or partial results) can be preserved to avoid
repetitive computation.

These optimizations are inspired by similar techniques
adopted in Monte Carlo Tree Search (MCTS), but our
algorithm differs from MCTS conceptually. In every
simulation, MCTS tends to reach the leave of a single
branch in the decision tree, where the outcome can be re-
vealed. As a comparison, our algorithm has to go though
all branches at a certain depth, otherwise we cannot fig-
ure out the optimal scheduling for the particular instance
of available bandwidth.

3.1.4 Scalability

In wide-area data analytics, a centralized Monte Carlo
simulation-based scheduling algorithm may be ques-
tioned with respect to its scalability, as making and en-
forcing a scheduling decision may experience seconds of
delays.

We can exploit the parallelism and staleness tolerance
of our algorithm. The beauty of Monte Carlo simulation
is that, by nature, the algorithm is infinitely paralleliz-
able and completely agnostic to staled synchronization.
Thus, we can potentially scale out the implementation
to a great number of scheduler instances placed in all
worker datacenters, to minimize the running time of the
scheduling algorithm and the propagation delays in en-
forcing scheduling decisions.

3.2 Intra-Coflow Scheduling

To schedule flows belonging to the same coflow, we have
designed a preemptive scheduling policy to help flows
share the limited link bandwidth efficiently. Our schedul-
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Figure 3: Network flows across datacenters
in the shuffle phase of a simple job.
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Figure 4: Job timeline with LFGF scheduling.
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Figure 5: Job timeline with naive scheduling.

ing policy is called Largest Flow Group First (LFGF),
whose goal is to minimize job completion times. A
Flow Group is defined as a group of all the flows that
are destined to the same reduce task. The size of a flow
group is the total size of all the flows within, represent-
ing the total amount of data received in the shuffle phase
by the corresponding reduce task. As suggested by its
name, LFGF preemptively prioritizes the flow group of
the largest size.

The rationale of LFGF is to coordinate the scheduling
order of flow groups so that the task requiring more com-
putation can start earlier, by receiving their flows earlier.
Here we assume that the task execution time is propor-
tional to the total amount of data it received for process-
ing. It is an intuitive assumption given no prior knowl-
edge about the job.

As an example, we consider a simple Spark job that
consists of two reduce tasks launched in datacenter 2,
both requiring to fetch data from two mappers in data-
center 1 and one mapper in datacenter 3, as shown in
Fig. 3. Corresponding to the two reducers R1 and R2,
two flow groups are sharing both inter-datacenter links,
with the size of 200 MB and 150 MB, respectively. For
simplicity, we assume the two links have the same band-
width, and the calculation time per unit of data is the
same as the network transfer time.

With LFGF, Flow Group 1, corresponding to R1, has
a larger size and thus will be scheduled first. As is il-
lustrated in Fig. 4, the two flows (M1-R1, M2-R1) in
Flow Group 1 are scheduled first through the link be-
tween datacenter 1 and 2. The same applies to another
flow (M3-R1) of Flow Group 1 on the link between data-
center 3 and 2. When Flow Group 1 completes at time 3,
i.e., all its flows complete, R1 starts processing the 200
MB data received, and finishes within 4 time units. The
other reduce task R2 starts at time 5, processes the 150
MB data with 3 units of time, and completes at time 8,
which becomes the job completion time.

If the scheduling order is reversed as shown in Fig. 5,
Flow Group 2 will complete first, and thus R2 finishes
at time 5. Although R1 starts at the same time as R2 in
Fig. 4, its execution time is longer due to its larger flow
group size, which results in a longer job completion time.
This example intuitively justifies the essence of LFGF —

for a task that takes longer to finish, it is better to start it
earlier by scheduling its flow group earlier.

3.3 Multi-Path Routing

Beyond ordering the coflows, we design a simple and ef-
ficient multi-path routing algorithm to utilize available
link bandwidth better and to balance network load. The
idea is similar to water-filling — it identifies the bottle-
neck link, and shifts some traffic to the alternative path
with the lightest network load in an iterative fashion.

The bottleneck link is identified based on the time it
takes to finish all the passing flows. In the first itera-
tion, we calculate all the link load and the time it takes
to finish all the passing flows, given that all the flows
go through their direct links. To be particular, for each
link l, the link load is represented as Dl = di, where di
represents the total amount of data of the fetch i whose
direct path is link l. The completion time is thus calcu-
lated as tl = Dl/Bl , where Bl represents the bandwidth
of link l. We identify the most heavily loaded link l∗,
which has the largest tl∗ , and choose one of its alternative
paths which has the lightest load for traffic re-routing.
In order to compute the percentage of traffic to be re-
routed from l∗, represented by α , we solve the equation
Dl∗(1−α)/Bl∗ = (Dl∗α +Dl′)/Bl′ , where l′ is the link
with the heaviest load on the selected detour path.

4 Siphon: Design and Implementation

4.1 Overview

To realize any coflow scheduling strategies in wide-area
data analytics, we need a system that can flexibly enforce
the scheduling decisions. Traditional traffic engineering
[11, 14] techniques can certainly be applied, but they are
not yet available to common cloud users. As is concluded
in Sec. 2, Siphon is designed and implemented as a host-
based building block to achieve this goal.

Fig. 6 shows a high-level overview of Siphon’s archi-
tecture. Processes, called aggregator daemons, are de-
ployed on all (or a subset of) workers, interacting with
the worker processes of the data parallel framework di-
rectly. Conceptually, all these aggregators will form
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Figure 6: An architectural overview of Siphon.

an overlay network, which is built atop inter-datacenter
WANs and supports the data parallel frameworks.

In order to ease the development and deployment of
potential optimizations for inter-datacenter transfers, the
Siphon overlay is managed with the software-defined
networking principle. Specifically, aggregators oper-
ate as application-layer switches at the data plane, be-
ing responsible for efficiently aggregating, forwarding
and scheduling traffic within the overlay. Network and
flow statistics are also collected by the aggregators ac-
tively. Meanwhile, all routing and scheduling decisions
are made by the central Siphon controller. With a flexible
design to accommodate a wide variety of flow schedul-
ing disciplines, the centralized controller can make fine-
grained control decisions, based on coflow informa-
tion provided by the resource scheduler of data parallel
frameworks.

4.2 Data Plane

Siphon’s data plane consists of a group of aggregator
daemons, collectively forming an overlay that handles
inter-datacenter transfers requested by the data parallel
frameworks. Working as application-layer switches, the
aggregators are designed with two objectives: it should
be simple for data parallel frameworks to use, and sup-
ports high switching performance.

4.2.1 Software Message Switch

The main functionality of an aggregator is to work as a
software switch, which takes care of fragmentizing, for-
warding, aggregating and prioritizing the data flows gen-
erated by data parallel frameworks.

After receiving data from a worker in the data parallel
framework, an aggregator will first divide the data into
fragments such that they can be easily addressable and
schedulable. These data fragments are called messages.
Each data flow will be split into a sequence of messages
to be forwarded within Siphon. A minimal header, with
a flow identifier and a sequence number, will be attached
to each message. Upon reaching the desired destination
aggregator, they will be again reassembled and delivered
to the final destination worker.

The aggregators can forward the messages to any peer
aggregators as an intermediate nexthop or the final desti-
nation, depending on the forwarding decisions made by
the controller. Inheriting the design in traditional Open-
Flow switches, the aggregator looks up a forwarding ta-

ble that stores all the forwarding rules in a hash table, to
ensure high performance. Fortunately, wildcards in for-
warding rule matching are also available, thanks to the
hierarchical organizations of the flow identifiers. If nei-
ther the flow identifier nor the wildcard matches, the ag-
gregator will consult the controller. A forwarding rule
includes a nexthop to enforce routing, and a flow weight
to enforce flow scheduling decisions.

Since messages forwarded to the same nexthop share
the same link, we use a priority queue to buffer all pend-
ing outbound messages to support scheduling decisions.
Priorities are allowed to be assigned to individual flows
sharing a queue, when it is backlogged with a fully satu-
rated outbound link. The control plane will be responsi-
ble for assigning priorities to each flows.

4.2.2 Performance-Centric Implementation

Since an aggregator is I/O-bounded, it is designed and
implemented with performance in mind. It has been im-
plemented in C++ from scratch with the event-driven
asynchronous programming paradigm. Several opti-
mizations are adopted to maximize its efficiency.

Event-driven design. events are raised and handled
asynchronously, including all network I/O events. All
the components are loosely coupled with one another, as
each function in these components is only triggered when
specific events it is designed to handle are raised. As ex-
amples of such an event-driven design, the switch will
start forwarding messages in an input queue as soon as
the queue raises a PacketIn event, and the output queue
will be consumed as soon as a corresponding worker
TCP connection raises a DataSent event, indicating that
the outbound link is ready.

Coroutine-based pipeline design pattern. Because
an aggregator may communicate with a number of
peers at the same time, work conservation must be pre-
served. In particular, it should avoid head-of-line block-
ing, where one congested flow may take all resources and
slow down other non-congested flows. An intuitive im-
plementation based on input and output queues cannot
achieve this goal. To solve this problem, our implemen-
tation takes advantage of a utility called “stackful corou-
tine,” which can be considered as a procedure that can
be paused and resumed freely, just like a thread whose
context switch is controlled explicitly. In an aggrega-
tor, each received message is associated with a coroutine,
and the total number of active coroutines is bounded for
the same flow. This way, we can guarantee that non-
congested flows can be served promptly, even coexisting
with resource “hogs.”

Minimized memory copying. Excessive memory
copying is often an important design flaw that affects per-
formance negatively. We used smart pointers and refer-
ence counting in our implementation to avoid memory
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Figure 7: The architecture of the Siphon Controller.

copying as messages are forwarded. In the lifetime of a
message through an aggregator, it is only copied between
the kernel socket buffers for TCP connections and the
aggregator’s virtual address space. Within the aggrega-
tor, a message is always accessed using a smart pointer,
and passed between different components by copying the
pointer, rather than the data in the message itself.

4.3 Control Plane

The controller in Siphon is designed to make flexible
control plane decisions, including flow scheduling and
routing.

Although the controller is a logically centralized en-
tity, our design objective is to make it highly scalable, so
that it is easy to be deployed on a cluster of machines
or VMs when needed. As shown in Fig. 7, the archi-
tectural design of the controller completely decouples
the decision making processes from the server processes
that directly respond to requests from Siphon aggrega-
tors, connecting them only with a Redis database server.
Should the need arises, the decision making processes,
server processes, and the Redis database can be easily
distributed across multiple servers or VMs, without in-
curring additional configuration or management cost.

The Redis database server provides a reliable
and high-performance key-value store and a pub-
lish/subscribe interface for inter-process communication.
It is used to keep all the states within the Siphon datapath,
including all the live statistics reported by the aggrega-
tors. The publish/subscribe interface allows server pro-
cesses to communicate with decision-making processes
via the Redis database.

The server processes, implemented in node.js, di-
rectly handle the connections from all Siphon aggrega-
tors. These server processes are responsible for pars-
ing all the reports or requests sent from the aggregators,
storing the parsed information into the Redis database,
and responding to requests with control decisions made
by the decision-making processes. It is flexible how the
decision-making processes are implemented, depending
on requirements of the scheduling algorithm.

In inter-coflow scheduling, the controller requires the
full knowledge of a coflow before it starts. This is
achieved by integrating the resource scheduler of the data
parallel framework to the controller’s Pub/Sub interface.
Particularly in Spark, the task scheduler running in the
driver program have such knowledge as soon as the re-
duce tasks are scheduled and placed on workers. We have

modified the driver program, such that whenever there
are new tasks being scheduled, the generated traffic in-
formation will be published to the controller. The incre-
mental Monte Carlo simulations will then be triggered
on the corresponding parallel decision makers.

5 Performance Evaluation

In this section, we present our results from a comprehen-
sive set of experimental evaluations with Siphon, orga-
nized into three parts. First, we provide a coarse-grained
comparison to show the application-level performance
improvements by using Siphon. A comprehensive set
of machine learning workloads is used to evaluate our
framework compared with the baseline Spark. Then, we
try to answer the question how Siphon expedite a single
coflow by putting a simple shuffle under the microscope.
Finally, we evaluate our inter-coflow scheduling algo-
rithm, by using the state-of-the-art heuristic as a baseline.

5.1 Macro-Benchmark Tests

Experimental Setup. In this experiment, we run 6 dif-
ferent machine learning workloads on a 160-core clus-
ter, which spans across 5 geographical regions. Perfor-
mance metrics such as application runtime, stage com-
pletion time and shuffle read time are to be evaluated.
The shuffle read time is defined as the completion time
of the slowest data fetch in a shuffle. It reflects the time
needed for the last task to start computing, and it deter-
mines the stage completion time to some extent.

The Spark-Siphon cluster. We set up a 160-
core, 520 GB-memory Spark cluster. Specifically, 40
n1-highmem-2 instances are evenly disseminated in 5
Google Cloud datacenter (N. Carolina, Oregon, Bel-
gium, Taiwan, and Tokyo). Each instance provides 2
vCPUs, 13 GB of memory, and a 20 GB SSD of disk
storage. Except for one instance in the N. Carolina re-
gion works as both Spark master and driver, all instances
serve as Spark standalone executors. All instances in use
are running Apache Spark 2.1.0.

The Siphon aggregators run on 10 of the executors,
2 in each datacenter. An aggregator is responsible for
handling Pub/Sub requests from 4 executors in the same
datacenter. The Siphon controller runs on the same in-
stance as the Spark master, in order to minimize the com-
munication overhead between them.

Note that we do not launch extra resources for Siphon
aggregators to make the comparison fair. Even though
they occupy some computation resource and system I/Os
with their co-located Spark executors, the consumption
is minimal.

Workload specifications. 6 machine learning work-
loads, with multiple jobs and multiple stages, are used
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Figure 8: Average application run time.

Workload #
Shuffles

Total
Bandwidth
Usage(GB)

Extra
Bandwidth
Usage(MB)

Siphon Shuffle
Read Time (s)

Spark Shuffle
Read Time (s)

Runtime
Reduction

(%)

Cost
Difference

(¢)
ALS 18 40.47 2186.3 46.8 90.5 48.3 -26.56
PCA 2 0.51 37.6 3.3 13.7 76.1 -6.80
BMM 1 42.3 2911.1 48.9 97.8 50.0 -29.26

Pearson 2 0.57 23.8 3.6 13.1 72.6 -6.23
W2V 5 0.45 10.2 5.8 9.6 39.9 -2.49
FG 2 0.57 20.5 1.77 1.87 5.4 -0.05

Table 2: Summary of shuffles in different workloads (present the run with median application run time).
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(b) Principal Component Analysis.
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(c) Block Matrix Multiplication.
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(d) Pearson’s Correlation.
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(e) Word2Vec distributed presentation of words.
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(f) FP-growth frequent item sets.
Figure 9: Shuffle completion time and stage completion time comparison (present the run with media application run time).

for evaluation.
• ALS: Alternating Least Squares.
• PCA: Principle Component Analysis.
• BMM: Block Matrix Multiplication.
• Pearson: Pearson’s correlation.
• W2V: Word2Vec distributed presentation of words.
• FG: FP-Growth frequent item sets.
These workloads are the representative ones from

Spark-Perf Benchmark1, the official Spark performance
test suite created by Databricks2. The workloads that are
not evaluated in this paper share the same characteris-
tics with one or more selected ones, in terms of the net-
work traffic pattern and computation intensiveness. We
set the scale factor to 2.0, which is designed for a 160-
core, 600 GB-memory cluster.

Methodologies. With different workloads, we com-
pare the performance of job executions, with or with-
out Siphon integrated as its cross-datacenter data transfer
service.

Note that, without Siphon, Spark works in the same
way as the out-of-box, vanilla Spark, except one slight
change on the TaskScheduler. Our modification elim-
inates the randomness in the Spark task placement deci-
sions. In other words, each task in a given workload will
be placed on a fixed executor across different runs. This

1https://github.com/databricks/spark-perf
2https://databricks.com/.

way, we can guarantee that the impact of task placement
on the performance has been eliminated.

Performance. We run each workload on the same in-
put dataset for 5 times. The average application run time
comparisons across 5 runs are shown in Fig. 8. Later we
focus on job execution details, taking the run with me-
dian application run time for example. Table 2 summa-
rizes the total shuffle size and shuffle read time of each
workload. Further, Fig. 9 breaks down the time for net-
work transfers and computation in each stage, providing
more insight.

Among the 6 workloads, BMM, the most network-
intensive workload, benefits most from Siphon. It enjoys
a 23.6% reduction in average application run time. The
reason is that it has one huge shuffle — sending more
than 40 GB of data in one shot — and Siphon can help
significantly. The observation can be proved by Fig. 9(c),
which shows that Siphon manages to reduce around 50
seconds of shuffle read time.

Another network-intensive workload is ALS, an iter-
ative workload. The average run time has been reduced
by 13.2%. The reason can be easily seen with the in-
formation provided in Table 2. During a single run of
the application, 40.47 GB of data is shuffled through the
network, in 18 stages. Siphon collectively reduces the
shuffle time by more than 30 seconds. Fig. 9(a) shows
the CDFs of shuffle completion times and stage comple-
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tion times, using Spark and Siphon respectively (note the
x-axis is in log scale). As we observe, the long tail of
the stage completion time distribution is reduced because
Siphon has significantly improved the performance of all
shuffle phases.

The rest of the workloads generate much less shuffled
traffic, but their shuffle read time have also been reduced
(5.4%∼76.1%).

PCA and Pearson are two workloads that have
network-intensive stages. Their shuffle read time consti-
tutes a significant share in some of the stages, but they
also have computation intensive stages that dominate
the application run time. For these workloads, Siphon
greatly impacts the job-level performance, by minimiz-
ing the time used for shuffle (Table 2).

W2V and FG are two representative workloads whose
computation time dominates the application execution.
With these workloads, Siphon can hardly make a differ-
ence in terms of application run time, which is mostly
decided by the computation stragglers. An extreme ex-
ample is shown in Fig. 9(e). Even though the shuffle read
time has been reduced by 4 seconds (Table 2), the com-
putation stragglers in Stage 4 and Stage 6 will still slow
down the application by 0.7% (Fig. 8). Siphon is not
designed to accelerate these computation-intensive data
analytic applications.

Cost Analysis. As the acceleration of Spark shuf-
fle reads in Siphon is partially due to the relay of traf-
fic through intermediate datacenters, it is concerned how
it affects the overall cost for running the data analytics
jobs. On the one hand, the relay of traffic increases the
total WAN bandwidth usage, which is charged by public
cloud providers. On the other hand, the acceleration of
jobs reduces the cost for computation resources.

We present the total cost of running the machine learn-
ing jobs in Table 2, based on Google Cloud pricing3.
Each instance used in our experiment costs $1.184 per
hour, and our cluster costs ¢ 0.6578 per second. As a
comparison, the inter-datacenter bandwidth only costs 1
cent per GB.

As a result, Siphon actually reduced the total cost of
running all workloads (Table 2). On the one hand, a
small portion of inter-datacenter traffic has been relayed.
On the other hand, the idle time of computing resources
has been reduced significantly, which exceeds the extra
bandwidth cost.

5.2 Single Coflow Tests

Experimental Setup. In the previous experiment,
Siphon works well in terms of speeding up the coflows
in complex machine learning workloads. However, one
question remains unanswered: how does each compo-

3https://cloud.google.com/products/calculator/

nent of Siphon contribute to the overall reduction on the
coflow completion time? In this experiment, we use a
smaller cluster to answer this question by examining a
single coflow more closely.

The cross-datacenter Spark cluster consists of 19
workers and 1 master, spanning 5 datacenters. The Spark
master and driver is on a dedicated node in Oregon.
The geographical location of worker nodes is shown in
Fig. 13, in which the number of executors in different
datacenters is shown in the black squares. The same in-
stance type (n1-highmem-2) is used.

Most software configurations are the same as the set-
tings used in Sec. 5.1, including the Spark patch. In other
words, the cluster still offers a fixed task placement for a
given workload.

In order to study the system performance that gener-
ates a single coflow, we decided to use the Sort appli-
cation from the HiBench benchmark suite [13]. Sort

has only two stages, one map stage of sorting input data
locally and a reduce stage of sorting after a full shuf-
fle. The only coflow will be triggered at the start of the
reduce stage, which is easier to analyze. We prepare
the benchmark by generating 2.73 GB of raw input in
HDFS. Every datacenter in the experiment stores an ar-
bitrary fraction of the input data without replication, but
the distribution of data sizes is skewed.

We compare the shuffle-level performance achieved
by the following 4 schemes, with the hope of providing a
comprehensive analysis of the contribution of each com-
ponent of Siphon:
• Spark: The vanilla Spark framework, with fixed

task placement decisions, as the baseline for com-
parison.
• Naive: Spark using Siphon as its data transfer ser-

vice, without any flow scheduling or routing deci-
sion makers. In this case, messages are scheduled
in a round-robin manner, and the inter-datacenter
flows are sent directly through the link between the
source to the destination aggregators.
• Multi-path: The Naive scheme with the multi-path

routing decision maker enabled in the controller.
• Siphon: The complete Siphon evaluated in Sec. 5.1.

Both LFGF intra-coflow scheduling and multi-path
routing decision makers are enabled.

Job and stage level performance. Fig. 10 illustrates
the performance of sort jobs achieved by the 4 schemes
aforementioned across 5 runs, with respect to their job
completion times, as well as their stage completion times
for both map and reduce stages. As we expected, all 3
schemes using Siphon have improved job performance
by accelerating the reduce stage, as compared to Spark.
With Naive, the performance improvement is due to a
higher throughput achieved by pre-established parallel
TCP connections between Siphon aggregators.The im-
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provement of Multi-path over Naive is attributed to a fur-
ther reduction of reduce stage completion times — with
multi-path routing, the network load can be better bal-
anced across links to achieve a higher throughput and
faster network transfer times. Finally, it is not surpris-
ing that Siphon, benefiting the advantages of both intra-
coflow scheduling and Multi-path routing, achieves the
best job performance.

To obtain fine-grained insights on the performance im-
provement, we break down the reduce completion time
further into two parts: the shuffle read time (i.e., coflow
completion time) and the task execution time. As is
shown in Fig. 11, the improvement of Naive over Spark
is mainly attributed to a reduction of the shuffle read
time.Multi-path achieves a substantial improvement of
shuffle read time over Naive, since the network trans-
fer completes faster by mitigating the bottleneck through
multi-path routing. Siphon achieves a similar shuffle read
time with Multi-path, with a slight reduction in the task
execution time. This implies that multi-path routing is
the main contributing factor for performance improve-
ment, while intra-coflow scheduling helps marginally on
the straggler mitigation as expected.

Shuffle: Spark v.s. Naive. To allow a more in-depth
analysis of the performance improvement achieved by
the baseline Siphon (Naive), we present the CDFs of
shuffle read times achieved by Spark and Naive, respec-
tively, in Fig. 12. Compared with the CDF of Spark that
exhibits a long tail, all the shuffle read times are reduced
by ∼10 s with Naive, thanks to the improved through-
put achieved by persistent, parallel TCP connections be-
tween aggregators.

Shuffle: intra-coflow scheduling and multi-path
routing. We further study the effectiveness of the de-
cision makers, with Multi-path and Siphon’s CDFs pre-
sented in Fig. 12.

With multi-path routing enabled, both Multi-path and
Siphon achieve shorter completion times (∼50 s) for
their slowest flows respectively, compared to Naive
(>60 s) with direct routing. Such an improvement is
contributed by the improved throughput with a better bal-
anced load across multiple paths. It is also worth noting
that the percentage of short completion times achieved
with Multi-path is smaller than Naive — 22% of shuf-

fle reads complete within 18 s with Multi-path, while
35% complete with Naive. The reason is that by rerout-
ing flows from bottleneck links to lightly loaded ones via
their alternative paths, the network load, as well as shuf-
fle read times, will be better balanced.

It is also clearly shown that with LFGF scheduling, the
completion time of the slowest shuffle read is almost the
same with that achieved by Multi-path. This meets our
expectation, since the slowest flow will always finish at
the same time in spite of the scheduling order, given a
fixed amount of network capacity.

We further illustrate the inter-datacenter traffic during
the sort job run time in Fig. 13, to intuitively show the
advantage of multi-path routing. The sizes of the traffic
between each pair of datacenters are shown around the
bidirectional arrow line, the thickness of which is pro-
portional to the amount of available bandwidth shown in
Table 1.

The narrow link from Taiwan to S. Carolina be-
comes the bottleneck, which needs to transfer the largest
amount of data. With our multi-path routing algorithm,
part of the traffic will be rerouted through Oregon. We
can observe that the original traffic load along this path
is not heavy (only 149 MB from Taiwan to Oregon and
170 MB from Oregon to S. Carolina), and both alternate
links have more available bandwidth. This demonstrates
that our routing algorithm works effectively in selecting
optimal paths to balance loads and alleviate bottlenecks.

5.3 Inter-Coflow Scheduling

In this section, we evaluate the effectiveness of Monte
Carlo simulation-based inter-coflow scheduling algo-
rithm, by comparing the average and the 90th-percentile
Coflow Completion Time (CCT) with existing heuristics.

Testbed. To make the comparison fair, we set up a
testbed on a private cloud, with 3 datacenters located in
Victoria, Toronto, and Montreal, respectively. We have
conducted a long-term bandwidth measurement among
them, with more than 1000 samples collected for each
link. Their distributions are depicted in Fig. 14, which
are further used in the online Monte Carlo simulation.

Benchmark. We use the Facebook benchmark [8]
workload, which is a 1-hour coflow trace from 150 work-
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comparison.

ers. We assume workers are evenly distributed in the
3 datacenters, and generate aggregated flows on inter-
datacenter links. To avoid overflow, the flow sizes are
scaled down, with the average load on inter-datacenter
links reduced by 30%.

Methodology. A coflow generator, together with a
Siphon aggregator, is deployed in each datacenter. All
generated traffic goes through Siphon, which can en-
force proper inter-coflow scheduling decisions on inter-
datacenter links. As a baseline, we experiment with the
Minimum Remaining Time First (MRTF) policy, which
is the state-of-the-art heuristic with full coflow knowl-
edge [27]. The metrics CCTs are then normalized to the
performance of the baseline algorithm.

Performance. Fig. 15 shows that Monte Carlo
simulation-based inter-coflow scheduling outperforms
MRTF in terms of both average and tail CCTs. Consid-
ering all coflows, the average CCT is reduced by ∼10%.
Since the coflow size in the workload follows a long-
tail distribution, we further categorize coflows in 4 bins,
based on the total coflow size. Apparently, the perfor-
mance gain mostly stems from expediting the largest
bin – elephant coflows that can easily overlap with each
other. Beyond MRTF, Monte Carlo simulations can care-
fully study all possible near-term coflow ordering with
respect to the unpredictable flow completion times, and
enforce a decision that is statistically optimal.

6 Related Work

Wide-Area Data Analytics. For data analytics span-
ning across datacenters, wide area network links eas-
ily become the performance bottleneck. To reduce the
usage of inter-datacenter bandwidth, existing works ei-
ther tweak applications to generate different workloads
[12, 16, 23, 24], or assign input datasets and tasks to
datacenters optimally [19, 22]. However, all these ef-
forts focus on adding wide-area network awareness to
the computation framework, without tackling the lower-
level inter-datacenter data transfers directly. Orthogonal
and complementary to these efforts, Siphon is designed
for the inter-datacenter network optimization — it deliv-
ers the inter-datacenter traffic with better efficiency, re-
gardless of the upper-layer decisions on task placement
or execution plan.

Software-Defined Networking (SDN). The concept
of SDN has been proposed to facilitate the innovation
in network control plane [2, 18].In the inter-datacenter
wide-area network, SDN has been recently adopted to
provide centralized control with elegantly designed traf-
fic engineering strategies [11, 14, 15]. Different from
these efforts, our work realizes the SDN principle in the
application layer, without requiring hardware support.
Moreover, our work focuses on improving performance
for data analytics jobs with more complex communica-
tion patterns, controlling flows at a finer granularity.

Network Optimization for Data Analytics. Ac-
counting for the job-level semantics, coflow scheduling
algorithms (e.g., [6, 8, 9]) are proposed to minimize the
average coflow completion time within a datacenter net-
work, which is assumed to be free of congestion. With-
out such assumptions, joint coflow scheduling and rout-
ing strategies [17,28] are proposed in the datacenter net-
work, where both the core and the edge are congested.
Different from these models, the network in the wide
area has congested core and congestion-free edge, since
the inter-datacenter links have much lower bandwidth
than the access links of each datacenter. Apart from the
different network model, our coflow scheduling handles
the uncertainty of the fluctuating bandwidth in the wide
area, while the existing efforts assume that the bandwidth
capacities remain unchanged.

7 Concluding Remarks

To address the performance degradation of data analytics
deployed across geographically distributed datacenters,
we have designed and implemented Siphon — a building
block that can be seamlessly integrated with existing data
parallel frameworks — to expedite coflow transfers. Fol-
lowing the principles of software-defined networking, a
controller implements and enforces several novel coflow
scheduling strategies.

To evaluate the effectiveness of Siphon in expediting
coflows as well as analytics jobs, we have conducted ex-
tensive experiments on real testbeds, with Siphon de-
ployed across geo-distributed datacenters. The results
have demonstrated that Siphon can effectively reduce the
completion time of a single coflow by up to 76% and im-
prove the average coflow completion time.
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Abstract

Large commercial latency-sensitive services, such as
web search, run on dedicated clusters provisioned for
peak load to ensure responsiveness and tolerate data cen-
ter outages. As a result, the average load is far lower
than the peak load used for provisioning, leading to re-
source under-utilization. The idle resources can be used
to run batch jobs, completing useful work and reducing
overall data center provisioning costs. However, this is
challenging in practice due to the complexity and strin-
gent tail-latency requirements of latency-sensitive ser-
vices. Left unmanaged, the competition for machine re-
sources can lead to severe response-time degradation and
unmet service-level objectives (SLOs).

This work describes PerfIso, a performance isolation
framework which has been used for nearly three years in
Microsoft Bing, a major search engine, to colocate batch
jobs with production latency-sensitive services on over
90,000 servers. We discuss the design and implemen-
tation of PerfIso, and conduct an experimental evalua-
tion in a production environment. We show that colo-
cating CPU-intensive jobs with latency-sensitive services
increases average CPU utilization from 21% to 66% for
off-peak load without impacting tail latency.

1 Introduction

New server acquisition contributes to over half of the
total cost of ownership (TCO) of modern data centers [8].
However, server utilization is low in data centers host-
ing large latency-sensitive services for two main reasons:
First, latency-sensitive services are typically provisioned
for the peak load, which occurs only for a fraction of
the total running time [18]. Second, business-continuity
plans dictate tolerating multiple major data center out-
ages, such as tolerating the failure of two data centers

* Work done while authors were at Microsoft Research.

Mid-level
aggregator

Mid-level
aggregator

... ...

Top-level
aggregator

Web index server nodesWeb index server nodes

Figure 1: Architecture of index serving system of Web
search engine with two aggregation levels (MLA and
TLA). The user query is processed on index servers,
which send responses to MLAs, which send aggregated
responses to TLA.

out of three data centers within a continent while remain-
ing capable of processing peak load. The high degree of
over-provisioning is imperative: a livesite incident caus-
ing brief downtime results in lost revenue and frustrated
users, while an extended downtime comes with negative
headline news and irreparable business damage. Even
slightly higher response times decrease user satisfaction
and impact revenues [29, 10, 17].

Over-provisioning means that resource utilization is
low, offering the opportunity to colocate batch jobs
alongside latency-sensitive services [32, 18]. Colocation
must be managed carefully lest it degrades performance
due to competition on machine resources. Our main goal
is to ensure that the end-to-end service-level objectives
(SLOs) are met while increasing the work done by batch
jobs. The main technical challenges arise from main-
taining short tail latency (e.g., the 99th latency percentile
also called P99 latency) for the latency-sensitive services
coupled with the complexity of commercial software and
large deployments.

Oftentimes the service-level-objectives are not known
explicitly for each individual component. For example,
large commercial search engines contain tens of plat-
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forms: to serve the web index, to build and update the
web index, to manage user data and transaction history,
to serve the most relevant advertisements, and to bill
advertisers among many others. Modeling these com-
ponents or assuming all their target latency values are
known is not realistic.

Production environments are complex. A large data
center comprising over 100,000 machines spans several
generations of hardware. The generation gap can be up
to 6 years, effectively constraining which hardware fea-
tures can be used for performance isolation. Changes to
the software stack running in a production environment
are often infeasible. To be deployed on a large scale, the
performance isolation framework must be robust, mod-
ular, and easy to debug. A good solution must provide
the same performance guarantees seamlessly across all
hardware and software configurations.

We describe our experiences in developing and de-
ploying PerfIso, the performance isolation framework
used in Microsoft’s Bing clusters for over three years.
We show how to colocate batch jobs with online ser-
vices even when the tail response-latency requirements
are within the order of milliseconds. We describe CPU
blind isolation which dynamically restricts the cores that
batch jobs use to protect the bursty interactive services
even under high load. Depending on the load, batch jobs
are given more or fewer resources to make progress.

Existing colocation approaches [20, 16, 34, 38] mea-
sure server-level performance metrics (e.g., query re-
sponse times), and adjust resource allocation when the
target is not met. This is not a good fit because if a query
misses its target, it is already too late [17], and only end-
to-end response time constraints are specified; per-layer
service time limits are not.

We take a different approach: we ensure that
there is always some slack in available resources such
that abrupt changes in load do not impact response
times. In contrast, traditional resource management po-
lices focus on high resource-utilization while enforc-
ing fair-sharing (most operating systems employ work-
conserving scheduling algorithms). This works well for
batch jobs, but does not account for factors such as the
response-time latency of an interactive service. By using
non-work-conserving resource management, we are able
to adapt to changes in load and resource demands while
treating the latency-sensitive service as a “black-box”.

We focus on a concrete example: IndexServe — the
Web index serving platform — because it is one of the
largest in terms of machine count and has some of the
strictest latency requirements. The web index is parti-
tioned across hundreds or thousands of servers, and a
user search query is processed in parallel on all servers.
Responses are aggregated from the IndexServe machines
on multiple levels (see Fig. 1). In such multi-layered sys-

tems, the slowest server dictates the response time [15].
To handle high load while meeting the strict la-

tency requirements, many services are implemented as
highly-optimized multi-threaded servers. The low query
servicing-times make them highly bursty in nature: in
several Bing services we find that, under high load, up to
15 threads become ready to run in just 5µs. Due to the
stringent tail-latency constraints, it is imperative to avoid
scheduling delays, making the CPU the main bottleneck
in our approach. We show that statically restricting CPU
cores or CPU cycles does not fully solve the problem and
fails to take advantage of idle cores during off-peak.

Our key goal is to ensure that interactive services per-
form equally well with batch jobs colocated as when they
run alone. We show that CPU blind isolation success-
fully protects IndexServe while increasing average CPU
utilization from 21% to 66% by colocating it with CPU-
intensive jobs.

The main contributions of this work are as follows:

i. Identifying the key challenges of colocating batch
jobs with large production latency-sensitive ser-
vices and analyzing the effectiveness of operat-
ing system mechanisms to monitor and control re-
sources.

ii. Introducing CPU Blind Isolation — a technique to
mitigate harmful CPU-level interference between
tenants.

iii. Designing and implementing the PerfIso perfor-
mance isolation framework which allows batch jobs
to be run alongside latency-sensitive services with-
out any tail latency degradation.

iv. Evaluating PerfIso on a single machine to compare
it to other alternatives, and on a 75-node produc-
tion cluster, both running a real-world commercial
online interactive service.

2 Background
We refer to the latency-sensitive user-facing services

as primary tenants. All resources of a machine need
to be available for them, since they generate the rev-
enue that pays for the actual machines. The main goal
of our system is to colocate batch jobs with a latency-
sensitive user-facing service without impacting its re-
sponse times. Thus, the primary always runs unrestricted
and unmodified.

Batch jobs that run on these machines are secondary
tenants and are treated in a best-effort manner — any
resources they use are released to the system whenever
the primary needs them. If the primary does not utilize
all available resources, the secondary will be allowed to
use some of them.
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2.1 Applications and Services
Primary tenants comprise the latency-sensitive ser-

vices which are governed by strict response-time SLOs.
They are characterized by the following:

1. a complex layered architecture – hard to model
or predict, since responses are computed in parallel
and then aggregated.

2. short tail latency – any layer can severely impact
query response times.

3. highly bursty nature – the service frequently
spawns a large number of workers in a short period
of time (order of microseconds).

Example primary tenant. We take the IndexServe com-
ponent of Bing search as an example. IndexServe re-
ceives user queries and fetches potential matches from
a search index. It can perform a variety of lookup and
ranking operations. Its response times are within the or-
der of milliseconds, and SLOs dictate that the 99th per-
centile must stay within a 1-millisecond limit of its ex-
pected value (i.e., without colocation). Fig. 1 shows a
simplified description of the layered architecture of In-
dexServe. Our measurements indicated that during a
time frame of 5µs, up to 15 threads became ready for
execution.

Example secondary tenants. Non-latency-sensitive,
big-data applications run alongside the primary. Popular
big-data frameworks such as Hadoop [1], YARN [31],
Apache Spark [35, 7], or Apache Flink [9] allow running
a wide-range of compute-intensive (e.g., machine learn-
ing), and disk-bound (e.g., search index preparation and
aggregation) jobs. Additionally, each server needs to run
an HDFS DataNode process (for data replication), and a
YARN NodeManager process (to handle individual task
creation/destruction).

Both classes of tenants require access to several re-
sources: CPU, disk, memory, network, etc. Accounting
for potential resource bottlenecks is paramount in main-
taining the performance of the primary. However, that
alone is not sufficient, as our system needs to ensure that
the secondary can make adequate progress, increasing
the amount of work done when the primary is under-
utilized.

2.2 Driving Forces and Constraints
We focus on the performance requirements of the pri-

mary, without making any assumptions about its imple-
mentation. This enables wide-spread deployment, but
makes it difficult to identify when the secondary inter-
feres with the primary. Although we consider the CPU
the main bottleneck, other resources also need to be mon-
itored for contention.

Another key aspect is controlling resource access.
Most operating systems already offer static mechanisms
to restrict or prioritize access to a certain resource. While
comprehensive, these are insufficient when dealing with
bursty latency-sensitive workloads.

Given the complexity of production systems, it is hard
to change the primary or the operating system (especially
the kernel) due to the high costs of development, testing
and deployment. Rather, our solution relies on features
readily-available, and makes very few assumptions about
the primary workload. In a nutshell, we treat the primary
and the OS as a “black-box”.

3 System Design
3.1 CPU Blind Isolation

CPU is a prevalent bottleneck resource for most low-
latency services and big-data frameworks [27]. Mod-
ern OSes implement effective means to statically man-
age CPU time across tenants [3, 4], such as throttling
CPU cycles or restricting CPU cores. However, in Sec-
tion 6.1.4 we show that they are ineffective because they
cannot automatically adapt to the bursty workloads.

We propose a new technique called CPU Blind Isola-
tion, which restricts which cores secondary tenants use
based on core utilization information read from the OS.
The key idea is to ensure that the primary always has
some headroom (i.e., buffer idle cores), to absorb any
primary worker-threads that wake up. The number of
buffer cores is computed after offline-profiling of the pri-
mary using a sufficiently-heavy workload.

As the primary must always run unrestricted, we re-
strict the secondary to run only on a subset of cores.
The secondary is allocated the cores remaining after sub-
tracting the cores used by the primary and the number of
buffer idle cores.

For example, consider a machine with 48 (physical)
cores running a primary that needs 4 buffer cores to ab-
sorb bursts. If the primary uses 20 cores, the secondary
would be restricted to 24 cores. If the primary goes up to
24 cores, the secondary is immediately restricted to 20.

Why not change the OS scheduler? We recognize that
this solution can be implemented at the scheduler level.
We argue that this is impractical and imposes significant
overhead in large-scale deployment. Bugs introduced to
the scheduler by seemingly-trivial changes are laborious
to track down and can cause unexpected performance
degradation. For example, the well-established Linux
Completely-Fair-Scheduler has been found to have had
bugs which caused threads to wait even when idle cores
were available [21]. These bugs persisted in the code-
base for several years. Our approach achieves perfor-
mance isolation without interfering with the scheduler or
the scheduling policy.

USENIX Association 2018 USENIX Annual Technical Conference    521



Figure 2: Conceptual representation of CPU blind iso-
lation. The primary is unrestricted, and can run on any
core, while the secondary is restricted to a subset of cores
such that the primary always has a buffer of idle cores.

Non-work conserving scheduling In contrast to most
OS schedulers, blind isolation is non-work conserving
by nature. It deliberately chooses to leave several cores
idle in order to properly measure and react to changes
in the amount of work done by the primary. It is known
that non-work conserving schedulers can improve per-
formance in multi-processor scenarios [13]. We find that,
similarly, blind isolation helps improve CPU utilization
in the case of colocation.

3.1.1 Counting Idle Cores

An important requirement of our solution is a low-
latency, low-overhead means of obtaining CPU utiliza-
tion information. More specifically, we need to know
how many cores are idle. We consider a core to be idle if
the idle thread is running there.

The Windows scheduler keeps track of idle cores and
provides this information through a system call. This
system call returns a bit mask with the bits correspond-
ing to the idle CPUs’ ids set. We tested several other ap-
proaches relying on different metrics (e.g., recorded idle
times, counting active threads), but found this solution to
be best in terms of latency, overhead, and accuracy.

3.1.2 Allocating Cores to the Secondary

Once we know how many cores are idle we can de-
tect whether the secondary needs to give up cores to the
primary, or if the primary is not using all available cores.
We assume that the secondary is CPU-intensive, and thus
will fully occupy all cores allocated to it. If I is the num-
ber of idle cores in the system, B is the number of buffer
cores, and S is the number of cores allocated to the sec-
ondary, then: if I < B, S is decreased, and if I > B, S is
increased.

3.2 Managing Other Resources

Disk. We choose which disks are best suited for the pri-
mary and secondary. We find that it is necessary to sepa-
rate the disks which are on the critical path of the primary
from those used by the secondary. This is motivated by

the nature of the tenants: the primary is highly-tuned to-
wards read-only random accesses, so it is assigned to a
striped set of solid-state disks (SSDs). In contrast, batch
jobs often perform both reads and writes and mostly se-
quential in nature, so they are assigned to a striped set of
hard-disks (HDDs).

Memory. Most low-latency services will manage their
caches explicitly, loading data from disk as necessary
depending on incoming queries. Furthermore, primary
services are engineered to have a fixed working set and a
stable memory footprint. We cannot compromise on this,
and must guarantee the primary’s ability to make full use
of the memory. This is achieved by limiting the memory
footprint of the secondary. When memory runs very low,
secondary processes are killed.

Egress network packets. We throttle the outbound traf-
fic of the secondary, marking it as low-priority and allow-
ing the primary to maintain its throughput and response
latency. This prevents the secondary from affecting the
responsiveness of the primary.

4 Implementation and Deployment
We implemented PerfIso as a user-mode service based

on the techniques and OS mechanisms described. Most
of the static limits that PerfIso enforces are read from
cluster-wide configuration files distributed through the
Autopilot [14] environment. The resource limits can be
altered independently at runtime by issuing a command
to PerfIso. A client-application can also be used locally
for debugging.

Although it is possible to obtain the unique process
identifiers (PIDs) of the secondary tenants, Autopilot
eases this task by keeping a list of running services and
their respective information. Each secondary tenant pro-
cess is placed in a unified Job Object configured dynam-
ically by PerfIso.

4.1 Isolation Algorithm
The dynamic limits set by PerfIso need to be adjusted

often. The state of the system needs to be read and the
control knobs updated accordingly. Polling is important
because the state of the primary can change quickly. Un-
fortunately, constantly updating certain settings can be-
come harmful to the performance of all services. Thus,
polling and updating are separated in PerfIso. We poll
utilization data (e.g., CPU) continuously in a tight loop
and we update the dynamic limits of the system on-
demand based on the measured change in resource re-
quirements.

Choosing the number of buffer cores. CPU blind iso-
lation uses buffer cores to ensure that tail latency is pro-
tected while the system adjusts to changes in load. This
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requires that sufficient buffer cores are allocated to ab-
sorb bursty workloads. A one-off measurement of the
primary under its provisioned peak load is needed to find
how many threads can become ready for execution.

We evaluate different buffer core values in Sec-
tion 6.1.3, and find that 8 cores are enough for In-
dexServe to maintain its 99th percentile SLO on our
servers.

I/O throttling. The monitoring mechanisms provide
only per-device I/O statistics, without discerning which
processes originated the operations. In order to provide
per-process throttling of I/O, we use Deficit-Weighted-
Round-Robin [19]. Each process is assigned an I/O prior-
ity and one or more limits that need to be enforced (e.g.,
bandwidth, IOPS). Based on its priority, each process is
assigned a weight – the higher the priority, the larger the
weight. We then measure the number of completed I/O
requests per second (or IOPS) per drive, and use a mov-
ing average.

We compute the portion of the requests a given process
is responsible for based on its weight. Considering wt

i the
weight of process i at time t, and currt the IOPS value
measured at time t, then the demand of process i is:

Dt
i =

t

∑
t ′=t−∆

wt ′
i × currt ′

∑∀ j wt ′
j

We mark the lower limit of process i with limi, which
represents the minimum amount of IOPS that process i is
guaranteed. The deficit of this process with regard to the
limit is:

Deft
i =

currt −min(limi,Dt
i)

min(limi,Dt
i)

The I/O priorities of processes are adjusted based on
the computed deficit values.

4.2 Deployment in Production Clusters
All machines run under a management framework

such as Autopilot [14]. This provides machine wiping,
imaging, backup, and monitoring functionality. Autopi-
lot provides a stable service management interface to
start, stop, and configure software. PerfIso is run as an
additional service in Autopilot, making it easy to deploy,
and to configure across various different environments.

PerfIso is designed to have a “kill-switch”, so that it
can be quickly deactivated. This is useful when debug-
ging production issues, and it allows quickly excluding
PerfIso as a potential cause.

PerfIso is fully recoverable, since all parameters are
stored in the cluster-wide configuration files. In the event
of a crash, Autopilot will bring it up again, and PerfIso
will resume its function by loading its state from disk.

PerfIso ensures that its settings do not affect those em-
ployed by the primary. For example, if the primary uses

core affinitization for performance reasons, then PerfIso
would not override these settings when attempting to ac-
commodate the secondary.

5 Experimental Evaluation
5.1 Objectives

1. How is tail latency impacted by colocating batch
jobs with the primary without PerfIso?

2. How effective is PerfIso in maintaining tail latency
when a batch job is colocated with the primary?

3. How does CPU blind isolation compare to static
isolation mechanisms provided by modern OSes?

5.2 Machine Configuration
We evaluate our solution on typical production hard-

ware. Each server has two Intel Xeon E5-2673 v3 pro-
cessors with 12 physical cores per die (a total of 48 cores
with hyper-threading), 128 GB of RAM, and a 10 GbE
Ethernet card. Storage is provided by 2 striped volumes:
4× 500 GB SSD drives, and 4× 2 TB HDD drives. The
servers run Microsoft Windows Server 2016.

5.3 Experiment Setup
We use Bing IndexServe as the primary tenant in our

experiments. IndexServe processes a search query to find
a match using a large index partitioned across machines
and replicated for performance.

IndexServe is setup with an index slice of 569 GB, and
uses approximatively 110 GB of memory to cache re-
cently accessed web index data. The index slice is stored
on the striped SSD volume which IndexServe uses exclu-
sively. IndexServe relies on the SSDs’ low I/O latency
to maintain its tail latency requirements. The HDD vol-
ume is only used by IndexServe for logging, being shared
with the secondary. The service is configured to return
the most relevant matches.

Primary workload. We use a trace of 500k real-world
queries from early 2017 to put load on the primary. A
separate client machine is used to submit queries from
the trace. We first replay a warm-up trace of 100k queries
at a rate of 300 queries / second (QPS) so that IndexServe
ramps up and reaches a steady-state. The warm-up is not
reported as part of our measurements.

We vary the load by changing the query arrival rate,
i.e., we replay our trace at different query rates. The
following represent a reasonable approximation of query
arrival rates that an IndexServe machine might receive at
the time that this paper was written:

• 2,000 QPS - approximating average load

• 4,000 QPS - approximating peak load
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Figure 3: Request processing on the 75 machine In-
dexServe cluster described in Section 5.3. All gray ma-
chines run IndexServe and hold a slice of the index.

The client application replays the query trace in an
open loop and sends queries according to a Poisson pro-
cess distribution.

Secondary workload. We use a synthetic micro-
benchmark as the secondary to stress the CPU by ac-
tively utilizing as many CPU cycles as the system per-
mits, pushing blind isolation to its limits. This CPU
bully is a multi-threaded program with each worker
thread computing the sum of several integer values. The
number of worker threads is configurable and we vary
it up to the total number of logical cores present on the
system. The bully maximizes CPU utilization since there
are very few memory or external storage accesses.

Single-machine experiments. We run IndexServe on a
single machine configured as described above. We mea-
sure the impact of CPU contention on tail query response
time, the most important metric being the 99th percentile.

Cluster experiments. We setup IndexServe across 75
machines, in the following manner: the index is split into
22 partitions (or columns), and each column is replicated
by a factor of 2 (total of 2 rows). Each IndexServe server
holds a partition of the index similarly to the single-box
runs. The top-level aggregator (TLA) runs on 31 separate
machines than the ones that hold the index. The mid-
level aggregator (MLA) runs on IndexServe machines,
and each request may get forwarded to a different MLA
based on the TLA load-balancing. Fig. 3 shows an ex-
ample of the system processing 2 incoming requests.

Each IndexServe machine also runs an HDFS client
because many batch jobs that are used in production
run on top of frameworks such as Hadoop and, thus,
rely on HDFS for storage access. In addition to other
experiment-specific PerfIso settings, we also set the fol-
lowing static disk bandwidth limits: data replication is
limited to 20MB/s, and HDFS clients are limited to 60
MB/s. All I/O operations done by HDFS are unbuffered.

A client is setup on a separate machine and configured
to submit queries to the TLA machines. We then run a
trace of 200k queries at a total rate of 8,000 QPS. The
TLAs will load-balance these queries across the 2 rows,

resulting in an average workload of 4,000 QPS for each
IndexServe machine.

Additionally, we use a Disk bully to ensure that I/O
generated by HDFS does not cause any server to strag-
gle. We setup DiskSPD [5] to create an I/O bound work-
load on the HDD strip of each machine. We perform
a mixed read-write workload, with 33% reads and 67%
writes, with sequential accesses and synchronous I/O op-
erations.

6 Experimental Results
We first evaluate PerfIso on a single machine and mea-

sure the effectiveness of CPU blind isolation. We then
move on to a 75-machine cluster and analyze CPU iso-
lation mechanisms, measuring latency end-to-end and at
each component level. The main metric used is the 99th

percentile of query response latency.

6.1 Single-machine Experiments

Going further, we analyze the baseline (or standalone)
behaviour of IndexServe and three colocation scenarios:

• No isolation – The primary and secondary are colo-
cated without any isolation.

• Blind isolation – The secondary is dynamically re-
stricted in terms of CPU cores using our technique.

• Alternative isolation – The secondary is suc-
cessively restricted in terms of CPU cores, and
CPU cycles using OS-specific mechanisms.

Our goal is to also maximize the amount of work done
by the secondary, so we first configure each isolation
technique with “relaxed” settings. We then successively
restrict the secondary until either the SLO is met, or until
the secondary no longer gets any work done.

6.1.1 Baseline

First, we measure how IndexServe performs when it
runs standalone (i.e., no colocation). The 1st bar groups
of Figs. 4a and 4b report the query latency and CPU uti-
lization, respectively. The median query time is 4ms,
and the 99th percentile is 12ms, both for 2,000 and 4,000
QPS. The average CPU utilization is low, with the CPU
remaining idle for 80% and 60% of time, respectively.

6.1.2 No Isolation

We colocate the primary and secondary, configuring
the bully to use either mid (24 threads) or high (48
threads). The 2nd and 3rd columns of Figs. 4a and 4b
report query latency and CPU utilization for the mid and
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Figure 4: Single machine run of IndexServe standalone (no colocation) vs. colocated with an unrestricted secondary.
A mid secondary increases the 99th percentile query latency by up to 42%, while a high increases same by up to 29×.
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Figure 5: Single machine run of IndexServe colocated with a secondary restricted using blind isolation. Using a buffer
of 8 CPU cores, the 99th percentile query latency is less than 1 ms off from the standalone case.
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Figure 6: Single machine run of IndexServe colocated with a secondary with CPU cores statically restricted.
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Figure 7: Single machine run of IndexServe colocated with a secondary with CPU cycles statically restricted.
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Figure 8: Comparison of isolation approaches on a single machine run of IndexServe at 2,000 QPS colocated with a
secondary running in high-mode. CPU blind isolation uses 8 buffer cores, CPU cores allows the secondary to use 8
cores, and CPU cycles restricts the secondary to 5% of CPU time.

high configurations, respectively. The impact of coloca-
tion is substantial. The mid case reaches 15ms and 18ms
in the 99th percentile for 2,000 and 4,000 QPS (higher
than the baseline by 3-5ms). For high, these values reach
349ms and 354ms (a 29× degradation). Between 11%
and 32% of queries timeout.

Fig. 4b shows the CPU utilization for the primary and
secondary, and idle CPU. Interestingly, when colocated
with the mid secondary, the CPU utilization of the pri-
mary increases up to 40% — IndexServe tries to com-
pensate for the increase in pending queries by starting
more workers. While this successfully prevents dropped
queries, it ultimately aggravates CPU contention, and the
latency SLO is not met. Another consequence is that the
secondary gets less CPU time overall, since the primary
will push it out from the only cores where it can run.

In the case of the high secondary, more than 32% of
queries submitted at peak primary load are dropped due
to the longer processing times, causing a decrease in pri-
mary CPU utilization.

6.1.3 Blind Isolation

We further use the 48 worker variant (high) secondary
to evaluate the efficiency of isolation mechanisms.

We evaluate the blind isolation mechanism by reserv-
ing 4 and 8 buffer logical-cores, respectively. The insight
here is to allow the primary to have a buffer of cores to
start new worker threads when load increases.

Fig. 5a and Fig. 5b report our findings in terms of la-
tency degradation and CPU utilization. We find that pro-
visioning 8 idle logical cores is enough to ensure less
than 1ms of degradation for the 99th latency percentile of
the high workload.

6.1.4 Comparison to Alternative Isolation Methods

We next analyze the effectiveness of two common
methods of static CPU resource management which

are available in most modern OSes: restricting CPU
cores and restricting CPU cycles. Windows provides
these mechanisms through the Job Object abstraction [3],
while Linux does so through the cgroups framework [4].

Restricting CPU cores. We successively restrict the sec-
ondary to use only 24, 16, and 8 cores of all 48 available
logical cores. The primary is guaranteed exclusive and
unimpeded access to the remainder, but can also compete
for the secondary’s cores. Fig. 6a shows the degradation
of query response latency for each case.

Fig. 6b shows the overall CPU utilization breakdown
when the bully is restricted to a subset of cores. When In-
dexServe is under average load, the secondary can claim
up to 33% of the CPU time. While this is an important
gain, the servers need to be provisioned for peak load,
thereby reducing the subset of cores allocated to the sec-
ondary to 8 cores. With IndexServe under peak load, the
secondary can only use up to 17% of the CPU time.

Restricting CPU cycles. We successively restrict the
secondary to 45%, 25% and 5% of the overall CPU time.

Fig. 7a reports the measured degradation of latency,
and Fig. 7c shows the percentage of queries that were
dropped (because of increased processing times). Giving
the bully even as little as 5% of CPU time still produces
degradation. Furthermore, as opposed to restricting CPU
cores, there is always some percentage of queries that get
dropped, ranging from 50% to around 1% (in the best
case). Fig. 7b shows that using this method less CPU
time goes to the secondary.

The main reason this technique yields results worse
than restricting CPU cores is that multi-threaded services
such as IndexServe launch short-lived worker threads to
process incoming requests. If these threads end up be-
ing queued for execution instead of being launched right
away, it creates a cascading effect which impacts all in-
coming queries. Despite the secondary not utilizing more
than its share of CPU time, IndexServe worker threads
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get delayed, leading to considerable degradation.

Progress of the secondary. Finally, we analyze the
amount of work that the secondary gets done under iso-
lation, as a percentage of the total work done when
unrestricted. We report for each IndexServe workload
the point where latency degradation was lowest for that
experiment. Blind Isolation allows the secondary to
achieve 62% and 25% of the work it did unrestricted,
for 2,000 and 4,000 QPS, respectively. Restricting CPU
cores yields a more modest 45% and a similar 30%, re-
spectively. Restricting CPU cycles fares worst, yielding
only 9% in both cases.

6.2 Cluster Experiments
We next look at how PerfIso performs in a production

cluster. We evaluate at an approximation of peak load to
stress the system, attempting to impact tail latency. This
makes PerfIso throttle the secondary more aggressively
to accommodate the primary.

As described in Fig. 3, requests arrive at one of many
top-level aggregator (TLA) machines, which forwards
the request in a round-robin fashion to one of the two
rows of IndexServe machines (each row holds a parti-
tioned copy of the search index). The TLA chooses an
IndexServe machine from the row to act as the mid-level
aggregator (MLA) for a particular request. The MLA
queries all the other IndexServe instances in its row (in-
cluding the local one), aggregates all results, and formu-
lates the final query response.

We run each experiment 8 times, and measure query
latency at a) each server, b) at each layer, and c) end-to-
end. Fig. 9a reports the baseline query response latency,
averaged across IndexServe machines, across MLAs,
and across TLAs. The HDFS client takes up to 5% of
total CPU time.

We start our CPU bully and configure PerfIso on each
IndexServe machine for blind isolation in the same man-
ner as the singlebox runs. Fig. 9b shows the query re-
sponse latency for this CPU-bound workload. Com-
pared to the baseline, the 99th percentile reported by In-
dexServe, MLA, and TLA instances increases by at most
0.8, 0.4, and 1.1 milliseconds, respectively.

We configure PerfIso to throttle disk I/O to either
100MB/s, or 20 IOPS/s, for a given operation data chunk
size of 8KB. Fig. 9c shows the query response latency
for this Disk-bound workload. Compared to the base-
line, the 99th percentile reported by IndexServe, MLA,
and TLA instances increases by at most 0.8, 1.2, and 1.1
milliseconds, respectively.

Progress results with larger cluster. Finally, we show
production results for a cluster of 650 IndexServe ma-
chines processing live user queries while colocated with
a large batch job executing the training phase of a

machine-learning computation. Fig. 10 shows key per-
formance metrics: load in QPS, 99th percentile latency
of query response times measured at the TLA, and server
CPU utilization averaged across all machines. Impor-
tantly, CPU utilization averages 70% over 1 hour.

6.3 Takeaways
We now present a sum-up of our evaluation, referring

to the objectives established in Section 5.1:

1. Fig. 8a shows that a CPU-bound batch job can
importantly affect the 99th percentile query la-
tency of the primary, reaching up to 29× degrada-
tion. Fig. 4a shows that even a mildly CPU-intensive
job can cause interference and can increase tail la-
tency by up to 42%.

2. Fig. 8a shows that blind isolation successfully pro-
tects tail latency under medium load (2,000 QPS),
and Fig. 4a shows that this holds for peak loads
(4,000 QPS) as well. In the latter case, the 99th

percentile is within 1 ms of the standalone case.
Fig. 9 reports the results for 8 runs of an approxi-
mated peak load (4,000 QPS) on a production clus-
ter, showing that PerfIso successfully protects tail
latency. The query response latency tail for CPU
and Disk-bound jobs (Figs. 9b and 9c) is within
1.2 milliseconds of the standalone case (Fig. 9a).
Fig. 10 shows that blind isolation raises CPU uti-
lization to 70% through colocation over the course
of 1 hour on a 650-machine IndexServe cluster.

3. Fig. 8 reports a full comparison of all our evalu-
ated techniques, showing that blind isolation and
cpu cores both protect tail latency. However blind
isolation manages to reduce idle cpu time by a fur-
ther 13% compared to cpu cores, and allows the
secondary to perform 17% more work. CPU cycles
fails to protect tail latency.

We conclude that PerfIso successfully protects tail la-
tency across all IndexServe machines, ultimately pre-
serving the end-to-end SLOs.

7 Related Work
Many existing solutions propose colocation to in-

crease data center utilization, but rely on information
about the primary tenant’s SLO and workload, or on spe-
cific hardware support. The complexity and performance
characteristics (e.g., tail latency requirements and bursty
nature) of primary tenants pushed our design into a dif-
ferent direction, adopting a black-box model with few
assumptions on hardware for large-scale deployment.

MS Manners [12] provides CPU-level performance
isolation on single-core machines by restricting the CPU
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Figure 9: Latency values for IndexServe running on a production cluster: Fig. 9a shows the baseline, Figs. 9b and 9c
show the result of colocation with CPU-bound and Disk-bound secondary tenants, respectively.

Figure 10: Production results for a cluster of 650 In-
dexServe machines colocated with a secondary running
a machine learning training computation over 1 hour.

cycles available to the secondary, based on job progress
information. Our experimental evaluation shows that
managing CPU cycles per tenant severely impacts tail
latency, and we manage the number of CPU cores of the
secondary tenants dynamically instead.

TEMM [38] proposes a throttling-based management
technique to configure CPU duty cycles and DVFS set-
tings to meet SLOs. TEMM requires the latency SLOs
of the primary, and assumes that the bottleneck is either
the last-layer caches or off-chip bandwidth, whereas any
of several other resources can be the bottleneck.

MIMP [36] considers tenants in a virtualized environ-
ment. It defines a new priority in the hypervisor sched-
uler to meet the performance requirements of the primary
tenant, focusing on CPU-level interference.

Quasar [11] is a cluster manager that reduces resource
over-provisioning and increases utilization while meet-
ing quality of service constraints. It uses profiling in-
formation and collaborative filtering to infer the tenants’
resource requirements. It additionally monitors service
performance and adjusts allocations when target laten-
cies are not met. In contrast, PerfIso, ensures some slack
is always available to accommodate the bursty demands
of the primary tenant without assuming explicit server-
level performance requirements or tail latency targets.

Heracles [20] uses a feedback mechanism to adjust

the secondary tenants’ resources based on the tail latency
of the primary tenant. Heracles needs the latency SLOs
of the primary and exploits hardware mechanisms such
as Intel’s Cache Allocation Technology [2]. Heracles is
complementary to this work since the knowledge of pri-
mary tenant SLOs and availability of specific hardware
mechanisms limits wider deployment.

Jail [28] is Google’s cache partitioning performance
isolation mechanism. It incorporates Intel CMT and
CAT [2] support into Linux cgroups, but allows only
static partitioning of resources. In contrast our experi-
ments show dynamic isolation techniques (such as blind
isolation) provide more resources to the secondary while
protecting the primary’s tail latency. Additionally, data
center machines span multiple hardware generations, not
all of which supporting CAT.

RubikColoc [16] configures per-core DVFS to com-
pensate for the overhead of multiplexing primary and
secondary tenants on the same core. RubikColoc needs
server-level latency SLOs and per-core DVFS support.

Elfen [34] provides CPU-level performance isolation
for primary and secondary tenants running on the same
core using Simultaneous Multi-Threading (SMT) tech-
nology available on modern CPUs. Effectively, the sec-
ondary is colocated with the primary on the same physi-
cal core only when the primary’s measured performance
is within its SLO. Elfen needs latency SLOs for the pri-
mary, OS support to query SMT-to-process mappings,
and application-level instrumentation for the secondary.

BatchDB [23] is a database system that handles both
OLTP and OLAP queries, providing good performance
isolation for the former. Our approach instead focuses on
the scenario where the tenants are distinct applications.

Leverich et al. [18] advocate using colocation to im-
prove cluster throughput-per-TCO, and identify queuing
delay, scheduling delay, and worker-thread load imbal-
ance as the challenges in providing service-level QoS.
They propose better cluster provisioning and custom OS
schedulers to mitigate tenant interference. However,
given the complexity of large commercial services, we
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cannot make changes, neither at the hardware nor kernel
level, which is why we adopt a “black-box” model.

CPI2 [37] is a performance isolation mechanism
which uses Clock Per Instruction (CPI) data to build
probabilistic distribution models and to find stragglers
(victims of resource interference). CPI2 identifies the
antagonists of latency-sensitive tasks by matching CPI
patterns, and restricts their CPU cycle-share. We show
that restricting CPU cores is significantly more effective
in protecting primary tail latency.

HipsterCo [26] is a task scheduler for latency-sensitive
workloads running on heterogeneous multi-core systems.
HipsterCo colocates batch jobs with latency-sensitive
workloads to increase resource utilization. HipsterCo
uses reinforcement learning to build the CPU and DVFS
configuration required to meet target SLOs. All remain-
ing CPU cores are allocated to batch jobs. However,
HipsterCo requires performance feedback from latency-
sensitive workloads which is not available in our envi-
ronment. Furthermore, we argue that for complex com-
mercial latency-sensitive services, some buffer cores are
required to prevent performance degradation.

Bubble-Up [24] and Bubble-Flux [33] focus on mem-
ory bandwidth and last-level cache interference as the
main actors in colocation performance degradation. The
former proposes a static profiling technique to accurately
estimate the expected degradation, while the later uses an
online approach, both assuming live performance infor-
mation from the latency-sensitive service is available.

Zhang et al. [39] use historical resource utiliza-
tion data and disk re-imaging patterns of tenants in
task scheduling and data placement. The primary has
resource-priority, meaning that a load-surge kills off sec-
ondary tasks. Thus, the scheduling algorithm places sec-
ondaries as to minimize the likelihood of termination.
Misra et al. [25] improved upon this work by proposing a
scalable distributed file system design which maximizes
data availability for secondary tenants. Due to the highly
spiking and unpredictable nature of the primary services
we target, relying on historical data is insufficient to in-
sure that performance guarantees are met.

Pisces [30] achieves fairness and per-tenant perfor-
mance isolation in shared key-value storage. Pisces
uses deficit-weighted-round-robin (DWRR) to schedule
requests at server-level, thus mediating resource con-
tention. In our case secondary tasks are batch jobs, and
therefore do not lend themselves to request scheduling,
so we only employ DWRR for I/O throttling.

2DFQ [22] proposes a new weighted fair queuing al-
gorithm to ensure fairness for multi-tenant services that
use thread pools inside a single process. This technique
benefits the primary tenants and could reduce the bursti-
ness of their execution, which complements PerfIso and
potentially reduces the number of buffer cores required.

Alizadeh et. al [6] propose HULL — a system which
leaves ‘bandwidth headroom’ to mitigate the problem of
packet queuing in low-latency networked systems. This
is similar in spirit to our non-work-conserving resource
management approach, but focuses on avoiding network
congestion rather than performance isolation.

8 Conclusions
Machines hosting large commercial latency-sensitive

services are often underutilized because important ser-
vices are provisioned for peak load as to meet business
availably and fault-tolerance constraints.

Colocating batch jobs with latency-sensitive services
is an important way of increasing utilization and data
center efficiency, but comes with key challenges. Large
latency-sensitive services are complex, and follow a lay-
ered architecture and therefore require short tail laten-
cies. The diversity of commercial systems prevents us
from using explicit knowledge of their latency targets,
motivating us to adopt an approach in which we assume
limited information about the primary tenant.

This paper presents the design and implementation of
PerfIso, a performance isolation framework that makes
use of idle resources to run batch jobs without affecting
the primary tenant. It uses CPU blind isolation to meet
the requirements of commercial large latency-sensitive
services. The key insight is ensuring that the primary
tenant always has idle cores available to accommodate
its bursty workload, while allowing the secondary tenant
to make progress.

We evaluate PerfIso experimentally on a single ma-
chine and on a cluster of machines using Bing In-
dexServe as the primary workload. We compare exist-
ing CPU isolation techniques (such as rate limiting and
static core affinitization) to our approach, and we find
that under the latter the 99th percentile of the tail latency
values remain largely unchanged compared to running
standalone. PerfIso allows compute-intensive batch jobs
to use up to 47% of CPU cycles for off-peak loads which
would have otherwise remained idle.
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Abstract

Six years ago, Google released an invaluable set of
scheduler logs which has already been used in more than
450 publications. We find that the scarcity of other data
sources, however, is leading researchers to overfit their
work to Google’s dataset characteristics. We demon-
strate this overfitting by introducing four new traces
from two private and two High Performance Computing
(HPC) clusters. Our analysis shows that the private clus-
ter workloads, consisting of data analytics jobs expected
to be more closely related to the Google workload, dis-
play more similarity to the HPC cluster workloads. This
observation suggests that additional traces should be con-
sidered when evaluating the generality of new research.

To aid the community in moving forward, we release
the four analyzed traces, including: the longest publicly
available trace spanning all 61 months of an HPC clus-
ter’s lifetime and a trace from a 300,000-core HPC clus-
ter, the largest cluster with a publicly available trace. We
present an analysis of the private and HPC cluster traces
that spans job characteristics, workload heterogeneity,
resource utilization, and failure rates. We contrast our
findings with the Google trace characteristics and iden-
tify affected work in the literature. Finally, we demon-
strate the importance of dataset plurality and diversity by
evaluating the performance of a job runtime predictor us-
ing all four of our traces and the Google trace.

1 Introduction

Despite intense activity in the areas of cloud and job
scheduling research, publicly available cluster workload
datasets remain scarce. The three major dataset sources
today are: the Google cluster trace [58] collected in
2011, the Parallel Workload Archive [19] of High Per-
formance Computing (HPC) traces collected since 1993,
and the SWIM traces released in 2011 [10]. Of these,
the Google trace has been used in more than 450 publi-
cations making it the most popular trace by far. Unfor-
tunately, this 29-day trace is often the only one used to
evaluate new research. By contrasting its characteristics
with newer traces from different environments, we have
found that the Google trace alone is insufficient to accu-
rately prove the generality of a new technique.

Our goal is to uncover overfitting of prior work to the
characteristics of the Google trace. To achieve this, our

first contribution is to introduce four new traces: two
from the private cloud of Two Sigma, a hedge fund, and
two from HPC clusters located at the Los Alamos Na-
tional Laboratory (LANL). Our Two Sigma traces are
the longest, non-academic private cluster traces to date,
spanning 9 months and more than 3 million jobs. The
two HPC traces we introduce are also unique. The
first trace spans the entire 5-year lifetime of a general-
purpose HPC cluster, making it the longest public trace
to date, while also exhibiting shorter jobs than existing
public HPC traces. The second trace originates from the
300,000-core current flagship supercomputer at LANL,
making it the largest cluster with a public trace, to our
knowledge. We introduce all four traces, and the envi-
ronments where they were collected, in Section 2.

Our second contribution is an analysis examining the
generality of workload characteristics derived from the
Google trace, when our four new traces are considered.
Overall, we find that the private Two Sigma cluster work-
loads display similar characteristics to HPC, despite con-
sisting of data analytics jobs that more closely resemble
the Google workload. Table 1 summarizes all our find-
ings. For those characteristics where the Google work-
load is an outlier, we have surveyed the literature and list
affected prior work. In total, we surveyed 450 papers that
reference the Google trace study [41] to identify popu-
lar workload assumptions, and we constrast them to the
Two Sigma and LANL workloads to detect violations.
We group our findings into four categories: job charac-
teristics (Section 3), workload heterogeneity (Section 4),
resource utilization (Section 5), and failure analysis (Sec-
tion 6).

Our findings suggest that evaluating new research us-
ing the Google trace alone is insufficient to guarantee
generality. To aid the community in moving forward,
our third contribution is to publicly release the four
traces introduced and analyzed in this paper. We further
present a case study on the importance of dataset plu-
rality and diversity when evaluating new research. For
our demonstration we use JVuPredict, the job runtime
predictor of the JamaisVu scheduling system [51]. Orig-
inally, JVuPredict was evaluated using only the Google
trace [51]. Evaluating its performance with our four new
traces, however, helped us identify features that make
it easier to detect related and recurring jobs with pre-
dictable behavior. This enabled us to quantify the im-
portance of individual trace fields in runtime prediction.
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Section Characteristic Google Two Sigma Mustang OpenTrinity

Job Characteristics (§3)
Majority of jobs are small 4 8 8 8

Majority of jobs are short 4 8 8 8

Workload Heterogeneity (§4)
Diurnal patterns in job submissions 8 4 4 4

High job submission rate 4 4 8 8

Resource Utilization (§5)
Resource over-commitment 4 8 8 8

Sub-second job inter-arrival periods 4 4 4 4

User request variability 8 4 4 4

Failure Analysis (§6)

High fraction of unsuccessful job outcomes 4 4 8 4

Jobs with unsuccessful outcomes consume
significant fraction of resources 4 4 8 8

Longer/larger jobs often terminate unsuccessfully 4 8 8 8

Table 1: Summary of the characteristics of each trace. Note that the Google workload appears to be an outlier.

We describe our findings in Section 7.
Finally, we briefly discuss the importance of trace

length in accurately representing a cluster’s workload in
Section 8. We list related work studying cluster traces in
Section 9, before concluding.

2 Dataset information

We introduce four sets of job scheduler logs that were
collected from a general-purpose cluster and a cutting-
edge supercomputer at LANL, and across two clusters
of Two Sigma, a hedge fund. The following subsections
describe each dataset in more detail, and the hardware
configuration of each cluster is shown in Table 2.

Users typically interact with the cluster scheduler by
submitting commands that spawn multiple processes, or
tasks, distributed across cluster nodes to perform a spe-
cific computation. Each such command is considered
to be a job and users often compose scripts that gener-
ate more complex, multi-job schedules. In HPC clusters,
where resources are allocated at the granularity of phys-
ical nodes similar to Emulab [4, 16, 27, 57], tasks from
different jobs are never scheduled on the same node. This
is not necessarily true in private clusters like Two Sigma.

2.1 Two Sigma clusters
The private workload traces we introduce originate from
two datacenters of Two Sigma, a hedge fund firm. The
workload consists of data analytics jobs processing fi-
nancial data. A fraction of these jobs are handled by
a Spark [49] installation, while the rest are serviced by
home-grown data analytics frameworks. The dataset
spans 9 months of the two datacenters’ operation starting
in January 2016, covering a total of 1313 identical com-
pute nodes with 31512 CPU cores and 328TB RAM. The
logs contain 3.2 million jobs and 78.5 million tasks, col-
lected by an internally-developed job scheduler running
on top of Mesos [28]. Because both datacenters expe-
rience the same workload and consist of homogeneous

Platform Nodes CPUs RAM Length

LANL Trinity 9408 32 128GB 3 months
LANL Mustang 1600 24 64GB 5 years

TwoSigma A 872 24 256GB
9 months

TwoSigma B 441 24 256GB

Google B 6732 0.50* 0.50*

29 days

Google B 3863 0.50* 0.25*
Google B 1001 0.50* 0.75*
Google C 795 1.00* 1.00*
Google A 126 0.25* 0.25*
Google B 52 0.50* 0.12*
Google B 5 0.50* 0.03*
Google B 5 0.50* 0.97*
Google C 3 1.00* 0.50*
Google B 1 0.50* 0.06*

Table 2: Hardware characteristics of the clusters ana-
lyzed in this paper. For the Google trace [41], (*) sig-
nifies a resource has been normalized to the largest node.

nodes, we collectively refer to both data sources as the
TwoSigma trace, and analyze them together.

We expect this workload to resemble the Google clus-
ter more closely than the HPC clusters, where long-
running, compute-intensive, and tightly-coupled scien-
tific jobs are the norm. First, unlike LANL, job runtime
is not budgeted strictly; users of the hedge fund clusters
do not have to specify a time limit when submitting a job.
Second, users can allocate individual cores, as opposed
to entire physical nodes allocated at LANL. Collected
data include: timestamps for job stages from submission
to termination, job properties such as size and owner, and
the job’s return status.

2.2 LANL Mustang cluster
Mustang was an HPC cluster used for capacity comput-
ing at LANL from 2011 to 2016. Capacity clusters such
as Mustang are architected as cost-effective, general-
purpose resources for a large number of users. Mustang
was largely used by scientists, engineers, and software
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developers at LANL and it was allocated to these users at
the granularity of physical nodes. The cluster consisted
of 1600 identical compute nodes, with a total of 38400
AMD Opteron 6176 2.3GHz cores and 102TB RAM.

Our Mustang dataset covers the entire 61 months of
the machine’s operation from October 2011 to Novem-
ber 2016, which makes this the longest publicly available
cluster trace to date. The Mustang trace is also unique
because its jobs are shorter than those in existing HPC
traces. Overall, it consists of 2.1 million multi-node jobs
submitted by 565 users and collected by SLURM [45], an
open-source cluster resource manager. The fields avail-
able in the trace are similar to those in the TwoSigma
trace, with the addition of a time budget field per job,
that if exceeded causes the job to be killed.

2.3 LANL Trinity supercomputer
In 2018, Trinity is the largest supercomputer at LANL
and it is used for capability computing. Capability clus-
ters are a large-scale, high-demand resource introducing
novel hardware technologies that aid in achieving crucial
computing milestones, such as higher-resolution climate
and astrophysics models. Trinity’s hardware was stood
up in two pre-production phases before being put into
full production use and our trace was collected before
the second phase completed. At the time of data collec-
tion, Trinity consisted of 9408 identical compute nodes,
a total of 301056 Intel Xeon E5-2698v3 2.3GHz cores
and 1.2PB RAM, making this the largest cluster with a
publicly available trace by number of CPU cores.

Our Trinity dataset covers 3 months from February
to April 2017. During that time, Trinity was operating
in OpenScience mode, i.e., the machine was undergoing
beta testing and was available to a wider number of users
than it is expected to have after it receives its final secu-
rity classification. We note that OpenScience workloads
are representative of a capability supercomputer’s work-
load, as they occur roughly every 18 months when a new
machine is introduced, or before an older one is decom-
missioned. The dataset, which we will henceforth refer
to as OpenTrinity, consists of 25237 multi-node jobs is-
sued by 88 users and collected by MOAB [1], an open-
source cluster scheduling system. The information avail-
able in the trace is the same as that in the Mustang trace.

2.4 Google cluster
In 2012, Google released a trace of jobs that ran in one of
their compute clusters [41]. It is a 29-day trace consist-
ing of 672074 jobs and 48 million tasks, some of which
were issued through the MapReduce framework, and ran
on 12583 heterogeneous nodes in May 2011. The work-
load consists of both long-running services and batch
jobs [55]. Google has not released the exact hardware
specifications of each cluster node. Instead, as shown in
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Figure 1: CDF of job sizes based on allocated CPU cores.

Table 2, nodes are presented through anonymized plat-
form names representing machines with different com-
binations of microarchitectures and chipsets [58]. Note
that the number of CPU cores and RAM for each node
in the trace have been normalized to the most powerful
node in the cluster. In our analysis, we estimate the to-
tal number of cores in the Google cluster to be 106544.
We derive this number by assuming that the most popu-
lar node type (Google B with 0.5 CPU cores) is a dual-
socket server, carrying quad-core AMD Opteron Barch-
elona CPUs that Google allegedly used in their datacen-
ters at the time [26]. Unlike previous workloads, jobs
can be allocated fractions of a CPU core [46].

3 Job characteristics

Many instances of prior work in the literature rely on the
assumption of heavy-tailed distributions to describe the
size and duration of individual jobs [2, 8, 13, 14, 40, 50].
In the LANL and TwoSigma workloads these tails appear
significantly lighter.

Observation 1: On average, jobs in the TwoSigma
and LANL traces request 3 - 406 times more CPU cores
than jobs in the Google trace. Job sizes in the LANL
traces are more uniformly distributed.

Figure 1 shows the Cumulative Distribution Functions
(CDFs) of job requests for CPU cores across all traces,
with the x-axis in logarithmic scale. We find that the 90%
of smallest jobs in the Google trace request 16 CPU cores
or fewer. The same fraction of TwoSigma jobs request
108 cores, and 1-16K cores in the LANL traces. Very
large jobs are also more common outside Google. This
is unsurprising for the LANL HPC clusters, where allo-
cating thousands of CPU cores to a single job is not un-
common, as the clusters’ primary use is to run massively
parallel scientific applications. It is interesting to note,
however, that while the TwoSigma clusters contain fewer
cores than the other clusters we examine (3 times fewer
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Figure 2: CDF of the durations of individual jobs.

than the Google cluster), its median job is more than an
order of magnitude larger than a job in the Google trace.
An analysis of allocated memory yields similar trends.

Observation 2: The median job in the Google trace is
4-5 times shorter than in the LANL or TwoSigma traces.
The longest 1% of jobs in the Google trace, however, are
2-6 times longer than the same fraction of jobs in the
LANL and TwoSigma traces.

Figure 2 shows the CDFs of job durations for all
traces. We find that in the Google trace, 80% of jobs last
less than 12 minutes each. In the LANL and TwoSigma
traces jobs are at least an order of magnitude longer. In
TwoSigma, the same fraction of jobs last up to 2 hours
and in LANL, they last up to 3 hours for Mustang and
6 hours for OpenTrinity. Surprisingly, the tail end of
the distribution is slightly shorter for the LANL clus-
ters than for the Google and TwoSigma clusters. The
longest job is 16 hours on Mustang, 32 hours in Open-
Trinity, 200 hours in TwoSigma, and at least 29 days in
Google (the duration of the trace). For LANL, this is due
to hard limits causing jobs to be indiscriminately killed.
For Google, the distribution’s long tail is likely attributed
to long-running services.

Implications. These observations impact the imme-
diate applicability of job scheduling approaches whose
efficiency relies on the assumption that the vast majority
of jobs’ durations are in the order of minutes, and job
sizes are insignificant compared to the size of the clus-
ter. For example, Ananthanarayanan et al. [2] propose
to mitigate the effect of stragglers by duplicating tasks of
smaller jobs. This is an effective approach for Internet
service workloads (Microsoft and Facebook are repre-
sented in the paper) because the vast majority of jobs can
benefit from it, without significantly increasing the over-
all cluster utilization. For the Google trace, for example,
90% of jobs request less than 0.01% of the cluster each,
so duplicating them only slightly increases cluster uti-
lization. At the same time, 25-55% of jobs in the LANL
and TwoSigma traces each request more than 0.1% of

the cluster’s cores, decreasing the efficiency of the ap-
proach and suggesting replication should be used judi-
ciously. This does not consider that LANL tasks are also
tightly-coupled and the entire job has to be duplicated.

Another example is the work by Delgado et al. [14],
which improves the efficiency of distributed schedulers
for short jobs by dedicating them a fraction of the cluster.
This partition ranges from 2% for Yahoo and Facebook
traces, to 17% for the Google trace where jobs are sig-
nificantly longer, to avoid increasing job service times.
For the TwoSigma and LANL traces we have shown that
jobs are even longer than for the Google trace (Figure
2), so larger partitions will likely be necessary to achieve
similar efficiency. At the same time, jobs running in the
TwoSigma and LANL clusters are also larger (Figure 1),
so service times for long jobs are expected to increase
unless the partition is shrunk. Other examples of work
that is likely affected include task migration of short and
small jobs [50] and hybrid scheduling aimed on improv-
ing head-of-line blocking for short jobs [13].

4 Workload heterogeneity

Another common assumption about cloud workloads is
that they are characterized by heterogeneity in terms of
resources available to jobs, and job interarrival times
[7, 23, 31, 46, 56]. The private and HPC clusters we
study, however, consist of homogeneous hardware (see
Table 2) and user activity follows well-defined diurnal
patterns, even though the rate of scheduling requests
varies significantly across clusters.

Observation 3: Diurnal patterns are universal. Clus-
ters received more scheduling requests and smaller jobs
at daytime, with minor deviations for the Google trace.

In Figure 3 we show the number of job scheduling re-
quests for every hour of the day. We choose to show
metrics for the median day surrounded by the other two
quartiles because the high variation across days causes
the averages to be unrepresentative of the majority of
days (see Section 8). Overall, diurnal patterns are ev-
ident in every trace and user activity is concentrated at
daytime (7AM to 7PM), similar to prior work [38]. An
exception to this is the Google trace, which is most ac-
tive from midnight to 4AM, presumably due to batch jobs
leveraging the available resources.

Sizes of submitted jobs are also correlated with the
time of day. We find that longer, larger jobs in the LANL
traces are typically scheduled during the night, while
shorter, smaller jobs tend to be scheduled during the day.
The reverse is true for the Google trace, which prompts
our earlier assumption on nightly batch jobs. Long, large
jobs are also scheduled at daytime in the TwoSigma clus-
ters, despite having a diurnal pattern similar to LANL
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Figure 3: Hourly job submission rates for a given day.
The lines represent the median, while the shaded region
shows the distance between the 25th and 75th percentiles.
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Figure 4: Hourly task placement requests for a given day.
The lines represent the median, while the shaded region
shows the distance between the 25th and 75th percentiles.

clusters. This is likely due to TwoSigma’s workload con-
sisting of financial data analysis, which bears a depen-
dence on stock market hours.

Observation 4: Scheduling request rates differ by up
to 3 orders of magnitude across clusters. Sub-second
scheduling decisions seem necessary in order to keep up
with the workload.

One more thing to take away from Figure 3 is that the
rate of scheduling requests can differ significantly across
clusters. For the Google and TwoSigma traces, hundreds
to thousands of jobs are submitted every hour. On the
other hand, LANL schedulers never receive more than
40 requests on any given hour. This could be related to
the workload or the number of users in the system, as the
Google cluster serves 2 times as many user IDs as the
Mustang cluster and 9 times as many as OpenTrinity.

Implications: Previous work such as Omega [46] and
ClusterFQ [56] propose distributed scheduling designs
especially applicable to heterogeneous clusters. This
does not seem to be an issue for environments such as
LANL and TwoSigma, which intentionally architect ho-
mogeneous clusters to lower performance optimization
and administration costs.

As cluster sizes increase, so does the rate of scheduling
requests, urging us to reexamine prior work. Quincy [31]
represents scheduling as a Min-Cost Max-Flow (MCMF)
optimization problem over a task-node graph and contin-
uously refines task placement. The complexity of this
approach, however, becomes a drawback for large-scale
clusters such as the ones we study. Gog et al. [23] find
that Quincy requires 66 seconds (on average) to converge
to a placement decision in a 10,000-node cluster. The
Google and LANL clusters we study already operate on
that scale (Table 2). We have shown in Figure 3 that
the average frequency of job submissions in the LANL
traces is one job every 90 seconds, which implies that
this scheduling latency may work, but this will not be the
case for long. Trinity is currently operating with 19,000
nodes and, under the DoE’s Exascale Computing Project
[39], 25 times larger machines are planned within the
next 5 years. Note that when discussing scheduling so
far we refer to jobs, since HPC jobs have a gang schedul-
ing requirement. Placement algorithms such as Quincy,
however, focus on task placement.

An improvement to Quincy is Firmament [23], a
centralized scheduler employing a generalized approach
based on a combination of MCMF optimization tech-
niques to achieve sub-second task placement latency
on average. As Figure 4 shows, sub-second latency is
paramount, since the rate of task placement requests in
the Google and TwoSigma traces can be as high as 100K
requests per hour, i.e. one task every 36ms. Firmament’s
placement latency, however, increases to several seconds
as cluster utilization increases. For the TwoSigma and
Google traces this can be problematic.

5 Resource utilization

A well-known motivation for the cloud has been resource
consolidation, with the intention of reducing equipment
ownership costs. An equally well-known property of the
cloud, however, is that its resources remain underutilized
[6, 15, 35, 36, 41]. This is mainly due to a disparity
between user resource requests and actual resource us-
age, which recent research efforts try to alleviate through
workload characterization and aggressive consolidation
[15, 33, 34]. Our analysis finds that user resource re-
quests in the LANL and TwoSigma traces are character-
ized by higher variability than in the Google trace. We
also look into job inter-arrival times and how they are
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Figure 5: CDF of job interarrival times.

approximated when evaluating new research.

Observation 5: Unlike the Google cluster, none of the
other clusters we examine overcommit resources.

Overall, we find that the fraction of CPU cores al-
located to jobs is stable over time across all the clus-
ters we study. For Google, CPU cores are over provi-
sioned by 10%, while for other clusters unallocated cores
range between 2-12%, even though resource overprovi-
sioning is supported by their schedulers. Memory alloca-
tion numbers follow a similar trend. Unfortunately, the
LANL and TwoSigma traces do not contain information
on actual resource utilization. As a result, we can nei-
ther confirm, nor contradict results from earlier studies
on the imbalance between resource allocation and uti-
lization. What differs between organizations is the mo-
tivation for keeping resources utilized or available. For
Google [41], Facebook [10], and Twitter [15], there is
a tension between the financial incentive of maintaining
only the necessary hardware to keep operational costs
low and the need to provision for peak demand, which
leads to low overall utilization. For LANL, clusters are
designed to accommodate a predefined set of applica-
tions for a predetermined time period and high utilization
is planned as part of efficiently utilizing federal fund-
ing. For the TwoSigma clusters, provisioning for peak
demand is more important, even if it leads to low overall
utilization, since business revenue is heavily tied to the
response times of their analytics jobs.

Observation 6: The majority of job interarrivals pe-
riods are sub-second in length.

Interarrival periods are a crucial parameter of an ex-
perimental setup, as they dictate the load on the sys-
tem under test. Two common configurations are second-
granularity [15] or Poisson-distributed interarrivals [29],
and we find that neither characterizes interarrivals accu-
rately. In Figure 5 we show the CDFs for job interarrival
period lengths. We observe that 44-62% of interarrival
periods are sub-second, implying that jobs arrive at a
faster rate than previously assumed. Furthermore, our at-
tempts to fit a Poisson distribution on this data have been
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Figure 6: CDF of the number of tasks per job.

unsuccessful, as Kolmogorov-Smirnov tests [37] reject
the null hypothesis with p-values < 2.2× 10−16. This
result does not account for a scenario where there is an
underlying Poisson process with a rate parameter chang-
ing over time, but it suggests that caution should be used
when a Poisson distribution is assumed.

Another common assumption is that jobs are very
rarely big, i.e., made up of multiple tasks [29, 56]. In
Figure 6 we show the CDFs for the number of tasks
per job across organizations. We observer that 77% of
Google jobs are single-task jobs, but the rest of the clus-
ters carry many more multi-task jobs. We note that the
TwoSigma distribution approaches that of Google only
for larger jobs. This suggests that task placement may be
a harder problem outside Google, where single-task jobs
are common, exacerbating the evaluation issues we out-
lined in Section 4 for existing task placement algorithms.

Observation 7: User resource requests are more vari-
able in the LANL and TwoSigma traces than in the
Google trace.

Resource under-utilization can be alleviated through
workload consolidation. To ensure minimal interference,
applications are typically profiled and classified accord-
ing to historical data [15, 33]. Our analysis suggests that
this approach is likely to be less successful outside the In-
ternet services world. To quantify variability in user be-
havior we examine the Coefficient of Variation1 (CoV)
across all requests of individual users. For the Google
trace we find that the majority of users issue jobs within
2x of their average request in CPU cores. For the LANL
and TwoSigma traces, on the other hand, 60-80% of users
can deviate by 2-10x of their average request.

Implications: A number of earlier studies of Google
[41], Twitter [15], and Facebook [10] data have high-
lighted the imbalance between resource allocation and
utilization. Google tackles this issue by over-committing
resources, but this is not the case for LANL and
TwoSigma. Another proposed solution is Quasar [15],
a system that consolidates workloads while guaranteeing

1The Coefficient of Variation is a unit-less measure of spread, de-
rived by dividing a sample’s standard deviation by its mean.
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a predefined level of QoS. This is achieved by profiling
jobs at submission time and classifying them as one of
the previously encountered workloads; misclassifications
are detected by inserting probes in the running applica-
tion. For LANL, this approach would be infeasible. First,
jobs cannot be scaled down for profiling, as submitted
codes are often carefully configured for the requested al-
location size. Second, submitted codes are too complex
to be accurately profiled in seconds, and probing them
at runtime to detect misclassifications can introduce per-
formance jitter that is prohibitive in tightly-coupled HPC
applications. Third, in our LANL traces we often find
that users tweak jobs before resubmitting them, as they
re-calibrate simulation parameters to achieve a success-
ful run, which is likely to affect classification accuracy.
Fourth, resources are carefully reserved for workloads
and utilization is high, which makes it hard to provision
resources for profiling. For the TwoSigma and Google
traces Quasar may be a better fit, however, at the rate of
2.7 jobs per second (Figure 3), 15 seconds of profiling
[15] at submission time would result in an expected load
of 6 jobs being profiled together. Since Quasar requires
4 parallel and isolated runs to collect sufficient profil-
ing data, we would need resources to run at least 360
VMs concurrently, with guaranteed performance isola-
tion between tham to keep up with the average load.
This further assumes the profiling time does not need to
be increased beyond 15 seconds. Finally, Quasar [15]
was evaluated using multi-second inter-arrival periods,
so testing would be necessary to ensure that one order of
magnitude more load can be handled (Figure 5), and that
it will not increase the profiling cost further.

Another related approach to workload consolidation is
provided by TSF [56], a scheduling algorithm that at-
tempts to maximize the number of task slots allocated
to each job, without favoring bigger jobs. This ensures
that the algorithm remains starvation-free, however it re-
sults in significant slowdowns in the runtime of jobs with
100+ tasks, which the authors define as big. This would
be prohibitive for LANL, where jobs must be scheduled
as a whole, and such “big” jobs are much more prevalent
and longer in duration. Other approaches for schedul-
ing and placement assume the availability of resources
that may be unavailable in the clusters we study here,
and their performance is shown to be reduced in highly-
utilized clusters [25, 29].

6 Failure analysis

Job scheduler logs are often analyzed to gain an under-
standing of job failure characteristics in different envi-
ronments [9, 17, 21, 22, 43]. This knowledge allows for
building more robust systems, which is especially im-
portant as we transition to exascale computing systems
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Figure 7: Breakdown of the total number of jobs, as well
as CPU time, by job outcome.

where failures are expected every few minutes [48], and
cloud computing environments built on complex soft-
ware stacks that increase failure rates [9, 44].

Definitions. An important starting point for any fail-
ure analysis is defining what constitutes a failure event.
Across all traces we consider, we define as failed jobs all
those that end due to events whose occurrence was not
intended by users or system administrators. We do not
distinguish failed jobs by their root cause, e.g., software
and hardware issues, because this information is not re-
liably available. There are other job termination states
in the traces, in addition to success and failure. For the
Google trace, jobs can be killed by users, tasks can be
evicted in order to schedule higher-priority ones, or have
an unknown exit status. For the LANL traces, jobs can
be cancelled intentionally. We group all these job out-
comes as aborted jobs and collectively refer to failed and
aborted jobs as unsuccessful jobs.

There is another job outcome category. At LANL,
users are required to specify a runtime estimate for each
job. This estimate is treated as a time limit, similar to
an SLO, and the scheduler kills the job if the limit is ex-
ceeded. We refer to these killings as timeout jobs and
present them separately because they can produce useful
work in three cases: (a) when HPC jobs use the time limit
as a stopping criterion, (b) when job state is periodically
checkpointed to disk, and (c) when a job completes its
work before the time limit but fails to terminate cleanly.

Observation 8: Unsuccessful job terminations in the
Google trace are 1.4-6.8x higher than in other traces.
Unsuccessful jobs at LANL use 34-80% less CPU time.

In Figure 7, we break down the total number of jobs
(left), as well as the total CPU time consumed by all jobs
by job outcome (right). First, we observe that the fraction
of unsuccessful jobs is significantly higher (1.4-6.8x) for
the Google trace, than for the other traces. This compar-
ison ignores jobs that timeout for Mustang, because as
we explained above, it is unlikely they represent wasted
resources. We also note that almost all unsuccessful jobs
in the Google trace were aborted. According to the trace
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Figure 8: CDFs of job sizes (in CPU cores) for unsuc-
cessful and successful jobs.

documentation [58] these jobs could have been aborted
by a user or the scheduler, or by dependent jobs that
failed. As a result, we cannot rule out the possibility that
these jobs were linked to a failure. For this reason, prior
work groups all unsuccessful jobs under the “failed” la-
bel [17], which we choose to avoid for clarity. Another
fact that further highlights how blurred the line between
failed and aborted jobs can be, is that all unsuccessful
jobs in the TwoSigma trace are assigned a failure status.
In short, our classification of jobs as “unsuccesful” may
seem broad, but it is consistent with the liberal use of the
term “failure” in the literature.

We also find that unsuccessful jobs are not equally
detrimental to the overall efficiency of all clusters. While
the rate of unsuccessful jobs for the TwoSigma trace is
similar to the rate of unsuccessful jobs in the OpenTrin-
ity trace, each unsuccessful job lasts longer. Specifically,
unsuccessful jobs in the LANL traces waste 34-80% less
CPU time than in the Google and TwoSigma traces. It is
worth noting that 49-55% of CPU time at LANL is allo-
cated to jobs that time out, which suggests that at least a
small fraction of that time may become available through
the use of better checkpoint strategies.

Observation 9: For the Google trace, unsuccessful
jobs tend to request more resources than successful ones.
This is untrue for all other traces.

In Figure 8, we show the CDFs of job sizes (in CPU
cores) of individual jobs. For each trace, we show sepa-
rate CDFs for unsuccessful and successful jobs. By sep-
arating jobs based on their outcome we observe that suc-
cessful jobs in the Google trace request fewer resources,
overall, than unsuccessful jobs. This observation has also
been made in earlier work [17, 21], but it does not hold
for our other traces. CPU requests for successful jobs in
the TwoSigma and LANL traces are similar to requests
made by unsuccessful jobs. This trend is opposite to
what is seen in older HPC job logs [59], and since these
traces were also collected through SLURM and MOAB
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Figure 9: Success rates for jobs grouped by CPU hours.

we do not expect this discrepancy to be due to semantic
differences in the way failure is defined across traces.

Observation 10: For the Google and TwoSigma
traces, success rates drop for jobs consuming more CPU
hours. The opposite is true for LANL traces.

For the traces we analyze, the root cause behind unsuc-
cessful outcomes is not reliably recorded. Without this
information, it is difficult to interpret and validate the re-
sults. For example, we expect that hardware failures are
random events whose occurrence roughly approximates
some frequency based on the components’ Mean Time
Between Failure ratings. As a result, jobs that are larger
and/or longer, would be more likely to fail. In Figure 9
we have grouped jobs based on the CPU hours they con-
sume (a measure of both size and length), and we show
the success rate for each group. The trend that stands out
is that success rates decrease for jobs consuming more
CPU hours in the Google and TwoSigma traces, but they
are increase and remain high for both LANL clusters.
This could be attributed to larger, longer jobs at LANL
being more carefully planned and tested, but it could also
be due to semantic differences in the way success and
failure are defined across traces.

Implications. The majority of papers analyzing the
characteristics of job failures in the Google trace build
failure prediction models that assume the existence of
the trends we have shown on success rates and resource
consumption of unsuccessful jobs. Chen et al. [9] high-
light the difference in resource consumption between
unsuccessful and successful jobs, and El-Sayed et al.
[17] note that this is the second most influential predic-
tor (next to early task failures) for their failure predic-
tion models. As we have shown in Figure 9, unsuc-
cessful jobs are not linked to resource consumption in
other traces. Another predictor highlighted in both stud-
ies is job re-submissions, with successful jobs being re-
submitted fewer times. We confirm that this trend is con-
sistent across all traces, even though the majority of jobs
(83-93%) are submitted exactly once. A final observa-
tion that does not hold true for LANL is that CPU time
of unsuccessful jobs increases with job runtime [17, 22].
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7 A case study on plurality and diversity

Evaluating systems against multiple traces enables re-
searchers to identify practical sensitivities of new re-
search and prove its generality. We demonstrate this
through a case study on JVuPredict, the job runtime2

predictor module of the JamaisVu [51] cluster scheduler.
Our evaluation of JVuPredict with all the traces we have
introduced revealed the predictive power of logical job
names and consistent user behavior in workload traces.
Conversely, we found it difficult to obtain accurate run-
time predictions in systems that provide insufficient in-
formation to identify job re-runs. This section briefly de-
scribes the architecture of JVuPredict (Section 7.1) and
our evaluation results (Section 7.2).

7.1 JVuPredict background
Recent schedulers [12, 24, 32, 51, 52] use information
on job runtimes to make better scheduling decisions. Ac-
curate knowledge of job runtimes allows a scheduler to
pack jobs more aggressively in a cluster [12, 18, 54], or
to delay a high-priority batch job to schedule a latency-
sensitive job without exceeding the deadline of the batch
job. In heterogeneous clusters, knowledge of a job’s run-
time can also be used to decide whether it is better to im-
mediately start a job on hardware that is sub-optimal for
it, let it wait until preferred hardware is available, or sim-
ply preempt other jobs to let it run [3, 52]. Such sched-
ulers assume most of the provided runtime information is
accurate. The accuracy of the provided runtime is impor-
tant as these schedulers are only robust to a reasonable
degree of error [52].

Traditional approaches for obtaining runtime knowl-
edge are often as trivial as expecting the user to provide
an estimate, an approach used in HPC environments such
as LANL. As we have seen in Section 6, however, users
often use these estimates as a stopping criterion (jobs get
killed when they exceed them), specify a value that is too
high, or simply fix them to a default value. Another op-
tion is to detect jobs with a known structure that are easy
to profile as a means of ensuring accurate predictions,
an approach followed by systems such as Dryad [30],
Jockey [20], and ARIA [53]. For periodic jobs, simple
history-based predictions can also work well [12, 32].
But these approaches are still inadequate for consoli-
dated clusters without a known structure or history.

JVuPredict, the runtime prediction module of Ja-
maisVu [51], aims to predict a job’s runtime when it is
submitted, using historical data on past job characteris-
tics and runtimes. It differs from traditional approaches
by attempting to detect jobs that repeat, even when suc-
cessive runs are not declared as repeats. It is more ef-
fective, as only part of the history relevant to the newly

2The terms runtime and duration are used interchangeably here.

− ∞ −80 −60 −40 −20 0 20 40 60 80 + ∞

0

5

10

15

20

25

30

35

40

Estimate error (%) ± 5%

P
e
rc

e
n
t 
o
f 
jo

b
s
 (

%
)

Mustang
OpenTrinity
TwoSigma
Google

Figure 10: Accuracy of JVuPredict predictions of run-
time estimates, for all four traces.

submitted job is used to generate the estimate. To do
this, it uses features of submitted jobs, such as user IDs
and job names, to build multiple independent predictors.
These predictors are then evaluated based on the accu-
racy achieved on historic data, and the most accurate one
is selected for future predictions. Once a prediction is
made, the new job is added to the history and the accu-
racy scores of each model are recalculated. Based on the
updated scores a new predictor is selected and the pro-
cess is repeated.

7.2 Evaluation results
JVuPredict had originally been evaluated using only the
Google trace. Although predictions are not expected to
be perfect, performance under the Google trace was rea-
sonably good, with 86% of predictions falling within a
factor of two of the actual runtime. This level of ac-
curacy is sufficient for the JamaisVu scheduler, which
further applies techniques to mitigate the effects of such
mispredictions. In the end, the performance of JamaisVu
with the Google trace is sufficient to closely match that of
a hypothetical scheduler with perfect job runtime infor-
mation and to outperform runtime-unaware scheduling
[51]. This section repeats the evaluation of JVuPredict
using our new TwoSigma and LANL traces. Our crite-
rion for success is meeting or surpassing the prediction
accuracy achieved with the Google trace.

A feature expected to effectively predict job repeats
is the job’s name. This field is typically anonymized by
hashing the program’s name and arguments, or simply by
hashing the user-defined human-readable job name pro-
vided to the scheduler. For the Google trace, predictors
using the logical job name field are selected most fre-
quently by JVuPredict due to their high accuracy.

Figure 10 shows our evaluation results. On the x-axis
we plot the prediction error for JVuPredict’s runtime es-
timates, as a percentage of the actual runtime of the job.
Each data point in the plot is a bucket representing val-
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Figure 11: Is a month representative of the overall work-
load? The boxplots show distributions of the average
job inter-arrival period (left) and duration (right) per
month, normalized by the trace’s overall average. Box-
plot whiskers are defined at 1.5 times the distribution’s
Inter-Quartile Range (standard Tukey boxplots).

ues within 5% of the nearest decile. The y-axis shows
the percentage of jobs whose predictions fall within each
bucket. Overestimations of a job’s runtime are easier to
tolerate than underestimations, because they cause the
scheduler to be more conservative when scheduling the
job. Thus, the uptick at the right end of the graph is
not alarming. For the Google trace, the total percent-
age of jobs whose runtimes are under-estimated is 32%,
with 11.7% of underestimations being lower than half the
actual runtime. We mark these numbers as acceptable,
since performance of JVuPredict in the Google trace has
been proven exceptional in simulation.

Although the logical job name is a feature that per-
forms well for the Google trace, we find it is either un-
available, or unusable in our other traces. This is because
of the difficulty inherent in producing an anonymized
version of it, while maintaining enough information to
distinguish job repeats. Instead, this field is either as-
signed a unique value for every job, or entirely omit-
ted from the trace. All traces we introduce in this pa-
per suffer from this limitation. The absence of the field,
however, seems to not affect the performance of JVuPre-
dict significantly. The fields selected by JVuPredict as
the most effective predictors of job runtime for the Mus-
tang and TwoSigma traces are: the ID of the user who
submitted the job, the number of CPU cores requested
by the job, or a combination of the two. We find that
the TwoSigma workload achieves identical performance
to Google: 31% of job runtimes are underestimated and
15% are predicted to be less than 50% of the actual run-
time. The Mustang workload is much more predictable,
though, with 38% of predictions falling within 5% of the
actual runtime. Still, 16% of job runtimes were under-
estimated by more than half of the actual runtime. The
similarity between the TwoSigma and Mustang results

suggests that JamaisVu would also perform well under
these workloads. Note that these results extend to the
Google trace when the job name is omitted.

OpenTrinity performs worse than every other trace.
Even though the preferred predictors are, again, the user
ID and the number of CPU cores in the job, 55% of pre-
dictions have been underestimations. Even worse, 24%
of predictions are underestimated by more than 95% of
the actual runtime. A likely cause for this result is the
variability present in the trace. We are unsure whether
this variability is due to the short duration of the trace, or
due to the workload being more inconsistent during the
OpenScience configuration period.

In conclusion, two insights were obtained by evaluat-
ing JVuPredict with multiple traces. First, we find that
although logical job names work well for the Google
trace, they are hard to produce in anonymized form for
other traces, so they may often be unavailable. Second,
we find that in the absence of job names, there are other
fields that can substitute for them and provide compara-
ble accuracy all but the OpenTrinity trace. Specifically,
the user ID and CPU core count for every job seem to
perform best for both TwoSigma and the Mustang trace.

8 On the importance of trace length

Working with traces often forces researchers to make
key assumptions as they interpret the data, in order to
cope with missing information. A common (unwritten)
assumption when using or analyzing a trace, is that it
sufficiently represents the workload of the environment
wherein it was collected. At the same time the Google
trace spans only 29 days, while other traces we study in
this paper are 3-60 times longer, even covering the en-
tire lifetime of the cluster in the case of Mustang. Being
unsure whether 29 days are sufficient to accurately de-
scribe a cluster’s workload, we decided to examine how
representative individual 29-day periods are of the over-
all workload in our TwoSigma and Mustang traces.

Our experiment consisted of dividing our traces in 29-
day periods. For each such month we then compared
the distributions of individual metrics against the overall
distribution for the full trace. The metrics we considered
were: job sizes, durations, and interarrival periods. Over-
all we found consecutive months’ distributions to vary
wildly for all these metrics. One distinguishable trend,
however, is that during the third year the Mustang cluster
is dominated by short jobs arriving in bursts.

Figure 11 summarizes our results by comparing the
averages of different metrics for each month against the
overall average across the entire trace. The boxplots
show the distributions of average job interarrivals (left)
and durations (right) per month, when normalized by the
overall average for the trace. The boxplots are standard
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Tukey boxplots, where the box is framed by the 25th

and 75th percentiles, the dark line represents the median,
and the whiskers are defined at 1.5 times the distribu-
tion’s Inter-Quartile Range (IQR), or the furthest data
point if no outliers exist (shown in circles here). We see
that individual months vary significantly for the Mustang
trace, and they differ somewhat less across months in the
TwoSigma trace. More specifically, the average job in-
terarrival of a given month can be 0.7-2.0x the value of
the overall average in the TwoSigma trace, or 0.2-24x the
value of the overall average in the Mustang trace. Aver-
age job durations can fluctuate between 0.7-1.9x of the
average job duration in the TwoSigma trace, and 0.1-6.9x
of the average in the Mustang trace. Overall, our results
conclusively show that our cluster workloads display sig-
nificant differences from month to month.

9 Related Work

The Parallel Workloads Archive (PWA) [19] hosts the
largest collection of public HPC traces. At the time of
this writing, 38 HPC traces have been collected between
1993 and 2015. Our HPC traces complement this col-
lection. The Mustang trace is unique in a number of
ways: it is almost two times longer in duration than the
longest publicly available trace, contains four times as
many jobs, and covers the entire lifetime of the cluster
enabling longitudinal analyses. It is also similar in size
to the largest clusters in PWA and its distribution of job
duration distribution is shorter than all other HPC traces.
The OpenTrinity trace is also complementary to exist-
ing traces, as it is collected on a machine almost two
times bigger than the largest supercomputer with a pub-
licly available trace (Argonne National Lab’s Intrepid) as
far as CPU core count is concerned.

Prior studies have looked at private cluster traces,
specifically with the aim of characterizing MapReduce
workloads. Ren et al. [42] examine three traces from
academic Hadoop clusters in an attempt to identify pop-
ular application styles and characterize the input/output
file sizes, the duration, and the frequency of individual
MapReduce stages. These clusters handle significantly
less traffic than the Google and TwoSigma clusters we
examine. Interestingly, a sizable fraction of interarrival
periods for individual jobs are longer than 100 seconds,
which resembles our HPC workloads. At the same time,
the majority of jobs last less than 8 minutes, which ap-
proximates the behavior in the Google trace. Chen et
al. [10] look at both private clusters from Cloudera cus-
tomers and Internet services clusters from Facebook. On
the one hand, their private traces cover less than two
months, while on the other hand their Facebook traces
are much longer than the Google trace. Still, there are
similarities in traffic, as measured in job submissions per

hour. Specifically, Cloudera customers’ private clusters
deal with hundreds of job submissions per hour, a traffic
pattern similar to the Two Sigma clusters, while Face-
book handles upwards of a thousand submissions per
hour, which is more related to traffic in the Google clus-
ter. The diversity across these workloads further empha-
sizes the need for researchers to focus on evaluating new
research using a diverse set of traces.

Other studies that look at private clusters focus on
Virtual Machine workloads. Shen et al. [47] analyze
datasets of monitoring data from individual VMs in two
private clusters. They report high variability in resource
consumption across VMs, but low overall cluster utiliza-
tion. Cano et al. [5] examine telemetry data from 2000
clusters of Nutanix customers. The frequency of teleme-
try collection varies from minutes to days and includes
storage, CPU measurements, and maintenance events.
The authors report fewer hardware failures in these sys-
tems than previously reported in the literature. Cortez
et al. [11] characterize the VM workload on Azure, Mi-
crosoft’s cloud computing platform. They also report low
cluster utilization and low variability in tenant job sizes.

Conclusion
We have introduced and analyzed job scheduler traces
from two private and two HPC clusters. We publicly re-
lease all four traces, which we expect to be of interest to
researchers due to their unique characteristics, including:
the longest public trace to date spanning the entire 5-year
lifetime of a cluster, one representing the largest cluster
with a public trace to date, and the two longest private
non-academic cluster traces made public to date.

Our analysis showed that the private clusters resem-
ble the HPC workloads studied, rather than the popu-
lar Google trace workload, which is surprising. This
observation holds across many aspects of the workload:
job sizes and duration, resource allocation, user behavior
variability, and unsuccessful job characteristics. We also
listed prior work that relies too heavily on the Google
trace’s characteristics and may be affected.

Finally, we demonstrated the importance of dataset
plurality and diversity in the evaluation of new research.
For job runtime predictions, we show that using multiple
traces allowed us to reliably rank data features by predic-
tive power. We hope that by publishing our traces we will
enable researchers to better understand the sensitivity of
new research to different workload characteristics.

Dataset availability
The LANL Mustang, LANL OpenTrinity, and two Two
Sigma scheduler logs can be downloaded from the AT-
LAS repository, which is publicly accessible through:

www.pdl.cmu.edu/ATLAS
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Abstract
SLAOrchestrator is a new system designed to reduce
the price increases necessary to support performance
SLAs in cloud analytics systems. SLAOrchestrator is
designed for SLAs that guarantee per-query execution
times. Its core architecture consists of a double learning
loop that improves both SLAs and resource management
over time. It further utilizes an efficient combination of
elastic query scheduling and multi-tenant resource pro-
visioning algorithms to reduce the costs of performance
guarantees.

1 Introduction
A variety of shared-nothing systems for data analytics
are available as cloud services today, including Amazon
Elastic MapReduce (EMR) [5], Amazon Redshift [4],
Azure’s HDInsight [8], and Azure Data Lake Analyt-
ics [46]. When using those systems, users upload their
data to the cloud and issue queries on that data. Queries
can include relational operators and various user-defined
computations. A key challenge with these services, how-
ever, is that users must decide on a desired configuration:
how many service instances they want to pay for and how
powerful these instances should be.

The service configuration dramatically impacts
price [2] and performance [53], yet it is known to be
very difficult for users to select correctly [24]. Since
users do not know what configuration to purchase, one
approach is to offer performance-based service level
agreements (SLAs), where the system promises to meet
a given per-query latency or pay a penalty [41, 42].

Previous research has addressed the challenge of se-
lecting and enforcing SLAs in various ways. One line
of work assumes each tenant fits on a single server and
the challenge is to pack tenants on a restricted set of
servers [17, 34, 47], migrating tenants as needed [16], or-
dering queries for execution [12, 36], controlling admis-
sion [56, 42], and dispatching queries to servers [11, 37].
Other approaches assume the workload is known and re-
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Figure 1: A time-changing set of tenants executes
ad-hoc, analytical queries subject to performance
SLAs. Static resource allocation (EMR+SLAs), even
with a buffer (EMR+SLA+Buffer) leads to large cost
increases. Our improving SLAs (EMR+Improving
SLAs), especially with multi-tenancy and other opti-
mizations (SLAOrchestrator), bring costs down.

quire profile runs of queries, possibly restricted to pro-
cessing samples [53, 25, 18, 23]. Knowledge of the
workload and profile runs are reasonable assumptions in
a transaction-processing system with a fixed set of stored
procedures or in an analytics system that runs predefined
reports, but not for ad-hoc analytical workloads.

Another line of work focuses purely on enforcing
SLAs, assuming that SLAs are pre-defined [12, 11, 56].
SLA runtimes are artificially generated by, for exam-
ple, offering a performance guarantee 10x the true la-
tency [12], or by setting SLAs to be the performance of
past executions [29]. Without the right SLAs, the best
enforcement does not help: If the cloud provider over-
provisions the underlying system, the user has to bear
large costs, making the cloud provider less competitive
and encouraging the user to take her business elsewhere.
If the cloud provider underprovisions the underlying sys-
tem, the cloud provider has to pay penalties for missed
SLAs and thus loses money in the long term or must raise
prices to compensate.
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In this paper, we address the problem of selecting and
enforcing SLAs for ad-hoc analytical queries over sys-
tems with multiple nodes. We develop SLAOrchestrator,
a system that enables a cloud provider to offer query-
level, performance SLAs for ad-hoc data analytics. In-
stead of relying on outside-generated SLAs [12, 11, 56],
SLAOrchestrator uses our PSLAManager from prior
work [41] to show the user what is possible and the price
tag associated with various options. SLAOrchestrator
generates, updates over time, and enforces SLAs in a way
that successfully brings down the cost, close to that of the
original service without SLAs.

Figure 1 shows our system in action given a set of ran-
dom tenants and EC2 prices.1 The x-axis shows time and
the y-axis shows the ratio of the service cost with SLAs
to the service cost without SLAs. When we add perfor-
mance SLAs to Amazon EMR and let the cloud provi-
sion the number of Virtual Machines (VMs) purchased
under the covers, costs grow dramatically either due
to SLA violations (EMR+SLAs) or over-provisioning
(EMR+SLAs+Buffer). Since guarantees depend on the
quality of the SLAs (measured by how close runtime
estimates are to the real runtimes on the purchased re-
sources), a key component of our approach is to improve
SLAs over time (EMR+Improving SLAs). We comple-
ment these improving SLAs with novel resource schedul-
ing and provisioning algorithms that minimize costs due
to over- or under-provisioning given a per-query SLA
(SLAOrchestrator).

SLAOrchestrator achieves its goal through three key
techniques that form the core contributions of this work.
First, SLAOrchestrator is designed on the core idea of
a double nested, learning loop. In the outer loop, ev-
ery time a tenant arrives, the system generates a perfor-
mance SLA given its current model of query execution
times. That model improves over time as more tenants
use the system. The SLA is in effect for the duration of
a query session, which is the time from the moment a
user purchases an SLA and issues their first query until
the user stops their data analysis and leaves the system.
In the inner loop, SLAOrchestrator continuously learns
from user workloads to improve query scheduling and
resource provisioning decisions and reduce costs during
query sessions. To drive this inner loop, we introduce a
new subsystem, that we call PerfEnforce. We present the
overall system architecture in Section 2.

Second, the PerfEnforce subsystem comprises a new
type of query scheduler. Unlike traditional schedulers,
which must arbitrate resource access and manage con-
tention, PerfEnforce’s scheduler operates in the context
of seemingly unbounded, elastic cloud resources. Its
goal is cost-effectiveness. It schedules queries in a man-

1We present the detailed experimental setup in Section 5 and the
exact SLA function in Section 3.1.
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Figure 2: SLAOrchestrator Architecture.
ner that minimizes over- and under-provisioning over-
heads. We develop and evaluate four variants of the
scheduler. The first variant is based on a PI controller.
Two variants model the problem as either a contextual or
non-contextual multi-armed bandit (MAB) [50]. The last
variant models the problem as an online learning prob-
lem. We present the query scheduler in Section 3.

Third, PerfEnforce also includes a new resource provi-
sioning component. We evaluate two variants of resource
provisioning: The first one strives to maintain a desired
resource utilization level. The other one observes ten-
ant query patterns and adjusts, accordingly, both the size
of the overall resource pool and the tuning parameters
of the query scheduler above. We present the resource
provisioning algorithms in Section 4.

We evaluate all techniques in Section 5 and discuss re-
lated work in Section 6. As Figure 1 shows, SLAOrches-
trator is able to reduce the costs associated with perfor-
mance guarantees, bringing those costs down close to the
basic service costs without guarantees.

2 System Architecture
Figure 2 shows SLAOrchestrator’s system architecture.
In this section, we present the details of that architecture
and SLAOrchestrator’s double nested learning loop.

2.1 System Components
SLAOrchestrator runs on top of a distributed, shared-
nothing, data management and analytics engine (Ana-
lytics Service) such as Spark [7] or Hive [26]. We use
our own Myria system [54] in the evaluation. Similar to
how tenants use Amazon EMR today, in SLAOrchestra-
tor, tenants upload their data to the service and analyze
it by issuing declarative queries. While modern systems
support complex queries, in this paper, we focus on re-
lational select-project-join queries as proof-of-concept.
However, there is nothing in our approach that precludes
more complex queries in principal. On top of the Ana-
lytics Service, SLAOrchestrator includes an SLA gener-
ator (PSLAManager [41]), which generates performance
SLAs for tenants. It also contains a dynamic scaling en-
gine (PerfEnforce), which drives the scheduling and pro-
visioning decisions for the underlying Analytics Service.

Analytics Service The back-end Analytics Service
executes on a dynamically resizable pool of virtual
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Figure 3: Runtimes Compared to Local Storage.

machines (VMs) running a resource manager such as
YARN [6]. PerfEnforce uses that engine in a multi-tenant
fashion and takes over all query scheduling decisions.
When a tenant executes a query, PerfEnforce’s query
scheduling algorithm determines the number of contain-
ers needed to run the query. It then allocates that number
of containers from the shared VM pool. Additionally,
PerfEnforce’s resource provisioning determines when to
grow or shrink the pool.

Analytics Service: Tenant Isolation As is common
in today’s big data systems, each parallel partition of
each query is a task that executes in a separate container.
Each query submitted by each tenant thus gets allocated
its own set of containers across the VMs. Furthermore,
our design partitions each tenant’s dataset and attaches
individual data partitions to containers, allowing for a
more isolated environment. In our experiments, we use
YARN containers. We schedule one container per VM
and thus use the terms interchangeably.

Analytics Service: Storage Once a user purchases an
SLA and before they can query their data, PerfEnforce
prepares their data by ingesting it into fast networked
storage, EBS volumes in our prototype. Figure 3 mo-
tivates our choice. The figure shows the median query
execution times across three runs for a variety of stor-
age options available on Amazon Web Services (AWS).
The y-axis shows the runtime relative to local storage.
Queries on the x-axis are sorted by local storage runtimes
in ascending order. The 70 queries shown are based on
a 100SF TPC-H SSB dataset on Myria [54] running on
32 i2.xlarge instances. As the figure shows, fast net-
worked storage, such as EBS-HighIOPS, provides per-
formance competitive with ephemeral storage, even on a
cold cache query, without the need to dynamically mi-
grate (or replicate) data fragments as VMs are added
and removed from the shared pool. This type of stor-
age is also affordable at less than 20% of the cost of a
VM. Because we seek dynamism and must support data-
intensive processing, fast networked storage is appealing.

During query execution, PerfEnforce attaches EBS
volumes to different VMs and detaches them as needed.
Each EBS volume holds a partition of the data, resulting
in a standard shared-nothing configuration. To avoid data
shuffling overheads due to scaling, PerfEnforce ingests

Figure 4: Example performance SLA provided by
PSLAManager with one service tier. Additional ser-
vice tiers would show similar query templates but
with different prices and performance thresholds.

multiple copies of each table. Each copy is partitioned
across a subset of EBS volumes such that, when a query
executes over a set of k containers, it uses the version
of its data spread across k EBS volumes. Due to space
constraints, we refer to our technical report for further
details on EBS data placement and its negligible impact
on performance [43].

SLA Generation To generate SLAs, we use a sys-
tem from our prior work, the PSLAManager [41], but
our system could work with others. PSLAManager takes
as input a database schema and statistics associated with
a database instance for a tenant (we use the term user
and tenant interchangeably). It generates a performance-
based SLA specific to a database instance as shown
in Figure 4 for the TPC-H Star Schema Benchmark [40].
Each tier has a fixed hourly price, which maps to a pre-
defined set of storage and compute resources, along with
sets of grouped queries where each group contains a time
threshold (“Runtime” in the figure). The time threshold
represents the performance guarantee for its respective
group of queries and corresponds to query time estimates
made by the SLA generator for the corresponding re-
source configuration. For each resource configuration,
we only consider varying the number of instances, but
consistently use a standard network, and EBS-HighIOPS
for storage across all configurations.

Each tier represents a performance summary for a
specific set of containers the service can use for ten-
ant queries, which we call a configuration. Tiers can
correspond to different types and numbers of contain-
ers, but we use a single type in our experiments. We
refer to all possible configurations that the system can
use to execute a query as the set configs. For exam-
ple, config = {2, 4, . . . , 64}, represents all even num-
bers of containers up to a maximum of 64. The system
shows tiers for a pre-defined subset of these configura-
tions. Later, it can schedule queries using the full set of
configurations. The price of each tier is at least the sum
of the hourly cost of the containers and network storage.

When a tenant purchases a performance SLA, she un-
knowingly purchases a configuration. The system starts
a query session for the tenant and the latter starts paying
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the corresponding fixed hourly price. During the session,
the tenant issues queries. The queries get queued up and
execute one after the other, each one running in the entire
set of containers in the purchased configuration. As we
present in Section 3, PerfEnforce changes these alloca-
tions over time based on how fast they execute compared
with the initial SLA time.

2.2 Double Nested Learning
To drive the SLA generation, SLAOrchestrator maintains
a log of all past queries executed in the system. Ini-
tially, it executes queries from a 100GB dataset generated
by the Parallel Data Generation Framework(PDGF) [45].
The system runs queries on all configurations that it
will sell to populate the query log. With this informa-
tion, SLAOrchestrator builds a model of query execution
times. Each query is represented by a feature vector. Fea-
tures correspond to query plan properties including the
number of tables being joined, their sizes, the query cost
estimates from the query optimizer, the number of con-
tainers in the configuration, etc. SLAOrchestrator learns
a function from that feature vector to a query execution
time. In our work, we use a simple linear model as in
prior work [41, 53]. More complex models are possible
but we find a simple linear model to yield good results
for the select-project-join queries that we focus on in this
paper. With this model, predictions are made by learning
the coefficients (a weight vector, w) [9] given the query
features, xq: y(xq, w) =

∑D
d=1 wd · xqd .

With our previous PSLAManager work [41], we ob-
served that when a new tenant joins the system, estimates
for that tenant’s queries are likely to be inaccurate be-
cause the system has limited information about the tenant
data and queries (only statistics on base data). However,
as the tenant starts to execute queries, the system can
quickly learn the properties of the data and can special-
ize its model to that data. PerfEnforce uses this informa-
tion to dynamically adjust query scheduling and resource
provisioning decisions in the context of an existing SLA.
We call this the Inner Learning Loop. The effect of this
learning is also that the system updates the SLA that it
offers after each query session. This is SLAOrchestra-
tor’s Outer Learning Loop. The benefit of more precise
SLAs to tenants is the overall reduction in the service
cost. We use TensorFlow [1] to build this model and train
on the PDGF dataset. We generate 4000 queries (500 per
configuration) and record the features as well as runtimes
into the System Model.

Figure 2 shows in more detail how SLAOrchestrator
components interact with one another. Steps 1 through 6
denote the Inner Learning Loop: (1) Each tenant query,
q is issued through the service front-end. (2) PSLAMan-
ager determines q’s promised SLA time based on the ser-
vice tier that the user previously purchased. (3) PerfEn-

force uses query scheduling algorithms in conjunction
with the System Model to determine the number of con-
tainers to schedule for q. (4) PerfEnforce schedules q on
the Analytics Service. (5) The Analytics Service sends
metadata about the query to the Query Log. (6) The Sys-
tem Model parses the Query Log metadata and stores
features for the learning models. Once a tenant com-
pletes their session, SLAOrchestrator initiates the Outer
Learning Loop. In Step 7, the PSLAManager system
takes the information from the System Model and gener-
ates an improved SLA.

In the next two sections, we focus on the PerfEnforce
subsystem and its query scheduling (Section 3) and re-
source provisioning (Section 4) algorithms, which are
part of SLAOrchestrator’s inner learning loop.

3 Dynamic Query Scheduling
Every time a new tenant purchases a service tier, PerfEn-
force begins a query session for that tenant. The initial
state of the query session indicates the configuration (i.e.,
number of containers) that corresponds to the purchased
service tier. Many sessions are active at the same time
and PerfEnforce receives streams of queries from these
active tenants. Each query is associated with a possi-
bly imperfect SLA. That is, the query may run signifi-
cantly faster or slower than the SLA time if scheduled
on the purchased set of containers. PerfEnforce’s goal
is to determine how many containers to actually use for
each query with the goal to minimize operation costs. In
this section, we present PerfEnforce’s query scheduling
algorithm.

3.1 Optimization Function
Consider a cloud service operation interval T =
[tstart, tend]. The total operating cost to the cloud dur-
ing that interval is the cost of the resources used for the
service and the cost associated with SLA violations for
tenants active during that interval. Thus, PerfEnforce’s
goal is to minimize the following cost function :

cost(T ) = costR(T ) +
∑

u∈U(T )

(penalty(u)) (1)

where U(T ) is the set of all tenants active during time
interval, T , and costR(T ), is given by:

costR(T ) =
tend−1∑
t=tstart

costt(resources) (2)

where costt(resources) represents the cost of re-
sources for time interval [t, t+ 1], which depends on the
size and the price of individual compute instances.

The SLA penalty, penalty(u), is the amount of money
to refund to user u in case there are any SLA violations.
In this paper, we use the following formulation:

S
( 1

|Wu|
∑

q∈Wu

max(0,
treal(q)− tsla(q)

tsla(q)
)
)
∗ α ∗ pu (3)

whereWu is the sequence of queries executed by user
u, treal(q) is the real query execution time of query q,
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Algorithm
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Figure 5: Examples of Distributions of Query Perfor-
mance Ratios

tsla(q) is the SLA time of q, pu is the session price paid
by user u in the absence of SLA violations, and α is a
configurable parameter that we vary in our experiments
to adjust the cost of SLA penalties compared with con-
tainer resource costs. S is a step function that rounds up
and truncates values. This step function is inspired by
real SLAs in cloud services that incur penalties based on
availability outages [8, 49, 51].

3.2 Query Scheduling Algorithms
For each query q ∈ Wu and for each user u, PerfEn-
force’s query scheduling algorithm must determine the
number of containers from the shared pool to allocate to
the query. PerfEnforce begins with using the number of
containers that corresponds to the purchased service tier.
It observes the resulting query runtimes and dynamically
adjusts the number of containers for subsequent queries
by using a scaling algorithm. It runs a scaling algorithm
separately for each tenant.

To minimize resource costs, the scaling algorithm
should schedule queries on the smallest possible num-
ber of containers. To avoid SLA penalties, however, it
must schedule queries on sufficiently large numbers of
containers to ensure that the real query execution time,
treal(q), is below the SLA time, tsla(q). We define the
query performance ratio as treal(q)

tsla(q)
and the goal of the

query scheduling algorithm is thus to execute each query
in the configuration that yields a performance ratio of
1.0. In practice, if the query scheduling algorithm aims
for query performance ratios of X , it will yield a query
performance ratio distribution around X as illustrated in
Figure 5. To illustrate our point, we plot synthetic Gaus-
sians. Real distributions are noisier. Since we can ad-
just the mean of the distribution (a.k.a. setpoint), X , the
quality of the scheduling algorithm is determined by the
tightness of the distribution around X . In other words, if
the distribution is wide (large standard deviation σ), then
the system is either wasting resources for many queries
(Figure 5a) or causing a large number of SLA violations.
A good query scheduling algorithm should yield a tight
distribution as in Figure 5b).

3.2.1 Reactive Scaling Algorithms
A reactive algorithm observes errors between the real and
SLA runtimes and adjusts the number of containers ac-
cordingly for each subsequent query. We implement a
Proportional Integral (PI) controller and a Multi-Armed-

Bandit (MAB) as our reactive methods. Both of these
techniques have successfully been used in other resource
allocation contexts [31, 33, 35, 37].

A limitation of the these techniques is that the config-
uration size chosen for a new query depends only on the
rewards or errors of previous queries ignoring the fea-
tures of the current query. We use the reactive methods
as baseline.

Proportional Integral Control (PI). Feedback con-
trol [28] in general, and PI controllers in particular, are
commonly used to regulate a system in order to ensure
that it operates at a given reference point. With a PI con-
troller, at each time step, t, the controller produces an
actuator value u(t). In our scenario, this is the number
of containers to use for the current query. The actuator
value, causes the system to produce an output y(t+1) at
the next time step. We compute y(t) as the average query
performance ratio over some time window of queries w:
y(t) = 1

|w|
∑
q∈w

treal(qj)
tsla(qj)

where |w| is the number of
queries in w. The goal is for the output, y(t), to be equal
to some desired reference output r(t), 1.0 in our setting.

The error e(t) = y(t) − r(t) captures a percent error
between the current and desired average runtime ratios.
Since the number of containers to spin up and remove
given such a percent error depends on the configuration
size, we add that size to the error computation as follows:
e(t) = (y(t)− r(t))u(t).

The PI controller, chooses the next number of contain-
ers as a combination of the initial configuration size u(0),
the most recently observed error, e(t), and the sum of all
accumulated errors

∑t
x=0 e(x). kp and ki are tunable

controller parameters, which determine how strongly the
controller reacts to recent errors and how much it weighs
history: u(t+ 1) = u(0) +

∑t
x=0 kie(x) + kpe(t)

Multi-Armed Bandits (MAB). In a MAB problem,
the system must repeatedly choose among k different op-
tions, or arms. At each timestep t, the system makes a
decision by selecting one of k arms, at, and receives a re-
ward, rt [50]. In our setting, each arm is a configuration
from the set configs. The arm choice is the decision to
schedule the next query using a given configuration size.

The goal is to maximize the total reward across many
timesteps. In the bandit setting, the algorithm must learn
the reward distributions for different arms through a pro-
cess of trial and error [9]. At each timestep, the system
must thus choose to either select the arm with the high-
est estimated reward (exploitation) or try another arm
(exploration) in order to acquire more information and
maximizing the reward across all timesteps [50].

To help balance between exploration and exploitation,
we use a heuristic known as Thompson Sampling [10].
During initialization, we define priors describing the ex-
pected reward of each arm. In our setting, we do not
make assumptions for each configuration. Instead, we
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initialize the model for each arm using a uniform dis-
tribution, a noninformative prior. At timestep t, the sys-
tem constructs a posterior distribution for each arm based
on observed rewards, P (θ|a, r0, ..., rt−1), where θ rep-
resents the model parameters. For each query submitted,
the system samples from a candidate posterior distribu-
tion, defined as θ̂. Given that our prior is based on a
uniform distribution, we use a t-distribution to represent
our posterior. This t-distribution takes the reward mean,
variance, and count as input. As the system samples from
this posterior, we select the arm with the highest expected
reward, argmaxaE[P (rt|θ̂α)].

3.2.2 Proactive Scaling Algorithms
To address the limitations of the reactive techniques, we
consider two other scaling algorithms that both include
additional context, xq , for each incoming query, where
xq is a D−dimensional vector of features describing the
query, xq = (xq1 , ..., xqD )

T . To generate the feature vec-
tor, we use the query optimizer of the back-end query ex-
ecution engine and include information from the query
plans (e.g. number of columns, estimated costs, esti-
mated rows, estimated width, and the number of workers
scheduled to run the query).

Contextual Multi-Arm Bandit (CMAB). This ap-
proach is a variant of the multi-armed bandit problem
that includes contextual information. In a CMAB prob-
lem, at each timestep t, the algorithm receives a feature
vector, xq , as input, and uses it to determine the best arm,
at. CMAB does this by building a model for each con-
figuration that predicts the reward in that configuration
given a query feature vector. The expected value of the
reward for each arm and feature vector thus becomes:
q?(a) = E[rt|at, xq, θ].

Where θ represents the parameters of the generated
model [10]. As with MAB, PerfEnforce uses the Thom-
son sampling heuristic to balance exploration and ex-
ploitation. At each timestep t, PerfEnforce builds a pre-
dictive model for each state by computing a bootstrap
sample over all previous observations. PerfEnforce se-
lects the action that corresponds to the state with the best
predicted reward (i.e., reward closest to 1.0). In our pro-
totype implementation, we use the REPTree model from
Weka [22] as used in BanditDB [37]. For the first N
queries in a tenant’s session, we begin with a “warm-
up” phase where we execute queries a small number of
times in each configuration to initialize the observations
for that configuration. PerfEnforce runs the “warm-up”
session at the start of the query session, which could im-
pact performance for some queries.

Online Learning The CMAB technique described
above presents two practical challenges. First, it is dif-
ficult to determine the number of queries that should be
used to initialize the distributions for each state. At least
one query must be executed in each state, which can

be either unnecessarily expensive or undesirably slow.
The overhead especially penalizes short query sessions
as early queries undergo larger amounts of exploration.
Second, the observations collected are independent for
each state. If one configuration suddenly results in
slower or faster runtimes, this knowledge does not prop-
agate to other states.

Because of the above limitations, we propose a differ-
ent algorithm for our setting. We build a single model
of query execution times with the configuration size as a
feature. As a user executes queries, we always schedule
those queries in configuration sizes expected to yield the
best performance ratio and use the resulting query exe-
cution times to update our global model.

As described in the previous section, SLAOrchestrator
maintains a model of query execution time that it uses
for SLA generation. The idea here is for PerfEnforce to
continuously update that model, during a tenant’s query
session, based on the measured query execution times.
To update the model, PerfEnforce uses stochastic gra-
dient descent. For each data point, it slowly updates the
weight vector based on the gradient of a loss function,E:
w(τ+1) = w(τ) − η∇E [9]. Where τ represents the nth
data point and η represents the learning rate. Importantly,
PerfEnforce maintains a separate model of query execu-
tion time for each dataset so as to specialize its model
to the properties of that dataset. If the underlying data
significantly changes, the model could take time to ad-
just to changes, depending on the learning rate. Since we
primarily focus on analytic sessions, we do not evaluate
how this model adapts to updates. Training this model is
relatively cheap, taking approximately 2.38s for a single
epoch. Each prediction takes ∼10ms.

Setpoint Adjustment With all algorithms above, Per-
fEnforce strives to schedule queries such that their per-
formance ratios form a tight distribution around a desired
setpoint. An important question is how to tune the value
of that setpoint. If the setpoint is 1.0 and the mean of the
distribution falls on that setpoint, 50% of all queries will
miss their SLA times. The setpoint can be lowered such
that more, perhaps 90% of all queries, meet their SLA
time. Lowering the setpoint, however, will increase the
number of containers used for those queries and will thus
raise resource costs. In SLAOrchestrator, we adjust the
setpoint dynamically. We do so at the same time as we
make cluster provisioning decisions as described next.

4 Dynamic Provisioning
With the above query scheduler, the total number of con-
tainers needed to service the active set of tenants varies
over time. To reduce operation costs, PerfEnforce in-
cludes a resource provisioning component that deter-
mines when to grow and shrink the shared pool of com-
pute resources. Provisioning is particularly challenging
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as it can take time to spin up new virtual machines. We
observe that it takes approximately 12 seconds to spin up
a virtual machine with a pre-loaded image on Amazon.
We consider this start up time throughout our evaluation.

Utilization Provisioning: The most common ap-
proach to resource provisioning is to maintain a de-
sired resource utilization level. Typically, this means
adding (or removing) resources when CPU, I/O, network
and memory usage move beyond (or below) set thresh-
olds [3, 8, 21, 48].

We posit, however, that measuring resource utilization
levels directly is not the right approach for PerfEnforce
because tenants are allocated resource containers. As
such, some tenants might execute I/O intensive work-
loads while others may run CPU intensive workloads,
leading to very different resource utilization levels for
various containers. In general, high resource utilization
does not imply a higher demand for resources [14].

Instead of aiming for a given CPU or I/O utilization
goal, we aim for an average VM utilization target, Z.
The utilization of each machine is measured by the per-
centage of time it is actively running queries (wall clock
time). For our target Z, we aim for an average utiliza-
tion across all shared VMs, AvgUtilization.To deter-
mine the number of machines the system should provi-
sion to meet Z, we implement a PI controller where the
set point isZ. Besides wall clock time, we note that other
metrics for system state could be used as well. For exam-
ple, the system could target a desired percentage of idle
machines or a desired tenant query queue length.

Simulation-based Provisioning: For a more proac-
tive approach to provisioning, we propose to explicitly
consider tenant recent workloads rather than only mea-
sure resource utilization. Specifically, we propose to
build models of tenant workloads and estimate the small-
est number of shared resources to support these modeled
workloads. This approach should be more effective than
simply looking at utilization, since the latter is tightly
coupled with the specific set of executed queries and the
query scheduler’s resource allocation decisions, which
are themselves constrained by the amount of shared re-
sources. To estimate the best number of shared resources
to support tenant modeled workloads, we use simula-
tions. This approach is not new and has been recently
used in the “What-If” engine from Tempo [52], where
the goal is to simulate the performance of many config-
urations of the MapReduce Resource Manager. We aim
to understand how such a provisioning algorithm in com-
bination with a learning query scheduler can help make
profitable decisions in a multi-tenant service.

In this provisioning approach, we model each tenant,
u, with a tuple (Qu, λu), whereQu is a set of queries that
the tenant may issue and λu is the tenant’s average think
time between consecutive queries. PerfEnforce learns
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Figure 6: SLA improvements across query sessions
both values from a recent window of each tenant’s query
session. Based on these models, PerfEnforce then gener-
ates random sessions for each active tenant. To generate
a random session, PerfEnforce samples queries from the
recent query workload and also samples the think time
based on a Poisson distribution. During these simula-
tions, we also evaluate the costs of dynamically shifting
the setpoint. In general, these simulations help PerfEn-
force discover whether setpoint adjustments are neces-
sary for active tenants or whether nodes should be added
or removed to further save on costs.

5 Evaluation
We run SLAOrchestrator and execute all queries on
Amazon EC2 using i2.xlarge (4 ECU, 30 GB Mem-
ory) instance types priced at $0.12/hr. We consider
eight types of query scheduling configurations, each with
a different number of compute instances: configs
= {4, 8, 12, 16, 20, 24, 28, 32}. For multi-tenant exper-
iments, we run simulations with up to thousands of
servers and use the query times measured on EC2. For
our underlying shared-nothing, database management
system, we use Myria [54]. Myria uses PostgreSQL as
its storage subsystem.

To generate each tenant’s query sequence,Wu, we al-
ternate between different patterns of queries. For exam-
ple, one tenant might run small, lightweight queries for a
majority of the session before switching to queries with
larger joins and higher latencies. Thus, for some ran-
dom number of queries, k, we define the following three
discrete distributions: (1) number of joins, (2) number
of projected attributes, and (3) selectivity factor. For
the next k queries, we sample from each of these dis-
tributions and generate a query that meets all the sam-
pled characteristics. Once k queries are generated, we
define new distributions for the next random interval of
queries. We use both uniform and skewed (zipfian) distri-
butions. Unless stated otherwise, all the query workloads
throughout the evaluation are generated in this fashion.

5.1 Evaluation of SLA Predictions
A key tenet of SLAOrchestrator is the idea that the sys-
tem should update SLAs because they rapidly improve
as a tenant queries a database. We validate this hy-
pothesis in this section. Figure 6 shows the error of
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the SLA predictions for four tenants, each with a dif-
ferent, random star schema [45] and database instance:
T1 = 10GB, T2 = 25GB, T3 = 50GB, T4= 100GB.
We generate a set of SPJ queries with random selection
predicates for each tenant. As tenants execute queries,
SLAOrchestrator updates the query time model sepa-
rately for each database. After each query batch, PSLA-
Manager re-generates an updated SLA. As the figure
shows, in all cases, the RRMSEs (relative root mean
squared errors) between the real runtimes and the pre-
dicted SLA runtimes decreases rapidly after the first
batch and then improves more slowly. We compute the
error on a sample of queries generated by the PSLA-
Manager for the tenant SLA. We measure the RRMSE

as:
√

1
|W|

∑
q∈W( (treal(q)−tsla(q))

tsla(q)
)2. The prediction er-

rors observed before running an initial batch of queries
(Query Batch 0), are highly dependent on the similarity
between the tenant’s database and the synthetic database
used to train our offline base model. In our experiments,
while databases differ in their schemas and table sizes,
we find that table sizes have the greatest impact on pre-
diction errors. Our offline model is trained on a gener-
ated 100GB PDGF dataset. We observe a higher initial
RRMSE error (approx. 2.4-2.5) for tenants T1 and T2
with the smaller databases.

5.2 Evaluation of Query Schedulers
The goal of each query scheduler is to ensure a tight dis-
tribution (small σ) of query performance ratios around
a µ close to 1.0 (later in Section 5.4, we consider dy-
namic setpoint tuning). In this section, we evaluate how
the different scheduling algorithms perform in the face
of different tenant workloads. All tenant workloads are
based on the 100GB TPC-H SSB benchmark [40]. We
evaluate the algorithms using different-quality SLAs as
shown in Table 1, which could correspond, for example,
to different model qualities as shown in Section 5.1.

We first evaluate the PI-Control scheduling algorithm
on four different SLA types and, in each case, on 10 dif-
ferent, randomly generated, tenant query sessions. We
execute the PI controller on each tenant’s query session
independently and measure the resulting query perfor-
mance distribution for that tenant. We then compute the
average µ and σ across these 10 distributions and plot
them in the first row of Figure 7. The y-axis represents
the distance between µ and 1.0, while the x-axis displays
the standard deviation of the query performance distribu-
tions. Because the PI controller has three tunable param-
eters (kp, ki and w), each point in the figure corresponds
to one such parameter combination. For each graph, we
also plot the average distribution of an Oracle, which al-
ways selects the best configuration size for each query.
The best parameter combinations are those closest to the
Oracle. If any technique’s parameters result in a distri-

bution with a higher σ or a µ farther from 1.0, this error
impacts cost, which ultimately depends on the cost func-
tion. As the figure shows, for all SLAs, the PI-Control al-
gorithm results in average distributions that are far from
the average distribution of the Oracle. There are no best
set of parameters that work across all workloads.

In the second row of Figure 7, we show the aver-
age distributions for MAB, CMAB, and online learning
across the same set of SLA types and tenant query ses-
sions. Note, the ranges for the axes are much smaller for
these graphs compared to the PI-Controller, which shows
that these techniques result in average distributions much
closer to the Oracle. For both bandit techniques, we ex-
ecute each tenant’s query session 20 times due to their
variance when sampling. For online learning, we vary
the learning parameter, η. In the first 4 columns of the
figure, we omit the performance ratios for the first 20
queries for all scaling techniques, since the bandits re-
quire an initial “warm-up” phase, where they need to try
each configuration at least two times.

For the SG SLA, the bandit techniques result in av-
erage distributions nearly identical to the Oracle. Since
both techniques rely on learning a distribution of query
performance ratios per configuration, they quickly find
the optimal configuration during the warm-up phase and
select this configuration for a majority of the queries.
Since the online learning technique is directly predicting
the runtimes for each query, the prediction errors result in
average distributions that are slightly farther away from
the Oracle. For the PLJ SLA, all techniques perform sim-
ilarly as most of the runtimes are meet at configurations
that are close to the purchased tier. In contrast, online
learning outperforms both bandit-based methods for the
NLJ and Initial SLAs. The NLJ SLA underestimates run-
times, which requires the schedulers to accurately choose
across a wider set of configuration options. For these
more difficult cases, context is critical as the schedul-
ing algorithm must make different decisions for differ-
ent queries. There is no single best configuration. As
a result, CMAB and the online learning approach both
outperform the simpler MAB scheduler. Online learn-
ing further outperforms CMAB because this technique
is able to quickly learn the performance correlations be-
tween configurations, which is crucial for the initial SLA
as it requires scaling for each query.

The final column shows the average performance ra-
tio distributions when using the initial SLA and includ-
ing the queries in the warm-up period. As the figure
shows, the online learning technique significantly out-
perform the bandit-based methods because it has the ex-
tra benefit of starting to learn from the offline model and
learning more quickly because it learns a single model
for all configurations. These results show that the PI con-
troller is ill-suited to our problem and we do not consider
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SLA Description

Small Gaussian Error
(SG SLA)

SLA assumes a good prediction model and tests sensitivity to small errors (or variance) in query times. Generated by
taking the real query execution times at the purchased tier and adding a small Gaussian error:
N = (σ = 0.1 ∗ treal(q), µ = 0).

Positive/Negative Gaussian
Errors for Large Joins
(PLJ/NLJ SLA)

We skew SLA runtimes for some query types. We introduce large positive/negative errors to the real runtimes on
queries with a large number of joins (> 3 joins) and with a runtime >100 seconds. We update the runtime to
treal(q) + |e| (or −|e|), where e is sampled from a Gaussian distribution,
N = (σ = 0.3 ∗ treal(q), µ = 0). For other queries, we still inject small errors as in SG SLA.

Initial SLA This is the least accurate SLA, where runtimes are generated by an initial offline-trained model.
Table 1: SLAs used in experiments.

Figure 7: Evaluation of PI-Controller, MAB, CMAB and online learning scheduling algorithms

MAB CMAB Online Learning Oracle
µ 1.1368 1.1244 1.0161 1.0015
σ 0.1680 0.0871 0.0522 0.0008

Table 2: Ratio distributions during slow down
it further.

We now evaluate how query scheduling algorithms
can adapt to changing conditions. Recall, the goal of
these query schedulers is to ensure a query performance
ratio distribution close to 1.0. We generate a query se-
quence by selecting one query and running it repeatedly
several times. Each time we run this query, we record the
query performance ratio. Once we reach the 250th itera-
tion, we increase the query’s runtime by 25% (essentially
slowing down the system) for the rest of the session, run-
ning up to 1000 iterations. Table 2 shows that the on-
line learning technique reacts the fastest to this change in
conditions, leading to an overall mean performance ra-
tio closest to 1.0. We omit additional experiments with
different changing workloads due to space constraints.

5.3 Evaluation of Provisioning Algorithms
We first evaluate each provisioning algorithm in com-
bination with the Oracle query scheduler to ensure that
query runtime penalties are not a side-effect of the query
scheduler’s mispredictions. We launch each multi-tenant
tenant session based on session parameters summarized
in Table 3.

We introduce up to 100 tenants in a session and

Notation Description
Uinit Initial number of tenants in the session
Vinit Initial number of virtual machines
λarrival Average time between new tenants
λthinktime Average tenant think time
λterminate Average tenant session duration
M Provisioning monitoring time interval

Table 3: Parameters of multi-tenant experiments

simulate a shared cluster with thousands of contain-
ers/VMs. We sample arrival times, think times, and
session durations from Poisson distributions defined by
their corresponding parameters λarrival , λthinktime and
λterminate. PerfEnforce always keeps at least a mini-
mum of 4 machines launched at all times, to ensure that
there are enough machines available to execute queries.
Each provisioning algorithm monitors the shared re-
sources and tenants forM minutes before adding or re-
moving VMs from the pool. Our step function S pro-
vides no service credit if the system misses the runtime
by 10%. For each additional 20% increment and given a
threshold from x% to y%, we increase the credit to y%.

As described in Section 2, each submitted query gets
allocated a set of containers. We schedule one container
(running a Myria process) per VM. For each query, the
system assigns the tenant’s EBS volumes to a set of VMs
in the pool. After the query completes, the volumes are
detached from the VMs, making them available to other
tenants. We find it takes 4 seconds to mount a volume to
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Figure 8: Comparing utilization-based and simulation-based provi-
sioning in conjunction with an Oracle query scheduler. The hash pat-
tern represents the proportion of the cost due to CostR

Figure 9: Costs of query scheduling in
conjunction with provisioning

a VM. Detaching takes approximately 11 seconds. We
include these delays in the experiments.

Utilization and Simulation-based Provisioning We
compare the multi-tenant session costs when provision-
ing VMs using either the utilization-based or simulation-
based approaches. We launch 100 VMs with 10 ini-
tial tenants and set the provisioning monitoring time to
20min. Figure 8 shows the results and the other experi-
mental parameters. For different average utilizations, Z,
we show the results for the best parameter values Vkp
and Vki . The y-axis shows the cost per time unit, while
the x-axis shows the value of the α parameter. Recall
from Equation 3 that we define α as a tunable parameter
that amplifies the weight of the SLA penalty compared
to the resource cost. The hash pattern in each bar repre-
sents the proportion of the cost due to CostR, the cost
of resources. Other costs come from SLA violations.
Error bars show variance across 10 runs. As expected,
the utilization-based method requires tuning depending
on the α value. Simulation-based provisioning has the
double-benefit of avoiding any tuning and more cost ef-
fectively provisioning shared resources compared to the
utilization-based approach.

Combining Scheduling and Provisioning We now
evaluate the performance of simulation-based provision-
ing in conjunction with various query scheduling algo-
rithms on the initial SLA. In Figure 9, we vary alpha (x-
axis) and measure the total cost compared with an Oracle
query scheduler (y-axis). As a baseline, we also include
a naive query scheduler, static, which simply schedules
each query on the configuration initially purchased by
the user. We also include utilization-based provisioning
at Z = .25 (using online learning as the query sched-
uler). We still initialize the session with 10 tenants, but
we start with a larger pool of 320 VMs, allowing enough
room to have each initial tenant schedule queries on up to
32 containers. In this experiment, since we also include
CMAB, we extend the session times to 180 to ensure the

algorithm has more time to operate in steady state (be-
yond the warm-up phase).

Overall, simulation-based provisioning continues to
outperform the utilization-based approach even with a
less perfect scheduler. Even when penalties are high,
simulation-based provisioning reduces costs by 11%
and more for lower penalties. Additionally, the online
learning-based scheduler yields similar costs to the Or-
acle scheduler (a 4% overhead). As expected, it sig-
nificantly outperforms the static scheduler and CMAB
when SLA penalties are expensive, with 20% cost sav-
ings. CMAB does worse because it causes more SLA
violations. For small α, the CMAB approaches result
in costs lower than even the Oracle scheduler. This is
because the CMAB’s warm-up phase initially schedules
queries on all available configurations (even small con-
figurations), which then causes the simulation approach
to provision less resources. Throughout the session, re-
sources are not added back in due to the low α value.

5.4 Dynamic Setpoint Tuning

Finally, we evaluate the benefits of dynamic setpoints to-
gether with the relative benefits of the other optimiza-
tions. Figure 10a shows the results. In the figure, we
start with SLAOrchestrator as initially shown in Figure 1.
We then remove optimizations one at a time in order.
First, we remove the ability to use dynamic setpoints,
followed by removing SLA improvements, scheduling
and provisioning. We remove these optimizations to run
SLAOrchestrator as a simpler multi-tenant system. To
emphasize the differences between optimizations, we use
α = 2 and α = 3. In this experiment, we start the ses-
sion with 5 tenants and 80 VMs (ensuring 16 nodes per
tenant, the amount they have purchased). New tenants
arrive approximately every 5 minutes, and tenants finish
their session after 180 minutes. As seen in the figures,
removing each optimization increases the cost. This is
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(b) α = 3
Figure 10: Performance when disabling different
SLAOrchestrator optimizations

especially apparent for α = 3, where SLAOrchestrator
decreases the cost by up to 59% compared to the case
with no optimizations.

5.5 Evaluation Discussion

The SPJ query workloads we use throughout the eval-
uation allow us to demonstrate a proof of concept for
SLAOrchestrator. Incorporating more complex query
workloads (e.g., considering aggregates and subqueries),
would impact the online learning and CMAB techniques
as they would require more advanced models and more
extensive feature engineering than those considered in
this work. Second, for a more thorough provisioning
evaluation, running SLAOrchestrator against real tenant
traces would help to better understand how the system
would behave under more bursty workloads.

6 Related Work

Elastic Scaling for Performance Guarantees Perfor-
mance guarantees have been the focus of real-time
database systems [30], where the goal is to sched-
ule queries in a fixed-size cluster and minimize dead-
lines. Provisioning and admission control methods have
enabled OLAP and OLTP systems to make profitable
choices with respect to performance guarantees [12,
11, 56], possibly postponing or even simply rejecting
queries. Work by Das et. al [14], uses telemetry to
determine whether to scale up containers within a sin-
gle node, whereas our goal is to scale the number of
containers per query. Ernest [53], CherryPick [2], Mor-
pheus [29] and CloudScale [48] find good configura-
tions for analytical workloads, but require representa-

tive workloads or repeated tenant usage patterns. Sev-
eral systems have studied performance SLAs through
dynamic resource allocation, including feedback con-
trol [33], and TIRAMOLA [31] which use reinforcement
learning techniques. Others leverage decisions based
on resource utilization goals [13, 15, 19, 39, 51, 57].
Tempo [52] simulates the performance of many MapRe-
duce Resource Manager configurations to meet a global
system objective, but jobs can be preempted to allow
high priority tenants to finish first.

Multi-Tenant Workload Consolidation Related
work addresses bad tenant packings by either finding a
good initial placement strategy or dynamically migrat-
ing tenants [15, 17, 32, 34, 51, 55]. Finding a good ten-
ant placement strategy is not the focus of our work. In-
stead, we focus on algorithms that help determine when
to launch or turn off machines.

Query Runtime Prediction Previous work has re-
lied on techniques to find whether a query will miss a
deadline [56], build gray-box performance models [20],
use historical traces of workloads [18], use benchmarks
to profile resources [58], or run smaller samples of the
workload [53]. Herodotou et. al. [24], assumes a previ-
ously profiled workload to predict the runtime through-
out different sized clusters. Jalaparti et. al. [27] gen-
erates resource combinations given performance goals.
Instead of building an analytical model, we use a model
that does not require an extensive understanding of a sin-
gle system. We also focus on ad-hoc queries with no
prior profiles.

Provisioning In terms of provisioning, some rely on
machine learning techniques such as the hill-climbing
approach seen in Marcus et. al. [37], which allows ma-
chines to learn an optimal time to wait before they shut
down. Neural networks for dynamic allocation [38] or
dynamic provisioning [44] have also been used, but have
distinct goals. One focuses on allocating resources with
minimal use of electrical power while the other assumes
predictable workloads.

7 Conclusion
We presented SLAOrchestrator, a new system designed
to minimize the price of performance SLAs in cloud an-
alytics systems. SLAOrchestrator uses a double learn-
ing loop that improves SLAs and resource management
over time. To support the latter, the system also includes
an efficient combination of elastic query scheduling and
multi-tenant resource provisioning algorithms that work
toward minimizing service costs. Experiments demon-
strate that SLAOrchestrator dramatically reduces service
costs for a common type of per-query latency SLAs.
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Spindle: Informed Memory Access Monitoring

Haojie Wang∗†, Jidong Zhai∗, Xiongchao Tang∗†, Bowen Yu∗, Xiaosong Ma†, Wenguang Chen∗

Abstract
Memory monitoring is of critical use in understanding
applications and evaluating systems. Due to the dynamic
nature in programs’ memory accesses, common practice
today leaves large amounts of address examination and
data recording at runtime, at the cost of substantial per-
formance overhead (and large storage time/space con-
sumption if memory traces are collected).

Recognizing the memory access patterns available at
compile time and redundancy in runtime checks, we pro-
pose a novel memory access monitoring and analysis
framework, Spindle. Unlike methods delaying all checks
to runtime or performing task-specific optimization at
compile time, Spindle performs common static analy-
sis to identify predictable memory access patterns into
a compact program structure summary. Custom mem-
ory monitoring tools can then be developed on top of
Spindle, leveraging the structural information extracted
to dramatically reduce the amount of instrumentation
that incurs heavy runtime memory address examina-
tion or recording. We implement Spindle in the popu-
lar LLVM compiler, supporting both single-thread and
multi-threaded programs. Our evaluation demonstrated
the effectiveness of two Spindle-based tools, perform-
ing memory bug detection and trace collection respec-
tively, with a variety of programs. Results show that
these tools are able to aggressively prune online mem-
ory monitoring processing, fulfilling desired tasks with
performance overhead significantly reduced (2.54× on
average for memory bug detection and over 200× on av-
erage for access tracing, over state-of-the-art solutions).

1 Introduction
Memory access behavior is crucial to understand ap-

plications and evaluate systems. They are widely mon-
∗Department of Computer Science and Technology, Tsinghua
University {wanghaoj15, txc13, yubw15}@mails.tsinghua.edu.cn,
{zhaijidong, cwg}@mail.tsinghua.edu.cn
†Qatar Computing Research Institute, HBKU {whaojie, txiongchao,
xma}@qf.org.qa

itored in system and architecture research, for memory
bug or race condition detection [21, 27, 31], informa-
tion flow tracking [16, 30], large-scale system optimiza-
tion [35, 36, 42], and memory system design [14, 17, 20].

Memory access monitoring and tracing need to obtain
and check/record memory addresses visited by a pro-
gram and this process is quite expensive. Even given
complete source-level information, much of the relevant
information regarding locations to be accessed at runtime
is not available at compile time. For example, it is com-
mon that during static analysis, we see a heap object ac-
cessed repeately in a loop, but does not have any of the
parameters needed to perform our desired examination
or tracing: where the object is allocated, how large it is,
or how many iterations there are in a particular execution
of the loop. As a result, existing memory checking tools
mostly delay the checking/transcribing of such memory
addresses to execution time, with associated instructions
instrumented to perform task-specific processing. Such
runtime processing brings substantial performance over-
head (typically bringing 2× or more application slow-
down [5, 33] for online memory access checking and
much higher for memory trace collection [6, 22, 26]).

However, there are important information not well
utilized at compile time. Even with actual locations,
sizes, branch taken decisions, or loop iteration counts un-
known, we still see patterns in memory accesses. In par-
ticular, accesses to large objects are not isolated events
that have to be verified or recorded individually at run-
time. Instead, they form groups with highly similar (of-
ten identical) behaviors and relative displacement in lo-
cations visited given plainly in the code. The processing
tasks that are delayed to execution time often perform the
same checking or recording on individual members of
such large groups of highly homogeneous accesses. In
addition, the memory access patterns recognizable dur-
ing static analysis summarize common structural infor-
mation useful to many memory checking/tracing tasks.

Based on these observations, we propose Spindle,
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a new platform that facilitates hybrid static+dynamic
analysis for efficient memory monitoring. It leverages
common static analysis to identify from the target pro-
gram the source of redundancy in runtime memory ad-
dress examination. By summarizing groups of mem-
ory accesses with statically identified program struc-
tures, such compact intermediate analysis results can be
passed to Spindle-based tools, to further perform task-
specific analysis and code instrumentation. The reg-
ular/predictable patterns contained in Spindle-distilled
structural information allow diverse types of memory ac-
cess checking more efficiently: by computing rather than
collecting memory accesses whenever possible, even
when certain examination has to be conducted at runtime,
it can be elevated from instruction to object granularity,
with the amount of instrumentation dramatically pruned.

We implement Spindle on top of the open-source
LLVM compiler infrastructure [10]. On top of it, we im-
plement two proof-of-concept custom tools, a memory
bug detector (S-Detector) and a memory trace collector
(S-Tracer), that leverage the common structural informa-
tion extracted by Spindle to optimize their specific mem-
ory access monitoring tasks.

We evaluated Spindle and the aforementioned custom
tools with popular benchmarks (NPB, SPEC CPU2006,
Graph500, and PARSEC) and open-source applications
covering areas such as machine learning, key-value store,
and text processing. Results show that S-Detector can
reduce the amount of instrumentation by 64% on aver-
age using Spindle static analysis results, allowing run-
time overhead reduction of up to 30.25× (2.54× on av-
erage) over the Google AddressSanitizer [33]. S-Tracer,
meanwhile, reduces the trace collection time overhead
by up to over 500× (228× on average) over the polular
PIN tool [22], and cuts the trace storage space overhead
by up to over 10000× (248× on average).

Spindle is publicly available at https://github.
com/thu-pacman/Spindle.

2 Overview
2.1 Spindle Framework

Spindle is designed as a hybrid memory monitoring
framework. Its main module performs static analysis to
extract program structures relevant to memory accesses.
Such structural information allows Spindle to obtain reg-
ular or predictable patterns in memory accesses. Differ-
ent Spindle-based tools utilize these patterns in different
ways, with the common goal of reducing the amount of
instrumentation that leads to costly runtime check or in-
formation collection.

Figure 1 gives the overall structure of Spindle, along
with sample memory monitoring tools implemented on
top of it. To use Spindle-based tools, end-users only
have to compile their application source code with the
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Figure 1: Spindle overview

Spindle-enhanced LLVM modules, whose output then
goes through tool-specific analysis and instrumentation.
More specifically, the common static analysis performed
by Spindle will generate a highly compact Memory
Access Skeleton (MAS), describing the structured, pre-
dictable memory access components.

Spindle tool developers write their own analyzer,
which uses MAS to optimize their code instrumentation,
aggressively pruning unnecessary or redundant runtime
checks or monitoring data collection. In general, such
task-specific tools enable computing groups of memory
addresses visited before or after program executions, to
avoid examining individual memory accesses at runtime.
As illustrated in Figure 1, each of such Spindle-based
tools (the memory bug detector S-Detector and memory
trace collector S-Tracer in this case) will generate its own
instrumented application code. As our results will show,
for typical applications, the majority of memory accesses
are computable given a small amount of runtime infor-
mation, leading to dramatic reduction of instrumentation
and runtime collection.

End-users then execute their tool-instrumented appli-
cations, with again task-specific runtime libraries linked.
The instrumented code conducts runtime processing to
perform the desired form of memory access monitoring,
such as bug or race condition detection, security check,
or memory trace collection. The runtime libraries cap-
ture dynamic information to fill in parameters (such as
the starting address of an array or the actual iteration
count of a loop) to instantiate the Spindle MAS and com-
plete the memory monitoring tasks. In addition, all the
“unpredictable” memory access components, identified
by Spindle at compile time as input-dependent, are mon-
itored/recorded in the traditional manner.

Spindle’s static analysis workflow to produce MAS is
further divided into multiple stages, performing intra-
procedural analysis, inter-procedural analysis, as well
as tool specific analysis and instrumentation. During
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the intra-procedural stage, Spindle analyzes the program
control flow graph and finds out the dependence among
memory access instructions. The dependence check-
ing is then expanded across functions in inter-procedural
analysis.

One limitation of the current Spindle framework is that
it requires source level information of target programs.
As this work is a proof-of-concept study, also consid-
ering the current trend of open-source software adop-
tion [9, 41], our evaluation uses applications with source
code available. Spindle can potentially work without
source code though: it starts with LLVM IR and can
therefore employ open-source tools such as Fcd [7] or
McSema [37] to translate binary codes into IR. In our fu-
ture work we are however more interested in direct static
analysis, performing tasks such as loop and dependency
detection on binaries.

2.2 Sample Input/Output: Memory Trace
Collector

1 void BubbleSort(int *A, int N){
2 for (int i = 0; i < N; ++i){
3 for (int j = i+1; j < N; ++j){
4 bool flag = (A[i] > A[j]);
5 if (flag) {
6 Swap(A, i, j);
7 }}}}
8

9 void Swap(int *S, int i, int j) {
10 int tmp = S[i];
11 S[i] = S[j];
12 S[j] = tmp;
13 }

Figure 2: Sample bubble sort program

Function BubbleSort(dyn_A, dyn_N) {
Loop0: L0, 0, dyn_N, 1 {
Loop1: L1, L0, dyn_N, 1 {
Load1: dyn_A+L0; Load2: dyn_A+L1;
Branch: dyn_flag {
Call Swap(dyn_A, L0, L1);

}}}}
Function Swap(S, i, j) {
Load3 : S+i; Load4 : S+j;
Store1: S+i; Store2: S+j;
}

Static Trace

BubbleSort {
dyn_A: 
0x7fffdfc58320;   
dyn_N: 
10;
dyn_flag: 
{0,0,1,1,0,...,1,1};

}

Dynamic Trace

Figure 3: Memory traces of the bubble sort program

We take S-Tracer, our Spindle-based trace collector, as
an example to give a more concrete picture of Spindle’s
working. Suppose the application to be monitored is the
bubble sort program listed in Figure 2. S-Tracer’s output,
given in Figure 3, is a complete yet compressed memory
access trace, consisting of its MAS (coupled with corre-
sponding dynamic parameters) and dynamic traces col-
lected in the conventional manner.

In the static trace, we list out the structure of the pro-
gram, including the control flow, the memory accesses
pattern and the call graph. There are information items
that cannot be determined during static analysis, such as

the base address of array A and its size N, which is also
the final value of loop induction variables i and j , as
well as the value of flag, which is data-dependent and
determines the control flow of this program. The “Instru-
mented code 1” shown in Figure 1 records these missing
values at executing time, which compose the dynamic
trace shown on the right.

This new trace format, though slightly more com-
plex than traditionally traces, is often orders of magni-
tude smaller. A straightforward post-processor can eas-
ily take S-Tracer traces and restore the traditional full
traces. More practically, an S-Tracer trace driver per-
forming similar decompression can be prepended to typ-
ical memory trace consumers, to enable fast replay with-
out involving large trace files or slow I/O.

3 Static Analysis
3.1 Intra-procedural Analysis

During this first step, Spindle extracts a program’s per-
function control structure to identify memory accesses
whose traces can be computed and hence can be (mostly)
skipped in dynamic instrumentation.

3.1.1 Extracting Program Control Structure
A program’s memory access patterns (or the lack

thereof) are closely associated to its control flows. It
is not surprising that it shares a similar structure with
the program’s control flow graph (CFG). Therefore we
call this graph M-CFG. Unlike traditional control flow
graphs, M-CFG records only instructions containing
memory references (rather than the entire basic block),
program control structures (loops and branches), and
function calls. For loops and branches, we need to record
related variables, such as loop boundaries and branch
conditions.

Flag

Call Swap

End Loop 1

End Loop 0
True

False

Load 1

M-CFG of BubbleSort

Loop 0

Loop 1 

Load 2

Figure 4: The M-CFG for the function BubbleSort

With M-CFG, memory access instructions are embed-
ded within program basic control structures, as illus-
trated in Figure 4 for the aforementioned BubbleSort
function (Figure 2). Here the M-CFG records a nested
loop containing two memory accesses and a branch with
a function call. Subsection 3.1.2 discusses dependence
analysis regarding memory access instructions and iden-
tification of computable memory accesses, while Sec-
tion 3.2 discusses as handling of function calls.

3.1.2 Building Memory Dependence Trees
In Spindle, we classify all memory accesses into either

computable or non-computable types. The computable
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accesses can have traces computed based on the static
trace, with the help of little or no dynamic information;
the non-computable ones, on the other hand, need to fall
back to traditional instrumentation and runtime tracing.

For such classification, we build a memory depen-
dence tree for each memory access instruction. It records
data dependence between a specific memory access in-
struction and its related variables. The tree is rooted at
the memory address accessed, with non-leaf nodes de-
noting operators between variables such as addition or
multiplication and leaf nodes denoting variables in the
program. Edges hence intuitively denote dependence.

Below we list the types of leaf nodes in memory de-
pendence trees:
• Constant value: value determined at compile time
• Base memory address: start address for continu-

ously allocated memory region (such as an array),
with value acquired at compile time for global or
static variables, and at runtime for dynamically al-
located variables.
• Function parameter: value determined at either

compile time or runtime (see Section 3.2)
• Data-dependent variable: value dependent on data

not predictable at compile time – to be collected at
runtime
• Function return value: value collected at runtime
• Loop induction variable: variable regularly updated

at each loop iteration, value determined at compile
time or runtime

Algorithm 1 Algorithm of building memory dependence
tree
1: input: A worklist WL[A]. Predefined Leaf types: Type
2: output: memory dependence tree: T (A)
3: Insert a root note r to T (A)
4: while WL[A] 6= φ do
5: Remove an item v1 from WL[A]
6: if v1 /∈ Type then
7: for v2 ∈UD(v1) do
8: if v2 ∈ Type then
9: Insert a leaf node v2

10: Insert an edge from v1 to v2
11: else
12: Insert an operator node in v2 to T (A)
13: Add all variables used in v2 to WL[A]
14: else
15: Insert a leaf node v1 to v1 to T (A)
16: Insert an edge from r to v1 to T (A)
17: return T (A)

The memory dependence tree is built by performing
a backward data flow analysis at compile time. Specif-
ically, for each memory access, we start from the vari-
able storing this memory address and traverse its use-
define data structure, which describes the relation be-
tween the definition and use of each variable, to identify
all the variables and operators affecting it. This traversal

is an iterative process that stops when all the leaf nodes
are categorized into one of the types listed above. We
give the worklist algorithm (Algorithm 1) that performs
such backward data flow analysis with, where we repeat-
edly variables storing memory addresses into the work-
list WL(A) and iteratively find all the related variables
through the use-define structure UD(v), till the worklist
becomes empty.

%prom = sext i32 %i.0 to i64
%array.1 = getelementptr i32* %A, i64 %prom
%0 = load i32* %array.1

%array.1

%i.0

+

*

sext

%S

4

Load 1

Figure 5: Sample memory dependence tree
Figure 5 shows a group of instructions (generated from

the source code in Figure 2) and the memory dependence
tree corresponding to the variable %array.1 in the last
line. Here getelementptr is an instruction that cal-
culates the address of an aggregate data structure (where
an addition operation is implied) and does not access
memory. We omit certain arguments for this instruction
for simplicity. sext performs type casting. As to the
leaf nodes, %A is an array base address, 4 is a constant
value, and %i.0 is a loop induction variable.

Such a dependence tree allows us to approach the cen-
tral task of Spindle: computable memory access iden-
tification. This is done by analyzing the types of the
leaf nodes in the memory dependence tree. Intuitively,
a memory access is computable if the leaf nodes of its
dependence tree are either constants (trivial) or loop in-
duction variables (computable by replicating computa-
tion performed in the original program using initial plus
final values, collected at compile time or runtime). The
M-CFG and the memory access dependence trees, pre-
serving control flows, data dependencies, and operations
to facilitate such replication, can be viewed as a form
of program pruning that only retains computation rele-
vant to memory address calculation. By replacing each
memory instruction of the M-CFG with its dependence
tree, we obtain a single graph representing main mem-
ory access patterns for a single function. Note that such
dependence analysis naturally handles aliases.

3.2 Inter-procedural Analysis
At the end of the intra-procedural analysis, we have

a memory dependence tree for every memory access
within each function. Below we describe how Spindle
analyzes memory address dependence across functions.

The core idea here is to propagate function arguments
plus their dependence from the caller to the callee, and
replace all the function parameters of the dependence
trees in the callee with actual parameters. For this, we
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first build a program call graph (PCG), on which we
subsequently perform top-down inter-procedural analy-
sis. Algorithm 2 gives the detailed process.

Algorithm 2 The algorithm of inter-procedural analysis
1: input: The dependence trees for each procedure p
2: input: The program call graph (PCG)
3: Change← True
4: /* Top-Down inter-procedural analysis */
5: while (Change == True) do
6: Change← False
7: for all procedure p in Pre-Order over PCG do
8: for all dependence trees d in p do
9: if A leaf node l of d is a function’s parameter then

10: Replace l with its actual parameter
11: Change← True
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Figure 6: Transformation of dependence tree

Figure 6 illustrates the transformation a dependence
tree in function Swap (Figure 2) undergoes during inter-
procedural analysis. After intra-procedural analysis, the
dependence tree for the load instruction Load3 of func-
tion Swap has two leaf nodes that are function parame-
ters, which cannot be analyzed then as the variables %S
and %i.0 are undetermined. Within inter-procedural
analysis, these two nodes are replaced with their ac-
tual parameters, a base address %A and a loop induc-
tion variable %i.0 Now the dependence tree rooted at
%array.1 is computable.

For function calls forming a loop in PCG, such as re-
cursive calls, currently we do not perform parameter re-
placement for any function in this loop during our inter-
procedural analysis, as when these functions terminate is
typically data-dependent.

3.3 Special Cases and Complications
Index arrays If a memory dependence tree has data-
dependent variables as its leaf nodes, normally we con-
sider it non-computable. However, we still have chance
to extract regular patterns. Index array is an important
case of such data-dependent variables, storing “links” to
other data structures, as explained below.

1 for (j=0; j<i; j++){
2 for (k=0; k<m; k++)
3 sum += delta * z[colidx[k]]
4 //colidx is index array to z
5 r[k] = d
6 }

Figure 7: NPB CG code with index array colidx

Figure 7 gives a simplified version of a code snippet
from NPB CG [2], where the array z is repeatedly ac-
cessed via the index array colidx, which cannot be de-
termined at compile time. However, we find that in many
programs (including here) the index array itself is not
modified across multiple iterations of accesses. There-
fore, there is still significant room for finding repeated
access patterns and removing redundancy.

To this end, Spindle performs the following extra eval-
uation during its static analysis. First, it compares the
size of index array and its total access count. If the latter
is larger, we only need to record the content of the in-
dex array and compute the memory accesses accordingly
rather than instrumenting them at runtime. Such evalua-
tion needs to be repeated if the content of this index array
is changed, of course. This is the case with the example
given in Figure 7, where the total memory access count
for the index array colidx is i*m and greater than the
size of colidx. Thus at runtime we only need to record
its content at the beginning of this nested loop and the
base address of array z. Combining such information
and memory dependence tree, we can compute all the
memory access locations.
Multi-threaded programs The discussion so far has
been focused on analyzing single-thread programs.
However, Spindle’s methodology can also be easily ap-
plied to multi-threaded applications. Spindle is thread-
safe and we perform the same static analysis as for
single-thread programs, except that we also mark the
point where a new thread is created and record relevant
parameter values. With parallel executions, during dy-
namic memory monitoring (discussed in the next sec-
tion), the current thread ID would be easily fetched along
with information such as loop iteration count and branch
taken, which allows us to distinguish runtime informa-
tion collected by different threads. Note that certain tech-
niques need to be augmented to handle multi-threaded
executions. E.g., the array index technique (Section 3.3)
needs to be protected by additional check, as an array
could be modified by another thread.

Again, with addresses or values that cannot be de-
termined at compile time, such as shared objects or
branches affected by other threads, we fall back to run-
time instrumentation. So typical SPMD codes will share
the same static MAS, to be supplemented by per-thread
or even per-process runtime information, making Spin-
dle even more appealing in efficiency and scalability. If
significant amount of output is generated, such as with
memory trace collection, Spindle allows users to have
the option to look at a single-thread’s memory accesses
or correlating accesses from all threads (though trace in-
terleaving is a separate topic that requires further study.)

For example, with pthread, Spindle instruments
pthread create to record where a new thread is cre-
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ated. During multi-threaded execution, the appropriate
thread ID is recorded for each function. Thus we know
which thread the dynamic information collected by Spin-
dle belongs to, therefore can apply per-thread static anal-
ysis, similar to that in single-thread executions.

4 Spindle-based Runtime Monitoring
This section illustrates how Spindle’s static analysis

results can be used to reduce runtime instrumentation.
We first describe common runtime information to be ob-
tained through instrumentation, then present two samples
of Spindle-based tool design, for memory bug detection
and memory trace collection, respectively.

4.1 Runtime information collection
During program runs, Spindle’s static memory access

skeleton is supplemented by information not available at
compile time. Generally, three cases require instrumen-
tation: control structures, input-dependent variables, and
non-computable memory accesses:
Control structures Spindle needs to record the initial
values of all the loop induction variables and the loop
iteration count if they are unknown at compilation time.
Moreover, for a loop with multiple exit points, we need to
instrument each exit point to track where the loop exits.
Similarly, for conditional branches in MAS, we need to
record their taken statuses to track taken paths.
Input dependent variables For input dependent vari-
ables, runtime information is necessary but certain static
analysis can indeed reduce runtime overhead. For in-
stance, the address of a dynamically allocated memory
region can be obtained at runtime by collecting actual
values. An optimization in Spindle is that we do not in-
strument every instruction that references input depen-
dent variables, but only where they are defined, initial-
ized, or updated. E.g., for a global variable needed by
the analysis, it leverages static analysis to only record its
initial value at the beginning of the program, and then
again upon its updates.
Non-computable memory accesses For non-
computable memory accesses (as mentioned in
Subsection 3.1.2), we fall back to conventional dy-
namic monitoring/instrumentation.

%array.1

%L0: 0,N,1

+

*

sext

%S

4%A

%i.0

void *BubbleSort(int *A, int N) {

for (int i = 0; i < N; ++i) {
for (int j = i+1; j < N; ++j) {

bool flag = (A[i] > A[j]);

if (flag) {
Swap(A, i, j);

}}}}

recordAddr(A, variable_id);

recordLoop(N, loop_id); 

recordPath(flag, path_id);

Dependence tree for %array.1 Instrumented Bubblesort code segment

Figure 8: Sample runtime information collection

Figure 8 shows an example of runtime information

collection for the BubbleSort routine discussed ear-
lier in Section 2.2. The left side gives the dependence
tree of the variable %array.1 in function Swap, where
undetermined address %A and loop L0’s induction vari-
able %N need to be collected at runtime. Note that L0’s
initial index value (0) and increment (1) can be deter-
mined at compile time. The right side lists the instru-
mented BubbleSort code. Here Spindle automati-
cally instruments three memory accesses by inserting the
highlighted statements (for A, N, and the branch related
flag, which falls out of the dependence tree shown).
variable id, loop id, and path id are also auto-
matically generated by Spindle for its runtime library to
find the appropriate static structures.

4.2 Spindle-based tool developing
Spindle’s performs automatic code instrumentation for

runtime information collection, based on its static analy-
sis. To build a memory monitoring tool on top of Spin-
dle, users only need to supply additional codes using its
API to perform custom analysis, as to be illustrated be-
low. Our two sample tools, S-Detector and S-Tracer,
each takes under 500 lines of code to implement both
compile-time analysis and runtime library.

4.2.1 Memory Bug Detector (S-Detector)
Memory bugs, such as buffer overflow, use after free,

and use before initialization, may cause severe run-
time errors or failures, especially with programming lan-
guages like C and C++. There have been a series of
tools, software- or hardware-based, developed to de-
tect memory bugs at compile-time or runtime. Among
them, Memchecker [39] uses hardware support for mem-
ory access monitoring and debugging and is therefore
fast (only 2.7% performance overhead for SPECCPU
2000). Such special-purpose hardware is nevertheless
not yet adopted by general processors. ARCHER [43]
relies on static analysis only, so is faced with the difficult
trade-off between accuracy (false positives) and sound-
ness (false negatives), like other static tools. A recent,
state-of-the-art tool is AddressSanitizer (ASan) [33], an
industrial-strength memory bug detection tool developed
by Google and now built into the LLVM compiler. ASan
inserts memory checking instructions (such as out-of-
bound array accesses) into programs at compile time,
then uses shadow memory [25] for fast runtime check-
ing. Despite well implemented and highly tuned, ASan
still introduces 2–3× slowdown to SPEC programs.

In this work, we present S-Detector, a memory bug de-
tector that leverages Spindle-gathered static information
to eliminate unnecessary instrumentation to facilitate ef-
ficient online memory checking. Our proof-of-concept
implementation of S-Detector can currently detect in-
valid accesses (e.g., out-of-bound array access and use
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after free) and memory leaks (dynamically allocated ob-
jects remaining unfreed upon program termination).

With Spindle’s MAS, S-Detector is aware of a pro-
gram’s groups of memory accesses and therefore able to
perform checking at a coarser granule. E.g., with dy-
namically allocated arrays, even when neither the start-
ing address (base) or size (bound) is known at compile
time, its accesses are given as relative to these two val-
ues and can therefore be checked for out-of-bound bugs
at compile time. With existing tools like ASan, however,
such checks are delayed till runtime and repeated at ev-
ery memory acesses.

Therefore, S-Detector performs aggressive memory
check pruning by proactively conducting compile-time
access analysis and replacing instruction-level checks
by object-level ones. Only for accesses labeled ”non-
computable” by Spindle, S-Detector falls back to tradi-
tional instrumentation. Below, we illustrate S-Detector’s
memory check pruning with two sample scenarios, both
contained in the same code snippet from SPEC CPU2006
mcf (Figure 9).

1 while (pos - 1 && red_cost >
2 (cost_t)new[pos/2-1].flow){
3 new[pos-1].tail = new[pos/2-1].tail;
4 new[pos-1].head = new[pos/2-1].head;
5 // Three more accesses to struct members
6 // of new[pos-1] and new[pos/2-1].
7 pos = pos/2;
8 new[pos-1].tail = tail;
9 // Four more accesses to struct members

10 // of new[pos-1].
11 }

Figure 9: Sample code from SPEC CPU 2006 mcf

In-structure accesses This sample code references
an array of structures (new), issuing multiple ac-
cesses to members of its elements. In this case,
assisted with Spindle-extracted MAS, all access tar-
gets can be represented as addr = struct base
+ constant offset. Once S-Detector finds that
the constant offset is valid for this struct, i.e.,
offset<struct size, it only needs to determine
if this structure element itself is valid at runtime, i.e.,
the memory range [struct base, struct base
+ struct size) is a valid range. This groups
the per-member access checks to per-element checks
(validating structure elements like new[pos-1] and
new[pox/2-1]) and significantly reduces the amount
of instrumentation.
In-loop accesses Given the while loop in the same
sample code, Spindle records the following information
for its loop induction variable pos: its initial and final
values (denoted here as pos init and pos final),
as well as the operation used to update it across iterations
(divided by 2 at Line 7). Based on the MAS, S-Detector
can easily infer the offset range of array new’s access to

be within [pos end/2-1, pos init-1]. In addition,
it records array new’s size in bytes (new size) and the
size of new’s elements (struct size). Aside from
quick checks to ensure that the object has been allocated
and not freed yet, S-Detector verifies that
(pos init−1)∗struct size< new size (1)

and
pos end/2−1≥ 0 (2)

Actually inequality (2) is guaranteed by the loop’s exit
condition, so S-Detector only needs to check (1). Even
when none of these four parameter values is available at
compile time, S-Detector only needs to perform a one-
time, object-level check at runtime, for array object ac-
cesses within this while loop.

Combining the structure- and loop-level pruning
described above, S-Detector can eliminate all per-
instruction memory checks on accesses of the new ob-
ject in the sample code, performing at most one single
run-time check instead.

4.2.2 Memory Trace Collector (S-Tracer)
Complete, detailed memory access traces allow di-

verse analysis and faithful benchmarking or simulation
tests. However, their colletion is expensive, both in time
and space. Existing tools like PIN [22], Valgrind [26],
and DynamoRIO [6] produce memory trace output of
daunting sizes, due to the high frequency of memory ac-
cesses in typical program executions. It is common for
several seconds’ execution to generate hundreds of GBs,
sometimes even over one TB, of memory traces using
any of the existing tools. Large memory trace size not
only introduces large overhead for underlying trace stor-
age and various trace-based analysis tools, but also af-
fects the performance of the original programs. For ex-
ample, PIN introduces an average slowdown of 38× for
SPEC INT programs to perform memory analysis [38].
In addition, large traces bring back the I/O bottleneck
during replay time, slowing down trace-driven simula-
tions. Such limitations make it less and less practical for
existing memory tracing tools to measure significant por-
tions of modern data-intensive applications.

We present S-Tracer, a memory trace collection tool
based on Spindle. With the static information that pro-
vided by Spindle, S-Tracer can generate highly com-
pressed memory access traces with much lower runtime
overhead than traditional tracing tools using dynamic in-
strumentation. At runtime, S-Tracer couples the Spindle-
extracted MAS with dynamically collected information
mentioned earlier in this section. The result would be a
pair of static and dynamic traces, as illustrated in Fig-
ure 2 and Figure 3.

Our discussion below focuses on specific challenges
due to the limitation of using LLVM IR, where we
propose several techniques to generate approximate but
fairly accurate traces.
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Register spilling Since Spindle performs its static anal-
ysis in the LLVM IR level, where local scalar variables
are usually represented as register variables, it is diffi-
cult for our approach to capture the stack memory ac-
cesses caused by register spilling in the final binary code.
Considering the small footprint of register variables even
with spilling, we implement typical register allocators
used in the compiler backend for Spindle at the IR level,
to calculate register spilling. Based on our experiments,
our approach is able to achieve the similar statistical be-
havior of stack accesses as by traditional tracing tools.
Implicit memory accesses with function calls Func-
tion calls can also generate stack memory operations, not
explicitly described in IR and hence not captured by our
intra- and inter-procedural analysis. There are two cat-
egories of such accesses. For the caller, it has to write
into stack the return address, the contents of registers to
be used, and function parameters (with x86 64, the first 6
parameters are put in registers while the others in stack).
For the callee, upon returning it has to read from stack the
return address of the caller, the content of register EBP
(for 32-bit systems) or RBP (for 64-bit systems), and the
content of saved registers. To handle this, we again write
a simple simulator to generate these memory accesses.
Dynamically linked libraries Since Spindle performs
source code analysis, for calls to functions in dynami-
cally linked libraries, we cannot capture their memory
accesses in the IR level and have to fall back again to tra-
ditional dynamic instrumentation. As an optimization,
we adopt a hybrid approach, by using dynamic instru-
mentation to collect the relative memory traces within
such functions, along with their base stack addresses
within the dynamic library. When a program calls such
a function, we can then calculate new memory accesses
based on the new base stack address.

5 Evaluation
In this section, we demonstrate the effectiveness of

Spindle with the aforementioned two sample tools built
on top of its static analysis framework: S-Detector for
online memory bug detection and S-Tracer for full mem-
ory access trace collection.

We compare S-Detector with the state-of-the-art mem-
ory bug detector, ASan [33] by Google. In our exper-
iments, S-Detector and ASan do the same checks: use
after free, heap buffer overflow, stack buffer overflow,
global buffer overflow, and memory leaks. Note that
ASan does support additional checks (use after return,
use after scope, and initialization order bugs), which
need to be explicitly enabled by certain compiler options.
Our tests used the default compiler options and we per-
formed extra verification to confirm that these additional
checks were disabled in all of our ASan experiments.

For S-Tracer, we show that it produces orders of mag-

nitude smaller trace output, and thus lower overhead, by
omitting redundant information. To validate its correct-
ness, we also compare its decompressed trace with trace
generated by PIN, a widely used dynamic tool.

5.1 Experiment Setup
Test platform We evaluate Spindle on a server with In-
tel Xeon E7-8890 v3 processors (running CentOS 7.1),
128GB of DDR3 memory, and 1TB SATA-2 hard disk.
For memory bug detection, the tests use mandatory op-
tions to enable ASan and DrMem. For memory trace
collection, we record each memory access in a 16-byte
entry, 8 bytes for memory address and another 8 bytes
for access type (read/write) and access size.
Test programs Currently, Spindle fully supports C
and partially supports C++ and Fortran. For memory
bug detection, we follow the practice of previously
published tools and use 11 C programs from SPEC CPU
2006 [1]: 400.perlbench, 401.bzip2, 403.gcc,
429.mcf, 433.milc, 445.gobmk, 456.hmmer,
458.sjeng, 464.h264ref, 470.lbm, and
482.sphinx3. The program 998.specrand is
omitted as it has too few memory accesses. Using these
common test programs, we not only can compare the
tools’ runtime overhead, but also their effectiveness of
capturing known bugs.

For memory trace collection, we use the popular NPB
parallel benchmark suite [2] as codes with mostly regular
memory accesses, plus SPEC 429.mcf as a memory-
intensive, non-numerical program. We also sample from
modern data-intensive and irregular datacenter applica-
tions: (1) the Breadth First Search (BFS) component of
the Graph500 Benchmark [11], a representative graph
application with input-dependent memory accesses, (2)
a convolutional neural network for digit recognition
(MNIST) [29], (3) kissdb, a key-value store [18],
and (4) Fido, a lightweight, modular machine learn-
ing library [8]. Finally, for multi-threaded applications,
we test 3 programs from the PARSEC suite [4] cover-
ing different application domains: streamcluster
(stream processing), freqmine (data mining), and
blackscholes (PDE solving), plus one MapRe-
duce [23]-style program performing word count, de-
noted as SC, FM, BS and WC respectively.

5.2 Spindle Compilation Overhead
Before we get to the tool use cases, we first assess

the extra overhead brought by Spindle’s static analysis.
Table 1 summarizes this compilation overhead for eval-
uated programs, as well as their original compilation
time and code size. In general, the Spindle compilation
overhead only composes a small fraction of the original
LLVM compilation cost (2% to 35%, average at 10%).
We consider such one-time static analysis overhead neg-
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ligible, considering the significant savings in the much
larger runtime checking/tracing cost.

Table 1: Spindle compilation overhead
Program Extra Original Code size Program Extra Original Code size
BT 0.260s 4.170s 232KB perlbench 4.662s 23.036s 4418KB
CG 0.084s 0.651s 35KB bzip2 0.053s 2.828s 239KB
EP 0.043s 0.493s 10KB gcc 1.596s 66.729s 13777KB
FT 0.098s 0.908s 40KB mcf 0.028s 0.694s 62KB
IS 0.049s 0.427s 25KB milc 0.360s 3.899s 458KB
LU 0.225s 3.260s 244KB gobmk 1.444s 16.921s 239KB
MG 0.161s 0.984s 43KB hmmer 0.924s 8.773s 1126KB
SP 0.228s 2.320s 164KB sjeng 0.270s 2.521s 298KB
BFS 0.704s 4.142s 852KB h264ref 2.556s 15.268s 1656KB
MNIST 0.399s 1.138s 4KB lbm 0.076s 0.906s 44KB
kissdb 0.092s 1.835s 16KB sphinx3 0.304s 5.106s 767KB
FM 0.535s 7.760s 112KB Fido 1.051s 9.287s 160KB
SC 0.159s 3.407s 80KB BS 0.068s 2.250s 15KB
WC 0.054s 1.324s 19KB

5.3 S-Detector for Memory bug detection
S-Detector runtime overhead We compare S-Detector
with two popular memory bug detection tools: Google’s
AddressSanitizer (ASan) [33] and DynamoRIO [6]-
based Dr. Memory (DrMem) [5]. To examine the bene-
fits of instrumentation pruning based on Spindle’s static
analysis, we test two versions of S-Detector: SD-All, a
baseline version that instruments all memory accesses,
and SD-Opt, after check pruning.

On bug detection results, S-Detector captures most of
the common SPEC bugs reported by DrMem and ASan,
plus additional memory leaks (dynamically allocated ob-
jects not freed by program termination) that are verified
by our manual code examination.

Figure 10 shows the runtime overhead of ASan, SD-
All and SD-Opt, in percentage of the original program
execution time. As DrMem is much heavier than oth-
ers (for most programs over 10× slowdown), we omit its
results from the figure for clarity. ASan is an industrial-
strength tool, whose streamlined implementation deliv-
ers lower overhead than SD-All (geometric mean of over-
head at 66% by the former vs. 184% by the latter),
both with similar amount of instrumentation. SD-Opt,
however, overcomes its slower checking implementation
and brings down runtime overhead to geometric mean
of 26%. Except for two out of 11 cases (bzip2 and
h264ref), SD-Opt reduces overhead from ASan, by up
to 30.25× (sphinx3). We give more detailed discus-
sion of these special cases later.
Spindle-enabled instrumentation pruning To take a
closer look, we examine the amount of checks avoided
by Spindle’s static analysis. Figure 11 gives the percent-
age of eliminated memory checks, from SD-All to SD-
Opt. On average, Spindle enables S-Detector to cut run-
time memory checks by 64%, lowering its performance
overhead consequently. The check and overhead reduc-
tion level depends on several factors, such as the amount
of irregular/unpredictable memory accesses (Amdahl’s
Law), the overall intensiveness of memory accesses, and
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Figure 10: Overhead comparison (bars over 300% truncated)

control flow behavior. Below we give more detailed re-
sults and analysis via several case studies.
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Figure 11: Reduction in runtime memory checks

lbm, hmmer, milc: These are the best cases among
tested. Function-level profiling shows that the vast ma-
jority of their execution time and most of their memory
accesses are spent within loops, where Spindle analy-
sis allows S-Detector to apply the loop-level check pre-
sented in Section 4.2.1, replacing the per-access checks
performed by ASan and DrMem. As a result, these three
programs have 99%, 97%, and 91% of memory checks
removed by S-Detector, respectively. Such instrumenta-
tion pruning then lowers S-Detector’s runtime overhead,
e.g., to 5% for hmmer, vs. ASan’s 107%.
gcc: this compiler program is inherently input-
dependent and as a result, has the lowest reduction by S-
Detector in memory checks (19%). Interestingly, though
its execution does spend most time within Spindle-
identified loop structures, most of its loops are found
to run only a few iterations, limiting the benefit of S-
Detector’s loop-level static checks. However, in this case
even SD-All is faster than ASan. Follow-up measure-
ments reveal that S-Detector’s shadow memory imple-
mentation, though less efficient in general, offers better
spatial locality than ASan’s. With gcc accessed mem-
ory areas being particularly spread out, ASan’s runtime
check harms its locality, bringing the LLC miss rate from
the original 1.3% to 5.9%, while S-Detector retains the
original caching performance.
bzip2: this compression/decompression program is
also input-dependent. Profiling reveals a performance
hot-spot in sorting, with many branches whose taken sta-
tus relies on input data. Even with 32% of runtime mem-
ory checks pruned, the less efficient instrumentation of
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S-Detector brought overall higher overhead than ASan,
158% vs. 62%.

Despite such worst cases, the overall strong perfor-
mance of S-Detector indicates that its Spindle-based
static analysis, if adopted by highly-tuned, mature tools
like ASan, may lead to even lower runtime overhead.

5.4 S-Tracer for Memory Trace Collection
Result Trace Verification Next, we evaluate S-Tracer,
comparing it with the widely used PIN tool [22] for
memory tracing. We first validate the correctness of its
memory trace generation. Note that Spindle is based on
compile-time instrumentation while traditional tools like
PIN use runtime instrumentation. The two systems run
application programs within different frameworks, each
with different components (such as dynamic libraries),
which may in turn alter the absolute locations of mem-
ory objects. Therefore, one would not expect them to
generate identical trace sequences.

Recognizing such limitations, we first check the out-
put trace size. We compare the size of PIN’s trace with
full traces recovered from Spindle’s output, in the same
format. The Spindle recovered trace has the similar vol-
ume to PIN’s, with relative difference between 0.5% and
6% (median at 3.2%). Additional examination reveals
that such discrepancies stem from the aforementioned
inaccuracy caused by Spindle’s approximation of stack
accesses and register spilling. Though amounting for up
to a few percent of the overall trace entries, affected ac-
cesses are typically localized to a very small footprint
and hardly impact the overall memory access behavior.

We then validate the Spindle-generated heap mem-
ory access sequence. We examine trace fidelity by per-
forming more detailed trace alignment and checking dif-
ference in heap access sequences. For each access on
heap, we break it into a pair: (object, offset), since
for each execution the dynamically allocated object’s
base is different but the offset remains constant. We
use Linux diff tool to compare S-Detector’s heap
trace and PIN’s and find that overall, S-Tracer generates
heap traces close to PIN’s (relative difference ratio be-
tween 0.0% and 4.7%, median at 1.5%).

In the worst case, S-Tracer could generate an over-
all 5.9% difference in total trace size and 4.7% differ-
ence ratio on heap accesses, mostly attributed to stack
accesses (more influenced by register allocation) and reg-
ister spilling. Below we test this worst case, BFS, using
a cache simulator, to (1) demonstrate a use case of our
fast and large-capacity memory tracing and (2) provide a
validation for trace fidelity. The test uses a simple trace-
driven tool that simulates an 8-way set-associative cache
with 64-byte cache line, and two replacement algorithms
(LRU and FIFO). We validate simulation results using
S-Tracer traces against that using PIN’s, at varied cache

sizes (including typical L2 and LLC sizes). Figure 12
shows that S-Tracer output achieves almost identical out-
come as the PIN trace in miss ratio, across different com-
binations of cache size and replacement strategies.
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Figure 12: The cache miss rate of BFS in a trace-driven
simulator. F means FIFO algorithm, L means LRU algo-
rithm. The size means the cache size we simulate.

Trace Size Reduction Next we assess S-Tracer’s gain
in tracing time/space efficiency. Figure 13 shows a com-
parison of the trace size generated by S-Tracer and PIN,
in log scale, for 13 single-thread and 4 multi-threaded
programs. Truncated bars are from programs whose PIN
traces exceed our 1TB storage capacity (BT, EP, LU, SP
of Class A). For S-Tracer, the trace size includes both the
static and dynamic components.
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Figure 13: Trace size comparison

As expected, S-Tracer achieves orders of magnitude
reduction in trace size from the PIN baseline. For pro-
grams dominated by regular memory accesses, like most
of the programs in NPB benchmark, MNIST, kissdb,
streamcluster, and wordcount, it reduces trace
size by more than 100×. For the four NPB benchmarks
where PIN exceeds the 1TB storage space, S-Tracer gen-
erates traces sized at 85MB-1.71GB. Even for the less
regular programs, such as BFS and freqmine, Spin-
dle brings considerable trace size reduction. In the worst
case (IS, integer sorting), a 6.93× reduction is achieved.

We also evaluated compressing PIN’s trace with a
naive alternative, gzip, which ended up producing or-
ders of magnitude larger traces than S-Tracer does. Be-
sides, generating then compressing traces is much more
expensive than Spindle-based approach, online or offline.
Runtime Tracing Overhead Reduction To evaluate the
runtime overhead of trace collection, Figure 14 shows the
slowdown factor (left axis, in log scale), calculated by
dividing the execution time with tracing by the original
time, for S-Tracer and PIN.

As expected, the online overhead difference is dra-
matic. In the 13 programs that PIN can complete trac-
ing (full trace size under 1TB disk space), the average
slowdown is 502× (and up to over 2000×), while S-
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Figure 14: Application slowdown by S-Tracer and PIN
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Tracer brings that of 6.5× on average (and up to 35.2×),
making full trace collection/storage much more afford-
able. Across the applications, S-Tracer reduces slow-
down from PIN by a factor of 61× on average.

Though we do not have space to show the no-I/O re-
sults, the savings there are still significant. For the 17
test programs, PIN introduces an average slowdown of
70.1× (and up to 384×), while S-Tracer brings that of
4.5× on average (and up to 33×). Across the applica-
tions, S-Tracer reduces slowdown from PIN by a factor
of 17.9× on average. The reason is that Spindle allows S-
Tracer to perform far less dynamic instrumentation, and
an application’s relative time overhead is highly corre-
lated to its dynamic trace generation rate.

6 Related Work
Using Static Analysis to Assist Runtime Checking
This group of work is closest to Spindle in approach. In
particular, GreenArray [24] is an LLVM-based tool that
analyzes the value range of index variables as well as the
boundary of memory regions at compile time, to elimi-
nate unnecessary runtime memory check. Spindle is dif-
ferent in that (1) its static analysis performs much more
than inferring variables’ value range, allowing complete
computation of their value by iteration and full trace col-
lection, and (2) the static skeleton it produces enables
more types of and much more aggressive pruning in run-
time checking, judging by reported GreenArray perfor-
mance relative to AddressSanitizer.

Abstract Execution (AE) [19] produces a target-event-
specific program slice, to be coupled by a “schema com-
piler” with runtime collected information and executed
again for analysis or trace collection. Spindle, instead,
records static trace at compile time, which is directly uti-
lized during the target programs (production) execution.

On utilizing static information to assist trace col-
lection, Cypress [44] uses hybrid static-dynamic anal-
ysis for parallel programs’ communication trace com-
pression. There are also techniques that perform
static binary rewriting/instrumentation [32] or regular-
expression-based memory access pattern construction
for memory layout transformation [15]. However, none
of these approaches is able to gather enough static struc-
trual information to enable versatile runtime monitor-

ing/tracing as Spindle does.
Also, logical connectives proposed for relational anal-

yses between input and output memory states [13] may
be used by Spindle to further reduce instrumentation.
Monitoring/Tracing overhead reduction Prior work
has explored reducing monitoring or tracing overhead in
other ways. MemTrace [28] performs lightweight mem-
ory tracing of unmodified binary applications by trans-
lating 32-bit codes to 64-bit codes, which is fast but lim-
its its application to running 32-bit programs on 64-bit
machines. Among sampling-based methods, Vetter [40]
evaluates techniques for analyzing communication activ-
ity in large-scale distributed applications. RACEZ [34]
uses hardware performance monitoring units to sam-
ple memory accesses at runtime, and then uses the col-
lected memory access trace for offline data-race detec-
tion. However, such low-overhead methods lose impor-
tant information, such as temporal order of operations, or
miss detection targets.

Finally, Bao et al. [3, 12] adopt a DIMM-snooping
hardware mechanism to collect virtual memory reference
traces. This hardware solution indeed minimizes collec-
tion overhead, but is rather costly and only catches mem-
ory accesses missed by on-chip caches.

7 Conclusion and Future Work
This paper presents Spindle, a versatile memory mon-

itoring framework that performs detailed static analysis
to extract program structures, allowing different types of
static and dynamic techniques to compute rather than col-
lect memory accesses whenever possible. Our develop-
ment and experiments confirm that there are abundant
redundancy and regularity in memory accesses, even
for applications perceived as more irregular and data-
dependent. By identifying predictable memory access
behaviors at compile time and supplementing statically
obtained memory access skeletons with runtime infor-
mation, we can dramatically reduce the amount of online
checking (for purposes like bug or race detection) or data
collection (for purposes like memory access pattern anal-
ysis or memory tracing).

Acknowledgment
We thank all reviewers for their insightful comments

and our shepherd Samira Khan for her timely guidance.
We also thank colleagues from both the Tsinghua Uni-
versity PACMAN group and the QCRI Distributed Sys-
tems group, for their valuable feedback and suggestions.
This work is supported in part by the National Key
R&D Program of China (Grant No. 2017YFA0604500),
National Natural Science Foundation of China (Grant
No. 61722208, 61472201), Tsinghua University Initia-
tive Scientific Research Program (20151080407). Jidong
Zhai is the corresponding author of this paper.

USENIX Association 2018 USENIX Annual Technical Conference    571



References

[1] SPEC CPU 2006. https://www.spec.org/
cpu2006/.

[2] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. NAS Systems Division, NASA Ames Research Cen-
ter, Moffett Field, CA, 1995.

[3] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jian-
ping Fan, Qingbo Yuan, Bo Song, and Jianwei Xu.
Hmtt: A platform independent full-system memory trace
monitoring system. In Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’08,
pages 229–240. ACM, 2008.

[4] The PARSEC benchmark. http://parsec.cs.
princeton.edu/.

[5] Derek Bruening and Qin Zhao. Practical memory check-
ing with dr. memory. In Proceedings of the IEEE/ACM
International Symposium on Code Generation and Opti-
mization, pages 213–223, Los Alamitos, CA, USA, 2011.

[6] Derek L Bruening. Efficient, transparent, and compre-
hensive runtime code manipulation. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

[7] The fcd tool. https://github.com/zneak/
fcd/.

[8] The fido library. http://fidoproject.github.
io/.

[9] Brian Fitzgerald, Jay P Kesan, Barbara Russo, Maha
Shaikh, and Giancarlo Succi. Adopting Open Source Soft-
ware. MIT Press, 2011.

[10] The LLVM Compiler Framework. http://llvm.
org.

[11] Graph500. http://www.graph500.org/.

[12] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan,
Yungang Bao, Mingyu Chen, and Ninghui Sun. Hmtt:
A hybrid hardware/software tracing system for bridging
the dram access trace’s semantic gap. ACM Trans. Archit.
Code Optim., 11(1):7:1–7:25, 2014.

[13] Hugo Illous, Matthieu Lemerre, and Xavier Rival. A re-
lational shape abstract domain. In NASA Formal Methods
Symposium, pages 212–229. Springer, 2017.

[14] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari
Makineni, Don Newell, Yan Solihin, Lisa Hsu, and Steve
Reinhardt. Qos policies and architecture for cache/mem-
ory in cmp platforms. In SIGMETRICS’07, pages 25–36.
ACM, 2007.

[15] Jinseong Jeon, Keoncheol Shin, and Hwansoo Han. Lay-
out transformations for heap objects using static access
patterns. In Proceedings of the 16th International Confer-
ence on Compiler Construction, CC’07, pages 187–201,
2007.

[16] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook
Jee, and Angelos D Keromytis. libdft: Practical dynamic
data flow tracking for commodity systems. In ACM SIG-
PLAN Notices, volume 47, pages 121–132. ACM, 2012.

[17] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-
Balter. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In Micro, pages
65–76, 2010.

[18] The kissdb program. https://github.com/
adamierymenko/kissdb.git.

[19] J. R. Larus. Abstract execution: A technique for effi-
ciently tracing programs. Software Practice Experience,
20(12):1241–1258, November 1990.

[20] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu
Chen, and Chengyong Wu. A software memory partition
approach for eliminating bank-level interference in mul-
ticore systems. In PACT’12, pages 367–376. ACM, 2012.

[21] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.
Avio: Detecting atomicity violations via access interleav-
ing invariants. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 37–
48. ACM, 2006.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’05, pages 190–200. ACM, 2005.

[23] The mapreduce program. https://github.com/
sysprog21/mapreduce.git.
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Abstract
Query-aware synthetic data generation is an essential and
highly challenging task, important for database manage-
ment system (DBMS) testing, database application test-
ing and application-driven benchmarking. Prior studies
on query-aware data generation suffer common problems
of limited parallelization, poor scalability, and excessive
memory consumption, making these systems unsatisfac-
tory to terabyte scale data generation. In order to fill
the gap between the existing data generation techniques
and the emerging demands of enormous query-aware test
databases, we design and implement our new data gener-
ator, called Touchstone. Touchstone adopts the random
sampling algorithm instantiating the query parameters
and the new data generation schema generating the test
database, to achieve fully parallel data generation, linear
scalability and austere memory consumption. Our exper-
imental results show that Touchstone consistently outper-
forms the state-of-the-art solution on TPC-H workload
by a 1000× speedup without sacrificing accuracy.

1 Introduction
The applications of query-aware data generators in-
clude DBMS testing, database application testing and
application-driven benchmarking [5, 15]. For example,
during the database selection and performance optimiza-
tion, the internal databases in production are hard to be
shared for performance testing due to the privacy consid-
erations, so we need to generate synthetic databases with
the similar workload characteristics of the target queries.
A bulk of existing data generators, e.g., [12, 11, 4, 20],
generate test databases independent of the test queries,
which only consider the data distribution of inter- and
intra-attribute. They fail to guarantee the similar work-
load characteristics of the test queries, therefore it’s dif-
ficult to match the overheads of the query execution en-
gine for real world workloads. A number of other stud-
ies, e.g., [6, 14, 5, 15], attempt to build query-aware data
generators. But the performance of the state-of-the-art
solution MyBenchmark [15] still remains far from sat-
isfactory, due to the lack of parallelization, scalability
and memory usage control, as well as the narrow sup-
port of non-equi-join workload. In order to generate the
enormous query-aware test databases, we design and im-
plement Touchstone, a new query-aware data generator,
based on the following design principles:
∗Rong Zhang is the corresponding author.

Full Parallelization: With the explosive growth of data
volume in the industrial applications, the database sys-
tem is expected to support storage and access services
for terabyte or even petabyte scale data. So the synthetic
data generator must be fully parallel for generating such
extremely large test databases.
Linear Scalability: The single machine has been far
from meeting the requirements of generating large test
databases, and the data scales may be unbelievably big
for the future applications, therefore the data generator
needs to be well scalable to multiple nodes and data size.
Austere Memory Consumption: When generating the
synthetic database for multiple queries, memory could
easily be the bottleneck, because massive information is
maintained by the data generator in order to guarantee
the dependencies among columns. The memory usage
needs to be carefully controlled and minimized.

Since [6, 14, 5, 15] are closest to the target of this
work, we list the following key insufficiencies of these
studies for elaborating the necessity of proposing Touch-
stone. In particular, all of these approaches do not sup-
port fully parallel data generation in a distributed envi-
ronment due to the primitive data generation algorithms
over the huge shared intermediate state, limiting the effi-
ciency of data generation over target size at terabytes.
Moreover, their memory consumptions, e.g., symbolic
databases of QAGen [6], constrained bipartite graphs
of WAGen [14] and MyBenchmark [15], caching refer-
enced tables for generating foreign keys of DCGen [5],
strongly depend on the size of generation outputs. Once
the memory is insufficient to host the complete interme-
diate state, vast computational resources are wasted on
disk I/O operations. In addition, one key advantage of
our work is the support of non-equi-join workload, which
is important for real world applications but not supported
by any of the existing approaches.

In query-aware data generation, we need to handle
the extremely complicated dependencies among columns
which are caused by the complex workload characteris-
tics specified on the target test queries, as well as the
data characteristics specified on the columns. Touch-
stone achieves fully parallel data generation, linear scal-
ability and austere memory consumption for supporting
the generation of enormous query-aware test databases.
There are two core techniques employed by Touchstone
beneath the accomplishments of all above enticing fea-
tures. Firstly, Touchstone employs a completely new
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query instantiation scheme adopting the random sam-
pling algorithm, which supports a large and useful class
of queries. Secondly, Touchstone is equipped with a new
data generation scheme using the constraint chain data
structure, which easily enables thread-level paralleliza-
tion on multiple nodes. In summary, Touchstone is a scal-
able query-aware data generator with a wide support to
complex queries of analytical applications, and achieves
a 1000× performance improvement against the state-of-
the-art work MyBenchmark [15].

2 Preliminaries
2.1 Problem Formulation
The input of Touchstone includes database schema H,
data characteristics D and workload characteristics W , as
illustrated in Figure 1. H defines data types of columns,
primary key and foreign key constraints. In Figure 1,
there are three tables R, S, and T . For example, table S
has 20 tuples and three columns. Data characteristics D
of columns are defined in a meta table, in which the user
defines the percentage of Null values, the domain of the
column, the cardinality of unique values and the average
length and maximum length for varchar typed columns.
In our example, the user expects to see 5 unique values on
column R.r2 in the domain [0, 10], and 8 different strings
with an average length of 20 and a maximum length of
100 for column T.t3 with 20% Null values. Workload
characteristics W are represented by a set of parameter-
ized queries which are annotated with several cardinality
constraints. In Figure 1, our sample input consists of four
parameterized queries, i.e., Q = {Q1, Q2, Q3, Q4}. These
four queries contain 11 variable parameters, i.e., P = {P1,
P2, ..., P11}. Each filter/join operator in the queries is as-
sociated with a size constraint, defining the expected car-
dinality of the processing outcomes. Therefore, there are
14 filter/join operators and corresponding 14 cardinality
constraints in our example, i.e., C = {c1, c2, ..., c14}. Our
target is to generate the three tables and instantiate all the
variable query parameters. In the following, we formu-
late the definition of cardinality constraints.

Definition 1 Cardinality Constraint: Given a filter (σ )
or join (./) operator, a cardinality constraint c is denoted
as a triplet c = [Q, p, s], where Q indicates the involving
query, p gives the predicate on the incoming tuples, and
s is the expected cardinality of operator outcomes.

The cardinality constraint c1 in Figure 1, for example,
is written as [Q1, R.r2 < P1, 4], indicating that the op-
erator with predicate R.r2 < P1 in query Q1 is expected
to output 4 tuples. For conjunctive and disjunctive op-
erators, their cardinality constraints can be split to mul-
tiple cardinality constraints for each basic predicate us-
ing standard probability theory. These cardinality con-
straints generally characterize the computational work-

load of query processing engines, because the computa-
tional overhead mainly depends on the size of the data in
processing. This hypothesis is verified in our experimen-
tal evaluations.

While the focus of cardinality constraints is on fil-
ter and join operators, Touchstone also supports com-
plex queries with other operators, including aggregation,
groupby and orderby. For example, the query Q2 in Fig-
ure 1 applies groupby operator on T.t3 and summation
operator on S.s3 over the grouped tuples. The cardinal-
ity of the output tuples from these operators, however, is
mostly determined, if it does not contain a having clause.
And such operators are usually engaged on the top of
query execution tree, hence the output result cardinali-
ties generally do not affect the total computational cost
of query processing. Based on these observations, it is
unnecessary to pose explicit cardinality constraints over
these operators [14, 5] in Touchstone.

Based on the target operators (filter or join) and
the predicates with equality or non-equality conditional
expressions, we divide the cardinality constraints into
four types, i.e., C = Cσ

= ∪Cσ

6= ∪C./
= ∪C./

6= . Accord-
ingly, we classify the example constraints in Figure 1 as
Cσ
= = {c2,c5,c8,c10}1, Cσ

6= = {c1,c4,c7,c12,c13}, C./
= =

{c3,c6,c9,c11} and C./
6= = {c14}. Following the common

practice in [5, 24, 25], the equi-join operator is always
applied on the pair of primary and foreign keys.

Then we formulate the problem of query-aware data
generation as follows.

Definition 2 Query-Aware Data Generation Problem:
Given the input database schema H, data characteris-
tic D and workload characteristics W, the objective of
data generation is to generate a database instance (DBI)
and instantiated queries, such that 1) the data in the ta-
bles strictly follows the specified data characteristics D;
2) the variable parameters in the queries are appropri-
ately instantiated; and 3) the executions of the instanti-
ated queries on the generated DBI produce exactly the
expected output cardinality specified by workload char-
acteristics W on each operator.

While the general solution to query-aware data gen-
eration problem is NP-hard [21], we aim to design a
data generator, by relaxing the third target in the defi-
nition above. Specifically, the output DBI is expected
to perform as closely as the cardinality constraints in C.
Given the actual/expected cardinalities of processing out-
puts, i.e., {ŝ1, ŝ2, . . . , ŝn}, corresponding to constraints on
the queries in C = {c1,c2, . . . ,cn}, we aim to minimize

the global relative error
∑ci∈C |ci.s−ŝi|

∑ci∈C ci.s
. Even if the user

specified workload in W contains conflicted constraints,

1If the relational operator in a selection predicate belongs to {=, !=,
in, not in, like, not like}, then the corresponding cardinality constraint
is classified to Cσ

=.
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Figure 1: Example inputs of database schema, data characteristics and workload characteristics to Touchstone

Touchstone still attempts to generate a DBI with the best
effort.

2.2 Overview of Touchstone
The infrastructure of Touchstone is divided into two com-
ponents, which are responsible for query instantiation
and data generation respectively, as shown in Figure 2.
Query Instantiation: Given the inputs including
database schema H, data characteristics D, Touchstone
builds a group of random column generators for non-key
columns, denoted by G, each Gi in which corresponds to
a column of the target tables. Given the input workload
characteristics W , Touchstone instantiates the parameter-
ized queries by adjusting the related column generators
if necessary and choosing appropriate values for the vari-
able parameters in the predicates of c ∈ Cσ

= ∪Cσ

6= ∪C./
6= .

The instantiated queries Q̄ are output to the users for
reference, while the queries Q̄ and the adjusted column
generators Ḡ are fed into the data generation component.
The technical details are available in Section 3.
Data Generation: Given the inputs including instan-
tiated queries Q̄ and constraints over the equi-join op-
erators C./

= specified in W , Touchstone decomposes the
query trees annotated with constraints into constraint
chains, in order to decouple the dependencies among
columns, especially for primary-foreign-key pairs. Data
generation component generally deploys the data gener-
ators over a distributed platform. The random column
generators and constraint chains are distributed to all data
generators for independent and parallel tuple generation.
The technical details are available in Section 4.

2.3 Random Column Generator
The basic elements of Touchstone system are a group of
random column generators G = {G1,G2, . . . ,Gn}, which
determine the data distributions of all non-key columns
to be generated. A random column generator Gi in G

Figure 2: The overall architecture of Touchstone

is capable of generating values for the specified column,
while meeting the required data characteristics in expec-
tation. In the following, we give the detailed description
of the random column generator.

A random column generator Gi contains two parts,
a random index generator and a value transformer as
shown in Figure 3. In the random index generator, the
output index domain is the integers from 0 to n−1 while
n is the specified cardinality of unique values in corre-
sponding column. Given an index, the transformer de-
terministically maps it to a value in the specified domain
of the column. We adopt different transformers based
on the type of the column. For numeric types, e.g., In-
teger, we simply pick up a linear function which uni-
formly maps the index to the value domain. For string
types, e.g., Varchar, there are some seed strings pre-
generated randomly, which satisfy the specified length
requirements. We first select a seed string based on the
input index as shown in Figure 3, and then concatenate
the index and the selected seed string as the output value.
This approach allows us to easily control the cardinality
of string typed columns with tiny memory consumption.

To manipulate the distribution of the column values,
there is a probability table in the random index generator.
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Figure 3: An example generator for column T.t3
The probability table consists of a number of entries and
each entry corresponds to an index. Specifically, each en-
try in the table (ki, pi,ci) specifies an index ki, the prob-
ability pi of occurrence, and the cumulative probability
ci for all indexes no larger than ki. In order to save the
memory space, we compress the table by keeping only
the entries with non-uniform probabilities. If an index
does not appear in the probability table, its probability is
automatically set by the uniform probability. The entries
in the table are ordered by ki. In Figure 3, we present an
example of random column generator designed for col-
umn T.t3 from example inputs in Figure 1. The spec-
ified data characteristics request this column to contain
8 unique strings with average length 20 and maximum
length 100. In the result generator, based on the indexes
in [0,7] generated by random index generator, the trans-
former outputs random strings with the desired lengths,
at probabilities {p0,2,3,5,7 = 0.1, p1 = 0.2, p4,6 = 0.15}.
The details of probability assignment will be discussed
in Section 3.
Value Generation: Given the random column genera-
tor, firstly, a Null value is output with the probability of
the specified percentage. If Null value is not chosen, the
index generator picks up an index based on the probabil-
ities by running binary search over CDF (ci) in the prob-
ability table with a random real number in (0,1], and the
transformer outputs the corresponding column value.

3 Query Instantiation
There are two general objectives in query instantiation,
targeting to 1) construct the random column generators
for each non-key column in the tables; and 2) find con-
crete values for the variable parameters in the queries.

Generally speaking, the query instantiation compo-
nent is responsible for handling three types of con-
straints, i.e., Cσ

=, Cσ

6= and C./
6= . Note that the fourth type of

constraints C./
= involves matching between primary and

foreign keys, which is taken care of by the data genera-
tion process at runtime. In Algorithm 1, we list the gen-
eral workflow of query instantiation. The algorithm iter-
atively adjusts the data distribution adopted by the ran-
dom column generators and the concrete values of the
variable parameters, in order to meet the constraints as
much as possible. The distribution adjustment on the
column generator is accomplished by inserting entries in
its probability table. In each iteration, the algorithm re-

initializes the column generators (line 3) such that there
is no entry in the probability table, namely the proba-
bilities of candidate values are uniform. The algorithm
then attempts to adjust the column generators in Ḡ and
the concrete values of the variable parameters in queries
Q̄ (lines 4-11). Specifically, it firstly adjusts the column
generators and instantiates the variable parameters based
on the equality constraints over filters (lines 4-6). It then
follows to revise the variable parameters in the queries
in order to meet the non-equality constraints on filter and
join operators (lines 7-11). The details of the adjustment
on column generators and the parameter instantiation are
presented in the following subsections. The algorithm
outputs the new (adjusted) generators Ḡ and the instanti-
ated queries Q̄, when the global relative error for all con-
straints is within the specified threshold θ or the number
of iterations reaches its maximum I.

Algorithm 1 Query instantiation
Input: Initial generators G, input queries Q, error threshold θ

and maximum number of iterations I
Output: New generators Ḡ and instantiated queries Q̄
1: Initialize Q̄← Q
2: for all iteration i = 1 to I do
3: Initialize Ḡ← G
4: for all constraint c ∈Cσ

= do
5: Adjust the generator in Ḡ for the column within c
6: Instantiate the corresponding parameter in Q̄
7: for all c ∈Cσ

6= do
8: Instantiate the corresponding parameter in Q̄
9: for all c ∈C./

6= do
10: Obtain constraints from all descendant nodes
11: Instantiate the corresponding parameter in Q̄
12: Calculate the global relative error e
13: if e≤ θ then return Ḡ and Q̄
14: return Ḡ and Q̄ (historical best solution with minimum e)

In the rest of the section, we discuss the processing
strategies for these three types of constraints respectively.

Filters with Equality Constraint always involve a sin-
gle non-key column at a time like the workloads of stan-
dard benchmarks. Given all these equality constraints on
the filter operators, i.e., Cσ

=, the system groups the con-
straints according to the involved column. In our run-
ning example in Figure 1, there are four such constraints
Cσ
= = {c2,c5,c8,c10}, among which, c2 and c8 target col-

umn S.s3, and c5 and c10 target column T.t3. Note that
all relational operators in equality constraints are handled
by treating them as ’=’. For example, c5 = [Q2,T.t3 NOT
LIKE P4,32]⇒ [Q2,T.t3 LIKE P4,8]⇒ [Q2,T.t3 = P4,8].

The processing strategy for equality constraints on fil-
ters runs in three steps. Firstly, the algorithm randomly
selects an index and obtains the corresponding value
from the transformer of the column generator, for in-
stantiating each variable parameter in the equality con-
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Figure 4: An example of parameter searching procedure for
constraint c7. Given the predicate in c7, our algorithm attempts
to cut the space by revising the parameter P5. For a concrete P5,
the expected number of tuples meeting the predicate is evalu-
ated by the random sampling algorithm. The best value for P5
is returned, after the binary search identifies the optimal value
at desired precision or reaches the maximum iterations.

straints. Secondly, the algorithm updates the occurrence
probability of the selected index in the column genera-
tor by inserting an entry in the probability table, in or-
der to meet the required intermediate result cardinality.
Whether the filter is the leaf node of the query execution
tree or not, the probability of the inserted entry is calcu-
lated as sout

sin
, where sin is the size of input tuples and sout

is the expected size of output tuples. After the above two
steps for all equality constraints, the algorithm calculates
the cumulative probabilities in the probability table of
adjusted column generators. In Figure 3, there are three
entries in the probability table for generating data with
the distribution that satisfies the constraints c5 and c10.
For example, the entry with index 1 is inserted for in-
stantiating parameter P4 in the predicate of c5, while the
two entries with indexes 4 and 6 are inserted for instanti-
ating parameters P7 and P8 in the predicate of c10.

Suppose there are k variable parameters in the equality
constraints over filters. The total complexity of the pro-
cessing strategy is O(k logk), because the algorithm only
needs to instantiate the parameters one by one, and ac-
cordingly it inserts an entry into the probability table in
order of selected index for each parameter instantiation.
Filters with Non-Equality Constraint could involve
multiple non-key columns. In Figure 1, some constraints,
e.g., c1 = [Q1,R.r2 < P1,4] and c4 = [Q2,S.s3 ≥ P3,7],
apply on one column only, while other constraints, e.g.,
c7 = [Q3,R.r2−R.r3 > P5,6] and c12 = [Q4,2×R.r2 +
R.r3 < P9,7], involve more than one column with more
complex mathematical operators. Our underlying strat-
egy handling these non-equality constraints is to find the
concrete parameters generating the best matching output
cardinalities against the constraints, based on the data
distributions adopted by the random column generators.

Since the cardinality of tuples satisfying the con-
straints is monotonic with the growth of the variable pa-
rameter, it suffices to run a binary search over the pa-
rameter domain to find the optimal concrete value for
the variable parameter. In Figure 4, we present an ex-
ample to illustrate the parameter searching procedure.
The cutting line in the figure represents the parameter

Figure 5: An example of parameter instantiation for non-
equality constraints on join operator

in the constraint, which decides the ratio of tuples in the
shadow area, i.e., satisfying the constraint. By increasing
or decreasing the parameter, the likelihood of tuples in
the shadow area changes correspondingly. The technical
challenge behind the search is the hardness of likelihood
evaluation over the satisfying tuples, or equivalently the
probability of tuples falling in the shadow area in our ex-
ample. To tackle the problem, we adopt the random sam-
pling algorithm, which is also suited for the non-uniform
distribution of the involved columns. Note that the bi-
nary search may not be able to find a parameter with the
desired precision, based on the determined data distribu-
tion of columns after processing equality constraints over
filters. Therefore, in Algorithm 1, we try to instantiate
the parameters for non-equality constraints upon differ-
ent data distributions by iteration.

The complexity of the approach is the product of two
components, the number of iterations in parameter value
search and the computational cost of probability evalua-
tion using random sampling algorithm in each iteration.
The number of iterations for the binary search is loga-
rithmic to the domain size of the parameter, decided by
the minimal and maximal value that the expression with
multiple columns could reach. The cost of random sam-
pling depends on the complexity of the predicate, which
usually only involves a few columns.
Joins with Non-Equality Constraint are slightly dif-
ferent from the filters with non-equality constraints, be-
cause the columns involved in their predicates may over-
lap with the columns in the predicates of their child nodes
as query Q4 in Figure 1, which usually does not happen
to filters in the query execution tree. Therefore, we must
process the constraints in a bottom-up manner without
the premise of probability independence, such that the
precedent operators are settled before the join operator
with non-equality constraint is handled. In Figure 5, we
present the processing flow on query Q4. After Touch-
stone concretizes the parameters P9 and P10 in constraints
c12 and c13, the input data to the join operator with con-
straint c14 is determined. Based on the characteristics of
the inputs, we apply the same binary search strategy de-
signed for filter operator to construct the optimal parame-
ter, e.g., P11 in Figure 5, for the desired result cardinality.
Since the algorithm is identical to that for filter operator,
we hereby skip detailed algorithm descriptions as well as
the complexity analysis.
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4 Data Generation
Given the generators of all non-key columns and the in-
stantiated queries, the data generation component is re-
sponsible for assembling tuples based on the outputs of
the column generators. The key technical challenge here
is to meet the equality constraints over the join oper-
ators, i.e., C./

= , which involve the dependencies among
primary and foreign keys from multiple tables. To tackle
the problem, we design a new tuple generation schema,
which focuses on the manipulation of foreign keys only.

The tuple generation consists of two steps. In the first
compilation step, Touchstone orders the tables as a gener-
ation sequence and decomposes the query trees into con-
straint chains for each target table. In the second assem-
bling step, the working threads in Touchstone indepen-
dently generate tuples for the tables based on the result
order from compilation step. For each tuple, the work-
ing thread fills values in the columns by calling the ran-
dom column generators independently and incrementally
assigns a primary key, while leaving the foreign keys
blank. By iterating the constraint chains associated with
the table, the algorithm identifies the appropriate candi-
date keys for each foreign key based on the maintained
join information of the referenced primary key, and ran-
domly assigns one of the candidate keys to the tuple.
Compilation Step: The generation order of the tables is
supposed to be consistent with the dependencies between
primary keys and foreign keys, because the primary key
must be generated before the adoption of its join in-
formation for generating corresponding foreign keys of
other tables. Since such primary-foreign-key dependen-
cies form a directed acyclic graph (DAG), Touchstone
easily constructs a topological order over the tables. In
Figure 6, we illustrate the result order over three tables,
R→ S→ T , based on the database schema H in Figure 1.

In order to decouple the dependencies among columns
and facilitate parallelizing, Touchstone decomposes the
query trees annotated with constraints into constraint
chains. A constraint chain consists of a number of con-
straints corresponding to the cardinality constraints over
the operators in query trees. There are three types of con-
straints included in the constraint chains, namely FIL-
TER, PK and FK, which are associated with the types of
related operators. The constraint chains with respect to
a table are defined as the sequences of constraints with
descendant relationship in the query trees. In Figure 6,
we present all the constraint chains for tables R, S and T .
For example, table R has two constraint chains extracted
from queries Q1 and Q3. And the constraint chains of
table S are marked in Figure 1 for easily understanding.

Each FILTER constraint keeps the predicate with the
instantiated parameters. Each PK constraint in the chain
records the column name of the primary key. Each
FK constraint maintains a triplet, covering two column

Figure 6: Results of constraint chain decomposition

names of the foreign key and the referenced primary
key, and the expected ratio of tuples satisfying the pred-
icate on the join operator. The second constraint in
the first chain for table S in Figure 6, for example, is
FK[S.s2,R.r1,

2
3 ], indicating the foreign key is S.s2, the

referenced primary key is R.r1 and two out of three tuples
in table S are expected to meet the predicate S.s2 = R.r1
of join operator in the case of satisfying the predicate
S.s3 = P2 of previous filter. The expected ratios in FK
constraints are calculated based on the cardinality re-
quirements of the specified cardinality constraints.
Assembling Step: For simplicity, we assume that there
is a single-column primary key and one foreign key in the
table. Note that our algorithm can be naturally extended
to handle tables with composite primary key and multiple
foreign keys. The result constraint chains are distributed
to all working threads on multiple nodes for parallel tu-
ple generation. When generating tuples for a specified
table, each working thread maintains two bitmap data
structures at runtime, i.e., φ f k and φpk. They are used
to keep track of the status of joinability, e.g., whether the
generating tuple satisfies individual predicates over join
operators, for primary key and foreign key, respectively.
The length of the bitmap φ f k (resp. φpk) is equivalent to
the number of FK (resp. PK) constraints in all chains of
the target table. Each bit in the bitmap corresponds to
a FK/PK constraint. It has three possible values, T , F
and N, indicating if the join status is successful, unsuc-
cessful or null. In Figure 6, for example, table S has two
FK constraints and two PK constraints, resulting in 2-bit
representations for both φ f k and φpk.

Touchstone also maintains the join information table
to track the status of joinability of primary keys based
on the bitmap representation φpk. In Figure 7, we show
two join information tables of primary keys R.r1 and S.s1
respectively. The join information table of R.r1 is main-
tained in the generation of table R, which is ready for
generating the foreign key S.s2 of table S. During the
generation of table S, the join information table of S.s1
is maintained for generating the foreign key T.t2 of table
T . There are two attributes in the entry of join informa-
tion table, i.e., bitmap and keys, indicating the status of
joinability and the corresponding satisfying primary key
values. Note that the keys in the entry may be empty
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(such entries will not be stored in practice), which means
there is no primary key with the desired joinability status.

Algorithm 2 Tuple generation
Input: Column generators Ḡ, constraint chains of the target

table Ω, join information tables of referenced primary key and
current primary key trpk and tpk
Output: Tuple r and join information table tpk

1: r.pk← a value assigned incrementally
2: r.columns← values output by column generators Ḡ
3: φ f k← N...N, φpk← N...N
4: for all constraint chain ω ∈Ω do
5: f lag← True
6: for all constraint c ∈ ω do
7: if (c is FILTER) && (c.predicate is False) then
8: f lag← False
9: else if c is PK then

10: φpk[i]← f lag // i is the bit index for c
11: else if (c is FK) && f lag then
12: if random[0,1)≥ c.ratio then f lag← False
13: φ f k[i]← f lag // i is the bit index for c

14: r. f k← a value selected from trpk satisfying φ f k
15: Add r.pk in the entry of tpk with bitmap φpk
16: return r and tpk

The tuple generation algorithm is listed in Algorithm
2. We present a running example of tuple generation in
Figure 7. A new tuple for table S is initialized as (S.s1 =
7,S.s2 =?,S.s3 = 16), φ f k = NN and φpk = NN (lines
1-3). The f lag is set to True before traversing each con-
straint chain (line 5), which is used to track if the predi-
cates from the precedent constraints of current chain are
fully met. On the first constraint chain, since the pred-
icate in the first FILTER constraint is S.s3 = 4, f lag is
then set to False (line 8), and algorithm does not need to
handle the next FK constraint (line 11). On the second
chain, the tuple satisfies the predicate S.s3≥ 15, resulting
in the update of bitmap representation as φpk = NT (line
10). On the third chain, after passing the first FILTER
constraint, the corresponding bit of next FK constraint
in φ f k is randomly flipped to F at the probability of 2

5
(lines 12-13), because the expected ratio of satisfying
tuples is 3

5 . The f lag is set to False (line 12) to reflect
the failure of full matching of precedent constraints for
later PK constraint. Then, the bit corresponding to next
PK constraint in φpk is set as F according to the value of
f lag (line 10). Therefore, the two bitmaps are finalized
as φ f k = FN and φpk = FT . Then the algorithm iden-
tifies (line 14) two entries matching φ f k = FN, namely
satisfying the T /F requirements on the corresponding
bits of φ f k, with bitmaps FT and FF respectively, in
the join information table of R.r1. Given these two en-
tries, it randomly selects (line 14) a foreign key, e.g., 6,
from four candidate referenced primary keys {2,7,6,8},
which are all appropriate as the foreign key S.s2. That
there is no entry in trpk satisfying the T /F requirements

Figure 7: Running example of tuple generation for table S

of φ f k, which is called mismatch case, is dealt in the rest
of the section. Finally, the algorithm updates (line 15)
the join information table of S.s1 by adding the primary
key S.s1 = 7 into the entry with bitmap FT .

For a table, suppose there are k non-key columns, m
constraints in the related constraint chains and n entries
in the join information table of referenced primary key.
The complexity of tuple generation mainly consists of
three parts, k times of calling random column generators
for filling the values of non-key columns, the traversing
over m constraints within chains for determining the join-
ability statuses of foreign key and primary key, and the
comparing with n bitmaps in the join information table
for searching the appropriate foreign key candidates. For
practical workloads, k, m and n are all small numbers,
e.g., k≤ 12, m≤ 20 and n≤ 40 for TPC-H [3] workload,
so our tuple generation is highly efficient.
Handling Mismatch Cases: For the data generation
of big tables, if a joinability status of the primary key
may occur, its occurrence can be considered as inevitable
based on the probability theory. However, there are still
some joinability statuses of the primary key that never
occur. For example, in Figure 7, the bitmap φpk for pri-
mary key S.s1 can not be T F due to the constraints, i.e.,
Filter[S.s3 = 16] and Filter[S.s3 ≥ 15]. Therefore, in the
tuple generation, it should be avoided to generate the
bitmap φ f k that does not have any matching entry in the
join information table of the referenced primary key. In
order to achieve this objective, the main idea is to add
rules to manipulate relevant FK constraints.

Figure 8 gives an example of adjustments to FK con-
straints for handling the mismatch case. There are three
FK constraints with the serial numbers of 1, 2 and 3 in the
three constraint chains, respectively. Since there are four
bitmaps, i.e., FTT, TTT, TFT, FTF, that are not presented
in the join information table of the referenced primary
key rpk corresponding to the foreign key f k of the target
table, three rules are added in two FK constraints to avoid
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Figure 8: An example of adjustments to FK constraints

producing any φ f k triggering the mismatch case. For ex-
ample, there is a rule [FT ← T ] added in the second FK
constraint, which indicates that the status of the second
FK constraint must be F if the status of the first FK con-
straint is T in the tuple generation. Since there are extra
F statuses forcibly generated by the added rule for the
second FK constraint, the actual ratio of tuples satisfy-
ing the corresponding predicate could be lower than the
expected ratio 0.6. Consequently, it is necessary to ad-
just the ratio in the second FK constraint for eliminating
the impact of the added rule. In this example, we adjust
the ratio as 0.65 = 0.6×0.4

0.4−0.1×0.3 , in which 0.4 is the ratio
of tuples satisfying the predicate in the second FILTER
constraint, 0.6× 0.4 is the cumulative probability of the
status T for the second FK constraint, 0.1 is the ratio of
tuples satisfying the two predicates in the first two FIL-
TER constraints, 0.3 is the ratio in the first FK constraint
and 0.1× 0.3 is the cumulative probability of the extra
F status generated by the rule. The general algorithm
of adjustments to FK constraints and the corresponding
analyses are presented in our online technical report [2].

To reflect the adjustments to FK constraints in the tu-
ple generation, minor modification is applied on the orig-
inal tuple generation algorithm on lines 12-13 in Algo-
rithm 2. Specifically, the updated algorithm first checks
all existing rules in current FK constraint. If there is a
rule which can be applied to the statuses of previous con-
straints, φ f k and f lag are updated according to the rule.
Otherwise, the algorithm updates φ f k and f lag by the
probability based on the adjusted ratio.
Management of Join Information: For generation of
a table, it can be completely parallel on multiple nodes
with multiple working threads on each node. Each work-
ing thread maintains its own join information table of the
primary key to avoid contention. But the join informa-
tion table of referenced primary key can be shared among
multiple working threads on each node. After the gener-
ation of the table, we merge the join information tables
maintained by the multiple working threads in distributed
controller as in Figure 2. But there are serious memory
and network problems for the space complexity of the
join information table is O(s) with s as the table size.

Since the relationship of foreign key and primary key
can be many to one and the intermediate result cardinal-
ity is the main factor that affects the query performance,

we design a compression method by storing less primary
key values in the join information table but still promise
the randomness of remaining values. Assuming the size
of keys in an entry of join information table is N, which
is hard to know in advance and may be very large. We
aim to store only L (L << N) values in the keys and
promise the approximately uniform distribution of these
L ones among all N values. The compression method is
implemented as follows: we store the first L arriving val-
ues in the keys, if any; and for the i-th (i > L) arriving
value, we randomly replace a value stored previously in
the keys with the probability of L/i. By such a method,
the space complexity of the join information table is re-
duced to O(n ∗ L), where n is the number of entries in
the join information table and L is the maximum allowed
size of keys in each entry. Since n is generally small, e.g.,
n≤ 40 for TPC-H workload, and L usually can be set to
thousands, the memory consumption and network trans-
mission of the join information table are acceptable.

5 Experiments
Environment. Our experiments are conducted on a clus-
ter with 8 nodes. Each node is equipped with 2 Intel
Xeon E5-2620 @ 2.0 GHz CPUs, 64GB memory and 3
TB HDD disk configured in RAID-5. The cluster is con-
nected using 1 Gigabit Ethernet.
Workloads. The TPC-H [3] is a decision support bench-
mark which contains the most representative queries of
analytical applications, while the transactional bench-
marks, e.g., TPC-C and TPC-W, do not contain queries
for analytical processing. So we take the TPC-H work-
load for our experiments. We compare Touchstone with
the state-of-the-art work MyBenchmark [15] with source
codes from the authors.2 The workloads for comparison
consist of 6 queries from TPC-H, including Q2,3,6,10,14,16.
Note that these queries are selected based on the per-
formance of MyBenchmark, which drops significantly
when other queries are included in the workloads. Touch-
stone, on the other hand, can easily handle all of the first
16 queries, i.e., Q1 to Q16, in TPC-H with excellent per-
formance. To the best of our knowledge, Touchstone pro-
vides the widest support to TPC-H workload, among all
the existing studies [6, 14, 5, 15].
Input Generation. To build valid inputs for experi-
ments, we generate the DBI and queries of TPC-H us-
ing its tools dbgen and qgen, respectively. And the DBI
of TPC-H is imported into the MySQL database. The
database schema of TPC-H is used as the input H. We
can easily obtain the input data characteristics D for all
columns from the DBI in MySQL. Given the TPC-H
queries, their physical query plans are obtained from
MySQL query parser and optimizer over the DBI. The

2We would like to thank Eric Lo for providing us the source code
of MyBenchmark.
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Figure 9: Comparison of data
generation throughput
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cardinality constraints corresponding to the operators in
query plans are then identified by running the queries
on the DBI in MySQL. The input workload character-
istics W are constructed by the parameterized TPC-H
queries and above cardinality constraints. Note that we
can generate databases with different scale factors using
the same input W by employing selectivities instead of
the absolute cardinalities in our input constraints.
Settings. As data is randomly generated according to the
column generators in Touchstone, the distribution of gen-
erated data may be difficult to satisfy the expectation for
small tables such as Region and Nation. We therefore re-
vise the sizes of Region and Nation from 5 to 500, and
from 25 to 2500 respectively. The cardinality constraints
involving these two tables are updated proportionally. In
addition, the small tables can also be pre-generated man-
ually. The error threshold (desired precision) and maxi-
mal iterations in query instantiation are set to 10−4 and
20 respectively. The default maximum allowed size L of
keys in join information table is set to 104.

5.1 Comparison with MyBenchmark
We compare Touchstone with MyBenchmark from four
aspects, including data generation throughput, scalability
to multiple nodes, memory consumption and capability
of complex workloads.

Figure 9 shows the data generation throughputs per
node of Touchstone and MyBenchmark as we vary the
number of nodes under different scale factors. Due to the
unacceptably long processing time of MyBenchmark, we
adopt smaller scale factors for it and large scale factors
for Touchstone. Overall, the data generation throughput
of Touchstone is at least 3 orders of magnitude higher
than that of MyBenchmark. This is because MyBench-
mark does not have a good parallelization or an efficient
data generation schema. Furthermore, as the number of
nodes increases from 1 to 5, the data generation through-
put per node of MyBenchmark decreases dramatically
for all three scale factors. Although the decline of data
generation throughput per node of Touchstone is obvious
too when SF = 1, Touchstone is linearly scalable (the
throughput per node is stable) when SF = 100. This is
because for small target database, e.g., SF = 1, the dis-
tributed maintenance rather than data generation dom-
inates the computational cost in Touchstone, while its

overhead comparatively diminishes by increasing the tar-
get database size.

Figure 10 reports the peak memory consumptions
of Touchstone and MyBenchmark under different data
scales. The experiment is conducted on 5 nodes with no
restriction on memory usage. The memory usage of My-
Benchmark mainly consists of two parts, namely, mem-
ory consumed by MyBenchmark Tool and memory con-
sumed by PostgreSQL for managing intermediate states.
The memory usage of Touchstone mainly includes mem-
ory for JVM itself and memory for maintaining join in-
formation. As shown in Figure 10, the memory con-
sumption of Touchstone is much lower than that of My-
Benchmark under the same scale factors. It is worth
noting that the memory consumption of Touchstone re-
mains almost constant when SF > 10. This is because for
Touchstone, the JVM itself occupies most of the mem-
ory, while the join information maintenance only spends
a tiny piece of memory.

Figure 11 and Figure 12 present the data generation
time (total running time) and global relative error sepa-
rately of Touchstone and MyBenchmark as we vary the
number of input queries with SF = 1. The input queries
are loaded in order of their serial numbers. The experi-
ment is carried out on 5 nodes. In Figure 11, it is obvious
that the data generation time of MyBenchmark increases
significantly as the number of queries increases. At
the same time, the generation time of Touchstone grows
very little when more queries are included, significantly
outperforming MyBenchmark. In Figure 12, the error
of Touchstone is much smaller than that of MyBench-
mark. Moreover, as there are more input queries, the
global relative error of Touchstone remains small with
little change, while the error of MyBenchmark has an
obvious rise. In summary, Touchstone is more capable of
supporting complex workloads than MyBenchmark.

It can be seen from previous experiments that My-
Benchmark can not be easily applied to generate the ter-
abyte scale database for complex workloads due to its
poor performance. In the following, we further demon-
strate the advantages of Touchstone by a series of exper-
iments using the workload of 16 queries, i.e., Q1 to Q16.

5.2 Performance Evaluation
In this section, we evaluate the impact of workload com-
plexity on query instantiation time and total running time
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Figure 16: Scalability to mul-
tiple nodes

in Touchstone, as well as the scalability to data scale and
multiple nodes of Touchstone.

Figure 13 shows the query instantiation time of Touch-
stone as we vary the number of queries with SF = 1 and
SF = 100, respectively. The input queries are loaded in
order of their serial numbers. The query instantiator is
deployed on a single node. As shown in Figure 13, even
when all 16 queries are used for input, query instantiation
is finished within 0.2s. And there is a minimal difference
in query instantiation time for SF = 1 and SF = 100, as
the complexity of query instantiation is independent of
data scale. Overall, the query instantiation time is only
correlated to the complexity of input workloads.

Figure 14 shows the total running time of Touchstone
as we vary the number of queries with SF = 500. Touch-
stone is deployed on 8 nodes. From the result, it can be
seen that the running time increases slowly as the number
of queries increases. For Q7 and Q8, there are relatively
more cardinality constraints over equi-join operators, so
the time increment is larger when we change from 6
queries to 8 queries. But when the number of queries
changed from 10 to 16, the time increment is almost in-
discernible, for Q11 to Q16 are simple, among which Q12
to Q15 have no cardinality constraints on equi-join oper-
ators3. Overall, the total running time increased by only
16% from 2 queries to 16 queries for 500GB data gen-
eration task, so Touchstone is insensitive to the workload
complexity.

Figure 15 presents the total running time of Touch-
stone under different scale factors with the input of 16
queries. Touchstone is deployed on 8 nodes. As shown
in Figure 15, Touchstone is linearly scalable to data size.
Because the generation of each tuple is independent and
the generated tuples need not be stored in memory, the
data generation throughput is stable for different data
scales. Moreover, the total runtime of Touchstone is less
than 25 minutes for SF = 1000 (1TB), so it is capable of
supporting industrial scale database generation.

Figure 16 presents the data generation throughputs per
node of Touchstone as we vary the number of nodes with
SF = 500. The input workload includes 16 queries. The
result shows that the data generation throughput per node

3Depending on the physical query plans of Q12 to Q15, the primary
keys in their equi-join operators are from the original tables, so all for-
eign keys must be joined and the sizes of output tuples are determined.

is approximatively unchanged as the number of nodes in-
creases, validating the linear scalability of Touchstone.
To the best of our knowledge, Touchstone is the first
query-aware data generator which can support full par-
allel data generation on multiple nodes.

5.3 Data Fidelity Evaluation
The data fidelity of synthetic database is evaluated by
relative error on cardinality constraints and performance
deviation on query latencies. We calculate the relative
error for each query in the similar way with global rel-
ative error, which only involves its own cardinality con-
straints. We compare the latency of query processing on
base database generated by dbgen against that on syn-
thetic database generated by Touchstone to show the per-
formance deviation.

Figure 17 shows the relative errors for Q1 to Q16 with
different scale factors from 1 to 5. The maximum error
among all 16 queries is less than 4%, and there are 14
queries with errors less than 1%. Figure 18 shows the
global relative error of all 16 queries as we vary the scale
factor, which is less than 0.2% for all scale factors. And
with the increase of scale factor, the global relative error
has a sharp decrease. Since data is randomly generated
by column generators, as expected by the probability the-
ory, the larger the data size, the smaller the relative error.

Figure 19 presents the performance deviations of all
16 queries with SF = 1. We vary the maximum allowed
size L of keys in the join information table from 103 to
105. We can see that the performance deviation is in-
conspicuous for all 16 queries, and the size of L has
no significant influence on query latencies. The result
strongly illustrates the correctness and usefulness of our
work. We are the first work to give such an experiment
to verify the fidelity of the generated DBI.
More experimental results are available in our online
technical report [2], which demonstrate the effectiveness
for data generation of non-equi-join workloads, handling
mismatch cases, the compression method on join infor-
mation table, and other benchmark workloads.

6 Related Work
There are many data generators [7, 12, 11, 4, 20, 23, 1, 9]
which only consider the data characteristics of the tar-
get database. For example, Alexander et al. [4] proposes
pseudo-random number generators to realize the parallel
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data generation. Torlak [23] supports the scalable gener-
ation of test data from a rich class of multidimensional
models. However, all these data generators can not gen-
erate test databases with the specified workload charac-
teristics on target queries.

There are query-aware data generators [6, 14, 5, 15],
among which [6, 14, 15] are a series of work. QA-
Gen [6] is the first query-aware data generator, but for
each query it generates an individual DBI and its CSP
(constraint satisfaction program) has the usability limita-
tions as declared in experimental results. WAGen [14]
makes a great improvement that it generates m (≤ n)
DBIs with n input queries, but WAGen can’t guarantee
that only one DBI is generated and still has CSP perfor-
mance problem. Though MyBenchmark [15] has done
a lot of performance optimization, generating one DBI
can not be promised for multiple queries and the perfor-
mance is still unacceptable for the generation of terabyte
scale database. DCGen [5] uses a novel method to rep-
resent data distribution with ideas from the probabilistic
graphical model. But DCGen is weak in support of for-
eign key constraint, and it cannot easily support parallel
data generation in a distributed environment.

There are some interesting non-relational data genera-
tors [18, 8, 13, 19, 10]. For example, Olston et al. [18] in-
troduces how to generate example data for dataflow pro-
grams. Sara [8] generates structural XML documents.
[13, 19] are synthetic graph generators. Chronos [10] can
generate stream data for real time applications. In ad-
dition, there are query generation works [17, 16] which
are partly similar to us, but they generate queries satisfy-
ing the specified cardinality constraints over an existing
DBI. Moreover, the dataset scaling works [22, 25] can
serve part of our targets, which scale up/down a given
DBI with similar column correlations.

7 Discussion and Conclusion
Limitations. Touchstone aims to support the most com-
mon workloads in real world applications. Below we
list the scenarios that we cannot support currently. (1)

Touchstone does not support filters on key columns. Pri-
mary and foreign keys are identifiers of tuples and gen-
erally have no physical meaning, so the filters which are
representations of business logics usually do not involve
key columns. (2) Equality constraints over filters involv-
ing multiple columns are not supported in Touchstone.
The equality predicate with multiple columns for filter
is a very strict constraint, and has not been found in
workloads of standard benchmarks. (3) Equi-joins on
columns with no reference constraint are not supported
in our work. This is because the equi-join is usually ap-
plied on the pair of primary and foreign keys in prac-
tical workloads, which is also the assumption of many
works [5, 24, 25]. (4) Touchstone does not support the
database schema with cyclic reference relationship. In
our data generation process, generating foreign keys re-
quires the join information tables of corresponding refer-
enced primary keys, so the primary-foreign-key depen-
dencies must form a direct acyclic graph (DAG), which
is also the precondition of DCGen [5].

Privacy issue. Our work can help to protect privacy to
some extend by removing query parameter values or us-
ing approximate query intermediate cardinalities. How-
ever, if the database statistics and workload characteris-
tics are strictly related to privacy issues in some cases,
it will not be a good way to use this kind of workload-
aware data generators for performance testing.

In this paper we introduce Touchstone [2], a query-
aware data generator with characteristics of completely
parallelizable and bounded usage to memory. And
Touchstone is linearly scalable to computing resource
and data scale. Our future work is to support more opera-
tors, e.g., intersect and having, for covering the complex
queries of TPC-DS, which has not be well supported by
any existing query-aware data generation work.
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gen: generating query-aware test databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management of
data (2007), ACM, pp. 341–352.

[7] BRUNO, N., AND CHAUDHURI, S. Flexible database generators.
In Proceedings of the 31st international conference on Very large
data bases (2005), VLDB Endowment, pp. 1097–1107.

[8] COHEN, S. Generating xml structure using examples and con-
straints. Proceedings of the VLDB Endowment 1, 1 (2008), 490–
501.

[9] GRAY, J., SUNDARESAN, P., ENGLERT, S., BACLAWSKI, K.,
AND WEINBERGER, P. J. Quickly generating billion-record syn-
thetic databases. In ACM SIGMOD Record (1994), vol. 23, ACM,
pp. 243–252.

[10] GU, L., ZHOU, M., ZHANG, Z., SHAN, M.-C., ZHOU, A.,
AND WINSLETT, M. Chronos: An elastic parallel framework for
stream benchmark generation and simulation. In Data Engineer-
ing (ICDE), 2015 IEEE 31st International Conference on (2015),
IEEE, pp. 101–112.

[11] HOAG, J. E., AND THOMPSON, C. W. A parallel general-
purpose synthetic data generator. ACM SIGMOD Record 36, 1
(2007), 19–24.

[12] HOUKJÆR, K., TORP, K., AND WIND, R. Simple and real-
istic data generation. In Proceedings of the 32nd international
conference on Very large data bases (2006), VLDB Endowment,
pp. 1243–1246.

[13] LESKOVEC, J., CHAKRABARTI, D., KLEINBERG, J., AND RE-
ALISTIC, C. F. Mathematically tractable graph generation and
evolution, using kronecker multiplication european conf. on prin-
ciples and practice of know. dis. Databases (ECML/PKDD)
(2005).

[14] LO, E., CHENG, N., AND HON, W.-K. Generating databases
for query workloads. Proceedings of the VLDB Endowment 3,
1-2 (2010), 848–859.

[15] LO, E., CHENG, N., LIN, W. W., HON, W.-K., AND CHOI, B.
Mybenchmark: generating databases for query workloads. The
VLDB Journal 23, 6 (2014), 895–913.

[16] MISHRA, C., AND KOUDAS, N. Interactive query refinement. In
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology (2009),
ACM, pp. 862–873.

[17] MISHRA, C., KOUDAS, N., AND ZUZARTE, C. Generating tar-
geted queries for database testing. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data
(2008), ACM, pp. 499–510.

[18] OLSTON, C., CHOPRA, S., AND SRIVASTAVA, U. Generating
example data for dataflow programs. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data
(2009), ACM, pp. 245–256.

[19] PHAM, M.-D., BONCZ, P., AND ERLING, O. S3g2: A scalable
structure-correlated social graph generator. In Technology Con-
ference on Performance Evaluation and Benchmarking (2012),
Springer, pp. 156–172.

[20] SHEN, E., AND ANTOVA, L. Reversing statistics for scalable test
databases generation. In Proceedings of the Sixth International
Workshop on Testing Database Systems (2013), ACM, p. 7.
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Abstract 

In a modern OS, kernel modules often use spinlocks and 

interrupt handlers to monopolize a CPU core to execute 

concurrent code in atomic context. In this situation, if 

the kernel module performs an operation that can sleep 

at runtime, a system hang may occur. We refer to this 

kind of concurrency bug as a sleep-in-atomic-context 

(SAC) bug. In practice, SAC bugs have received insuf-

ficient attention and are hard to find, as they do not al-

ways cause problems in real executions.  

In this paper, we propose a practical static approach 

named DSAC, to effectively detect SAC bugs and au-

tomatically recommend patches to help fix them. DSAC 

uses four key techniques: (1) a hybrid of flow-sensitive 

and -insensitive analysis to perform accurate and effi-

cient code analysis; (2) a heuristics-based method to 

accurately extract kernel interfaces that can sleep at 

runtime; (3) a path-check method to effectively filter 

out repeated reports and false bugs; (4) a pattern-based 

method to automatically generate recommended patches 

to help fix the bugs.  

We evaluate DSAC on kernel modules (drivers, file 

systems, and network modules) of the Linux kernel, and 

on the FreeBSD and NetBSD kernels, and in total find 

401 new real bugs. 272 of these bugs have been con-

firmed by the relevant kernel maintainers, and 43 patch-

es generated by DSAC have been applied by kernel 

maintainers. 

1. Introduction 

Concurrency bugs are known to be difficult to debug. 

Many tools have been proposed to detect common con-

currency bugs such as atomicity violations and data 

races. However, as a kind of concurrency bug, sleep-in-

atomic-context (SAC) bugs have received less attention. 

SAC bugs occur at the kernel level when a sleeping 

operation is performed in atomic context [10], such as 

when holding a spinlock or executing an interrupt han-

dler. Code executing in atomic context monopolizes a 

CPU core, and the progress of other threads that need to 

concurrently access the same resources is delayed. Thus 

the code execution in atomic context should complete 

as quickly as possible. Sleeping in atomic context is 

forbidden, as it can block a CPU core for a long period 

and may lead to a system hang. 

Even though sleeping in atomic context is forbidden, 

many SAC bugs still exist, especially in kernel modules, 

such as device drivers and file systems. The main rea-

sons why SAC bugs continue to occur include: (1) De-

termining whether an operation can sleep often requires 

system-specific experience; (2) Testing kernel modules 

can be difficult, for example, running a device driver 

requires its associated device; (3) SAC bugs do not al-

ways cause problems in real execution, and they are 

often hard to reproduce at runtime. Recent studies [12, 

48] have shown that SAC bugs have caused serious 

system hangs at runtime. Thus, it is necessary to detect 

and fix SAC bugs in kernel modules. 

Many existing approaches [7, 19, 28, 42] can detect 

concurrency bugs, but most of them are designed for 

user-level applications. Some approaches [13, 17, 18, 

41, 44] can detect some common kinds of kernel-level 

concurrency bugs, such as atomicity violations and data 

races, but they have not addressed SAC bugs. Several 

approaches [2, 9, 16, 34, 53] can detect common kinds 

of OS kernel faults, including SAC bugs. But they are 

not specific to SAC bugs, and most of them [9, 16, 34] 

are designed to collect statistics rather than report spe-

cific bugs to the user, making issues such as detection 

time and false positive rate less important. 

In this paper, we propose a static approach named 

DSAC
1
 that targets accurately and efficiently detecting 

SAC (sleep-in-atomic-context) bugs in kernel modules, 

and can automatically recommend patches to help fix 

the detected bugs. DSAC consists of four phases. Firstly, 

DSAC uses a hybrid of flow-sensitive and -insensitive 

analysis (subsequently referred to as a hybrid flow 

analysis) to analyze the source code, in order to collect 

the set of functions that are possibly called in atomic 

context. Secondly, from the collected functions, DSAC 

exploits a heuristics-based method, which uses some 

heuristics based on the analysis of the call graphs and 

comments of the kernel code, to extract kernel interfac-

es that can sleep at runtime. Thirdly, with the extracted 

                                                                                              
1 DSAC website: http://oslab.cs.tsinghua.edu.cn/DSAC/index.html 
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sleep-able kernel interfaces, DSAC first reuses the hy-

brid flow analysis to detect possible bugs, and then uses 

a path-check method to filter out repeated reports and 

false bugs by validating the code path of each detected 

bug. Finally, DSAC exploits a pattern-based method to 

automatically generate patches to help fix the bugs. This 

method analyzes the bug reports generated in the previ-

ous phase, and uses common fixing patterns to correct 

the buggy code. 

We have implemented DSAC using LLVM [51]. To 

validate its effectiveness, we first evaluate DSAC on 

Linux drivers, which are typical of modules in the Linux 

kernel. To validate the generality and portability, we 

then use DSAC to check file systems and network mod-

ules in the Linux kernel, and finally use DSAC in 

FreeBSD and NetBSD to check their kernel source code. 

The results show that DSAC can indeed accurately and 

efficiently find real SAC bugs and recommend a num-

ber of correct patches to help fix the bugs. 

DSAC has four main advantages in practical use: 

1) Efficient and accurate code analysis. DSAC uses 

an efficient inter-procedural and context-sensitive anal-

ysis to maintain a lock stack across function calls, which 

can accurately identify the code in atomic context. All 

source files of the kernel module are analyzed at once to 

perform accurate analysis across function calls. 

2) Precise and detailed bug reports. To achieve pre-

cise bug detection, DSAC uses a heuristics-based meth-

od to extract sleep-able kernel interfaces, and uses a 

path-check method to filter out repeated reports and 

false bugs. It also produces detailed reports of the found 

bugs, including code paths and source file names, for 

the user to locate and check. 

3) Recommended patch generation. With the gener-

ated bug reports, DSAC uses a pattern-based method to 

automatically generate patches to help fix the detected 

bugs, which can reduce the manual work of bug fixing. 

4) High automation, generality and portability. 

Once the user offers the names of spin-lock and -unlock 

functions, interrupt-handler-register functions and basic 

sleep-able kernel interfaces, the remaining phases of 

DSAC are fully automated. DSAC can effectively check 

kernel modules, including drivers, file systems and net-

work modules. And it can also be easily ported in an-

other OS to check the kernel code. 

In this paper, we make three main contributions: 

 We first analyze the challenges in detecting SAC 

bugs in kernel modules, and then propose four key 

techniques to address these challenges: (1) a hybrid 

flow analysis to perform accurate and efficient code 

analysis; (2) a heuristics-based method to accurate-

ly extract sleep-able kernel interfaces in the ana-

lyzed kernel modules; (3) a path-check method to 

effectively filter out repeated reports and false bugs; 

(4) a pattern-based method to automatically gener-

ate recommended patches to help fix the bugs. 

 Based on the four techniques, we propose a practi-

cal approach named DSAC, to accurately and effi-

ciently detect SAC bugs in kernel modules and au-

tomatically recommend patches to help fix the bugs. 

 We evaluate DSAC on drivers in Linux 3.17.2 and 

4.11.1. We select these kernel versions as they are 

near the beginning of stable series, and thus the 

simplest bugs should have been fixed in them. We 

find 200 and 320 real bugs respectively in these 

versions. 50 real bugs in 3.17.2 have been fixed in 

4.11.1, and 209 real bugs in 4.11.1 have been con-

firmed by kernel maintainers. To validate the gen-

erality and portability, we use DSAC to check file 

systems and network modules in the Linux kernel, 

and then run it in FreeBSD 11.0 and NetBSD 7.1 to 

check their kernel code, and find 81 new real bugs. 

43 generated patches for the three OS kernels have 

been applied by kernel maintainers. 

The remainder of the paper is organized as follows. 

Section 2 presents the background. Section 3 presents 

the challenges and our techniques. Section 4 introduces 

DSAC in detail. Section 5 presents the evaluation. Sec-

tion 6 compares DSAC to previous approaches. Section 

7 presents limitations and future work. Section 8 gives 

the related work. Section 9 concludes this paper. 

2. Background 

In this section, we first introduce atomic context, and 

then motivate our work by an example of a real SAC 

bug in a Linux driver. 

2.1 Atomic Context 

Atomic context is an OS kernel state that a CPU core is 

monopolized to execute the code, and the progress of 

other threads that need to concurrently access the same 

resources is delayed. This context can protect resources 

from concurrent access, in which the code execution 

should complete as quickly as possible without able to 

be rescheduled. Due to this special situation, sleeping in 

atomic context is forbidden, as it can block CPU cores 

for long periods and may lead to a system hang. 

There are two common examples of atomic context in 

the kernel, namely holding a spinlock and executing an 

interrupt handler. If a thread sleeps when holding a 

spinlock, another thread that requests the same spinlock 

will spin on a CPU core to wait until the former thread 

releases the spinlock. If threads spin on all CPU cores 

like this, no CPU core will be available for the former 

thread to release the spinlock, causing a deadlock [11]. 

If an interrupt handler sleeps, the kernel scheduler can-

not reschedule it and a system hang may occur, as the 

interrupt handler is not backed by a process [29]. 
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Note that atomic context only occurs at the kernel 

level, as user-level applications are regularly interrupted 

by the OS scheduler when their time slices end. Though 

kernel developers often know that sleeping is not al-

lowed in atomic context, many SAC bugs still exist [16, 

34], especially in kernel modules. 

2.2 Motivating Example 

We motivate our work by a real bug in the usb_gadget 

that persisted over 8 releases (1.5 years) from Linux 

2.6.38 to Linux 3.7. Figure 1 presents part of the source 

code for the driver. The function mv_ep_queue calls 

spin_lock_irqsave to take a spinlock (line 774) and then 

calls req_to_dtd (line 775). The function req_to_dtd 

calls build_dtd (line 452), which calls dma_pool_alloc 

with GFP_KERNEL to request a DMA memory pool 

(line 399). According to the kernel documentation [50], 

dma_pool_alloc called with GFP_KERNEL can sleep, 

thus a SAC bug exists. This bug was first fixed in Linux 

3.7, by replacing GFP_KERNEL with GFP_ATOMIC, 

which indicates to dma_pool_alloc that it cannot sleep. 

This example illustrates three main reasons why SAC 

bugs occur in kernel modules. (1) Determining whether 

an operation can sleep requires OS-specific knowledge. 

In this example, without experience in Linux kernel 

development, it may be hard to know that the function 

dma_pool_alloc called with GFP_KERNEL can sleep at 

runtime. (2) SAC bugs do not always cause problems in 

real execution and are hard to reproduce at runtime. In 

this example, the function dma_pool_alloc called with 

GFP_KERNEL only sleeps when memory is insufficient. 

Even in a low-memory situation, this SAC bug is not 

always triggered at runtime in a multi-core system, be-

cause of the non-determinism of concurrent execution. 

(3) Multiple layers of function calls need to be consid-

ered when finding SAC bugs. In this example, the func-

tion dma_pool_alloc is called across two function levels 

after spin_lock_irqsave is called. 

The bug in Figure 1 has been fixed, but many SAC 

bugs still remain in current kernel modules. Some recent 

studies [12, 48] have shown that SAC bugs have caused 

serious system hangs, and these bugs were often hard to 

locate and reproduce. Thus, to improve the reliability of 

the operating system, it is necessary to design an ap-

proach to detect SAC bugs in kernel modules. 

3. Challenges and Techniques 

In this section, we first discuss the main challenges in 

detecting SAC bugs and then propose our techniques to 

address these challenges. 

3.1 Challenges and Overview of Our Solutions 

There are four main challenges in detecting SAC bugs 

in kernel modules: 

C1: Code analysis coverage, accuracy and time. A key 

goal in bug detection is to efficiently cover more code 

and generate accurate results. Running kernel modules 

can be difficult (for example, running a driver needs the 

associated device), and thus we use static analysis to 

achieve high code coverage without the need to execute 

the code. Static analysis can be either flow-sensitive or 

flow-insensitive. Flow-sensitive analysis searches each 

code path of a branch and can cover all code paths. For 

this reason, it can produce accurate results, but it often 

requires much time and memory especially in inter-

procedural analysis. Flow-insensitive analysis handles 

each code line instead of each path. Thus, it is more 

efficient, but its results may be less accurate. We pro-

pose a hybrid flow analysis to obtain the advantages of 

both flow-sensitive and -insensitive analysis. It uses 

flow-sensitive analysis when its accuracy is expected to 

be beneficial and falls back to flow-insensitive analysis 

when full accuracy is not necessary. We will introduce 

the hybrid flow analysis in Section 3.2.1. 

C2: Sleep-able function extraction. Determining wheth-

er a function can sleep often requires a good under-

standing of the kernel code. Specifically, for a function 

defined in the kernel module (referred to as a module 

function subsequently), whether it can sleep depends on 

whether the called kernel interfaces can sleep. Using 

this idea, we design a heuristics-based method that first 

collects all kernel interfaces possibly called in atomic 

context of the kernel module, and then analyzes the 

kernel source code and comments to identify sleep-able 

ones. We will introduce this method in Section 3.2.2. 

C3: Filtering out repeated and false bugs. Some detect-

ed bugs may be repeated, because they take the spinlock 

at the same place and call the same sleep-able function, 

but only differ in their code paths. Moreover, some de-

tected bugs may be false positives, as the analysis does 

not consider variable value information, and thus may 

search some infeasible code paths. We design a path-

check method that checks the code path of each detect-

ed bug to filter out repeated reports and false bugs. We 

will introduce it in Section 3.2.3. 

 

 

 

 

 

 

 

 

Figure 1: Part of the usb_gadget driver code in Linux 2.6.38. 

 

FILE: linux-2.6.38/drivers/usb/gadget/mv_udc_core.c 
382. static struct mv_dtd *build_dtd(…) { 

           …… 
399.     dtd = dma_pool_alloc(udc->dta_pool, GFP_KERNEL, dma); 

           …… 
438. } 
 
441. static int req_to_dtd(…) { 

           …… 
452.     dtd = build_dtd(…); 

           …… 
473. } 
 
724. static int mv_ep_queue(…) { 

           …… 
774.     spin_lock_irq_save(…); 
775.     req_to_dtd(…); 

           …… 
799. } 

 

USENIX Association 2018 USENIX Annual Technical Conference    589



 

 

HanCall(mycall, path_stack, lock_stack) 

1: if  lock_stack == ø  and  g_intr_flag == FALSE  then 
2:       return; 
3: end if 
4: if  PathHasExisted(mycall, path_stack) == TRUE  then 
5:       return; 
6: end if 
7: AddPathStack(mycall, path_stack); 
8: myfunc := GetCalledFunction(mycall); 
9: HowToFunc(myfunc, path_stack, lock_stack, g_intr_flag);  

10: if  IsModuleFunc(myfunc) == FALSE  then 
11: return; 
12: end if 
13: if  IsTargetFunc(myfunc) == TRUE  or  g_intr_flag == TRUE  then 
14: entry_block := GetEntryBlock(myfunc); 
15: HanBlock(entry_block, path_stack, lock_stack); 
16: else 
17: foreach  call  in  FunctionCallList(myfunc)  do 
18: HanCall(call, path_stack, lock_stack); 
19: end foreach 
20: end if 

 

HanBlock(myblock, path_stack, lock_stack) 

1: if  PathHasExisted(myblock, path_stack) == TRUE  then 
2:       return; 
3: end if 
4: AddPathStack(myblock, path_stack); 
5: foreach  func_call  in  FunctionCallList(myblock)  do 
6: if  func_call is a call to a spin-lock function  then 
7 Push func_call onto lock_stack; 
8: else if  func_call is a call to a spin-unlock function  then 
9: Pop an item from lock_stack; 

10: else 
11: HanCall(func_call, path_stack, lock_stack); 
12: end if 
13: end foreach 
14: if  lock_stack == ø  and  g_intr_flag == FALSE  then 
15: return; 
16: end if 
17: foreach  block  in  SuccessorBlocks(myblock)  do 
18: HanBlock(block, path_stack, lock_stack); 
19: end foreach 

 

FlowAnalysis: Main hybrid flow analysis 

1: foreach  func  in  target_func_set  do 
2: lock_block_set := GetLockBlockSet(func); 
3 foreach  block  in  lock_block_set  do 
4: path_stack := ø; lock_stack := ø; g_intr_flag := FALSE; 
5: HanBlock(block, path_stack, lock_stack); 
6: end foreach 
7: end foreach 
8: foreach  func  in  intr_handler_func_set  do 
9: path_stack := ø; lock_stack := ø; g_intr_flag := TRUE; 

10: entry_block := GetEntryBlock(func); 
11: HanBlock(entry_block, path_stack, lock_stack); 
12: end foreach 

Figure 2: Hybrid flow analysis. 

 

C4: Bug fixing recommendation. After finding real bugs, 

the user may manually write patches to fix them. Be-

sides, incorrect patches can introduce new bugs [21]. 

To reduce the manual work of bug fixing, we summa-

rize common patterns for fixing SAC bugs, and propose 

a pattern-based method to automatically generate rec-

ommended patches to help fix the bugs. We will intro-

duce this method in Section 3.2.4. 

3.2 Key Techniques 

3.2.1 Hybrid Flow Analysis 

Our hybrid flow analysis is used to identify the code in 

atomic context. It is based on two points: (1) The analy-

sis is context-sensitive and inter-procedural, in order to 

maintain the spinlock status and detect atomic context 

across functions calls. (2) The choice of flow-sensitive 

or -insensitive analysis is made as follows: if a module 

function calls a spin-lock or spin-unlock function (this 

module function is referred to as a target function) or it 

is called by an interrupt handler, flow-sensitive analy-

sis is used to analyze each code path from the entry 

basic block; otherwise, flow-insensitive analysis is used 

to handle each function call made by the function. In 

the first case, flow-sensitive analysis is used to accurate-

ly maintain the spinlock status and collect code paths 

for subsequent bug filtering. In the second case, flow-

insensitive analysis is used to reduce analysis cost, be-

cause in this case, the spinlock status is expected not to 

change explicitly. 

Our hybrid flow analysis has two steps. The first step 

identifies target functions and interrupt handler func-

tions, as flow-sensitive analysis is performed in these 

functions. For target functions, we analyze the defini-

tion of each module function and check whether it calls 

a spin-lock or spin-unlock function. For interrupt han-

dler functions, we identify the calls to interrupt-handler-

register kernel interfaces (like request_irq in the Linux 

kernel), and extract interrupt handler functions from the 

related arguments. 

The second step performs the main analysis. Figure 2 

presents the procedure FlowAnalysis. It maintains two 

stacks, namely a path stack (path_stack) to store the 

executed code path and a lock stack (lock_stack) to 

store the spinlock status. A flag (g_intr_flag) is used to 

indicate whether the code is in an interrupt handler. If 

lock_stack is not empty or g_intr_flag is TRUE, the 

code is in atomic context. FlowAnalysis uses HanCall 

to handle a function call and HanBlock to handle a 

basic block. We introduce them as follows: 

HanCall. It handles the function call mycall with the 

arguments path_stack and lock_stack, to check if the 

definition of the function called by mycall needs to be 

handled, and if so to determine if the flow-sensitive or -

insensitive analysis should be used. Firstly, HanCall 

checks if lock_stack is empty and g_intr_flag is FALSE 

(lines 1-3). If so, no spinlock is held and the code is not 

in an interrupt handler, and thus HanCall returns. Sec-

ondly, HanCall uses path_stack to check if mycall has 

been analyzed (lines 4-6). If so, it returns to avoid re-

peated analysis. Note that this prevents infinite looping 

on recursive calls. Thirdly, HanCall adds mycall into 

path_stack, and gets the called function myfunc (lines 7-

8). Fourthly, HowToFunc (line 9) performs the analyses 

presented in Sections 3.2.2 and 4.1.3. Fifthly, HanCall 

checks if myfunc is a module function (lines 10-12). If 

not, it returns. Finally, it handles the definition of my-

func (lines 13-20). If myfunc is a target function or 

g_intr_flag is TRUE, flow-sensitive analysis is used to 

handle its entry basic block using HanBlock (lines 13-
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15); otherwise, flow-insensitive analysis is used to han-

dle each function call made by myfunc using HanCall 

(lines 16-20). 

HanBlock. It handles the basic block myblock with the 

arguments path_stack and lock_stack, to perform flow-

sensitive analysis as well as maintain the spinlock status. 

Firstly, HanBlock uses path_stack to check if myblock 

has been analyzed (lines 1-3). If so, it returns to avoid 

repeated analysis. Secondly, HanBlock adds myblock 

into path_stack (line 4). Thirdly, HanBlock handles 

each function call in myblock (lines 5-13). If the func-

tion call is a call to a spin-lock or spin-unlock function, 

HanBlock pushes the call onto or pops an item from 

lock_stack; otherwise, the call is handled by HanCall. 

Fourthly, HanBlock checks if lock_stack is empty and 

g_intr_flag is FALSE. If so, it returns (lines 14-16); 

otherwise, each successive basic block of myblock is 

handled using HanBlock (lines 17-19). 

FlowAnalysis. It performs the main analysis, in two 

steps. Firstly, each target function is analyzed (line 1-7). 

For a target function, each basic block that contains a 

spin-lock function call is an analysis entry. In this case, 

path_stack and lock_stack are first set to empty, and 

g_intr_flag is set to FALSE. Then, the analysis is started 

by using HanBlock to handle this basic block. Secondly, 

each interrupt handler function is analyzed (line 8-12). 

In this case, path_stack and lock_stack are set to empty, 

but g_intr_flag is set to TRUE. Then, the analysis is 

started by using HanBlock to handle the entry basic 

block of the interrupt handler function. 

Our hybrid flow analysis has three main advantages: 

(1) The functions that are possibly called in atomic con-

text can be accurately detected; (2) Detailed code paths 

and complete spinlock status are maintained, to help 

accurately detect atomic context; (3) Many unnecessary 

paths are not considered to reduce the analysis time. 

However, a main limitation of our analysis is that varia-

ble value information is not considered, which may 

cause false positives in bug detection. 

We illustrate our hybrid flow analysis using some 

simplified driver-like code shown in Figure 3. As shown 

in Figure 3(a), the module consists of MyFunc, FuncA 

and FuncB, where MyFunc calls FuncA and FuncB. 

Because MyFunc and FuncB both call spin_lock and 

spin_unlock, they are target functions and handled by 

the flow-sensitive analysis; because FuncA does not call 

spin-lock or spin-unlock functions, it is handled by the 

flow-insensitive analysis. Figure 3(b) presents the call 

path of each function, with the code line numbers from 

Figure 3(a) shown in the vertices. Figure 3(c) shows the 

call paths used in inter-procedural analysis of MyFunc. 

During the analysis, no spinlock is held after the first 

line of FuncB (line 24), thus the following call paths in 

FuncB are not analyzed. In total, only two useful call 

paths marked in solid edges in Figure 3(c) are handled 

when analyzing MyFunc, and they are the only neces-

sary call paths for atomic context analysis in this case. 

3.2.2 Heuristics-Based Sleep-able Function Extraction 

We use some heuristics to accurately extract sleep-able 

kernel interfaces in the kernel modules. Firstly, we per-

form our hybrid flow analysis on the analyzed kernel 

module(s), to collect all kernel interfaces that are possi-

bly called in atomic context, through HowToFunc in 

Figure 2. The collected information is stored into a da-

tabase as intermediate results, including the function 

name, constant arguments, file name and so on. Second-

ly, we use some heuristics to inter-procedurally analyze 

the call graph of each collected kernel interface, and 

determine whether it can sleep. If a kernel interface 

satisfies one of the five criteria, we identify it sleep-able: 

 It calls a basic sleep-able function, like schedule in 

the Linux kernel and sleep in the NetBSD kernel. 

 It is called with a specific constant argument indi-

cating it can sleep, like GFP_KERNEL in the Linux 

kernel and M_WAITOK in the FreeBSD kernel. 

 It calls a specific macro that indicates the operation 

can sleep, like might_sleep in the Linux kernel. 

 The comments in or before it contain keywords like 

“can sleep” and “may block”. 

 It calls an already identified sleep-able kernel inter-

face in the call graph. 

To avoid repeated checking, we maintain two cache 

lists. If a function is marked as sleep-able, it is added to 

a sleep-able list; otherwise it is added to a non-sleep list. 

When analyzing a function, we first check whether the 

function is in either of these lists. 

After the extraction, we get the sleep-able kernel in-

terfaces that are possibly called in atomic context of the 

analyzed kernel modules(s). These kernel interfaces can 

be used to detect SAC bugs in the kernel module(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                  (b)                    (c) 

Figure 3: Example of hybrid flow analysis. 

 

1: int FuncA(device *dev); 
2: void FuncB(device *dev); 
3: 
4: void MyFunc(device *dev) { 
5:     spin_lock(dev->lock); 
6:     if (FuncA(dev)) 
7:         goto exit; 
8:     FuncB(dev); 
9: exit: 

10:     spin_unlock(dev->lock); 
11: } 
12: 
13: int FuncA(device *dev) { 
14:     int v = reg_read(dev->reg, 0x01); 
15:     if (!v) { 
16:         printk(“REG data error!\n”); 
17:         return -EIO; 
18:     } 
19:     msleep(1); 
20:     return 0; 
21: } 
22: 
23: void FuncB(device *dev) { 
24:     spin_unlock(dev->lock); 
25:     if (!dev->reply_msg) 
26:         printk(“No reply, wait!\n”); 
27:     msleep(10); 
28:     spin_lock(dev->lock); 
29: } 
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(a) Checking a variable 

 

 

 

(b) Checking the return value of a kernel interface 

Figure 4: Examples of path checks in drivers. 

 

FILE: linux-4.11.1/drivers/scsi/ufs/ufshcd.c 

504. static int ufshcd_wait_for_register(…, bool can_sleep) { 
           …… 

515.     if (can_sleep) 
516.         usleep_range(…); 
517.     else 
518.         udelay(…); 

…… 
527. } 

FILE: linux-4.11.1/drivers/block/DAC960.c 

783. static void DAC960_ExecuteCommand(…) { 
…… 

794.     if (in_interrupt()) 
795.         return; 
796.     wait_for_completion(…); 
797. } 
 

3.2.3 Path-Check Bug Filtering 

We use the detailed code paths recorded in our hybrid 

flow analysis to filter out repeated and false SAC bugs. 

Firstly, we filter out repeated bugs. For each new pos-

sible bug, we check whether its entry and terminal basic 

blocks are the same as those of an already detected bug, 

and whether they call the same sleep-able kernel inter-

face. If both conditions are satisfied, this possible bug is 

marked as a repeated bug and is filtered out. 

Secondly, we filter out false bugs, which are mainly 

introduced by the fact that our hybrid flow analysis ne-

glects variable value information. The best strategy is to 

validate path conditions [6]. But it is often hard to en-

sure the accuracy and efficiency when control flow is 

complex, especially across function calls. 

By studying the Linux kernel source code, we find a 

useful and common semantic information for variables: 

a conditional that checks a parameter of the containing 

function or the return value of a specific kernel inter-

face is often used to decide whether sleeping is allowed. 

Figure 4 presents two examples in Linux driver code. In 

Figure 4(a), a conditional checks the function parameter 

can_sleep to decide whether the sleep-able kernel inter-

face usleep_range can be called. In Figure 4(b), a con-

ditional checks the return value of the kernel interface 

in_interrupt to check whether the code is executed in an 

interrupt handler to decide whether the sleep-able kernel 

interface wait_for_completion can be called. Using this 

semantic information, we design a straightforward strat-

egy to cover common cases. If the code path of a possi-

ble bug satisfies one of the two criteria, we mark this 

bug as a false bug and filter it out: 

 The path contains a conditional that checks a pa-

rameter of the containing function, and the name of 

this parameter contains a keyword like “can_sleep”, 

“atomic” and “can_block”. 

 The path contains a conditional that checks the re-

turn value of a kernel interface used to check atom-

ic context, like in_interrupt in the Linux kernel. 

We propose a path-check method that uses the above 

steps, to automatically and effectively filter out repeated 

reports and false bugs. 

3.2.4 Pattern-based Patch Generation 

By studying Linux kernel patches, we have found four 

common patterns of fixing SAC bugs: 

P1: Replace the sleep-able kernel interface with a non-

sleep kernel interface having the same functionality, like 

usleep_range ⇒ udelay in Figure 4(a). 

P2: Replace the specific sleep-able constant flag with a 

non-sleep flag, like GFP_KERNEL ⇒ GFP_ATOMIC 

in Figure 1. 

P3: Move the sleep-able kernel interface to some place 

where a spinlock is not held. 

P4: Replace the spinlock with a lock that allows sleep-

ing, like spin_lock ⇒ mutex_lock and spin_unlock ⇒ 

mutex_unlock in the Linux kernel. 

These patterns have different usage scenarios and 

raise different challenges. Firstly, P1 and P2 can be 

used for all atomic contexts, while P3 and P4 are only 

used when holding a spinlock. Secondly, P1 and P2 

involve simple modifications, while P3 and P4 involve 

more difficult modifications and are error-prone. Using 

P3 requires carefully determining where the sleep-able 

function should be moved to. Using P4 requires modify-

ing all locking and unlocking operations. Thus, using 

P3 and P4 to automatically generate patches is hard. 

We only use P1 and P2 to automatically generate rec-

ommended patches, because these patterns are simple 

and effective. Supporting P3 and P4 is left as future 

work. The method has three steps. Firstly, the bug is 

located using its code path, and the relevant fixing pat-

tern (P1 or P2) is selected according to the code. If no 

relevant pattern is available, no patch is generated. Sec-

ondly, the buggy code is corrected by using the selected 

pattern. Finally, a patch is generated by comparing the 

corrected code to original code. 

This pattern-based method has two advantages. First-

ly, it can reduce the manual work of bug fixing. Second-

ly, by using common fixing patterns, it can ensure the 

correctness of the generated patches. 

4. Approach 

Based on the four techniques in Section 3.2, we propose 

a static approach DSAC, to effectively detect SAC bugs 

in kernel modules and recommend patches to help fix 

the detected bugs. We have implemented DSAC with 

the Clang compiler [49], and perform static analysis on 

the LLVM bytecode of the kernel module. Figure 5 

presents the architecture of DSAC, which has five parts: 

 Code compiler. For a given kernel module, this part 

compiles all the source files of the kernel module 

into a single LLVM bytecode file. 
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 Function extractor. With the LLVM bytecode and 

the kernel source code, this part uses our hybrid 

flow analysis and heuristics-based method to gen-

erate intermediate results and extract sleep-able 

kernel interfaces called in the kernel module(s). 

 Bug detector. With the extracted sleep-able kernel 

interfaces and intermediate results, this part reuses 

our hybrid flow analysis to automatically detect 

possible SAC bugs from the LLVM bytecode. 

 Bug filter. This part uses our path-check method to 

filter out repeated and false bugs and generates re-

ports for the final detected SAC bugs. 

 Patch generator. With the bug code paths and ker-

nel module source code, this part uses our pattern-

based method to automatically recommend patches 

to help fix the bugs. 

Based on the architecture, DSAC consists of four 

phases which are introduced as follows. 

4.1 Function Information Collection 

In this phase, DSAC performs two steps: 

Firstly, the code compiler compiles each source file 

of the kernel module into a LLVM bytecode file, and 

then links all bytecode files into a single bytecode file. 

This single bytecode file includes all module function 

definitions, thus all analyses of the kernel module can 

be directly performed on only this single bytecode file. 

Secondly, the function extractor performs the hybrid 

flow analysis to collect the information about functions 

that are possibly called when holding a spinlock or in an 

interrupt handler. The information is stored in a MySQL 

[52] database as the intermediate results, including the 

function name, constant arguments, file name, etc. The 

intermediate results will be later used in sleep-able ker-

nel interface extraction and bug detection. 

4.2 Sleep-able Kernel Interface Extraction 

In this phase, the function extractor first extracts func-

tion call graphs of kernel interfaces and comments of 

these kernel interfaces, and then uses the heuristics-

based method to extract sleep-able kernel interfaces. 

The user can check and modify the extracted sleep-able 

kernel interfaces as needed. 

4.3 Bug Detection 

In this phase, DSAC first detects possible SAC bugs, 

and then filters out repeated reports and false bugs. 

Firstly, the bug detector uses the hybrid flow analysis 

to check whether each extracted sleep-able kernel inter-

face is called in atomic context, which is implemented 

in HowToFunc in Figure 2. If so, a possible bug and its 

detailed code path to the sleep-able kernel interface call 

are recorded. To speed up analysis, we use the interme-

diate results to only check the buggy kernel modules. 

Secondly, the bug filter filters out repeated reports 

and false bugs. Finally, DSAC produces detailed reports 

for the found bugs (including code paths and source file 

names), so the user can locate and check the bugs. 

4.4 Recommended Patch Generation 

In this phase, the patch generator automatically gener-

ates recommended patches to help fix the bugs. Then, 

the user can use the detailed code paths found in the bug 

reports to write log messages, and finally submit these 

patches to kernel maintainers. 

5. Evaluation 

5.1 Experimental Setup 

To validate the effectiveness of DSAC, we first evaluate 

it on Linux drivers, which are typical kernel modules. 

To cover different kernel versions, we select an old 

version 3.17.2 (released in October 2014), and a new 

version 4.11.1 (released in May 2017). Then, to validate 

the generality of DSAC, we use it to check file systems 

and network modules in the Linux kernel. Finally, to 

validate the portability of DSAC, we run it in FreeBSD 

and NetBSD to check their kernel code. 

We run the experiments on a Lenovo x86-64 PC with 

four Intel i5-3470@3.20G processors and 4GB memory. 

We compile the code using Clang 3.2. We use the ker-

nel configuration allyesconfig to enable all drivers, file 

systems and network modules for the x86 architecture. 

To run DSAC, the user performs three steps. Firstly, 

the user configures DSAC for the checked OS kernel, 

by providing the names of spin-lock and -unlock func-

tions (such as spin_lock_irq and spin_unlock_irq for 

the Linux kernel), interrupt-handler-register functions 

(such as request_irq for the Linux kernel), and basic 

sleep-able kernel interfaces (such as schedule for the 

Linux kernel). Secondly, the user compiles the source 

code of the kernel modules and OS kernel using the 

kernel’s underlying Makefile and DSAC’s compiling 

script. As a result, DSAC produces sleep-able functions 

and intermediate results. Finally, the user executes 

DSAC’s bug-detecting script to detect bugs and gener-

ate recommended patches. The second and third steps 

are fully automated. 
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Figure 5: Overall architecture of DSAC. 
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5.2 Extracting Sleep-able Kernel Interfaces 

We first extract the sleep-able kernel interfaces that are 

called in atomic context of the drivers. Table 1 presents 

the results for Linux 3.17.2 and 4.11.1. We make the 

following observations: 

1) DSAC can scale to large code bases. It handles 7M 

and 9M source code lines from 8K and 11K source files. 

And the analysis is started from many entry basic blocks 

and many interrupt handler (INTR) functions. 

2) Our heuristics-based method can efficiently extract 

real sleep-able kernel interfaces that are called in atomic 

context of the analyzed drivers. In Linux 3.17.2 and 

4.11.1, 70 and 94 sleep-able kernel interfaces are re-

spectively identified from among 3104 and 3613 differ-

ent kernel interfaces (candidate functions) that are pos-

sibly called in atomic context. We manually check the 

kernel interfaces identified as sleep-able, and find that 

all of them can sleep at runtime. Over 97% of the can-

didate functions are automatically filtered out, thus the 

manual work of checking these functions is saved. 

3) Our code analysis is efficient. DSAC respectively 

spends around 108 and 129 minutes on handling 8K and 

11K driver source files, including the compilation time 

of these source files using the Clang compiler. Exclud-

ing compilation time, DSAC spends 61 and 74 minutes 

respectively, amounting to less than 0.44 seconds per 

source file. 

4) Many of the extracted sleep-able kernel interfaces 

are related to resource handling (such as allocation and 

release). The data in parentheses present the number of 

these kernel interfaces, which amount to more than 60% 

of all the sleep-able kernel interfaces. 

5.3 Detecting Bugs and Generating Patches 

Based on the above extracted sleep-able kernel interfac-

es, we use DSAC to perform bug detection and recom-

mend patches. Firstly, to validate whether DSAC can 

find known bugs, we use DSAC to check the drivers in 

Linux 3.17.2. We do not generate patches in this case, 

because this kernel version is very old. Secondly, to 

validate whether DSAC can find new bugs and recom-

mend patches to help fix them, we use DSAC to check 

the drivers in Linux 4.11.1. We count the bugs accord-

ing to the pair of entry and terminal basic blocks. To 

check results’ accuracy, we manually check all detected 

bugs to identify whether they are real bugs. Table 2 

shows the results. We have the following findings: 

1) Our path-check filtering method is effective in au-

tomatically filtering out repeated reports and false bugs. 

2) Of the 215 bugs reported by DSAC in the drivers 

of Linux 3.17.2, we have identified 200 as real bugs, 50 

of which have been fixed in Linux 4.11.1. By reading 

the messages in relevant Linux driver mailing lists, we 

find that kernel maintainers confirmed that these fixed 

bugs could cause serious problems, like system hangs. 

The results indicate DSAC can indeed find known bugs. 

3) Of the 340 bugs reported by DSAC in the drivers 

of Linux 4.11.1, we have identified 320 as real bugs. 

150 bugs are inherited from the legacy code in 3.17.2, 

and 170 bugs are introduced by new functionalities and 

new drivers. We have reported all the bugs that we 

identified as real to kernel maintainers. As of January 

2018, 209 bugs have been confirmed, and replies for the 

other bugs have not been received. The results indicate 

DSAC can indeed find new real bugs. 

4) DSAC can accurately find real bugs in our evaluat-

ed driver code. The false positive rates are respectively 

only 7.0% and 5.9% in the drivers of Linux 3.17.2 and 

4.11.1, based on our identification of real bugs. Review-

ing the driver source code, we find these false positives 

are mainly introduced by the fact that some invalid code 

paths are searched by our hybrid flow analysis and our 

path-check method does not filter them out. 

5) Few of the detected bugs are in interrupt handlers 

(7 bugs in 3.17.2, and 17 bugs in 4.11.1). Indeed, driver 

developers often write clear comments to mark the driv-

er functions that are called from an interrupt handler, to 

prevent calling sleep-able functions in these functions. 

6) DSAC automatically and successfully generates 43 

patches that it recommends to help fix 82 real bugs in 

Linux 4.11.1. Table 2 classifies the patches by the pat-

tern in Section 3.2.4 that is used. We manually review 

these patches, add appropriate descriptions, and then 

submit them to the relevant kernel maintainers. As of 

January 2018, 30 patches have been applied, noted in 

Table 1: Results of extracting sleep-able kernel interfaces. 

Description 3.17.2 4.11.1 

Code 

handling 

Handled bytecode files 3377 4396 

Source files (.c) 8321 11153 

Source code lines 7392K 9464K 

Hybrid flow 

analysis 

Entry basic blocks 32167 37770 

Handled INTR functions 578 673 

Heuristic 

extraction 

Recorded functions 3104 3613 

Sleep-able kernel interfaces 70 (51) 94 (63) 

Time usage 

Original compilation 47m21s 55m34s 

DSAC total 108m43s 129m58s 

DSAC pure 61m22s 74m22s 

 

 

Table 2: Detected bugs and generated patches in drivers. 

Description 3.17.2 4.11.1 

Detected bugs 

Repeated filtered 479630 629924 

False filtered 282 430 

Final detected 215 340 

Interrupt handling 7 17 

Real 200 320 

Patch generation 

P1 (replace the function) - 28 (18) 

P2 (replace the flag) - 15 (12) 

Total - 43 (30) 

Time usage 

Bug detection 6m31s 8m46s 

Patch generation - 1m02s 

Total 6m31s 9m48s 
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parentheses in Table 2. 2 patches were not directly ap-

plied as the maintainers wanted to fix the bugs in other 

ways (such as P3 and P4). There has been no reply yet 

for 11 patches. There are still 238 real bugs for which 

DSAC cannot recommend patches, as they do not match 

P1 or P2. Most of these bugs can be fixed using P3 or 

P4. But those patterns require more difficult changes, 

and DSAC is not currently able to automatically apply 

them. In general, the results indicate that DSAC can 

generate a number of correct patches to reduce the 

manual work of bug fixing. 

7) Bug detection and patch generation are efficient, 

requiring less than 10 minutes. The reasons include that 

intermediate results are used to reduce repeated analysis 

and our hybrid flow analysis is efficient. 

Reviewing the results, we find two interesting things. 

Firstly, most of the detected bugs involve multiple func-

tions. Indeed, driver developers may easily forget that 

the code is in atomic context across multiple function 

calls. Secondly, many of the detected bugs are related to 

resource allocation and release, because many extracted 

sleep-able functions relate to this issue. 

We also classify the 320 real bugs found by DSAC in 

Linux 4.11.1 drivers, according to driver class. Table 3 

shows the top results. We find that SCSI and network 

drivers share 58% of all bugs. 

Figure 6(a) shows a real bug detected by DSAC in the 

gma500 driver of Linux 4.11.1, which has been con-

firmed by the developer. The function psbfb_2d_submit 

first calls spin_lock_irqsave to acquire a spinlock (line 

115), and then it calls psb_2d_wait_available (line 119) 

that calls psb_spank in definition (line 91). The function 

psb_spank calls msleep (line 58) that can sleep. To help 

fix the bug, our pattern-based method recommends a 

patch that replaces msleep with mdelay (P1), and this 

patch has been applied by the kernel maintainer. Part of 

the DSAC’s report for this bug is listed above Table 3. 

5.4 Generality and Portability 

We use DSAC to check file systems and network mod-

ules in Linux 4.11.1. Then we run DSAC in FreeBSD 

11.0 and NetBSD 7.1 to check their kernel code. Table 

4 shows the results. We have the following findings: 

1) DSAC works normally when checking Linux file 

systems and network modules and other OS kernels. 

DSAC can handle their source code in a modest amount 

of time. It can extract real sleep-able kernel interfaces 

and filter out many repeated reports and false bugs. 

2) DSAC in total finds 81 real bugs out of the 88 de-

tected bugs. The false positive rate is thus 8.0%. The 

false positives are again due to searching invalid code 

paths. As of January 2018, 63 of these bugs have been 

confirmed by kernel developers. Figure 6(b) and (c) 

present two real SAC bugs found by DSAC in FreeBSD 

scsi_sa and NetBSD if_vte drivers. These bugs involve 

respectively a spinlock and an interrupt handler. 

3) DSAC in total generates 18 recommended patches 

to help fix 59 real bugs. We manually add appropriate 

descriptions and submit them to kernel maintainers. As 

of January 2018, 13 of the patches have been applied. 

 

 

 

 

 

 

 

 

 
(a) Linux gma500 driver                          (b) FreeBSD scsi_sa driver                               (c) NetBSD if_vte driver 

Figure 6: Examples of the real bugs detected by DSAC. 

 

FILE: linux-4.11.1/drivers/gpu/…/accel_2d.c 
50. static void psb_spank(…) { 
           …… 

  58.     msleep(1) //PATCH: msleep(1) ⇒ mdelay(1) 
           …… 

  67. } 
 
  82. static int psb_2d_wait_available(…) { 

           …… 
  91.     psb_spank(…); 

           …… 
  96. } 
 
107. static int psbfb_2d_submit(…) { 

…… 
115.     spin_lock_irqsave(…); 

…… 
119.     ret = psb_2d_wait_available(…); 

…… 
130.     spin_unlock_irqrestore(…); 
131.     return ret; 
132. } 
 

FILE: freebsd-11.0/sys/cam/scsi_sa.c 
204. #define cam_perigh_lock(…)   mtx_lock(…) 
205. #define cam_perigh_unlock(…)   mtx_unlock(…) 

 
1498. static int saioctl(…) { 

…… 
1680.     cam_periph_lock(…)  /* acquire spinlock */ 

…… 
1683.     error = saxtget(…); 

…… 
1704.     cam_periph_unlock(…)  /*release spinlock*/ 

…… 
2114. } 
 
4377. static int saextget(…) { 

…… 
4444.     tmpstr2 = malloc(ts_len, M_SCSISA, 
4445.                                           M_WAITOK); 
                // PATCH: M_WAITOK ⇒ M_NOWAIT 

…… 
4548.     return error; 
4549. } 
 

FILE: netbsd-7.1/sys/dev/pci/if_vte.c 
948. /* Interrupt handler */ 
949. static int vte_intr(…) { 

…… 
971.     vte_rxeof(…); 

…… 
989. } 
 

1045. static int vte_newbuff(…) { 
…… 

1056.     if (bus_dmamap_load_mbuf(sc->vte_dmatag, 
1057.             sc->vte_cdata.vte_rx_sparemap, m, 0)); 

// PATCH: 0 ⇒ BUS_DMA_NOWAIT 
…… 

1083.     return 0; 
1084. } 
 
1086. static void vte_rxeof(…) { 

…… 
1118.     vte_newbuff(…); 

…… 
1176. } 

********** BUG  ********** 
Sleep-able function: msleep 
[FUNC] psb_spank (drivers/gpu/…/accel_2d.c: LINE 58) 
[FUNC] psb_2d_wait_available (drivers/gpu/…/accel_2d.c: LINE 91) 
…… 
[FUNC] psbfb_2d_submit (drivers/gpu/…/accel_2d.c: LINE 119) 
…… 
[FUNC] psbfb_2d_submit (drivers/gpu/…/accel_2d.c: LINE 115) 
 

Table 4: Results of Linux fs and net, FreeBSD and NetBSD. 

Description fs & net FreeBSD NetBSD 

Code  

handling 

Handled bytecode files 925 632 710 

Source files 2506 1615 1977 

Source code lines 2013K 1759K 1896K 

Function 

extraction 

Recorded functions 1927 582 304 

Sleep-able kernel interfaces 34 12 10 

Bugs & 

patches 

Filtered bugs 682081 508 2414 

Final detected bugs 42 39 7 

Real bugs 39 35 (26) 7 (7) 

Generated patches 5 10 3 

Pure time usages 32m45s 49m12s 43m38s 

 

Table 3: Bug distribution according to driver class. 

Driver Class scsi network staging gpio others 

Bugs 103 (32%) 84 (26%) 62 (19%) 12 (4%) 59 (18%) 
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Reviewing the results, we find two interesting things. 

Firstly, compared to the Linux kernel, fewer SAC bugs 

are detected in FreeBSD and NetBSD. The main reason 

is that in FreeBSD and NetBSD, many kernel interfaces 

that can sleep are carefully designed to avoid SAC bugs. 

For example, the FreeBSD msleep function takes the 

held spinlock as an argument and unlocks the spinlock 

before actually sleeping and then locks it again. Second-

ly, in FreeBSD and NetBSD, most of the detected bugs 

are in drivers, as shown in the parentheses on “Real 

bugs” line of Table 4. It shows that drivers remain a 

significant cause of system failures [39]. 

5.5 Sensitivity Analysis 

DSAC performs flow-insensitive analysis to reduce time 

usage in specific cases when doing so is expected to not 

affect accuracy, and also maintains a lock stack to accu-

rately identify the code in atomic context. To show the 

value of these two techniques, we modify DSAC to re-

move each of them, and evaluate each modified tool on 

a typical SCSI driver fnic (drivers/scsi/fnic/) of Linux 

4.11.1. Original DSAC checks the driver in three se-

conds, and finds two real confirmed SAC bugs. 

Flow-insensitive analysis. We use a full flow-sensitive 

analysis rather than the hybrid flow analysis. It finds the 

two SAC bugs too, but it spends two minutes, which is 

much longer than original DSAC. 

Lock stack. We only keep a single bit indicating wheth-

er a lock is held rather than the lock stack during analy-

sis. It also spends three seconds, but does not find any 

bugs. Indeed, the two bugs exist when two spinlocks are 

held and just one spinlock has been released, thus keep-

ing a single bit cannot identify this atomic context. 

5.6 Summary of Results 

Our experiments show three significant results of using 

DSAC on the Linux, FreeBSD and NetBSD kernels: 

 401 new real bugs are found, of which 272 have 

been confirmed by kernel developers. 

 Only 27 reports are false positives. Thus the overall 

false positive rate of bug detection is only 6.3%. 

 61 recommended patches are generated, of which 

43 have been applied by kernel maintainers. 

6. Comparison to Previous Approaches 

Several previous approaches [2, 9, 16, 34] have consid-

ered SAC bugs. Among them, we select the BlockLock 

checker [34] to make a detailed comparison. We select 

this approach because: (1) It is a state-of-the-art tool to 

detect SAC bugs in the Linux kernel. (2) It is open-

source and its bug reports are available [54]. In design, 

DSAC has some key improvements over BlockLock: 

Code analysis. BlockLock only uses one bit of context 

information to check if a lock is held, so it may not ac-

curately identify the code in atomic context when multi-

ple locks are taken but only some of them are released. 

DSAC maintains a complete lock stack and performs 

context-sensitive analysis, thus it can accurately detect 

all code in atomic context. BlockLock is also not sensi-

tive to the module Makefile, and thus may choose the 

wrong definition when unfolding a function call if the 

called function has multiple definitions. DSAC uses the 

module Makefile to accurately identify the definition of 

each function. And DSAC can detect SAC bugs in inter-

rupt handlers and involving sleeping operations other 

than a call to an allocation function with GFP_KERNEL, 

which are not considered by BlockLock. 

Sleep-able function extraction. BlockLock regards all 

functions called in the kernel as candidate functions to 

extract sleep-able functions. This strategy entails check-

ing each function in the kernel inter-procedurally, so it 

may require much time. DSAC only treats the kernel 

interfaces possibly called in atomic context of the ana-

lyzed kernel module(s) as candidate functions, and skips 

the other functions not called in atomic context. 

False bug filtering. BlockLock does not consider varia-

ble value information to validate path conditions, which 

may cause a number of false positives. DSAC checks 

the detailed code path of each possible bug, and filters 

out false bugs using useful and common semantic in-

formation for variables in atomic context. 

Patch generation. BlockLock only reports bugs, but it 

does not help fix the bugs. DSAC uses common fixing 

patterns to generate recommended patches to help fix 

the bugs. The produced code paths of the bugs are also 

useful to help the user write log messages in the patches. 

We also compare the results of BlockLock and DSAC, 

with two steps. Firstly, we download the bug reports of 

BlockLock on Linux 2.6.33 drivers, and get 49 reported 

bugs. We select the bugs related to the x86 architecture 

based on driver Kconfig files. We get 31 reported SAC 

bugs (25 real bugs and 6 false bugs). Secondly, we use 

DSAC to check the Linux 2.6.33 driver source code. 

We use the kernel configuration allyesconfig to enable 

all drivers for the x86 architecture. DSAC reports 42 

sleep-able kernel interfaces and 228 reported SAC bugs. 

We manually check the bugs and find that 208 are real. 

By manually comparing the bug reports shows: (1) 53 

real bugs reported by DSAC are equivalent to 23 real 

bugs reported by BlockLock. DSAC reports more bugs 

because it detects sleep-able kernel interfaces, while 

BlockLock detects sleep-able functions. Thus, if a func-

tion defined in the kernel module calls several sleep-

able kernel interfaces in atomic context, DSAC reports 

all these kernel interfaces, while BlockLock only reports 

this function. The two remaining real bugs reported by 

BlockLock are missed by DSAC, as Clang-3.2 cannot 

successfully compile the related driver source code. (2) 
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DSAC filters out all false bugs reported by BlockLock. 

(3) DSAC reports 155 real bugs missed by BlockLock. 

Most of these bugs involve multiple source files, and 

BlockLock cannot handle them very precisely. And 18 

bugs are related to interrupt handling, which is not con-

sidered by BlockLock. (4) The false positive rate of 

DSAC is 8.8%, which is lower than that of BlockLock. 

However, compared to BlockLock, an important limi-

tation of DSAC is that its results are specific to a single 

kernel configuration. BlockLock is based on Coccinelle 

[33], which does not compile the source code. Thus it 

can conveniently check all source files without any ker-

nel configuration. DSAC is based on LLVM, which 

compiles the source code with a selected kernel config-

uration. Thus, the 18 bugs found by BlockLock for non-

x86 architectures are missed by DSAC. 

7. Limitations and Future Work 

DSAC still has some limitations. Firstly, DSAC analyz-

es LLVM bytecode in which macros are expanded, thus 

the user needs to configure DSAC in terms of expanded 

versions of the functions and constants that are defined 

by macros. We plan to introduce source code infor-

mation to address this issue. Secondly, DSAC cannot 

handle function pointers. We plan to use alias analysis 

[22, 46] to analyze them. Thirdly, as is typical for static 

analysis, the path-check method cannot filter out all 

invalid code paths produced by the hybrid flow analysis, 

which can introduce false positives. We plan to improve 

our path-check method by checking path conditions 

more accurately. Finally, the bug-fixing patterns P3 and 

P4 need to be supported, e.g., we plan to add the analy-

sis for other kinds of locks to support P4. 

8. Related Work 

8.1 Detecting Concurrency Bugs 

Many approaches [7, 14, 19, 28, 32, 38, 42, 43] have 

been proposed to detect concurrency bugs in user-mode 

applications. Some of them [7, 19, 42] use dynamic 

analysis to collect and analyze runtime information to 

detect concurrency bugs. But the code coverage of dy-

namic analysis is limited by test cases. Others [14, 32, 

38, 43] use static analysis to cover more code without 

running the tested programs. But static analysis often 

introduces false positives. Some approaches [8, 26, 28] 

combine static and dynamic analysis to achieve higher 

code coverage with fewer false positives. Even though 

DSAC uses static analysis, it also exploits complemen-

tary information such as semantic information for varia-

bles to check code paths to filter out false positives. 

To improve OS reliability, some approaches [13, 15, 

17, 18, 40, 41, 44] detect some kinds of concurrency 

bugs like data races, but they do not detect SAC bugs. 

Several approaches [2, 9, 16, 34, 53] can detect com-

mon kinds of OS kernel bugs, including SAC bugs. But 

they do not specifically target SAC bugs, thus they may 

miss many real bugs or report many of false positives. 

For example, BlockLock [34] has an overall false posi-

tive rate of 20%, while DSAC has a lower one of 6.3%, 

and it also misses some real bugs found by DSAC. 

8.2 Checking API Rules 

Checking API rules is a promising way of finding deep 

and semantic bugs in the OS kernel. Some approaches 

[3, 5, 30, 31] use specified and known API rules to stat-

ically or dynamically detect API misuses. For example, 

with known paired reference count management func-

tions, RID [30] uses a summary-based inter-procedural 

analysis to detect reference counting bugs. To find im-

plicit API rules, some approaches [4, 23, 24, 27, 37, 45, 

47] do specification mining by analyzing source code 

[24, 27, 37, 47] or execution traces [4, 23, 45], and then 

use the mined API rules to detect violations. 

Most of these approaches focus on the temporal rules 

of common API usages, such as resource acquiring and 

releasing pairs [37, 45] and error handling patterns [4, 

24], but these approaches have not targeted SAC bugs. 

8.3 Improving Kernel Module Architecture 

To prevent concurrency bugs, several improved kernel 

module architectures have been proposed, typically for 

device drivers. The active driver architecture [1, 36] 

runs each driver in a separate thread, which can serial-

ize access to the driver and eliminate the possibility of 

concurrency bugs. In this way, the driver works serially 

and does not need to use locks, thus many common 

concurrency bugs will never occur. The user-mode de-

vice-driver architecture [20, 25, 35] runs each driver in 

a separate user-mode process. This architecture protects 

the OS kernel against crashes caused by driver code. 

These approaches have a main limitation, namely that 

the driver code must be manually rewritten. 

9. Conclusion 

In this paper, we have proposed DSAC, a static ap-

proach, to effectively detect SAC bugs and automatical-

ly recommend patches to help fix them. DSAC uses four 

key techniques: (1) a hybrid flow analysis to identify the 

code in atomic context; (2) a heuristics-based method to 

extract sleep-able kernel interfaces; (3) a path-check 

method to filter out repeated reports and false bugs; (4) 

a pattern-based method to automatically generate rec-

ommended patches to help fix the bugs. We have used 

DSAC to check the kernel code of Linux, FreeBSD and 

NetBSD, and find 401 new real bugs. As of January 

2018, 272 of them have been confirmed, and 43 of the 

patches generated by DSAC have been applied. 
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Abstract

The Coccinelle C-program matching and transformation
tool was first released in 2008 to facilitate specification
and automation in the evolution of Linux kernel code.
The novel contribution of Coccinelle was that it allows
software developers to write code manipulation rules in
terms of the code structure itself, via a generalization of
the patch syntax. Over the years, Coccinelle has been ex-
tensively used in Linux kernel development, resulting in
over 6000 commits to the Linux kernel, and has found its
place as part of the Linux kernel development process.
This paper studies the impact of Coccinelle on Linux
kernel development and the features of Coccinelle that
have made it possible. It provides guidance on how other
research-based tools can achieve practical impact in the
open-source development community.

1 Introduction

Today, everyone uses the Linux kernel, whether on a mo-
bile phone (86% of the smartphones sold in the first quar-
ter of 2017 were running Android [22]), in the cloud
(at the end of 2016, 92% of virtual machine instances
on Amazon’s Elastic Compute Cloud (EC2) were run-
ning Linux), or on a supercomputer (at the end of 2017,
all of the top 500 supercomputers were running Linux
[63]). To support these diverse computing environments,
the size of the Linux kernel has been steadily growing,
reaching 16.5 million lines of code in the recently re-
leased version 4.15 (Jan. 2018). Furthermore, the exist-
ing source code of the Linux kernel is continually chang-
ing, with around 13,000 commits per release recently, to
improve security, performance or maintainability, as well
as to provide support for new services such as new kinds
of devices, file systems, or hardware architectures.

A stumbling block in this continual revision of the
Linux kernel is that ultimately some developer has to
modify the source code. Developers have limited time,

may not fully understand what a given change entails,
and are prone to making mistakes, particularly when
changes affect many code sites, pervasively, across mul-
tiple kernel subsystems. These problems are further
compounded by the fact that the Linux kernel has a
widely dispersed and very diverse set of developers,
ranging from core maintainers, with many years of expe-
rience, to occasional contributors, to developers of out-
of-tree code who do not participate in the Linux kernel
developer community. Indeed, while over 1700 develop-
ers have contributed to each recent release, in each case a
third or more of these developers have contributed only a
single patch to that release. A potential solution is to for-
mally specify changes and automate them. To be used in
practice, such an approach must fit with the background
and habits of the developers themselves.

The Coccinelle C-program matching and transforma-
tion tool was first released in 2008 to facilitate specifi-
cation and automation of the evolution of Linux kernel
code [44]. Coccinelle was built around the observation
that Linux kernel developers already have a precise no-
tation for describing changes with which they are very
familiar, the patch [36]. A patch is an extract of source
code in which some lines are annotated with - or + in-
dicating that the line should be removed or added, re-
spectively. All contributions to the Linux kernel pass in
the form of patches through mailing lists where they are
commented on by other developers, and thus developers
are used to seeing and understanding them. Exploiting
this background of kernel developers, Coccinelle is de-
signed around a domain-specific language (DSL), SmPL
(Semantic Patch Language), for expressing changes in
terms of an abstracted form of patch, referred to as a se-
mantic patch. Unlike a patch, which is tied to specific
lines and files in the source code, a single semantic patch
can update all relevant locations in the entire code base.

Today, Coccinelle has been under development for 12
years. 59 semantic patches are part of the Linux kernel
source tree, and over 6000 Linux kernel commits, includ-
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ing 900 from Linux kernel maintainers, use Coccinelle.
Coccinelle retains as a guiding principle the notion of
an abstracted patch. Nevertheless, it has grown, both
in terms of expressiveness and to improve performance,
based on lessons learned from the experiences of Linux
developers and other users. At the same time, it has suc-
cessfully integrated into the Linux kernel community.

Coccinelle has been used in previous research [30,
31, 34, 46]. This paper instead focuses on its evolution
and impact. We examine its initial design (Sec. 2), and
how that design has been refined in response to experi-
ence with the tool and feedback from users (Sec. 3). We
then evaluate performance (Sec. 4) and the benefit of our
expressivity extensions (Sec. 5), quantify the impact of
Coccinelle in the Linux community (Sec. 6), and give an
overview of its wider use (Sec. 7). Finally, we present
some related work (Sec. 8) and conclude (Sec. 9), with
lessons learned about dissemination of a research tool.

2 Initial Design of Coccinelle

Coccinelle development began in 2006. It was first made
publicly available in binary in 2007 and in open source
in 2008. We first review the original design decisions for
Coccinelle, in terms of goals, expressivity, performance,
correctness guarantees, and dissemination.

2.1 Goals
Coccinelle was initially designed to solve a specific prob-
lem, that of porting Linux device drivers from Linux
2.4, a previous stable version, to stable version Linux
2.6, which had been released shortly before the start of
the project. The initial design was motivated by an ear-
lier paper on collateral evolutions in the Linux kernel
[45], i.e., evolutions needed in API clients in response to
changes in the API interface. The examples from that pa-
per showed that to automate Linux kernel collateral evo-
lutions it would be necessary to support transformations
on scattered parts of the source code with various kinds
of connections between them, including intraprocedural
control-flow paths with specific properties. As a small
research project could not encode the entire porting ac-
tivity, these kinds of connections, derived from program-
analysis concepts, would need to be expressed in a way
that would be accessible to Linux driver developers, who
could carry on the work. Targeting driver developers fur-
thermore implied that Coccinelle would have to allow the
user to reason about the code as it is shown to him, with-
out simplification to an internal representation, and that
it would have to treat a very large subset of C constructs,
including various gcc extensions, according to the needs
of arbitrary Linux kernel device driver code. Finally,
the generated code would have to retain the structure of

1 @ rule1 @
2 identifier fn, irq, dev_id;
3 typedef irqreturn_t;
4 @@
5 static irqreturn_t
6 fn(int irq, void *dev_id)
7 { ... }

8 @@
9 identifier rule1.fn;

10 expression E1, E2, E3;
11 @@
12 fn(E1, E2
13 - ,E3
14 )

Figure 1: The first semantic patch submitted to Linux

the original source code, including comments and white-
space, to ensure the code’s continuing maintainability.

2.2 Design decisions affecting expressivity

Coccinelle provides a transformation language SmPL
(Semantic Patch Language) and an engine for applying
SmPL semantic patches to C code. SmPL was con-
ceived as a code pattern-matching language, mimicking
the patch syntax. A SmPL semantic patch consists of a
series of rules, analogous to patch hunks, each provid-
ing a code pattern to match or transform. Patterns are
comprised of concrete syntax, “. . . ”, and metavariables.
Concrete syntax matches itself, “. . . ” matches a possibly
empty sequence of arbitrary terms, e.g., the list of state-
ments between two other statements, and metavariables
match arbitrary terms of a particular type. Metavariables
are declared in a rule header and are used as ordinary
variables in the pattern, to make the patterns close to the
source code. Ideally, a Linux kernel developer should be
able to copy a typical code example and add metavariable
declarations, “. . . ”, and - and + annotations, to obtain a
transformation rule with minimal effort.

The semantic patch in Figure 1 illustrates the various
features of SmPL. This semantic patch completes an evo-
lution and associated collateral evolutions that had been
initiated by a Linux developer. The evolution changed
the type of a callback function, by removing its third pa-
rameter. This required additionally removing the third
argument from direct calls to this function. This change
is challenging because the names of the affected func-
tions are all different, implying that grep may not be
sufficient to find all occurrences. A common strategy is
to identify code to fix by compiler errors, iterating until
the kernel compiles successfully. In this case, some of
the direct calls had been overlooked due to being under
ifdefs or in the support for obscure architectures.

The semantic patch consists of two rules, on lines 1-
7 and lines 8-14, respectively. The first rule, named
rule1, declares three identifier metavariables fn, irq
and dev id, representing the name of the function to
match and the names of its two parameters, respectively.
The rest of the first rule is a pattern that matches a func-
tion definition, in which the parameters and return value
are indicated to have specific types (lines 5-6) and the
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body is allowed to be an arbitrary sequence of statements
(line 7). The second rule, which has no name, declares
four metavariables: the function name fn, whose value
is explicitly inherited from the previous rule (line 9), and
three expression metavariables, E1, E2, and E3, repre-
senting arbitrary argument expressions (line 10). The
rest of this rule matches a call to the function that was
identified in the first rule. In this call, the third argument
is indicated to be removed (line 13). A wider variety
of semantic patches is illustrated in various publications
[31, 43, 50] and at the Coccinelle website [10, 11].

To apply a semantic patch to a code base, Coccinelle
processes the C source code files one at a time. On each
file, it applies the first rule of the semantic patch to each
function or other top-level declaration, then applies the
second rule to the code resulting from the first rule ap-
plication, etc. Based on the needs observed in the prior
collateral evolution study, the processing of a function is
based on its intraprocedural control-flow graph. Thus,
at the statement level, e.g., line 7 of Figure 1, “. . . ” fol-
lows intraprocedural control-flow paths, using a seman-
tics based on a variant of CTL model checking [5]. By
default, a pattern must match all control-flow paths start-
ing from the control-flow graph node matching the be-
ginning of the pattern, to ensure that the semantic patch
describes a consistent view of the program behavior. For
example, when a pattern such as A(); ... B(); matches
code including a conditional, B(); must be reachable
from A(); via both branches of the conditional. Alter-
natively, a rule or an individual instance of “. . . ” can be
annotated with exists to indicate that only the existence
of a matching path is required. By default, “. . . ” cannot
contain any code that is matched by the code pattern im-
mediately preceding or following it, e.g., to allow match-
ing a call to a locking function and to the unlocking call
closest to it, as needed due to the fine-grained locking
found in the Linux kernel. Finally, a metavariable must
match identical terms within a single control-flow path,
but may match different terms in different control-flow
paths, e.g., different conditional branches [5].

2.3 Design decisions affecting performance

Coccinelle is intended to be used by a Linux developer
in the course of his ordinary work, whenever a recurring
transformation is needed. Accordingly, it must be usable
on a standard laptop without much disruption. A number
of the initial design decisions were guided by this goal.

The Linux kernel is very large, and indeed has more
than tripled in size between Feb. 2007 (version 2.6.20,
5M LOC) and Jan. 2018 (version 4.15, 16.5M LOC).
Processing the entire code base and achieving reason-
able performance on a developer’s laptop, thus requires
making some tradeoffs. To reduce running time, Coc-

cinelle focuses on regions of code that are most likely to
be relevant for collateral evolutions, at the expense of the
rest. A key observation is that an individual Linux kernel
file typically addresses a problem at a given level of ab-
straction, while references to other files, via #include

or function calls, typically move to a lower level of ab-
straction. Thus, the contents of header files and called
functions may be less relevant for collateral evolutions.

Based on the above observation, by default, Coccinelle
processes only .c files, includes only header files that are
located in the same directory as the .c file or that have
the same name as the .c file, and does not perform inter-
procedural analysis. Command-line options are provided
to additionally process header files, independently of any
files into which they may be included, and to include
header files directly referenced in a .c file or all header
files referenced recursively. The latter options, however,
increase the amount of code processed, and thus the pro-
cessing time. The use of these strategies is thus left up to
the user, who is expected to know whether such informa-
tion is relevant to the desired evolution. Finally, interpro-
cedural analysis within a single file can be encoded up to
a finite depth using a series of SmPL rules, each of which
matches the definition of a function for which a function
call was identified by a previous rule. More general in-
terprocedural analysis originally required the use of ex-
ternal scripts to collect the names of called functions and
to restart Coccinelle to process their definitions.

The only program analysis performed by Coccinelle
is type inference. This analysis is best-effort, as non-
inclusion of header files means that type information may
be unavailable. Although the type information is incom-
plete, the inclusion of type information makes Coccinelle
very useful for tasks such as finding where a field of a
particular type of structure is referenced, without know-
ing the name of the variable pointing to that structure.
Coccinelle performs no alias analysis or other form of
dataflow analysis. Semantic patches that require con-
trol over aliases have to implement it explicitly, e.g., by
declaring that the code region matched by “. . . ” cannot
store the address of a given variable. This approach saves
execution time, as the analysis is only performed if and
to the extent that it is expected to be useful, and improves
the predictability of the tool, as the semantic patch writer
knows the strengths and limitations of the analysis.

2.4 Design decisions affecting correctness
guarantees

Automatic program transformation has the potential to
update code at a large scale reliably and efficiently, but
it can also introduce pervasive bugs across a code base,
if the transformation rules are incorrect or are imple-
mented incorrectly by the transformation engine. Coc-

USENIX Association 2018 USENIX Annual Technical Conference    603



cinelle only checks that a rule preserves the structural
well formedness of the code, e.g., ensuring that a state-
ment is replaced by a statement, an expression by an ex-
pression, etc. It does not check for semantic correctness.
This enables encoding bug fixes, which are intrinsically
not semantics preserving. Furthermore, it enables effi-
ciently applying rules, without complicated, typically in-
terprocedural, analysis to show correctness. The goal of
Coccinelle is to allow the user to express his knowledge
about the software and the required changes, in terms of
code fragments that resemble the affected code and that
can be easily checked to conform to the user’s intent.

2.5 Dissemination strategy
Reaching potential users is always a challenge for re-
search projects. An open-source development context
provides a diverse audience, which increases the chance
that individual users will pick up new approaches, but
makes it harder to impose a new approach on the en-
tire developer base than in a monolithic industry setting.
This is particularly the case of the Linux kernel devel-
oper community, which puts few restrictions on the tools
used by developers to create and manage code.

To validate the utility of Coccinelle and to encour-
age its use by Linux developers, the Coccinelle devel-
opers took the strategy of showing by example. The first
submitted patches (e.g., 632155e65944 on June 1, 2007
[61]) exploited only the Coccinelle parser [42]. Indeed,
as Coccinelle does not expand macros or reduce ifdefs,
its parser can find errors that are overlooked in typical
compile testing. The first submitted patch generated by
a semantic patch was 0da2f0f164f0 (July 5, 2007). This
patch was created using the semantic patch of Figure 1,
and included the semantic patch in the commit log. It
updated five files in the net, atm, and usb directories.

The next patch dd00cc486ab1 based on a semantic
patch was submitted on July 6, 2007, changing a call to
the memory allocator kmalloc followed by a memset

to clear the memory into a single call to the function
kzalloc, added in 2005. This patch affected 166 calls
distributed over 146 files. The semantic patch in the log
message received the comment “Cool!” from a devel-
oper,1 but the patch ran afoul of the Linux kernel re-
quirement that patches on different parts of the kernel be
submitted separately to the relevant maintainers. Indeed,
Coccinelle had shifted the burden from performing the
change, which was now fully automated, to routing the
individual changes to the proper maintainers, for which
no automatic support was then available.

The first patches explicitly mentioning “Coccinelle”
were submitted in December 2007, fixing various miss-
ing resource-release errors (76832d841643, etc.). These

1https://lkml.org/lkml/2007/7/7/98

attempted to set a precedent for how the tool should be
used, by including the URL of the tool, as well as the
XML-like tags <smpl> and </smpl> around the seman-
tic patch, to ease the tracking of the use of the tool. The
first commits from outside the group of Coccinelle devel-
opers, 77bbadd5ea89 and 52fd8ca6ad41, came in July
2008, from the developer of the kernel-level memory
checker kmemcheck. These patches corrected the type of
a flag passed to various lock-related function calls. Coc-
cinelle was released as open source in October 2008.

3 Evolutions in the Coccinelle Design

In retrospect, the design decisions presented in the previ-
ous section reflect a number of fundamental hypotheses
about how to design a program transformation system
that will be useful to and used by kernel developers:

Expressivity: Linux kernel developers will find it easy
and convenient to describe needed code changes in terms
of fragments of removed and added code.

Performance: Many interesting Linux kernel evolutions
can be implemented reliably without incurring the cost of
collecting and correlating information in multiple C files.
Indeed, Linux kernel development relies on humans, who
typically focus on one file at a time, and thus all relevant
information should be directly apparent in a single C file.

Correctness: Proving correctness is not necessary be-
cause Linux kernel developers can easily incorporate
their knowledge of kernel invariants into a semantic
patch. Giving the developer control over the rules im-
plies that the developer can control the rate of false posi-
tives, and can easily check for them in the results.

Dissemination: It is effective to show how a tool can be
useful, rather than attempting to impose its use.

While Coccinelle still builds on these hypotheses, ex-
perience in using the tool and feedback from Linux ker-
nel developers have provided lessons that have motivated
various evolutions. We highlight those that have had the
greatest impact on the use and usability of the tool.

3.1 Expressivity evolutions

Many changes, both simple and complex (e.g., Figure
1), can be expressed purely in terms of code structure.
Some kinds of changes, however, require more semantic
information. Two evolutions that have greatly enhanced
the expressivity of Coccinelle have been the introduction
of position variables and scripting rules.

Position variables. A position variable is a Coccinelle
metavariable that matches the position where a term oc-
curs in a file. Position variables allow rematching the
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1 @ rule1 @
2 expression t, f, e;
3 position p1, p2;
4 @@
5 init_timer@p1(&t);
6 ... when != f = e
7 t.function =@p2 f;
8

9 @ rule2 @
10 expression rule1.t, d, e;
11 position rule1.p1, p3;
12 @@
13 init_timer@p1(&t);
14 ... when != d = e
15 t.data =@p3 d;

16 @@
17 expression rule1.t, rule1.f,
18 rule2.d;
19 position rule1.p1, rule1.p2,
20 rule2.p3;
21 @@
22 (
23 - init_timer@p1(&t);
24 + setup_timer(&t,f,d);
25 |
26 - t.function =@p2 f;
27 |
28 - t.data =@p3 d;
29 )

Figure 2: init timer conversion

same code in a later rule, as well as ensuring that a match
in one rule is different than a match in an earlier rule.

Figure 2 illustrates the use of position variables to
convert calls to init timer to setup timer when the
init timer call is followed by initializations of the
timer data and function fields. The first two rules
(lines 1-15) identify instances of the same init timer

call with two different properties (the when annotations
in lines 6 and 14 indicate assignments that should not
occur in the matched region). The last rule (lines 16-29)
transforms init timer calls that satisfy both properties.
This rule includes a disjunction, such that all of the rel-
evant code fragments can be transformed at once, wher-
ever they occur, as once a transformation takes place, all
previously bound position variables are invalidated.

Scripting language interface. The scripting language
interface was initially motivated by the goal of using
Coccinelle for bug finding [56]. While bugs that mainly
depend on the code structure, such as use after free, could
be found, the pattern-matching features of Coccinelle
were not sufficient to detect bugs such as buffer over-
flows that require reasoning about variable values.

To allow reasoning about arbitrary information, sup-
port was added in 2008 for scripting-language rules.
The first language supported was Python, which was ex-
pected to be familiar to Linux developers. Coccinelle is
implemented in OCaml, and OCaml scripting was added
in 2010, for the convenience of the Coccinelle devel-
opers. Scripts were originally designed to filter sets of
metavariable bindings established by previous rules. Fig-
ure 3 shows an example, which drops a semicolon after
an if header if the subsequent statement is indented, sug-
gesting that the latter statement is intended to be the if

branch. A script rule compares the indentation of the
two statements (line 11) and discards metavariable bind-
ing environments (line 12) in which the conditional is
aligned with or to the right of the subsequent statement.

Ultimately, the original motivation for scripting, i.e.,
finding bugs such as buffer overflows, was not success-

1 @r@
2 expression E; statement S;
3 position p1,p2;
4 @@
5 if@p1 (E);
6 S@p2
7

8 @script:python@
9 p1 << r.p1; p2 << r.p2;

10 @@
11 if (p1[0].col >= p2[0].col):
12 cocci.include_match(False)

14 @@
15 expression E; statement S;
16 position r.p1;
17 @@
18 if@p1 (E)
19 - ;
20 S

Figure 3: Drop spurious semicolon after if header

ful. The code patterns were small and generic, and the
scripts implementing the required analyses were com-
plex. Still, scripting has been a major leap forward for
the expressiveness of Coccinelle, and new scripting func-
tionalities have been added as new needs have emerged.
Early on, libraries were added for generating formatted
error messages. In 2009, initialize and finalize

scripts were introduced to allow defining state global to
the processing of all files, to facilitate the collection of
statistics. In 2010, scripts became able to create new
code fragments to be stored in metavariables and inher-
ited by subsequent rules. In 2016, to improve perfor-
mance and reduce semantic patch size, it became pos-
sible to add script code to metavariable declarations, to
define predicates that would discard metavariable bind-
ings early in the matching process. Finally, scripting en-
ables iteration, which allows a semantic patch to submit
new “jobs” to the Coccinelle engine, in order to perform
analysis across multiple files.

3.2 Performance evolutions

While avoiding including header files reduces the vol-
ume of code to process, the Linux kernel remains a large
and growing code base. Furthermore, parsing the code
without relevant macro definitions from header files in-
volves using heuristics, which can increase the parsing
time. Thus, further optimizations were needed.

Indexing. An early observation was that performance
could be improved by not parsing files that could not be
matched by the semantic patch. Indeed, many seman-
tic patches contain keywords such as the names of API
functions that must be present for the semantic patch to
match and that occur only a moderate number of times in
the Linux kernel. Coccinelle initially used the Unix com-
mand grep to find the files containing these keywords,
but this was still slow, given the large code size.

A second approach was to use glimpse [24] to pre-
pare an index in advance, and then to only process the
files indicated by the index. As the index is smaller
than the kernel source code and is organized efficiently,
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the use of glimpse substantially improves performance,
particularly for semantic patches that involve kernel API
functions. Nevertheless, glimpse was originally only
freely available to academic users, had to be manually
installed, and creating an index on each kernel update
is time-consuming. In 2010, this was complemented by
support for id-utils, which is part of many Linux distri-
butions and for which index creation is much faster. In
2013, the support for users who do not have an index
available was rewritten to essentially reimplement the
grep operation in OCaml, reducing system calls and bet-
ter taking into account the specific needs of Coccinelle.

Parallelism. By default Coccinelle works on each .c

file independently, and thus is ripe for parallelism. Nev-
ertheless, when Coccinelle was first developed, there was
no convenient support for parallelism in OCaml. In-
stead, the Coccinelle distribution included a shell script
to launch multiple Coccinelle instances in parallel, each
covering a different part of the code base. Users, how-
ever, were uneasy about using Coccinelle via an exter-
nal script. Furthermore, processing different files can re-
quire very different amounts of time, and the lack of load
balancing in this static solution meant that many cores
could end up idle. Meanwhile, the Parmap OCaml par-
allelization library [14] became available, and between
2015 and 2017 increasing support was provided for par-
allelism, still at the .c file level, within Coccinelle itself.

Supporting finer grained parallelism, at the function
level, was also considered. Initial experiments, how-
ever, suggested that the cost of passing around the state
built up within the matching of a given file outweighed
the benefits of parallelism. In contrast, Coccinelle treats
each file independently, so the amount of state that needs
to be passed between processes is minimal.

3.3 Correctness guarantee evolutions
Unlike the other cases, there have been no major evo-
lutions in the view of transformation correctness. After
having created over 450 semantic patches that have led to
kernel patches, the Coccinelle developers have found that
the original hypothesis that giving the developer control
over the rules enables them to easily check the results is
mostly sufficient. The few errors, e.g., [53], have come
from misunderstanding of kernel invariants that would
require a prohibitively complex and time consuming se-
mantic analysis to infer and check. Kernel maintainers
have indeed concluded in some cases that it was the orig-
inal code that was written in an error prone way [38].

3.4 Dissemination strategy evolutions
Showing the value and capabilities of Coccinelle by the
example of submitted patches generated initial interest

in the tool. As the expressivity of Coccinelle evolved
to permit the specification of more complex changes, it
became apparent that it would also be beneficial to more
directly teach developers how to use Coccinelle, and to
enable Coccinelle users to interact with each other.

Four workshops were organized on the use of Coc-
cinelle and advertised on the Coccinelle mailing list, at-
tracting industry participants. The Coccinelle developers
also presented the tool and offered tutorials in a variety of
developer conferences, including those targeting open-
source enthusiasts (e.g., FOSDEM) and those specif-
ically targeting Linux kernel developers (e.g., Linux
Plumbers). These presentations focused on the user-
visible aspects of Coccinelle, such as how to write se-
mantic patches and what results could be achieved, rather
than the details of the internal design of the system,
which were presented in research venues [5].

The work on Coccinelle was also picked up by the
Linux Weekly News (LWN), which is the standard ref-
erence for issues around the development of the Linux
kernel and other open-source software. Tutorial articles
on Coccinelle appeared in 2009 [25] and 2010 [52], au-
thored not by the Coccinelle developers, but by well-
known kernel developers. LWN has also reported on var-
ious talks about Coccinelle [12, 16].

4 Performance Evaluation

Coccinelle is intended to be used by a kernel developer
as part of the normal development process, on a stan-
dard professional laptop. Accordingly, Coccinelle’s per-
formance should be acceptable in this setting. We illus-
trate the performance on a Lenovo Thinkpad T460s with
two hyperthreaded 2.30GHz cores (Intel(R) Core(TM)
i5-6200U CPU), a 3M cache, and 12G RAM. Our ex-
periments focus on the 59 semantic patches found in the
Linux 4.15 kernel, using the report mode, which is sup-
ported by all these semantic patches.2 Times are based
on a single run, with a timeout of 30 seconds per file. We
use id-utils indexing. Figure 4 presents the elapsed time
when running the semantic patches on the Thinkpad lap-
top, using both cores, with hyperthreading. The semantic
patches are sorted in order of increasing running time.

For the Linux kernel, there is a precise performance
point of reference that is familiar to the kernel developer;
the time to perform a complete compile of the Linux
kernel itself. The elapsed time for full kernel compila-
tion on the Thinkpad laptop with 4 threads (hyperthread-
ing) with make clean; make allyesconfig; make,
is 54 minutes. Based on the results shown in Figure 4,

2The semantic patches and Coccinelle version used contain some
performance improvements that will appear in Linux 4.18 and Coc-
cinelle 1.0.7, respectively.
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Figure 5: Files considered per Linux semantic patch.

all but one of the semantic patches complete within this
time. The remaining semantic patch requires 75 minutes.

The timeout per file affects performance. In our exper-
iment, Coccinelle timed out on 52 files, of 705,179 files
considered, giving a timeout rate of 0.007%. Typically
files on which timeouts occur contain complex code such
as long sequences of loops and conditionals. These files
can be analyzed separately, when more time is available.

Figure 5 shows the impact of indexing using id-utils
on the number of files considered. The largest number
of files considered is 46,336, in 10 cases, where no key-
words are inferred from the semantic patch. These are as-
sociated with larger, but not the largest, execution times.
At the far right of the graph, between 5000 and 26,000
files are considered, but the cost of tracing through all
possible intraprocedural execution paths overwhelms the
savings obtained by processing fewer files.

In terms of header files, 43 of the semantic patches
specify that no include files should be considered. 11
specify to use the default (local and same-named files),
and 1 specifies that all explicitly included should be taken
into account. To assess the cost and benefit of including
header files, we take the 44 semantic patches from the
Linux kernel that complete in our test configuration in
under 10 minutes and test them with options forcing the
inclusion of no header files, the default, and all explicitly
included header files. As compared to inclusion of no
header files, the default increases the run time by up to
90% and the inclusion of all explicitly included header
files increases the run time by up to 10x. The number of
reports ranges from 1631 for no headers to 1691 for all
headers, with most of the few differences on .h files.

The performance studied here is only relevant when

scanning the entire kernel. When checking a single mod-
ified file, the time should rarely exceed a few seconds
per semantic patch. Indexing may identify some seman-
tic patches as irrelevant, reducing the execution time.

5 Expressivity Extension Evaluation

The position variable and scripting extensions increase
the expressivity of SmPL, but add concepts that are
not found in C code and thus are not already famil-
iar to Linux developers. We thus assess the degree to
which these features are used in practice. We note, how-
ever, that our only source of information about semantic
patches is from those found in the Linux kernel and from
those included in commit messages. This information
may be incomplete, because developers can omit or sim-
plify semantic patches in the commit message

All of the semantic patches found in the Linux kernel
use positions and scripts in order to generate output in
the report mode. 20 semantic patches were contributed
by developers from outside the Coccinelle team. 3325
commits up through Linux 4.15 contain semantic patches
in the commit message. Of these 586 (18%) contain po-
sition variables and 165 (5%) contain scripts. 43% of the
latter commits come from outside the Coccinelle team.

6 Impact on Linux

Over the past 10 years, Coccinelle has been increasingly
applied to the Linux kernel, by both Coccinelle develop-
ers and Linux kernel developers. As of Linux 4.15, over
6000 commits in the Linux kernel are based on the use
of Coccinelle. In this section, we give an overview of
the impact of Coccinelle on the Linux kernel. Graphs
by subsystem reflect commits up through the release of
Linux 4.15 (Jan. 2018). Graphs by year end with 2017.

6.1 Changed lines per subsystem
Figure 6 shows the number of lines removed and added
by commits using Coccinelle in various kernel subsys-
tems. The most affected is drivers, with 57,882 re-
moved lines and 77,306 added lines, followed by arch,
fs, net, sound, and include, all of which are affected
by thousands of removed or added lines. The predomi-
nance of drivers is not surprising, given that drivers
makes up 67% of the Linux 4.15 kernel source code.
drivers has also been a target for other bug finding and
code reliability tools [35, 37, 48, 51, 57].

Figure 7 compares the numbers of removed and added
lines to the number of code lines (non-blank, non-
comment, measured using SLOCCount [54]) found in
Linux 4.15. The rate of Coccinelle-motivated changed
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ar
ch

bl
oc

k
cr

yp
to

dr
iv

er
s fs

in
cl

ud
e

in
it

ip
c

ke
rn

el lib m
m ne

t
sa

m
pl

es
se

cu
ri

ty
so

un
d

to
ol

s
vi

rt
0.0000
0.0020
0.0040
0.0060
0.0080

lin
e

ch
an

ge
pe

rL
O

C

Removed lines Added lines

Figure 7: Lines removed and added by commits using
Coccinelle per Linux 4.15 line of code, by subsystem

lines in drivers remains high, but the results show the
applicability of Coccinelle across the kernel.

6.2 Categories of users over time
A variety of kinds of developers contribute to the Linux
kernel, by submitting patches. Among those who men-
tion Coccinelle in their commit logs, we distinguish six
categories of Coccinelle users:

Coccinelle developers. These are members of the Coc-
cinelle development team, and persons employed by the
team to disseminate Coccinelle.
Outreachy interns. The Linux kernel participates in the
Outreachy internship program [41] and interns may use
Coccinelle in the application process or the internship.
Dedicated user. This is a single developer who uses
Coccinelle in the kernel for a small collection of widely
relevant simple changes.
0-day. This is an automated testing service at Intel that
builds and boots the Linux kernel for multiple kernel
configurations, on each commit to hundreds of git trees.
The service also runs a number of static analysis tools,
including Coccinelle, on the result of each commit.
Kernel maintainers. These are kernel developers who
receive and commit patches, and are generally respon-
sible for some subsystem’s continued well being. We
identify maintainers as developers who are named in the
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Figure 8: Number of commits using Coccinelle from var-
ious categories of Coccinelle users (top) and number of
Coccinelle users in various categories having at least one
commit using Coccinelle (bottom)

Linux 4.15 MAINTAINERS file (1170 developers) or
who are the committer of some patch. Normally, kernel
patches are transmitted by email, and only maintainers or
developers the maintainers specifically designate commit
to git trees that are pulled into a mainline release. Thus,
being a committer is a sign of community respect.
Others. These are other Linux kernel contributors.
These contributors may be frequent or occasional.

The top of Figure 8 shows the number of commits
per year using Coccinelle from various kinds of Coc-
cinelle users, while the bottom shows the number of
Coccinelle users involved in each category. The first
commits (2007) were from the Coccinelle development
team. Use from maintainers and other kernel contrib-
utors started in the two years afterwards. The number
of commits from maintainers has grown steadily, except
for a major peak in 2015, when several maintainers un-
dertook cross-tree refactoring projects using Coccinelle.
The number of other kernel contributors has gone up and
down, but shows an upward trend. These numbers may
be underestimated, however, as some developers have re-
vealed when asked that they used Coccinelle for repeti-
tive changes, but did not mention it in the commit.3

The Linux developers who are most likely to have
need for Coccinelle are those who perform large scale
changes across the code base. To approximate this set of
developers, we consider those who have at least one com-
mit that touches at least 100 files, since Linux 3.0 (July
2011), i.e., the period in which Coccinelle was becom-
ing more established. There are 88 such developers, of
which 67 (76%) are maintainers. All but two of the oth-
ers are in the Other category. 39 (44%) of these develop-

3https://marc.info/?l=kernel-janitors&m=150403263119030&w=2
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ers overall and 31 (46%) of these maintainers have com-
mits using Coccinelle. Of the 88 developers, 27 (31%)
have 1-5 commits using Coccinelle, 9 (10%) have 6-100
such commits, and 3 (3%) have more than 100. Among
the 67 maintainers, 21 (31%) have 1-5 commits using
Coccinelle, 8 (12%) have 6-100 such commits, and 2
(3%) have more than 100. These numbers suggest that
Coccinelle is well known among the Linux kernel devel-
opers and maintainers who can benefit from it most.

Finally, we consider the most established kernel con-
tributors. We collect the set of maintainers from the
Linux 4.15 MAINTAINERS file and the set of devel-
opers who have committed at least one patch between
Linux 3.0 and Linux 4.15. 45 have at least 10 years of ex-
perience as committers and 117 have committed at least
1000 patches. 29% and 32% of these, respectively, have
created at least one patch that uses Coccinelle. These
numbers reflect the knowledge of Coccinelle at the core
of the Linux kernel developer community.

6.3 Changes performed using Coccinelle
Coccinelle facilitates performing changes across the ker-
nel, that may cover code managed by multiple maintain-
ers. Some examples are as follows:

TTY. Remove an unused function argument. One com-
mit (429b474990cb) in 2015, affecting 11 TTY driver
files. The author is not a maintainer, but has over 350
commits in the Linux kernel, since 2013.
IIO. Add missing devinit and devexit annota-
tions. One commit (8e8287526844) in 2012 affecting 28
new IIO driver files. The author is an IIO maintainer.
DRM. Eliminate a redundant field in a data structure.
One commit (438b74a5497c) in 2016 affecting 54 direct
rendering manager (DRM) files. The author is a main-
tainer, but not for the affected files.
Interrupts. Prepare to remove the irq argument from
interrupt handlers, and then remove that argument. 40
commits (e.g. f4acd122a738) in 2015, affecting 188 files
(mostly drivers, arch). The author is a core Linux
developer with over 3500 commits in the Linux kernel
since the start of the Linux kernel’s usage of git (2005).

More generally, Figure 9 characterizes as cleanups or
bug fixes the complete set of patches that use Coccinelle
from maintainers. Typical cleanups address generic C is-
sues, such as useless double semicolons, as well as intro-
ductions of new APIs and refactorings in preparation for
the introduction of new APIs. Commonly identified bugs
include memory leaks, allocation of a memory region
of the size of a pointer rather than the size of the refer-
enced structure, and storing a potentially negative value
in a variable of type unsigned int and then checking
whether the value is less than zero.
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Figure 9: Cleanup vs. bug fix changes among maintainer
patches using Coccinelle

As noted in Section 2.5, Coccinelle facilitates making
changes that affect the entire Linux kernel source tree,
and in particular subsystems managed by different main-
tainers. While the initial problem of knowing who main-
tains which part of the kernel was resolved in 2009 by the
introduction of the get maintainer.pl script, it is not
always clear who should actually commit the changes,
particularly when there are dependencies between the
resulting patches. The problem of managing cross-tree
changes was a proposed topic at the 2017 Linux Kernel
Maintainers Summit. Preliminary discussions included
proposing the use of Coccinelle for refreshing cross-tree
changes when patch sets are incompletely applied [3].

6.4 Semantic patches in the Linux kernel
Since 2010, the Linux kernel has hosted a set of semantic
patches in its scripts/coccinelle directory. Seman-
tic patches are categorized as being related to APIs (17),
resource release (7), iteration (5), locking (4), NULL val-
ues (4), test expressions (4) and others (18). The kernel
Makefile contains a coccicheck target that runs one or
all of these semantic patches on the entire kernel or some
portion thereof. Kernel developers may thus easily use
Coccinelle to check their work, without learning SmPL.
Such use, however, is not visible in the kernel history.

As of Linux v4.15, there are 59 semantic patches in
the Linux kernel. Figure 10 shows the number of com-
mits including new semantic patches per year, as con-
tributed by various categories of users. Semantic patches
were initially contributed by the Coccinelle developers.
Recently, 2-3 have been contributed each year, and a few
more requested, by the wider kernel community.

6.5 0-day build testing service
Intel’s 0-day testing service [26, 60] runs a number of
static analyses on commits to hundreds of Linux ker-
nel git trees, both public and private. Kernel developers
may check their changes themselves on only one config-
uration and then rely on the 0-day service for the rest.
Coccinelle-based reports generated by the 0-day build
testing service come in two forms. If the semantic patch
producing the report is able to propose a fix for the iden-
tified problem, then the report contains this patch. The
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remaining Coccinelle-based reports contain a textual er-
ror or warning message, accompanied by a code extract
highlighting the relevant lines, as indicated by the se-
mantic patch. Figure 11 shows the number of public re-
ports that mention Coccinelle in various categories, dis-
tinguishing between those that include a patch or only
a message. Figure 12 likewise shows the percentage of
all public reports mentioning Coccinelle. The most com-
mon type of report including a patch removes a field ini-
tialization in drivers that is redundant with respect to the
driver core (244 patches). The most common type of
report including only a message detects missing unlocks
(68 reports). The latter reports are manually checked by a
Coccinelle developer and have few false positives. Both
semantic patches involve kernel-specific features.

7 The Coccinelle Community

A measure of the long term potential impact of a project
is the willingness and ability of external developers to

contribute to the project’s development and maintenance.
Today Coccinelle amounts to over 84,000 lines of OCaml
code. 25 developers have contributed to Coccinelle, with
over 3000 commits over 12 years for one developer, al-
most 1000 in the first few years for another developer,
and 200-300 commits in the last few years for several
others. All of the contributors with more than 5 com-
mits have been somehow affiliated with the core devel-
opment team, as either an employee or a guest. These
numbers are likely related to the fact that the imple-
mentation language of Coccinelle, OCaml, is not widely
used in the target developer community, and to the in-
terdisciplinary nature of Coccinelle, which builds on
programming-language concepts but targets the systems
developer community. The small number of contribu-
tions by external developers may be a source of long term
fragility. Nevertheless, the fact that several developers
have joined the project in recent years and each made
around 200 or more commits suggests that the code is
accessible to developers who did not initiate the project.

Coccinelle is packaged with a number of Linux distri-
butions, such as Ubuntu [62], Debian [15], Fedora [18],
Gentoo [23], and Archlinux [1]. It is also available for
FreeBSD [21] and NetBSD [40]. The full commit his-
tory is available at Github [8]. Although Coccinelle is
developed using OCaml, there has been an effort to limit
the amount of dependence on the traditional OCaml cul-
ture and infrastructure. Some needed OCaml libraries
are bundled with the Coccinelle distribution, in case they
are not available on the local machine. Once Coccinelle
is installed, it is fully usable, via the C-like SmPL lan-
guage and Python scripting, without knowing OCaml.

Although Coccinelle is mainly used on the Linux ker-
nel, it is also used on other software projects. RIOT [49],
qemu [47] and systemd [58] include semantic patches
in their source code distributions. Patches mentioning
Coccinelle are also found in the commit histories of sys-
tems software projects such as cpython (d1302c01544
and 228b12edcce) [13], wine (f6ced24999f etc.) [64],
and even one in Firefox (ab4e3a0d4213) [19]. The latter
used Coccinelle’s rudimentary support for C++.

8 Related Work

Academic software development tools. Other aca-
demic software development tools that have had an im-
pact on industry practice include CIL [39], LLVM [29],
and Metal [17]. CIL provides basic parsing and visi-
tor infrastructure for processing C code, and is used for
rapid prototyping as well as being at the base of mature
tools such as Frama-C [20]. LLVM is a compiler infras-
tructure that originally targeted providing good support
for static, link-time, and run-time optimization, and has
evolved into a common alternative to gcc, due to its cus-
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tomizability, speed and space efficiency, and permissive
license [7]. Neither has specifically targeted the Linux
kernel and its particular coding style. Indeed, LLVM still
does not fully support Linux kernel code, despite a long
refactoring effort [33]. Both tools have furthermore fo-
cused on building a user community rather than taking
on the challenge of integrating into an existing one.

Metal is an automata-based tool for scanning large
systems source code bases for faults such as use after
free and inconsistent locking. It was never made publicly
available. Instead, it was the foundation of the highly
successful static analysis tool Coverity [2]. Coverity
has been used on the Linux kernel more or less over
the years, depending on the degree to which its results
have been made freely available. Nevertheless, the freely
available results address generic C issues, rather than
Linux specific properties.

Development tool impact analysis. Koyuncu et al.
[28] compare properties of Linux kernel patches that are
entirely manually generated, manually generated in re-
sponse to a tool report, and tool generated according
to a manually written transformation rule. The patches
in the third category are primarily generated by Coc-
cinelle. They find that manually generated patches are
accepted more quickly than tool-supported patches, but
that the acceptance rate of the latter is increasing. In con-
trast, we study what kinds of Linux kernel developers use
Coccinelle, for what purpose, and what features of Coc-
cinelle have led to its acceptance.

Other tools used on the Linux kernel. Checkpatch is
a regular-expression based style checker, whose use is
required by the Linux kernel patch submission checklist
[32]. It does not have a global view of the code, so it
cannot detect inconsistencies that involve multiple code
fragments, such as a variable declaration and its use.

Sparse [4] was an effort by Linus Torvalds to develop
an open source static checker for the Linux kernel, in re-
sponse to Metal. Sparse processes developer-provided
annotations, enabling it to, e.g., detect endianness issues.
Smatch [55] grew out of sparse as a more flexible bug
finding tool. Like Coccinelle, Smatch is scriptable, but
rules are expressed at the abstract-syntax tree level rather
than at the source code level. Thus, the user needs to
know about internal representations. Smatch also does
only bug finding, not transformation. On the other hand,
Smatch tracks variable values, while Coccinelle reasons
only in terms of code structure. Thus, smatch can find
bugs such as off-by-one errors that are difficult to find
using Coccinelle. Thousands of commits in the Linux
kernel are derived from the use of smatch, but the cre-
ation of new rules is mostly limited to the tool author.

Another academic effort on improving Linux kernel
code is the Linux Driver Verification project [27]. It

centers around developing infrastructure and rule sets
making it possible to apply verification tools such as
CPAchecker and BLAST to the Linux kernel. A few hun-
dred commits in the Linux kernel are based on its results.
The Undertaker project [6, 59], in contrast to the other
tools, finds bug in the use of configuration variables.

9 Lessons Learned

In this paper, we have reviewed the evolution of the pro-
gram transformation tool Coccinelle and its impact on
the Linux kernel. The experience of Coccinelle can help
guide other projects that want to have an impact on an
open source systems developer community.

First, visibility is necessary. The Coccinelle develop-
ers taught by example, by using Coccinelle to make a
sustained contribution to the Linux kernel. At the same
time, they organized workshops on the use of Coccinelle
and presented Coccinelle in a variety of developer con-
ferences, both focusing on the user-visible aspects of
Coccinelle, to make the tool accessible to developers.

Second, the tool must be easy to install and freely
available. Coccinelle is implemented in OCaml, but tar-
gets C developers. There has been a concerted effort to
minimize reliance on OCaml infrastructure. The cost is
a complex build system, but it reduces the chance that
users will immediately abandon Coccinelle because it is
difficult to install. Likewise, Coccinelle is freely avail-
able (GPLv2), with no registration requirement.

Third, the tool must be easy to use and robust, with
support to quickly address problems encountered by
users. While many research prototypes are only robust
enough to complete an evaluation for a paper submis-
sion, users will try it on all kinds of code, and use it in
unanticipated ways. A strength of Coccinelle is its lax
C parser, motivated by the need to parse code without
reliance on header files. This has the side effect of allow-
ing it to adapt to C variants used by different projects. On
the other hand, many users have mentioned that the doc-
umentation, consisting mainly of a BNF, some examples
and some tutorial presentations, is hard to understand.
Nevertheless, Coccinelle has an active mailing list [9] on
which user problems are quickly addressed. Fixes are
made available quickly via Github [8].

Finally, in a research setting, there is a constant temp-
tation to make a tool do more, until the resulting com-
plexity causes the tool to collapse under its own weight.
While new features have been added to Coccinelle, the
tool has remained within the scope of pattern matching-
based transformation of C code. This focus has allowed
it to grow and achieve practical success in this area.

Availability. http://coccinelle.lip6.fr. This
work was supported in part by ANR-NRF ITrans.
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Abstract

Over the last decade, a variety of external file formats
such as Parquet, ORC, Arrow, etc., have been developed
to store large volumes of relational data in the cloud.
As high-performance networking and storage devices are
used pervasively to process this data in frameworks like
Spark and Hadoop, we observe that none of the popular
file formats are capable of delivering data access rates
close to the hardware. Our analysis suggests that multi-
ple antiquated notions about the nature of I/O in a dis-
tributed setting, and the preference for the “storage effi-
ciency” over performance is the key reason for this gap.

In this paper we present Albis, a high-performance file
format for storing relational data on modern hardware.
Albis is built upon two key principles: (i) reduce the CPU
cost by keeping the data/metadata storage format simple;
(ii) use a binary API for an efficient object management
to avoid unnecessary object materialization. In our eval-
uation, we demonstrate that in micro-benchmarks Albis
delivers 1.9 − 21.4× faster bandwidths than other for-
mats. At the workload-level, Albis in Spark/SQL reduces
the runtimes of TPC-DS queries up to a margin of 3×.

1 Introduction

Relational data management and analysis is one of the
most popular data processing paradigms. Over the last
decade, many distributed relational data processing sys-
tems (RDPS) have been proposed [15, 53, 29, 38, 35,
24]. These systems routinely process vast quantities of
(semi-)structured relational data to generate valuable in-
sights [33]. As the volume and velocity of the data in-
crease, these systems are under constant pressure to de-
liver ever higher performance. One key factor that de-
termines the performance is the data access rate. How-
ever, unlike the classic relational database management
systems (RDBMS) which are jointly designed for op-
timal data storage and processing, modern cloud-based

Figure 1: Relational data processing stack in the cloud.

RDPS systems typically do not manage their storage.
They leverage a variety of external file formats to store
and access data. Figure 1 shows a typical RDPS stack in
the cloud. This modularity enables RDPS systems to ac-
cess data from a variety of sources in a diverse set of de-
ployments. Examples of these formats are Parquet [10],
ORC [9], Avro [6], Arrow [5], etc. These formats are
now even supported by the RDBMS solutions which add
Hadoop support [49, 41, 31]. Inevitably, the performance
of a file format plays an important role.

Historically, file formats have put the top priority as
the “storage efficiency”, and aim to reduce the amount
of I/O as much as possible because I/O operations are
considered slow. However, with the recent performance
advancements in storage and network devices, the fun-
damental notion of “a fast CPU and slow I/O devices”
is now antiquated [44, 40, 54]. Consequently, many as-
sumptions about the nature of storage in a distributed
setting are in need of revision (see Table 1). Yet, file
formats continue to build upon these antiquated assump-
tions without a systematic consideration for the perfor-
mance. As a result, only a fraction of raw hardware per-
formance is reflected in the performance of a file format.

In this paper, we re-visit the basic question of stor-
age and file formats for modern, cloud-scale relational
data processing systems. We first start by quantifying
the impact of modern networking and storage hardware

USENIX Association 2018 USENIX Annual Technical Conference    615



Assumption Implications Still valid in a modern setup?
1. I/O operations are orders of
magnitude slower than the CPU

Use compression and encoding to re-
duce the amount of I/O required

No, with high-performance devices, the CPU is the new
performance bottleneck [54, 20]

2. Random, small I/O accesses
are slow

Use large block sizes to make large
sequential scans [30, 29]

No, modern NVMe devices have high-performance for
random, small accesses

3. Avoid remote data access Preserve locality by packing data in dis-
crete storage blocks [25]

No, fast I/O devices with network protocols (e.g.,
NVMeF) make remote storage as fast as local [26, 34]

4. Metadata lookups are slow Decrease the number of files and blocks
needed to store data [30]

No, high-performance distributed storage systems can
do millions of lookups per second [50]

5. The final row representation
is not known

Provide object/data-oriented API for
row and column data types

No, the final row/column representation is often known
(e.g., Spark UnsafeRow) and a binary API can be used

Table 1: Assumptions (1–2 are local, and 3–5 are distributed) and their implications on storing relational data.

on the performance of file formats. Our experiments lead
to three key findings. First, no popular file format we test
can deliver data access bandwidths close to what is pos-
sible on modern hardware. On our 100 Gbps setup, the
best performer delivers about 1⁄3rd of the bandwidth of the
networked storage. Secondly, the CPU is the new bottle-
neck in the data access pipeline. Even in the presence
of high-performance I/O hardware, file format develop-
ers continue to trade the CPU performance for “efficient”
I/O patterns. Although this decision made sense for disks
and 1 Gbps networks, today, this leads to the CPU be-
ing kept busy with (de)compressing, en/decoding, copy-
ing data, managing objects, etc., while trying to keep
up with incoming data rates. Lastly, at the distributed
systems level, strict adherence to locality, preference for
large sequential scans, penchant to decrease the number
of files/blocks, and poor object management in a man-
aged run-time result in a complex implementation with a
very high CPU cost and a poor “COST” score [37].

Based upon these findings, in this paper, we propose
Albis, a simple, high-performance file format for RDPS
systems. Albis is developed upon two key principles: (i)
reduce the CPU cost by keeping the data/metadata stor-
age format simple; (ii) use a binary API for an efficient
object management to avoid unnecessary object materi-
alization. These principles then also simplify the data/file
management in a distributed environment where Albis
stores schema, metadata, and data in separate files for an
easy evolution, and does not enforce a store like HDFS
to use local blocks. In essence, Albis’s top priority is to
deliver performance of the storage and network hardware
without too much intrusion from the software layer. Our
specific contributions in this paper are:

• Quantification of the performance of popular file for-
mats on modern hardware. To the best of our knowl-
edge, this is the first systematic performance evalua-
tion of file formats on 100 Gbps network and NVMe
devices. Often, such evaluations are muddied in the
description of the accompanying relational processing

system, which makes it hard to understand where the
performance bottlenecks in the system are.

• Revision of the long held CPU-I/O performance as-
sumptions in a distributed setting. Based upon these
revisions, we propose Albis, a high-performance file
format for relational data storage systems.

• Evaluation of Albis on modern hardware where we
demonstrate that it can deliver performance within
15% (85.5 Gbps) of the hardware. Beyond micro-
benchmarks, we also integrate Albis in Spark/SQL and
demonstrate its effectiveness with TPC-DS workload
acceleration where queries observe gains up to 3×.

2 File Formats in the Age of Fast I/O

The choice of a file format dictates how multi-
dimensional relational tables are stored in flat, one-
dimensional files. The initial influential work of column-
oriented databases have demonstrated the effectivness of
column storage for disks [51, 12]. This has led to the
development of a series of columnar file formats. The
most prominent of them are Apache Parquet [10], Op-
timized Row Columnar (ORC) [9], and Arrow [5]. All
of these columnar formats differ in their column/storage
encoding, storage efficiency, and granularity of index-
ing. Apart from providing a row-at-a-time API, all of
these formats also have a high-performance vector API
for column data. In this paper, we use the vector API for
evaluation. In contrast to column-storage, we also con-
sider two popular row-oriented formats. JSON [11] is a
simple data representation that encodes schema and data
together. JSON is widely supported due to its simplicity.
The other format is Avro [6] that decouples schema and
data presentation where both can evolve independently.

2.1 The Mismatch Assumptions

In this section, we re-visit the basic assumptions made
about the nature of I/O and what impact they have on the
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1 GbE 100 GbE Disk NVMe
Bandwidth 117 MB/s 12.5 GB/s 140 MB/s 3.1 GB/s
cycles/unit 38,400 360 10,957 495

Table 2: Bandwidths and cycles/unit margins for net-
working and storage devices. A unit for network is a
1,500 bytes packet, whereas for storage it is a 512 bytes
sector. Cycles/unit roughly denote the number of free
CPU cycles for every data unit for a 3 GHz core. As a
reference, a DRAM-access would be around 100 cycles.

file format design in the presence of modern hardware.
This discussion is summarized in Table 1.
1. I/O operations are orders of magnitude slower than
the CPU: During the last decade, we have witnessed the
rise of high-performance storage and networking devices
like 40 and 100 Gbps Ethernet, and NVMe storage. Once
the staple of high-performance computing clusters, these
devices and associated APIs can now be found in com-
modity cloud offerings from multiple vendors [3, 2, 1].
At the same time, the CPU performance improvements
have stalled due to various thermal and manufacturing
limits. Hence, the CPU’s margin for processing incom-
ing bytes has shrunk considerably [45, 21, 16, 54]. In
Table 2 we summarize the bandwidths for state-of-the-art
I/O devices from a decade ago and now. We also show
the cycles/unit metric as an estimate of the CPU bud-
get for every incoming unit of data. For the network,
the unit is a 1,500 bytes packet, and for storage it is a
512 bytes sector. For a 3 GHz core (ignoring the micro-
architectural artifacts), the number of cycles per second
is around 3× 109. The table shows that in comparison
to a decade ago, CPU cycle margins have shrunk by two
orders of magnitude.
2. Random, small I/O accesses are slow: Disk seeks
are slow and take ∼10s of milliseconds, a cost that can-
not be amortized easily for small accesses. Hence, disk-
based file formats advocate using large I/O segments,
typically a multiple of the underlying storage block, e.g.,
128 or 256 MB [30]. However, NVMe devices can de-
liver high bandwidth for random, small I/O patterns. In
our investigation (discussed in the next section), we find
that the continuing use of large I/O buffers is detrimental
to the cache behavior and performance. For example, on
a 16 core machine with a 128 MB buffer for each task,
the memory footprint of a workload would be 2 GB, a
much larger quantity than the modern cache sizes.
3. Avoid remote data access: Modern NVMe devices
can do 2-3 GB/s reads and 1-2 GB/s writes. At the
same time, the availability of high-performance networks
(40 and 100 Gbps) and efficient network protocols like
NMVe-over-Fabrics, means that the performance gap be-
tween a local flash and remote flash is negligible [26, 34].

Hence, various proposed modifications to block place-
ment strategies in Hadoop [25], and design decisions to
pack schema, data, and metadata in the same block to
avoid remote storage, can be relaxed.
4. Metadata lookups are slow: In any distributed stor-
age, the number of metadata lookups is directly propor-
tional to the number of blocks in a file. A lookup is
an RPC that took 100-1,000 µs over 1 Gbps networks.
This high cost has led to the decision to reduce the num-
ber of files (or blocks) by using complex block man-
agement strategies, type-specific encoding, packing data
and schema in packed blocks, which in essence trades
CPU for the I/O. However, modern storage solutions like
Apache Crail [8] and RAMCloud [42] can do millions of
metadata lookups/sec [50].
5. The final data representation is not known: File
formats often assume that the final data representation
in an RDPS engine is not known, and hence, a format
must materialize the raw objects when reading and writ-
ing data. This decision leads to unnecessary serialization
and object allocation, which hampers the performance in
a managed run-time environment like Java.

2.2 Putting it Together: Performance
In this section, we quantify the cumulative effect of the
aforementioned assumptions on the read performance of
file formats on modern hardware. For this experiment,
we read and materialize values from the store sales

table (the largest table) from the TPC-DS (scale=100)
dataset. The table contains 23 columns, which consist
of 10 integers, 1 long, and 12 decimal values. The input
table is stored in the HDFS file system (v2.7) in Parquet
(v1.8), ORC (v1.4), Arrow (v0.8), Avro (v1.7), and
JSON formats. The goal of the experiment is to mea-
sure how fast we can materialize the values from a re-
mote storage. The experiment is run between 2 machines
(with dual Xeon E5-2690, 16 cores) connected via a 100
Gbps network. One machine is used to run the HDFS
namenode and a datanode. This machine also contains
4 enterprise-grade NVMe cards, with a cumulative band-
width of 12.4 GB/sec. The other machine runs the bench-
marking code1 on all 16 cores in parallel.

Figure 2 shows our findings. Here, the y-axis shows
the effective goodput calculated by dividing the total in-
coming data size by the runtime. Notice that the incom-
ing data size is different from the file size, which depends
upon the file format used. We cannot use the file size for
the bandwidth calculation because formats such as JSON
use text encoding with interleaved schemas, thus making
their file sizes up to 10× larger than the actual data size.
In order to measure the actual data content, we count how

1The benchmarking code is open-sourced at https://github.

com/animeshtrivedi/fileformat-benchmarks.
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Figure 2: Reading bandwidths for various file formats.

many integers, longs, and doubles the table contains, ex-
cluding the null values. We use this as the reference data
point for the goodput measurements. We also show the
data ingestion bandwidth of Spark/SQL [15] (as spark+)
when the data is generated on the fly. The solid line rep-
resents the HDFS read bandwidth (74.9 Gbps) from the
remote NVMe devices2.

There are three key results from our experiment. First,
as shown in Figure 2, none of the file formats that we
test delivers bandwidth close to the storage performance.
There is almost an order of magnitude performance gap
between the HDFS (74.9 Gbps) and JSON (2.8 Gbps)
and Avro (6.5 Gbps) performances. Columnar formats
with their optimized vector API perform better. The best
performer is Arrow, which delivers 40.2% of the HDFS
bandwidth. Interestingly, Arrow is not for disks, but for
in-memory columnar data presentation. Its performance
only supports our case that with modern storage and
networking hardware, file formats need to take a more
“In-Memory”-ish approach to storage. In the same fig-
ure, we also show that in isolation from the storage/file
formats, Spark/SQL can materialize store sales rows
from raw integers, longs, and doubles at the rate of 97.3
Gbps. Hence, we conclude that file formats are a major
performance bottleneck for accessing data at high rates.

Secondly, the performance of these file formats are
CPU limited, an observation also made by others [20].
When reading the data, all 16 cores are 100% occu-
pied executing the thick software stack that consists of
kernel code, HDFS-client code, data copies, encoding,
(de)serialization, and object management routines. In
Table 3 we present further breakdown of the performance
(1st row) with required instructions per row (2nd row)
and cache misses per row (3rd row) for Parquet and ORC
file formats when varying their block sizes. As shown,
the use of large blocks (256 MB and 512 MB) always
leads to poor performance. The key reason for the perfor-
mance loss is the increased number of cache misses that

2Even though this is not 100 Gbps, it is the same bandwidth that
HDFS can serve locally from NVMe devices. Hence, the assumption
about the equality of local and remote performance holds.

512M 256M 128M 64M 32M

Goodput Parq. 7.3 9.5 12.5 12.8 12.1
(in Gbps) ORC 13.6 17.5 19.9 20.2 20.1
Instructions/ Parq. 6.6K 6.7K 6.6K 6.6K 6.6K
row ORC 5.0K 4.9K 4.9K 4.8K 4.8K
Cache misses/ Parq. 11.0 10.6 9.2 7.1 6.5
row ORC 7.8 5.5 4.6 4.4 4.1

Table 3: Goodputs, instructions/row, and cache
misses/row for Parquet (Parq.) and ORC with varying
block sizes on a 16-core Xeon machine.

leads to stalled CPU cycles. As we decrease the block
size from 512 to 32 MB, the performance increases up to
128 MB, though the number of cache misses continues
to decrease. At smaller block sizes (128 – 32 MB), the
performance does not further improve because it is bot-
tlenecked by the large number of instructions/row (re-
mains almost constant as shown in the 2nd row) that a
CPU needs to execute. In further experiments, we use a
128 MB block size as recommended in the literature.

Thirdly, these inefficiencies are scattered throughout
the software stack of file formats, and require a fresh and
holistic approach in order to be fixed.
Summary: We have demonstrated that despite orders
of magnitude performance improvements in networked-
storage performance, modern file formats fail to deliver
this performance to data processing systems. The key
reason for this inefficiency is the belief in the legacy as-
sumptions where CPU cycles are still traded off for I/O
performance, which is not necessary anymore. Having
shown the motivation for our choices, in the next section
we present Albis, a high-performance file format.

3 Design of Albis File Format

Albis is a file format to store and process relational tab-
ular data for read-heavy analytic workloads in a dis-
tributed setting. It supports all the primitive fixed (int,
timestamp, decimal, double, etc.) and variable
(varchar or byte[]) data types with simple and nested
schemas. A nested schema is flattened over the column
names and data is stored in the schema leaves. Albis’s
design is based upon the following choices:

• No compression or encoding: Albis decreases the
CPU pressure by storing data in simple binary blobs
without any encoding or compression. This decision
trades storage space for better performance.

• Remove unnecessary object materialization by pro-
viding a binary API: The data remains in the binary
format unless explicitly called for materialization. A
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Figure 3: Table partitioning logic of Albis and corre-
sponding file and directory layout on the file system.

reader can access the binary data blob for data transfor-
mation from Albis to another format (such as Spark’s
UnsafeRow representation) without materializing the
data. This design choice helps to reduce the number of
objects. A binary API is possible because the row data
is not group compressed or encoded which requires the
complete group to be decoded to materialize values.

• Keep the metadata/data management simple: Albis
stores schema, data, and metadata in separate files with
certain conventions on file and directory names. This
setup helps to avoid complex inter-weaving of data,
schema, and metadata found in other file formats. Due
to the simple data/metadata management logic, Albis’s
I/O path is light-weight and fast.

In order to distribute storage and processing, Albis
partitions a table horizontally and vertically as shown in
Figure 3. The vertical partitioning (configurable) splits
columns into column-groups (CGs). At the one extreme,
if each column is stored in a separate column group,
Albis mimics a column store. On the other hand, if all
columns are stored together in a single column group, it
resembles a row store. In essence, the format is inspired
by the DSM [23] model without mirroring columns in
column groups. Horizontal partitioning is the same as
sharding the table along the rows and storing them into
multiple row-groups (RGs). A typical row group is con-
figurable either based on the number of rows or the size
(typically a few GBs). The number and ordering of the
row and column groups are inferred from their names as
shown in Figure 3. Albis does not maintain any explicit
indexes. Row data in various column groups are matched
together implicitly by their position in the data file. The
data, metadata, and file management and naming conven-
tion of Albis is similar to BigTable [22]. In the follow-
ing sections, we discuss the storage format, read/write
paths, support for data/schema evolution, and concerns
with distributed data processing systems in detail. Ta-
ble 4 shows the abridged Albis API.

Figure 4: Albis row storage format.

3.1 Row Storage Format
After splitting the table along multiple CGs, each CG
can be thought of as a table with its own schema and
data. Row data from a column group is stored con-
tinuously, one after another, in a file. The Albis row
format consists of four sections: a size counter, a null
bitmap, a fixed-length and a variable-length section as
shown in Figure 4. For a given schema, the number of
fields determines the bitmap size in bytes. For exam-
ple, a 23 columns schema (like TPC-DS store sales)
takes 3 bytes for the null bitmap. The fixed-length area
is where data for fixed-length columns are stored in situ.
A variable-length column data is stored in the variable-
length area, and its offset and size is encoded as an 8-byte
long and stored in the fixed area. With this setting, for a
given schema, Albis calculates the fixed-length section
size (that stays fixed, hence the name) by summing up
the size of the fixed-type fields and 8×number of vari-
able fields. For example, a schema of <int, char,

byte[], double, byte[]> (as shown in the figure)
takes one byte for bitmap, and 29 (= 4 + 1 + 8 + 8 +
8) bytes for the fixed segment. The row encoding is then
prefixed by the total size of the row, including its variable
segment. For a fixed-length schema (contains only fixed-
length fields), Albis optimizes the row format by eschew-
ing the size prefix as all rows are of the fixed, same size.

3.2 Writing Row Data
A writer application defines a schema and the column
grouping configuration by allocating AlbisSchema and
AlbisColumn objects. In the default case, all columns
are stored together in a row-major format. The writer
application then allocates an AlbisWriter object from
the schema object. The writer object is responsible for
buffering and formatting row data according to the stor-
age format as described previously. Internally, the writer
object manages parallel write streams to multiple CG
locations, while counting the size. Once a RG size is
reached, the current writers are closed, and a new set
of writers in a new RG directory are allocated. Data is
written and read in the multiple of segments. A segment
is a unit of I/O buffering and metadata generation (de-
fault: 1 MB). The segment metadata includes the min-
imum and maximum values (if applicable), distribution
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Class Functions Action

AlbisFileFormat
reGroup(Schema, Path, Schema, Path) re-groups the schema in the given path location
reBalance(Path) re-balances the data in the given path location

AlbisColumn make(String, Type, ...) makes a column with a name and type
AlbisColGroup make(AlbisColumn[]) makes a column group from a given list of columns

AlbisSchema

getReader(Path, Filter[], AlbisColumn[]) gets a reader for a given location, projection, and filter
getWriter(Path) gets a writer to a given location
makeSchema(ColumnGroup[]) builds a schema with a given list of CGs

AlbisWriter
setValue(Int, Value) sets a value (can be null) for a given column index
nextRow() marks the current row done, and moves the pointer

AlbisReader

hasMore() and next() implements the Scala Iterator abstraction for rows
getValue(Int) gets the value (can be null) for a given column index
getBinaryRow() returns a byte[] with the encoded row

Table 4: Abridged Albis API. Apart from row-by-row, Albis also supports a vector reading interface.

of data (e.g., sorted or not), number of rows, padding in-
formation, and offset in the data file, etc. The segment
metadata is used for implementing filters.

3.3 Reading Row Data

A reader application first reads the schema from the top-
level directory and scans the directory paths to identify
row and column groups. The reader then allocates an
AlbisReader object from the schema, which internally
reads in parallel from all column groups to construct the
complete row data. AlbisReader implements the Iter-
ator abstraction where the reader application can check
if there are more rows in the reader and extract values.
The reader object reads and processes a segment’s worth
of data from all column groups in parallel, and keeps the
row index between them in sync. An AlbisReader ob-
ject also supports a binary API where row-encoded data
can be returned as a byte[] to the application.
Projection: AlbisReader takes a list of AlbisColumns
that defines a projection. Internally, projection is im-
plemented simply as re-ordering of the column indexes
where certain column indexes are skipped. Naturally, the
performance of the projection depends upon the column
grouping. In the row-major configuration, Albis cannot
avoid reading unwanted data. However, if the projected
columns are grouped together, Albis only reads data files
from the selected column group, thus skipping unwanted
data. As we will show in Section 4.1, the implementation
of projection is highly competitive with other formats.
Filtering: Albis implements two levels of filtering. The
first-level of filtering happens at the segment granularity.
If a filter condition is not met by the metadata, the seg-
ment reading is skipped immediately. For example, if a
segment metadata contains the max value of 100 for an
integer column, and a filter asks for values greater than
500, the segment is skipped. However, if the condition is
not specific enough, then the rows are checked one-by-

one, and only valid rows satisfying all filter conditions
are returned. Currently, Albis supports null checks and
ordinal filters (less than, greater than, equal to) with com-
binations of logical (NOT, AND and OR) operators.

3.4 Data and Schema Evolution in Albis

As described so far, the name and location of a data file
plays an important role to support data and schema evo-
lution in Albis. We now describe this in detail:
Adding Rows: Adding another row is trivial. A writer
adds another row group in the directory and writes its
data out. Appending to an existing row group is also pos-
sible on append-only file systems like HadoopFS. How-
ever, while adding another row, the writer cannot alter
the column grouping configuration.
Deleting Rows: Deleting rows in-place is not supported
as the underlying file system (HDFS) is append-only.
Adding Columns: Adding new columns is one of the
most frequent operations in analytic. Adding a column
at the end of the schema involves creating a column
group directory (with associated data and metadata files).
The ordering of row data in the newly added column
is matched with the existing data, and missing row en-
tries are marked null. Using this strategy, more than one
column (as a CG) can be added at a time as well. The old
schema file is read, and written again (after deleting the
old one) with the updated schema.
Deleting Columns: A column delete operation in Albis
falls in one of the two categories. The column(s) to be
deleted is (are) either (i) stored as a separate CG; or (ii)
stored with other columns. In the first case, the deletion
operation is simple. The CG directory is deleted, and
the schema is updated as mentioned previously. In the
latter case, there are two ways Albis deletes columns.
A light-weight deletion operation “marks” the column
as deleted and updates the schema. The column is only
marked as deleted, but the column is not removed from
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the schema because the column data is still stored in the
storage. In order to skip the marked column data, an
AlbisReader needs to know the type(s) of the deleted
column(s). In contrast, a heavy-weight delete opera-
tion emulates a read-modify-write cycle, where the CG
is read, modified, and written out again.
Maintenance Operations: Apart from the aforemen-
tioned operations, Albis supports two maintenance op-
erations: re-grouping and re-balancing. Re-grouping is
for re-configuring the column grouping. For example,
due to the evolution in the workload it might be neces-
sary to split (or merge) a CG into multiple CGs for a
faster filter or projection processing. Re-balancing refers
to re-distributing the data between RGs. A RG is the
unit of processing for Albis tables in a distributed set-
ting. Adding and removing column and row data can
lead to a situation where data between row-groups is not
balanced. This data imbalance will lead to imbalanced
compute jobs. The Re-balancing operation reads the cur-
rent data and re-balances the data distribution in the row
groups. While executing the re-balancing, it is possible
to increase the number of row groups to increase the par-
allelism in the system. Re-grouping can be executed at
the same time as well. These operations are slow and
we expect them to be executed once-in-a-while. Even
though column adding and deleting is one of the frequent
operations, a complete re-balancing is only required if
the added columns/rows contain highly uneven values.

3.5 Distributed Processing Concerns

How does an RDPS system process input Albis files?
RDPS frameworks like Spark/SQL divide work among
the workers using the size as a criteria. At a first glance,
a segment seems to be a perfect fit for providing equal
sized work items for workers. For a static table, seg-
ments can be used as the quantum of processing. How-
ever, as a new column is added, often as a result of dis-
tributed processing, it is critical in what order the rows in
the new column are written because indexes are implic-
itly encoded with the data position in a file. For exam-
ple, imagine a table with two segments in a single row-
group. Now, another column is added to this table using
two Spark/SQL workers, each processing one segment.
As there are no ordering guarantees between tasks, and
each task in the data-parallel paradigm gets its own file
to write, it is possible that the first task gets the second
segment, but the first new column file name. This mix-up
destroys the row ordering when enumerating files based
on their names. However, if the whole row-group is pro-
cessed only by a single task, the newly added “single”
column file is ensured to have the same ordering as the
current row file (including all its segments). Thus, an
Albis row-group is the unit of processing for a distributed

RDPS system. A single task is responsible for process-
ing, adding and deleting columns and rows within a sin-
gle row group while maintaining the implicit ordering
variant of the data. As previously discussed, if neces-
sary, the data can be re-balanced to increase the num-
ber of row-groups, hence, parallelism in the system. The
schema file updates are expected to take place on a cen-
tralized node like the Spark driver.
Which column grouping to use? The recommended
column grouping setting depends upon the workload.
Systems like H2O [14], etc., can change the storage for-
mat dynamically based upon the workload. We consider
this work beyond the current scope. However, we expect
that Albis can help in this process by providing meaning-
ful insights about accesses and I/O patterns.

4 Evaluation

Albis is implemented in about 4k lines of Scala/Java code
for Java 8. We evaluate the performance of Albis on a 4-
node cluster each containing dual Xeon E5-2690 CPUs,
128GB of DDR3 DRAM, 4 enterprise-grade NVMe de-
vices, connected via a 100 Gbps link, running Ubuntu
16.04. All numbers reported here are the average of 3
runs. We attempt to answer three fundamental questions:

• First, does Albis deliver data access rates close to the
modern networking and storage devices? Using a set
of micro-benchmarks over HDFS on 100 Gbps net-
work and NVMe devices we demonstrate that Albis
delivers read bandwidths up to 59.9 Gbps, showing
a gain of 1.9 − 21.4× over other file formats (Sec-
tion 4.1). With Apache Crail (instead of HDFS), Albis
delivers bandwidth of 85.5 Gbps from NVMe devices.

• Secondly, does Albis accelerate the performance of
data analytic workloads? To demonstrate the effec-
tiveness of Albis and its API, we have integrated it in
Spark/SQL, and demonstrate an up to 3× reduction in
query runtimes. The overall TPC-DS runtime is also
decreased by 25.4% (Section 4.2).

• Lastly, what is the cost of design trade-offs of Albis,
namely the cost of eschewing compression and in-
creased look-up cost in a distributed system? In our
evaluation, Albis increases the storage cost by a mar-
gin of 1.3− 2.7× (based on the compression choice),
but does not increase the load for extra block lookups.
In exchange, it delivers performance improvements by
a margin of 3.4−7.2× (Section 4.3).

4.1 Micro-benchmarks
In this section, we evaluate the performance of Albis,
through a series of micro-benchmarks. We focus on the
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Figure 5: (a) Bandwidth vs. core scaling; (b) Effect of data type on performance; (c) Projectivity performance.

read because the write performance of all file formats are
bottlenecked by the HDFS write bandwidth (∼20 Gbps).

Read performance: We start by revisiting the key ex-
periment from the beginning of the paper. Here, in Fig-
ure 5a we show the performance of Albis with respect to
other file formats for reading the store sales data. The
x-axis shows the number of cores and the y-axis shows
the data goodput performance. As shown, in comparison
to other data formats, Albis delivers 1.9 (vs. Arrow) –
21.4× (vs. JSON) better read performance for reading
the store sales table. The performance gains of Albis
can be traced down to its superior instruction utilization
(due to its light-weight software stack), and cache profile.
Table 5 shows the CPU profile of Albis against Parquet,
ORC, and Arrow. As can be seen, Albis takes 1.2−4.1×
less instructions, and exhibits 1.5 − 3.0× fewer cache
misses per row. The peak data rate is at 59.9 Gbps, which
is within 80% of the HDFS bandwidth. The gap between
the HDFS performance and Albis is due to the parsing of
schema and materialization of the data. For the sake of
brevity, in the following sections we focus our effort on
best performing formats, namely Parquet and ORC, for
the performance evaluation. Arrow does not have native
filter and projection capabilities.

Effect of schema and data types: We now focus our
effort to quantify what effect a data type has on the read
performance. We choose integers, longs, doubles, and
arrays of byte types. For this benchmark, we store 10 bil-
lion items of each type. For the array, we randomly gen-
erate an array in the range of (1–1024) bytes. Figure 5b
shows our results. The key result from this experiment
is that Albis’s performance is very close to the expected
results. The expected result is calculated as what fraction
of incoming data is TPC-DS data. As discussed in Sec-
tion 3.1, each row contains an overhead of the bitmap.
For a single column schema that we are testing, it takes 1
byte for the bitmap. Hence, for integers we expect 4/5

th of
the HDFS read performance. In our experiments, the in-
teger performance is 52.6 Gbps which is within 87.8% of
the expected performance (59.9 Gbps). Other types also
follow the same pattern. The double values are slower
to materialize than longs. We are not sure about the

Parquet ORC Arrow Albis
Instructions/row 6.6K 4.9K 1.9K 1.6K
Cache-misses/row 9.2 4.6 5.1 3.0
Nanosecs/row 105.3 63.9 31.2 20.8

Table 5: Micro-architectual analysis for Parquet, ORC,
Arrow, and Albis on a 16-core Xeon machine.

cause of this behavior. The byte array schema delivers
bandwidth very close to the HDFS read bandwidth as the
bitmap overhead is amortized. With arrays, Albis deliv-
ers 72.5 Gbps bandwidth. We have only shown the per-
formance of primitive types as higher-level types such as
timestamps, decimal, or date are often encoded into
the lower-level primitive types, and their materialization
is highly implementation-dependent.

Projection performance: A columnar-format is a
natural fit when performing a projection operation. A
similar operation in a row-oriented format requires a
level of redirection to materialize the values while leav-
ing the unwanted data behind. However, a distinction
must be made between a true column-oriented and PAX-
alike format (e.g., Parquet). The PAX-encoding does not
change the I/O pattern and amount of data read from a
file system. It only helps to reduce the amount of work
required (i.e., mini-joins) to materialize the projected
columns. Albis’s efficiency in projection depends upon
the column grouping configuration. With a single col-
umn group, Albis is essentially a row store. Hence, the
complete row data is read in, but only desired columns
are materialized. To evaluate the projection performance,
we generated a dataset with 100 integer columns and 100
million rows (total size: 40 GB). This dataset is then
read in with a variable projectivity, choosing k out of 100
columns for k% projectivity. Figure 5c shows the projec-
tivity (x-axis) and the goodput (y-axis). As shown, Albis
(as a row store) always outperforms Parquet and ORC af-
ter 30% projectivity. It is only slower than ORC for 10%
and 20% projectivity by a margin of 23.5% and 2.7%, re-
spectively. We exercise caution with results as the superi-
ority of row versus column format is a contentious topic,
and gains of one over the other come from a variety of
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features that go beyond just micro-benchmarks [12].
Selectivity performance: In a real-world workload,

RDPS systems often have predicates on column values.
As all file formats maintain metadata about columns,
they help the RDPS systems to pre-filter the input rows.
However, it must be noted that often, filters are “hints”
to file formats. A format is not expected strictly to re-
turn rows that satisfy the filters. Parquet, ORC, and Albis
all maintain segment-level metadata that can be used to
completely eliminate reading the segment. The perfor-
mance saving depends upon the segment size. ORC also
maintains metadata per 10k rows that allows it to do an-
other level of filtering. In contrast, Albis supports strict
filtering of values and hence, it avoids pushing unwanted
rows into the processing pipeline. We evaluate selectivity
performance on the same 100 integer column table used
in the projection. The first column of the table contains
integers between 0 and 100. We execute a simple SQL
query “select(*) from table where col0 <= k”, where k
varies from 1 to 100, to select k% of input rows. Our re-
sults demonstrate similar gains (not shown) as the projec-
tion performance. Albis outperforms Parquet and ORC
by a margin of 1.6−2.4×.

4.2 Workload-level Performance

For workload-level experiments, we have integrated
Albis support into Spark/SQL [15] (v2.2) and evalu-
ate its performance for an EquiJoin and the full TPC-DS
query set. Naturally, input and output is only one aspect
of a workload, and gains solely from a fast format are
bounded by the CPU-I/O balance of the workload.

Spark/SQL data ingestion overheads: Inte-
gration into Spark/SQL entails converting in-
coming row data into Spark-specific format (the
Iterator[InternalRow] abstraction). We start
by quantifying what fraction of performance is lost
due to framework-related overheads [54], which, of
course, varies with the choice of the SQL framework.
In Figure 6a, we show the read bandwidths for the
three biggest tables in the TPC-DS dataset for ORC,

Parquet, and Albis3. In each bar, we also show a dark
bar that represents the performance observed at the
Spark/SQL level. In general, from one third up to half
of the performance can be lost due to framework-related
overheads. The table web sales performs the best with
89.2% of Parquet bandwidth delivered. However, it can
be observed the other way around as well because the
Parquet bandwidth is so low, hence, further overheads
from the framework do not deteriorate it further.

Effect of the Binary API: While measuring the Spark
ingestion rate, we also measure the number of live ob-
jects that the Java heap manages per second while run-
ning the experiment. For Albis we use two modes to ma-
terialize Spark’s UnsafeRow either using the binary API
or not. In our evaluation we find (not shown) that even
without using the binary API, Albis (260.4K objs/sec) is
better than Parquet (490.5K objs/sec) and ORC (266.4K
objs/sec). The use of binary API futher improves Albis’s
performance by 4.3% to 249.2K objs/sec.

EquiJoin performance: Our first SQL benchmark is
an EquiJoin operation, which is implemented as a Sort-
Merge join in Spark/SQL. For this experiment, we gen-
erate two tables with a <int,byte[]> schema and 32
million rows each. The array size varies between 1 and
2kB. The total data set is around 64GB in two tables. The
join operation joins on the int column, and then gener-
ates the checksum column for merged byte[] columns,
which is written out. Figure 6b shows our results. The
figure shows the runtime splits (y-axis) for the 4 stages
of the join operation (reading in, mapping to partitions,
sorting and joining partitions, and then the final write
out) for Parquet, ORC, and Albis. As shown, Albis helps
to reduce the read (7.1 sec for Albis) and write (1.7 sec
for Albis) stages by more than 2×. Naturally, a file for-
mat does not improve the performance of the map and
join stages, which remain constant for all three file for-
mats. Overall, Albis improves the query run-time by
35.1% and 29.8% over ORC and Parquet, respectively.

TPC-DS performance: Lastly, we run the TPC-DS
query set on the three file formats with the scaling factor

3Spark/SQL does not support the Arrow format yet (v2.2).
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None Snappy Gzip zlib

Parquet 58.6 GB 44.3 GB 33.8 GB N/A
12.5 Gbps 9.4 Gbps 8.3 Gbps -

ORC 72.0 GB 47.6 GB N/A 36.8 GB
19.1 Gbps 17.8 Gbps - 13.0 Gbps

Albis 94.5 GB N/A N/A N/A
59.9 Gbps - - -

Table 6: TPC-DS dataset sizes and performance.

of 100. We choose the factor 100 as it is the largest fac-
tor that we can run while keeping the shuffle data in the
memory to avoid Spark’s shuffle-related overheads. Fig-
ure 6c shows our results. On the y-axis, the figure shows
the fraction of queries as CDF and on the x-axis it shows
percentage performance gains for Albis in comparison
to Parquet and ORC formats. There are two main ob-
servations here. First, for more than half of the queries,
the performance gains are less than 13.8% (ORC) and
21.3% (Parquet). For 6 queries on ORC (only 1 on Par-
quet), the gains are even negative, however, the loss is
small (−5.6%). Second, the last six queries on both file
formats see more than a 50% improvement in run-times.
The run-time of the query 28, which is the query with
most gains, is improved by a margin of 2.3× and 3.0×
for ORC and Parquet, respectively. Gains are not uni-
formly distributed among all queries because they de-
pend upon what fraction of the query time is I/O bounded
and what is CPU bounded (including framework related
overheads). The run-times of the full TPC-DS suit with
all queries is 1,850.1 sec (Parquet), 1,723.4 sec (ORC)
and 1,379.2 sec (Albis), representing a gain of 25.4%
(over Parquet) and 19.9% (over ORC).

4.3 Efficiency of Albis
The cost of compression: With its sole focus on perfor-
mance, Albis does not use any compression or encoding
to reduce the data set size. This design choice means
that Albis file sizes are larger than other file formats.
In Table 6, we show the TPC-DS dataset (scale=100)
sizes with compression options available on Parquet and
ORC. As calculated from the table, due to highly efficient
type-specific encoding (e.g. RLE for integers), even un-
compressed Parquet and ORC datasets are 23.8−37.9%
smaller than Albis’s. With compression, the gap widens
to 64.2%. With the current market prices, the increased
space costs 0.5$/GB on NVMe devices. However, the
compressed dataset sizes also lead to significant perfor-
mance loss when reading the dataset (also shown in the
table). As we have shown in Section 2, the reading
benchmarks are CPU bounded even without compres-
sion. Hence, adding additional routines to decompress
incoming data only steals cycles from an already sat-

 0

 20

 40

 60

 80

 100

1c 2c 4c 8c 16c

H
D

FS
 /

 N
V

M
e

C
ra

il 
/ 

N
V

M
e

w
/o

 M
a
te

ri
a
liz

in
g59.9

85.5
91.3

G
o
o
d
p
u
t 

in
 G

b
p
s

Figure 7: Albis performance on Crail with NVMeF.

urated CPU. In comparison to compressed bandwidths,
Albis delivers 3.4− 7.2× higher bandwidths. One po-
tential avenue to recover the lost storage efficiency is to
leverage advanced hardware-accelerated features like de-
duplication and block compression further down the stor-
age stack. However, we have not explored this avenue in
detail yet.

Load on the distributed system: One concern with
the increased number of files and the storage capacity
of data sets is that they increase RPC pressure on the
namenode. The number of RPCs to the namenode de-
pends upon the number of files and blocks within a file.
With an HDFS block size of 128 MB, the most efficient
dataset from TPC-DS takes 271 blocks (33.8 GB with
Parquet and gzip). In comparison, Albis’s dataset takes
756 blocks. The lookup cost increase for hundreds of
blocks is marginal for HDFS. Nonetheless, we are aware
of the fact that these factors will change with the scale.

Delivering 100 Gbps bandwidth: For our final ex-
periment, we try to answer the question what it would
take to deliver 100 Gbps bandwidth for Albis. Certainly,
the first bottleneck is to improve the base storage layer
performance. The second factor is to improve the data
density. For example, the store sales table on Albis
has the data density of 93.9% (out of 100 bytes read
from the file system). On top of this, the effective band-
width on 100 Gbps link is 98.8 Gbps, that gives us the
upper bounds for the performance at 92.8 Gbps that we
hope to achieve with the Albis store sales table on a
100 Gbps link. To test the peak performance, we port
Albis to Apache Crail with its NVMeF tier [8, 52]. Crail
is an Apache project that integrates high-performance
network (RDMA, DPDK) and storage (NVMeF, SPDK)
stacks in the Apache data processing ecosystem. The
peak bandwidth of Crail from NVMe devices is 97.8
Gbps [46]. Figure 7 shows our results. In the left half
of the figure it shows the scaling performance of Albis
on Crail from 1 core performance (8.9 Gbps ) to 16 cores
(85.5 Gbps). In comparison, the right half of the figure
shows the performance of HDFS/NVMe at 59.9 Gbps
and Crail/NVMe at 85.5 Gbps. The last bar shows the
performance of Albis if the benchmark does not materi-
alize Java object values. In this configuration, Albis on
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Crail delivers 91.3 Gbps, which is within 98.4% of the
peak expected performance of 92.7 Gbps.

5 Related Work

Storage Formats in Databases: N-ary Storage Model
(NSM) stores data records contiguously in a disk page,
and uses a record offset table at the end of the page [47].
Decomposition Storage Model (DSM) [23] proposes to
split an n-column relation into n sub-relations that can
be stored independently on a disk. NSM is consid-
ered good for transactions, whereas, DSM is consid-
ered suitable for selection and projection-heavy analyt-
ical workloads. A series of papers have discussed the
effect of NSM and DSM formats on the CPU efficiency
and query execution [27, 55, 12]. Naturally, there is
no one size that fits all. Ailamaki et al. [13] propose
the Partition Attributes Across (PAX) format that com-
bines the benefits of these two for a superior cache per-
formance. The Fractured Mirrors design proposes main-
taining both NSM and DSM formats on different copies
of data [48]. Jindal et al. propose the Trojan data layout
that does workload-driven optimizations for data layouts
within replicas [32]. The seminal work from Abadi et al.
demonstrates that a column-storage must be augmented
by a right query processing strategy with late materializa-
tion, batch processing, etc., for performance gains [12].
Various state of the art database systems have been pro-
posed that take advantage of these strategies [51, 19]. In
comparison so far, the focus of Albis has been on a light-
weight file format that can faithfully reflect the perfor-
mance of the storage and networking hardware.
File Formats in the Cloud: Many parts of the data for-
mat research from databases have found its way into
commodity, data-parallel computing systems as well.
Google has introduced SSTable, an on-disk binary file
format to store simple immutable key-value strings [22].
It is one of the first external file formats used in a large-
scale table storage system. RCFile [28] is an early at-
tempt to build a columnar store on HDFS. RCFiles do
not support schema evolution and have inefficient I/O
patterns for MapReduce workloads. To overcome these
limitations, Floratou et al. propose the binary columnar-
storage CIF format for HDFS [25]. However, in order
to maintain data locality, they require a new data place-
ment policy in HDFS. Hadoop-specific column-storage
issues like column placement and locality are discussed
in detail by [30, 25]. The more popular file formats like
Parquet [10] (uses Dremel’s column encoding [38]) and
ORC [9], etc., are based on the PAX format. Albis’s
column grouping and row-major storage format match
closely with Yahoo’s Zebra [4, 39]. However, Zebra
does not support filter pushdown or statistics like Albis.
Apache CarbonData is an indexed columnar data format

for fast analytics on big data platforms [7]. It shares sim-
ilarities with the Arrow/Parquet project. However, due to
its intricate dependencies on Spark, we could not evalu-
ate it independently. Historically, the priorities of these
file formats have been I/O efficiency (by trading CPU
cycles) and then performance, in that order. However, as
we have demonstrated in this paper, the performance of
these file formats are in dire need of revision.
High-Performance Hardware: Recently, there has
been a lot of interest in integrating high-performance
hardware into data processing systems [17, 18]. Of-
ten, the potential performance gains from modern hard-
ware are overshadowed by the thick software/CPU stack
that is built while holding the decades old I/O assump-
tions [40, 54]. This pathology manifests itself as “sys-
tem being CPU-bounded”, even for many I/O-bound
jobs [20, 43]. A natural response to this situation is to
add more resources, which leads to a significant loss in
efficiency [37]. In this work, we have shown that by re-
evaluating the fundamental assumptions about the nature
of I/O and CPU performances, we can build efficient and
fast systems - a sentiment echoed by the OS designers as
well [45]. Recently, Databricks has also designed its op-
timized caching format after finding out about the inade-
quate performance of file formats on NVMe devices [36].
However, details of the format are not public.

6 Conclusion

The availability of high-performance network and stor-
age hardware has fundamentally altered the performance
balance between the CPU and I/O devices. Yet, many
assumptions about the nature of I/O are still rooted in
the hardware of the 1990s. In this paper, we have in-
vestigated one manifestation of this situation in the per-
formance of external file formats. Our investigation on
100 Gbps network and NVMe devices reveals that due
to the excessive CPU and software involvement in the
data access path, none of the file formats delivered per-
formance close to what is possible on modern hardware.
Often, CPU cycles are traded for storage efficiency. We
have presented Albis, a light-weight, high-performance
file format. The key insight in the design of Albis is
that by foregoing the assumptions and re-evaluating the
CPU-I/O work division in the file format, it is possible
to build a high-performance balanced system. In the
process of designing Albis, we have also presented an
extensive evaluation of popular file formats on modern
high-performance hardware. We demonstrate that Albis
delivers performance gains in the order of 1.9− 21.4×;
superior cache and instruction profile; and its integration
in Spark/SQL shows TPC-DS queries acceleration up to
a margin of 3×. Encouraged by this result, we are explor-
ing applicability of Albis with multiple frameworks.
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Abstract
Machine Learning (ML) is an increasingly popular applica-
tion in the cloud and data-center, inspiring new algorithmic
and systems techniques that leverage unique properties of
ML applications to improve their distributed performance
by orders of magnitude. However, applications built using
these techniques tend to be static, unable to elastically adapt
to the changing resource availability that is characteristic
of multi-tenant environments. Existing distributed frame-
works are either inelastic, or offer programming models
which are incompatible with the techniques employed by
high-performance ML applications.

Motivated by these trends, we present Litz, an elastic
framework supporting distributed ML applications. We
categorize the wide variety of techniques employed by these
applications into three general themes — stateful workers,
model scheduling, and relaxed consistency — which are
collectively supported by Litz’s programming model. Our
implementation of Litz’s execution system transparently
enables elasticity and low-overhead execution.

We implement several popular ML applications using
Litz, and show that they can scale in and out quickly to
adapt to changing resource availability, as well as how a
scheduler can leverage elasticity for faster job completion
and more efficient resource allocation. Lastly, we show that
Litz enables elasticity without compromising performance,
achieving competitive performance with state-of-the-art
non-elastic ML frameworks.

1 Introduction
Modern clouds and data-centers are multi-tenant envi-
ronments in which the set of running jobs and available
resources (CPU, memory, etc.) at any given time are
constantly changing [5, 45, 27]. At the same time, Machine
Learning (ML) is quickly becoming a dominant application
among modern distributed computing workloads. It is there-
fore highly desirable for ML applications executing in such
an environment to be elastic, being able to opportunistically
use additional resources when offered, and gracefully release
acquired resources when requested. Elasticity is beneficial
for both the individual job and for the cluster as a whole.
An elastic job can make use of idle resources to complete
within a shorter amount of time, and still make progress
when some of its resources are removed. A cluster-wide job
scheduler can dynamically re-allocate resources to speed up
urgent real-time or interactive jobs, and ensure fairness by
preventing jobs from holding highly contested resources for
long periods of time.

Recent advancements in algorithmic and systems
techniques for distributed ML applications have improved
their performance by an order of magnitude or more.
New algorithms such as AdaptiveRevision [39], NO-
MAD [42], and LightLDA [55] can better scale in distributed
environments, possessing favorable properties such as
staleness tolerance [39, 28], lock-free execution [42, 56],
and structure-aware parallelization [20, 55]. Systems
and frameworks such as GraphLab [38], Petuum [53],
Adam [15], and various parameter servers [36, 28] are able
to support and exploit these properties to achieve even higher
performance, using techniques such as bounded-staleness
consistency models [17], structure-aware scheduling [33],
bandwidth management/re-prioritization [50], and network
message compression [52, 15].

Although significant work is being done to push the
boundaries of distributed ML in terms of performance and
scalability, there has not been as much focus on elasticity,
thus limiting the resource adaptability of ML applications
in real-world computing environments.

General-purpose distributed frameworks such as
Hadoop [1] and Spark [57] are well integrated with cloud
and data-center environments, and are extensively used
for running large-scale data processing jobs. They are
designed to support a wide spectrum of conventional tasks—
including SQL queries, graph computations, and sorting and
counting—which are typically transaction-oriented and rely
on deterministic execution. However, their programming
models are incompatible with the algorithmic and systems
techniques employed by distributed ML applications,
abstracting away necessary details such as input data par-
titioning, computation scheduling, and consistency of shared
memory access. As a result, the performance of ML appli-
cations built using these frameworks fall short of standalone
implementations by two orders of magnitude or more [51].

Consequently, distributed ML applications are often
implemented without support from elastic frameworks, re-
sulting in jobs that hold a rigid one-time allocation of cluster
resources from start to finish [50, 33, 56, 15]. The lack of an
elastic framework, along with a suitable programming model
which can support the various distributed ML techniques,
is a key roadblock for implementing elastic ML applications.

Although the algorithmic and systems techniques
employed by these standalone applications are diverse, they
typically arise from only a few fundamental properties of
ML that can be collectively supported by an elastic ML
framework. This observation exposes an opportunity to
design a framework that is able to support a large variety of
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distributed ML techniques by satisfying a smaller set of more
general requirements. We summarize these properties of
ML and how they guide the design of an elastic framework
below, and further elaborate on them in Sec. 2. parent
First, ML computations exhibit a wide variety of memory
access patterns. Some mutable state may be accessed when
processing each and every entry of a dataset, while other state
may only be accessed when processing a single data entry.
To improve locality of access, ML applications explicitly
co-locate mutable model parameters with immutable dataset
entries [55]. Each worker machine in the computation may
contain a non-trivial amount of mutable state, which needs
to be properly managed under an elastic setting.

Second, ML models contain a wide variety of dependency
structures. Some sets of model parameters may safely be
updated in parallel, while other sets of parameters must be
updated in sequence. Guided by these dependency structures,
ML applications carefully schedule their model updates by
coordinating tasks across physical worker machines [20].
An elastic ML framework should abstract the physical
cluster away from applications while still providing enough
flexibility to support this type of task scheduling.

Furthermore, ML algorithms are often iterative-convergent
and robust against small errors. Inaccuracies occurring
in their execution are automatically corrected during later
stages of the algorithm. Distributed ML applications
have been able to attain higher performance at no cost to
correctness by giving up traditionally desirable properties
such as deterministic execution and consistency of memory
access [28]. Framework mechanisms for elasticity should
not rely on a programming model that restricts this way of
exploiting the error-tolerance of ML algorithms.

Thus, to efficiently support ML applications, an elastic
ML framework should support stateful workers, model
scheduling, and relaxed consistency. It should provide an
expressive programming model allowing the application
to define a custom scheduling strategy and to specify how
the consistency of memory accesses can be relaxed under
it. Then, it should correctly execute this strategy within
the specified consistency requirements, while gracefully
persisting and migrating application state regardless of its
placement with respect to input data.

Motivated by the needs and opportunities for elasticity
of ML applications, we designed and implemented Litz1,
an elastic framework for distributed ML that provides a
programming model supporting stateful workers, model
scheduling and relaxed consistency.

Litz enables low-overhead elasticity for high-performance
ML applications. When physical machines are added to
or removed from an active job, state and computation are
automatically re-balanced across the new set of available
machines without active participation by the application.

1Meant to evoke the strings of a harp, sounding out as many or as few.
Litz is short for “Wurlitzer”, a well-known harp maker.

Litz’s programming model can express key distributed ML
techniques such as stateful workers, model scheduling and
relaxed consistency, allowing high-performance ML applica-
tions to be implemented. Furthermore, a cluster job scheduler
can leverage Litz’s elasticity to achieve faster job completion
under priority scheduling, and optimize resource allocation
by exploiting inherent resource variability of ML algorithms.

Our main contributions are:

1. Event-driven Programming Model for ML: Litz
exposes an event-driven programming model that
cleanly separates applications from the physical
cluster they execute on, enabling stateful workers
and allowing the framework to transparently manage
application state and computation during elastic events.
Computation is decomposed into micro-tasks which
have shared access to a distributed parameter server.

2. Task-driven Consistency Model for ML: Micro-
tasks can be scheduled according to dependencies
between them, allowing the application to perform
model scheduling. Access to the parameter server
is controlled by a consistency model in which a
micro-task always observes all updates made by
its dependencies, while having intentionally weak
guarantees between independent micro-tasks.

3. Optimized Elastic Execution System: Litz’s exe-
cution system transparently re-balances workload
during scaling events without active participation
from the application. It exploits Litz’s programming
and consistency models to implement optimizations
that reduce system overhead, allowing applications
using Litz to be as efficient as those using non-elastic
execution systems.

The rest of this paper is organized as follows. In Sec. 2,
we review ML algorithm properties and opportunities for
elasticity, while Sec. 3 and Sec. 4 describes the Litz design
and optimizations. In Sec. 5, we evaluate the effectiveness
of Litz’s optimizations in the distributed elastic setting, as
well as its performance versus two other ML frameworks
that are specialized to certain ML optimization techniques.
Sec. 6 reviews related work, and Sec. 7 concludes the paper
with a discussion towards future work.

2 Background
While ML algorithms come in many forms (e.g. matrix fac-
torization, topic models, factorization machines, deep neural
networks), nearly all of them share the following common-
alities: (1) they possess a loss or objective function L (A,D),
defined over a vector (or matrix) of model parameters A and
collection of input data D, and which measures how well the
model parameters A fit the data D; (2) their goal is to find
a value of A that maximizes (or alternatively, minimizes) the
objective L (A,D), via an iterative-convergent procedure
that repeatedly executes a set of update equations, which
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gradually move A towards an optimal value (i.e. hill-
climbing). These update equations follow the generic form

A(t)=A(t−1)+∆(A(t−1),D), (1)

where A(t) is the vector (or matrix) of model parameters at
iteration t, and ∆() is a function that computes updates to A
using the previous value A(t−1) and the input data D. The re-
mainder of this section provides detailed background on spe-
cific properties of ML programs, and then presents two pop-
ular ML applications (Multinomial Logistic Regression and
Latent Dirichlet Allocation) which we shall use as examples
throughout this paper and as the subjects of our evaluation.

2.1 Data-parallelism and Parameter Server
Arising from the iid (independent and identically distributed)
assumption on input data, the update function ∆ can often
be decomposed as

∆(A,D)=
P

∑
i=1

∆i(A,Di), (2)

where D1, ... ,DP partition the input data D and each ∆i
computes a partial update using Di which, when aggregated,
form the final update ∆. This allows each update to be
calculated in a data-parallel fashion with input data and
update calculations distributed across a cluster of workers.
Parameter Server: Eq. 2 shows that the model parameters
A are used by the calculations of every partial update ∆i. In a
data-parallel setting it is natural to place the model parameters
in a shared location accessible by every machine, known as
a parameter server. Typically, implementations of this archi-
tecture consists of two types of nodes: 1) worker nodes which
partition the input data and calculate partial updates and 2)
parameter server nodes which partition the model parameters
and aggregate/apply the partial updates sent by worker nodes.
The parameter server architecture has proven to be a near-
essential component of efficient distributed ML and is used
in numerous applications and frameworks [50, 18, 36, 28].
Stateful Workers: Even though the model term A appears in
the calculations of each partial update, not all of it is necessar-
ily used. In particular, there may be parts of the model which
are only used when processing a single partition Di of the in-
put data. A large class of examples includes non-parametric
models, whose model structures are not fixed but instead
depends on the input data itself, typically resulting in model
parameters being associated with each entry in the input data.
In such applications, it is preferable to co-locate parts of the
model on worker nodes with a particular partition of input
data so they can be accessed and updated locally rather than
across a network. This optimization is especially essential
when the input data is large and accesses to such associated
model parameters far outnumber accesses to shared model
parameters. It also means that workers are stateful, and an
elastic ML system that supports this optimization needs to
preserve worker state during elastic resource re-allocation.

2.2 Error Tolerance & Relaxed Consistency
ML algorithms have several well-established and unique
properties, including error-tolerance: even if a perturbation
or noise ε is added to the model parameters in every iteration,
i.e. A(t)=A(t−1)+∆(A(t−1),D)+ε, the ML algorithm will
still converge correctly provided that ε is limited or bounded.
Bounded Staleness Consistency: An important application
of error tolerance is bounded staleness consistency mod-
els [28, 17, 13], which allow stale model parameters to be
used in update computations, i.e. A(t)=A(t−1)+∆(A(t−s),D),
where 1≤s≤k for small values of k. ML algorithms that use
such consistency models are able to (1) execute in a partially
asynchronous manner without sacrificing correctness, thus
mitigating the effect of stragglers or slow workers [16, 25];
and (2) reduce the effect of network bottlenecks caused by
synchronization by allowing cached parameter values to
be used. Stale-Synchronous Parallel (SSP) [28] is such a
consistency model, under which a set of distributed workers
may read cached values from a shared parameter server as
long as their staleness do not exceed a fixed limit.
Staleness-aware ML Algorithms: Beyond simply apply-
ing bounded staleness consistency to existing algorithms,
the ML community has developed new staleness-aware
algorithms [39, 58, 55, 12, 29, 10, 37] which modify each
update ∆() according to the staleness s that it experiences.
The modifications usually take the form of a scaling factor
∆()← c∆(), which are computationally light-weight and
do not create new bottlenecks. In the presence of staleness,
these algorithms converge up to an order of magnitude faster
than their non-staleness-aware counterparts.

2.3 Dependencies and Model Scheduling
Another key property of ML algorithms is the presence of im-
plicit dependency structures: supposing A1 and A2 are differ-
ent elements of A, then updating A1 before A2 does not neces-
sarily yield the same result as updating A2 before A1; whether
this happens or not depends on the algebraic form of L () and
∆(). As a consequence, the convergence rate and thus the run-
ning time of ML algorithms can be greatly improved through
careful scheduling of parallel model parameter updates.
Dependency-aware ML Algorithms: Like the many
existing staleness-aware algorithms that exploit error toler-
ance, there is a rich set of algorithms that use dependency
structures in their models to perform better scheduling of
updates [44, 55, 20, 18, 35, 49, 38]. A typical example is
to partition the model into subsets, where the parameters
inside a subset must be updated sequentially, but multiple
subsets can be updated in parallel. Two parameters A1 and
A2 are placed into the same subset if the strength of their
dependency exceeds a threshold dep(A1,A2)> ε. As with
staleness-aware algorithms, dependency-aware algorithms
converge up to an order of magnitude faster than their
non-dependency-aware counterparts.
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3 Litz Programming Model and API
The main goal and challenge of designing Litz’s pro-
gramming model is striking a balance between being
expressive enough to support the wide variety of proven
techniques in distributed ML, while exposing enough
structure in the application that the underlying execution
system can take control under elastic conditions. Guided
by the insights presented in Sec. 2, we describe how Litz’s
programming model naturally arises from the properties of
ML applications, and how it enables an efficient and elastic
run-time implementation. For reference, a detailed summary
of Litz’s API can be found in Table 1.
Input Data Over-Partitioning Across Executors: Eq. 2
shows that the input data and update calculations of ML
applications can be partitioned and distributed across a
number of workers, but it does not specify any particular
partitioning scheme, nor does it require the number of
partitions to be equal to the number of physical machines.
Instead of directly assigning input data, Litz first distributes
it across a set of logical executors, which are in turn mapped
to physical machines. Elasticity is enabled by allocating
more executors than physical machines and migrating excess
executors to other machines as they become available. This
separation also lets Litz support stateful workers by allowing
executor state to be defined and mutated by the application
while being treated as a black box by the run-time system.
Micro-Tasks and Parameter Server: Update calculations
are decomposed into short-lived (typically shorter than 1 sec-
ond) units of computation called micro-tasks, each of which
calculates a partial update using the input data on a single
executor. At the end of each micro-task, control is yielded
back to the run-time system, exposing frequent opportunities
for executors to be migrated. During its execution, a micro-
task is granted read/update access to a global parameter
server via a key-value interface (PSGet/PSUpdate in
Table 1) and applies partial updates to model parameters by
modifying application state in the executor and/or updating
globally-shared values in the parameter server.
Model Scheduling and Relaxed Consistency: Litz enables
both model scheduling and relaxed consistency using
application-defined dependencies between micro-tasks. If
micro-task A is a dependency of micro-task B, then (1) B
is executed before A and (2) B observes all updates made
by A. This strict ordering and consistency guarantee lets
the application perform model scheduling by defining an
ordering for when certain updates are calculated and applied.
On the other hand, if neither A nor B is a dependency of the
other, then they may be executed in any order or in parallel,
and may observe none, some, or all of the updates made
by the other. This critical piece of non-determinism lets the
application exploit relaxed consistency models by allowing
the run-time system to cache and use stale values from the
parameter server between independent micro-tasks.
Micro-Task Dispatch and Completion: A common way

to specify dependencies between tasks is through a directed
”dependency” graph in which each vertex corresponds to a
micro-task, and an arc from vertex A to vertex B means task
A is a dependency of task B. However, due to a potentially
large number of micro-tasks, explicitly specifying such
a graph up-front may incur significant overhead. Instead,
each Litz application defines a driver which dynamically
dispatches micro-tasks during run-time via the Dispatch-
Task method. When a micro-task completes, Litz invokes
the HandleTaskCompletion method on the driver,
which can then dispatch any additional micro-tasks.

Without an explicit dependency graph, Litz needs an
alternative way to decide when a micro-task should be able
to observe another micro-task’s updates. Otherwise, its
execution system does not have enough information to know
when it is safe for a micro-task to use cached parameter val-
ues, thus giving up a significant opportunity for performance
optimization. To overcome this issue, Litz uses the sequence
of micro-task dispatch and completion events to infer causal
relationships between micro-tasks, which can then be used
to generate the dependencies needed to implement its cache
coherence protocol. According to the following two cases:

1. If micro-task B is dispatched before being informed
of the completion of micro-task A, then Litz infers that
the completion of A did not cause the dispatch of B.
A is not a dependency of B, and B may observe some,
all, or none of the updates made by A.

2. If micro-task B is dispatched after being informed of the
completion of micro-task A, then Litz infers that A may
have caused the dispatch of B. A may be a dependency
of B, and B will observe all updates made by A.

This consistency model is similar to Causal Memory [11],
in which causally related read/write operations are observed
in the same order by all nodes. We discuss how Litz’s
consistency model and its cache coherence protocol can be
implemented efficiently in Sec. 4.
4 Litz Implementation and Optimizations
Litz is implemented in approximately 6500 lines of C++
code using the ZeroMQ [8] library for low latency commu-
nication and Boost’s Context [2] library for low overhead
context-switching between micro-tasks. The run-time system
is comprised of a single master thread along with a collection
of worker threads and server threads, as shown in Fig. 1.
The application’s driver exists in the master thread and its
executors exist in the worker threads. The key/value pairs
comprising the parameter server are distributed across a set
of logical PSshards stored in the server threads. Additional
worker and server threads may join at any time during the
computation, and the run-time system can re-distribute its
load to make use of them. They may also gracefully leave
the computation after signaling to the master thread and
allowing their load to be transferred to other threads.

The master thread coordinates the execution of the
application. First, it obtains micro-tasks from the driver
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Method Name Part Of Defined By Description
DispatchInitialTasks() Driver Application Invoked by the framework upon start-up to dispatch the first set of micro-tasks.

HandleTaskCompletion(result) Driver Application Invoked by the framework when a micro-task completes so that the driver can dispatch
a new set of micro-tasks.

DispatchTask(executor,args) Driver Framework Invoked by the application to dispatch a micro-task to the specified executor.
RunTask(args) Executor Application Invoked by the framework to perform a micro-task on the executor.

SignalTaskCompletion(result) Executor Framework Invoked by the application to indicate the completion of a micro-task.
PSGet(key) Executor Framework Returns a specified value in the parameter server.

PSUpdate(key,update) Executor Framework Applies an incremental update to a specified value in the parameter server.

Table 1: The programming interface for Litz, an application should define DispatchInitialTasks and HandleTaskComple-
tion on the driver, as well as RunTask on the executor.

Figure 1: High-level architecture of Litz. The driver in the master
thread dispatches micro-tasks to be performed by executors on the
worker threads. Executors can read and update the global model
parameters distributed across PSshards on the server threads.

by initially invoking DispatchInitialTasks and
then continuously invoking HandleTaskCompletion,
sending them to worker threads to be executed. Second, the
master thread maintains the dynamic mappings between ex-
ecutors and worker threads, as well as between PSshards and
server threads. When worker or server threads join or leave
the computation, it initiates load re-distribution by sending
commands to move executors between worker threads or
PSshards between server threads. Third, the master thread
periodically triggers a consistent checkpoint to be taken of
the entire application state, and automatically restores it when
a failure is detected. Each thread registers with an external
coordination service such as ZooKeeper [31] or etcd [4] in
order to determine cluster membership and detect failures.
In order to transfer and checkpoint the driver and executors,
Litz requires the application to provide serialization and
de-serialization code. The programming burden on the
developer is low since (1) it does not actively participate
in elasticity and checkpointing, but simply invoked by the
execution system when needed, and (2) third-party libraries
can be used to reduce programming overhead [3].

Worker Thread Elasticity: Each worker thread maintains
the state of and runs the micro-tasks for a subset of all
executors. After any worker threads join the active compu-

tation, executors are moved to them from the existing worker
threads (scaling out). Similarly, before any worker threads
leave the active computation, executors are moved from them
to the remaining worker threads (scaling in).When an execu-
tor needs to be moved, the worker thread first finishes any of
its ongoing micro-tasks for that executor, buffering any other
pending micro-tasks for that executor. The worker thread
then sends the executor’s state and its queue of buffered
micro-tasks over the network to the receiving worker thread.

The transfer of the executor’s input data is treated
differently in the scale-in and scale-out cases. When scaling
in, Litz aims to free the requested resources as quickly as pos-
sible. The input data is discarded on the originating worker
thread to avoid incurring extra network transfer time, and
re-loaded on the target worker thread from shared storage.
When scaling out, Litz aims to make use of the new worker
thread as quickly as possible. The input data is sent directly
from the memory of the originating worker thread to avoid
incurring extra disk read time on the target worker thread.
Parameter Server Elasticity: Similar to worker threads
and executors, each server thread stores and handles the re-
quests and updates for a subset of all PSshards, which are re-
distributed before scaling in and after scaling out. However,
since requests and updates are continuously being sent to
each PSshard and can originate from any executor, their trans-
fer requires a special care. In particular, a worker thread may
send requests or updates to a server thread that no longer con-
tains the target PSshard, which can occur if the PSshard has
been moved but the worker thread has not yet been notified.

A naı̈ve approach is to stop all micro-tasks on every
executor, then perform the transfer, then notify all worker
threads of the change, and finally resume execution. This
method guarantees that requests and updates are always sent
to server threads that contain the target PSshard, but incurs
high overhead due to suspending the entire application.
Instead, the server threads perform request and update
forwarding, and executors are never blocked from sending a
parameter request or update. When a server thread receives a
message for a PSshard it no longer contains, it forwards the
message to the server thread it last transferred the PSshard
to. Forwarding can occur multiple times until the target
PSshard is found, the request/update is performed, and the
response is sent back to the originating worker thread. This
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way, execution of micro-tasks can proceed uninterrupted
during parameter server scaling events.
Consistent Checkpoint and Recovery: To achieve fault
tolerance, Litz periodically saves a checkpoint of the appli-
cation to persistent storage, consisting of (1) the state of the
driver, (2) the buffered micro-tasks for each executor, (3) the
state of each executor, and (4) the key-value pairs stored in
each PSshard. Input data is not saved, but is re-loaded from
shared storage during recovery. When a failure is detected
through the external coordination service, Litz triggers an
automatic recovery from the latest checkpoint. The saved
driver, executors, buffered micro-tasks, and parameter server
values are restored, after which normal execution is resumed.
Parameter Cache Synchronization: The consistency
model outlined in Sec. 3 exposes an opportunity for the run-
time system to optimize execution by caching and re-using
values from the parameter server instead of retrieving them
over the network for each access. Specifically, a micro-task
A is allowed to use a cached parameter if its value reflects
all updates made by all micro-tasks that A depends on. This
means that (1) multiple accesses of the same parameter by
micro-task A can use the same cached value, and (2) a micro-
task B whose dependencies are a subset of A’s can use the
same cached values that were used by A. By only using
the sequence of micro-task dispatch and completion events
to infer dependencies, Litz enables both (1) and (2) to be
implemented efficiently. In particular, the dependencies of
micro-task B are a subset of the dependencies of micro-task
A if the total number of micro-tasks that have been completed
when B was dispatched is at most the total number of micro-
tasks that have been completed when A was dispatched.

To implement this cache coherence protocol, the master
thread maintains a single monotonically increasing version
number that is incremented each time HandleTaskCom-
pletion is invoked. Whenever the driver dispatches a
micro-task, the master thread tags the micro-task with the
version number at that time. After micro-task A retrieves
a fresh value from the parameter server, it caches the value
and tags it with A’s version. When micro-task B wants to
access the same parameter, it first checks if its own version
is less than or equal to the version of the cached value. If
so, then the cached value is used; otherwise a fresh copy
of the parameter is retrieved from the parameter server and
tagged with B’s version. A cache exists on each Litz process
running at least one worker thread, so that it can be shared
between different worker threads in the same process.

This cache coherence protocol allows Litz to automatically
take advantage of parameter caching for applications that use
bounded staleness. For example, to implement SSP (Sec. 2.2)
with staleness s, all micro-tasks for iteration i are dispatched
when the last micro-task for iteration i−s−1 is completed.
Thus, every micro-task for the same iteration has the same
version and share cached parameter values with each other.
Since the micro-tasks for iteration i are dispatched before

those for iterations between i−s and i−1 finish (when s≥1),
the values they retrieve from the parameter server may not
reflect all updates made in those prior iterations, allowing
staleness in the parameter values being accessed.
Parameter Update Aggregation: Updates for the same
parameter value may be generated many times by different
micro-tasks. Since the parameter updates in ML applications
are incremental and almost always additive, they can be
aggregated locally before sending to the parameter server in
order to reduce network usage. To facilitate the aggregation
of updates, each Litz process contains an update log
which maps parameter keys to locally aggregated updates.
Whenever a micro-task invokes PSUpdate, the update is
first aggregated with the corresponding entry in the update
log, or is inserted into the update log if the corresponding
entry does not exist. Therefore, an update sent to the
parameter server can be a combination of many updates
generated by different micro-tasks on the same Litz process.

In order to maximize the number of updates that are
locally aggregated before being sent over the network, the
results of micro-tasks are not immediately returned to the
master thread after they are completed. Doing this allows the
updates from many more micro-tasks to be sent in aggregated
form to the server threads, reducing total network usage. The
update log is periodically flushed by sending all updates it
contains to the server threads to be applied. After each flush,
all buffered micro-task results are returned to the master
thread, which then informs the driver of their completion.
The period of flushing can be carefully tuned, but we find
that the simple strategy of flushing only when all micro-tasks
on a worker thread are finished works well in practice.
Co-operative Multitasking: Litz employs co-operative
multitasking implemented using co-routines [2]. When
one task is blocked on an invocation of PSGet waiting
for a value to be returned from a server thread, the worker
thread will switch to executing another micro-task that
is not blocked so that useful work is still performed.
Each micro-task is executed within a co-routine so that
switching between them can be done with low-latency,
entirely in user-space. Using co-routines provides the
benefit of overlapping communication with computation,
while retaining a simple-to-use, synchronous interface for
accessing the parameter server from micro-tasks.
5 Evaluation
We start by evaluating Litz’s elasticity mechanism and
demonstrate its efficacy along several directions. First, with
its parameter caching, update aggregation, and co-operative
multi-tasking, Litz is able to sustain increasing numbers of
executors and micro-tasks with minimal performance impact.
Second, a running Litz application is able to efficiently make
use of additional nodes allocated to it, accelerating its time
to completion. Third, a running Litz application is able
to release its nodes on request, quickly freeing them to be
allocated to another job.
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Next, we discuss how Litz’s elasticity can be leveraged by
a cluster job scheduler to (1) reduce the completion time of
an ML job that yields resources to a higher-priority job, and
(2) improve resource allocation by exploiting the inherent
decreasing memory usage of many ML algorithms.

Lastly, we evaluate Litz’s performance when executing
diverse applications which make use of stateful workers,
model scheduling, and relaxed consistency. With the
multinomial logistic regression (MLR) application, we show
that our implementation on Litz is faster than the built-in
implementation in Bösen [50], a non-elastic ML system for
data-parallel SSP workloads. With the latent Dirichlet allo-
cation (LDA) application, we show that our implementation
on Litz is competitive with the built-in implementation in
Strads [33], a non-elastic ML system for model scheduling.
Furthermore, to evaluate Litz for the special case of deep
learning, we implement a deep feed-forward neural network
and compare its performance with Tensorflow [9].

ML Applications: MLR and LDA are popular ML applica-
tions used for multi-class classification and topic modeling,
respectively. The goal of our evaluation is to show that
Litz enables elasticity for these applications at little cost to
performance when compared with state-of-the-art non-elastic
systems. Thus, we closely follow their implementations in
Bösen and Strads, using SGD and the SSP relaxed consis-
tency model for MLR, and block-scheduled Gibbs sampling
with stateful workers for LDA. For details of these imple-
mentations of MLR and LDA, we refer readers to their de-
scriptions in Wei et al. [50] and Kim et al. [33], respectively.

Cluster Setup: Unless otherwise mentioned, the exper-
iments described in this section are conducted on nodes
with the following specifications: 16 cores with 2 hardware
threads each (Intel Xeon E5-2698Bv3), 64GiB DDR4-2133
memory, 40GbE NIC (Mellanox MCX314A-BCCT),
Ubuntu 16.04 Linux kernel 4.4. The nodes are connected
with each other through a 40GbE switch (Cisco Nexus
3264-Q), and access data stored on an NFS cluster connected
to the same switch. Each machine runs one Litz process
which contains both worker threads and server threads; the
master thread is co-located with one of these processes.

Input Datasets: Unless otherwise mentioned, we run MLR
on the full ImageNet ILSVRC2012 dataset [43] consisting of
1.2M images labeled using 1000 different object categories.
The dataset is pre-processed using the LLC feature extraction
algorithm [48], producing 21K features for each image,
resulting in a post-processed dataset size of 81GB. We
run LDA on a subsample of the ClueWeb12 dataset [19]
consisting of 50M English web pages. The dataset is
pre-processed by removing stop words and words that rarely
occur, resulting in a post-processed dataset with 10B tokens,
2M distinct words, and total size of 88GB.
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Figure 2: Average time per epoch for MLR and LDA when running
with various numbers of executors per worker thread. In both cases
the overhead of increasing the number of executors is insignificant.
We define one epoch as performing a single pass over all input data.

5.1 Elasticity Experiments
Before discussing elastic scaling, we evaluate Litz’s
performance characteristics over increasing numbers
of executors. The worker threads achieve elasticity by
re-distributing executors amongst themselves when their
numbers change, and by over-partitioning the application’s
state and computation across larger numbers of executors,
Litz is able to scale out to larger numbers of physical cores
and achieve a more balanced work assignment. Thus it is
critical for Litz applications to still perform well in such
configurations. We run the MLR application on 4 nodes and
the LDA application on 12 nodes, varying the number of
executors from 1 to 16 per worker thread. Fig. 2 shows how
the throughput of each application changes when the number
of executors increases. Using a single executor per worker
thread as the baseline, the execution time for MLR does not
noticeably change when using 4× the number of executors,
and gradually increases to 1.11× the baseline when using
16× the number of executors. For LDA, the execution time
initially decreases to 0.94× the baseline when using 2×
the number of executors, and thereafter gradually increases
to 1.23× the baseline when using 16× the number of
executors. We believe the overhead introduced by increasing
the number of executors is quite an acceptable trade-off for
elasticity and can still be reduced with further optimizations.

5.1.1 Elastic Scale Out

As jobs finish in a multi-tenant setting and previously used
resources are freed up, additional allocations can be made to
a currently running job. It is therefore important for the job
to be capable of effectively using the additional resources
to speed up its execution. In this section, we evaluate
Litz’s performance characteristics when scaling a running
application out to a larger number of physical nodes. We
run experiments scaling MLR jobs from 4 to 8 nodes, and
LDA jobs from 12 to 24 nodes. Each node runs both worker
threads and server threads, so both executors and PSshards
are rebalanced during scaling. The experiments for LDA in

USENIX Association 2018 USENIX Annual Technical Conference    637



 0

 2

 4

 6

 8

 0  20  40  60  80  100  120  140  160

C
ro

ss
−

E
n
tr

o
p
y

Time (min)

Static 4 node execution
Static 8 node execution

Scale−out execution from 4 to 8 nodes
Scale−in execution from 8 to 4 nodes
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Figure 4: LDA execution on Litz with 12 nodes, with 24 nodes,
and with an elastic execution that scales out from 12 nodes to 24
nodes. For the scale-out execution, the nodes are added at about
55 minutes into execution. For the scale-in execution, the nodes
are removed at about 33 minutes into execution.

this section were performed using m4.4xlarge instances on
AWS EC2, each with 16 vCPUs and 64GiB of memory.

To evaluate the speed-up achieved, we compare our scale-
out experiments with static executions of the applications
using both the pre-scaling number of nodes and the post-
scaling number of nodes. Fig. 3 shows the convergence plots
for MLR, 4 new nodes added after ≈40min of execution.
The static 4 node execution completes in ≈157min while
the scale-out execution completes in≈122min, resulting in
a 22% shorter total run-time. Fig. 4 shows the convergence
plots for LDA, 12 new nodes added after ≈55min of
execution. The static 12 node execution completes in
≈183min while the scale-out execution completes in
≈134min, resulting in a 27% shorter total run-time.

5.1.2 Ideal Scale Out

Next, we evaluate the amount of room for improvement
still achievable over Litz’s current scale-out performance.
Following a similar construction as Pundir et al. [41], we
define and compare with a simple ideal scale-out execution
time which intuitively measures the total run-time of a job
that instantly scales out and adapts to use the additional
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Figure 5: Static, scale-out, and ideal scale-out (See Sec. 5.1.1)
execution times for MLR and LDA implemented on Litz. We scale
out MLR from 4 nodes to 8 nodes, and LDA from 12 nodes to 24
nodes. Each experiment was performed several times, error bars
are omitted due to their negligible size.

nodes. For example, consider a job that scales out from 4
to 8 nodes after completing 30% of its iterations, its ideal
scale-out execution time is the sum of the time at which the
scale-out was triggered and the time it takes a static 8 node
execution to run the last 70% of its iterations.

Fig. 5 compares the static pre-scaling, static post-scaling,
scaling, and ideal execution times for both MLR and LDA.
For MLR, the static 8 node execution completes in≈107min,
giving an ideal scale-out execution time of≈121min. The
actual scale-out execution time is≈122min, indicating a less
than 1% difference from the ideal. Similarly for LDA, the
static 24 node execution completes in≈101min, giving an
ideal scale-out execution time of≈127min. The actual scale-
out execution time is≈134min, indicating a 5% difference
from the ideal. LDA’s higher overhead stems from the large
worker state that is inherent to the algorithm, which need to
be serialized and sent over the network before the transferred
executors can be resumed. We believe this overhead can be re-
duced further through careful optimization of the serialization
process, by minimizing the number of times data is copied
in memory and compressing the data sent over the network.

5.1.3 Elastic Scale In

As new and higher-priority jobs are submitted in a multi-
tenant environment, the resource allocation for a currently
running job may be reduced and given to another job. In this
section, we evaluate Litz’s scale-in performance based on two
key factors. First, we show that Litz applications continue to
make progress after scaling in, with performance comparable
to the static execution on the fewer nodes. Second, we
show that running Litz jobs can release resources with low
latency, quickly transferring executors and PSshards away
from requested nodes so that they can be used by another
job. We measure the time between when the scale-in event
is triggered and when the last Litz process running on a
requested node exits. This represents the time an external job
scheduler needs to wait before all requested resources are free
to be used by another job. As with the scale-out experiments,
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these experiments were run using m4.4xlarge EC2 instances.
We run each experiment at least three times and report the

average. Fig. 3 shows the convergence plots for MLR with
the scale-in event. We start the job with 8 nodes, and remove
4 nodes ≈30 minutes into execution. The convergence
plot closely follows the plot of 8-node static execution until
the scale-in event, and the plot of 4-node static execution
after that. Similarly, Fig. 4 shows the convergence plots
for LDA with the scale-in event. We start the job with 24
nodes, and remove nodes≈33 minutes into execution. The
convergence plot closely follows the plot of 24-node static
execution until the scale-in event, and the plot of 12-node
static execution after that.

For MLR, the scale-in event takese 2.5 seconds on
average, while for LDA the average is 43s. The low latency
for MLR is due to a combination of its stateless workers and
Litz’s default behavior of discarding input data upon scaling
in. As a result, the only state that needs to be transferred are
the PSshards residing on the server threads of each requested
node, which total≈10MiB when split between 8 nodes. The
executors in LDA, on the other hand, are stateful and contain
a portion of its model parameters. When distributed across
all nodes, each node contains≈4.6GiB of executor state that
need to be transferred away. A benchmark of cluster network
showed that it can sustain a bandwidth of 2.0Gbps between
pairs of machines, meaning that the 4.6GiB of LDA executor
state can ideally be transfered within 20s. Nevertheless,
the current transfer times are reasonable for an external
scheduler to wait for. For comparison, even a pre-emptive
environment like the AWS Spot Market gives users a
warning time of 120s before forcefully evicting their nodes.

5.2 Elastic Scheduling
Elasticity has many potential applications in both the cloud
and data-center. In the cloud, elasticity can be leveraged to
take advantage of transient nodes in spot markets [26] and
drastically reduce the monetary cost of renting computation
resources. In the data-center, a cluster-wide scheduler can
optimize resource utilization by adaptively consolidating
applications into fewer physical machines [30].

We present two specific instances where the elasticity
enabled by Litz can benefit job scheduling. First, when
a high-priority job needs to be scheduled, an elastic ML
application can avoid preemption by cooperatively releasing
resources. Second, the inherent resource variability of many
ML applications allow Litz to automatically release memory
throughout the lifetime of an ML job, freeing resources to
be used by other jobs. Serious design and implementation
of such a scheduler and its policies is deserving of thorough
investigation, which we leave for future work.

5.2.1 Priority Scheduling

In multi-tenant computing environments, users frequently
submit jobs (both ML and non-ML) which can have
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Figure 6: Priority scheduling experiments as described in
Sec. 5.2.1. The graphs show the resource allocation over time in the
cases of (a) LDA job which is uninterrupted, (b) LDA job which
is killed when a higher-priority job is submitted, and (c) LDA job
which elastically scales in when a higher-priority job is scheduled.
We ran each experiment three times and saw negligible variation
between each instance.

differing priorities. To meet the stricter SLA requirements
of high-priority jobs, a scheduler must sometimes re-allocate
some resources used by a lower-priority job. If the
lower-priority job is inelastic, then it may be killed or
suspended, leaving the rest of its resources under-utilized
and delaying its completion time. For long-running jobs
such as training ML models, their resources may need to
be re-allocated several times during their lifetimes.

However, with the elasticity mechanism enabled by Litz,
a long-running ML application can simply scale-in to use a
fewer amount of resources, while the higher-priority job uses
the released resources. After the higher-priority job com-
pletes, it can scale-out again, uninterrupted. We implemented
this priority scheduling policy on a cluster of 16 m4.4xlarge
nodes, and launched an LDA job on all 16 machines that
runs for≈100min if left uninterrupted (Fig. 6(a)). A higher-
priority job is launched 60min into its runtime, requiring 4
nodes for 30min. Without elasticity, the LDA job is killed and
re-started after the higher-priority job ends, requiring a total
of≈190min to complete (Fig. 6(b)). However, by leveraging
elasticity to scale-in the LDA job, it can continue to run using
12 nodes and completes in≈120min (Fig. 6(c)). At the same
time, waiting for LDA to scale-in only increased the comple-
tion time of the high-priority job from 30min to 31min.

5.2.2 ML Resource Variability

The iterative-convergent nature of ML algorithms presents
opportunities for resource scheduling not usually found in
other computing tasks. One advantage of elasticity in an
ML framework is that in addition to scaling in and out based
on the directions from a cluster scheduler, an elastic ML
framework can leverage resource variability that is inherent
in ML applications to autonomously give up resources.
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Figure 8: Multinomial Logistic Regression (MLR) running on
8 nodes using 25% of the ImageNet ILSVRC2012 dataset. Litz
achieves convergence about 8× faster than Bösen.

In particular, many ML algorithms, including LDA, may
find their model parameters becoming sparse (ie. mostly
zeros) as they approach convergence [33], allowing memory
usage to be reduced by using a more memory-efficient
storage format (ie. sparse vector). Although LDA running
on Strads has a similar decreasing memory usage, the lack
of elasticity in Strads does not allow it to leverage this
phenomenon for efficient scheduling.

Litz, on the other hand, can detect variability in the
resource usage and reduce the number of worker and server
threads accordingly. Fig. 7 shows the breakdown of memory
usage during LDA. Server threads that store the model start
with 6 GiB and drop to around 1 GiB by the 10th epoch,
suggesting that the server threads can be reduced by 80%.
Similarly, the worker threads start with 370 GiB of memory
and reduce to about 300 GiB by the 10th epoch, suggesting
that their count can be reduced by 20% and respective
resources can be released. This dynamic resource usage
of ML jobs, when exposed through an elastic framework
like Litz, can inform the policies of a cluster scheduler that
allocates resources between many jobs.

5.3 Performance Experiments
We compare our Litz implementations of MLR and LDA
with those built-in with the open-source versions of Bösen
and Strads, respectively. All three systems along with their
applications are written using C++, and to further ensure
fairness, we compiled all three using the -O2 -g flags
and linked with the TCMalloc [21] memory allocator. These
settings are the default for both Bösen and Strads.
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Figure 9: Latent Dirichlet Allocation (LDA) training algorithm
running on Strads and Litz with the subsampled ClueWeb12 dataset.
Litz completes all 34 epochs roughly 6% slower than Strads, but
achieves a better objective value.

MLR Comparison with Bösen: We compare Litz with
Bösen running the MLR application on 25% of the ImageNet
ILSVRC2012 dataset2 using 8 nodes. The open-source
version of Bösen differs from the system described
by Wei et. al. [50] in that it does not implement early
communication nor update prioritization, but is otherwise
the same and fully supports SSP execution. Both MLR
instances were configured to use the same SSP staleness
bound of 2 as well as the same SGD tuning parameters such
as step size and minibatch size. As Fig. 8 shows, our MLR
implementation on Litz converges about 8× faster than that
on Bösen. Our profiling of Bösen and cursory examination
of its code shows that it does not fully utilize CPUs due to
lock contention. We believe the wide gap in performance is
not due to fundamental architectural reasons, and that Bösen
should be able to narrow the gap on such SSP applications
given a more optimized implementation.
LDA Comparison with Strads: We next compare Litz with
Strads running the LDA application using 12 nodes. The
open-source version of Strads is the same implementation
used in Kim et. al. [33]. Both LDA instances were
configured to use the same number of block partitions as
well as the same LDA hyper-parameters α and β . We
ran each application until 34 epochs have been completed,
where an epoch is equivalent to a full pass over the input
data. As Fig. 9 shows, our LDA implementation on Litz
completes all epochs roughly 6% slower than that on Strads.
However, it also achieves a better objective value (measured
in log-likelihood), resulting in faster convergence than Strads
overall. Even though more investigation into the per-epoch
convergence difference is needed, we can attribute the
throughput difference to the optimizations built into Strads,
which employs a ring-topology specifically optimized for the
block-partitioned model scheduling strategy used by LDA.
Deep Neural Networks (DNNs): To evaluate Litz with
DNNs, we implemented a particular deep learning model
called a deep feed-forward network [22], which forms the

2With the full dataset, the Bösen baseline does not complete within a
reasonable amount of time.
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basis of many deep learning applications. We used a network
with two hidden layers with ReLU activation and one output
layer with Softmax activation. We trained this model using
both Litz and TensorFlow [9] on 4 m4.4xlarge EC2 instances,
with the CIFAR-10 [34] dataset. This dataset consists of
60K images, which are pre-processed into vectors of≈98K
features, labeled using 10 classes. Both systems used the
same data-parallel SGD algorithm, and were configured with
the same tuning parameters such as a learning rate of 0.0001
and mini-batch size of 64. The training using Tensorflow
progressed at a pace of ≈79s per batch, while the training
using Litz progressed 3.4× faster at a pace of≈23s per batch.

6 Discussion and Related Work
Recently, there has been a growing interest in utilizing tran-
sient nodes in the cloud spot markets for big-data analytics.
The systems developed for this setting try to execute jobs
with the performance of on-demand nodes at a significantly
cheaper cost, using transient nodes. The challenge for these
systems is to deal with the bulk revocations efficiently by
choosing right fault-tolerance mechanism. For example, Spo-
tOn [47] dynamically determines the fault-tolerance mech-
anism that best balances the risk of revocation with the over-
head of the mechanism. While SpotOn applies these fault-
tolerance mechanisms at the systems level—using virtual
machines or containers—Flint [46] argues that application-
aware approach is preferable and can improve efficiency by
adapting the fault-tolerance policy. Flint, which is based on
Spark, proposes automated and selective checkpointing poli-
cies for RDDs, to bound the time Spark spends recomputing
lost in-memory data after a bulk revocation of transient
nodes. TR-Spark [54] argues that RDDs—the checkpointing
unit in Spark—are too coarse-grained, making Spark unfit to
run on transient resources, and takes Flint’s approach further
by providing fine-grained task-level checkpointing.

Unlike Flint and TR-Spark that adapt a general-purpose
Spark framework to achieve cost-effective analytics with
transient resources, Proteus [26] adapts a specialized ML
framework to achieve significantly faster and cheaper
execution, while introducing elasticity optimizations tuned
for the setting. Specifically, Proteus stores the ML model on
parameter servers that run on reliable on-demand nodes, and
makes the workers stateless so that they can be run on tran-
sient node, effectively pushing workers’ states to parameter
servers, along with the model. This is a reasonable approach
for the spot market setting where bulk revocations can take
offline a large number of workers without notice. Although
it works well for applications with small worker state, with
an increasing data and model size, the approach may run into
performance problems due to the communication overhead
between workers and their state stored on the parameter
servers. Litz, on the other hand, keeps the worker state in
the workers and assumes a cooperative cluster scheduler
that will ask the running application to give up nodes and
wait for state to be transferred away. This approach results

in high performance while still providing elasticity.

7 Conclusion and Future Work
We present the design and implementation of Litz, an evo-
lutionary step in the elastic execution of ML applications in
clouds and data-centers. We identify three important classes
of distributed ML techniques—stateful workers, model
scheduling, and relaxed consistency—and designed Litz’s
programming model to collectively support each of them.
By adopting an event-driven API, Litz is able to control
the execution of its applications, transparently migrating
their state and computation between physical machines. Litz
achieves elasticity—the ability to scale out and in based on
changing resource availability—without compromising the
state-of-the-art efficiency of non-elastic ML systems.

Furthermore, we describe the inherent dynamic memory
usage of ML applications. We show that Litz is able to
expose these patterns and significantly decrease its demand
for memory across the lifetimes of ML jobs. Resource vari-
ability during the runtime of large data-analytics jobs is well
known, and many schedulers have been introduced to exploit
this variability for an efficient scheduling of jobs [32, 24, 23].
However, no previous work exists that exploit the specific
resource usage patterns of ML applications. In future work,
we plan to further investigate and identify the resource usage
patterns of distributed ML applications, and then leverage
their resource variability together with the elasticity of Litz
for more efficient scheduling of ML jobs.

Lastly, we identify deep learning and elastic GPU com-
puting as another interesting direction for future work. In
particular, how does the relatively low-level event-driven API
of Litz fit together with the higher-level symbolic program-
ming models of deep learning frameworks like TensorFlow,
MXNet [14], and DyNet [40]? With the current trend towards
using compiler techniques to separate deep learning program-
ming and execution [6, 7], we believe that frameworks like
Litz will play an important role in the elastic and efficient
execution of many future deep learning applications. The
answers to these problems deserve thorough investigation.
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Abstract
Modern cloud computing environments strive to provide
users with fine-grained scheduling and accounting, as well
as seamless scalability. The most recent face to this trend
is the “serverless” model, in which individual functions,
or microservices, are executed on demand. Popular imple-
mentations of this model, however, operate at a relatively
coarse granularity, occupying resources for minutes at a
time and requiring hundreds of milliseconds for a cold
launch. In this paper, we describe a novel design for
providing “functions as a service” (FaaS) that attempts
to be truly micro: cold launch times in microseconds
that enable even finer-grained resource accounting and
support latency-critical applications. Our proposal is
to eschew much of the traditional serverless infrastruc-
ture in favor of language-based isolation. The result is
microsecond-granularity launch latency, andmicrosecond-
scale preemptive scheduling using high-precision timers.

1 Introduction
As the scope and scale of Internet services continues to
grow, system designers have sought platforms that simplify
scaling and deployment. Services that outgrew self-hosted
servers moved to datacenter racks, then eventually to
virtualized cloud hosting environments. However, this
model only partially delivered two related benefits:
1. Pay for only what you use at very fine granularity
2. Scale up rapidly on demand

The VM approach suffered from relatively coarse granu-
larity: Its atomic compute unit of machines were billed at
a minimum of minutes to months. Relatively long startup
times often required system designers to keep some spare
capacity online to handle load spikes.
These shortcomings led cloud providers to introduce

a new model, known as serverless computing, in which
the customer provides only their code, without having to
configure its environment. Such “function as a service”
(FaaS) platforms are now available as AWS Lambda [4],
Google Cloud Functions [10], Azure Functions [18], and
Apache OpenWhisk [5]. These platforms provide a model
in which: (1) user code is invoked whenever some event
occurs (e.g., an HTTP API request), runs to completion,
and nominally stops running (and being billed) after it
completes; and (2) there is no state preserved between
separate invocations of the user code. Property (2) enables
easy auto-scaling of the function as load changes.

Because these services executewithin a cloud provider’s
infrastructure, they benefit from low-latency access to
other cloud services. In fact, acting as an access-control
proxy is a recurring microservice pattern: receive an API
request from a user, validate it, then access a backend
storage service (e.g., S3) using the service’s credentials.

In this paper, we explore a design intended to reduce the
tension between two of the desiderata for cloud functions:
low latency invocation and low cost. Contemporary
invocation techniques exhibit high latency with a large tail;
this is unsuitable for many modern distributed systems
which involve high-fanout communication, sometimes
performing thousands of lookups to handle each user
request. Because user-visible response time often depends
on the tail latency of the slowest chain of dependent
responses [7], shrinking the tail is crucial [11, 24, 16, 12].
Thus we seek to reduce the invocation latency and im-

prove predictability, a goal supported by the impressively
low network latencies available in modern datacenters.
For example, it now takes < 20µs to perform an RPC
between two machines in Microsoft Azure’s virtual ma-
chines [9]. We believe, however, that fully leveraging
this improving network performance will require reducing
microservices’ invocation latencies to the point where the
network is once again the bottleneck.
We further hypothesize—admittedly without much

proof for this chicken-and-egg scenario—that substan-
tially reducing both the latency and cost of running
intermittently-used services will enable new classes and
scales of applications for cloud functions, and in the re-
mainder of this paper, present a design that achieves this.
As Lampson noted, there is power in making systems
“fast rather than general or powerful” [14], because fast
building blocks can be used more widely.

Of course, a microservice is only as fast as the slowest
service it relies on; however, recall that many such services
are offered in the same clouds and datacenters as serverless
platforms. Decreasing network latencies will push these
services to respond faster as well, and new stable storage
technologies such as 3D XPoint (projected to offer sub-
microsecond reads and writes) will further accelerate this
trend by offering lower-latency storage.

In this paper, we propose a restructuring of the serverless
model centered around low-latency: lightweight microser-
vices run in shared processes and are isolated primarily
with language-based compile-time guarantees and fine-
grained preemption.
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Figure 1: Language-based isolation design. The dis-
patcher process uses shared in-memory queues to feed
requests to the worker processes, each of which runs
one user-supplied microservice at a time.

2 Motivation
Our decision to use language-based isolation is based on
two experimental findings: (1) Process-level isolation is
too slow for microsecond-scale user functions. (2) Com-
modity CPUs support task preemption at microsecond
scale. We conducted our experiments on an Intel® Xeon®
E5-2683 v4 server (16 cores, 2.1 GHz) and Linux 4.13.0.1

2.1 Process-level isolation is too slow
We use a single-machine experiment to evaluate the invo-
cation overhead of different isolation mechanisms: Mi-
croservices run on 14 worker CPU cores. Another core
runs a dispatcher process that launches microservices
on the workers. All requests originate at the dispatcher
(which in a full serverless platform would forward from
a cluster scheduler); it schedules ≤14 microservices at a
time, one per worker core, choosing from a pool of 5,000.

To provide a comparison against contemporary system
designs, we use two different isolation mechanisms:
1. Process-based isolation: Each microservice is a

separate process. We expect this approach to exhibit
latency at least as low as the container isolation
common in contemporary serverless deployments.

2. Language-based isolation: Each worker core hosts
a single-threaded worker process that directly exe-
cutes different microservices, one at a time. In this
approach, shown in Figure 1, a worker process runs
a microservice by calling its registered function; we
assume that the microservice function can be isolated
from the worker process with language-based isola-
tion techniques that we discuss in Section 3. The
dispatcher schedules microservices on worker pro-
cesses by sending them requests on a shared memory
queue, which idle worker processes poll.

We use 5,000 copies of a Rust microservice that simply
records a timestamp: latency is measured between when
the dispatcher invokes a microservice and the time that
microservice records. There are two experiment modes:

1Source code for the benchmarks in this paper is available from
https://github.com/efficient/microservices_microbenchmarks.

Microservices Latency (µs) Throughput
Resident? Isolation Median 99% (M invoc/s)

Warm-start Process 8.7 27.3 0.29
Language 1.2 2.0 5.4

Cold-start Process 2845.8 15976.0 –
Language 38.7 42.2 –

Table 1: Microservice invocation performance

Warm-start requests. We first model a situation where
all of themicroservices are already resident on the compute
node. In the case of process-based isolation, the dispatcher
launches all 5,000 microservices at the beginning of
the experiment, but they all block on an IPC call; the
dispatcher then invokes each microservice by waking up
its process using a UDP datagram. In the case of language-
based isolation, the microservices are dynamic libraries
preloaded into the worker processes.
Table 1 shows the latency and throughput of the two

methods. We find that the process-based isolation ap-
proach takes 9 µs and achieves only 300,000 warm mi-
croservice invocations per second. In contrast, language-
based isolation achieves 1.2 µs latency (with a tail of just
2.0 µs) and over 5 million invocations per second.

Considering that the FaRM distributed computing plat-
form achieved mean TATP transaction commit latencies
as low as 19 µs in 2015 [8], a 9 µs microservice invocation
delay represents almost 50% overhead for a microservice
providing a thin API gateway to such a backend. We there-
fore conclude that even in the average case, process-based
isolation is too slow for microsecond-scale scheduling.
Furthermore, IPC overhead limits invocation throughput.

Process-based isolation also has a higher memory foot-
print: loading the 5,000 trivial microservices consumes
2 GiB of memory with the process-based approach, but
only 1.3 GiB with the language-based one. However, this
benefit may reduce as microservices’ code sizes increase.

Cold-start requests. Achieving ideal wakeup times is
possible only when the microservices are already resident,
but the tail latency of the serverless platform depends on
those requests whose microservices must be loaded before
they can be invoked. To assess the difference between
process-based and language-based isolation in this context,
we run the experimentwith the following change: In the for-
mer case, the dispatcher now launches a transient microser-
vice process for each request by fork()/exec()’ing. In
the latter, the dispatcher asks a worker to load a microser-
vice’s dynamic library (and unload it afterward). The
results in Table 1 reveal an order-of-magnitude slip in
the language-based approach’s latency; however, this is
overshadowed by the three orders of magnitude increase
for process-based isolation.
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2.2 Intra-process preemption is fast
In a complete serverless platform, some cluser-level sched-
uler would route incoming requests to individual worker
nodes. Since we run user-provided microservices directly
in worker processes, a rogue long-running microservice
could thwart such scheduling by unexpectedly consuming
the resources of a worker that already had numerous other
requests queued. We hypothesize that, in such situations,
it is better for tail latency to preempt the long microservice
than retarget the waiting jobs to other nodes in real time.
(Only the compute node already assigned a request is
well positioned to know whether that request is being
excessively delayed: whereas other nodes can only tell that
the request hasn’t yet completed, this node alone knows
whether it has been scheduled.) At our scale, this means a
preemption interval up to two orders of magnitude faster
than Linux’s default 4 ms process scheduling quantum.
Fortunately, we find that high-precision event timers

(HPETs) on modern CPUs are sufficient for this task. We
measure the granularity and reliability of these timers
as follows: We install a signal handler and configure
a POSIX timer to trigger it every T µs. Ideally, this
handler would always be called exactly T µs after its last
invocation; we measure the deviation from T over 65,535
iterations. We find that the variance is smaller than 0.5 µs
for T ≥ 3 µs. This shows that intra-process preemption is
fast and reliable enough for our needs.

3 Providing Isolation
Consolidating multiple users’ jobs into a single process
requires addressing security and isolation. We aim to do it
without compromising our ambitious performance goals.

Our guiding philosophy for achieving this is “language-
based isolation with defense in depth.” We draw inspi-
ration from two recently-published systems whose own
demanding performance requirements drove them to per-
form similar coalescing of traditionally independent com-
ponents: NetBricks [19] is a network functions runtime for
providing programmable network capabilities; it is unique
among this class of systems for running third-party net-
work functions in-process rather than in VMs. Tock [15]
is an embedded microkernel whose servers (“capsules”)
form a common compilation unit and communicate using
type-safe function calls. As their primary defense against
untrusted code, both systems leverage Rust [3], a new
type-safe systems programming language.
Rust is a strongly-typed, compiled language that uses

a lightweight runtime similar to C. Unlike many other
modern systems languages, Rust is an attractive choice for
predictable performance because it does not use a garbage
collector. It provides strong memory safety guarantees by
focusing on “zero-cost abstractions” (i.e., those that can
be compiled down to code whose safety is assured without
runtime checks). In particular, safeRust code is guaranteed

to be free of null or dangling pointer dereferences, invalid
variable values (e.g., casts are checked and unions are
tagged), reads from uninitialized memory, mutations of
non-mut data (roughly the equivalent of C’s const), and
data races, among other misbehaviors [22].
We require each microservice to be written in Rust

(although, in the future, it might be possible to support
subsets of other languages by compiling them to safe
Rust), giving us many aspects of the isolation we need. It
is difficult for microservices to crash the worker process,
since most segmentation faults are prevented, and runtime
errors such as integer overflow generate Rust panics that
we can catch. Microservices cannot get references to data
that does not belong to them thanks to the variable and
pointer initialization rules.

Given our performance goals, there is a crucial isolation
aspect that Rust does not provide: there is nothing to stop
users from monopolizing the CPU. Our system, however,
must be preemptive. We are unaware of existing preemp-
tion techniques that work at microsecond scales. Note that
coroutine-like cooperative multitasking approaches (such
as lightweight threads in Go [2] and Erlang [1]) are not
preemptive, so they do not work for us. We briefly discuss
our solution to this in the following section; it depends
on installing a SIGALRM handler and ensuring that trusted
code within the process handles the signal.
Our defense-in-depth comes from using lightweight

operating-system protections to block access to certain
system calls, as well as the proposed mechanisms in
Section 6. Some system calls must be blocked to have any
defense at all; otherwise, the microservice could create
kernel threads (e.g., fork()), create competition between
threads (e.g., nice()), or even terminate the entire worker
(e.g., exit()). Finally, user functions should not have
unmonitored file system access.
We propose to block system calls using Linux’s

seccomp() system call [20]; each worker process should
call this during initialization to limit itself to a whitelisted
set of system calls. Prior to lockdown, the worker process
should install a SIGSYS handler for regaining control from
any microservice that attempts to violate the policy.

4 Providing Preemption
The system must be able to detect and recover from
microservices that, whether maliciously or negligently,
attempt to run for longer than permitted. The two parts of
this problem are (1) regaining control of the CPU and (2)
aborting and cleaning up after the user code.
As proposed in Section 2, regaining control of the

CPU happens when a signal (SIGALRM) from the kernel
transfers control to the worker process’s handler.2 The
handler then checks how long the current microservice

2For defense in depth, the worker process should be prevented from
subsequently modifying this signal-handling configuration.
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Figure 2: Effect of SIGALRM quantum on hashing tput.

has been running and decides whether it should be killed.
(We register the handler using the SA_RESTART flag to
sigaction() so that any interrupted blocking syscalls
are restarted transparently.) However, there remain three
important questions:
For how long should each microservice be allowed to
run? Assume that each core executes one user task at a
time and that all microservice functions are pre-compiled
and resident (warm invocation). We define L to be the
desired warm invocation latency, B to be the runtime
budget allotted to each microservice, and rc to be the
remaining runtime of the microservice on CPU c. Thus,
in the worst case (where all tasks are executing for their
entire allotted time) the probability that the incoming
microservice will have somewhere to run in time to meet
the invocation latency SLO is given by:

p(rmin ≤ L) =
∑
c∈C

p(rc ≤ L) =
��C�� L

B
(1)

Given the 14 cores in our setup and imagining we want
to keep the 99% tail, p(rmin ≤ L) = 0.99, to an L of 8 µs,
we need to kill tasks running for more than B = 113 µs.
How often should the handler execute (the quantum)?
We showed in Section 2 that microsecond-scale preemp-
tion is achievable, but can it be done efficiently? To find
out, we wrote a microservice that measures the throughput
of computing SHA-512 hashes over 64 B of data at a
time. We then subjected its worker process to SIGALRMs,
varying the quantum and observing the resulting hashing
throughput. Figure 2 illustrates that by a quantum of about
20 µs, throughput had reached around 90% of baseline.
Considering this performance degradation, acceptable we
adopt this quantum and prescribe a runtime budget of 113
- 20 = 93 µs so that we can kill over-budget microservices
in time to avoid violating our tail latency SLO.
How do we clean up a terminated microservice? We
now discuss our mechanism for aborting and cleaning up
after a microservice exceeds its runtime budget. POSIX
signal handlers receive as an argument a pointer to their
context, a snapshot of the process’s PCB (process control

block) at the moment before it received the signal. When
the handler returns, the system will transfer control back
to the point described by the context, so a naïve way for
our worker processes to regain control would be to reset its
GPRs (general-purpose registers) to values recorded just
before the worker’s tight scheduling loop. This approach,
however, would not release the microservice’s state or
memory allocations back to the worker.
One of the few heavyweight components of the Rust

runtime is panic handling, reminiscent of C++’s exception
handling. The compiler inserts landing pads into each
function that call the destructors for the variables in its
stack frame: if the program ever panics, the standard
library uses these to unwind the stack. We co-opt this
functionality by having the SIGALRM handler set its context
to raise an explicit panic in a fake stack frame just above
the real top of the stack.

Section 6 discusses the limitations and security ramifi-
cations of this approach.

5 Deployment
We now describe our microservices in the broader context
of our full proposed serverless system. We clarify their
lifecycle, interactions with the compute nodes, and the
trust model for the cloud provider.
Users submit their microservices in the form of Rust

source code, allowing the serverless operator to pass the
-Funsafe-code compilation flag to reject any unsafe
code. This process need not occur on the compute nodes,
provided the deployment server tasked with compilation
runs the same version of the Rust compiler.3 The operator
needs to trust the compiler, standard library, and any li-
braries against which it will permit themicroservice to link
(since they might contain unsafe code), but importantly
need not worry about the microservice itself.
We believe that restricting microservices to a specific

list of permitted dependencies is reasonable. Any library
that contains only safe Rust code could be whitelisted
without review. To approximate the size of such a list
given the current Rust ecosystem, we turn to a 2017
study [6] by the Tock authors that found just under half of
the Rust package manager’s top 1000 most-downloaded
libraries to be free of unsafe code. They caution that
many of those packages have unsafe dependencies, but
reviewing a relatively small number of popular libraries
would open up the majority of the most popular packages.

If the application compiles (is proven memory-safe) and
links (depends only on trusted libraries) successfully, the
deployment server produces a shared object file, which the
provider then distributes to each compute node on which
it might run. Then, in order to ensure that invokers will
experience the warm-start latencies discussed in Section 2,

3This restriction exists because, as of the latest release (1.23.0) of
the compiler, Rust does not have a stable ABI.
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those nodes’ dispatcher processes should instruct one or
more of their workers to preload the dynamic library. If
the provider experiences too many active microservices
for its available resources, it can unload some libraries;
on their next invocation, they will experience higher (cold
start) invocation latencies as they synchronously load the
dynamic library.

6 Future Work
As noted above, our exploration is preliminary; this section
outlines several open questions. These questions fall into
two categories: shortcomings in our current implementa-
tion and defense-in-depth safeguards against unexpected
failures (e.g., compiler bug or the operator allowing use
of a buggy or malicious library).
Non-reentrancy. Our use of Rust panics to unwind the
stack during preemption can corrupt the internal state of
non-reentrant functions (e.g., Rust’s dynamic allocator).
Possible fixes include blacklisting these functions and
delaying preemption until they are finished or replacing
the problematic function with a safe one (e.g., a custom
memory allocator).
Host process. Our current implementation does not pro-
vide isolation between the dispatcher andworker processes.
We plan to apply standard OS techniques to reduce the
chance of interference by a misbehaving worker. Exam-
ples include auditing interactions with the shared memory
region to ensure invalid or inconsistent data originating
from a worker cannot create an unrecoverable dispatcher
error; handling the SIGCHLD signal to detect a worker that
has somehow crashed; and keeping a recovery log in the
dispatcher process so that any user jobs lost to a failed
worker process can be reassigned to operational workers.
Further defense in depth with ERIM. ERIM outlines
a set of techniques and binary rewriting tools useful for
using Intel’s Memory Protection Keys to restrict memory
access by threads within a process [23]. While preliminary
and without source yet available, this appears to be an at-
tractive approach for defense-in-depth both within worker
processes and between the workers and the dispatcher.
Library functions. As with system calls, there may exist
library functions in Rust (and certainly in libc, which
we deny by default) that are unsafe for microservices to
access. Because the Rust standard library requires unsafe
code, defense-in-depth suggests that a whitelisting-based
approach should be employed for access to its functions.
Certainly library functions must be masked—for example,
our use of Rust’s panic handler for preemption means that
we must deny microservice code the ability to catch the
panic and return to execution. Although we mitigate this
possibility by detecting and blacklisting microservices
that fail to yield under a SIGALRM, it would be desirable
to block such behavior entirely. Possible options include
using the dynamic linker to interpose stub implementations

or linking against a custom build of the library, or using
more in-depth static analysis.
Resource leaks. Safe Rust code provides memory safety,
but it cannot prevent memory leaks [21]. For example, de-
structor invocation is not guaranteed using Rust’s default
reference counting-based reclamation; therefore, unwind-
ing the stack during preemption is not guaranteed to free
all of a microservice’s memory or other resources. Poten-
tial solutions are interposing on the dynamic allocator to
record tracking information (likely proving expensive) or
using per-microservice heaps that main worker process
can simply deallocate when terminating a microservice.
The worker can also deallocate other resources, such as
unclosed file descriptors. If these checks end up being
too expensive, the worker could execute its cleanup after
a certain number of microservices have run or when the
load is sufficiently low.
Side channels. Our current approach is vulnerable to side-
channel attacks [17, 13]. For example, microservices have
access to the memory addresses and timings of dynamic
memory allocations, as well as the numbers of opened file
descriptors. Although side-channels exist inmany systems,
the short duration of microservice functions may make
mounting such attacks more challenging; nevertheless,
standard preventative practices found in the literature
should apply.
Despite the security challenges of running microservice
as functions, worker processes are still well-isolated from
the rest of the system. Worst case, the central dispatcher
process can restart a failed worker and automatically ban
suspect microservices.

7 Conclusion
In order to permit applications to fully leverage the 10s of
µs latencies available from the latest datacenter networks,
we propose a novel design for serverless platforms that runs
user-submitted microservices within shared processes.
This structure is possible because of language-based
compile-time memory safety guarantees and microsecond-
scale preemption. Our implementation and experiments
demonstrate that these goals of high throughput, low in-
vocation latency, and rapid preemption are achievable on
today’s commodity systems, while potentially supporting
hundreds of thousands of concurrently available microser-
vices on each compute node. We believe that these two
building blocks will enable new FaaS platforms that can
deliver single-digit microsecond invocation latencies for
lightweight, short-lived tasks.
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ABSTRACT

RDF graph has been increasingly used to store and rep-

resent information shared over the Web, including social

graphs and knowledge bases. With the increasing scale

of RDF graphs and the concurrency level of SPARQL

queries, current RDF systems are confronted with ineffi-

cient concurrent query processing on massive data paral-

lelism, which usually leads to suboptimal response time

(latency) as well as throughput.

In this paper, we present Wukong+G, the first graph-

based distributed RDF query processing system that effi-

ciently exploits the hybrid parallelism of CPU and GPU.

Wukong+G is made fast and concurrent with three key

designs. First, Wukong+G utilizes GPU to tame ran-

dom memory accesses in graph exploration by efficiently

mapping data between CPU and GPU for latency hiding,

including a set of techniques like query-aware prefetch-

ing, pattern-aware pipelining and fine-grained swapping.

Second, Wukong+G scales up by introducing a GPU-

friendly RDF store to support RDF graphs exceeding

GPU memory size, by using techniques like predicate-

based grouping, pairwise caching and look-ahead replac-

ing to narrow the gap between host and device memory

scale. Third, Wukong+G scales out through a commu-

nication layer that decouples the transferring process for

query metadata and intermediate results, and leverages

both native and GPUDirect RDMA to enable efficient

communication on a CPU/GPU cluster.

We have implemented Wukong+G by extending a

state-of-the-art distributed RDF store (i.e., Wukong)

with distributed GPU support. Evaluation on a 5-node

CPU/GPU cluster (10 GPU cards) with RDMA-capable

network shows that Wukong+G outperforms Wukong by

2.3X-9.0X in the single heavy query latency and im-

proves latency and throughput by more than one order

of magnitude when facing hybrid workloads.

1 INTRODUCTION

Resource Description Framework (RDF) is a standard

data model for the Semantic Web, recommended by

W3C [5]. RDF describes linked data as a set of triples

forming a highly connected graph, which powers infor-

mation retrievable through the query language SPARQL.

RDF and SPARQL have been widely used in Google’s

knowledge graph [22] and many public knowledge bases,

such as DBpedia [1], PubChemRDF [38], Wikidata [8],

Probase [59], and Bio2RDF [10].

The drastically increasing scale of RDF graphs has

posed a grand challenge to fast and concurrent queries

over large RDF datasets [17]. Currently, there have been

a number of systems built upon relational databases, in-

cluding both centralized [40, 12, 58] and distributed [48,

44, 23] designs. On the other hand, Trinity.RDF [62]

uses graph exploration to reduce the costly join opera-

tions in intermediate steps but still requires a final join

operation. To further accelerate distributed query pro-

cessing, Wukong [51] leverages RDMA-based graph ex-

ploration to support massively concurrency queries with

low latency requirement and adopts full-history pruning

to avoid the final join operation.

Essentially, many RDF queries have embarrassing par-

allelism, especially for heavy queries, which usually

touch a large portion of the RDF graph on an excessive

amount of paths using graph exploration. This poses a

significant challenge even for multicore CPUs to handle

them efficiently, which usually causes lengthy execution

time. For example, the latency differences among seven

queries in LUBM [7] is more than 3,000X (0.13ms and

390ms for Q5 and Q7 accordingly). This may cause one

heavy query block all other queries, substantially extend-

ing the latency of other queries and dramatically impair-

ing the throughput of processing concurrent queries [51].

This problem has also gained increased attention [45].

In this paper, we present Wukong+G1 with a novel de-

sign that exploits a distributed heterogeneous CPU/GPU

cluster to accelerate heterogeneous RDF queries based

on distributed graph exploration. Unlike CPUs pur-

suing the minimized execution time for single instruc-

tions, GPUs are designed to provide high computational

throughput for massive simple control-flow operations

with little or no control dependency. Such features

expose a design space to distribute hybrid workloads

by offloading heavy queries to GPUs. Nevertheless,

different from many traditional GPU workloads, RDF

graph queries are memory-intensive instead of compute-

intensive: there are limited arithmetic operations and

most of the processing time is spent on random mem-

ory accesses. This unique feature implies that the key

of performance optimizations in Wukong+G is on smart

1The source code and a brief instruction of Wukong+G are available at

http://ipads.se.sjtu.edu.cn/projects/wukong.
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Fig. 1: A sample of RDF data and two SPARQL queries (QH and

QL). White circles indicate the normal vertices (subjects and objects);

dark circles indicate the (type and predicate) index vertices. QH is a

heavy query, and QL is a light query.

memory usage rather than improving the computation al-

gorithm. Wukong+G is made fast and concurrent with

the following key designs:

GPU-based query execution (§4.1). To achieve the

best performance for massive random accesses de-

manded by heavy queries, Wukong+G leverages the

many-core feature and latency hiding ability of GPUs.

Besides making use of hardware advantages, Wukong+G

surmounts the limitations of GPU memory size and

PCIe (PCI Express) bandwidth by adopting query-aware

prefetching to mitigate the constraints on graph size,

pattern-aware pipelining to hide data movement cost,

and fine-grained swapping to minimize data transfer size.

GPU-friendly RDF store (§4.2). To support desired

CPU/GPU co-execution pattern while still enjoying the

fast graph exploration, Wukong+G follows a distributed

in-memory key/value store and proposes a predicate-

based grouping to aggregate keys and values with the

same predicate individually. Wukong+G further smartly

manages GPU memory as a cache of RDF store by sup-

porting pairwise caching and look-ahead replacing.

Heterogeneous RDMA communication (§4.3). To

preserve better communication efficiency in a heteroge-

neous environment, Wukong+G decouples the transfer-

ring process of query metadata and intermediate results

for SPARQL queries. Wukong+G uses native RDMA to

send metadata like query plan and current step among

CPUs, and uses GPUDirect RDMA to send current in-

termediate results (history table) directly among GPUs.

This preserves the performance boost brought by GPUs

from potential expensive CPU/GPU data transfer cost.

We have implemented Wukong+G by extending

Wukong [51], a state-of-the-art distributed RDF query

system to support heterogeneous CPU/GPU process-

ing. To confirm the performance benefit of Wukong+G,

we have conducted a set of evaluations on a 5-node

CPU/GPU cluster (10 GPU cards) with RDMA-capable

network. The experimental results using the LUBM [7]

benchmark show that Wukong+G outperforms Wukong

by 2.3X-9.0X in the single heavy query latency and im-

proves latency and throughput by more than one order of

magnitude when facing hybrid workloads.

2 BACKGROUND AND MOTIVATION

2.1 RDF and SPARQL

An RDF dataset is composed by triples, in the form of

〈sub ject, predicate,ob ject〉. To construct a graph (aka

RDF graph), each triple can be regarded as a directed

edge (predicate) connecting two vertices (from subject

to object). In Fig. 1, a simplified sample RDF graph of

LUBM dataset [7] includes two professors (Logan and

Erik), three students (Marie, Bobby, and Kurt), and two

courses (OS and DS).2 There are also three predicates

(teacherOf (to), advisor (ad) and takeCourse (tc)) to link

them. Two types of indexes, predicate and type, are

added to accelerate query processing on RDF graph [51].

SPARQL, a W3C recommendation, is a standard

query language developed for RDF graphs, which de-

fines queries regarding graph patterns (GP). The princi-

pal part of SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where (RD) is the result description and GP consists of

triple patterns (TP). The triple pattern looks like a nor-

mal triple except that any constant can be replaced by a

variable (e.g., ?X) to match a subgraph. The result de-

scription RD contains a subset of variables in the triple

patterns (TP) to define the query results. For example,

the query QH in Fig. 1 asks for professors (?X), courses

(?Y) and students (?Z) such that the professor advises

(ad) the student who also takes a course (tc) taught by

(to) the professor. After exploring all three TPs in QH on

the sample graph in Fig. 1, the exact match of RD (?X,

?Y and ?Z) is only a binding of Logan, OS, and Bobby.

Query processing on CPU. There are two representa-

tive approaches adopted in state-of-the-art RDF systems,

(relational) triple join [40, 58, 12, 23] and graph explo-

ration [62, 51]. A recent study [51] found that graph ex-

ploration with full-history pruning can provide low la-

tency and high throughput for concurrent query process-

ing. Therefore, we illustrate this approach to demonstrat-

ing the query processing on CPU with the sample RDF

graph and SPARQL query (QH ) in Fig. 1.

As shown in Fig. 2, all triple patterns of the query (QH )

will be iterated in sequence (➊) to generate the results

(history table) by exploring the graph, which is stored in

an in-memory key/value store. According to the variable

(?Y) of the current triple pattern (TP-2), each row of a

certain column in the history table (➋) will be combined

with the constant (takesCourse) of the triple pattern as

2Since the special predicate type (ty) is used to group a set of entities,

we follow Wukong [51] to treat every type (e.g., professor (P)) as an

index, the same as predicates (e.g., advisor (ad)).
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Fig. 2: The execution flow of query processing on CPU.

the key (➌) to retrieve the value (➍). The value will be

appended to a new column (?Z) of the history table (➎).

Note that an extra triple pattern (TP-0) from an index ver-

tex (teacherOf) will be used to collect all start vertices

satisfying a variable (?X) in TP-1.

Full-history pruning. Since processing RDF query by

graph exploration needs to traverse the RDF graph, it is

crucial to prune infeasible paths for better performance.

There are basically two approaches: partial-history prun-

ing [62], by inheriting partial history information (in-

termediate results) from previous steps of traversing

to prune the following traversal paths; and full-history

pruning [51], by passing the history information of all

previous traversal steps for pruning. Wukong has ex-

ploited full-history pruning to prune unnecessary inter-

mediate results precisely and make all traversal paths

completely independent. Thanks to the fast RDMA-

capable network as well as the relative cost-insensitivity

of one-sided RDMA operations regarding payload size,

full-history pruning is very effective and efficient to han-

dle concurrent queries.

Workload heterogeneity. Prior work [62, 23, 51] has

observed that there are two distinct types of SPARQL

queries: light and heavy. Light queries (e.g., QL in Fig. 1)

usually start from a (constant) normal vertex and only

explore a few paths regardless of the dataset size. In con-

trast, heavy queries (e.g., QH in Fig. 1) usually start from

an (type or predicate) index vertex and explore massive

amounts of paths, which increases along with the growth

of dataset size. The top of Fig. 3 demonstrates the num-

ber of paths explored by two typical queries (Q5 and Q7)

on LUBM-10240 (10 vs. 16,000,000).

The heterogeneity in queries can result in tremendous

latency differences on state-of-the-art RDF stores [51],

even reaching more than 3,000X (0.13ms and 390ms

for Q5 and Q7 on LUBM-10240 accordingly).3 There-

fore, the multi-threading mechanism is widely used by

prior work [23, 62, 51] to improve the performance of

heavy queries. However, such approach is intrinsically

restricted by the limited computation resource of CPU.

Currently, the maximum number of cores in a commer-

cial CPU processor is usually less than 16. Moreover,

3Detailed experimental setup and results can be found in §6.

the lengthy queries will significantly extend the latency

of light queries and impair the throughput of process-

ing concurrent queries. Some CPU systems like Oracle

PGX [4] try to address this issue by adopting priority

mechanism. However, with no variation of computing

power, the sacrifice of user experience for one type of

queries is unavoidable.

2.2 Hardware Trends

Hardware heterogeneity. With the prevalence of

computational workloads (e.g., machine learning and

data mining applications), it is now not uncommon to see

server-class machines equipped with GPUs in the mod-

ern datacenter. As a landmark difference compared to

CPU, the number of GPU cores (threads) can easily ex-

ceed two thousand, which far exceeds existing multicore

CPU processors. As shown in Fig. 3, in a typical het-

erogeneous (CPU/GPU) machine, CPU and GPU have

their private memory (DRAM) connected by PCIe with

limited bandwidth (10GB/s). Compared to host mem-

ory (CPU DRAM), device memory (GPU DRAM) has

much higher bandwidth (288GB/s vs. 68GB/s) but less

capacity (12GB vs. 128GB). Generally, GPU is opti-

mized for performing massive, simple and independent

operations with intensive accesses on a relatively small

memory footprint.

Fast communication: GPUDirect with RDMA.

GPUDirect is a family of technologies that is continu-

ously developed by NVIDIA [3]. Currently, it can sup-

port various efficient communications, including inter-

node, intra-node, and inter-GPU. RDMA (Remote Direct

Memory Access) is a networking feature to directly ac-

cess the memory of a remote machine, which can bypass

remote CPU and operating system, and avoid redundant

memory copy. Hence, it has unique features like high

speed, low latency and low CPU overhead. GPUDirect

RDMA has been introduced in NVIDIA Kepler-class

GPUs, like Tesla and Quadro series. This technique en-

ables direct data transfer between GPUs by InfiniBand

NICs as the name suggests [2].

2.3 Opportunities

Though prior work (e.g., Wukong [51]) has successfully

demonstrated the low latency and high throughput of

running light queries solely by leveraging graph explo-

ration with full-history pruning, it is still incompetent to

handle heavy queries efficiently. This leads to subop-

timal performance when facing hybrid workloads com-

prising both light and heavy queries.

This problem is not due to the design and implementa-

tion of existing state-of-the-art systems, which have been

heavily optimized by several approaches including multi-

threading [62, 23, 51] and work-stealing scheme [51].

We attribute the performance issues mainly to the lim-
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Fig. 3: Motivation of Wukong+G Fig. 4: The architecture overview of Wukong+G.

itation of handling hybrid workloads (light and heavy

queries) on the homogeneous hardware (CPU), which

can provide neither sufficient computation resources (a

few cores) nor efficient data accesses (low bandwidth).

GPU is a good candidate to host heavy queries. First,

the graph exploration strategy for query processing heav-

ily relies on traversing massive paths on the graph store,

which is a typical memory-intensive workload targeted

by GPU’s high memory bandwidth. Second, the mem-

ory latency hiding capability of GPU is inherently suit-

able for the random traversal on RDF graph, which is

notoriously slow due to poor data locality. Third, ev-

ery traversal path with the full-history pruning scheme is

entirely independent, which can be fully parallelized on

thousands of GPU cores.

In summary, the recent trend of hardware heterogene-

ity (CPU/GPU) opens an opportunity for running differ-

ent queries on different hardware; namely, running light

queries on CPUs and heavy queries on GPUs.

3 WUKONG+G: AN OVERVIEW

System architecture. An overview of Wukong+G’s

architecture is shown in Fig. 4. Wukong+G assumes run-

ning on a modern cluster connected with RDMA-capable

fast networking, where each machine is equipped with

one or more GPU cards. The GPU’s device memory is

treated as a cache for the large pool of the CPU’s host

memory. Wukong+G targets various SPARQL queries

over a large volume of RDF data; it scales by partition-

ing the RDF graph into a large number of shards across

multiple servers. Wukong+G may duplicate edges to

make sure each server contains a self-contained subgraph

(e.g., no dangling edges) of the input RDF graph for bet-

ter locality. Note that there are no replicas of vertices

in Wukong+G as no vertex data needs to synchronize.

Moreover, Wukong+G also creates index vertices [51]

for types and predicates to assist query processing.

Similar to prior work [51], Wukong+G follows a de-

centralized, shared-nothing, main-memory model on the

server side. Each server consists of two separate layers:

query engine and graph store. The query engine layer

employs a worker-thread model by running N worker

threads atop N CPU cores and dedicates one CPU core

to run an agent thread; the agent thread will assist the

worker threads on GPU cores to run queries. Each work-

er/agent thread on CPU has a task queue to continuously

handle queries from clients or other servers, one at a

time. The graph store layer adopts an RDMA-friendly

key/value store over a distributed hash table to support

a partitioned global address space. Each server stores

a partition of the RDF graph, which is shared by all of

worker/agent threads on the same server.

Wukong+G uses a set of dedicated proxies to run

the client-side library and collect queries from massive

clients. Each proxy parses queries into a set of stored

procedures and generates optimal query plans using a

cost-based approach. The proxy will further use the cost

to classify a query into one of two types (light or heavy),

and deliver it to a worker or agent thread accordingly.4

Basic query processing on GPU. In contrast to the

query processing on CPU, which has to perform a triple

pattern with massive paths in a verbose loop style (see

Fig. 2), Wukong+G can fully parallelize the graph explo-

ration with thousands of GPU cores. The basic approach

is to dedicate one CPU core to perform the control-flow

of the query, and use massive GPU cores to parallelize

the data-flow of the query. As shown in Fig. 5, the

agent thread on CPU core will first read the next triple

pattern (➊) of the current query and prepare a cache of

RDF datasets on GPU memory (➋). After that, the agent

thread will leverage all GPU cores to perform the triple

pattern in parallel (➌). Each worker thread on GPU core

can independently fetch a row in the history table (➍)

and combine it with the constant (takesCourse) of the

triple pattern (TP-2) as the key (➎). The value retrieved

by the key (➏) will be appended to a new column (?Z)

of the history table (➐). While the hybrid design seems

intuitive, Wukong+G still faces three challenges to run

SPARQL queries on GPUs, which will be addressed by

the techniques in §4:

4The recent release of Wukong (https://github.com/

SJTU-IPADS/wukong) introduced a new cost-based query

planner for graph exploration, where the cost estimation is roughly

based on the number of paths may be explored. Wukong+G uses a

user-defined threshold for the cost to classify queries.
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Fig. 5: The execution flow of query processing on CPU/GPU.

C1: Small GPU memory. It is well known that GPU

can obtain optimal performance only when the device

memory (GPU DRAM) gets everything ready. Prior sys-

tems [62, 23, 51] can store an entire RDF graph in the

host memory (CPU DRAM) since it is common that

server-class machines equip with several hundred GBs

of memory. However, this assumption does not apply to

GPU since its current memory size usually stays less than

16GB. We should not allow device memory size to limit

the upper bound of the supported working sets.

C2: Limited PCIe bandwidth. The memory foot-

print of SPARQL queries may touch arbitrary triples

of the RDF graph. Therefore, the data transfer be-

tween CPU and GPU memory during query processing

is unavoidable, especially for concurrent query process-

ing. However, GPUs are connected to CPUs by PCIe

(PCI Express), which has insufficient memory band-

width (10GB/s). To avoid the bottleneck of data trans-

fer, we should carefully design mechanisms to predict

access patterns and minimize the number, volume and

frequency of data swapping.

C3: Cross-GPU communication. With the increasing

scale of RDF datasets and the growing number of con-

current queries, it is highly demanding that query pro-

cessing systems can scale to multiple machines. Prior

work [57, 51] has shown the effectiveness and effi-

ciency of the partitioned RDF store and the worker-

thread model. However, the intra-/inter-node commu-

nication between multiple GPUs has a long path: 1)

device-to-host via PCIe; 2) host-to-host via networking;

3) host-to-device via PCIe. We should customize the

communication flow for various participants to reduce

the latency of network traffic.

4 DESIGN

4.1 Efficient Query Processing on GPU

Facing the challenges like small GPU memory and lim-

ited PCIe bandwidth, we propose the following three key

techniques to overcome them.

Query-aware prefetching. With the increase of RDF

datasets, the limited GPU memory size (less than 16GB)

QH

Process QH on GPU

to out tc in ad out* * *

TP-0:    to|in  ?X
TP-1: ?X to|out ?Y
TP-2: ?Y tc|in  ?Z
TP-3: ?Z ad|out ?X

* * *

TP-0 TP-1 TP-2 TP-3

Time
Per-query

Per-pattern

Pipeline

Per-block

Time

Out-of-memory
RDF data

Time

Time

Time

predicate
direction

Overlap with the planning of this query 
or the processing of a previous query

predicate direction

Prefetch data from CPU DRAM to GPU DRAM

Fig. 6: The timeline of processing sample query (QH ) on GPU.

is not enough to host the entire RDF graph. Wukong+G

thus treats the GPU memory as a cache of CPU memory,

and only ensures the necessary data is retained in GPU

memory before running a query. However, it is non-

trivial to decide the working set of a query accurately.

As shown in the second timeline of Fig. 6, Wukong+G

proposes to just prefetch the triples with the predicates

involved in a query, which can enormously reduce the

memory footprint of a query from the entire RDF graph

to the per-query scale. This assumption is based on

two observations: 1) each query only touches a part of

RDF graph; 2) the predicate of a triple pattern is com-

monly known (i.e., 〈?X , predicate,?Y 〉). For example,

the sample query (QH ) only requires three predicates

(teacherOf, takesCourse, and advisor), occupying about

3.7GB memory (0.3GB, 2.9GB, and 0.5GB respectively)

for LUBM-2560.

Pattern-aware pipelining. For a query with many

triple patterns, the total memory footprint of a single

query may still exceed the GPU memory size. For-

tunately, we further observe that the triple patterns of

a query will be executed in sequence. It implies that

Wukong+G can further reduce the demand for memory

to the per-pattern scale. As shown in the third timeline

of Fig. 6, Wukong+G can only prefetch the triples with a

certain predicate that is used by the triple pattern will be

immediately executed. Thus, for the sample query (QH )

on LUBM-2560, the demand for GPU memory will fur-

ther reduce to 2.9GB, the size of the maximum predicate

(takesCourse).

Moreover, since the data prefetching and query pro-

cessing are split into multiple independent phases,

Wukong+G can use a software pipeline to create paral-

lelism between the execution of the current triple pattern

and the prefetching of the next predicate, as shown in the

fourth timeline of Fig. 6. Note that it will also increase

the memory footprint to the maximum size of two suc-

cessive predicates (takesCourse and advisor).

Fine-grained swapping. Although the pattern-aware

pipelining can overlap the latency of data prefetching

and query processing, it is hard to perfectly hide the

I/O cost due to limited bandwidth between system and
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Table 1: A summary of optimizations for query processing on GPU.

“X |Y” indicates XGB memory footprint and Y GB data transfer. (†)

The numbers are evaluated on 6GB GPU memory.

Granularity Main Techniques
Q7 (GB)

on LUBM-2560

Entire graph Basic query processing 16.3 | 16.3

Per-query Query-aware prefetching 5.6 | 5.6

Per-pattern Pattern-aware pipelining 2.9 | 5.6

Per-block Fine-grained swapping 2.9 | 0.7†

device memory (e.g., 10GB/s). For example, prefetch-

ing 2.9GB triples (takesCourse) requires about 300ms,

which is even longer than the whole query latency

(100ms). Therefore, Wukong+G adopts a fine-grained

swapping scheme to maintain the triples cached in GPU

memory. All triples with the same predicate will be fur-

ther split into multiple fixed-size blocks, and the GPU

memory will cache the triples in a best-effort way (§4.2).

Consequently, the demand of memory will be further re-

duced to the per-block scale.

Moreover, the data transferring cost will also become

the per-block scale, and all cached data on GPU mem-

ory can be reused by multiple triple patterns of the same

query or even multiple queries. As shown in the fifth

timeline of Fig. 6, when most triples of the required pred-

icates have been retained in GPU memory, the prefetch-

ing cost can be perfectly hidden by query processing.

Even for the first required predicate, Wukong+G still can

hide the cost by overlapping it with the planning time of

this query or the processing time of a previous query.

Table 1 summarizes the granularity of data prefetching

on GPU memory, and shows the size of memory foot-

print and data transfer for a real case (Q7 on LUBM-

2560). Note that Q7 is similar to QH but requires five

predicates. The memory footprint of Q7 with fine-

grained swapping is equal to the available GPU memory

size (6GB) since Wukong+G only swaps out the triples

of predicates on demand.

4.2 GPU-friendly RDF Store

Prior work [62, 51, 64] uses a distributed in-memory

key/value store to physically store the RDF graph,

which is efficient to support random traversals in graph-

exploration scheme. In contrast to the intuitive de-

sign [62] that simply uses vertex ID (vid) as the key, and

the in-/out-edge list (each element is a [pid,vid] pair) as

the value, Wukong [51] uses a combination of the vertex

ID (vid), predicate ID (pid) and in/out direction (d) as the

key (in the form of [vid, pid,d]), and the list of neighbor-

ing vertex IDs as the value (e.g., [Logan, to,out] 7−→ [DS]

in the left part of Fig. 7).

This design can prominently reduce the graph traver-

sal cost for both local and remote accesses. However,

the triples (both key and value) with the same predi-

cate are still sprinkled all over the store. It implies that

the cost of prefetching keys and values for a triple pat-

tern is extremely high or even impossible. Therefore,

the key/value store on CPU memory should be carefully

re-organized for heterogeneous CPU/GPU processing by

aggregating all triples with the same predicate and direc-

tion into a segment. Furthermore, the key and value seg-

ments should be maintained in a fine-grained way (block)

and be cached in pairs. Finally, the mapping between

keys and values should be retained in the key/value cache

on GPU memory, which uses a separate address space.

Wukong+G proposes the following three new techniques

to construct a GPU-friendly key/value store, as shown in

the right part of Fig. 7.

Predicate-based grouping (CPU memory). Based on

the idea of predicate-based decomposition in Wukong,

Wukong+G adopts predicate-based grouping to exploit

the predicate locality of triples and retains the encoding

of keys and values. The basic idea is to partition the

key space into multiple segments, which are identified

by the combination of predicate and direction (i.e., [pid,

d]). To preserve the support of fast graph exploration,

Wukong+G still uses the hash function within the seg-

ment but changes the parameter from the entire key (i.e.,

[vid, pid,d]) to the vertex ID (vid). The number of keys

and values in each segment are collected during loading

the RDF graph and aligned to an integral multiple of the

granularity of data swapping (block). To ensure that all

values belonged to the triples with the same predicate

are stored contiguously, Wukong+G groups such triples

and inserts them together. Moreover, Wukong+G uses

an indirect mapping to link keys and values, where the

link is an offset within the value space instead of a direct

pointer. As shown in the right part of Fig. 7, the triples

required by TP-2 (i.e., 〈Kurt, tc,DS〉 and 〈Bobby, tc,OS〉)

are aggregated together in both key and value spaces (the

purple boxes).

Pairwise caching (GPU memory). To support fine-

grained swapping, Wukong+G further splits each seg-

ment into multiple fixed-size blocks and stores them into

discontinuous blocks of the cache on GPU memory, like

[Logan, to,out] and [Erik, to,out]. Note that the block

size for keys and values can be different. Wukong+G fol-

lows the design on CPU memory to cache key and value

blocks into separate regions on GPU memory, namely

key cache and value cache. Wukong+G uses a simple ta-

ble to map key and value blocks, and the link from key to

value becomes the offset within the value block. Unlike

the usual cache, the linked key and value blocks must be

swapped in and out the (GPU) cache in pairs, like [OS,

tc, in] and [Bobby] (the purple boxes). Thus, Wukong+G

maintains a bidirectional mapping between the pair of

cached key and value blocks. Moreover, a mapping table

of block ID between RDF store (CPU) and cache (GPU)

is used to re-translate the link between keys and values,
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Fig. 7: The structure of GPU-friendly RDF store. Fig. 8: Communication flow w/o and w/ GPUDirect.

when the pairwise blocks (key and value) are swapped in

GPU memory.

Look-ahead replacement policy. The mapping table

of block IDs between RDF store and cache records

whether the block has been cached. Before running a

triple pattern of the query, all of key and value blocks

should be prefetched to the GPU memory. For example,

the key [OS, tc, in] and value [Bobby] should be loaded

into the cache before processing TP-2. Wukong+G pro-

poses a look-ahead LRU-based replacement policy to

decide where to store prefetched key and value blocks.

Specifically, Wukong+G prefers to use free blocks first

and then chooses the blocks that will not be used by the

following triple patterns of this query (look-ahead), with

the highest LRU score. The worst choice is the blocks

will be used by the following triple patterns, and then the

block of the farthest triple pattern will be replaced. Note

that the replacement policies for keys and values are the

same and there is at most a pair of key/value blocks will

be swapped out due to the pairwise caching scheme.

For example, as shown in the right part of Fig. 7, be-

fore running the triple pattern TP-2, all key/value blocks

of the predicate takeCourse (tc) should be swapped in the

cache (the purple boxes). The value block with [Bobby]

can be loaded to a free block, while the key block with

[OS, tc, in] will replace the cached block with [Pidx, to,

in], since it was used by TP-0 with the highest LRU score.

4.3 Distributed Query Processing

Wukong+G splits the RDF graph into multiple disjoint

partitions by a differentiated partitioning algorithm [51,

19] 5, and each machine hosts an RDF graph partition

and launches many worker threads on CPUs and GPUs

to handle concurrent light and heavy queries respectively.

The CPU worker threads on different machines will only

communicate with each other for (light) query process-

ing, and it is the same to GPU worker threads for (heavy)

query processing.

5The normal vertex (e.g., Logan) will be assigned to only one machine

with all of its edges, while the index vertex (e.g., teacherOf) will be

split and replicated to multiple machines with edges linked to normal

vertices on the same machine.

To handle light queries on CPU worker threads,

Wukong+G simply follows the procedure (see

Fig. 2) that has been successfully demonstrated by

Wukong [51]. However, to handle heavy queries on

GPU worker threads, the procedure (see Fig. 5) becomes

complicated due to the assistance of (CPU) agent thread

and the maintenance of (GPU) RDF cache.

Execution mode: fork-join. Prior work [51] proposes

two execution modes, in-place and fork-join, for dis-

tributed graph exploration to migrate data and execu-

tion respectively. The in-place execution mode syn-

chronously leverages one-sided RDMA READ to directly

fetch data from remote machines, while the fork-join

mode asynchronously splits the following query compu-

tation into multiple sub-queries running on remote ma-

chines. Wukong+G follows the design on CPU worker

threads but only adopts the fork-join mode for query pro-

cessing on GPU, because the in-place mode is usually in-

efficient for heavy queries [51] and migrating data from

remote CPU memory to local GPU memory is still very

costly even with RDMA operations.

In the fork-join mode, the agent thread will split the

running query (metadata) with intermediate results (his-

tory table) into multiple sub-queries for the following

query processing, and dispatch them to the task queue

of agent threads on remote machines by leveraging one-

sided RDMA WRITE. Therefore, multiple heavy queries

can be executed on multiple GPUs concurrently in a

time-sharing way. However, the current history table is

located in GPU memory (see Fig. 8), such that it would

be inefficient to fetch and split the table by using a single

agent thread on CPU (➊ and ➋ in Fig. 8(a)). Therefore,

Wukong+G leverages all GPU cores to partition the his-

tory table in fully parallel (➊ in Fig. 8(b)) using a dy-

namic task scheduling mechanism [47, 18].

Communication flow. To support fork-join execution,

the sub-queries will be sent to target machines with their

metadata (e.g., query plan and current step) and history

table (intermediate results), and the history table will be

sent back with final results at the end. As shown in

Fig. 8(a), the query metadata will be delivered by one-

sided RDMA operations between the CPU memory of
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Table 2: A collection of synthetic and real-life datasets. #T, #S, #O

and #P mean the number of triples, subjects, objects and predicates

respectively. (†) The size of datasets in raw NT format.

Dataset #T #S #O #P Size†

LUBM-2560 352 M 55 M 41 M 17 58GB

LUBM-10240 1,410 M 222 M 165 M 17 230GB

DBPSB 15 M 0.3 M 5.2 M 14,128 2.8GB

YAGO2 190 M 10.5 M 54.0 M 99 13GB

two machines (➌ and ➏). In contrast, the history table

has to go through a long path from local GPU mem-

ory to the remote GPU memory, and finally goes back

to the local CPU memory. A detailed communication

flow for history table (see Fig. 8(a)): 1) from local GPU

memory to local CPU memory (➊, Device-to-Host); 2)

from local CPU memory to remote CPU memory (➌,

Host-to-Host); 3) from remote CPU memory to remote

GPU memory (➍, Host-to-Device); 4) from remote GPU

memory to remote CPU memory (➎, Device-to-Host);

5) from local CPU memory to remote CPU memory (➏,

Host-to-Host).

GPUDirect [3] opens an opportunity for Wukong+G

to directly write history table from local GPU memory to

remote GPU and CPU memory. Hence, Wukong+G de-

couples the transferring process of query metadata and

history table (➋ and ➋ in Fig. 8(b)), and further short-

ens the communication flow for history table by leverag-

ing GPUDirect RDMA. It also avoids the contention on

agent thread with the metadata transferring. A detailed

communication flow for history table (see Fig. 8(b)): 1)

from local GPU memory to remote GPU memory (➋,

Device-to-Device); 2) from remote GPU memory to lo-

cal CPU memory (➌, Device-to-Host).

Moreover, to mitigate the pressure on GPU mem-

ory when handling multiple heavy queries, Wukong+G

choose to send the history table of pending queries from

local GPU memory to the buffer on remote CPU mem-

ory first via GPUDirect RDMA, and delay the prefetch-

ing of history table from CPU memory to GPU memory

till handling the query on GPU.

5 IMPLEMENTATION

Wukong+G prototype is implemented in 4,088 lines of

C++/CUDA codes atop of the code base of Wukong.

This section describes some implementation details.

Multi-GPUs support. Currently, it is not uncommon

to equip every CPU socket with a separate GPU card for

low communication cost and good locality. To support

such multi-GPUs on a single machine, Wukong+G runs a

separate server for each GPU card and several co-located

CPU cores (usually a socket). All servers comply with

the same communication mechanism via GPUDirect-

capable RDMA operations, regardless of whether two

servers share the same physical machine or not.

Too large intermediate results. In rare cases, the in-

termediate results may overflow the history buffer on

Table 3: The query performance (msec) on a single server.

LUBM-2560 TriAD Wukong Wukong+G

H

Q1 (3.6GB) 851 992 165

Q2 (2.4GB) 211 138 31

Q3 (3.6GB) 424 340 63

Q7 (5.6GB) 2,194 828 100

Geo. M 639 443 75

L

Q4 1.45 0.13 0.16

Q5 1.10 0.09 0.11

Q6 16.67 0.49 0.51

Geo. M 2.98 0.18 0.21

GPU memory. For example, we witness this scenario

in YAGO2 benchmark (§6.8) that a heavy query keeps

spanning out without any pruning. Wukong+G can hor-

izontally divide the intermediate results into multiple

strips by row and only hold a single strip into the his-

tory table on GPU memory. The remaining strips will

stay in CPU memory and be swapped in GPU memory

one-by-one while processing a single triple pattern.

6 EVALUATION

6.1 Experimental Setup

Hardware configuration. All evaluations are con-

ducted on a rack-scale cluster with 10 servers on 5 ma-

chines. We run two servers on a single machine. Each

server has one 12-core Intel Xeon E5-2650 v4 CPU with

128GB of DRAM, one NVIDIA Tesla K40m GPU with

12GB of DRAM, and one Mellanox ConnectX-3 56Gbps

InfiniBand NIC via PCIe 3.0 x8 connected to a Mellanox

IS5025 40Gbps IB Switch. Wukong+G only provides a

one-to-one mapping between the work and agent threads

on different servers [51], which mitigates the scalability

issue of RDMA networks with reliable transports [31]

and simplifies the implementation of the task queue. In

all experiments, we reserve two cores on each CPU to

generate requests for all servers to avoid the impact of

networking between clients and servers as done in prior

work [54, 56, 57, 20, 51].

Benchmarks. Our benchmarks include one synthetic

and two real-life datasets, as shown in Table 2. The

synthetic dataset is the Lehigh University Benchmark

(LUBM) [7]. We generate 5 datasets with differ-

ent sizes (up to LUBM-10240) and use the query set

published in Atre et al. [13], which are widely used

by many distributed RDF systems [36, 62, 23, 51].

The real-life datasets include the DBpedia’s SPARQL

Benchmark (DBPSB) [1] and YAGO2 [9, 30]. For

DBPSB, we use the query set recommended by its of-

ficial site. For YAGO2, we collect our query set from

both H2RDF+ [43] and RDF-3X [42] to make sure the

test covers both light and heavy queries.

Comparing targets. We compare our system against

two state-of-the-art distributed RDF query systems,

TriAD [23] (RDF relational store) and Wukong [51]

(RDF graph stores). Note that TriAD does not sup-
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Table 4: The query performance (msec) on 10 servers.

LUBM-10240 TriAD Wukong Wukong+G

H

Q1 (14.25GB) 3,400 480 211

Q2 (9.74GB) 880 66 12

Q3 (14.25GB) 2,835 171 19

Q7 (22.58GB) 10,806 390 100

Geo. M 3,094 215 47

L

Q4 3.08 0.44 0.46

Q5 1.84 0.13 0.17

Q6 65.20 0.70 0.71

Geo. M 7.04 0.34 0.38

port concurrent query processing, so we only compare

to it in the single query performance. As done in prior

work [62, 23, 51], the string server is enabled for all sys-

tems to save memory usage, reduce network bandwidth,

and boost string matching.

6.2 Single Query Performance

We first study the performance of Wukong+G for a single

query using the LUBM dataset. Table 3 shows the opti-

mal performance of different systems on a single server

with LUBM-2560. For Wukong+G, there is no data

swapping during single query experiment since the cur-

rent memory footprint of all queries on LUBM-2560 (the

numbers in brackets) is smaller than the GPU memory

(12GB). The query-aware prefetching reduces the mem-

ory footprint to the per-query granularity (see Table 1).

Although Wukong and TriAD have enabled multi-

threading (10 worker threads), Wukong+G can still sig-

nificantly outperform such pure CPU systems for heavy

queries (Q1-Q3, Q7) by up to 8.3X and 21.9X (from

4.5X and 5.2X) due to wisely leveraging hardware ad-

vantages. The improvement of average (geometric mean)

latency reaches 5.9X and 8.5X. For the light queries (Q4-

Q6), Wukong+G inherits the prominent performance of

Wukong by leveraging graph exploration and outper-

forms TriAD by up to 32.7X.

We further compare Wukong+G with Wukong and

TriAD (multi-threading enabled) on 10 servers using

LUBM-10240 in Table 4. For heavy queries, Wukong+G

still outperforms the average (geometric mean) latency of

Wukong by 4.6X (ranging from 2.3X to 9.0X), thanks to

the heterogeneous RDMA communication for preserv-

ing the good performance of GPU at scale. Further,

using up all CPU worker threads to accelerate a sin-

gle query is not practical for concurrent query process-

ing since it will result in throughput collapse. For light

queries, Wukong+G incurs about 12% performance over-

head (geometric mean) compared to Wukong due to ad-

justing the layout of key/value store on CPU memory for

predicate-based grouping. Wukong+G is still one order

of magnitude faster than TriAD due to the in-place exe-

cution with one-sided RDMA READ [51].

6.3 Factor Analysis of Improvement

To study the impact of each technique and how they af-

fect the query performance, we iteratively enable each

Table 5: The contribution of (cumulative) optimizations to the query

latency (msec) evaluated on 3GB GPU memory.

LUBM-2560 Per-query Per-parttern Per-block Pipeline

Q1 (3.6GB) x 743 313 295

Q2 (2.4GB) 284 283 32 31

Q3 (3.6GB) x 309 62 63

Q7 (5.6GB) x 893 622 610

optimization and collect the average latency by repeat-

edly running the same query on a single server with

3GB GPU memory for LUBM-2560. As shown in Ta-

ble 5, even using query-aware prefetching (per-query),

the memory footprints of query Q1, Q3 and Q7 still

exceed available GPU memory (see Table 3). Hence,

they can not run until enabling pattern-aware prefetch-

ing (per-pattern). The effectiveness of fine-grained swap-

ping (per-block) varies on different queries. It is quite

effective on Q2 and Q3 (8.8X and 5.0X) since all triples

required by triple patterns can almost be stored in 3GB

GPU memory. Note that Q3 returns an empty history ta-

ble (intermediate results) half-way and reduces the prac-

tical runtime memory footprint to 2.5GB. For Q1 and

Q7, although the relative large memory footprint (3.6GB

and 5.6GB), incurs massive data swapping (1.5GB by

187 time and 5.1GB by 734 times), the cache sharing

with fine-grained mechanism can still notably reduce the

query latency by 2.4X and 1.4X. Moreover, pipeline does

not work on Q2 and Q3 without data prefetching time.

The improvement for Q1 and Q7 is still limited since

the prefetching and execution time for each triple pat-

tern are quite imbalanced. For example, 88% of blocks

are swapped at two triple patterns for Q7.

Table 6: A comparison of query performance (msec) w/o and w/

GPUDirect RDMA (GDR) on 10 servers with LUBM-10240.

LUBM-10240 Q1 Q2 Q3 Q7

Wukong+G w/o GDR 222 (53.4) 13 22 103 (26.1)

Wukong+G w/ GDR 211 (40.1) 13 22 98 (21.3)

6.4 GPUDirect RDMA

To shorten communication flow and avoid redundant

memory copy for history table (intermediate results)

of queries, Wukong+G leverages GPUDirect RDMA

(GDR) to write history table directly from local GPU

memory to remote GPU and CPU memory (§4.3). To

study the impact of leveraging GPUDirect RDMA, we

enforce Wukong+G to purely use native RDMA for both

query metadata and history table (i.e., Wukong+G w/o

GDR). As shown in Table 6, the performance of Q2 and

Q3 is non-sensitive to GPUDirect RDMA because of no

data transfer among GPUs. For Q1, leveraging GPUDi-

rect RDMA can reduce about 30% communication cost

(53.4ms vs. 40.1ms), since the query need to send about

487MB intermediate results by about 990 times RDMA

operations. For queries with relatively large intermediate

results or many triple patterns, there are more rooms for

the overall performance improvement.
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Fig. 9: The latency with the in-

crease of servers.

Fig. 10: The performance of hybrid work-

load on 10 servers with LUBM-10240.

Fig. 11: The latency with the

increase of GPU memory.

Fig. 12: The CDF of latency

for mixed heavy workload.

6.5 Scalability

We evaluate the scalability of Wukong+G with the in-

crease of servers. Since the latency of light queries of

Wukong+G mainly inherits from Wukong, We only re-

port the experimental results of heavy queries handled

by GPUs. As shown in Fig. 9, the speedup of heavy

queries ranges from 4.8X to 23.8X. As the number of

servers increases from 2 to 10, a good horizontal scala-

bility is shown. After a detailed analysis of the experi-

mental results, we reveal that there are two different fac-

tors improving the performance at different stages. In

the first stage (from 2 to 4 servers), the increase of total

GPU memory provides the main contribution to the per-

formance gains, ranging from 3.2X to 8.5X, by reducing

memory swapping cost. In the second stage (from 4 to

10 servers), since Wukong+G stops launching expensive

memory swapping operations when enough GPU mem-

ory is available, the main performance benefits come

from using more GPUs, ranging from 1.5X to 2.8X.

Discussion. With the further increase of servers, the

single query latency may not further decrease due to

fewer workload per server and more communication

cost. It implies that it is not worth making all resources

(GPUs) participate in a single query processing, espe-

cially for a large-scale cluster (e.g., 100 servers). There-

fore, Wukong+G will limit the participants of a single

query and can still scale well in term of throughput by

handling more concurrent queries simultaneously on dif-

ferent servers.

6.6 Performance of Hybrid Workloads

One principal aim of Wukong+G is to handle concur-

rent hybrid (light and heavy) queries in an efficient and

scalable way. Prior work [51] briefly studied the perfor-

mance of Wukong with a mixed workload, which con-

sists of 6 classes of light queries (Q4-Q6 and A1-A36).

The light query in each class has a similar behavior ex-

cept that the start point is randomly selected from the

same type of vertices (e.g., Univ0, Univ1, etc.). The

distribution of query classes follows the reciprocal of

their average latency. Therefore, we first extend origi-

nal mixed workload by adding 4 classes of heavy queries

6Three additional queries (A1, A2, and A3) are from the official LUBM

website (#1, #3, and #5).

(Q1-Q3, Q7), and then allow all clients to freely send

light and heavy queries7 according to the distribution of

query classes.

We compare Wukong+G (WKG) with two differ-

ent settings of Wukong: Default (WKD) and Isola-

tion (WKI). Wukong/Default (WKD) allows all worker

threads to handle hybrid queries, while Wukong/Isola-

tion (WKI) reserves half of the worker threads to han-

dle heavy queries. Each server runs two emulated clients

on dedicated cores to send requests. Wukong launches

10 worker threads, while Wukong+G launches 9 worker

threads and an agent thread. The multi-threading for

heavy queries is configured to 5. We run the hybrid

workload over LUBM-10240 on 10 servers for 300 sec-

onds (10s warmup) and report the throughput and me-

dian (50th percentile) latency for light and heavy queries

separately over that period in Fig. 10.

For heavy queries, Wukong+G improves throughput

and latency by over one order of magnitude compared

to Wukong (WKD and WKI). The throughput of WKD

is notably better (about 80%) than that of WKI, since it

can use all worker threads to handle heavy queries. For

light queries, Wukong+G performs up to 345K queries

per second with median latency of 0.6ms by 9 worker

threads. The latency can be halved with a small 10% im-

pact in throughput. As expected, WKI can provide about

half of the throughput (199K queries/s) with a similar la-

tency since only half of the worker threads (5) are used

to handle light queries. However, the throughput and la-

tency of WKD for light queries are thoroughly impacted

by the processing of heavy queries.

6.7 RDF Cache on GPU

To study the influence of GPU cache for the performance

of heavy queries on Wukong+G, we first evaluate the sin-

gle query latency using LUBM-2560 on a single server

with the GPU memory sizes varying from 3GB to 10GB.

We repeatedly send one kind of heavy queries until the

cache on GPU memory is warmed up, and illustrate the

average latency of heavy queries in Fig. 11. Since the

memory footprint of Q2 (2.4GB) is always smaller than

the GPU memory, the latency is stable, and there is no

data swapping. For Q3, although the memory footprint

7In prior experiment [51], only up to one client is used to continually

send heavy queries (i.e., Q1).
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Table 7: The latency (msec) of queries on DBPSB and YAGO2

DBPSB D1 D2 D3 D4 D5 Geo. M

Wukong 1.28 0.15 0.25 4.25 1.08 0.74

Wukong+G 0.53 0.16 0.26 0.99 0.52 0.41

YAGO2 Y1 Y2 Y3 Y4 Geo. M

Wukong 0.10 0.13 4685 752 14.6

Wukong+G 0.11 0.15 1856 398 10.5

of the query is about 3.6GB, the latency is still stable

since the history table becomes empty after the first two

triple patterns due to contradictory conditions, where

the rest predicate segment (about 1.1GB) will never be

loaded. For Q1 and Q7, the latency decreases with the

increase of GPU memory due to the decrease of data

swapping size. However, the break point of Q7 is later

than that of Q1 since it has a relatively larger memory

footprint (5.6GB vs. 3.6GB).

To show the effectiveness of sharing GPU cache by

multiple heavy queries, We further evaluate the perfor-

mance of a mixture of four heavy queries using LUBM-

2560 on a single server with 10GB GPU memory. As

shown in Fig. 12, the geometric mean of 50th (median)

and 99th percentile latency is just 84.5 and 93.8 mil-

liseconds respectively, under the peak throughput. Com-

pared to the single query latency (see Table 3), the per-

formance degradation is just 3% and 14%, thanks to our

fine-grained swapping and look-ahead replacing. Dur-

ing the experiment, the number and volume of blocks

swapped in per second are about 96 and 750MB.

6.8 Other Workloads

We further compare the performance of Wukong+G

with Wukong on two real-life datasets, DBPSB [1] and

YAGO2 [9]. As shown in Table 7, for light queries (D2,

D3, Y1, and Y2), Wukong+G can provide a close perfor-

mance to Wukong due to following the same execution

mode and a similar in-memory store. For heavy queries

(D1, D4, D5, Y3, and Y4), Wukong+G can notably out-

perform Wukong by up to 4.3X (from 1.9X).

7 RELATED WORK

Wukong+G is inspired by and departs from prior RDF

query processing systems [40, 58, 41, 12, 50, 13, 65, 60,

14, 61, 62, 23, 51, 32, 64], but differs from them in ex-

ploiting a distributed heterogeneous CPU/GPU cluster to

accelerate heterogeneous RDF queries.

Several prior systems [11, 12] have leveraged column-

oriented databases [53] and vertical partitioning for RDF

dataset, which group all triples with the same predicate

into a single two-column table. The predicate-based

grouping in Wukong+G is driven by a similar observa-

tion. However, Wukong+G still randomly (hash-based)

assign keys within the segment to preserve fast RDMA-

based graph exploration, which plays a vital role for run-

ning light queries efficiently on CPU.

Using prefetching and pipelining mechanisms are not

new, which have been exploited in many graph-parallel

systems [49, 35] and GPU-accelerated systems [37] to

hide the latency of memory accesses. Wukong+G em-

ploys a SPARQL-specific prefetching scheme and en-

ables such techniques on multiple concurrent jobs (heavy

queries) that share a single cache on the GPU memory.

There has been a lot of work [25, 24, 39, 26, 29,

27, 55, 46, 28] focusing on exploiting the unique fea-

tures of GPUs to accelerate database operations. Mega-

KV [63] is an in-memory key/value store that uses

GPUs to accelerate index operations by only saving in-

dexes on the GPU memory to ease device memory pres-

sure. CoGaDB [15, 16] uses a column-oriented caching

mechanism on GPU memory to accelerate OLAP work-

load. SABER [34] is a hybrid high-performance rela-

tional stream processing engine for CPUs and GPUs.

Wukong+G is inspired by prior work, while the differ-

ences in workloads result in different design choices.

To our knowledge, none of the above systems exploit

distributed heterogeneous (CPU/GPU) environment, let

alone using RDMA as well as GPUDirect features.

To reduce communication overhead between multi-

ple GPUs, NVIDIA continuously puts forward GPUDi-

rect technology [3], including GPUDirect RDMA and

GPUDirect Async (under development [6]). They en-

able direct cross-device data transfer on data plane and

control plane, respectively. Researchers have also in-

vestigated how to provide network [33, 21] and file sys-

tem abstractions [52] based on such hardware features.

Our design currently focuses on using GPUs to deal with

heavy queries for RDF graphs. The above efforts provide

opportunities to build a more flexible and efficient RDF

query system through better abstractions.

8 CONCLUSIONS

The trend of hardware heterogeneity (CPU/GPU) opens

new opportunities to rethink the design of query pro-

cessing systems facing hybrid workloads. This paper

describes Wukong+G, a graph-based distributed RDF

query system that supports heterogeneous CPU/GPU

processing for hybrid workloads with both light and

heavy queries. We have shown that Wukong+G achieves

low query latency and high overall throughput in the sin-

gle query performance and hybrid workloads.
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Abstract
The fast access to data and high parallel processing
in high-performance computing instigates an urgent de-
mand on the I/O improvement of the NVMe storage
within datacenters. However, unsatisfactory perfor-
mance of the former NVMe virtualization demonstrates
that NVMe storage devices are often underutilized within
cloud computing platforms. NVMe virtualization with
high performance and device sharing has captured the
attention of researchers. This paper introduces MDev-
NVMe, a new virtualization implementation for NVMe
storage device with: (1) full NVMe storage virtualization
running native NVMe driver in guest, and (2) a mediated
pass-through mechanism with an active polling mode
which can achieve both high throughput, low latency per-
formance and a good device scalability. This paper sub-
sequently evaluates MDev-NVMe on Intel OPTANE and
P3600 NVMe SSD by comparison with the mainstream
virtualization mechanisms using application-level I/O
benchmarks. With polling, MDev-NVMe can demon-
strate a 142% improvement over native (interrupt-driven)
throughput and over 2.5 × the Virtio throughput with
only 70% native average latency and 31% Virtio average
latency with a reliable scalability. Finally, the advantages
of MDev-NVMe and the importance of polling are dis-
cussed, offering evidence that MDev-NVMe is a superior
virtualization choice with high performance and promis-
ing levels of maintenance.

1 Introduction
NVM Express (NVMe) [21] is an inherently parallel,
high-performing interface and command set designed for
non-volatile memory based storage. NVMe devices have
been designed from a logical device interface where stor-
age media is attached via a PCIe bus [26]. NVMe SSDs
can deliver I/O operations with a very high throughput
performance on the low latency, making them the supe-
rior storage choices for data-intensive datacenters to ob-
tain high performance computing in cloud services [2, 5].

Currently, NVMe SSDs are also used to accelerate I/O
missions between system storage and other PCIe devices,
such as GPUs on graphics cards [7]. However, because
of imbalanced requirements of applications in high per-
formance platforms, NVMe devices are often underuti-
lized in terms of I/O performance [19, 22, 17]. NVMe
devices in datacenters require solutions to achieve high
performance and sharing capabilities [31].

I/O virtualization [13, 24] is a key component of cloud
computing, which not only optimizes utilization of phys-
ical resources, but also simplifies storage management,
providing a simple and consistent interface to complex
functions. Typical cases of NVMe virtualization in-
clude VM boot disk and server side caching of VM data.
With respect to NVMe devices, limited PCIe slots make
NVMe virtualization essential in datacenters with high
density so that the benefits of NVMe devices can be
shared among the VMs.

Recently, NVMe virtualization [33, 28, 3] has become
widely studied by computer scientists and researchers.
Keeriyadath [16] summarizes three of the NVMe virtual-
ization approaches; implementing SCSI to NVMe trans-
lation layer on the hypervisor (blind mode), pure virtual
NVMe stack by distributing I/O queues amongst hosted
VMs (Virtual Mode), and SR-IOV [11] based NVMe
controllers per virtual functions (physical mode). Mod-
ern virtualization solutions for NVMe Storage such as
Virtio [23], Userspace NVMe driver in QEMU [34] and
Storage Performance Development Kit (SPDK) [15] are
implemented in the userspace of the Linux system. How-
ever, these mechanisms have their respective shortcom-
ings: the performance of VMs with Virtio and Userspace
NVMe driver in QEMU are considered poor compared
with native drivers. At the same time SPDK must col-
laborate with “Hugepage” memory which adds further
pressure to the memory resources of the host server.

Observing that mediated pass-through [30] has been
gradually recognized as an effective solution for I/O vir-
tualization [12, 27], concurrently the Linux kernel has

USENIX Association 2018 USENIX Annual Technical Conference    665



introduced a mediated device framework which supports
such usage since 4.10 [25]. Therefore, it is proposed
that implementing an effective NVMe virtualization us-
ing mediated pass-through is an appropriate methodol-
ogy. The detail of MDev-NVMe design is that a full
virtualization is proposed which enables VMs running
with a native driver, and a MDev-NVMe module with
device emulation, admin queue emulation, and also with
I/O queue shadow. To improve the VM performance, an
active polling mode for queue handling is proposed. As a
result, this design is then built for the experiments on Fio
[4] benchmarks by undertaking comparison experiments
between mainstream NVMe virtualization solutions. The
proposed design can achieve up to 142% improvement of
througerhput with 70% average latency over native per-
formance, and also performs well regarding scalability
and flexibility. Also, the experiments are performed on
different I/O blocksizes and provide suggestions on se-
lecting appropriate blocksizes for NVMe virtualization.
At last, the discussion of optimization on active polling is
undertaken in the final section, which also provides sug-
gestions on the future design of virtualization and high-
performance storage.

In summary, this paper makes the following contribu-
tions:

(1) We introduce a full NVMe virtualization solution
MDev-NVMe with mediated pass-through that runs the
native NVMe driver in each guest.

(2) We demonstrate details of emulation of Admin
queues and shadow of I/O queues in the mediated pass-
through which can pass-through performance-critical re-
sources accesses in NVMe storage.

(3) We design an active polling for shadow SQ and
CQs and host CQs in NVMe to achieve better perfor-
mance over native devices.

(4) We do further comparison evaluations of over-
all performance on throughput, average latency, QoS
between MDev-NVMe and other virtualization mecha-
nisms. We analyse the influence of blocksizes on perfor-
mance and give suggestions for NVMe virtualization to
choose blocksizes in different I/O scenarios.

(5) We discuss both MDev-NVMe’s performance and
maintenance advantages over former virtualization And
we discuss the active polling optimization in virtualiza-
tion and give suggestions on polling support in the design
of virtualization and storage hardware.

The rest of this paper is organized as follows. A back-
ground of NVMe storage protocol and the motivation
on NVMe virtualization are provided §2. The design
is demonstrated and implementation details of MDev-
NVMe are detailed in §3. The results of the compari-
son evaluations between MDev-NVMe and other mech-
anisms are located within §4. There is a discussion on
polling in §5. §6 details related developments, and finally

the conclusion is located in §7.

2 Background and Motivation
2.1 NVMe Storage Protocol

For a long time, SATA (Serial ATA) has been used
as the interface for traditional storage devices such as
Hard Disk Drives (HDD) and a number of Solid State
Drives(SSD). Despite the fact that SATA is enough for
a rotational storage, the SATA interface cannot meet the
requirement of modern storage devices. This is because
of the requirement to provide a much higher I/O through-
put due to the limitation of Advance Host Controller In-
terface (AHCI) architecture design in SATA interface.
To resolve the I/O performance bottleneck, the NVMe
protocol was designed and developed with a PCIe in-
terface instead of SATA [21]. Generally, to accelerate
the I/O speed of SSD, NVMe protocol optimized com-
mand issues between the host system and the storage de-
vices, compared with the traditional ATA AHCI protocol.
Concurrently, it includes support for parallel operations
by supporting up to 64K commands within a single I/O
queue to the device [21].

Here are some basic definitions in NVMe protocols.
NVMe defines two main types of commands: Admin
Commands and I/O Commands. In I/O operations,
commands are placed by the host software into the Sub-
mission Queue (SQ), and completion information re-
ceived from SSD hardware is then placed into an associ-
ated Completion Queue (CQ) by the controller. NVMe
separately designs SQ and CQ pairs for any Admin and
I/O commands respectively. The host system maintains
only one Admin SQ and its associated Admin CQ for the
purpose of storage management and command control,
while the host can maintain a maximum of 64K I/O SQs
or CQs. The depth of the Admin SQ or CQ is 4K, where
the Admin Queue can store at most 4096 entries, while
the depth of I/O Queues is 64K. SQ and CQ should work
in pairs, and normally one SQ utilizes on one CQ or mul-
tiple SQs utilize the same CQ to meet the requirements
of high performances in multithread I/O processing. A
SQ or CQ is a ring buffer and it is a memory area which
is shared with the device that can be accessed by Direct
Memory Access (DMA). Moreover, a doorbell is a reg-
ister of the NVMe device controller to record the head or
tail pointer of the ring buffer (SQ or CQ).

A specific command in a NVMe IO request contains
concrete read/write messages and an address pointing to
the DMA buffer if the IO request is a DMA operation.
Once the request is stored in a SQ, the host writes the
doorbell and kicks (transfers) the request into the NVMe
device so that the device can fetch I/O operations. Af-
ter an IO request has been completed, the device will
subsequently write the success or failure status of the
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request into a CQ and the device then generates an in-
terrupt request into the host. After the host receives the
interrupt and processes the completion entries, it writes
to the doorbell to release the completion entries.

2.2 Motivation
High-performance cloud computing applications have
raised great demands on the I/O performance of modern
datacenters. The I/O virtualization is widely deployed
in datacenter servers to support the heavy data trans-
mission and storage tasks within cloud computing work-
loads. The virtualization for the new high-performance
storage devices NVMe is a concentration point of I/O
virtualization in cloud computing. This is because the
NVMe devices can demonstrate great performance ad-
vantages over the traditional devices on the native host
servers. There have been a number of previous success-
ful NVMe virtualization solutions including VM boot
disk and server side caching of VM data, both of which
prove that NVMe is well suited for exploitation in vari-
ous virtualization. To ensure all the VMs in cloud com-
puting servers share the benefits of NVMe devices from
the basic I/O virtualization has become essential in vir-
tualization research for NVMe. The NVMe devices in
VMs provides some basic requirements for the virtual-
ization mechanisms:

High Throughput: The throughput performance of
NVMe storage is the most important performance feature
due to the requirements for both quick data access and
parallel processing of cloud computing services. The vir-
tualization mechanism needs to ensure the high perfor-
mance of the NVMe devices in VMs, so the throughput-
intensive services can work increasingly efficiently.

Low Latency: From previous research, the unloaded
read latency of NVMe SSD storage is 20-100µs [9].
Storage virtualization mechanisms usually cause latency
overhead in VMs because the high frequency of I/O op-
erations will bring large numbers of context switches.
To satisfy latency-sensitive applications in cloud com-
puting services, NVMe virtualization should suffer a low
latency overhead.

Device Sharing: Modern high-performance datecen-
ter servers often support large numbers of VMs for sepa-
rate cloud computing services. The limited NVMe stor-
age devices should be shared by different VMs which
can show great scalability. With device sharing, differ-
ent VMs can work with high-performing NVMe without
interference between each other, and the statuses of dif-
ferent VMs need to be managed by the hypervisor. Also,
supporting VM live migration [32] is also an impor-
tant requirement on the virtualization mechanism, which
greatly relies on device sharing features. Also, the tail
latency in VMs shows the QoS of device sharing among
different VMs.
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Figure 1: NVMe virtualization comparisons.

The comparisons between Virtio and VFIO and our de-
sign are displayed in Fig. 1. The previous NVMe stor-
age virtualization Virtio and Virtual Function I/O (VFIO)
[29] both have their shortcomings: Virtio uses the orig-
inal virtio-blk [20] driver and it has no specific opti-
mization for NVMe. Consequently, Virtio suffers readily
apparent overhead from software layers which originate
from guest OS to the NVMe devices, including the Vir-
tual File System (VFS), block layer and I/O scheduler.
Whereas in Virtio, the throughput and latency in VMs
can only meet 50% of the native performance.

On the other hand, VFIO method can use direct pass-
through [1, 10] to assign the entire NVMe device to a
single VM, therefore VFIO can not meet the require-
ments of device sharing despite its near-native perfor-
mance on both latency and throughput. Also, with di-
rect pass-through, the information of virtual NVMe can
not be managed by the hypervisor so it cannot support
migration.

As shown in Fig. 1(c), the mediated pass-through vir-
tualization is a full virtualization mechanism which com-
bines both the advantages of the two former mechanisms,
and it requires no modification to guest OS kernel and
these guests can use the raw NVMe drivers. A “VFIO-
MDev” interface is implemented for each individual VM
to cooperate with QEMU [6] to support device sharing
between multi VMs, which “VFIO-MDev” can emulate
all the PCIe device features for each guest NVMe de-
vices. In order to guarantee a near-native I/O perfor-
mance in mediated pass-through, the direct concept of
the proposed MDev-NVMe is to optimize VFIO by mod-
ifying the raw NVMe driver into the MDev-NVMe driver
in Linux kernel, so that it can pass-through basic units of
I/O operations as many as possible. As a result, all the
statuses of physical and virtual queues can be managed
by the MDev-NVMe module, and any file system on the
host kernel is unnecessary, which helps reduce the soft-
ware stack overhead. In general, a mediate pass-through
is a superior choice which can meet all the essential goals
of NVMe virtualization.
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3 Design and Implementation
Cloud applications demand on high performance NVMe
storage devices in modern datacenters. To meet both
low latency and high throughput performance goals and
support a sharing policy on NVMe devices, we design a
mediated pass through virtualization mechanism: MDev-
NVMe.

3.1 Architecture
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Figure 2: Architecture of MDev-NVMe.
The mediated pass-through virtualization is a full vir-

tualization mechanism which combines both advantages
of the two former mechanisms Virtio and VFIO. At the
same time, it requires no modification to the guest OS
kernel so the guest kernel can use the raw NVMe drivers.
From the aspect of the architecture, Virtio provides a
full device emulation with the virtio-blk front end driver
which suffers an apparent performance overhead from
software layers. And VFIO passes through the entire
device to one VM with no sharing features. Therefore,
the mediated pass-through selectively emulates or pass-
throughs basic I/O units of the NVMe I/O operations.
To accelerate the I/O operations and reduce the unnec-
essary frequent “vm-exit”, we pass through I/O SQs and
CQs with a queue shadow instead of I/O queue emula-
tion. The access of DMA buffers in NVMe devices can
be dealt similar to other PCIe devices.

The brief introduction of the architecture is shown in
Fig. 2. From the architecture, we offer a full virtual-
ization method, so all guests require no modification to
raw NVMe drivers and can utilize all the basic NVMe
commands. The MDev-NVMe is a kernel module within
the Linux host system which offers three important func-
tions: the basic PCI device emulation, Admin queue em-
ulation and I/O queue shadow with DMA & LBA trans-
lation. Also, in MDev-NVMe, the DMA buffer in NVMe
devices can be accessed by VMs as normal PCIe devices,
which is similar to direct pass-through. All the guests co-
operate with these three important functions.

Device Emulation: MDev-NVMe allows that all the
guests need no modification to the native NVMe driver
in kernels, so each guest can access a virtual NVMe de-
vice with the PCIe bus. So the MDev-NVMe module
should emulate all the features of the NVMe devices

for each VMs. The details of PCIe device emulation
based on“VFIO-MDev” which is similar with the origi-
nal “VFIO-pci”: we emulated PCI registers such as BAR
and other PCI configurations, and emulated NVMe reg-
isters and logic of guest device. The emulated interrupts
contain INTx, MSI, and MSI-X.

Admin Queue Emulation: In NVMe protocol, there
is only one pair of Admin SQ and CQ, while there can
be up to 65535 pairs of I/O SQs and CQs. When differ-
ent VMs generates I/O SQ and CQ at the same time, the
only pair of Admin SQ and CQ in the host kernel should
be able to handle the sharing and scheduling between the
VMs. So we need device emulation for the Admin Queue
so that all the guests can manage their NVMe I/O opera-
tions in the emulated pair of Admin Queue, and MDev-
NVMe will finally parse the virtual Admin commands
into physical Admin commands.

I/O Queue Shadow: Since there can be up to 64K
I/O queues in a NVMe device instead of only one pair,
I/O queues do not require device emulations. In our ar-
chitecture, all the guest I/O commands in virtual queues
can be passed through into the shadowed physical queues
with the DMA & LBA translation. The guest I/O com-
mands are directly executed by the device as the same as
host commands after command translations, which can
apparently reduce the overhead through emulation.

DMA Buffer Access: Similar to other PCIe devices,
the host DMA engine can directly manage the memory
addresses of the DMA buffer in guest NVMe storage de-
vices, just like the VFIO pass-through. The DMA fea-
ture is necessary at any time that the CPU cannot main-
tain the rate of data transfer required, or when the CPU
needs to perform work while waiting for a relatively slow
I/O data transfer. The frequent I/O operations on NVMe
storage devices cause a high rate of data transfer, and
MDev-NVMe can overcome the CPU overhead of fre-
quent “vm-exit” when accessing device memory.

3.2 Queue Handling
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Figure 3: A brief introduction to queue handling.

We separately design queue handling mechanism for
Admin Queues and I/O Queues, as shown in Fig. 3.

When more than one virtual machine runs on the host,
they all maintain one pair of virtual Admin SQ and CQ
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in their guest OS as native. Therefore, the only physi-
cal pair of Admin SQ and CQ must be shared among the
virtual machines. Concretely, MDev-NVMe usually ex-
amines the virtual Admin Queue to check the commands.
If the guest Admin commands wants to create guest I/O
queues, the MDev-NVMe module can directly create
corresponding physical I/O queues in the host kernel. If
guest Admin commands only want to check and manage
the information of the I/O status and device information
without attaining the concrete features and parameters of
the NVMe devices. The MDev-NVMe module can di-
rectly write or update information from the NVMe door-
bell register with Memory-Mapped I/O (MMIO) opera-
tion. The majority of the Admin queue operations are
accomplished in the initialization process of virtual ma-
chines, so the Admin queue emulation will not become
the bottleneck location of the NVMe I/O performance.

Compared with Admin queues, we use a more con-
venient pass-through mechanism for guest I/O SQs and
CQs, where we make a queue shadow from the guest
queues to the host queues. NVMe devices have more
than one pair I/O SQs and CQs, so I/O queue shadow is
feasible in MDev-NVMe virtualization. In host kernel,
I/O queues are separately bound with physical cores of
the server and interrupts of the submission and comple-
tion of each I/O commands from queues are trapped by
the corresponding cores to accelerate I/O operation. To
improve performance in MDev-NVMe VMs, we can also
bind the guest I/O queues with the host CPU resources by
shadowing guest I/O queues and host I/O queues by pro-
viding a simple DMA & LBA translation, which is intro-
duced in the §3.3. Once the guest writes or updates an I/O
command, the MDev-NVMe module will directly writes
translated commands into shadowed physical queues and
updates the device doorbell register with MMIO. When a
guest I/O operation completes in the corresponding phys-
ical queue, the device will generate an interrupt into the
host kernel, and also our MDev-NVMe module gener-
ates an interrupt into the guest kernel after checking the
DMA & LBA translator. With queue shadowing, the
handling of interrupts of the guest virtual queues is ac-
tually the handling of interrupts of shadowed physical
queues, where we make full use of the bound CPUs (by
physical queues) to accelerate the interrupt handling.

3.3 DMA & LBA translation
As we demonstrated in the architecture figure in §3.1,
a guest I/O queue are shadowed with a correspond-
ing physical I/O queue in a DMA & LBA translator to
achieve resource partitioning and better I/O performance.
After translation, a virtual I/O queue id are bound with a
physical I/O queue id, and the translation result will be
stored in a translation table which is maintained in the
host kernel. The translation process is based on the Intel

Extension Page Table (EPT) support for memory trans-
lation, so that we can maintain a translation table cache
when multiple VMs create large numbers of virtual I/O
queues and the limited physical queues must be shared.

The DMA & LBA translation are based on the static
partition strategy, where all VMs are assigned with part
of the continuous space of the NVMe device at the ini-
tialization process. Specifically, the translation unit in
an I/O command is the data pointer which points to a
DMA buffer. The address is a Guest Physical Address
(GPA). The MDev-NVMe module use vfio pin pages to
translate the GPA to HPA (Host Physical Address) and
pin the DMA buffer in host memory. Specifically, the
vfio pin pages can ensure the isolation of the guest mem-
ory between different virtual machines. Since all the
translations are under control of the translator in MDev-
NVMe module, a malicious VM cannot access the phys-
ical I/O queues which is not assigned to itself and can not
access the I/O queues in other VMs either. The command
buffer is also protected by the EPT, which helps to ensure
the security of DMA buffers of different VMs. Another
important unit of the I/O operation is the Start Logical
Block Address (SLBA). Since our MDev-NVMe virtu-
alization takes a static partition mechanism, the SLBA
in guest I/O command can be modified and subsequently
copied into the host I/O queue by applying a space area
offset, which are also managed by MDev-NVMe module
in host kernel.

3.4 2-Way Polling Mode
With the mediated pass-through mechanism, the NVMe
devices can achieve a performance better than Virtio.
However, the performance in VMs still show an obvious
gap compared with the native platform in experiment ob-
servation. The I/O bottleneck results from frequent sub-
missions and completions of guest I/O commands, so we
discuss the detailed origin of overhead in Fig. 4.
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Figure 4: A guest I/O operation process in two modes.

Fig. 4 shows entire processes of a guest NVMe I/O
command operation in “non-polling” or “polling” mode.
Generally, the submission latency from the host kernel
to the physical NVMe device is inappreciable, which is
less than 10 µs in our observations from experiments.
However, the guest I/O commands suffers seriously from
two part overhead: (1) when the guest I/O commands
are translated and submitted to the corresponding phys-
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ical queues through an MMIO operation it will result in
a “vm-exit”, (2) when handling interrupts generated by
physical device when updating a doorbell register with a
completion of physical I/O queue.

To overcome the two-part overhead, a direct idea is to
change the trap of interrupts into an active polling mech-
anism in the 2-way overhead. First, the shadowed door-
bell of guest SQ or CQ can be stored in host memory
area so that MDev-NVMe can directly manage all the
guest I/O operations and update the NVMe queue status.
With polling, we polls guests to write into the shadow
doorbells instead of generating an MMIO into the host.
Also, we disables interrupt integration of host CQs into
guests and adopts polling new completion entries from
the host CQs. As a result, the shadow SQ tail door-
bell, the shadow CQ head doorbell, and the host CQ are
all stored in the host memory, and they can be directly
fetched and immediately updated by the polling threads.

Now in our MDev-NVMe, we use 3 threads for in-
dividually polling the shadow SQ tail doorbells, the
shadow CQ head doorbells, and the host CQs so that we
can get even better performance of I/O queue handling
than native platform in the host kernel, which is shown in
§4, while using 1 thread with round-robin polling of mul-
tiple queues cannot provide corresponding performance.
The threads will bring 100% usage of 3 cores on the host
server. And the polling threads can be shared between
VMs.
4 Experiments
To demonstrate the I/O performance of virtual machines
of our mediated pass-through virtualization mechanism,
we run fio [4] I/O benchmark experiments in Linux vir-
tual machines based on the comparison between dif-
ferent virtualization mechanisms, including Virtio, famz
userspace driver, SPDK vhost-scsi, and SPDK vhost-blk.
The performance of MDev-NVMe and the other 4 mech-
anisms are compared and normalized with the native per-
formance on the physical devices. For Throughput per-
formance, MDev-NVMe shows the best bandwidth per-
formance among all the virtualization mechanisms and
can provide up to 1.5× native performance. For Latency
performance, MDev-NVMe presents the lowest average
latency, and can give a bounded maximum latency with a
reliable QoS performance. Also, the tail latency perfor-
mance of MDev-NVMe is also outstanding among all the
comparison experiments. In the meanwhile, our MDev-
NVMe scales well without a visible performance drop.
4.1 Configuration
The evaluation concentrates on achieving the I/O perfor-
mance of NVMe Storage devices and demonstrating the
advantages and disadvantages of different virtualization
methods, including Virtio, Famz userspace driver, SPDK
vhost-scsi, and SPDK vhost-blk. Experiments on differ-
ent concrete NVMe SSD products show different results

and give us more insights. Nowadays, the most advanced
NVMe Storage Device is based on Intel OPTANE Tech-
nology with 3D XPoint Memory media. The OPTANE
SSD has an amazing performance which can support up
to 550K IOPS in 4K random read and 500k IOPS in 4K
random write with a 10µs latency. So we first build
our experiment environment on the OPTANE SSD DC
P4800X 375G NVMe SSD, and the server hardware plat-
form includes 2 Intel Xeon CPU E5-2699 v3 with 18
CPU cores (2.3GHz), 64GB system memory. Besides,
we also do the same experiments on a more commonly
used NVMe SSD: INTEL SSD DC P3600 400G, running
on the server which includes 2 Intel Xeon CPU E5-2680
v4 with 14 CPU cores (28 threads) (2.4GHz), 64GB sys-
tem memory.

We run 64bit Ubuntu 16.04 with a 4.10.0 kernel with
our MDev-NVMe kernel module in the host server, and
64bit Debian 9.0 with a 4.10.0 kernel in the guests. Each
virtual machine is allocated with 4 VCPUs and 8GB sys-
tem memory. To get the best I/O performance in compar-
ison experiments, we set up 1-VM case which the single
virtual machine can get the entire volume. To discuss
the scalability of MDev-NVMe sharing, we partition the
NVMe SSD with 4 60G area into 4 individual VMs.

We use the flexible I/O tester (FIO) [4] as our applica-
tion evaluation benchmark. FIO is a typical I/O bench-
mark with different parameters to demonstrate the IO
performance, and it is widely used in research and in-
dustries. Specifically, we take libaio as the fio engine
and we run 5 groups of test scripts in Table 1, including
the random read or write with “iodepth=1”, the random
read or write with “iodepth=32”, and the 70% random
read and 30% random write. The FIO test doesn’t use
any file system and chooses “O DIRECT” parameter for
Direct I/O experiments.

Table 1: Fio test cases
Test case Description
rand-read-qd1 4K random read, iodepth=1, numjobs=1
rand-write-qd1 4K random write, iodepth=1, numjobs=1
rand-read-qd32 4K random write, iodepth=32, numjobs=4
rand-write-qd32 4K random write, iodepth=32, numjobs=4
rand-rw-qd32
read 70%

4K random read, iodepth=32, numjobs=4

rand-rw-qd32
write 30%

4K random write, iodepth=32, numjobs=4

4.2 Throughput Performance
We first concentrate on the throughput performance of
I/O operations on OPTANE and P3600. The basic
throughput benchmark concentrates on the 4K page ran-
dom read and write. Fig. 5(a) and Fig. 5(b) are the
corresponding IOPS results on the OPTANE and P3600
NVMe SSDs. The results in these figures contain two
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parts: the upper part is the normalized performance re-
sults based on the native performance baseline, and the
bottom part is the original benchmark IOPS results. On
OPTANE, the MDev-NVMe mechanism shows the best
throughput performance with or without I/O multi-queue
optimization(“iodepth=1” or “iodepth=32”) over all the
other virtualization mechanisms. With the active polling
for I/O queues, MDev-NVMe can make full use of multi-
queue features in 4K random read and write I/O bench-
marks with “iodepth=32”, where MDev-NVMe shows
up to 142% performance over native results. Since the
SPDK vhost-scsi and SPDK vhost-blk mechanisms uti-
lize similar idea of polling, they can also achieve better
performance than native results. On P3600 NVMe SSDs,
MDev-NVMe show the best performance although the
advantages are not as obvious as the OPTANE exper-
iments. Moreover, the throughput performance of 4K
random write with multi-queue optimization presents an
apparent gap compared with the 4K random read with
multi-queue optimization, as we shown in the bottom
part of Fig. 5(b).

In this group of experiments, different virtualiza-
tion mechanisms show well-matched performance ex-
pect SPDK vhost-blk, which shows that SPDK vhost-blk
optimization does not works efficiently on P3600.
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Figure 5: Throughput performance of IOPS.

4.3 Latency Performance
We also focus on the latency of I/O operations in virtual
machines based on different NVMe virtualization mech-
anisms. We particularly discussed the average latency,
max latency and the tail latency on different virtualiza-

tion mechanisms in our latency experiments. Specifi-
cally, the latency measured in our fio experiments con-
tains both submission latency and completion latency.

4.3.1 Average Latency
Firstly, the average of latency performance in bench-
marks are demonstrated in Fig. 6(a) and Fig. 6(b).
Also the upper part is the normalized performance results
based on the native performance baseline, and the bottom
part is the original latency results. The average latency
performance can show the average operation overhead of
each I/O commands in NVMe devices through the soft-
ware stack of virtualization.
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Figure 6: Average latency performance.

As we talked in the former section, the mediated pass-
through takes advantage of the VFIO pass-through mech-
anisms and it overcomes the block layer and Backend
software stack. When there is no multi-queue optimiza-
tion [8, 18], all the virtualization mechanism shows no
apparent advantage over the native latency performance.
The MDev-NVMe, SPDK vhost-scsi and SPDK vhost-
blk can show 2× latency performance over the Virtio
and Famz userspace driver, and the original latency in-
tervals between native performance and MDev-NVMe
is nearly 10 µs, which is at the level of the latency
from the host to physical NVMe devices. In multi-
queue experiments where “iodepth=32”, the native la-
tency increase to 322 µs which is about 30× the re-
sult with “iodepth=1”. However, in multi-queue bench-
marks, Mdev-NVMe show the best performance and can
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achieve only 81% of the native performance. MDev-
NVMe shows over 2.5× advantages over Virtio and
Famz drivers, and the advantages over SPDK vhost-scsi
and SPDK vhost-blk are not far but obvious. On P3600,
MDev-NVMe can show great results on all the test cases,
except the random write with “iodepth=32” benchmark
where all the virtualization performance results are simi-
lar. Similar to the throughput benchmarks, SPDK vhost-
blk does not show the optimization results as those on
OPTANE.

In general, MDev-NVMe can achieve the best aver-
age latency performance, so our mediated pass-through
mechanism has overcome utmost software layer I/O
overhead.

4.3.2 QoS

To talk about the QoS performance of the NVMe de-
vices in virtual machines, we concentrate on the max-
imum latency and tail latency performance in different
benchmark test cases.
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Figure 7: Maximum Latency performance.

Firstly, the max of latency performance in benchmarks
is demonstrated in Fig. 7(a) and Fig. 7(b). For Qos per-
formance, our MDev-NVMe shows well-matched per-
formance of the maximum latency with Virtio on both
OPTANE and P3600. Also, the normalized maximum
latency performance of MDev-NVMe can be less than 1,
showing the latency performance can be bound in a very
low level. In this part of experiments, SPDK vhost-scsi

and SPDK vhost-blk can not offer a well-matched perfor-
mance with Virtio and MDev-NVMe on both Optane and
P3600. Specially, Famz userspace NVMe driver cannot
bound its maximum latency in an acceptable level be-
cause in Fig. 7(b), the maximum latency of random read
with “iodepth=32” is 2499k µs. Also, SPDK vhost-blk
present a straggler QoS performance on P3600 when do-
ing the random write with “iodepth=32” benchmarks.
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Figure 8: Tail Latency performance.
And we also present the tail latency performance in

Fig. 8(a) and Fig. 8(b) with a logarithmic scale coor-
dinate of the latency results. From the figures, MDev-
NVMe can bind the 50th and 99th latency performance
in similar level. We also compare 99th, 99.99th and
99.999th tail latency in different virtualization mecha-
nisms. MDev-NVMe has the smallest intervals between
99th, 99.99th and 99.999th latency compared with other
virtualization mechanisms. In general, MDev-NVMe
can provide a promising QoS performance of NVMe vir-
tualization.

4.4 Scalability

Our mediated pass-through mechanism can provide de-
vice sharing over a NVMe SSD on the initialization pro-
cess of virtual machines with a static partition of the de-
vice. We design an experiment by separately running 1
VM, 2VMs, and 4VMs and evaluating the virtual NVMe
I/O performance to discuss the scalability. In our experi-
ment, each VM manages a 60G continuous storage area
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by the unmodified guest driver. Fig. 9 presents the rela-
tive scalability performance results of MDev-NVMe on
the P3600 NVMe device with the scripts in Table 1, and
each result is the sum of all throughput in all VMs. As
we talked about in the former section, the random write
performance is not well-matched with the random read
performance. When increasing VMs in the benchmark
with “iodepth=1”, the performance of 4K random read
can increase by the numbers of VMs because the NVMe
read performances are not fully exerted when there is no
multi-queue optimization [8, 18]. In the other test cases,
since the I/O queue resource has been fully used, the
I/O performance stays in a stable status when VMs in-
crease from 1 to 4. Since the basic units of NVMe I/O
operation are the SQs and CQs, and the performance in
VMs is strictly connected with the number of queues as-
signed for them. As a result, when the number of VMs
increases, the assignment of limited I/O queues becomes
the bottleneck of scalability. When the queue depth is
small, setting up more VMs can utilize make better use of
queue resource. When the queue depth is large, MDev-
NVME can guarantee that multi VMs can work together
without performance obvious drop. So we can conclude
that MDev-NVME can ensure a promising scalability.
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Figure 9: IOPS performance of multi VMs on P3600.

4.5 Influence of I/O Blocksize
The former experiments are based on the 4K random read
or write benchmarks, which are concentrated points of
test cases on different storage devices. Moreover, the I/O
blocksize can explicitly influence the performance of de-
vices wherever on the native devices or in virtual ma-
chines. As a result, we want to take the blocksize param-
eter of I/O performance into consideration to give a law
of performance varying with different blocksizes, and we
can also give more suggestions for different NVMe vir-
tualization mechanisms to make a right choice of block-
sizes in different I/O scenarios.

We run the fio test cases with multi-thread optimiza-
tion (“iodepth=32”) which are the last four test cases
presented in Table 1. We chose 10 groups of blocksize
parameters in each group of random read of write exper-
iments on OPTANE (512B, 1K, 2K, 4K, 8K, 16K, 64K,
512K, 1M, 4M). The results of the influence of block-
sizes on bandwidths are presented in Fig. 10(a), 10(b)

,and 10(c). We only chose the native, MDev-NVMe,
and SPDK vhost-blk experiments as a comparison since
MDev-NVMe and SPDK vhost-blk show the best 4K
I/O performance based on our prior experiments on OP-
TANE. In Fig. 10, the variation trends of the influence
of blocksizes on bandwidths in the three sub figures ba-
sically agree with each other. When the blocksizes are
smaller than 4K, the throughput performance improve
with the blocksize parameter and the high throughput
performance are not fully exerted. These is because the
NVMe I/O queues can be 64K large at most and when
the blocksize is too small and the device is not fully oc-
cupied, resulting in a I/O queue resource waste. Also the
throughput performance can be continuously improved
with the growing blocksize on native devices, but the per-
formance results of MDev-NVMe and SPDK shows ap-
parent declines when the blocksize is larger than 512K.
The reason for this performance drop is that when the
I/O blocksize is too large, then transmission of an I/O
block may be automatically separated by the hypervisor
and these separations bring an appreciable overhead. A
single I/O command of such a large block needs cooper-
ation of several I/O queues and the scheduling of queues
will become a performance bottleneck.

Also, we demonstrate the average latency performance
of native, MDev-NVMe, and SPDK vhost-blk experi-
ments in Fig. 11(a), 11(b), and 11(c). We use the a log-
arithmic scale coordinate to present the average latency
experiment results in the three sub figures from Fig. 11.
The variation trends of the influence of blocksizes on av-
erage latency performance in the three sub figures agree
with each other as well as the throughput performance re-
sults. The average latency slightly decreases from 512B
to 4K and then progressively increases from 4K to 4M.
The MDev-NVME and SPDK can all bind their aver-
age latency performance in the same order of magnitude
as the native performance. When the blocksize ≤ 16K,
the average latency performance is in the level of several
hundred µs. When the blocksize is chosen as 64K, 512K,
1M and 4M, the average latency performance increases
exponentially by the magnitude. The main reason for
this unacceptable latency are mainly resulted by the I/O
block separations and the overhead waiting for all queue
competitions.

In general, the throughput performance is good when
blocksizes is bigger than 4K while the average latency
performance will become unacceptable when the block-
size is bigger than 64K. Our MDev-NVMe can provide a
stable and excellent performance of both throughput and
latency when choosing blocksizes as 4K, 8K, and 16K,
and the performance is better than SPDK and native per-
formance. To support more optional blocksize with the
high performance, we would give a more efficient I/O
queue scheduling in our future works.
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Figure 10: The throughput of I/O bandwidth on different blocksizes on OPTANE NVMe device.
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Figure 11: The average latency of I/O operation on different blocksizes on OPTANE NVMe device.

5 Discussions
In this section we discuss the advantages of MDev-
NVMe over other virualization mechanisms, the over-
head issues, and the importance of active polling in vir-
tualization.

Advantages of MDev-NVMe: As we demonstrated
in §4, MDev-NVMe presents outstanding performance
on throughput, average latency, and QoS. Furthermore,
the data from the experiments suggests the performance
in VMs can be even better than a native device. In
our comparison experiment, MDev-NVMe can achieve
over 2.5× throughput performance of Virtio and Famz,
and achieve less than 31% average latency of Virtio
and Famz. SPDK vhost-scsi and vhost-blk can pro-
vide a promising performance, slightly inferior to MDev-
NVMe. However, SPDK needs Hugepage memory and
additionally the setting up of a SPDK vhost device on the
NVMe device, so it may restrict the flexibility of phys-
ical NVMe devices. Our MDev-NVMe is implemented
as a kernel module, offering more convenience for cloud
administrators and users with its better maintenance than
SPDK, and MDev-NVMe brings no memory overhead.

Overhead issues: The shadow of guest I/O queues
to physical queues is determined by the MDev-NVMe
module. The scheduling of I/O queues is based on a
simple FIFO policy. When aggressive I/O tasks in VMs
are competing for the limited physical queues it can in-
crease the scheduling overhead in the host and will lead
to some problems in the balancing of requests. Here,
a increasingly complicated scheduling algorithm is im-
plemented or a queue resource ballooning methodology
could be used in future work to overcome the potential

overhead in heavy I/O workloads. To overcome the I/O
performance bottleneck results from the high frequency
vm-exit of guest I/O commands, an additional CPU re-
source is used for polling in order to accelerate the inter-
rupt operations. A polling thread aggressively utilizes the
CPU resource of a single core, which transfers overhead
to the host server when running large numbers of VMs.
However, the proposed system ensures no CPU resource
overhead to VMs since all the guests use native NVMe
drivers which are not aware of the polling threads. More-
over, polling can significantly reduce CPU usage in the
VM because it avoids “vm-exit”.

Importance of polling: The main agreement of
MDev-NVMe and SPDK is that the virtualization mech-
anisms take active polling instead of interrupts han-
dling. The traditional virtualization mechanisms are
often based on the trap and emulations. The trap of
the “vm-exit” needs additional context switches between
VMs and the host kernel. The NVMe protocol is an in-
herently parallel and high-performing interface and com-
mand set. Therefore, when we would like to make full
use of the I/O queue resource, the large numbers of in-
terrupts bring an appreciable overhead for guests. Now,
assigning exclusive CPU computing resources to han-
dle the high frequency of interrupts can directly help
to achieve high performance of I/O operations in VMs.
Taking polling is the most direct and obvious idea to as-
sign the exclusive CPU resource for queue handling.

Despite the high utilization of polling CPU may gen-
erate limited CPU computing resource waste to the host
servers, polling is still necessary when the I/O workloads
are aggressive in achieving extremely high performance.
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For example, when shopping seasons such as “Black
Friday” arrive, the servers of e-commerce companies
will face great pressure of database accesses and parallel
processing. Subsequently, the storage device through-
put and latency performance is directly connected with
the respective companies profits, losses and their cus-
tomers satisfaction. Supporting polling in the virtual-
ization mechanism is essential to take full advantage of
the benefits of NVMe devices to meet the requirements
on I/O performance in datacenters. Moreover, NVMe
virtualization should support adaptive polling, which al-
lows such datacenter administrators to decide when to
choose a mild policy for I/O acceleration in VMs, to
reduce expenses and support an increasing number of
VMs. Therefore the provision of an adaptive polling
mode and increasingly optimized polling algorithms is
part of our focus for future work. It is also expected that
the high performance I/O device hardware will be de-
signed with a number of components to actively support
or cooperate with the polling algorithm in the near future.

6 Related Work
Some research concentrates on NVMe virtualization,
including the para-virtualization abstraction Virtio, a
userspace NVMe driver in Qemu, and the Storage Per-
formance Development Kit (SPDK).

VMware virtual NVMe device: After vSphere 6.5,
VMware adds an NVMe controller for NVMe devices in
its virtualization solution. The biggest benefit of using
an NVMe interface over the traditional SCSI is that it
can significantly reduce the amount of overhead, as well
as reducing the IO latency for VM workloads.

Virtio for NVMe: Virtio is an abstraction for a set of
common emulated devices in a para-virtualized hypervi-
sor, which allows the hypervisor to export a common set
of emulated devices and make them available through the
costumed API. Briefly, Virtio is easy in the implemen-
tation of storage device virtualization. Virtio inevitably
increases the I/O path which indicates that guest I/O re-
quest goes through both guest and host I/O path. Data
replication between guest and host can also have an im-
pact on performance.

Userspace NVMe Driver in QEMU: Fam Zheng
[34] implements a NVMe driver with VFIO as the
driver of NVMe device to cooperate with the modified
userspace NVMe driver in Qemu. Compared with the
VFIO method, this userspace driver emulates several
software layer, that is the BlockBackend, Block layer,
and Qcow2 layers in Qemu. This userspace NVMe driver
takes advantages of VFIO, enabling NVMe device to
gain more I/O software layer features at the cost of de-
vice sharing capability and this virtualization mechanism
brings apparent latency to the VMs.

SPDK: The Storage Performance Development Kit

(SPDK) is a user-mode application which aims at pro-
viding a high performance and scalable I/O application
interfaces for different storage devices. It integrates all of
the necessary drivers into userspace and operates with an
enforced polling mode to achieve high I/O performances
by taking advantage of DPDK [14]. Specifically, SPDK
application extends “SPDK vhost” to present Virtio stor-
age controllers to QEMU-based VMs with vhost-scsi and
vhost-blk [20] interfaces.

7 Conclusion
Within this paper, there is introduction of a new virtual-
ization implementation for NVMe storage device MDev-
NVMe. The MDev-NVMe is a full NVMe storage vir-
tualization mechanism where all the VMs can run native
NVMe driver. The proposed solution takes a mediated
pass-through as the main implementation containing the
Admin queue emulations and I/O queues shadowing on
the basis of Device emulation for all PCI configurations.
To achieve the most outstanding performance of the
NVMe device among mainstream NVMe virtualization
mechanisms, it is proposed that an active polling mode is
implemented, which can achieve both high throughput,
low latency performance and a reliable device scalability
on both Intel OPTANE and P3600 NVMe SSD. With the
MDev-NVMe module, the physical device can be parti-
tioned to support device sharing, and each VM can own
a full-fledged NVMe device which can directly access
the physical performance-critical resources without in-
terference with other VMs. The large numbers of Fio
benchmark experiments provides evidence for the great
performance of MDev-NVMe, which is better than na-
tive performance and other existing virtualization mech-
anisms. There is also focus and consideration into the
influence of blocksize on the I/O performance to provide
more suggestions to different I/O applications. Finally,
we focus on the high performance of MDev-NVMe by
analysis of the performance comparisons between dif-
ferent mechanisms, raising a discussion about polling.
Therefore recommendations are provided for the opti-
mization on polling support from both aspects for the de-
sign of storage hardware and also, virtualization. In the
future, further research on the support for polling will
be conducted as well as the optimization of the polling
algorithm for MDev-NVMe.
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Abstract

From small mobile devices to large-scale storage arrays,
flash memory-based storage systems have gained a lot of
popularity in recent years. However, the uncoordinated
use of resources by competing tasks in the flash trans-
lation layer (FTL) makes it difficult to guarantee pre-
dictable performance.

In this paper, we present AutoSSD, an autonomic SSD
architecture that self-manages FTL tasks to maintain a
high-level of QoS performance. In AutoSSD, each FTL
task is given an illusion of a dedicated flash memory sub-
system, allowing tasks to be implemented oblivious to
others and making it easy to integrate new tasks to han-
dle future flash memory quirks. Furthermore, each task is
allocated a share that represents its relative importance,
and its utilization is enforced by a simple and effective
scheduling scheme that limits the number of outstand-
ing flash memory requests for each task. The shares are
dynamically adjusted through feedback control by mon-
itoring key system states and reacting to their changes to
coordinate the progress of FTL tasks.

We demonstrate the effectiveness of AutoSSD by
holistically considering multiple facets of SSD internal
management, and by evaluating it across diverse work-
loads. Compared to state-of-the-art techniques, our de-
sign reduces the average response time by up to 18.0%,
the 3 nines (99.9%) QoS by up to 67.2%, and the 6 nines
(99.9999%) QoS by up to 76.6% for QoS-sensitive small
reads.

1 Introduction

Flash memory-based storage systems have become pop-
ular across a wide range of applications from mobile
systems to enterprise data storages. Flash memory’s
small size, resistance to shock and vibration, and low
power consumption make it the de facto storage medium
in mobile devices. On the other hand, flash memory’s
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Figure 1: Performance drop and variation under 4KB random
writes.

low latency and collectively massive parallelism make
flash storage suitable for high-performance storage for
mission-critical applications. As multi-level cell tech-
nology [5] and 3D stacking [38] continue to lower the
cost per GB, flash storage will not only remain compet-
itive in the data storage market, but also will enable the
emergence of new applications in this Age of Big Data.

Large-scale deployments and user experiences, how-
ever, reveal that despite its low latency and massive par-
allelism, flash storage exhibits high performance insta-
bilities and variations [9, 17]. Garbage collection (GC)
has been pointed out as the main source of the problem
[9, 25, 28, 29, 45], and Figure 1 illustrates this case. It
shows the performance degradation of our SSD model
under small random writes, and it closely resembles mea-
sured results from commercial SSDs [2,23]. Initially, the
SSD’s performance is good because all the resources of
the flash memory subsystem can be used to service host
requests. But as the flash memory blocks are consumed
by host writes, GC needs to reclaim space by compact-
ing data spread across blocks and erasing unused blocks.
Consequently, host and GC compete for resources, and
the host performance inevitably suffers.

However, garbage collection is a necessary evil for
the flash storage. Simply putting off space reclamation
or treating GC as a low priority task will lead to larger
performance degradations, as host writes will eventually
block and wait for GC to reclaim space. Instead, garbage
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collection must be judiciously scheduled with host re-
quests to ensure that there is enough free space for fu-
ture requests, while meeting the performance demands
of current requests. This principle of harmonious coexis-
tence, in fact, extends to every internal management task.
Map caching [15] that selectively keeps mapping data in
memory generates flash memory traffic on cache misses,
but this is a mandatory step for locating host data. Read
scrubbing [16] that preventively migrates data before its
corruption also creates traffic when blocks are repeatedly
read, but failure to perform its duty on time can lead to
data loss. As more tasks with unique responsibilities are
added to the system, it becomes increasingly difficult to
design a system that meets its performance and reliability
requirements [13].

In this paper, we present an autonomic SSD archi-
tecture called AutoSSD that self-manages its manage-
ment tasks to maintain a high-level of QoS performance.
In our design, each task is given a virtualized view of
the flash memory subsystem by hiding the details of
flash memory request scheduling. Each task is allo-
cated a share that represents the amount of progress it
can make, and a simple yet effective scheduling scheme
enforces resource arbitration according to the allotted
shares. The shares are dynamically and automatically ad-
justed through feedback control by monitoring key sys-
tem states and reacting to their changes. This achieves
predictable performance by maintaining a stable system.
We show that for small read requests, AutoSSD reduces
the average response time by up to 18.0%, the 3 nines
(99.9%) QoS by up to 67.2%, and the 6 nines (99.9999%)
QoS by up to 76.6% compared to state-of-the-art tech-
niques. Our contributions are as follows:

• We present AutoSSD, an autonomic SSD architec-
ture that dynamically manages internal housekeep-
ing tasks to maintain a stable system state. (§ 3)

• We holistically consider multiple facets of SSD in-
ternal management, including not only garbage col-
lection and host request handling, but also mapping
management and read scrubbing. (§ 4)

• We evaluate our design and compare it to the state-
of-the-art techniques across diverse workloads, an-
alyze causes for long tail latencies, and demonstrate
the advantages of dynamic management. (§ 5)

The remainder of this paper is organized as follows.
§ 2 gives a background on understanding why flash stor-
ages exhibit performance unpredictability. § 3 presents
the overall architecture of AutoSSD and explains our de-
sign choices. § 4 describes the evaluation methodology
and the SSD model that implements various FTL tasks,
and § 5 presents the experimental results under both syn-

thetic and real I/O workloads. § 6 discusses our design
in relation to prior work, and finally § 7 concludes.

2 Background

For flash memory to be used as storage, several of its
limitations need to be addressed. First, it does not allow
in-place updates, mandating a mapping table between
the logical and the physical address space. Second,
the granularities of the two state-modifying operations—
program and erase—are different in size, making it nec-
essary to perform garbage collection (GC) that copies
valid data to another location for reclaiming space. These
internal management schemes, collectively known as the
flash translation layer (FTL) [11], hide the limitations
of flash memory and provide an illusion of a traditional
block storage interface.

The role of the FTL has become increasingly im-
portant as hiding the error-prone nature of flash mem-
ory can be challenging when relying solely on hard-
ware techniques such as error correction code (ECC)
and RAID-like parity schemes. Data stored in the flash
array may become corrupt in a wide variety of ways.
Bits in a cell may be disturbed when neighboring cells
are accessed [12, 41, 44], and the electrons in the float-
ing gate that represent data may gradually leak over
time [6, 35, 44]. Sudden power loss can increase bit er-
ror rates beyond the error correction capabilities [44,47],
and error rates increase as flash memory blocks wear
out [6, 12, 19]. As flash memory becomes less reliable
in favor of high-density [13], more sophisticated FTL al-
gorithms are needed to complement existing reliability
enhancement techniques.

Even though modern flash storages are equipped with
sophisticated FTLs and powerful controllers, meeting
performance requirements have three main challenges.
First, as new quirks of flash memory are introduced,
more FTL tasks are added to hide the limitations, thereby
increasing the complexity of the system. Furthermore,
existing FTL algorithms need to be fine-tuned for ev-
ery new generation of flash memory, making it difficult
to design a system that universally meets performance
requirements. Second, multiple FTL tasks generate se-
quences of flash memory requests that contend for the
resources of the shared flash memory subsystem. This
resource contention creates queueing delays that increase
response times and causes long-tail latencies. Lastly, de-
pending on the state of the flash storage, the importance
of FTL tasks dynamically changes. For example, if the
flash storage runs out of free blocks for writing host data,
host request handling stalls and waits for garbage col-
lection to reclaim free space. On the other hand, with
sufficient free blocks, there is no incentive prioritizing
garbage collection over host request handling.
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Figure 2: Overall architecture of AutoSSD and its components.

3 AutoSSD Architecture

In this section, we describe the overall architecture and
design of the autonomic SSD (AutoSSD) as shown in
Figure 3. In our model, all FTL tasks run concurrently,
with each designed and implemented specifically for its
job. Each task independently interfaces the scheduling
subsystem, and the scheduler arbitrates the resources in
the flash memory subsystem according to the assigned
share. The share controller monitors key system states
and determines the appropriate share for each FTL task.
AutoSSD is agnostic to the specifics of the FTL algo-
rithms (i.e., mapping scheme and GC victim selection),
and the following subsections focus on the overall archi-
tecture and design that enable the self-management of
the flash storage.

3.1 Virtualization of the Flash Memory
Subsystem

The architecture of AutoSSD allows each task to be inde-
pendent of others by virtualizing the flash memory sub-
system. Each FTL task is given a pair of request and re-
sponse queues to send and receive flash memory requests
and responses, respectively. This interface provides an
illusion of a dedicated (yet slower) flash memory sub-
system and allows an FTL task to generate flash memory
requests oblivious of others (whether idle or active) or
the requests they generate (intensity or which resources
they are using). Details of the flash memory subsystem
are completely abstracted by the scheduling subsystem,
and only the back-pressure of the queue limits each task
from generating more flash memory requests.

This virtualization not only effectively frees each task
from having to worry about others, but also makes it

easy to add a new FTL task to address any future flash
memory quirks. While background operations such as
garbage collection, read scrubbing, and wear leveling
have similar flash memory workload patterns (reads and
programs, and then erases), the objective of each task is
distinctly different. Garbage collection reclaims space
for writes, read scrubbing preventively relocates data to
ensure data integrity, and wear leveling swaps contents
of data to even out the damage done on flash memory
cells. Our design allows seamless integration of new
tasks without having to modify existing ones and reop-
timize the system.

3.2 Scheduling for Share Enforcement
The scheduling subsystem interfaces with each FTL task
and arbitrates the resources of the flash memory subsys-
tem. The scheduler needs to be efficient with low over-
head as it manages concurrency (tens and hundreds of
flash memory requests) and parallelism (tens and hun-
dreds of flash memory chips) at a small timescale.

In AutoSSD, we consider these unique domain char-
acteristics and arbitrate the flash memory subsystem re-
source through debit scheduling. The debit scheduler
tracks and limits the number of outstanding requests per
task across all resources, and is based on the request win-
dowing technique [14, 20, 34] from the disk scheduling
domain. If the number of outstanding requests for a task,
which we call debit, is under the limit, its requests are
eligible to be issued; if it’s not, the request cannot be
issued until one or more of requests from that task com-
pletes. The debt limit is proportional to the share set by
the share controller, allowing a task with a higher share
to potentially utilize more resources simultaneously. The
sum of all tasks’ debt limit represents the total amount of
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Figure 3: Two debit scheduling examples. In the scenario of Figure 3a, no more requests can be sent to Chip 0, and Task B is at
its maximum debit. The only eligible scheduling is issuing Task A’s request to Chip 2. In the scenario of Figure 3b, while Task
A is still under the debt limit, its request cannot be issued to a chip with a full queue. On the other hand, a request from Task B can
be issued as Chip 3’s operation for Task B completes.

parallelism, and is set to the total number of requests that
can be queued in the flash memory controller.

Figure 3 illustrates two scenarios of the debit schedul-
ing. In both scenarios, the debt limit is set to 5 requests
for Task A, and 3 for Task B. In Figure 3a, no more
requests can be sent to Chip 0 as its queue is full, and
Task B’s requests cannot be scheduled as it is at its debt
limit. Under this circumstance, Task A’s request to Chip

2 is scheduled, increasing its debit value from 1 to 2.
In Figure 3b, the active operation at Chip 3 for Task B
completes, allowing Task B’s request to be scheduled.
Though Task B’s request to Chip 1 is not at the head of
the queue, it is scheduled out-of-order as there is no de-
pendence between the requests to Chip 0 and Chip 1.
Task A, although below the debt limit, cannot have its re-
quests issued until Chip 0 finishes a queued operation,
or until a new request to another chip arrives. Though not
illustrated in these scenarios, when multiple tasks under
the limit compete for the same resource, one is chosen
with skewed randomness favoring a task with a smaller
debit to debt limit ratio. Randomness is added to proba-
bilistically avoid starvation.

Debit scheduling only tracks the number of outstand-
ing requests, yet exhibits interesting properties. First, it
can make scheduling decisions without complex compu-
tations and bookkeeping. This allows the debit sched-
uler to scale with increasing number of resources. Sec-
ond, although it does not explicitly track time, it im-
plicitly favors short latency operations as they have a
faster turn-around-time. In scheduling disciplines such
as weighted round robin [26] and weighted fair queue-
ing (WFQ) [10], the latency of operations must be
known or estimated to achieve some degree of fairness.
Debit scheduling, however, approximates fairness in the

time-domain only by tracking the number of outstand-
ing requests. Lastly, the scheduler is in fact not work-
conserving. The total debt limit can be scaled up to ap-
proximate a work-conserving scheduler, but the share-
based resource reservation of the debit scheduler allows
high responsiveness, as observed in the resource reserva-
tion protocol for Ozone [36].

3.3 Feedback Control of Share
The share controller determines the appropriate share
for the scheduling subsystem by observing key system
states. States such as the number of free blocks and the
maximum read count reflect the stability of the flash stor-
age. This is critical for the overall performance and re-
liability of the system, as failure to keep these states at
a stable level can lead to an unbounded increase in re-
sponse time or even data loss.

For example, if the flash storage runs out of free
blocks, not only do host writes block, but also all other
tasks that use flash memory programs stall: activities
such as making mapping data durable and writing pe-
riodic checkpoints also depend on the garbage collection
to reclaim free space. Even worse, a poorly constructed
FTL may become deadlocked if GC is unable to obtain a
free block to write the valid data from its victim. On the
other hand, if a read count for a block exceeds its recom-
mended limit, accumulated read disturbances can lead to
data loss if the number of errors is beyond the error cor-
rection capabilities. In order to prevent falling into these
adverse system conditions, the share controller monitors
the system states and adjusts shares to control the rate of
progress for individual FTL tasks, so that the system is
maintained within stable levels.

AutoSSD uses feedback to adaptively determine the
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shares for the internal FTL tasks. While the values of key
system states must be maintained at an adequate level,
the shares of internal tasks must not be set too high such
that they severely degrade the host performance. Once a
task becomes active, it initially is allocated a small share.
If this fails to maintain the current level of the system
state, the share is gradually increased to counteract the
momentum. The following control function is used to
achieve this behavior:

SA[t] = PA · eA[t]+ IA ·SA[t−1] (1)

Where SA[t] is the share for task A at time t, SA[t− 1] is
the previous share for task A, PA and IA are two non-
negative coefficients for task A, and eA[t] is the error
value for task A at time t. The error value function for
GC is defined as follows:

eGC[t] = max(0, target f reeblk−num f reeblk[t]) (2)

With target f reeblk set to the GC activation threshold, the
share for GC SGC starts out small. If the number of free
blocks num f reeblk[t] falls far below target f reeblk, the er-
ror function eGC[t] augmented by PGC ramps up the GC
share SGC. After the number of free blocks num f reeblk[t]
exceeds the threshold target f reeblk, the share SGC slowly
decays given IGC < 1.

Addition to the GC share control, the error value func-
tion for read scrubbing (RS) is defined as follows:

eRS[t] = max(0,max
i∈blk

(readcnti[t])− targetreadcnt) (3)

Where max
i∈blk

(readcnti[t]) is the maximum read count

across all blocks in the system at time t, and targetreadcnt
is the RS activation threshold.

In our design, the share for internal management
schemes starts out small, anticipating host request ar-
rivals and using the minimum amount of resources to
perform its task. If the system state does not recover, the
error (the difference between the desired and the actual
system state values) accumulates, increasing the share
over time.

It is important to note that the progress rate for a task
depends not only on the share, but also on the workload,
algorithm, and system state. For example, the number of
valid data in the victim block, the location of the map-
ping data associated with the valid data, and the access
patterns at the flash memory subsystem all affect the rate
of progress for GC. A task’s progress rate is, in fact, non-
linear to the share under real-world workloads, and com-
putationally solving for the optimal share involves large
overhead, if not impossible. As a result, the two coeffi-
cients P and I for FTL tasks are empirically hand-tuned
in this work.

Table 1: System configuration.

Parameter Value Parameter Value

# of channels 4 Read latency 50µs
# of chips/channel 4 Program latency 500µs
# of planes/chip 2 Erase latency 5ms
# of blocks/plane 1024 Data transfer rate 400MB/s
# of pages/block 512 Physical capacity 256GB
Page size 16KB Logical capacity 200GB

4 Evaluation Methodology and Modeling

We model a flash storage system on top of the DiskSim
environment [1] by enhancing its SSD extension [3]. In
this section, we describe the various components and
configuration of the SSD, and the workload and test set-
tings used for the evaluation.

4.1 Flash Memory Subsystem

Flash memory controller is based on Ozone [36] that
fully utilizes flash memory subsystem’s channel and chip
parallelism. There can be at most four requests queued
to each chip in the controller. Increasing this queue depth
does not significantly increase intra-chip parallelism, as
cached operations of flash memory have diminishing
benefits as the channel bandwidth increases. Instead, a
smaller queue depth is chosen to increase the responsive-
ness of the system.

Table 1 summarizes the default flash storage configu-
ration used in our experiments. Of the 256GB of physical
space, 200GB is addressable by the host system, giving
an over-provisioning factor of 28%.

4.2 Flash Translation Layer

We implement core FTL tasks and features that are es-
sential for storage functions, yet cause performance vari-
ations. Garbage collection reclaims space, but it de-
grades the performance of the system under host random
writes. Read scrubbing that preventively relocates data
creates background traffic on read-dominant workloads.
Mapping table lookup is necessary to locate host data,
but it increases response time on map cache misses.

Mapping. We implement an FTL with map
caching [15] and a mapping granularity of 4KB. The en-
tire mapping table is backed in flash, and mapping data,
also maintained at the 4KB granularity, is selectively
read into memory and written out to flash during runtime.
The LRU policy is used to evict mapping data, and if the
victim contains any dirty mapping entries, the 4KB map-
ping data is written to flash. By default, we use 128MB
of memory to cache the mapping table. The second-level
mapping that tracks the locations of the 4KB mapping
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Table 2: Trace workload characteristics.

Workload Duration
(hrs)

Number of I/Os (Millions) Average request size(KB) Inter-arrival time (ms)

Write Read Write Read Average Median

DAP-DS 23.5 0.1 1.3 7.2 31.5 56.9 31.6
DAP-PS 23.5 0.5 0.6 96.7 62.1 79.9 1.7
DTRS 23.0 5.8 12.0 31.9 21.8 4.6 1.5

LM-TBE 23.0 9.2 34.7 61.9 53.2 1.9 0.8
MSN-CFS 5.9 1.1 3.2 12.9 8.9 4.9 2.0

MSN-BEFS 5.9 9.2 18.9 11.6 10.7 0.8 0.3
RAD-AS 15.3 2.0 0.2 9.9 11.0 24.9 0.8
RAD-BE 17.0 4.3 1.0 13.0 106.2 11.7 2.6

data is always kept in memory as it is accessed more fre-
quently and orders of magnitude smaller than the first-
level mapping table.

Host request handling. Upon receiving a request, the
host request handler looks up the second-level mapping
to locate the mapping data that translates the host logi-
cal address to the flash memory physical address. If the
mapping data is present in memory (hit), the host request
handler references the mapping data and generates flash
memory requests to service the host request. If it is a
miss, a flash memory read request to fetch the mapping
data is generated, and the host request waits until the
mapping data is fetched. Host requests are processed in a
non-blocking manner; if a request is waiting for the map-
ping data, other requests may be serviced out-of-order.
In our model, if the host write request is smaller than the
physical flash memory page size, multiple host writes are
aggregated to fill the page to improve storage space uti-
lization. We also take into consideration of the mapping
table access overhead and processing delays. Mapping
table lookup delay is set to be uniformly distributed be-
tween 0.5µs and 1µs, and the flash memory request gen-
eration delay for the host task is between 1µs and 2µs.

Garbage collection. The garbage collection (GC)
task runs concurrently and independently from the host
request handler and generates its own flash memory
requests. Victim blocks are selected based on cost-
benefit [40]. Once a victim block is selected, valid pages
are read and programmed to a new location. Mapping
data is updated as valid data is copied, and this process
may generate additional requests (both reads and pro-
grams) for mapping management. Once all the valid
pages have been successfully copied, the old block is
erased and marked free. GC becomes active when the
number of free blocks drops below a threshold, and stops
once the number of free blocks exceeds another thresh-
old, similar to the segment cleaning policy used for the
log-structured file system [40]. In our experiments, the
two threshold values for GC activation and deactivation
are set to 128 and 256 free blocks, respectively. The

garbage collection task also has a request generation de-
lay, set to be uniformly distributed between 1µs and 3µs.

Read scrubbing. The read scrubbing (RS) task also
runs as its own stand-alone task. Victims are selected
greedily based on the read count of a block: the block
with the most number of reads is chosen. Other than
that, the process of copying valid data is identical to that
of the garbage collection task. RS becomes active when
the maximum read count of the system goes beyond a
threshold, and stops once it falls below another threshold.
The default threshold values for the activation and deac-
tivation are set to 100,000 and 80,000 reads, respectively.
Like the garbage collection task, the request generation
delay (modeling the processing overhead of read scrub-
bing) is uniformly distributed between 1µs and 3µs.

4.3 Workload and Test Settings

We use both synthetic workloads and real-world I/O
traces from Microsoft production servers [27] to evaluate
the autonomic SSD architecture. Synthetic workloads of
128KB sequential accesses, 4KB random reads, and 4KB
random read/writes are used to verify that our model be-
haves expectedly according to the system parameters.

From the original traces, the logical address of each
host request is modified to fit into the 200GB range, and
all the accesses are aligned to 4KB boundaries. All the
traces are run for their full duration, with some lasting up
to 24 hours and replaying up to 44 million I/Os. The trace
workload characteristics are summarized in Table 2.

Prior to each experiment, the entire physical space is
randomly written to emulate a pre-conditioned state so
that the storage would fall under the steady state perfor-
mance described in SNIA’s SSS-PTS [2]. Furthermore,
each block’s read count is initialized with a non-negative
random value less than the read scrubbing threshold to
emulate past read activities.
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Figure 4: Performance under synthetic workloads. Figure 4a shows the total bandwidth under 128KB sequential accesses with
respect to changes in the channel bandwidth. Figure 4b shows the performance (average response time and 3 nines QoS) and the
utilization of the flash memory subsystem with respect to changes in the size of the in-memory map cache. Figure 4c shows the
performance (3 nines and 6 nines QoS) and the GC progress rate with respect to the GC share.

5 Experiment Results

This section presents experimental results under the con-
figuration and workload settings described in the previ-
ous section. The main performance metric we report is
the system response time seen at the I/O device driver.
We first validate our SSD model using synthetic work-
loads, and then present experimental results with I/O
traces. We replayed the I/O traces with the original re-
quest dispatch times, and with the dispatch times scaled
down to increase the workload intensity.

5.1 Micro-benchmark Results
Figure 4 illustrates the performance of the autonomic
SSD architecture (AutoSSD) with debit scheduling under
four micro-benchmarks. Figure 4a plots the total band-
width under 128KB sequential reads and 128KB sequen-
tial writes as we increase the channel bandwidth. As the
channel bandwidth increases, the flash memory opera-
tion latency becomes the performance bottleneck. Write
performance saturates early as the program latency can-
not be hidden with data transfers. At 1000MB/s channel
bandwidth, the read operation latency also becomes the
bottleneck, unable to further extract bandwidth from the
configured four channels. Traffic from GC and mapping
management has a negligible effect for large sequential
accesses, and RS task was disabled for this run to mea-
sure maximum raw bandwidth.

In Figure 4b, we vary the in-memory map cache size
and measure the response times of 4KB random read re-
quests when issued at 100K I/Os per second (IOPS). As
expected, the response time is the smallest when the en-
tire map is in memory, as it does not generate map read
requests once the cache is filled after cold-start misses.
However, as the map cache becomes smaller, the re-
sponse time for host reads increases not only because it
probabilistically stalls waiting for map reads from flash
memory, but also due to increased flash memory traffic,

which causes larger queueing delays.
Lastly, we demonstrate that the debit scheduling

mechanism exerts control over FTL tasks in Figure 4c.
In this scenario, 4KB random read/write requests are is-
sued at 20K IOPS with a 1-to-9 read/write ratio. Both
the response time of host read requests and GC task’s
progress (in terms of the number of erases per second
while active) are measured at fixed GC shares from 20%
to 80%. As shown by the bar graph, more blocks are
erased as the share for GC increases. Furthermore, with
more GC share, the overall host performance suffers, as
evident by the increase in the 3 nines QoS. Deceptively,
however, assigning not enough share to GC will result
in worse tail latency as shown by the 6 nines QoS. GC
needs to produce sufficient number of free blocks for the
host to consume, and failure to do so will cause the host
to block.

5.2 I/O Trace Results
Using I/O traces, we evaluate the performance of Au-
toSSD and compare it to following three systems:

Vanilla represents a design without virtualization and
coordination, and all tasks dispatch requests to the
controller through a single pair of request/response
queue.

RAIN [45] uses parity to reconstruct data when ac-
cessing the chip is blocked by background tasks.
Resources are arbitrated through fixed priority
scheduling, with host requests having the highest
priority. This technique requires an additional phys-
ical capacity to store parity data.

QoSFC [28] schedules using weighted fair queueing
(WFQ) and represents a work-conserving system
that does not reserve resources. It maintains virtual
time as a measure of progress for each FTL task at
each flash memory resource.
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Figure 5: Comparison of Vanilla, RAIN, QoSFC, and Au-
toSSD under eight different traces. Results are normalized to
the performance of RAIN. AutoSSD reduces the average re-
sponse time by up to 18.0% under MSN-BEFS (by 3.8% on aver-
age), the 3 nines QoS by up to 67.2% under RAD-AS (by 53.6%
on average). and the 6 nines QoS by up to 76.6% under RAD-AS
(by 42.7% on average).

As the focus of this paper is response time characteris-
tics, we only measure the performance of QoS-sensitive
small reads (no larger than 64KB) in terms of the average
response time, the 3 nines (99.9%) QoS figure, and the 6
nines (99.9999%).

Figure 5 compares the performance of the four sys-
tems under eight different traces. Compared to RAIN,
AutoSSD reduces the average response time by up to
18.0% under MSN-BEFS as shown in Figure 5a. For the
3 nines QoS, AutoSSD shows improvements across most
workloads, reducing it by 53.6% on average and as much
as by 67.2% under RAD-AS (see Figure 5b). For the
6 nines QoS, AutoSSD shows much greater improve-
ments, reducing it as much as by 76.6% under RAD-AS
(see Figure 5c). Without coordination among FTL tasks,

the Vanilla performance suffers, especially for the long
tail latencies. In terms of the 6 nines, AutoSSD per-
forms well under bursty workloads such as RAD-AS and
LM-TBE (large difference between average and median
inter-arrival times in Table 2). This is because AutoSSD
limits the progress of internal FTL tasks depending on
the state of the system, making resources available for
the host in a non-work-conserving manner. This is in
contrast to the scheduling disciplines used by the other
systems: Vanilla uses FIFO scheduling; RAIN, priority
scheduling; and QoSFC, weighted fair queueing.

To better understand the overall results in Figure 5, we
microscopically examine the performance under RAD-AS
in Figure 6 and LM-TBE in Figure 7. Figure 6a shows the
average response time of three systems—RAIN, QoSFC,
and AutoSSD—during a 10-second window, approxi-
mately 10 hours into RAD-AS. GC is active during this
window for all the three systems, and both RAIN and
QoSFC exhibit large spikes in response time. On the
other hand, AutoSSD is better able to bound the perfor-
mance degradation caused by an active garbage collec-
tion. Figure 6b shows the number of free blocks and the
GC share during that window for AutoSSD. The saw-
tooth behavior for the number of free blocks is due to
host requests consuming blocks, and GC gradually re-
claiming space. GC share is reactively increased when
the number of free blocks becomes low, thereby increas-
ing the rate at which GC produces free blocks. If the
number of free blocks exceeds the GC activation thresh-
old, the share decays gradually to allow other tasks to use
more resources. In effect, AutoSSD improves the overall
response time as shown in Figure 6c.

For LM-TBE, Figure 7a shows the average response
time of the three systems during a 20-second window,
approximately 15 hours into the workload. Here we ob-
serve read scrubbing (RS) becoming active due to the
read-dominant characteristics of LM-TBE. We observe
that both RAIN and QoSFC show large spikes in response
time that lasts longer than the perturbation caused by GC
for RAD-AS (cf. Figure 6a). While GC is incentivized to
select a block with less valid data, RS is likely to pick
a block with a lot of valid data that are frequently read
but not frequently updated: this causes the performance
degradation induced by RS to last longer than that by
GC. AutoSSD limits this effect, while still decreasing the
maximum read count in the system by dynamically ad-
justing the share of RS, as shown in Figure 7b. Figure 7c
shows the response time CDF of the three systems.

Figure 8 illustrates the delay causes for the flash mem-
ory requests generated by the host request handling task
under MSN-BEFS. Note that this is different from the re-
sponse time of host requests: this shows the average wait
time that a flash memory request (for servicing the host)
experiences, broken down by different causes. Category
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Figure 6: Comparison of RAIN, QoSFC, and AutoSSD under RAD-AS. Figure 6a shows the average response time sampled at
100ms in the selected 10-second window. Figure 6b shows the number of free blocks and the GC share of AutoSSD for the same
10-second window. Figure 6c plots the response time CDF for the entire duration.
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Figure 7: Comparison of RAIN, QoSFC, and AutoSSD under LM-TBE. Figure 7a shows the average response time sampled at
100ms in the selected 20-second window. Figure 7b shows the maximum read count and the RS share of AutoSSD for the same
20-second window. Figure 7c plots the response time CDF for the entire duration.
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Figure 8: Breakdown of wait time experienced by flash mem-
ory requests under MSN-BEFS.

Flash represents flash memory latency, combining both
flash array access latency and data transfers. Sched is
the time spent waiting to be scheduled, either waiting in
the queue because the target queue is full, or waiting be-
cause the scheduler limits the progress in a non-work-
conserving manner (the case for AutoSSD). The large
Sched wait time for Vanilla is caused by uncoordinated
sharing of resources, while that for AutoSSD is small as
the scheduler reserves resources for host requests. The
remaining five categories are delays experienced due to
resource blocking. Most noticeably, the wait time caused
by GC in RAIN is higher than the other systems. When
RAIN generates alternate flash memory requests to re-
construct data through parity, these additional requests
can, in turn, be blocked again at another resource. In
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Figure 9: Comparison of AutoSSD with static shares and dy-
namic share under MSN-BEFS.

ttFlash [45], this problem is overcome by statically lim-
iting the number of active GC to one per parity group.
This technique is not used in our evaluation as a fixed
cap on the number of allowed GC can quickly deplete
free blocks, especially for high-intensity small random
write workloads.

Next, we examine the effectiveness of the dynamic
share assignment over the static ones. Figure 9 shows the
response time CDF of AutoSSD under MSN-BEFS with
static shares of 5%, 10%, and 20% for GC, along with
the share controlled dynamically. As illustrated by the
gray lines, decreasing the GC share from 20% to 10%
improves the overall performance. However, when fur-
ther reducing the GC share to 5%, we observe that the
curve for 5% dwindles as it approaches higher QoS and
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performs worse than the 10% curve. This indicates that
while a lower GC share achieves better performance at
lower QoS levels, a higher GC share is desirable to re-
duce long-tail latencies as it generates free blocks at a
higher rate, preventing the number of free blocks from
becoming critically low. This observation is in accor-
dance with the performance under synthetic workload in
Figure 4c. Using feedback control to adjust the GC share
dynamically shows better performance over all the static
values, as it can adapt to an appropriate share value by
reacting to the changes in the system state.

5.3 I/O Trace Results at Higher Intensity

In this subsection, we present experimental results with
higher request intensities. Here, the request dispatch
times are reduced in half, but other parameters such as
the access type and the target address remain unchanged.
This experiment is intended to examine the performance
of the four systems—Vanilla, RAIN, QoSFC, and Au-
toSSD—under a more stressful scenario.

Figure 10 compares the performance in the new set-
ting. AutoSSD reduces the average response time by up
to 24.6% under MSN-BEFS (see Figure 10a), the 3 nines
QoS figure by 48.6% on average and as much as 70.6%
under MSN-CFS (see Figure 10b), and the 6 nines QoS
figure by as much as 55.3% under MSN-CFS (see Fig-
ure 10c). With workload intensity increased, the over-
all improvement in long tail latency decreases due to a
smaller wiggle room for AutoSSD to manage FTL tasks.
This is especially true for high-intensity workloads such
as MSN-BEFS: with host requests arriving back-to-back
(cf. halve the inter-arrival time in Table 2), debit schedul-
ing has little advantage over other scheduling schemes.
However, AutoSSD nevertheless outperforms prior tech-
niques across the diverse set of workloads. Workloads
such as RAD-AS and LM-TBE that showed the most reduc-
tion in long tail latency under the original intensity (cf.
Figure 5c) still exhibit performance improvements with
AutoSSD in the 6 nines, even with increased workload
intensity.

We examine DTRS more closely in Figure 11. Fig-
ure 11a shows the average response time of the three
systems—RAIN, QoSFC, and AutoSSD—during a 20-
second window, approximately 2 hours into the work-
load. GC is active during this window for all the three
systems, and AutoSSD is better able to bound the per-
formance degradation caused by an active garbage col-
lection, while both RAIN and QoSFC exhibit large spikes
in response time. Figure 11b shows the number of free
blocks and the GC share during that window for Au-
toSSD. Similar to the results in the previous section,
the share for GC reactively increases at a lower num-
ber of blocks, and decays once the number of free blocks
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Figure 10: Comparison of Vanilla, RAIN, QoSFC, and Au-
toSSD under eight different traces at 2x intensity. Results are
normalized to the performance of RAIN at 2x intensity. Au-
toSSD reduces the average response time by up to 24.6% un-
der MSN-BEFS (by 4.9% on average), the 3 nines QoS by up to
70.6% under MSN-CFS (by 48.6% on average). and the 6 nines
QoS by up to 55.3% under MSN-CFS (by 33.2% on average).

reaches a stable region. Again, the number of free blocks
shows a sawtooth behavior, and the ridges of GC share
curve matches the valleys of the free block curve. Fig-
ure 11c plots the response time CDF of the three systems,
demonstrating the effectiveness of our dynamic manage-
ment.

6 Discussion and Related Work

There are several studies on real-time performance guar-
antees of flash storage, but they depend on RTOS sup-
port [7], specific mapping schemes [8, 39, 46], a num-
ber of reserve blocks [8, 39], and flash operation laten-
cies [46]. These tight couplings make it difficult to ex-
tend performance guarantees when system requirements
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Figure 11: Comparison of the RAIN, QoSFC, and AutoSSD under DTRS running at 2x intensity. Figure 11a shows the average
response time sampled at 100ms in the selected 20-second window. Figure 11b shows the number of free blocks and the GC share
of AutoSSD for the same 20-second window. Figure 11c plots the response time CDF for the entire duration.

and flash memory technology change. On the other hand,
our architecture is FTL implementation-agnostic, allow-
ing it to be used across a wide range of flash devices and
applications.

Some techniques focus on when to perform GC (based
on threshold [31], slack [22], or host idleness [25, 37]).
These approaches complement our design that focuses
on the fine-grained scheduling and dynamic management
of multiple FTL tasks running concurrently. By incorpo-
rating workload prediction techniques to our design, we
can extend AutoSSD to increase the share on background
tasks when host idleness is expected, and decrease it
when host requests are anticipated.

Exploiting redundancy to reduce performance varia-
tion has been studied in a number of prior art. Harmo-
nia [30] and Storage engine [42] duplicate data across
multiples SSDs, placing one in read mode and the other
in write mode to eliminate GC’s impact on read perfor-
mance. ttFlash [45] uses multiple flash memory chips
to reconstruct data through a RAID-like parity scheme.
Relying on redundancy effectively reduces the storage
utilization, but otherwise complements our design of dy-
namic management of various FTL tasks.

Performance isolation aims to reduce performance
variation caused by multiple hosts through partitioning
resources (vFlash [43], FlashBlox [18]), improving GC
efficiency by grouping data from the same source (Multi-
streamed [24], OPS isolation [29]), and penalizing noisy
neighbors (WA-BC [21]). These performance isolation
techniques are complementary to our approach of fine-
grained scheduling and dynamic management of concur-
rent FTL tasks.

The design of the autonomic SSD architecture bor-
rows ideas from prior work on shared disk-based storage
systems such as Façade [33], PARDA [14], and Mae-
stro [34]. These systems aim to meet performance re-
quirements of multiple clients by throttling request rates
and dynamically adjusting the bound through a feedback
control. However, while these disk-based systems deal

with fair sharing of disk resources among multiple hosts,
we address the interplay between the foreground (host
I/O) and the background work (garbage collection and
other management schemes).

Aqueduct [32] and Duet [4] address the performance
impact of background tasks such as backup and data mi-
gration in disk-based storage systems. However, back-
ground tasks in flash storage are triggered at a much
smaller timescale, and SSDs uniquely create scenarios
where the foreground task depends on the background
task, necessitating a different approach.

7 Conclusion

In this paper, we presented the design of an autonomic
SSD architecture that self-manages concurrent FTL tasks
in the flash storage. By judiciously coordinating the
use of resources in the flash memory subsystem, the au-
tonomic SSD manages the progress of concurrent FTL
tasks and maintains the internal system states of the stor-
age at a stable level. This self-management prevents the
SSD from falling into a critical condition that causes long
tail latency. In effect, AutoSSD reduces the average re-
sponse time by up to 18.0%, the 3 nines (99.9%) QoS by
up to 67.2%, and the 6 nines (99.9999%) QoS by up to
76.6% for QoS-sensitive small reads.
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Abstract
File system performance on modern primary storage de-
vices (Flash-based SSDs) is greatly affected by aging of
the free space, much more so than were mechanical disk
drives. We introduce Geriatrix, a simple-to-use profile
driven file system aging tool that induces target levels of
fragmentation in both allocated files (what you see) and
remaining free space (what you don’t see), unlike pre-
vious approaches that focus on just the former. This pa-
per describes and evaluates the effectiveness of Geriatrix,
showing that it recreates both fragmentation effects bet-
ter than previous approaches. Using Geriatrix, we show
that measurements presented in many recent file systems
papers are higher than should be expected, by up to 30%
on mechanical (HDD) and up to 80% on Flash (SSD)
disks. Worse, in some cases, the performance rank or-
dering of file system designs being compared are differ-
ent from the published results.

Geriatrix will be released as open source software with
eight built-in aging profiles, in the hopes that it can ad-
dress the need created by the increased performance im-
pact of file system aging in modern SSD-based storage.

1 Introduction
The performance of a file system (FS) usually deterio-
rates over time. As FSs experience heavy churn, tech-
niques such as write-back caching to expedite writes [38,
31, 14], data prefetching to assist reads [8, 35] and self-
balancing data structures to contain search times [10]
may pay for faster normal path performance now with
more complex and fragmented on-device images as the
system ages. An important factor affecting aged FS per-
formance is poor FS layout [43, 42].

Naturally, therefore, FS benchmarking should con-
sider the effects of aging. But, despite it being an im-
portant issue known for over twenty years [44], most re-
search and benchmarks still ignore aging. For example,
65% (13 of 20) recent FS papers we examined (Table 1)
neither mention aging nor include it in their evaluations.
Unsurprisingly, our experiments confirm that aging con-
tinues to be a critical factor for FS performance.

While aging’s overall importance has not waned,
the particular aspects that have the most impact have

Figure 1: Aging impact on Ext4 atop SSD and HDD. The three
bars for each device represent the FS freshly formatted (un-
aged), aged with Geriatrix, and aged with Impressions [2]. Al-
though relatively small differences are seen with the HDD, ag-
ing has a big impact on FS performance on the SSD. Although
their file fragmentation levels are similar, the higher free space
fragmentation produced by Geriatrix induces larger throughput
reductions than for Impressions. The experimental setup is de-
tailed in Section 6.

changed over time, making previous aging approaches...
stale. Previous general purpose aging approaches, from
the work of Smith and Seltzer [44] to the state-of-the-
art Impressions [2] tool, focus on achieving representa-
tive levels of file fragmentation. Such fragmentation ex-
ists when sequential blocks of a file or related metadata /
files are scattered among logical block addresses (LBAs)
of underlying storage. For FSs atop HDDs, with time-
consuming mechanical positioning costs for accessing
scattered LBAs, these file fragmentation effects are of
most concern. For the Flash-based SSDs that now dom-
inate primary and performance-tier deployments, these
effects are less significant, due to LBA remapping and
absence of mechanical positioning.

This paper introduces Geriatrix, a new FS aging tool
for modern storage. In addition to file fragmentation,
Geriatrix aggressively induces free space fragmentation
and thereby even ages any underlying device remapping
structures. As a result, it can recreate the much more
significant aging effects seen with SSDs in real sys-
tems [36]. As one example, Figure 1 compares three
instances of an Ext4 FS: Unaged, aged by Impressions,
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and aged by Geriatrix. On the HDD, fairly minor perfor-
mance differences are observed for this particular bench-
mark, since the workload involves small files and rela-
tively little access locality. On the SSD, however, large
differences can be seen, and the Geriatrix-aged FS pro-
duces much greater aging effects.

Additional evaluation and experiments, later in the pa-
per, confirm that these greater Geriatrix-induced effects
are consistent and correctly representative. In addition,
we recreated experiments from recent papers, showing
both, that the reported performance fails to represent re-
alistic expectations and that the rank ordering of configu-
rations compared is sometimes changed. Figure 2 shows
one such re-evaluation, in which we observe both effects.

Geriatrix uses a sophisticated profile-driven approach
that ages a FS according to a reference (old) FS. This
paper describes how Geriatrix extracts information from
a profile and exercises the FS to recreate its fragmenta-
tion properties. With both theoretical analysis and exper-
imental comparison to real FS images used as profiles,
we show that Geriatrix faithfully reproduces both file and
free space fragmentation.

Geriatrix is being released as an open source tool, to-
gether with eight built-in aging profiles and a repository
of aged images of popular FSs. We hope that its avail-
ability will help increase the use of aging in FS bench-
marking.

This paper makes three primary contributions. First, it
exposes the impact of free space fragmentation and de-
vice aging for FSs on SSDs and the failure of existing
aging approaches to recreate them. Second, it describes
a new aging approach, embodied in Geriatrix, and con-
firms that it does faithfully recreate these aging effects.
Third, it provides extensive evidence, including recreat-
ing recently published comparisons and showing that re-
sults change, of why aging must be part of benchmarking
and offers Geriatrix as an open-source tool for doing so.

2 Related work

We classify aging tools into three categories: trace re-
play tools, scripts executing real-world applications and
synthetic workload generators.

Trace replay tools are best used with FSs expecting a
highly specialized workload. Traces can be captured and
replayed at multiple levels - the network level [57], file
level [32], FS level [40, 4], system call level [50], VFS
level [20] and also at the block level [7]. Low level traces
are typically FS specific resulting in loss of usefulness
for comparing different FSs. Moreover, long traces are
not widely available and are hard to capture. Trace replay
tools rank high on reproducibility but do not represent all
workloads.

The Andrew benchmark [17], Compilebench [27] and
the Git-Benchmark [11, 12] are application benchmarks
that implicitly involve some aging. These tools emulate
user behavior by performing typical activities like ex-
tracting archives, reading files, compiling code, making
directories, cloning repositories, etc. Compilebench per-
forms these tasks on Linux kernel sources, while the Git-
Benchmark can be run using any git repository. Tools in
this category only exercise one workload pattern.

Geriatrix belongs to the category of synthetic work-
load generators, which also comprises of Smith and
Seltzer’s aging tool [44] and Impressions [2]. Smith’s
tool ages by recreating each file in a given reference
snapshot and then performing creates and deletes accord-
ing to the deltas observed in successive reference snap-
shots. It was one of the first tools to point out the degra-
dation of FS performance with age. Impressions on the
other hand is a realistic FS image creator that focuses
on several FS characteristics including file size and di-
rectory depth distributions along with file attributes and
contents. These tools take reference from already old
FSs in order to perform aging.

(a) Btrfs HDD Varmail (b) Btrfs HDD Webserver (c) Btrfs SSD Fileserver

Figure 2: All three graphs reproduce experiments from the Btrfs ACM TOS publication [39] on aged FS instances. The Paper
bars are normalized to the paper’s Ext4 FS measurements, while the experiments we recreated are normalized to the unaged Ext4
performance on our hardware. Figures 2a and 2b show aging experiments performed on a HDD using the varmail and webserver
profiles respectively. 2a shows modest slowdown (30% in Btrfs, 13% in Ext4 and 9% in Xfs), but preserves the rank ordering
published in the paper. 2b disrupts published rank ordering and displays slowdowns of 17% in Btrfs and Ext4 and 12% in Xfs.
Figure 2c shows effects of aging on SSD for the fileserver profile. Here too the published rank ordering is not preserved, but we
observe massive slowdowns of 65% in Btrfs and 72% in Ext4, Xfs.
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File System Publication Needed Aging? Performed Aging?
yFS [55] FAST 2003 Yes Yes
Nilfs2 [21] SIGOPS 2006 Yes No
TFS [9] FAST 2007 Yes Yes
Data Domain Dedup FS [56] FAST 2008 Yes Yes
Panasas Parallel FS [51] FAST 2008 Yes Yes
CA-NFS [5] FAST 2009 Yes No
HYDRAStor [46] FAST 2010 Yes No
DFS [19] FAST 2010 Yes No
SFS [34] FAST 2012 Yes Yes
BlueSky [47] FAST 2012 Maybe No
ZZFS [29] FAST 2012 Maybe No
Nested FS in Virt. Env. [23] FAST 2012 Yes No
Btrfs [39] ACM TOS 2013 Yes No
ReconFS [26] FAST 2014 Yes No
F2fs [24] FAST 2015 Yes No
App. Managed Flash [25] FAST 2016 Maybe No
NOVA [52] FAST 2016 Yes No
CFFS [54] FAST 2016 Maybe Yes
BetrFS [11, 18, 53] FAST 2015, 2016 Yes Yes in [11]
Strata [22] SOSP 2017 Yes No

Table 1: A subset of major FS publications and whether their paper reports aging experiments. The Needed Aging? column is our
understanding of whether aging could have affected published results, i.e. was aging (or commentary about it) necessary as a part
of benchmarking. The Performed Aging? column refers to whether any aging-like experiment was performed. Our analysis reveals
two FSs - yFS [55], TFS [9] performed long-running aging experiments; Data Domain FS [56] and Panasas FS [51] had production
data (and therefore had seen aging in the field), SFS [34] ran a workload twice the size of the disk and CFFS [54] ran a large trace
for aging. BetrFS [11] aged using the Git-benchmark (see § 3), which highlighted file fragmentation caused by age, but induced
limited free space fragmentation. The remaining 13 papers do not discuss aging or its effects on their FSs.

3 Why do we need another aging tool?
Aging any software artifact implies understanding how it
will stand the test of time. Aging is used for several rea-
sons, such as uncovering performance deterioration with
use, stressing the robustness of the software, and identi-
fying fault tolerance and scalability issues. This section
discusses four aspects of aging that current approaches
insufficiently satisfy.

Free space fragmentation. State-of-the-art FS aging
tools either replay a trace of FS commands or run scripts
of important applications. Smith’s aging tool [44] and
Impressions [2] come close to what we expect from an
aging tool. But, Smith’s tool is a twenty year old artifact
with dependencies on the Fast FS (FFS) [31]. Impres-
sions matches an impressive number of aged metrics, but
is focused on generating realistic FS content, not FS lay-
out. These tools only target file fragmentation using a
metric called layout score, that measures the disk conti-
guity of files after aging.

Git-benchmark [11, 12] is a recently published aging
benchmark that ages the FS by cloning a git repository,
repeatedly patching code files (via git pulls) and finally
grepping for random strings in the patched repository. In
this study as well, the authors only measure file fragmen-
tation by extending the layout score (which they call the
dynamic layout score) which additionally accounts for

the contiguity in the FS access pattern for a file.
We ran the Git-benchmark from [12] on a 20GB Ext4

partition and observed a > 7⇥ slowdown when grepping
for the same string after 3000 git pulls versus grepping
for a string after a single git pull on a fresh Ext4 parti-
tion. In order to understand the dramatic slowdowns this
workload experiences, we traced the Ext4 kernel func-
tions to find, where in the code, most of the time was
spent during the arbitrary greps. Function tracing re-
vealed that ext4 es lookup extent is the function where
most of the time is spent during grep, i.e. looking up a
FS data structure. Since the capacity utilization at the
end of 3000 git pulls was only 4%, we measured the free
space fragmentation and observed that > 75% of the free
space extents were between 1-2GB. Thus, although the
Git-benchmark successfully caused some file fragmenta-
tion, it caused little of the free space fragmentation preva-
lent in aged FSs.

To the best of our knowledge, the above mentioned
tools are the only general purpose FS aging tools; and
none of them produce the required free space fragmenta-
tion which is an inevitable consequence of aging. Geri-
atrix’s fills this void by inducing adequate free space
fragmentation, proof of which is shown in § 5 and whose
effect in aging SSDs has been exemplified in Figure 1.

Device aging. SSDs contain a complex translation
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layer in the device firmware called a flash translation
layer (FTL). FTLs are the reason that an SSD can act as a
drop-in replacement for an HDD despite having entirely
different hardware. FTLs primarily perform the tasks of
address remapping, garbage collection and wear level-
ing. SSD device characteristics force the FTL to operate
very similarly to a complex log-structured FS [41]. With
time, the increased garbage collection work (interfering
with the foreground work) combined with fragmented
FTL mapping tables can hurt performance. Thus, in the
case of an SSD, two systems are aging simultaneously,
the FTL and the FS that the SSD has been formatted
with. Since FTLs are proprietary, users typically have
no insight into how well (or poorly) an FTL has aged.

Shingled magnetic recording (SMR) is a new hard
drive architecture wherein adjacent tracks on a HDD are
partially overlapped to increase the number of tracks on
the disk, thus increasing the disk capacity. This tech-
nology was an answer to the traditional HDDs having
surpassed the superparamagnetic effect [45], which dis-
allows increasing sectors-per-track in order to achieve
larger disk capacities. Commercially available SMR
HDDs have a firmware different from, but as complicated
as the FTL. Aghayev et al. [1] showed that the interfer-
ence of the firmware while performing foreground tasks
caused high performance fluctuations. One of the key as-
pects of a firmware driven SMR disk is the existence of
a persistent cache at the center of the drive. Suppose we
are benchmarking a fresh FS on a SMR drive, we might
conceivably never hit the persistent cache limit (which is
impossible as the drive actually ages), thus circumvent-
ing the large read-modify-write cycles that the firmware
would have performed leading to low throughput.

The churn that the FS and the device endure while
Geriatrix attempts to age according to an aging profile
forces device aging as well, providing a more realistic
aging effect.

Aging write-optimized FSs. Write-optimized FSs fo-
cus on expediting writes at the cost of possibly slower
reads. Log-structured FSs [41] are a classic example of
a write-optimized FS. Moreover, most modern storage
devices operate as log-structured FSs internally, as men-
tioned in Section 3. In this architecture, every file rewrite
causes file fragmentation because in-place updates are
disallowed. Therefore, the true impact of aging a write-
optimized FS is usually noticed when garbage collection
starts interfering with foreground activity, a well studied
problem also known as segment cleaning [41, 6, 28, 48].
These FSs are hard to age since they need to be forced
into frequent garbage collection which is only possible
at high space utilization and with significant free space
fragmentation. Geriatrix fulfills these two requirements
allowing for effective aging of write-optimized FSs.

Aging as a stress tester. An effective use of an ag-

ing exercise could be in the form of a stress tester. The
high churn expected to be exercised by an aging tool
can expose design flaws like overflows / underflows, data
structure inefficiencies, concurrency and consistency is-
sues among others. Geriatrix produces orders of mag-
nitude more churn than the state of the art aging tools
present today, rewriting data amounting to several times
the specified FS image size. Thus, Geriatrix is as much a
FS stress tester as it is an aging tool.

4 Geriatrix design and implementation
Geriatrix exercises a non-aged FS to match an aging pro-
file which is provided as input, by performing a sequence
of file create and delete operations. The profile contents
are inspired by a combination of the usual parameters
that affect a file’s on-disk layout and which are easily
obtainable from an aged instance of a FS using a single
metadata tree walk. A Geriatrix aging profile comprises
of:
• FS fullness (bytes, %): Partition size and fraction

containing user data.
• File size distribution (bytes, %; bytes, %; ...): A

histogram of file sizes.
• Directory depth distribution (1, %, # subdirs; 2,

% #subdirs; ...): Path depth to individual files and
percentage of files at that path depth along with the
aggregate number of subdirectories at each depth.

• Relative age distribution (n, %; m %; ...): A his-
togram of relative file ages, n<m< ..., where younger
files, in the first histogram bin make up the first % of
all files in the aged FS image, and so on. More specifi-
cally, we extract create timestamps of files from an ex-
isting old FS snapshot following which we sort, enu-
merate and bin files into relative age buckets. These
buckets approximate the age of each file relative to the
other files, decoupling them from the absolute time of
their creation (thus making their age unitless).

At a high level, Geriatrix aging proceeds in two distinct
phases.
1. A rapid aging phase in which files are only created

(one file creation per time instant or tick), to rapidly
achieve the fullness target. Since this phase does not
perform any deletions, there is no fragmentation in-
duced in rapid aging. It merely achieves the required
fullness while ensuring that the file size and directory
depth distributions are met.

2. A stable aging phase in which each operation (one
operation per tick) is either a file creation or a dele-
tion based on a fair coin toss. This phase is designed
to fit the relative age distribution while maintaining
all other parameters. The roughly equal number of
creations and deletions are necessary to maintain the
fullness target, and in some sense mimic the steady-
state operation of a FS operated at a certain fullness.
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We now discuss how we ensure that the distributions
of the file system being aged match the target distribu-
tions at the end of a Geriatrix run. We assume that all
input distributions are mutually independent. Thus, we
can easily achieve the size and directory depth distribu-
tions by drawing a size and directory depth value from
their respective distributions and creating or deleting a
file corresponding to those values. Note that rapid and
stable aging phases continuously strive to maintain both,
size and directory depth distributions.

However, achieving the target age distribution is
harder. Note that the relative age of a file at the end of a
Geriatrix run is the ratio of the number of ticks (or oper-
ations) that have passed since the file was created to the
total number of ticks (say T ) in that run. Thus, without
knowing T , it is impossible to determine the final rela-
tive age bucket of any file. However, to direct the algo-
rithm towards the target age distribution, it is necessary
to know the final relative age bucket and thus, T . We
overcome this by theoretically estimating a sufficiently
large T within which it is possible to perform create /
delete operations that achieve the target age distribution.
Then, during the run, we use our estimate of T to com-
pute the index of the final relative age bucket of any file;
based on this, we perform clever deletions to ensure that
the target age distribution is achieved. Appendix A pro-
vides this estimate of T and shows that when we stop the
algorithm at T , it has indeed converged to the target age
distribution.

Geriatrix has a repository of eight built-in file system
aging profiles, most of which are from long-running file
system and metadata publications [3, 13, 49, 33] to as-
sist practitioners in conducting file system aging exper-
iments. Table 3 provides a description of all the pro-
files along with the age of oldest file in every profile.
We also indicate the wall-clock time it took to age these
profiles in a ramdisk along with the total workload size
generated during aging. Finally, we also show the empir-
ical proof of our relative age convergence theorem via
the perfect convergence (a root mean-squared error of
<0.01%) achieved on the relative age distribution graphs
for each aging profile (complete overlap in the graphs in
Table 3).

The aging tool is a C++ program (built using the Boost
library) designed to run on UNIX platforms. It has the
ability to age both POSIX and non-POSIX FSs.
• Reducing setup complexity: Geriatrix is profile

driven with eight built-in aging profiles. We also pro-
vide a repository of popular Linux FSs aged using the
built-in profiles for standardized comparison.

• Parallel aging: Geriatrix has a configurable thread
pool that exploits multi-threading in file systems to ex-
pedite aging substantially.

• Reproducibility: A user-defined seed governs all the

randomness in Geriatrix, thus allowing every single-
threaded Geriatrix execution to be exactly repro-
ducible. For multi-threaded executions, the operating
system scheduler may interleave threads differently re-
sulting in different execution patterns across runs.

• Rollback utility: Aging experiments can take a pro-
hibitively long time. Once a FS image has been aged,
taking a snapshot of the image to be able to restore the
same image for multiple tests is usually faster than re-
aging. This requires a whole disk overwrite, which on
today’s multi-TB disks can take several hours, so we
have developed a rollback utility to undo the effects of
a short benchmark run on an aged image without hav-
ing to replay the entire aged image again. Using the
blktrace utility [7], we monitor the blocks that were
modified during benchmark execution and effectively
“undo” the perturbation caused by benchmarking by
overwriting the dirtied blocks from the static snapshot
of the aged image. blktrace adds overhead when run-
ning a benchmark, but is often negligible and can be
mitigated further by writing the blktrace output to an
in-memory FS or sending it across the network.

• Multiple stopping conditions: For many users, wait-
ing for < 0.01% root mean square convergence of a
Geriatrix run might be overkill. Thus, we have intro-
duced multiple stopping conditions:
1. the amount of time the ager is allowed to run
2. the confidence 1 of the age distribution fit
3. the max number of disk overwrites for aging
Once any stopping condition is met, Geriatrix stops
and displays the values of all three stopping condi-
tions. The user can choose to accept the aging per-
formed, or revise the condition(s) and resume aging.

5 Evaluation of Geriatrix as an aging tool
We evaluate the fidelity of Geriatrix’s aging by compar-
ing the file and free space fragmentation it induces on a
fresh Ext4 partition to that of the source file system for
the selected built-in profile. We do this comparison for
two Geriatrix profiles: Grundman (extracted from a nine
year old 90GB FS with approximately 90% fullness) and
Dabre (extracted from a one year old 20GB FS with ap-
proximately 80% fullness). Despite being designed to
only match externally visible measures of a FS, Geriatrix
induces appropriate free space and file fragmentation by
exercising the FS extensively.

We measure the distribution of free space extents us-
ing the e2freefrag utility. Figure 3 shows results for five
file systems: the original Grundman FS image (aged nat-
urally over 9 years), a fresh FS with no aging, a fresh FS
aged by Geriatrix using the Grundman profile, a fresh FS

1Confidence of the convergence of distributions is calculated using
the chi-squared goodness-of-fit statistic.
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(a) Extents (b) File Fragmentation

Figure 4: 4a compares the the minimum, average and maxi-
mum size of free space extents for a naturally aged Ext4 image
and an Ext4 image aged using Geriatrix for the Grundman ag-
ing profile. 4b shows the number of fragments allocated as a
result of a 2GB file being copied to both FS images.

aged by Impressions using the same file size distribution,
and a fresh FS with the Grundman image files copied to
it.

The primary takeaway is that the Geriatrix-aged FS
matches the original Grundman FS closely, which can
be seen by comparing the colorful bars, while the other
three (gray bars) do not. As expected, the freshly for-
matted Ext4 has very large free space extents, mostly
between 1-2GB. Grundman and the Geriatrix-aged FS
have much smaller extents and more spread out free
space extent distributions ranging from 4KB to 32MB.
The “Copied” and Impressions-aged FSs are similar to
the freshly-formatted file system, with low free space
fragmentation. The comparison using the Dabre profile
(graph omitted due to space constraints) shows very sim-
ilar results.

Figure 4a compares the minimum, average and max-
imum free space extent sizes for Grundman and the

Geriatrix-aged FSs. Both have the same smallest free
space extent of 4KB. The average free space extent size
of naturally-aged Grundman is only 144KB larger than
its Geriatrix counterpart, while the largest free space ex-
tent is only 7.2MB smaller. These numbers are very close
considering the total partition size of 90GB.

Figure 4b measures the fragmentation of a new 3GB
file copied to each of the naturally-aged Grundman im-
age and the Geriatrix-aged FS, using the filefrag utility.
The image aged by Geriatrix splits the file into 2250 frag-
ments while the naturally-aged FS only splits it into 1368
fragments. Despite Geriatrix over-splitting the file, its
aging is two orders of magnitude higher than the number
of fragments created writing 3GB to a freshly formatted
Ext4.

Since Geriatrix refrains from taking shortcuts, and per-
forms millions of operations before declaring a FS aged,
it closely approximates the FS state caused by natural
aging. The Geriatrix aging experiment reported in Fig-
ures 3 and 4 took approximately 420 minutes. Recreat-
ing the fragmentation naturally occurring in nine years
with only 420 minutes of aging is an acceleration of
>11000⇥.

6 How Geriatrix changes conclusions
To highlight the impact of aging, we recreated experi-
ments from Btrfs [39], F2fs [24] and NOVA [52] pub-
lications on unaged and aged FS instances. We also
produced aged instances of Ext4 (used for comparison
across all three papers) and Xfs (used for comparison in
the Btrfs and NOVA papers).

Experimental setup. We performed all our experi-
ments on an Emulab PRObE cluster [15]. The hardware
used and the setups for experiments is described in Ta-
ble 2. For fairer comparison, we matched the memory
and the number of cores in our benchmark when recreat-
ing expts. from the Btrfs [39] and F2fs [24] publications.

Figure 3: Free space fragmentation comparison of an actual old Ext4 FS image (Grundman) with Geriatrix driven by the Grundman
profile, Impressions driven by the Grundman profile’s file size distribution, a partition with the contents of the original Grundman
image copied over and a freshly formatted Ext4 partition. Other than the freshly formatted image, all other FS images are approxi-
mately 90% full. Geriatrix induces free space fragmentation very similar to the naturally aged Grundman image with no large free
space extents, hence causing appropriate free space fragmentation.
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Paper Disk RAM CPU (cores) Linux (Kernel Version)

Btrfs [39] 500GB HDD (WDC WD5000YS-01MPB0) 2GB Intel Xeon E7 (8) Ubuntu 14.04 LTS (3.13.0-33)
64GB SSD (Crucial M4-CT064M4SSD2) 2GB AMD Opteron (8) Ubuntu 14.04 LTS (3.13.0-33, 4.4.0-31)

F2fs [24] 64GB SSD (Crucial M4-CT064M4SSD2) 4GB Intel Core i7 (4) Ubuntu 14.04 LTS (4.4.0-31)
120GB SSD (ADATA SSD S510) 4GB Intel Core i7 (4) Ubuntu 14.04 LTS (4.4.0-31)

NOVA [52] 64GB NVM (Emulated in DRAM) 8GB AMD Opteron (8) Ubuntu 14.04 LTS (4.13)

Table 2: Experimental Configuration.

We used four of Geriatrix’s built-in profiles in our ex-
periments: Agrawal [3], Meyer [33], Dabre and Pramod.
We performed aging in memory and captured the result-
ing aged images. We consciously decided to not age the
FSs on the device as we wanted to prevent device aging
from affecting the FS aging. Prior to each benchmark
run we copied the corresponding aged image onto a disk
(using dd to the raw device) and mounted the FS on the
aged image. All FSs were mounted using default mount
options.

The Filebench benchmark [30] was used for all per-
formance measurements with different profiles accord-
ing to the appropriate reference publication. The primary
performance metric reported is overall operations per
second as reported by Filebench. Each benchmark run
lasted about 10 minutes and we performed three runs of
each benchmark to capture variance. We report only the
mean, since the maximum standard deviation observed
was below 2. Since our hardware is not identical to what
was used in the papers and since we are testing with code
potentially newer than the one used for publication, exact
reproduction of paper results even for unaged instances
of FSs is unlikely. With SSDs, the performance variabil-
ity across devices is especially high. For ease of com-
parison, we include raw data on the bar graphs, but nor-
malize bar heights. The published results (leftmost gray
bars) are normalized to the published Ext4 results, and
the aged FS performance numbers are normalized to un-
aged Ext4 performance on the same hardware. We chose
Ext4 because it is the default FS rolled out with most
Linux distributions today. All HDD experiments were

conducted using 100GB aged images with a 80% capac-
ity utilization target being replayed on a 100GB partition
of a 500GB HDD.

HDD experiments. Figure 2a in Section 1 compares
the performance of Btrfs, Ext4 and Xfs on an HDD
for the Filebench varmail workload, representing a mail
server workload of tiny (⇡16KB) file operations. Af-
ter aging using the Meyer profile, we see 9-30% slow-
downs, with Btrfs being most affected by aging, followed
by Ext4 and then Xfs.

Figure 2b compares the same FSs using the webserver
workload. The webserver workload is highly multi-
threaded and again, operates on tiny files, although it
avoids issuing expensive fsync operations and mimics
webservers that have to perform more whole-file reads
and log appends. Since FSs are usually more sensi-
tive to small file operations, it is perhaps understand-
ably harder to reproduce published results; indeed, un-
aged Btrfs performs 22% faster on our hardware than
reported in the paper, while unaged Xfs also performs
10% faster than the paper. We also see a minor inver-
sion of ranking, with unaged Btrfs outperforming unaged
Xfs. The performance penalties after aging are between
12-17%. We show only the Meyer aging profile in web-
server and varmail because Btrfs could not sustain aging
for the Pramod profile, and although Btrfs successfully
completed aging for Dabre and Agrawal profiles, it did
not complete execution of the benchmark despite having
the required space to do so. This exemplifies the role of
Geriatrix as a stress testing tool.

Figure 5a compares the FSs on the fileserver workload,

(a) Btrfs HDD Fileserver (b) Btrfs SSD Fileserver

Figure 5: Both graphs reproduce Filebench fileserver experiments from the Btrfs ACM TOS publication [39] on aged FS instances
on a HDD (Figure 5a) and a SSD (Figure 5b). Aged Btrfs and Ext4 performed at most 22% slower on the HDD but supported the
prior paper’s published rank ordering whereas aged Btrfs and Ext4 on a SSD degraded benchmark performance by as much as 80%,
and changed the rank ordering of compared FSs. SSD experiments in 5b were performed using the Linux kernel version 3.13.0-33
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Figure 6: Filbench webserver recreations from the Btrfs paper
[33] on SSD. Btrfs is most affected by aging with its perfor-
mance dropping by 30%. Ext4 and Xfs performance drops by
a maximum of 10% and 15% respectively.

which consists of relatively larger file writes and reads
(⇡ 128KB) compared to thousands of tiny file operations
in webserver and varmail. We observe that unaged Btrfs
is 10% faster in our setup, unaged Ext4 is marginally bet-
ter while unaged Xfs is about 5% slower, keeping perfor-
mance similar to published results with slightly increased
performance gaps between the FSs. After aging using the
Agrawal profile, we observe a 10-22% performance drop
with Ext4 being the most affected FS.

SSD experiments. The SSD experiments were con-
ducted on a 64GB SSD with a 59GB aged FS image with
a 70% fullness target. The reason for choosing 70% was
to allow the benchmarking workload to fit after aging.
SSDs are available in a variety of product price-point
classes and have highly variable performance making re-
production of SSD results on different hardware unlikely.
This is evident from figures 2c and 5b which show a com-
pletely different rank ordering of unaged Btrfs, Ext4 and
Xfs compared to published results on the fileserver work-
load. While Btrfs had the best performance in the paper,
it ranged from being the best in aged reproduction using
the Dabre (Figure 2c) and Agrawal profiles to being the
worst in the aged reproduction using the Meyer profile.
Apart from the rank ordering, we observed massive post-
aging slowdowns on SSDs from 65-80%. As explained
in Sections 1 and 3, we attribute this performance drop
to SSD device aging along with FS aging, with both ef-
fects being exaggerated by the free space fragmentation
caused by Geriatrix.

The webserver results shown in Figure 6 also show
significant slowdowns, but are not so dramatic. Btrfs ap-
pears to be the most affected by aging, showing up to a
30% performance drop, while Xfs and Ext4 degrade by
15% and 10%, respectively.

It was typical of SSDs from a few years ago to not be
able to sustain more than 2 minutes of continuous writing
before performing inline cleaning [37]. Our benchmark-
ing technique involves writing an aged image on almost
the entire surface of the SSD, performing a 10 minute

Figure 7: Recreation of the Filebench fileserver benchmark
from the F2fs paper [24] on two SSDs - 64GB (labeled 64)
and 120GB (labeled 120). Performance on 64 drops signifi-
cantly after aging, especially for Btrfs and Ext4 resulting in a
graph that looks similar to published results. Refer Section 6
for detailed explanation. 120 seems unaffected by aging, thus
highlighting highly varied performance across different SSDs.

benchmark run followed by unmounting the FS and re-
peating the process with 100% device utilization. An en-
tire surface rewrite should be equivalent to a giant trim
obviating the need to perform any internal garbage col-
lection in the FTL, but this is dependent on firmware im-
plementation which varies widely across devices.

Figure 7 is the recreation of F2fs [24] results on SSDs
comparing Btrfs, Ext4 and F2fs using the Filebench file-
server profile. To capture variability of performance
across devices, we chose SSDs of different makes and
sizes - a 64GB Crucial SSD with 59GB aged FS images
(bars labeled 64) and a 120GB ADATA SSD with 100GB
aged FS images (bars labeled 120). Ext4 is the winning
FS when comparing unaged FS instances on 64GB SSD,
and Xfs is marginally better on the 120GB SSD, while
published results report F2fs performance was 2.4⇥ that
of Ext4. Aging on 64GB SSD shows interesting behav-
ior as the performance of all three FSs drops (61-67%
for Btrfs, 76-78% for Ext4 and 2-5% for F2fs) and the
outcome looks similar to results that the earlier paper re-
ported. The authors most likely aged the SSD firmware
by performing repeated benchmark runs resulting in be-
havior similar to what is seen when FSs are aged. In
contrast, the 100GB FSs on the 120GB SSD age much
more gracefully with only Btrfs showing as much as 7%
performance penalty after aging. This again suggests that
SSDs themselves age in different (and non-trivial) ways
along with the FSs running on them.

Emulated NVM experiments. We also perform ag-
ing experiments on NOVA [52] – a log-structured FS
intended for non-volatile memory (NVM). We used a
modified Linux kernel version 4.13 to age NOVA since
it required special kernel libraries for enabling persis-
tent memory emulation. A 64GB partition similar to the
SSD experiments was aged with 70% utilization. The
NOVA paper performed experiments with 64GB persis-
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(a) NOVA Fileserver (b) NOVA Varmail

Figure 8: Both graphs reproduce experiments from the NOVA FAST 2016 publication [52] on aged FS instances using emulated
non-volatile memory. All FSs age gracefully with Btrfs seeing the largest performance hit of 5% on the fileserver workload
(Figure 8a) and 6% on the varmail workload (Figure 8b). Graphs from the paper are for reference and in this case cannot be
compared to our reproductions because of different hardware and configuration.

(a) NOVA Fileserver Latency (b) NOVA Varmail La-
tency

Figure 9: 9a shows the latency of the slowest operations for
the fileserver workload. Aged NOVA slows down by upto 60%
on file opens and upto 2⇥ on file writes. In 9b we see slow-
downs of upto 2.3⇥ on reads of the slowest file in the varmail
workload. The aged opens are contrastingly faster for the var-
mail workload compared to the fileserver workload. Slowest
file open during the varmail workload run is 25% faster after
aging.

tent memory devoted to NOVA and 32GB DRAM for the
rest of the system. The experiment dataset size was made
slightly larger than DRAM (more than 32GB) forcing
NVM device interaction during an experiment run. How-
ever, that meant that the authors used more than half the
64GB NVM device for their benchmark run. Generally, a
<50% utilized FS would be considered too underutilized
for running a realistic post-aging benchmark. Hence,
we kept utilization at 70%, reduced the DRAM size to
8GB and exercised a workload of more than 8GB to still
ensure that the benchmarking workload was larger than
the system memory. Furthermore, the authors performed
their experiments on special Intel NVM hardware. Thus,
we discourage the direct comparison of performance in
Figures 8a and 8b with the NOVA paper results.

Figure 8a compares NOVA’s performance on the file-
server workload before and after aging with Btrfs, Ext4,

Ext4-DAX and F2fs. Ext4-DAX is Ext4 mounted with
the -o dax option to enable direct-access to the emulated
NVM device bypassing the buffer cache, thus avoiding
duplicate caching of data. With the largest difference of
5% observed in Btrfs, we see virtually no difference in
all FSs before and after aging. The same is true in the
case of the varmail workload shown in Figure 8b where
Btrfs is the most affected FS with a slowdown of approx-
imately 6%.

Although aging does not affect throughput, its effect
is seen in the tail latencies. Figure 9a shows the highest
latency encountered by Filebench categorized by oper-
ation. The slowest file open in the fileserver workload
was 60% slower after aging. Writing the slowest file
also took twice as long compared to a freshly formatted
NOVA image. Surprisingly, closing the slowest file was
5⇥ faster after aging. In the varmail workload, the slow-
est aged read was 2.3⇥ slower than the slowest unaged
read. In contrast, the opening of the slowest aged file was
approximately 25% faster. Both these observations can
be attributed to the log-structured design of NOVA, as
log-structured FSs are not read-optimized. We speculate
that reorganization of files after cleaning might have led
to the open call being executed faster.

As expected, with no mechanical parts and DRAM-
like latency, NVM or in-memory FSs do not show sig-
nificant reduction in throughput after aging. An aging
exercise for these FSs is mainly about exposing ineffi-
ciencies in FS implementations that usually get hidden
behind massive device latencies.

7 Conclusion
The Geriatrix aging tool creates representative fragmen-
tation of both files and free space. Unlike with HDDs,
file system performance on SSDs is greatly impacted
by free space fragmentation that has been largely absent
from prior aging approaches. Being released as open-
source, Geriatrix will enable file system benchmarking
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to include aging relevant to modern storage.
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A Proof of convergence of the age distr.
Assume we need to age a FS that has K files at the end
of the rapid aging phase, and continues to have approxi-
mately K files throughout aging (i.e. one Geriatrix run).
Let T be the total number of operations (each corre-
sponding to a tick) performed in one Geriatrix run. Let
the target relative age distribution be specified by binning
the T ticks into B buckets, with the oldest bucket indexed
as b = B and the youngest bucket as b = 1 (i.e., the files
created at the end of the run will fall in b = 1). Let sb be
the relative size of the age bucket b, i.e., files created in
the first T sB operations will fall in relative age bucket B,
and those in the next T sB�1 operations in bucket B� 1
and so on). Let gb be the relative number of files in
bucket b according to the target distribution i.e., there
must be approximately Kgb files in bucket b at the end
of a run. Then we can predict the number of operations
required to achieve convergence as follows:

Theorem A.1. After

T = max

8
><

>:

2Kgb
sb

,8b < B

K
sB

.

the Geriatrix run would have converged to the target age
distribution i.e., the number of files in age bucket b would
equal Kgb (approximately).

Proof. First, let us examine how the rapid aging phase,
which consists of the first K file creations, affects the
age distribution of the system. Since the oldest bucket
corresponds to the first T sB operations, and T sB � K, all
the files created in the rapid aging phase end up falling
in bucket B.

Next, we will examine how the stable aging phase can
achieve the target age distribution. Let Ob be the total
number of stable aging operations that correspond to the
ticks corresponding to bucket b. For the oldest bucket,
OB = T sB �K and in the other buckets Ob = T sb. Fur-
ther, let Cb and Db respectively be the number of stable

aging creation and deletion operations performed corre-
sponding to bucket b. Assume that Cb ⇡ Ob

2 and Db ⇡ Ob
2

since we perform creations and deletions in the stable
aging phase using a fair coin toss.

Now note that the Cb creations corresponding to
bucket b will create files which will all fall in bucket
b. On the other hand, the Db deletions corresponding
to bucket b may be performed either on files in bucket b
or on any pre-existing file in an older bucket b0 such that
b0 > b. We will show that we can distribute these dele-
tions in such a manner that the target age distribution of
Kgb files in bucket b can be achieved for every b.

First, observe that in the youngest bucket b= 1 we cre-
ate exactly C1 = T s1/2 files. Now, since T � 2Kg1/s1,
C1 � Kg1. Thus, there would be an excess of C1�Kg1 =
T s1/2�Kg1 file creations in this bucket which need to
be deleted. Since we have D1 = T s1/2 deletion opera-
tions available for this bucket, we can use T s1/2�Kg1 of
them to remove these excess files and achieve the target
for this bucket, and use the excess Kg1 delete operations
for the older buckets.

We will now use induction to show that we can simi-
larly achieve the target number of files for the older buck-
ets (except the oldest which we will handle separately).
Specifically, assume that for operating on the files in
bucket b where b 6= B, we have K Âb�1

b0=1 gb0 excess delete
operations available from the operations corresponding
to the younger buckets (this is equal to zero for b = 1).
Next, recall that have Cb = T sb/2 file creations in this
bucket. But since T � 2Kgb/sb, Cb � Kgb. Thus, there
would be an excess of T sb/2�Kgb files in this bucket
that need to be deleted. However, we have T sb/2 dele-
tion operations available from the ticks corresponding to
this bucket and a further K Âb�1

b0=1 gb0 excess deletion op-
erations available from younger buckets. Hence, we can
delete these excess T sb/2�Kgb files to achieve the tar-
get of Kgb files in this bucket. Then, we will have the
remaining Kgb+K Âb�1

b0=1 gb0 = K Âb
b0=1 gb0 deletion oper-

ations as excess which can be used for the older buckets,
thus satisfying the induction hypothesis.

Now, for the oldest bucket we will have K ÂB�1
b0=1 gb0 =

K(1 � gB) excess deletion operations available (since
ÂB

b0=1 g0b = 1) from the younger buckets, besides T sB/2
deletions corresponding to this bucket. At the same time,
we have created K files in this bucket in the rapid ag-
ing phase and T sB/2 files in the stable aging face i.e.,
K +T sB/2 files in total. Hence, we will have an excess
of K + T sB/2�KgB = K(1� gB)+ T sB/2 files, which
happens to be equal to the total number of deletions avail-
able. Hence, we can achieve the target file number in this
bucket while using up all the available operations. Thus,
we use exactly T operations to achieve the target age dis-
tribution.

700    2018 USENIX Annual Technical Conference USENIX Association



Profile Description Age
(yrs)

Duration
(min)

Overwrites
(50 GB) Age Distribution

Douceur*

Referenced from a study of FS contents by Douceur
et al. [13] in 1998. It captures an aggregate analysis
of over 10000 commercial PCs running Microsoft
Windows.

4 NA 22422
(1 GB)

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
● ●0%
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10%

15%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Agrawal

Referenced from a metadata study of Windows
desktop FSs from Microsoft in 2004 [3]. Most com-
puters ran NTFS (80%) along with FAT32 (15%)
and FAT (5%).

14 466 253

● ●
●

●

●

●

● ●

●

●0%

10%

20%

30%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Meyer

Referenced from a deduplication study conducted
on 857 Windows desktop computers at Mi-
crosoft [33]. Snapshots of the FSs were taken in
2009.

2 78 159

●

●

●

●

●

●
●

● ●

● ●

●

●
●

● ●●
●

●

●

● ● ● ●0%

10%

20%

0 20 40 60 80 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Wang-
OS

Referenced from an HPC FS environment study [49]
performed on NetApp’s WAFL [16] installations at
CMU’s Parallel Data Lab (an educational cluster
setup for systems’ research) in 2011.

22 231 34

● ●
●

●

●

●

●

●

● ●0%

10%

20%

30%

1 10 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Wang-
LANL

Referenced from the same study as Wang-OS [49]
from Panasas FS [51] installations at Los Alamos
National Lab (LANL).

11 146 28

● ● ● ●
●

●

●

●

●

●

● ●0%

5%

10%

15%

20%

25%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Dabre Captured in 2017 from the root partition of a col-
league’s laptop running Ext4. 1 91 4042

● ● ● ● ● ● ● ●
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●

●

●
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80%

0.01 0.10 1.00 10.00 100.00
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Pramod Captured in 2017 from the root partition of a col-
league’s laptop running Ext4. 3.75 27 17

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

0%

20%

40%

60%
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Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Grundman Captured in 2018 from the home partition of a col-
league’s laptop running Ext4. 8.75 142 2388

●

●

●
●

●

●

●

●

●

0%

10%

20%

30%

1 10 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

*Douceur 1 GB image required a 22.4 TB workload to converge, thus taking too long to converge for 50 GB.

Table 3: List of built-in aging profiles in Geriatrix with their descriptions, the age of the oldest file in each profile, the duration to
age a 50GB Xfs partition in memory with Geriatrix for every profile, and the number of disk overwrites (workload) performed.
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Abstract

Deduplication systems for traditional backups have op-
timized for large sequential writes and reads. Over
time, new applications have resulted in nonsequential ac-
cesses, patterns reminiscent of primary storage systems.
The Data Domain File System (DDFS) needs to evolve to
support these modern workloads by providing high per-
formance for nonsequential accesses without degrading
performance for traditional backup workloads.

Based on our experience with thousands of deployed
systems, we have updated our storage software to distin-
guish user workloads and apply optimizations including
leveraging solid-state disk (SSD) caches. Since SSDs are
still significantly more expensive than magnetic disks,
we make our system cost-effective by caching metadata
and file data rather than moving everything to SSD. We
dynamically detect access patterns to decide when to
cache, prefetch, and perform numerous other optimiza-
tions. We find that on a workload with nonsequential
accesses, with SSDs for caching metadata alone, we
measured a 5.7× improvement on input/output opera-
tions per second (IOPS) when compared to a baseline
without SSDs. Combining metadata and data caching
in SSDs, we measured a further 1.7× IOPS increase.
Adding software optimizations throughout our system
added an additional 2.7× IOPS improvement for non-
sequential workloads. Overall, we find that both hard-
ware and software changes are necessary to support the
new mix of sequential and nonsequential workloads at
acceptable cost. Our updated system is sold to customers
worldwide.

1 Introduction

With traditional backups, an application periodically
copies the entire contents of a file system into the backup

∗Current affiliation: Perspecta Labs

environment, with changes since the last copy added at
shorter intervals. These are called full and incremen-
tal backups, respectively [8]. Deduplicating file systems
leverage the redundancy across full backups by storing
a single copy of data, with the granularity of dupli-
cate detection varying from whole files [2] to individual
file blocks [31] or variable-sized “chunks” that are de-
termined on the fly via content characteristics [28, 36].
Leveraging a log-structured file system [32] to store
nonduplicate data results in append-only write opera-
tions. Nonsequential reads are needed for index lookups
and when deduplication results in the physical fragmen-
tation of unique data [20]. However, index lookups can
be limited to trade deduplication efficiency to improve
performance both for writes and reads by writing some
duplicates to improve data locality [13].

There have been recent reports about the impact of
evolving workloads on system performance. An arti-
cle [3] provided an overview of the impact of increas-
ing numbers of small files and higher deduplication ra-
tios (and other changing properties) on the Data Domain
File System (DDFS) as a whole, but with relatively few
details or quantitative analysis. As an example, garbage
collection (GC) was slowed by these changing workloads
and a new algorithm was needed [11].

Indeed, GC is not the only aspect of the system that
must be rethought to handle modern workloads. While
Data Domain was one of the original “purpose-built
backup appliances,” modern data protection workloads
impose very different requirements. These workloads in-
clude frequent updates to arbitrary locations in backup
files, direct access to individual files rather than the ag-
gregates created by traditional backup applications, and
direct read/write access to files in the appliance by appli-
cations on other hosts. This last class of usage is partic-
ularly demanding, as it generally involves large amounts
of nonsequential I/O (NSIO).

Thus, we are at an inflection point where we need to
rethink and redesign backup systems to enable optimized
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performance for non-traditional data protection work-
loads with nonsequential accesses for our customers.
This goes beyond previous work on improving dedupli-
cating storage by reducing fragmentation of sequentially
read data [20], as it strives to provide improved NSIO
performance without degrading the performance of tra-
ditional, sequential, workloads. These two types of ap-
plication must coexist regardless of the distribution of
workloads between the two categories.

In this paper, we describe the evolution of DDFS to
support both traditional and nontraditional workloads
based on our experience with deployed systems. Tra-
ditional workloads mostly have large sequential writes
and reads with low metadata operations. Nontraditional
workloads have many small files, more metadata oper-
ations, and frequent nonsequential accesses. Our new
DDFS design supports higher IOPS for both metadata
operations and nonsequential reads and writes and is al-
ready used by our customers1

We expanded our storage system, which had used only
hard disk drives (HDDs), to also use solid-state disks
(SSDs). These cache index data, directory structures,
deduplicating file recipes, and ultimately file data. Be-
cause the capacity of the SSDs is a small fraction of the
overall system (e.g., 1%), we must make a number of
tradeoffs. For instance, while the index that maps finger-
prints to disk location stores information in the SSDs for
all chunks, we use a shorter form of the fingerprint that
can have occasional hash collisions. We rely on metadata
accessed when reading a chunk to provide the full finger-
print for confirmation, and when a mismatch is detected,
the full on-disk index is consulted.

In addition, we have made several changes to our
software stack. These include dynamic assessment of
prefetching and caching behavior based on access pat-
terns; data alignment, using application-specific chunk
size; scheduler changes for quality of service; increasing
the parallelism of I/O requests to a single file; minimiz-
ing writes by queuing metadata updates in memory; and
support for smaller access sizes.

Through lab experiments, we demonstrate the impact
of these changes on the performance of certain applica-
tions. With a NSIO workload, with SSDs for caching
metadata, we measured a 5.7× IOPS improvement rel-
ative to a system without SSDs. Adding data caching
in SSDs, we measured a further 1.7× IOPS increase.
Combining SSD caching with software optimizations
throughout our system added an additional 2.7× IOPS
increase for NSIO workloads. We measured similar
factors of reductions in terms of average latency of ac-
cesses for both reads and writes. Importantly, perfor-
mance for traditional workloads running concurrently re-

1The data cache is not yet commercially available.

mained high and even increased (when run separately)
due to software improvements. We provide detailed ex-
perimental results in §6.

In summary, the main contributions of this paper are:

1. We extend support to modern backup applications,
with NSIO access patterns. We ensure our new design
for the DDFS software stack benefits both traditional
and nontraditional backup and restore tasks.

2. We optimize the file system to better utilize the benefits
of flash in our software stack, while minimizing the
cost of adding flash by selectively storing metadata on
SSDs.

3. Experimental results using our techniques show orders
of magnitude improvement in IOPS and reduced la-
tencies in nonsequential workloads. Even traditional
backup workloads show 25%-30% improvement in re-
store throughput because the SSD cache reduces disk
accesses. In experiments where both traditional and
NSIO workloads execute concurrently, our system
maintains high performance for both workloads.

The rest of the paper is organized as follows. §2 pro-
vides a brief overview of deduplication in file systems
and recent changes in backup applications that motivated
us to re-architect our file system design. §3 describes
our high-level architecture and design and §4 presents
the detailed file system modifications in the DDFS stack.
§5 states our experimental platform and workloads used
in our study. Detailed experimental results are provided
in §6. We discuss related work in §7. §8 concludes our
study and discusses future extensions.

2 Background and Motivation

Here we provide an overview of our protection storage
and a more detailed discussion of the changes that moti-
vated our architecture modifications.

2.1 Deduplicating Protection Storage
Deduplication is common in commercial products and
has been widely discussed including survey articles [30,
35]. Here we provide a brief overview of the specifics of
our system; see Zhu, et al. [36] for additional details.

Each file is represented by a Merkle tree [26], which is
a hierarchical set of hashes. The lowest level of the tree is
file data, and hashes to many chunks2 are aggregated into
a new chunk one level higher in the tree. The fingerprint
of that chunk is stored a level higher, and so on. The
root of the Merkle tree represents a recipe for a single

2In the interest of brevity, we shall refer to the unit of deduplication
as a chunk even if the system uses fixed-sized blocks.
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file, and the filename-to-recipe mapping is managed by
a directory manager. Chunks are aggregated into write
units, called containers, which are megabytes in size, and
may be compressed in smaller units of tens of chunks.

Thus if a file is read sequentially, the system uses the
directory manager to find the root of the Merkle tree,
makes its way to the lowest level of metadata, and iden-
tifies the fingerprints of potentially thousands of data
chunks to access. The chunks themselves may be scat-
tered throughout the system, though there are techniques
to alleviate read fragmentation [13,20]. There is an index
that maps each fingerprint to a container, and the con-
tainer has metadata identifying chunk offsets.

The storage system is log-structured [32], so when-
ever new data or metadata chunks get written, they are
added to new containers. Garbage collection is neces-
sary to reclaim free space, which can arise from deleted
files removing the last reference to a chunk, as well as
extra duplicates that are written due to imperfect dedu-
plication [11].

2.2 Changing Environments

The improvements to our deduplicating storage system
were motivated by changes in hardware and in applica-
tions [3]. Dramatic increases in the capacity of individ-
ual disks meant that a purely disk-based system would
not have sufficient input/output operations per second
(IOPS) to perform the necessary index lookups to dedu-
plicate effectively. Moving the index to SSDs was a nec-
essary step to improving performance, but it was not suf-
ficient to handle the other changes.

The most extreme requirements on performance de-
rive from two changes in workload. Initially, our systems
had to deal with the change from periodic full backups to
generating full backups by transferring changes since the
last backup with virtual synthetic full backups [3,12] and
change-block tracking [33] backups. With virtual syn-
thetic and change-block tracking, changes to a backup
would be written into protection storage, then a new “full
backup” would be created by making a copy of the file
metadata with the changes included. This would often be
done at intervals of hours, rather than the weekly periodic
backups from traditional workloads; thus the amount of
metadata in the file system would grow by orders of mag-
nitude, could not be cached in DRAM, and was slow to
access on disk. The access patterns also changed from
fully sequential writes (full backups, which would write
a backup from start to finish on a regular basis) to “incre-
mental” writes that would have monotonically increasing
offsets but might skip large regions of a file.

Even greater stress to system performance arose with
scenarios where data in protection storage are accessed
in place after a failure. As an example, a virtual ma-

chine (VM) backed by a vmdk file might be booted and
run from protection storage even while its vmdk image
is migrated to a primary storage server. Accesses to any
data not yet received by primary storage would be served
through explicit I/Os from protection storage. It is char-
acterized by nonsequential accesses, with additional se-
quential accesses introduced by storage migration in the
background. Read operations during this period often
include access of backup data for browsing and recovery
of small files from large backups. Read-write operations
from a running VM further stress deduplicating storage
due to nonsequential reads and overwrites. This is some-
what analogous to storage vMotion [24], when a virtual
disk can be accessed while it migrates. This workload
in turn has implications on data formats, deduplication
units, and physical devices.

Data formats A number of data protection applications
perform transformations on data during the backup
process. For example, some legacy backup appli-
cations have been described as creating a tar-like
file concatenating data and metadata from many in-
dividual files in primary storage, to create a single
backup file in protection storage [22]. It is not fea-
sible to restore an individual file from this large ag-
gregate, so there has been a shift towards backing up
individual files in their “native” format. This in turn
can lead to millions or billions of individual files,
making the performance of namespace operations
very important.

Unit of deduplication While content-defined chunking
is a well studied topic, there is usually an assump-
tion of little knowledge about the data type. As an
example, without application-specific knowledge,
variable-sized chunks are generally able to local-
ize the impact of small edits when forming chunks.
When application knowledge is available, it can in-
crease efficiency such as deduplicating virtual ma-
chine disk images [14] in fixed-size units corre-
sponding to disk blocks. (That is, updates to one
part of the file do not shift content in other parts of
the file.) More generally, application-specific dedu-
plication must align the unit of deduplication appro-
priately, whether it is a database record or a block
storage system directly performing backups.

Devices In addition to using SSDs to store metadata
such as the deduplication index, we need to cache
file metadata (the recipes that uniquely identify the
individual chunks within a file) and file data blocks
themselves. SSD caching, including the implica-
tions of retrofitting this to an existing disk-based
data protection system, is a focus of this paper.
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Figure 1: SSD caches: file metadata (FMD), fingerprint
index (FPI), data, and directory manager (DM)

Mixed workloads While DDFS was originally designed
to support large sequential access patterns, the shift
to new workloads does not mean systems no longer
have sequential accesses. Instead, there can be
mixes of both across and within files. As an exam-
ple, a system may restore a VM image by sequen-
tially accessing it to create a copy on another sys-
tem, but during the restore operation the VM image
is accessed with reads and writes at more arbitrary
locations. There may also be accesses related to on-
going backups relative to this file. DDFS needs to
treat the types of accesses differently (e.g., prefetch-
ing file data and metadata for the sequential restore)
and provide different qualities of service based on
resource requirements.

3 Modernizing Protection Storage

To motivate our caching decisions, consider the steps
necessary to access data within a file at an arbitrary off-
set. Figure 1 shows four caches: file metadata (FMD),
fingerprint to container index (FPI), data, and directory
manager (DM). They are shown as SSD caches, though
initially they existed only in DRAM. First, we find the
entries in the file’s Merkle tree corresponding to the de-
sired data offset (FMD cache). Traversing the tree itself
involves a level of indirection as every chunk within the
tree is referenced by hash which is translated to a con-
tainer using a fingerprint index (FPI cache). We then
read in the portion of the file tree, which leads us back
through the fingerprint index to access data chunks (data
cache) that are returned to the client. Please note that the

fingerprint index is shown in a simplified form relative to
updates discussed in §4.7. Finding the file’s top-level in-
formation involves a directory structure (DM cache) that
is also used for namespace changes.

For largely sequential accesses, the overhead of re-
trieving various types of metadata will be amortized
across many data accesses. For instance, if an applica-
tion reads 1 MB of fixed-sized 4 KB chunks (256 in to-
tal), and the fingerprints of those chunks are all contained
in a single chunk in the Merkle tree, then the cost of the
directory lookup and the first few levels of the Merkle
tree are amortized across 256 chunk reads. If the locality
of those chunks is high, the first lookup in the FPI will
lead to a container that populates the DRAM FPI for the
rest of the 1-MB read.

For random accesses, especially to individual files,
each read can result in a DM lookup, on-disk Merkle tree
traversals, on-disk FPI lookups, and finally a data access.
While caching will not significantly help completely ran-
dom accesses, any amount of locality can result in sub-
stantial improvement.

We therefore use SSD to cache several metadata struc-
tures as well as file data. We controlled the costs of our
design by using low-cost SSD that totaled 1% of the to-
tal hard drive capacity. Our selected SSDs only sup-
port three full erasures per day, so our design attempts
to minimize writes. At the time of writing this article,
SSD costs approximately 8× more per GB than HDD, so
adding a 1% SSD cache increases the hardware capacity
costs by 8% [1]. While some backup customers appreci-
ate all-flash options, many remain sensitive to costs.

3.1 Caching the File Metadata

While our system attempts to group metadata chunks to-
gether, locality can become fragmented for multiple rea-
sons, such as GC repositioning chunks and related files
sharing previously written chunks. To decrease the la-
tency for accessing file metadata (FMD) (i.e. the Merkle
trees), we cache FMD in flash. Also for NSIO, accessing
each data chunk requires accessing a metadata chunk that
is unlikely to be reaccessed in the near future. This dou-
bles the number of I/Os needed to serve a client request,
so prefetching metadata chunks and caching in flash will
decrease overall latency. There are multiple challenges
we considered while designing the FMD cache.

We noted that metadata chunks can be of variable
size, and not align with a flash erasure unit. We there-
fore packed metadata chunks into a multi-MB cache
blocks and created a caching policy similar to Nitro [18].
Briefly, we maintain a single time stamp per cache block
and perform LRU eviction using that time stamp to evict
an entire cache block at a time. While LRU is a sim-
ple policy, and more advanced techniques [19] could be
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used, we have found that chunks within cache blocks
tend to age at similar rates. We track the amount of data
written to the FMD and will throttle new insertions to
maintain our long term average of three writes per day
times the capacity of the cache.

Importantly, we must determine which metadata
chunks to add to the cache, as our capacity is insufficient
to cache metadata chunks for all files in the system. 10%
of the SSD cache is allocated to the FMD. Rather than
simply inserting all FMD, we use admission control to
determine what is appropriate to cache (§4).

3.2 Caching the Fingerprint Index

For any given chunk, on the read path the system must
map from its unique fingerprint to its location in stor-
age. The fingerprint to container index (FPI) performs
that function. Historically, in DDFS the index would be
on disk, with a small subset cached in DRAM. Our in-
dex design actually requires two I/Os for each access be-
cause there are typically two layers to the index. On a
read operation, where the FPI mapping was not in the
cache, there would be I/O to disk. However, the con-
tainer that would then be loaded would include metadata
for other chunks in the container, and their fingerprints
would be cached. Since reads were typically large re-
store operations, accesses would be sequential and many
other fingerprints would be found in the cache. As lower
cost, denser hard drives have become available, they have
been added to our systems. Unfortunately, IOPS per ca-
pacity have decreased for denser drives, and this further
motivates the need to use SSD to accelerate NSIO such
as fingerprint index accesses.

To support NSIO, the system keeps the entire FPI in
SSD, but because space is limited, DDFS makes a con-
cession. Each record stores a short version of each fin-
gerprint in SSD along with the corresponding container
and other information. Rather than storing all 20 bytes of
a fingerprint, it stores four bytes. In the case of duplicate
short fingerprints, only one copy is recorded in the FPI.
More details are in §4. Figure 1 labels the full finger-
prints as Lfp on disk and the short fingerprints as Sfp in
SSD. It is possible the FPI will incorrectly match a query
fingerprint based on the first bytes of a short fingerprint
in the cache, but this false positive case will be detected.
If the needed chunk is not found in the container refer-
enced by the short fingerprint, then the full on-disk in-
dex is consulted. Latency is higher in this case, but as
it is infrequent, overall performance improves dramati-
cally while controlling SSD costs. FPI occupies 50% of
the SSD cache.

For the data locality of traditional backups, for every
1MB external read, we issue an average of eight I/Os to
disk where two are for the FPI. When the FPI is moved

Figure 2: Performance evaluation of a NSIO workload
with and without the fingerprint index cache in SSD.

to SSD, we should see a benefit of at least 25% on disk
bound systems. For data with bad locality, we will is-
sue multiple FPI lookups per client read, so FPI in SSD
would offer even more benefit. In Figure 2, we com-
pare overall throughput of our system when the FPI is in
SSD versus only on HDD. We show that having a fin-
gerprint cache in SSD improves restore performance at
higher stream counts, when disk is a bottleneck, by up to
32%. More experimental details are provided in §6.

3.3 Caching the Chunks

Once the system knows where to find a chunk, it loads
the storage container holding it. With traditional work-
loads and significant spatial locality, two properties hold
that are not true for NSIO workloads:

1. Once accessed, a particular chunk is unlikely to be ac-
cessed again unless the same content appears multiple
times in the restore stream.

2. Other chunks in the same storage container are rea-
sonably likely to be accessed as well, so the system
benefits from caching that container’s data and meta-
data. The container metadata can be used to avoid FPI
lookups when locality is high [36].

For NSIO, in contrast, the locality of access within a
container may be highly variable, and the reuse of spe-
cific data may be more commonplace. For instance, a
data chunk might be written and then read, with a gap
between the accesses that would be too large for the data
to reside in a client or server DRAM cache. The SSD
data cache is intended to provide a large caching level to
optimize those access patterns, but it needs to dynami-
cally identify what patterns it encounters.

On a data miss for sequential reads, we load the de-
sired chunk as well as the following chunks that may be
accessed. This helps to warm our cache and improves
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access times. We avoid loading chunks during writes ex-
cept when read-modify-write operations are necessary.
Techniques to identify such cases and modifications to
DDFS are described in §4. 35% of the SSD cache is re-
served for data chunks.

3.4 Caching Directories
The directory manager (DM) manages the mapping from
file paths to Merkle trees. Thus, the first time a file is
opened, the system must access this mapping to find the
root of the tree. For large files such as VM images that
are opened once and then accessed over time, the cost of
the DM lookup is insignificant (once for a large file), but
if there are numerous files to open (such as the result of
backing up a file system as individual files); this cost can
be a significant performance penalty.

In DDFS, data for DM resides on HDD, but a full copy
is now cached in SSD for performance. Since such a
cache is straightforward, our experiments focus on ap-
plications that are not namespace-intensive, so we do not
consider the DM cache further. DM is allocated 5% of
the SSD cache.

4 File System Modifications to Support
Nonsequential Workloads

Our goal is to enable faster accesses for new work-
loads while continuing to support traditional sequential
backup/restore workloads without performance degrada-
tion. Besides the flash caches described previously, nu-
merous changes were needed in the file system to sup-
port NSIO. We begin by presenting our technique for
identifying the type of client access, which determines
if optimizations are applied. We then describe the most
important file system changes.

4.1 Detecting Workload Types
To decide whether NSIO processing is needed, the in-
coming I/O requests must be analyzed to determine the
type of access. Defining “sequential” is itself a chal-
lenge, as access patterns may not be strictly sequential
even if they are predictable [17].

The access pattern detection algorithm partitions large
files into regions and keeps a history of recent I/Os
(specifically, 16 I/Os) per region as shown in Figure 3.
There are two kinds of detection to check for data se-
quentiality and access patterns.

By default, all incoming I/Os are assumed to be se-
quential until there is enough history of previous I/Os to
check for other types. Once the history buffer is full,
if a new I/O is not within a threshold distance of one
of the previous 16 I/Os, it is considered nonsequential.

Figure 3: Access history for three regions of a file, la-
beled sequential, NSIO monotonic, and NSIO random.

The reason for comparing with several past accesses is to
avoid detecting re-ordered asynchronous I/O operations
from a client as NSIO. By keeping multiple regions of
access patterns within a file, we allow combinations of
sequential and NSIO accesses to the same file to coexist
without NSIO patterns hiding the existence of simulta-
neous sequential access. One example of this is NSIO
from accessing a live VM image while simultaneously
performing vMotion; another is the result of reordering
of asynchronous I/O operations on a client. Our region
size is a minimum of 2GB and grows to maintain at most
16 regions per file. The memory required for tracking a
file is ≤3KB.

Referring to Figure 3, besides sequential I/O, we also
label two variants of NSIO: NSIO monotonic and NSIO
random. Monotonic refers to accesses that are to the
same or non-consecutive increasing offsets. Random
refers to accesses that do not have a discernible pattern.
The monotonic pattern is particularly common when a
backup client generates a synthetic full backup by first
copying the previous full backup (an efficient metadata
operation in deduplicated storage) and then overwrites
regions at increasing offsets in the file. Distinguishing
NSIO monotonic from random patterns allows us to im-
plement different caching and eviction methodologies.

4.2 Prefetching Content

One of the uses of identifying accesses based on history
per region is to prefetch and cache content. Importantly,
we also avoid caching content that will not be reused.
Our options are to load data into DRAM for immediate
use or load into SSD if reuse is expected.

Specifically, when access patterns are labeled as se-
quential or NSIO monotonic, we can prefetch and load
into DRAM, because we know the data or metadata will
be used soon and SSD caching is unlikely to provide fur-
ther benefit. For NSIO random I/O, we prefetch into
SSD because we need to cache most of the active data
set, which is larger than DRAM, to get the benefit of
caching. In order to warm-up the cache sooner for every
file with NSIO random I/O, we first load 128KB around
the current I/O (e.g. 8KB) for caching in SSD since it
may be reused, and there is little additional latency for
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Figure 4: The fingerprint index is updated to map from
fingerprint to container and compression region. The
structured is presented in a simplified form.

loads of that size in our system.

4.3 Direct Read of Compression Regions
As described in §3, accessing a region of a file involves
identifying the fingerprint representing that chunk from
the file recipe, checking the fingerprint index for the cor-
responding location on disk, and then reading the chunk.
For sequential accesses, we implemented an optimiza-
tion in the early versions of the file system. The fin-
gerprint index maps to container, so we read in the con-
tainer’s metadata region into RAM, which consists of a
list of fingerprints for chunks within each compression
region. We then determine which compression region to
read and decompress to find the needed chunk. For se-
quential (or nearly sequential) accesses, we typically find
most needed fingerprints in the RAM cache without the
need to query the fingerprint index [36].

While this previous optimization dramatically reduces
fingerprint index accesses for sequential I/O, it is ineffi-
cient for NSIO. A client’s nonsequential read requires
a fingerprint index read, container metadata read, and
compression region read, i.e. three reads in total. Be-
cause future accesses are unlikely to remain within the
same container, there is no amortization of reading a
container’s metadata. To remove the container metadata
read for NSIO cases, we adjusted our fingerprint index to
map from fingerprint to a compression region offset and
size within a container (Figure 4). This allows us to per-
form direct compression region reads without first read-
ing in container metadata, reducing the number of ac-
cesses from three to two. We dynamically decide based
on access patterns whether to read compression region
metadata or not.

To reduce SSD space for the FPI entries, we limit the
entry size to twelve bytes. Four bytes come from the
shortened fingerprint. Four bytes are used for the con-
tainer ID, which is sufficient since it is relative to the low-
est container ID within the system. The remaining four

bytes are used to describe the compression region within
the container with bits allocated to the compression re-
gion offset and size within the container as well as in-
ternal uses. To reduce the number of bits required, com-
pression regions are written at sector boundaries. When
indexing a fingerprint, we use a hash of the first eight
bytes to select a FPI bucket. In combination with the four
bytes short fingerprint, the collision rate is below 0.01%.

4.4 Higher Concurrency with Queue
Changes

Applications directly accessing files from backup stor-
age have high performance requirements, and latency is
an important aspect, so I/Os must be processed as soon as
they enter the file system. Unlike traditional workloads
that tend to be highly sequential, with one client I/O ef-
fectively dependent on earlier I/Os to complete, NSIO
has a greater need and opportunity for parallelism. For
NSIO, FMD required to process the I/O may not be in
memory and will require disk I/Os. Requests that are de-
pendent on the same FMD will be processed serially in
the order received; however, requests that do not require
the same FMD are processed in any order and in paral-
lel. Once the required FMD is loaded for any I/O, that
request is given priority for further processing to avoid
starvation. Apart from issuing parallel I/Os for FMD
on disk, fingerprint lookups for multiple reads within the
same file take place in parallel for NSIO.

4.5 Adjusting the Chunk Size to Improve
Nonsequential Writes

For traditional large backup files, variable chunking
achieves better deduplication than fixed-size chunks be-
cause it better identifies consistent chunks in the presence
of insertions and deletions [34, 36], which we refer to as
shifts. For new use cases that have block-aligned writes,
such as change block tracking for VMs, shifts do not oc-
cur, and fixed-sized deduplication is effective [14]. Al-
though variable-sized chunking has better deduplication,
the performance gains achieved with fixed-size chunks
outweighs the deduplication loss [27].

Based on customer configuration or backup software
integration, we label workloads that will benefit from
fixed-sized chunks. This simplifies the write path, as we
do not need to find chunk boundaries or perform a read-
modify-write for a partial overwrite of a chunk. For cer-
tain applications, such as VMs and databases, the block
size is predetermined, and we set our chunk size accord-
ingly for further efficiency.
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4.6 Delayed Metadata Update

Switching to fixed-sized chunks has the added benefit
that it allows for more efficient updates of file recipes
during nonsequential writes. Traditionally, we would
need to read in portions of the file recipe to provide fin-
gerprints for chunks that must be read before being mod-
ified. With fixed-size chunks, we never need to modify
existing chunks as they are simply replaced. We do need
to update the file recipe to reference new chunks, but this
can be delayed until sufficient updates have been accu-
mulated. Since our chunk references are 28 bytes, 1MB
of non-volatile memory can buffer references for nearly
300MB worth of logical writes.

4.7 Selective Fingerprint Index Queries

While our file system is designed to perform deduplica-
tion by identifying redundant chunks, we may choose to
skip redundancy checks to improve performance [3]. We
have found that nonsequential writes tend to consist of
unique content. So to avoid fingerprint index queries that
are unlikely to find a match, we disable querying the fin-
gerprint index for small nonsequential writes (<128KB).
Any duplicate chunks written to storage will be removed
during periodic garbage collection [11].

4.8 Quality of Service and Throttling

DDFS has a quality of service (QoS) mechanism that
assigns shares for external and internal workloads such
as backup, restore, replication and garbage collection.
These shares are used in the CPU and disk scheduler to
provide QoS for the workloads. NSIO can happen as
part of backup or restore, so we made changes to fur-
ther split the backup and restore workload shares into se-
quential and nonsequential shares. The number of shares
assigned to these workloads is tunable based on a cus-
tomer’s desired system behavior. By default, the shares
for NSIO workloads are kept at 20% so as to not impact
other critical workloads, but as reads and writes on back-
ups during a restore becomes commonplace, shares may
need to be increased for NSIO.

On non-uniform memory access architectures, jobs
pertaining to a task are assigned a particular CPU for
cache locality. Our earlier implementation used round
robin assignment of jobs to CPUs. However, the resource
requirements between NSIO workloads vary greatly and
hence a simple round robin is insufficient. In the lat-
est version of DDFS we have changed this assignment
to least-loaded CPU instead. NSIO performance greatly
depends on read performance, so we have modified our
I/O scheduler to avoid read starvation and provide higher
priority for read requests.

With all of the changes to increase NSIO perfor-
mance, accepting more I/Os in parallel at the protocol
layer usually improves overall performance. However,
beyond a limit, further client requests will cause RPC
timeouts, and hence I/O throttling per workload type be-
comes important. Based on the type of workload and
the average latency, we have implemented an edge throt-
tling mechanism where the protocol layer can query the
subsystem health and insert queue delays to dynamically
change the number of client accesses supported.

5 Experimental Methodology

This section describes our experimental methodology
and the test environment including the system configu-
ration and workloads used. All our results are measured
on a Data Domain DD9800 [10] configured with maxi-
mum capacity. It has 60 Intel(R) Xeon(R) CPU E7-4880
v2 processors @2.50GHz, with 775GB DRAM, 8 10Gb
network ports, 10.9TB SSD, and 1008 TB disk storage
across 6 shelves with 4TB HDDs. Each shelf has be-
tween 1 and 4 packs, with 15 HDDs per pack. There are
20 spare HDDs. We produce accesses to the DD9800
using up to 8 clients running Linux version 2.6.32 with
Intel(R) Xeon(R) CPU E5-2620 with 2.00GHz cores, 64
GB of memory, and a 10Gb Ethernet card.

We primarily use traditional and NSIO workloads for
our measurements. Performance numbers for traditional
backup and restore are reported using an in-house syn-
thetic generator that randomly creates first generation
backups for each stream and then modifies following
generations with deletions (1%), shuffles (1%), and addi-
tions (1%) [7]. Across clients, the total size of first gener-
ation backups is 3TB, and metadata is approximately 1%
of the data size. We wrote every 5th generation, though
we allowed changes to accumulate in memory even for
unwritten generations. This workload has 100% sequen-
tial read/write accesses to data for all generations. How-
ever, metadata accesses are NSIO. We report throughput
numbers as the average of generations 41 and 42.

For a NSIO workload, we use the industry stan-
dard FIO benchmark [6] to simulate large sequential and
NSIO reads as well as small NSIO reads and writes. We
also present results when accessing 32 100GB VM im-
ages with mixtures of sequential I/O and NSIO, as de-
scribed in each experiment. While customer VMs often
share content, in order to reduce factors affecting our ex-
periments, we have confirmed that there was no potential
deduplication within or across the images. Here we re-
port performance numbers in terms of IOPS and average
latency. Unless otherwise noted, experiments were per-
formed on an isolated system configured with fixed-sized
chunks and without other read/write operations or back-
ground tasks such as garbage collection or replication.
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All metadata fit within SSD without the need for admis-
sion control.

We show the benefits of our hardware and software
optimizations in the following experiments. Each data
point in our experiments with traditional backup work-
load was collected in runs that lasted multiple days and
on data sets that were aged up to 42 generations of back-
ups. Multiple clients were used to generate the backup
workload, and results are averaged across clients. Each
data point in our experiments with NSIO workload was
collected by measuring the average performance (IOPS
and latency) with at least three runs, and the standard de-
viation of results is <1.5% in all cases.

6 Evaluation

We begin by exploring the impact of caching meta-
data and data as well as software optimizations within
DDFS for NSIO workloads. Then we investigate the
impact on traditional, sequential workloads using differ-
ent protocols. Finally, we study the sensitivity to differ-
ent read/write ratios in NSIO workloads and the impact
when storage vMotion occurs in parallel.

6.1 Caching and Software Optimizations
We investigate the impact of progressively adding meta-
data and data to a SSD cache as well the value of software
optimizations in terms of average IOPS (Figure 5(a)) and
latency (Figure 5(b)). Metadata include the FPI, FMD,
and DM caches, though our tests do not perform direc-
tory operations. To avoid direct comparisons, the ex-
periments with optimizations disabled are separated by
a dashed line in each set of bars

We vary the number of VM images accessed from 1
to 32 and plot the average IOPS and latency for a NSIO
workload. In these experiments, we study a read-only
workload, and each VM is issued a maximum of 8 con-
current I/Os. When the flash cache is disabled, each ex-
ternal I/O will translate to six internal I/Os to disk. This
includes two I/Os for FPI lookup to then perform one
I/O for file metadata. From the file metadata, we have
the chunk fingerprint and then perform two I/Os for FPI
lookup and one I/O to load the data. The total number
of HDD IOPS available on the test system is 24K. So,
the theoretical achievable client IOPS when the cache is
not available would be 4,000. Software optimizations are
enabled except in one set of runs.

We see in the experiment with 32 VMs and the cache
disabled, we achieve 3,200 IOPS with a latency of 35ms.
When we enable the caching of metadata, every external
NSIO will result in one I/O to HDD for data. We show
that we can achieve 28K IOPS in a 32 VM experiment,
with an average latency of 10ms. When both data and

metadata are in the flash cache, IOPS are only limited by
the data set size we can cache. On the test system, we
can cache 100% of the data for up to 24 VMs and 75%
of the data with 32 VMs. We achieve peak performance
of 57K IOPS for 24 VMs with a cache hit ratio of 95%.
The overall latency stays under 5ms even at peak IOPS.

We next consider the benefit of software optimizations
(§4) to improve NSIO performance. Results show that
using a SSD cache for NSIO without software changes
would limit us to a peak NSIO performance of 20K
IOPS, compared to 56K IOPS when software enhance-
ments are enabled. Similarly, even when data and meta-
data are cached, latency decreases from 13ms to 5ms
with the addition of software optimizations.

With a small cache and high churn in application
workload, some portion of the I/Os will be serviced from
disk. Our software optimizations remove unnecessary
I/Os to disk (§4.2, §4.3, and §4.5), increase parallelism
(§4.3), and improve the I/O scheduler (§4.8). With these
changes, we are able to to achieve high NSIO IOPS and
maintain a low latency with a SSD cache sized at 1% of
the total system capacity.

6.2 Traditional and NSIO Workloads

In this experiment, we evaluate both traditional and
NSIO workloads running concurrently to measure the
impact on traditional workloads. We run both workloads
through NFS and DDBOOST protocols. DDBOOST is
our proprietary protocol where segmenting and finger-
printing of data is offloaded to backup clients and only
changed data is sent across the network [12]. DDBOOST
performance is typically higher than NFS because dedu-
plication reduces the amount of data transferred, and the
backup server has fewer computational demands.

In this experiment, we throttle NSIO workloads on
32 VMs to a total of 10K IOPS. 2.4TB of the 3.2TB
data set fit in the data cache. In Figure 6, we measure
the performance of 96 streams of backup and restore
workloads while varying the protocol and the fraction of
reads versus writes of the NSIO workload. A 100% read
NSIO workload is possible when the client writes are
redirected to primary storage during a recovery opera-
tion. 70% reads are common in other recovery use cases
where both writes and reads are directed to backup stor-
age. Read/write numbers represent restore and backup
performance for high-generation backups with an equal
split of 48 backups and 48 restores.

Considering the difference between NFS and
DDBOOST, we find the expected result that DDBOOST
has higher overall throughput because of offloading
tasks to clients. Across protocols, backup and restore
performance is not degraded more than than 10% when
NSIO runs in parallel, though there is greater impact
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(a) IOPS (b) Latency

Figure 5: Average IOPS and latency as caching and software optimizations are varied. Up to 24 VMs, 100% of the
data can be cached. Caching decreases to 75% for 32 VMs. Experiments without software optimizations are separated
from the rest by a dashed line.

Figure 6: Traditional backup workloads have a 10%
degradation when NSIO workloads are added with the
DDBOOST protocol outperforming NFS.

when NSIO includes writes.
When more NSIO performance is required than the

sustained IOPS specified for the product, a system level
QoS parameter (§4.8) allows users to choose the amount
of impact on traditional workloads they find acceptable
to further increase NSIO performance. Though not
shown due to space limitations, we experimented with
varying the QoS share allotted to NSIO versus sequential
workloads. As the share for NSIO increased from 25%
to 50%, IOPS increased by 32%. Increasing the share
from 50% to 75% increased IOPS 18% more. When
NSIO was allocated 100% of the resources, IOPS in-
creased an additional 125% due to the complete removal
of sequential I/O interference.

6.3 Performance during Restores
Some backup applications provide a Instant Ac-
cess/Instant Restore feature where an application may be
able to perform read/writes from the backup copy while
a restore takes place. This feature may expose a read-
only copy of a backup image for the applications to ac-
cess while redirecting any writes to a write log typically
located on primary storage. We simulate this workload

using 100% NSIO reads. Other backup applications ex-
pose a read/write copy and send both reads and writes
from the application to the exposed copy. This is simu-
lated using a 70/30% reads/write NSIO workload. While
a VM image is being accessed, backup applications also
offer an option to perform storage vMotion of the VM
back to primary storage. This workload is simulated by
issuing sequential reads on the same VM image on which
NSIO is taking place.

Figures 7(a) and 7(b) show an experiment where
NSIO activity takes place with either 100% reads or
70/30% read/writes. With 24 VMs we see a peak of 56K
IOPS and under 4 ms of latency with 100% reads. For the
70/30% read/write mix, we see a peak of 44k IOPS at 24
VMs where the cache gets nearly 95% hits. We also show
that when vMotion on the same VM takes place, IOPS
for NSIO drop by at most 20% and achieves a peak of
45K IOPs for 100% reads. At 70/30% read/write with
vMotion, we achieve 40K IOPS. The overall result is
acceptably high performance NSIO performance while
vMotion takes place.

6.4 Fingerprint Cache Impact on Backup
and Restore Workloads

For traditional backup workloads, even with software op-
timizations, disk I/O becomes a bottleneck. We previ-
ously presented experimental results for placing a FPI
cache in SSD in Figure 2. For this test, we limited the
total IOPS available on the test system to 4,200 by using
only four disk groups, the smallest configuration possi-
ble. Other metadata and data accesses may still go to
HDD, so the overall throughput improvement has many
components besides fingerprint access speed. With a
high stream count of 96, overall throughput increases
with the SSD cache by up to 32%, which corresponds to
the fraction of I/O that can be satisfied by the FPI cache
in SSD.
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(a) IOPS (b) Latency

Figure 7: Average IOPS and latency for NSIO read/write access to VMs, with and without vMotion in parallel.

7 Related Work

A recent article [3] described the changes to data protec-
tion workloads and some of the changes DDFS made to
address them. However, the changes were described very
generally, focusing on qualitative issues but not quantita-
tive ones. As an example, the article mentioned the ad-
dition of SSDs, short fingerprints in SSD, and selectively
writing duplicates, but there were few implementation
details and no experiments. While we have focused on
improvements to backup storage for NSIO, backup soft-
ware drives most of the client-initiated workloads [4, 8].
The work on improving garbage collection enumeration
performance [11] to handle high deduplication rates and
numerous individual files provided detailed performance
measurements, but that effort is largely orthogonal to the
improvements for NSIO described here.

SSD-assisted deduplication has taken many forms.
DedupeV1 [25] and ChunkStash [9] were two early sys-
tems that moved the fingerprint index into SSD to im-
prove performance. ChunkStash used Cuckoo Hash-
ing [29] to reduce the impact of hash collisions, some-
thing we have not found to be a significant performance
issue. PLC-cache [23] categorized deduplicated chunks
by popularity to determine what to cache. Nitro [18] pre-
sented a technique for caching and evicting data chunks
in large units to SSD to improve performance while re-
ducing SSD writes, which influenced our metadata and
data cache design. Kim et al. [16] modeled deduplica-
tion overheads and benefits within SSD and then accel-
erated performance with selective deduplication against
recently written fingerprints. We view the contribution of
our work as lessons learned from a deployed storage sys-
tem pertaining to caching, prefetching, and scheduling,
and not simply the addition of SSDs.

While there have been multiple papers regarding se-
quential write and read performance for deployed dedu-
plicated storage products [5, 15, 20, 21], there has been
little discussion of nonsequential workloads. Discussing

the architectural changes needed to support both sequen-
tial and NSIO workloads in deduplicated storage will
hopefully drive further research.

8 Conclusion and Future Work

New workloads for backup appliances and denser HDDs
have placed demands on backup storage systems. DDFS
has had to evolve to support not only traditional work-
loads (full and incremental backups with occasional re-
stores) but also newer nonsequential workloads for thou-
sands of customer deployments. Such workloads include
direct access for reads and writes in place, as well as
other workload changes such as storing individual files
and eschewing periodic full backups. Additionally, tra-
ditional and newer workloads must peacefully coexist
within the same product.

Because of the cost difference between SSDs and disk,
we have chosen to cache a limited amount of metadata
and file data in SSD rather than moving the entire sys-
tem to SSD. We demonstrate that these caches not only
improve NSIO by up to two orders of magnitude, but
our system can also simultaneously support traditional
workloads with consistent performance. In summary,
improvements to our software and the addition of SSD
caches allow DDFS to support both new and traditional
workloads.

In the future, we expect NSIO workloads to become
more common as customers increase the frequency of
backups. In combination with decreasing SSD prices
(though likely still more expensive than HDD), it may
become worthwhile to increase our SSD cache to include
most metadata and a larger fraction of active data. We
will need to revisit our software design as bottlenecks
shift between I/O and CPU.
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Abstract

Using multiple interfaces on mobile devices to get high
throughput is promising to improve the user experience.
However, Multipath TCP (MPTCP), the de-facto standard-
ized solution, suffers when different paths have heteroge-
neous quality. This problem is especially severe when the
difference is the path latency. Our experimental results
show that it causes the burst sending of packets from the
fast path, which requires the in-network buffer to be big to
achieve the full benefit of the bandwidth aggregation. In
addition, it also requires bigger host buffer to fully utilize
the fast path. To solve these problems, we propose and
implement a new scheduler, which pre-allocates packets
to send over the fast path for in-order arrival. Instead of
relying on the estimation of network path condition, our
scheduler dynamically adapts the MPTCP-level send win-
dow based on the packets acknowledged. Our evaluation
shows that our scheduler can improve the throughput by
30% when the in-network buffer is limited, 15% when
the host buffer is limited.

1 Introduction

There is a huge demand on network bandwidth with the
rapid growth of network users and applications, as well
as the emergence of bandwidth hungry applications such
as multimedia streaming, cloud computing and virtual
reality. To obtain high network throughput, a lot of recent
interests have been drawn to exploit multi-path transmis-
sions and aggregate the bandwidth through Multi-path
TCP (MPTCP) [12]. As an example application, many
wireless devices have two network interfaces, one to the
local-area WiFi network and another to the wide-area
cellular network. As wireless bandwidth is limited, a
data stream can go through both networks to increase the
transmission rate.

∗Corresponding author

MPTCP is expected to be backward-compatible with
conventional TCP and work with existing network com-
ponents such as middle-boxes [26]. For the practical
deployment of MPTCP, it is designed to be transparent to
both applications and middle-boxes. From the perspective
of applications, a single standard TCP is seen, whereas
lower in the stack, MPTCP splits the data over multiple
sub-flows. From the perspective of middle-boxes, each
sub-flow is a normal TCP connection. MPTCP has al-
ready been implemented in Linux kernel [7] and used in
iOS [4] and Giga Path in Korean Telecom [27]. Agache et
al. [2] deploy MPTCP in the datacenter network to obtain
better network utilization. Han et al. [15] apply MPTCP
to improve the user experience on video streaming.

The core element of MPTCP design is the sched-
uler [28], which determines when and how to distribute
packets to each sub-flow. MPTCP’s default scheduler
(minRTT) [26] sends packets through the available path
with the smallest estimated Round-Trip Time (RTT). How-
ever, this scheduler does not take into account the path
heterogeneity while there often exist different types and
quality of paths in practical use and this is especially the
case for wireless applications [17, 29]. The measurement
of Alexa top-500 U.S. websites from Nikravesh et al. [24]
shows that the difference in RTT between WiFi and Cel-
lular paths is common and big. When RTTs in separate
paths differ, the default scheduler will cause an out-of-
order arrival of packets at the receiver side. Thus the
memory requirements of MPTCP are much higher than
those of conventional TCP. To alleviate this problem, op-
portunistic retransmission and penalization mechanism is
proposed [26] and improved [25] along with the progress
of the default scheduler.

Despite these efforts, we find that the complete gain
from bandwidth aggregation of MPTCP is still far from
being achieved. In our experiments conducted in the
controlled lab environment (§ 2), we observe that when
the host buffer is limited, the aggregation throughput is
far smaller than two single-path TCP combined under
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the same network and buffer settings. Sometimes it can
only reach 40% the throughput of two single-path TCP
together, which is even worse than a single-path TCP
running over the best network interface.

Apart from the host buffer problem, we find that it
also requires a big in-network buffer on the fast path
to reach the full-bandwidth allowed by multiple paths.
The in-network buffer requirement for the fast path is
increased by 4X when using both paths compared with
those for single-path TCP. Examining the problem care-
fully, we find that the default scheduler breaks down the
ACK clocking [19] on the fast path, which gives rise to
the burst sending of packets during fast sub-flow’s trans-
mission. Thus more in-network buffers are necessitated to
hold the burst packets, otherwise the packets that cannot
be stored have to be dropped, resulting in the throughput
degradation on the fast path. This problem is more seri-
ous in the wireless networks where WiFi path is usually
the fast one and has less buffer than that of the Cellular
path [20]. Therefore when competing with single-path
TCP, MPTCP is more likely to experience loss and the
throughput will suffer. To the best of our knowledge, we
are the first to identify the burst transmission pattern on
the fast-path of MPTCP.

In this work, we propose a new scheduler to reduce both
host buffer and in-network buffer requirements in MPTCP,
called STMS (Slide Together Multipath Scheduler). To
solve the above two problems fundamentally, we need
to reduce the out-of-order arrival. Our scheduler pre-
allocates packets for the fast path and sends packets with
larger sequence number through slow path so that packets
can arrive at the receiver in order. This task appears to
be straightforward, but it faces several challenges. As
a matter of fact, there exists a ”visibility gap” between
the sender and the receiver. Therefore, it is hard for the
scheduler that runs at the sender to ensure that packets
arrive in order at the receiver. A sender can choose to
utilize the measurement of path condition to schedule the
packets, but the network condition is fluctuated in nature.
Consequently, it is hard to measure the delay and band-
width accurately especially in wireless networks. Even
under stable network conditions, we can only obtain RTT
but not one-way delay (OWD) in a practical distributed
network. To address these challenges, we design an adap-
tation scheme that exploits the intelligent transmission of
feedback signal Data ACK existing in MPTCP to dynami-
cally schedule packet transmissions.

We implemented STMS as a Linux kernel module (§ 4)
and evaluated it extensively in both emulated and real
Cellular/WiFi networks. The results show that, compared
with state-of-the-art schedulers [23, 25], STMS achieves
significantly higher performance under a wide range of
buffer/network conditions. We highlight some of results
as follows:

• Under stable network conditions, STMS can achieve
higher throughput under any buffer conditions.
When the host buffer is extremely limited, STMS
can fall back to using the single-path TCP, while
the default scheduler still uses slow path of MPTCP
and its fast path suffers from significant throughput
degradation. In this case, our scheduler can improve
the throughput as much as 400%. When the host
buffer is small, STMS can bring 15% improvement
over the default scheduler. When in-network buffer
is limited, STMS improves the throughput as much
as 30% due to the reduction of the burst.

• Under varying network conditions, STMS also per-
forms well, and brings 8% to 40% throughput im-
provement. Our adaptive scheduling scheme is reac-
tive to network condition changes.

• In real world test, STMS can reduce the file down-
loading time by 20% even when the host buffer is big
enough, proving that the limited in-network buffer
does exist in real network and our scheme effectively
alleviates the problem.

Overall, our results show that by strategically schedul-
ing packet transmissions to reduce the out-of-order ar-
rival, STMS can significantly improve the throughput of
MPTCP under heterogeneous networks. The rest of the
paper is organized as follows. Firstly, we analyze the
reason that lead to the throughput degradation when us-
ing the default scheduler in § 2. Then in § 3, we present
the design and analysis of STMS. Next we introduce our
implementation of STMS in § 4. We further present our
performance evaluations in a controlled-lab environment
in § 5, and the results from the real-world test in § 6. Fi-
nally, related work is discussed in § 7 and we conclude
the paper in § 8.

2 Background and Motivation

In this section, we first identify and analyze the problem
associated with the in-network buffer. Then we demon-
strate that host buffer problem still remains unsolved and
discuss why the existing solution is still inadequate. We
support our analyses with experiments conducted in the
controlled lab environment.

2.1 Controlled experiment setup

In our experiment setup in fig. 2, we use two PCs running
the version 0.92 kernel of MPTCP [7] as the client and
server respectively. The client has two interfaces, and the
server has one interface. Under this topology, MPTCP
will establish two sub-flows. We use the decoupled TCP
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(a) t = δ (b) t = RT Tf (c) t = RT Ts

Figure 1: Out-of-order arrival and burst transmissions on the fast path due to the use of default scheduler. Green (lighter)
packets are sent/received through the fast path, while blue (darker) ones are sent/received through the slow path.

Figure 2: Topology setup

congestion control to obtain the best bandwidth aggre-
gation effect [9]. Ethernet is used to simulate WiFi and
LTE to avoid the interference of the wireless network.
Client and server are connected through a router running
OpenWrt. We use tc [30] in OpenWrt to regulate the
bandwidth and latency of the two paths. The bandwidths
of both paths are set to 30 Mbits and the loss rate is set
to 0.01%. The in-network buffer is set to 50ms for Wifi
path unless specified otherwise and 500ms for LTE path
based on [20]. Both receiving and sending buffers are set
to the Linux default size (6MB) unless specified other-
wise. Only the RTT of slow path varies. In each network
setup, we run iPerf 3 [18] 90s five times to measure the
throughput.

2.2 Big in-network buffer requirement

Guido et al. [3] points out that it becomes more and
more difficult to design the router with the buffer size
equal to the bandwidth-delay product as the link speed
increases. The router buffer is limited especially in the
bottleneck of path. However, we find that the aggregated
throughput is subject to the in-network buffer on the fast
path as shown in fig. 3. For conventional TCP, 8ms net-
work buffer (30KB) is enough to reach the full bandwidth.
However, for MPTCP under different RTT paths, the in-
network buffer requirement increases as much as 4X to
fully unleash the power of the bandwidth aggregation.
The bigger the difference of RTT between two paths, the
bigger the in-network buffer of the fast path is needed.

When there is a space in the congestion window, the
default MPTCP scheduler sends a set of packets with the
smallest sequence numbers on the path with the smallest
estimated RTT. This approach will produce the out-of-
order arrivals at the receiver, as is elaborated in the fol-
lowing example (fig. 1). At the time t = 0, we assume
the fast path is unavailable while the slow path has space,

Figure 3: MPTCP throughput degradation when in-
network buffer is limited

then packets 1-10 will be sent on the slow path. Later on
at t = δ , the fast path becomes available, packets 11-30
will be sent on the fast path. After the round-trip time of
the fast path RT Tf , packets 11-30 arrive at the receiver
but packets 1-10 do not, and the send/receive window is
blocked as shown in fig. 1b.

TCP has the delayed ACK mechanism [6] to avoid the
overhead of sending ACK packets. It works as follows.
Upon receiving a data packet, if it is in order, i.e., the right
edge of the receiving window advances, the receiver can
choose to delay the sending of ACK hoping to piggy-back
the ACK with other packets to send in the reverse direc-
tion. Nevertheless, RFC 1122 [6] suggests that each ACK
acknowledge at most two packets regardless of whether
the delayed ACK mechanism is used, i.e., upon receiving
two successive packets, an ACK must be sent. Thus, dur-
ing the congestion avoidance phase, upon receiving one
ACK, the sender’s send window can have the space for at
most two packets so that it can send at most two packets
at a time. This is also known as ACK clocking.

In MPTCP, the semantics of the TCP send window is
generalized. Instead of maintaining a separate window
for each sub-flow, a single buffer pool is shared by all
sub-flows at the MPTCP-level to avoid deadlock [26].
To remain compatible with TCP, MPTCP needs a sep-
arate ACK for MPTCP-level send window, called Data
ACK. The delayed ACK mechanism of conventional TCP
is adapted to Data ACK. When receiving data packets
in-order on the MPTCP-level, Data ACK will still be
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(a) RT Tf = 20ms,RT Tf = 20ms w/o PR (b) RT Tf = 20ms,RT Ts = 200ms w/o PR (c) RT Tf = 20ms,RT Ts = 200ms w/ PR

Figure 4: Burst sending pattern of fast path

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 5: The Data ACK of fast path.

generated every other packet. However, when receiving
out-of-order packets on the MPTCP-level, it will not send
a duplicate Data ACK immediately since out-of-order
packets on the MPTCP-level is a normal behavior espe-
cially when paths are heterogeneous. The Data ACK
won’t be sent until the packets from the slow path reach
the receiver, i.e., the hole is filled. This Data ACK will
acknowledge many packets sent from the fast path at the
same time, thus fast path can send many packets at once,
leading to the burst sending. In a nutshell, the out-of-order
arrival of packets breaks down the ACK clocking effect
of fast sub-flow, causing the burst sending behavior. This
is shown in fig. 1c. At t = RT Ts, packets 1-10 arrive at the
receiver and packets 1-30 are acknowledged to the sender.
So both the send and receive window will progress with a
large step, and packets 31-50 are sent from the fast path
in a burst. Simply removing the delayed ACK mecha-
nism can not solve the problem, since the MPTCP-level
send window progress is still blocked by the late arriving
packets from the slow path.

We conduct a simple experiment to demonstrate the
burst transmission pattern of the fast sub-flow.

First we analyze the progress of Data ACK of the fast
path from the trace file. The result is shown in fig. 5. Only
when packets from the slow path arrive, the Data ACK
can make a progress with a large step (fig. 5a). When RTT
is the same, no sudden Data ACK progress happens. Then

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 6: Send window free space jitter when RTT differs

we check the free space in the send window of the fast
path. We record the free space of send window when the
sub-flow receive ACK (fig. 6). When RTT is the same, the
ACK clocking is maintained like the conventional TCP
(fig. 6b). However, when RTT over two paths significantly
differs, the ACK clocking of the fast path is broken down.
Consequently, MPTCP-level send window is stalled until
the packets from the slow path arrive. As a result, the
free space of the send window of the fast sub-flow will
accumulate as we see in fig. 6a.

The sudden progress of MPTCP-level window and the
big send window space of fast path will lead to the burst
packet transmissions on the fast path as we see in fig. 4b.
Compared to the sending behavior of the fast path when
RTT is similar (fig. 4a), the fast sub-flow clearly demon-
strates an on-off transmission pattern that leads to the
burst of the fast sub-flow. When the network buffer is
not big enough, the loss will happen and the Congestion
window (CWND) is capped to a small value as we see in
fig. 7a. When there is a difference between RTT on the
two paths, the CWND of the fast path is capped around
40, compared to 60 when RTT values of two paths are
the same. Note that there is usually a large space in fast
path’s CWND when RTT is different, so the area below
the CWND line is actually bigger than the total through-
put.

We also verify the loss rate under different in-network
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Table 1: Loss rate of fast path under different in-network buffer setting

in-network buffer/KB observed loss rate Fast path in MPTCP/Mbps Single TCP/Mbps Utilization
30 0.05% 12.1 28.4 42.76%
60 0.02% 20.8 28.4 73.50%
90 0.02% 25 28.4 88.34%

150 0.01% 26.5 28.4 93.64%

(a) RT Tf = 20ms,RT Ts = 200ms (b) RT Tf = 20ms,RT Ts = 20ms

Figure 7: CWND of fast sub-flow is capped when in-
network buffer is limited and RTTs are different.

buffer configurations (table 1). Note that this loss is more
detrimental to the throughput than the random packet loss
since each time CWND grows to certain value, the packet
burst will exceed the in-network buffer size and the loss
will happen. As a result, the throughput of the fast path
is significantly limited. As shown in table 1, to reach the
same throughput as that of single-path TCP, the buffer for
two-path MPTCP has to be increased by 4X from 30KB
to 150KB.

2.3 Big host buffer requirement
Another problem of MPTCP when RTTs are different is
the big host buffer requirement. Let us denote the band-
width of fast and slow sub-flow as B f and Bs respectively.
The one-way delay (OWD) values of both paths are de-
noted as OWD f and OWDs respectively. The RTTs of
both paths are denoted as RT Ts and RT Tf . Raciu et al.
[26] derives that the default scheduler buffer requirement
is:

Bu f (de f ault) = (B f +Bs)×RT Ts (1)

From eq. (1) we can see that the key to reducing the
buffer requirement is to reduce the effective RTT of the
connection i.e., to acknowledge packet as soon as possible
so that the buffer can get freed.

Raiciu et al. [26] proposed the penalize and oppor-
tunistic retransmission mechanism (PR) to deal with the
host buffer problem. When it detects the left edge of
the send window blocks the sending of packets, it will
retransmit the packet from the fast path. To avoid con-
stant retransmissions, it will penalize the slow sub-flow
by halving the CWND of slow sub-flow. This approach

(a) Receive buffer (b) Send buffer

Figure 8: MPTCP throughput degradation when host
buffer is limited

does improve the throughput when the receiving buffer
is limited because the blocked packets will get retrans-
mitted and acknowledged through the fast path. Thus the
effective RTT of MPTCP connection can be reduced to
OWDs +OWD f ideally. As shown in fig. 4c, the packets
marked get retransmitted and the new Data ACK goes
back through the fast path so many packets can be sent.
Due to its opportunistic nature, the PR scheme can not al-
ways reduce the RTT to the optimal value. Moreover, the
retransmission wastes the bandwidth. fig. 4c also shows
that the retransmission does not change the fast path’s
burst transmission pattern, as the Data ACK coming back
through the fast path will still acknowledge many packets.
Hence the in-network buffer requirement issue remains
unsolved which is also shown in the in-network buffer re-
quirement measurement. Enabling retransmission doesn’t
improve the throughput at all.

Despite the PR approach, the throughput of MPTCP is
still unsatisfactory as shown in fig. 8. When evaluating
the receiving buffer, the sending buffer size is set to the
default value of Linux which is 6 MB (Big enough under
our network setting). As we can see in fig. 8a: the big-
ger the RTT difference of two paths, the more receiving
buffer is needed to get full bandwidth aggregation effect
of MPTCP. The same conclusion goes to the sending
buffer as is shown in fig. 8b.

Actually, the burst sending pattern can be fixed by
adding traditional pacing to the fast path. Linux has sup-
ported pacing in tc qdisc fq [13] since the version 2.4.
However the pacing rate argument needs to be manu-
ally tuned according to the bandwidth of the network
path. New congestion control algorithm Bottleneck Band-
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width and Round-trip propagation time (BBR) [8] incor-
porates the pacing and can set the pacing rate equal to
the measured bottleneck bandwidth automatically. How-
ever the congestion control of MPTCP needs to be fair
with the conventional TCP. Many active research ef-
forts [5, 21, 31] have been put into developing the coupled
congestion control algorithms of MPTCP, but there is no
coupled BBR congestion control for MPTCP yet. To put
it another way, this approach is not congestion control
agnostic. Besides, the pacing can not solve the big host
buffer requirement issue. Pacing works only on sub-RTT
level and thus the packet sent from the slow path will still
arrive later than packets sent from the fast path. We verify
that by adding pacing manually and it turns out that the
throughput is not improved at all.

3 Design

The root cause of the throughput degradation is the stall
and sudden progress of MPTCP-level send window. To
solve both host buffer and in-network buffer problems, we
need to restore the ACK clocking for MPTCP. To achieve
this, packets need to arrive in order at the receiver.

In this section, we first present our algorithm design,
then derive the size required from the host-buffer for no-
blocked transmissions, and finally compare the transmis-
sion latency of different schemes.

3.1 STMS algorithm

We propose STMS to schedule the packets strategically
so that they arrive in order. This solution is congestion
control agnostic which allows for separate evolving of
congestion control algorithm and scheduler algorithm.

Scheduler algorithm The core idea of our scheduler is
to buffer packets for the fast sub-flow and assign packets
with larger sequence numbers to the slow sub-flow so that
they arrive in order. The running process of our algorithm
is shown on fig. 9 and algorithm 1. The scheduler runs
when at least one of paths is available to send packets. The
fast sub-flow always sends the packets with the smallest
set of sequence numbers in the buffer. As illustrated
in fig. 9a, the slow sub-flow sends packets with bigger
sequence numbers. Rather than taking packets whose
numbers are right after those transmitted on the fast path,
it leaves a sequence gap for the fast path to send the
corresponding packets in the future. By the time the
packets from the slow path arrive, all packets from the fast
path which have smaller sequence numbers should have
already arrived (fig. 9b). Since packets arrive in order,
the normal ACK clocking is ensured, so there are no
burst transmissions on the fast path and the send/receive
window will not be blocked.

Algorithm 1 Slide Together Scheduler

1: procedure ST SCHEDULE(unsentPackets) .
Scheduler runs when one of sub-flow is available

2: if Fast sub-flow has space in send window then
3: Fast sub− f low←unsentPackets[0]
4: elseSlow sub-flow has space in send window
5: Slow sub− f low←unsentPackets[Gap]
6: end if
7: end procedure

The key parameter of the scheduler algorithm is Gap,
which is the number of packets pre-allocated for fast path
to send. The efficiency of the scheduler algorithm depends
on the accuracy of the gap value. Any deviation from the
true value will cause out-of-order arrival of packets.

The naive way to get the gap value is to utilize the mea-
surement of path conditions. If we can measure network
conditions accurately, then we can derive the true gap
value in the following way. It takes OWD f +

Gap
B f

for all
packets in the gap to arrive at the receiver through the fast
path, where B f is the bandwidth of the fast path. This
should be equal to OWDs so that the first packet from the
slow path arrives at the same time as packets from the fast
path. Then we have the true Gap value:

True Gap = B f × (OWDs−OWD f ) (2)

However, the naive solution has two fundamental flaws.
One is that the one-way delay of path can not be measured
accurately. We can not assume the uplink delay and the
downlink delay are the same on both paths. If we mod-
ify the protocol to carry the one-way delay information,
it may cause other compatibility problem with middle-
boxes [16]. The other one is that the bandwidth of the
path can not be measured accurately, especially when the
in-network buffer is limited. Because of the burst send-
ing pattern of fast sub-flow, it can never reach the actual
available bandwidth. So we design the feedback-based
gap adjustment scheme to adjust the value of gap more
accurately and quickly.

Key insight: Every out-of-order packet in the receiver
will generate duplicate Data ACK or burst Data ACK.

What STMS actually does is moving stalled packets
from the receiver to the sender (i.e., the packets inside
gap). The out-of-order packets will be acknowledged at
one time when packets from the slow path arrive to fill
in the hole. The number of packets acknowledged by
Data ACK reflects the degree of out-of-order arrival of
packets. Accordingly we can use this as the feedback
signal to adjust the gap value. Since Data ACK is pre-
sented in MPTCP, our scheme remains compatible with
current MPTCP. In addition, this scheme does not require
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(a) t = 0 (b) t = 2RT Tf (c) t = RT Ts

Figure 9: Demonstration of STMS, with green and blue for packets over fast and slow paths respectively. Let
RT Ts = 3RT Tf and assume the uplink delay and downlink delay are symmetric, then we have gap =CWND f according
to eq. (2). Note that slow path always send packets with sequence numbers bigger than those of the fast path.

any modification at the receiver, which further eases the
deployment process.

How to adjust The gap adjustment algorithm is shown
in algorithm 2. Let delta gap and ad just interval be
the gap adjustment step and interval. When the gap is
smaller than the true gap value, the packets from the slow
path arrive late and the send window of MPTCP-level
will be stalled by packets sent from the slow path. There-
fore the left edge of the send window is determined by
unacknowledged packets from the slow path. Symmet-
rically, when the gap is bigger than the true gap value,
the left edge of the send window will be determined by
the packets sent from the fast path. Each time we re-
ceive a Data ACK, we first calculate how many pack-
ets this Data ACK acknowledged (data acked). If the
data acked is bigger than 2, we will adapt the gap value.
We check the packet of the left edge of the send win-
dow. If the packet is the first one sent from the slow
path, delta gap = data acked; otherwise, delta gap =
−data acked. We use the Exponentially Weighted Mov-
ing Average (EWMA) of delta gap over ad just interval
to adjust the gap value. The ad just interval is a tunable
parameter, which determines how fast the gap adjustment
can react to the network change. Setting it too small will
cause the gap overshoot and oscillation since the previous
gap adjustment has not taken into effect yet. However,
setting it too big leads to the slow convergence time.

Algorithm 2 Gap Adjustment Algorithm

1: procedure GAP ADJUST(data acked) . This
function gets called when receiving Data ACK

2: if data acked > 2 then
3: send una← left edge of MPTCP-level send

window
4: if send una was sent from slow path then
5: delta gap = data acked
6: elsesend una was sent from fast path
7: delta gap =−data acked
8: end if
9: end if

10: gap+= EWMA(delta gap,ad just interval)
11: end procedure

3.2 Analysis of host buffer size require-
ment

At a first glance, buffering packets for the fast path may
require a big buffer on the sender side. However, we can
prove that when both paths are fully utilized, the send
buffer requirement is actually less than that of the default
scheduler without PR (eq. (1)).

When using STMS the send buffer consists of three
parts:

1. sent but unacknowledged packets from the fast path:
B f ×RT Tf

2. sent but unacknowledged packets from the slow path:
Bs× (OWDs +OWD f ) (Data packet is sent through
the slow path, but ACK returns from the fast path).

3. buffered packets for the fast path i.e., True Gap
(eq. (2))

By adding these three parts together, we get the buffer
requirement of STMS:

Bu f (ST MS) = (B f +Bs)× (OWDS +OWD f ) (3)

This is smaller than Bu f (de f ault) (eq. (1)). It also re-
veals that STMS reduces the effective RTT of the MPTCP
connection to OWDs +OWD f , which is the smallest RTT
when both paths are utilized. Thus our STMS can reduce
the send buffer requirement.

If we take into consideration the opportunistic retrans-
mission, then in the ideal case, upon receiving the late
arrival packet from the slow path, the Data ACK of the
retransmitted packet will go back through the fast path.
Therefore the effective RTT of the MP connection is re-
duced to OWDs +OWD f , which is the same as STMS
and the buffer requirement is also the same.

When the host buffer is between [Bu f (ST MS),
Bu f (de f ault)], both retransmission and STMS can im-
prove the throughput. But STMS can always achieve the
optimal throughput by ensuring RTT of MP connection
to be the minimum.

If the host buffer is smaller than Bu f (ST MS), neither
STMS nor default scheduler can get the full bandwidth
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aggregation. In this case, STMS will prefer to use the fast
path. The slow path will be used only if it will not cause
the blocking. The buffer requirement to take advantage
of the use of the slow path is:

Bu f ( f allback) = RT Tf ×B f +Gap

= B f × (OWDs +OWD f )
(4)

When the host buffer is between [Bu f ( f allback),
Bu f (ST MS)], STMS will use the fast path first, as the
slow path will not block the fast path. However, for the
default scheduler, the slow path will get the frequent use,
which would trigger the retransmission of packets. This
will further lead to the goodput degradation and the big
end-to-end latency.

What if the host buffer is even smaller than
Bu f ( f allback)? Then STMS will fall back to the sin-
gle TCP over the fast path. But the default scheduler
will still send some packets from the slow path, which
pushes the effective RTT of MPTCP connection to at least
OWDs +OWD f . Thus the throughput will be even worse
than the bandwidth B f allowed by the fast path alone.
Actually, in this case, falling back to the single-path TCP
is the optimal choice.

So our scheduler can get the optimal throughput across
all range of host buffer sizes.

3.3 Analysis of latency
It seems that STMS will cause the inflation of transmis-
sion latency because it holds packets in the gap longer
than the default scheduler. However, it also reduces the
time duration for the packets to be stalled in the receiver.
Using both types of scheduler, the end-to-end latency of
packets sent from the slow path is OWDs. The latency of
the fast path is OWD f +Delay(Stalled). For each packet
sent from the fast path, it is either stalled at the receiver
buffer or held at the send buffer. Delay(Stalled) remains
the same. Therefore STMS does not increase the average
end-to-end latency of packets.

4 Implementation

We implement STMS in the Linux kernel based on
MPTCP version 0.92 from [7]. The algorithm 1 is imple-
mented as a scheduler module.

The MPTCP scheduler will run when two types of
event happen. The first type of event happens when ACK
returns from one of the sub-flows, which means there will
be space in the sub-flow send window. The second type
of event happens when application sends more data. The
scheduler makes the decision every data segment. For
each segment pushed in by the application, the scheduler
will determine which sub-flow to send the packet. This

framework of scheduler limits how we can implement our
scheduler, since we can not access an arbitrary segment
inside the send buffer. To remain compatible with this
framework. We implement our scheduler as follows.

When the scheduler picks the next segment to send,
we first check if the fast path is available, i.e., there is
space in the send window. If the space is available, then
send the packet over the fast path; otherwise, we check if
the slow path is available. If it is available, we find the
packet according to the gap value, i.e., jump across the
gap packets to find the packets to send over the slow path.
If the packet does not exist, that means either the packet
is out of the right boundary of the send window or the
application has not pushed enough data yet, in either of
which case we skip this round of scheduling. Note that
we need to mark the packets sent from the slow path so
that we can skip the out-of-order packets when finding
the next packet to send from the slow path. To avoid
traversing the send buffer from the beginning each time,
we save the pointer of the last send packet of the slow
path as the beginning point for the next search.

We implement two variants of STMS: STMS-C (”Cal-
culation”) and STMS-A (”Adjustment”). They both pre-
allocate packets for the fast sub-flow so that packets can
arrive in-order at the receiver side (§ 3.1). They differ
in how they obtain the gap value. Each time a packet is
sent from the slow path, STMS-C extracts the bandwidth
estimation of smoothed RTT from subflow TCP’s algo-
rithm and calculates the gap value (assume the uplink and
downlink delay are symmetric). For STMS-A the Data
ACK process function is modified to calculate delta gap
according to algorithm 2.

5 Evaluation in a controlled lab environ-
ment

In this section, we test both STMS-C and STMS-A in
a controlled lab setting, which allows us to evaluate the
performance across a wide variety of network conditions.
We compare our scheduler with the default scheduler with
PR (denoted as Default thereafter) and ECF [23]. ECF
uses the send buffer length to estimate the flow complete
time(FCT) of using each path. If using slow path will
cause inflation of FCT, it will wait for fast sub-flow. How-
ever, for elephant flow, the send buffer is full for most
of the time. Only when flow is about to finish, the send
buffer length can be small enough to wait for fast sub-
flow. Besides, when calculating the FCT, ECF does not
take into account the one way delay thus it is not able to
achieve accurate in-order arrival. STMS schedules the
packets out-of-orderly to achieve the in-order arrival re-
gardless of the send buffer status so STMS can outperform
ECF. For apples-to-apples comparison, we port the ECF
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(a) OOO delay distribution (b) Varying slow path latency (c) Varying receive buffer (d) Varying send buffer

Figure 10: Out-of-order latency of different schedulers

code [10] to the same MPTCP version as our scheduler.
The experiment setup is the same as § 2.1. We tune the
ad just interval of STMS-A to RT Ts+RT Tf

2 according to
the analysis in § 3.1. The parameter of ECF is chosen as
the same as [23].

5.1 Microbenchmarks
We first focus on some micro-benchmarks to see whether
our scheduler can accomplish the design goal.

5.1.1 Reducing the out-of-order arrival at the re-
ceiver side

We first investigate whether our scheduler can achieve
the in-order arrival at the receiver side. We use the out-
of-order (OOO) delay as the metric. The OOO delay of
a packet is defined as the time difference between when
a packet arrives at the receiver to when the packet can
be submitted to the application (i.e., all packets with the
smaller data sequence numbers have already arrived).

fig. 10a shows the CDF of the OOO delay of each
packet with different schedulers. STMS-C and STMS-A
can both achieve smaller OOO delay than Default and
ECF. The largest OOO delay is around 300ms. Default
effectively pushes the OOO delay of most packets sent
from fast path to OWDs. ECF sends tail packets out-of-
orderly so it can reduce OOO delay for those tail packets.
However since we transmit many packets for a test, this
delay reduction is negligible. STMS-A can effectively
push the OOO delay close to zero.

We vary the latency of slow path and calculate average
of OOO latency. The result of one experiment is shown in
fig. 10b. When paths become more heterogeneous, both
Default and ECF have larger OOO delay. However STMS-
A can keep its average OOO delay at a very small value.
When RTT of two paths are similar(20ms and 50ms), ECF,
STMS-C and STMS-A get close performance.

We also test the OOO delay under different host buffer
sizes. The result is shown in fig. 10. It demonstrates
that both STMS-A and STMS-C can effectively reduce
the OOO delay regardless of the host buffer size, and the

gain is larger when the host buffer sizes are larger with
more packets stalled at the receiver. For ECF, only when
the send buffer is very small, it wait for fast sub-flow to
reduce the OOO delay.

5.1.2 Reducing the burst on the fast path

Figure 11: Burstness of all four schedulers under different
path latencies

We now study whether our scheduler can reduce the
burst of the fast path thus the in-network buffer require-
ment accordingly. We print the CWND free space of the
fast sub-flow when it receives ACK. Since all schedulers
try to fill this free space, the peak value of CWND free
space reflects the burst of fast path. The average CWND
free space throughout the running time is used as a metric
of burstness of fast subfow. The result is shown in fig. 11.
The trend is the same as fig. 10b. Our scheduler can re-
duce the burstness of the fast path and makes it close to
that of the single-path TCP.

5.1.3 Gap adjustment is reactive to network change

To understand how STMS-A handles dynamic network
conditions, we change the network conditions in the mid-
dle of MPTCP flow and record the gap value changes
around the condition changing point. Recall that the true
gap value is calculated using eq. (2). It is affected by the
accuracy of the measurement of the fast path bandwidth
and the one-way delay of both fast path and slow path.
We choose to change the latency of the fast path and slow
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path to demonstrate how our Gap adjustment algorithm
reacts to the network change. In fig. 12a, the latency of
the fast path changes from 20ms to 5ms. Therefore there
will be many ACK packets and the fast path can send a lot
of packets out which leads to the wrong estimation of the
bandwidth. Thus, we see the peak of the gap calculated
value. However, our gap adjustment algorithm can con-
verge to the new value smoothly. In fig. 12b, the latency
of the slow path changes from 200ms to 100ms. Again
STMS-A converges to the new value smoothly and fast.

(a) Gap increase (b) Gap decrease

Figure 12: Gap adjustment is reactive to network change

5.2 Macrobenchmark: improving aggre-
gated throughput

We then investigate how our scheduler improves the ag-
gregated throughput under different buffer sizes setting.

Stable network condition We begin by investigating
whether our scheduler improves the throughput when
the network condition is stable. fig. 13 shows the result.
When the in-network buffer is limited, our scheduler can
improve the throughput by about 30% compared to De-
fault and ECF. When the host buffer is extremely limited,
our scheduler falls back to single path TCP and outper-
forms Default as analyzed in § 3.2. When the host buffer
is big enough(>4MB), there is no blocking, so all four
schedulers can get the full bandwidth aggregation effect.
The STMS-C and STMS-A produce analogous results
under the same buffer settings, which indicates the gap
adjustment algorithm can track the true gap value pre-
cisely.

We then vary the latency of slow path. Both STMS-C
and STMS-A improve the aggregation throughput over
Default and ECF. We pick the improvement of STMS-A
over Default as an example. fig. 14 shows the through-
put of STMS-A normalized relative to that of Default.
The improvement become more prominent as the paths
become more heterogeneous and the buffer gets smaller.

Varying bandwidth Then we investigate the perfor-
mance of our scheduler under network fluctuations. Here
we change the bandwidth of both path randomly every
10 seconds. The bandwidth value is chosen from set {5,

10, 20, 30}Mbps. We generate 5 network configurations
using different random seeds and run test five times for
each network configurations.

fig. 15a shows the average throughput of four sched-
ulers for each configuration. Note the error bar indicates
the variability of the same configuration. Our sched-
uler outperforms other schedulers in every configuration.
STMS-A performs even better than the STMS-C. This
indicates that STMS-A is more adaptive to network fluc-
tuations than the STMS-C.

Varying latency We simulate the varying latency con-
dition using tc netem module. Both paths’ latency is
changed every 10 seconds, and the stddev of latency is
set to 40% of the mean latency. We generate five latency
configurations and run the test five times (fig. 15b). Sim-
ilar to the bandwidth change scenario, STMS-A always
performs best.

6 Evaluation in the wild

We next evaluate our scheduler in more realistic environ-
ments. The server is deployed in Aliyun [1] and has only
one interface. The client is located inside our campus and
connects to the server through WiFi and LTE. The China
Telecom LTE cellular network incurs higher delay than
the WiFi network. The average bandwidth and latency
characteristic of each path are shown in table 2. We use
tc to add extra latency on LTE path.

Table 2: Path characteristics

Bandwidth(Mbps) Latency(ms)
WiFi 40 50
LTE 30 70

We compare our scheduler against Default and ECF.
We measure the download time of 200MB file of different
schedulers. For each latency setting, we run the test five
times. The result is shown in fig. 16. Both STMS-C and
STMS-A outperform Default and ECF. The STMS-A can
get the best performance, reducing the file download time
by as much as 20% over Default.

7 Related work

There are many studies on the improvement of MPTCP
scheduler. To solve the host buffer problem, Raiciu et al.
[26] propose the PR mechanism. Ferlin et al. [11] pro-
pose the Blocking Estimation-based Scheduler (BLEST)
which aims to prevent the blocking by reducing the us-
age of slow path even if it has available CWND space.
Both schedulers try to restrict the use of the slow path
to alleviate the need of big host buffer resulting in the
under-utilization of slow path.
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(a) Varying in-network buffer (b) Varying receive buffer (c) Varying send buffer

Figure 13: Throughput of different schedulers

(a) Varying in-network buffer (b) Varying receive buffer (c) Varying send buffer

Figure 14: STMS-A throughput normalized by Default

(a) Bandwidth change (b) Latency change

Figure 15: Throughput under dynamic network conditions

Kuhn et al. [22] propose DAPS to address the RTT
difference of two paths. But it only considers the stable
CWND and the scheduler running interval is very big thus
can not react to the dynamic network changes.

Lim et al. [23] propose ECF which outperforms both
DAPS and BLEST. But it only considers the tail packets.

Guo et al. [14] propose a new scheduler to balance
two sub-flow completion time by sending packets inside
a ”chunk” in the opposite direction. Nonetheless, this
approach will require a huge host buffer to store the whole
chunk.

8 Conclusion

In this work, we identify a new root cause of MPTCP
throughput degradation under heterogeneous path con-

Figure 16: Average file download time in the wild (lower
is better)

ditions. We propose STMS to effectively alleviate the
problems due to the limitation in the host buffer size and
in-network buffer size. Our experimental results show
that STMS outperforms state-of-the-art schedulers in di-
verse network and buffer settings, especially when the
path heterogeneity is large.
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Abstract

Internet transport algorithms are foundational to the per-
formance of network applications. But a number of prac-
tical challenges make it difficult to evaluate new ideas
and algorithms in a reproducible manner. We present
the Pantheon, a system that addresses this by serving
as a community “training ground” for research on In-
ternet transport protocols and congestion control (https:
//pantheon.stanford.edu). It allows network researchers to
benefit from and contribute to a common set of benchmark
algorithms, a shared evaluation platform, and a public
archive of results.

We present three results showing the Pantheon’s value
as a research tool. First, we describe a measurement study
from more than a year of data, indicating that congestion-
control schemes vary dramatically in their relative per-
formance as a function of path dynamics. Second, the
Pantheon generates calibrated network emulators that cap-
ture the diverse performance of real Internet paths. These
enable reproducible and rapid experiments that closely
approximate real-world results. Finally, we describe the
Pantheon’s contribution to developing new congestion-
control schemes, two of which were published at USENIX
NSDI 2018, as well as data-driven neural-network-based
congestion-control schemes that can be trained to achieve
good performance over the real Internet.

1 Introduction

Despite thirty years of research, Internet congestion con-
trol and the development of transport-layer protocols re-
main cornerstone problems in computer networking. Con-
gestion control was originally motivated by the desire to
avoid catastrophic network collapses [22], but today it is
responsible for much more: allocating capacity among
contending applications, minimizing delay and variabil-
ity, and optimizing high-level metrics such as video re-
buffering, Web page load time, the completion of batch

jobs in a datacenter, or users’ decisions to engage with a
website.

In the past, the prevailing transport protocols and
congestion-control schemes were developed by re-
searchers [18, 22] and tested in academic networks or
other small testbeds before broader deployment across
the Internet. Today, however, the Internet is more diverse,
and studies on academic networks are less likely to gener-
alize to, e.g., CDN nodes streaming video at 80 Gbps [26],
smartphones on overloaded mobile networks [8], or secu-
rity cameras connected to home Wi-Fi networks.

As a result, operators of large-scale systems have be-
gun to develop new transport algorithms in-house. Op-
erators can deploy experimental algorithms on a small
subset of their live traffic (still serving millions of users),
incrementally improving performance and broadening de-
ployment as it surpasses existing protocols on their live
traffic [1, 7, 24]. These results, however, are rarely repro-
ducible outside the operators of large services.

Outside of such operators, research is usually con-
ducted on a much smaller scale, still may not be repro-
ducible, and faces its own challenges. Researchers often
create a new testbed each time—interesting or represen-
tative network paths to be experimented over—and must
fight “bit rot” to acquire, compile, and execute prior al-
gorithms in the literature so they can be fairly compared
against. Even so, results may not generalize to the wider
Internet. Examples of this pattern in the academic litera-
ture include Sprout [42], Verus [43], and PCC [12].

This paper describes the Pantheon: a distributed, col-
laborative system for researching and evaluating end-to-
end networked systems, especially congestion-control
schemes, transport protocols, and network emulators. The
Pantheon has four parts:

1. a software library containing a growing collection
of transport protocols and congestion-control al-
gorithms, each verified to compile and run by a
continuous-integration system, and each exposing
the same interface to start or stop a full-throttle flow,
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2. a diverse testbed of network nodes on wireless and
wired networks around the world, including cellular
networks in Stanford (U.S.), Guadalajara (Mexico),
São Paulo (Brazil), Bogotá (Colombia), New Delhi
(India), and Beijing (China), and wired networks in
all of the above locations as well as London (U.K.),
Iowa (U.S.), Tokyo (Japan), and Sydney (Australia),

3. a collection of network emulators, each calibrated
to match the performance of a real network path be-
tween two nodes, or to capture some form of patho-
logical network behavior, and

4. a continuous-testing system that regularly evaluates
the Pantheon protocols over the real Internet between
pairs of testbed nodes, across partly-wireless and all-
wired network paths, and over each of the network
emulators, in single- and multi-flow scenarios, and
publicly archives the resulting packet traces and anal-
yses at https://pantheon.stanford.edu.

The Pantheon’s calibrated network emulators address
a tension that protocol designers face between experi-
mental realism and reproducibility. Simulators and emu-
lators are reproducible and allow rapid experimentation,
but may fail to capture important dynamics of real net-
works [15, 16, 31]. To resolve this tension, the Pantheon
generates network emulators calibrated to match real Inter-
net paths, graded by a novel figure of merit: their accuracy
in matching the performance of a set of transport algo-
rithms. Rather than focus on the presence or absence of
modeled phenomena (jitter, packet loss, reordering), this
metric describes how well the end-to-end performance
(e.g., throughput, delay, and loss rate) of a set of algo-
rithms, run over the emulated network, matches the corre-
sponding performance statistics of the same algorithms
run over a real network path.

Motivated by the success of ImageNet [11, 17] in the
computer-vision community, we believe a common refer-
ence set of runnable benchmarks, continuous experimenta-
tion and improvement, and a public archive of results will
enable faster innovation and more effective, reproducible
research. Early adoption by independent research groups
provides encouraging evidence that this is succeeding.

Summary of results:
• Examining more than a year of measurements from

the Pantheon, we find that transport performance is
highly variable across the type of network path, bot-
tleneck network, and time. There is no single existing
protocol that performs well in all settings. Further-
more, many protocols perform differently from how
their creators intended and documented (§4).

• We find that a small number of network-emulator pa-
rameters (bottleneck link rate, isochronous or mem-
oryless packet inter-arrival timing, bottleneck buffer

size, stochastic per-packet loss rate, and propagation
delay) is sufficient to replicate the performance of
a diverse library of transport protocols (with each
protocol matching its real-world throughput and de-
lay to within 17% on average), in the presence of
both natural and synthetic cross traffic. These results
go against some strains of thought in computer net-
working, which have focused on building detailed
network emulators (with mechanisms to model jitter,
reordering, the arrival and departure of cross traffic,
MAC dynamics, etc.), while leaving the questions
open of how to configure an emulator to accurately
model real networks and how to quantify the emula-
tor’s overall fidelity to a target (§5).

• We discuss three new approaches to congestion con-
trol that are using the Pantheon as a shared evaluation
testbed, giving us encouragement that it will prove
useful as a community resource. Two are from re-
search groups distinct from the present authors, and
were published at USENIX NSDI 2018: Copa [2]
and Vivace [13]. We also describe our own data-
driven designs for congestion control, based on neu-
ral networks that can be trained on a collection of
the Pantheon’s emulators and in turn achieve good
performance over real Internet paths (§6).

2 Related work

Pantheon benefits from a decades-long body of related
work in Internet measurement, network emulation, trans-
port protocols, and congestion-control schemes.

Tools for Internet measurement. Systems like Planet-
Lab [10], Emulab [40], and ORBIT [30] provide measure-
ment nodes for researchers to test transport protocols and
other end-to-end applications. PlanetLab, which was in
wide use from 2004–2012, at its peak included hundreds
of nodes, largely on well-provisioned (wired) academic
networks around the world. Emulab allows researchers to
run experiments over configurable network emulators and
on Wi-Fi links within an office building.

While these systems are focused on allowing re-
searchers to borrow nodes and run their own tests, the
Pantheon operates at a higher level of abstraction. Pan-
theon includes a single community software package that
researchers can contribute algorithms to. Anybody can
run any of the algorithms in this package, including over
Emulab or any network path, but Pantheon also hosts a
common repository of test results (including raw packet
traces) of scripted comparative tests.

Network emulation. Congestion-control research has
long used network simulators, e.g., ns-2 [28], as well
as real-time emulators such as Dummynet [6, 33],
NetEm [20], Mininet [19], and Mahimahi [27].
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These emulators provide increasing numbers of pa-
rameters and mechanisms to recreate different network
behaviors, such as traffic shapers, policers, queue disci-
plines, stochastic i.i.d. or autocorrelated loss, reordering,
bit errors, and MAC dynamics. However, properly setting
these parameters to emulate a particular target network
remains an open problem.

One line of work has focused on improving emulator
precision in terms of the level of detail and fidelity at
modeling small-scale effects (e.g., “Two aspects influence
the accuracy of an emulator: how detailed is the model of
the system, and how closely the hardware and software
can reproduce the timing computed by the model” [6]).
Pantheon takes a different approach, instead focusing on
accuracy in terms of how well an emulator recreates the
performance of a set of transport algorithms.

Congestion control. Internet congestion control has a
deep literature. The original DECBit [32] and Tahoe [22]
algorithms responded to one-bit feedback from the net-
work, increasing and decreasing a congestion window in
response to acknowledgments and losses. More recently,
researchers have tried to formalize the protocol-design
process by generating a congestion-control scheme as a
function of an objective function and prior beliefs about
the network and workload. Remy [37, 41] and PCC [12]
are different kinds of “learned” schemes [35]. Remy uses
an offline optimizer that generates a decision tree to opti-
mize a global utility score based on network simulations.
PCC uses an online optimizer that adapts its sending rate
to maximize a local utility score in response to packet
losses and RTT samples. In our current work (§ 6), we
ask whether it is possible to quickly train an algorithm
from first principles to produce good global performance
on real Internet paths.

3 Design and implementation

This section describes the design and implementation of
the Pantheon, a system that automatically measures the
performance of many transport protocols and congestion-
control schemes across a diverse set of network paths. By
allowing the community to repeatably evaluate transport
algorithms in scripted comparative tests across real-world
network paths, posted to a public archive of results, the
Pantheon aims to help researchers develop and test algo-
rithms more rapidly and reproducibly.

Below, we demonstrate several uses for Pantheon: com-
paring existing congestion-control schemes on real-world
networks (§4); calibrating network emulators that accu-
rately reproduce real-world performance (§5); and design-
ing and testing new congestion-control schemes (§6).

Label Scheme LoC
Copa Copa [2] 46
LEDBAT LEDBAT/µTP [36] (libutp) 48
PCC PCC† [12] 46
QUIC QUIC Cubic [24] (proto-quic) 119
SCReAM SCReAM [23] 541
Sprout Sprout† [42] 46
Tao RemyCC “100x” (2014) [37] 43
BBR TCP BBR [7] 52
Cubic TCP Cubic [18] (Linux default) 30
Vegas TCP Vegas [5] 50
Verus Verus† [43] 43
— Vivace [13] 37
WebRTC WebRTC media [4] in Chromium 283
— FillP (work in progress) 41
Indigo LSTM neural network (work in progress) 35

Figure 1: The Pantheon’s transport schemes (§3.1.1) and
the labels used for them in figures in this paper. Shown
are the number of lines of Python, C++, or Javascript code
in each wrapper that implements the common abstraction.
Schemes marked † are modified to reduce MTU.

3.1 Design overview
Pantheon has three components: (1) a software repository
containing pointers to transport-protocol implementations,
each wrapped to expose a common testing interface based
on the abstraction of a full-throttle flow; (2) testing infras-
tructure that runs transport protocols in scripted scenarios,
instruments the network to log when each packet was sent
and received, and allows flows to be initiated by nodes be-
hind a network address translator (NAT); and (3) a global
observatory of network nodes, enabling measurements
across a wide variety of paths. We describe each in turn.

3.1.1 A collection of transport algorithms, each ex-
posing the same interface

To test each transport protocol or congestion-control
scheme on equal footing, Pantheon requires it to expose a
common abstraction for testing: a full-throttle flow that
runs until a sender process is killed. The simplicity of this
interface has allowed us (and a few external contributors
so far) to write simple wrappers for a variety of schemes
and contribute them to the Pantheon, but limits the kinds
of evaluations the system can do.1

Figure 1 lists the currently supported schemes, plus
the size (in lines of code) of a wrapper script to expose
the required abstraction. For all but three schemes, no
modification was required to the existing implementation.
The remaining three had a hard-coded MTU size and

1For example, the interface allows measurements of combinations
of long-running flows (with timed events to start and stop a flow), but
does not allow the caller to run a scheme until it has transferred exactly
x bytes. This means that the Pantheon cannot reliably measure the flow-
completion time of a mix of small file transfers.
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required a small patch to adjust it for compatibility with
our network instrumentation; please see §3.1.2 below.

As an example, we describe the Pantheon’s wrapper
to make WebRTC expose the interface of a full-throttle
flow. The Pantheon tests the Chromium implementation
of WebRTC media transfer [4] to retrieve and play a video
file. The wrapper starts a Chromium process for the sender
and receiver, inside a virtual X frame buffer, and provides
a signaling server to mediate the initial connection. This
comprises about 200 lines of JavaScript.

Pantheon is designed to be easily extended; researchers
can add a new scheme by submitting a pull request that
adds a submodule reference to their implementation and
the necessary wrapper script. Pantheon uses a continuous-
integration system to verify that each proposed scheme
builds and runs in emulation.

3.1.2 Instrumenting network paths

For each IP datagram sent by the scheme, Pantheon’s
instrumentation tracks the size, time sent, and (if applica-
ble) time received. Pantheon allows either side (sender or
receiver) to initiate the connection, even if one of them
is behind a NAT, and prevents schemes from communi-
cating with nodes other than the sender and receiver. To
achieve this, Pantheon creates a virtual private network
(VPN) between the endpoints, called a Pantheon-tunnel,
and runs all traffic over this VPN.

Pantheon-tunnel comprises software controlling a vir-
tual network device (TUN) [39] at each endpoint. The
software captures all IP datagrams sent to the local TUN,
assigns each a unique identifier (UID), and logs the UID
and a timestamp. It then encapsulates the packet and its
UID in a UDP datagram, which it transmits to the other
endpoint via the path under test. The receiving endpoint
decapsulates, records the UID and arrival time, and deliv-
ers the packet to its own Pantheon-tunnel TUN device.

This arrangement has two main advantages. First, UIDs
make it possible to unambiguously log information about
every packet (e.g., even if packets are retransmitted or
contain identical payloads). Second, either network end-
point can be the sender or receiver of an instrumented
network flow over an established Pantheon-tunnel, even if
it is behind a NAT (as long as one endpoint has a routable
IP address to establish the tunnel).

Pantheon-tunnel also has disadvantages. First, encapsu-
lation costs 36 bytes (for the UID and headers), reducing
the MTU of the virtual interface compared to the path
under test; for schemes that assume a fixed MTU, Pan-
theon patches the scheme accordingly. Second, because
each endpoint records a timestamp to measure the send
and receive time of each datagram, accurate timing re-
quires the endpoints’ clocks to be synchronized; endpoints
use NTP [29] for this purpose. Finally, Pantheon-tunnel

makes all traffic appear to the network as UDP, meaning
it cannot measure the effect of a network’s discrimination
based on the IP protocol type.2

Evaluation of Pantheon-tunnel. To verify that Pantheon-
tunnel does not substantially alter the performance of
transport protocols, we ran a calibration experiment to
measure the tunnel’s effect on the performance of three
TCP schemes (Cubic, Vegas, and BBR). We ran each
scheme 50 times inside and outside the tunnel for 30 sec-
onds each time, between a colocation facility in India and
the EC2 India datacenter, measuring the mean through-
put and 95th-percentile per-packet one-way delay of each
run.3 We ran a two-sample Kolmogorov-Smirnov test for
each pair of statistics (the 50 runs inside vs. outside the
tunnel for each scheme’s throughput and delay). No test
found a statistically significant difference below p < 0.2.

3.1.3 A testbed of nodes on interesting networks

We deployed observation nodes in countries around the
world, including cellular (LTE/UMTS) networks in Stan-
ford (USA), Guadalajara (Mexico), São Paulo (Brazil),
Bogotá (Colombia), New Delhi (India), and Beijing
(China), wired networks in all of the above locations as
well as London (U.K.), Iowa (U.S.), Tokyo (Japan), and
Sydney (Australia), and a Wi-Fi mesh network in Nepal.
These nodes were provided by a commercial colocation
facility (Mexico, Brazil, Colombia, India), by volunteers
(China and Nepal), or by Google Compute Engine (U.K.,
U.S., Tokyo, Sydney).

We found that hiring a commercial colocation operator
to maintain LTE service in far-flung locations has been an
economical and practical approach; the company main-
tains, debugs, and “tops up” local cellular service in each
location in a way that would otherwise be impractical
for a university research group. However, this approach
limits us to available colocation sites and ones where we
receive volunteered nodes. We are currently bringing up
a volunteered node with cellular connectivity in Saudi
Arabia and welcome further contributions.

3.2 Operation and testing methods
The Pantheon frequently benchmarks its stable of
congestion-control schemes over each path to create an
archive of real-world network observations. On each
path, Pantheon runs multiple benchmarks per week. Each
benchmark follows a software-defined scripted workload
(e.g., a single flow for 30 seconds; or multiple flows of

2Large-scale measurements by Google [24] have found such discrim-
ination, after deployment of the QUIC UDP protocol, to be rare.

3For BBR running outside the tunnel, we were only able to measure
the average throughput (not delay). Run natively, BBR’s performance
relies on TCP segmentation offloading [9], which prevents a precise
measurement of per-packet delay without the tunnel’s encapsulation.
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cross traffic, arriving and departing at staggered times),
and for each benchmark, Pantheon chooses a random or-
dering of congestion-control schemes, then tests each
scheme in round-robin fashion, repeating until every
scheme has been tested 10 times (or 3 for partly-cellular
paths). This approach mirrors the evaluation methods of
prior academic work ([12, 42, 43]).

During an experiment, both sides of a path repeat-
edly measure their clock offset to a common NTP server
and use these to calculate a corrected one-way delay
of each packet. After running an experiment, a node
calculates summary statistics (e.g., mean throughput,
loss rate, and 95th-percentile one-way delay for each
scheme) and uploads its logs (packet traces, analyses,
and plots) to AWS S3 and the Pantheon website (https:
//pantheon.stanford.edu).

4 Findings

The Pantheon has collected and published measurements
of a dozen protocols taken over the course of more than
a year. In this section, we give a high-level overview of
some key findings in this data, focusing on the implica-
tions for research and experimental methodology. We ex-
amine comparative performance between protocols rather
than the detailed behavior of particular protocols, because
comparative analyses provide insight into which protocol
end hosts should run in a particular setting.

To ground our findings in examples from concrete data,
we select one particular path: AWS Brazil to Colom-
bia. This path represents the performance a device in
Colombia would see downloading data from properly
geo-replicated applications running in AWS (Brazil is the
closest site).

Finding 1: Which protocol performs best varies by
path. Figure 2a shows the throughput and delay of 12
transport protocols from AWS Brazil to a server in Colom-
bia, with an LTE modem from a local carrier (Claro).4 Fig-
ure 2b shows the throughput and delay for the same proto-
cols from a node at Stanford University with a T-Mobile
LTE modem, to a node in AWS California. The observed
performance varies significantly. In Brazil-Colombia,
PCC is within 80% of the best observed throughput
(QUIC) but with delay 20 times higher than the lowest
(SCReAM). In contrast, for Stanford-California, PCC has
only 52% of the best observed throughput (Cubic) and
the lowest delay. The Sprout scheme, developed by one
of the present authors, was designed for cellular networks
in the U.S. and performs well in that setting (Figure 2b),
but poorly on other paths.

4All results in this paper and supporting raw data can be found in the
Pantheon archive; e.g. the experiment indicated as P123 can be found
at https://pantheon.stanford.edu/result/123/.

These differences are not only due to long haul paths
or geographic distance. Figure 2c shows the performance
of the transport protocols from AWS Brazil to a wired
device in Colombia. Performance is completely different.
Delays, rather than varying by orders of magnitude, differ
by at most 32%. At the same time, some protocols are
strictly better: QUIC (Cubic) and (TCP) Cubic have both
higher throughput and lower delay than BBR and Verus.

Differences are not limited to paths with cellular links.
Figure 2e shows performance between Stanford and AWS
California using high-bandwidth wired links and Figure 2f
shows performance between the Google Tokyo and Syd-
ney datacenters. While in both cases PCC shows high
throughput and delay, in the AWS case BBR is better in
throughput while between Google data centers it provides
34% less throughput. Furthermore, LEDBAT performs
reasonably well on AWS, but has extremely low through-
put between Google datacenters.

This suggests that evaluating performance on a small
selection (or, in the worst case, just one) of paths can
lead to misleadingly positive results, because they are not
generalizable to a wide range of paths.
Finding 2: Which protocol performs best varies by
path direction. Figure 2d shows the performance of the
opposite direction of the path, from the same device with
cellular connection in Colombia to AWS Brazil. This
configuration captures the observed performance of up-
loading a photo or streaming video through a relay.

In the Brazil to Colombia direction, QUIC strictly dom-
inates Vegas, providing both higher throughput and lower
delay. In the opposite direction, however, the tradeoff is
less clear: Vegas provides slightly lower throughput with
a significant (factor of 9) decrease in delay. Similarly,
in the Brazil to Colombia direction, WebRTC provides
about half the throughput of LEDBAT while also halving
delay; in the Colombia to Brazil direction, WebRTC is
strictly worse, providing one third the throughput while
quadrupling delay.

This indicates that evaluations of network transport
protocols need to explicitly measure both directions of
a path. On the plus side, a single path can provide two
different sets of conditions when considering whether
results generalize.
Finding 3: Protocol performance varies in time and
only slightly based on competing flows. Figure 2g
shows the Brazil-Colombia path measured twice, sep-
arated by two days (the first measurement shown in open
dots is the same as in Figure 2a). Most protocols see
a strict degradation of performance in the second mea-
surement, exhibiting lower throughput and higher delay.
Cubic and PCC, once clearly distinguishable, merge to
have equivalent performance. More interestingly, the per-
formance of Vegas has 23% lower throughput, but cuts
delay by more than a factor of 2.
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(a) AWS Brazil to Colombia (cellular), 1 flow, 3 trials. P1392.

Be
tte
r

(b) Stanford to AWS California (cellular), 1 flow, 3 trials. P950.
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(c) AWS Brazil to Colombia (wired), 1 flow, 10 trials. P1271.

Be
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(d) Colombia to AWS Brazil (cellular), 1 flow, 3 trials. P1391.
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(e) Stanford to AWS California (wired), 3 flows, 10 trials. P1238.
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(f) GCE Tokyo to GCE Sydney (wired), 3 flows, 10 trials. P1442.
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(g) AWS Brazil to Colombia (cellular), 1 flow, 3 trials.

2 days after Figure 2a (shown in open dots). P1473.
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(h) AWS Brazil to Colombia (cellular), 3 flows, 3 trials. P1405.

Figure 2: Compared with Figure 2a, scheme performance varies across the type of network path (Figure 2c), number of
flows (Figure 2h), time (Figure 2g), data flow direction (Figure 2d), and location (Figure 2b). Figure 2e and 2f show that
the variation is not limited to just cellular paths. The shaded ellipse around a scheme’s dot represents the 1-σ variation
across runs. Given a measurement ID, e.g. P123, the full result can be found at https://pantheon.stanford.edu/result/123/.
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Finally, Figure 2h shows performance on the Brazil-
Colombia path when 3 flows compete. Unlike in Figure 2a,
PCC and Cubic dominate Vegas, and many protocols
see similar throughput but at greatly increased latency
(perhaps due to larger queue occupancy along the path).

This indicates that evaluations of network transport
protocols need to not only measure a variety of paths, but
also spread those measurements out in time. Furthermore,
if one protocol is measured again, all of them need to be
measured again for a fair comparison, as conditions may
have changed. Cross traffic (competing flows) is an im-
portant consideration, but empirically has only a modest
effect on relative performance. We do find that schemes
that diverge significantly from traditional congestion con-
trol (e.g., PCC) exhibit poor fairness in some settings; in
a set of experiments between Tokyo and Sydney (P1442),
we observed the throughput ratios of three PCC flows
to be 32:4:1. This seems to contradict fairness findings
in the PCC paper and emphasizes the need for a shared
evaluation platform across diverse paths.

5 Calibrated emulators

The results in Section 4 show that transport performance
varies significantly over many characteristics, including
time. This produces a challenge for protocol development
and the ability of researchers to reproduce each others’
results. One time-honored way to achieve controlled, re-
producible results, at the cost of some realism, is to mea-
sure protocols in simulation or emulation [14] instead
of the wild Internet, using tools like Dummynet [6, 33],
NetEm [20], Mininet [19], or Mahimahi [27].

These tools each provide a number of parameters and
mechanisms to recreate different network behaviors, and
there is a traditional view in computer networking that
the more fine-grained and detailed an emulator, the better.
The choice of parameter values to faithfully emulate a
particular target network remains an open problem.

In this paper, we propose a new figure of merit for
network emulators: the degree to which an emulator can
be substituted for the real network path in a full system,
including the endpoint algorithm, without altering the
system’s overall performance. In particular, we define
the emulator’s accuracy as the average difference of the
throughput and of the delay of a set of transport algo-
rithms run over the emulator, compared with the same
statistics from the real network path that is the emulator’s
target. The broader and more diverse the set of transport
algorithms, the better characterized the emulator’s accu-
racy will be: each new algorithm serves as a novel probe
that could put the network into an edge case or unusual
state that exercises the emulator and finds a mismatch.

In contrast to some conventional wisdom, we do not
think that more-detailed network models are necessarily

preferable. Our view is that this is an empirical ques-
tion, and that more highly-parameterized network models
create a risk of overfitting—but may be justified if lower-
parameter models cannot achieve sufficient accuracy.

5.1 Emulator characteristics
We found that a five-parameter network model is suffi-
cient to produce emulators that approximate a diverse
variety of real paths, matching the throughput and delay
of a range of algorithms to within 17% on average. The
resulting calibrated emulators allow researchers to test ex-
perimental new schemes—thousands of parallel variants
if necessary—in emulated environments that stand a good
chance of predicting future real-world behavior.5

The five parameters are:
1. a bottleneck link rate,
2. a constant propagation delay,
3. a DropTail threshold for the sender’s queue,
4. a stochastic loss rate (per-packet, i.i.d.), and
5. a bit that selects whether the link runs isochronously

(all interarrival times equal), or with packet deliver-
ies governed by a memoryless Poisson point process,
characteristic of the observed behavior of some LTE
networks [42].

To build emulators using these parameters, the Pan-
theon uses Mahimahi container-based network emula-
tors [27]. In brief: Mahimahi gives the sender and receiver
each its own isolated Linux network namespace, or con-
tainer, on one host. An emulator is defined by a chain of
nested elements, each one modeling a specific network ef-
fect: e.g., an mm-loss container randomly drops packets
in the outgoing or incoming direction at a specified rate.

5.2 Automatically calibrating emulators
to match a network path

Given a set of results over a particular network path, Pan-
theon can generate an emulator that replicates the same
results in about two hours, using an automated parameter-
search process that we now describe.

To find an appropriate combination of emulator pa-
rameters, Pantheon searches the space using a non-linear
optimization process that aims to find the optimal value
for a vector x, which represents the <rate, propagation
delay, queue size, loss rate> for the emulator.6

The optimization derives a replication error for each
set of emulator parameters, f (x), which is defined as the

5In a leave-one-out cross-validation experiment, we confirmed that
emulators trained to match the performance of n−1 transport algorithms
accurately predicted the unseen scheme’s performance within about 20%
(results not shown).

6The optimization is run twice, to choose between a constant rate or
a Poisson delivery process.
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(a) Nepal to AWS India (wireless), 1 flow, 10 trials.
Mean replication error: 19.1%. P188.
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tte
r

(b) AWS California to Mexico (wired), 3 flows, 10 trials.
Mean replication error: 14.4%. P1237.

Figure 3: Examples of per-scheme calibrated emulator errors. The filled dots represent real results over each network
path; the open dots represent the corresponding result over the emulator that best replicates all of the results. Emulators
for all-wired paths give better fidelity than emulators for partly-wireless paths (§5.3).

Path Error (%)
Nepal to AWS India (Wi-Fi, 1 flow, P188) 19.1
AWS Brazil to Colombia (cellular, 1 flow, P339) 13.0
Mexico to AWS California (cellular, 1 flow, P196) 25.1
AWS Korea to China (wired, 1 flow, P361) 17.7
India to AWS India (wired, 1 flow, P251) 15.6
AWS California to Mexico (wired, 1 flow, P353) 12.7
AWS California to Mexico (wired, 3 flows, P1237) 14.4

Figure 4: Replication error of calibrated emulators on six
paths with a single flow, and one path with three flows of
staggered cross traffic.

Path Feature change Error (%)

China wired

link rate only 211.8
add delay 211.8→ 189.7
add buffer size 189.7→ 32.3
add stochastic loss 32.3→ 17.7

Colombia cellular constant→ Poisson 23.7→ 13.0

Figure 5: Each of the emulator’s five parameters is helpful
in reducing replication error. For the China wired path, we
started with a single parameter and added the other three
features one by one, in the order of their contribution. The
Colombia cellular path required jitter (Poisson deliveries)
to achieve good accuracy.

average of the percentage changes between the real and
emulated mean throughput, and the real and emulated
mean 95th-percentile delay, across each of the set of ref-
erence transport algorithms. To minimize f (x), nonlinear
optimization is necessary because neither the mathemat-
ical expression nor the derivative of f (x) is known. In
addition, for both emulated and real world network paths,

f (x) is non-deterministic and noisy.
The Pantheon uses Bayesian optimization [25], a stan-

dard method designed for optimizing the output of a noisy
function when observations are expensive to obtain and
derivatives are not available.7 The method starts with the
assumption that the objective function, f (x), is drawn
from a broad prior (Gaussian is a standard choice and the
one we use). Each sample (i.e., calculation of the emulator
replication error for a given set of emulator parameters
x) updates the posterior distribution for f (x). Bayesian
optimization uses an acquisition function to guide the
algorithm’s search of the input space to the next value x.
We use the Spearmint [38] Bayesian-optimization toolkit,
which uses “expected improvement” as its acquisition
function. This function aims to maximize the expected
improvement over the current best value [25].

5.3 Emulation results
We trained emulators that model six of Pantheon’s paths,
each for about 2 hours on 30 EC2 machines with 4 vCPUs
each. Figure 3 shows per-scheme calibration results for
two representative network paths, a wireless device in
Nepal and a wired device in Mexico. Filled dots repre-
sent the measured mean performance of the scheme on
the real network path, while the open dot represents the
performance on the corresponding calibrated emulator. A
closer dot means the emulator is better at replicating that
scheme’s performance.

We observe that the emulators roughly preserve the
relative order of the mean performance of the schemes on
each path. Figure 4 shows mean error in replicating the

7Each evaluation of f (x) involves running all of Pantheon’s
congestion-control schemes in a scripted 30-second scenario, three
times, across the emulated path. This is done in parallel, so each evalua-
tion of f (x) takes about 30 seconds of wall-clock time.
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throughput and delay performance of all of Pantheon’s
congestion-control schemes by a series of emulators. To
ensure each parameter is necessary, we measured the
benefits of adding delay, queue size, and loss information
to a base emulator that uses a constant rate, in replicating
the China wired device path. For the cellular device path
we measured the benefit of using a Poisson based link rate
rather than a constant rate. As shown in Figure 5, each
added parameter improves the emulator’s fidelity.

Pantheon includes several calibrated emulators, and reg-
ularly runs the transport algorithms in single- and multi-
flow scenarios over each of the emulators and publishes
the results in its public archive. Researchers are also able
to run the calibrated emulators locally.

In addition, Pantheon includes, and regularly evaluates
schemes over, a set of “pathological” emulators suggested
by colleagues at Google. These model extreme network
behaviors seen in the deployment of the BBR scheme:
very small buffer sizes, severe ACK aggregation, and
token-bucket policers.

Overall, our intention is that Pantheon will contain a
sufficient library of well-understood network emulators
so that researchers can make appreciable progress evalu-
ating schemes (perhaps thousands of variants at once) in
emulation—with some hope that there will be fewer sur-
prises when a scheme is evaluated over the real Internet.

6 Pantheon use cases

We envision Pantheon as a common evaluation platform
and an aid to the development of new transport protocols
and congestion-control schemes. In this section, we de-
scribe three different ways that Pantheon has been helpful.
Two are based on experiences that other research groups
have had using Pantheon to assist their efforts. The third
is an example of a radical, data-driven congestion-control
design based on neural networks learned directly from
Pantheon’s network emulators.

Case 1. Vivace: validating a new scheme in the real
world. Dong et al. [13] describe a new congestion-control
scheme called Vivace, the successor to PCC [12]. They
contributed three variants of the scheme to Pantheon in
order to evaluate and tune Vivace’s performance, by ex-
amining Pantheon’s packet traces and analyses of Vivace
in comparison with other schemes across an array of real-
world paths. This is consistent with Pantheon’s goal of
being a resource for the research community (§1).

Case 2. Copa: iterative design with measurements.
Arun and Balakrishnan [2] describe another new scheme,
Copa, which optimizes an objective function via conges-
tion window and sending rate adjustments. In contrast
to Vivace, which was deployed on Pantheon largely as a
completed design, Copa used Pantheon as an integral part

of the design process: the authors deployed a series of
six prototypes, using Pantheon’s measurements to inform
each iteration. This demonstrates another use of Pantheon,
automatically deploying and testing prototypes on the real
Internet, and gathering in vivo performance data.
Case 3. Indigo: extracting an algorithm from data. As
an extreme example of data-driven design, we present
Indigo, a machine-learned congestion-control scheme
whose design we extract from data gathered by Pantheon.

Using machine learning to train a congestion-control
scheme for the real world is challenging. The main reason
is that it is impractical to learn directly from the Internet:
machine-learning algorithms often require thousands of it-
erations and hours to weeks of training time, meaning that
paths evolve in time (§4) more quickly than the learning
algorithm can converge. Pantheon’s calibrated emulators
(§5) provide an alternative: they are reproducible, can
be instantiated many times in parallel, and are designed
to replicate the behavior of congestion-control schemes.
Thus, our high-level strategy is to train Indigo using emu-
lators, then evaluate it in the real world using Pantheon.

Indigo is one example of what we believe to be a novel
family of data-driven algorithms enabled by Pantheon.
Specifically, Pantheon facilitates realistic offline training
and testing by providing a communal benchmark, evolv-
ing dataset, and calibrated emulators to allow approxi-
mately realistic offline training and testing. Below, we
briefly describe Indigo’s design; we leave a more detailed
description to future work.

Overview of Indigo

At its core, Indigo does two things: it observes the net-
work state, and it adjusts its congestion window, i.e., the
allowable number of in-flight packets. Observations occur
each time an ACK is received, and their effect is to update
Indigo’s internal state, defined below. Indigo adjusts its
congestion window every 10 ms. The state vector is:
1. An exponentially-weighted moving average (EWMA)

of the queuing delay, measured as the difference be-
tween the current RTT and the minimum RTT observed
during the current connection.

2. An EWMA of the sending rate, defined as the number
of bytes sent since the last ACK’ed packet was sent,
divided by the RTT.

3. An EWMA of the receiving rate, defined as the number
of bytes received since the ACK preceding the trans-
mission of the most recently ACK’ed packet, divided
by the corresponding duration (similar to and inspired
by TCP BBR’s delivery rate [7]).

4. The current congestion window size.
5. The previous action taken.

Indigo stores the mapping from states to actions in
a Long Short-Term Memory (LSTM) recurrent neural
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(a) Mexico to AWS California, 10 trials. P1272.
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(b) AWS Brazil to Colombia, 10 trials. P1439.

Figure 6: Real wired paths, single flow. Indigo’s performance is at the throughput/delay tradeoff frontier. Indigo without
calibrated emulators (“Indigo w/o calib”) gives worse performance.
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(a) India to AWS India, 10 trials. P1476. (b) Time-domain three-flow test. One trial in Figure 7a.

Figure 7: Real wired paths, multiple flows. Figure 7a shows the performance of all congestion-control schemes on
multi-flow case. Figure 7b shows throughput vs. time for a three-flow run in Figure 7a starting 10 seconds apart. Indigo
shares the bandwidth fairly.

network [21] with 1 layer of 32 hidden units (values cho-
sen after extensive evaluation on the Pantheon). Indigo
requires a training phase (described below) in which,
roughly speaking, it learns a mapping from states to ac-
tions. Once trained and deployed, this mapping is fixed.

We note that there may be better parameter choices:
number of hidden units, action space, state contents, etc.
We have found that the above choices already achieve
good performance; further improvements are future work.
As one step toward validating our choices, we trained and
tested several versions of Indigo with a range of hidden
units, from 1 to 256, on an emulated network; choices
between 16 and 128 yielded good performance.

Indigo’s training phase. Indigo uses imitation learn-
ing [3, 34] to train its neural network. At a high level,
this happens in two steps: first, we generate one or more
congestion-control oracles, idealized algorithms that per-
fectly map states to correct actions, corresponding to links
on which Indigo is to be trained. Then we apply a stan-
dard imitation learning algorithm that use these oracles to

generate training data.
Of course, no oracle exists for real-world paths. Instead,

we generate oracles corresponding to emulated paths; this
is possible because Pantheon’s emulators (§5) have few
parameters. By the definition of an oracle, if we know the
ideal congestion window for a given link, we have the
oracle for the link: for any state, output whichever action
results in a congestion window closest to the ideal value.

A key insight is that for emulated links, we can very
closely approximate the ideal congestion window. For
simple links with a fixed bandwidth and minimum one-
way delay, the ideal window is given by the link’s
bandwidth-delay product (BDP) per flow. For calibrated
emulators (which have DropTail queues, losses, etc.), we
compute the BDP and then search near this value in emu-
lation to find the best fixed congestion window size.

After generating congestion-control oracles corre-
sponding to each training link, we use a state-of-the-art
imitation learning algorithm called DAgger [34] to train
the neural network. For each training link, DAgger trains
Indigo’s neural network as follows: first, it allows the
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neural network to make a sequence of congestion-control
decisions on the training link’s emulator, recording the
state vector that led to each decision. Next, it uses the
congestion-control oracle to label the correct action corre-
sponding to each recorded state vector. Finally, it updates
the neural network by using the resulting state-action map-
ping as training data. This process is repeated until further
training does not change the neural network.
Indigo’s performance. In this section, we compare In-
digo’s performance with that of other congestion-control
schemes, and we evaluate the effect of Pantheon’s cali-
brated emulators on performance, versus only training on
fixed-bandwidth, fixed-delay emulators.

We trained Indigo on 24 synthetic emulators uncorre-
lated to Pantheon’s real network paths, and on the cali-
brated emulators (§5). The synthetic emulators comprise
all combinations of (5, 10, 20, 50, 100, and 200 Mbps)
link rate and (10, 20, 40, 80 ms) minimum one-way delay,
with infinite buffers and no loss.
Indigo on Pantheon. We find that Indigo consistently
achieves good performance. Figure 6 compares Indigo to
other schemes in single flow on two wired paths. In both
cases, Indigo is at the throughput/delay tradeoff frontier.

Figure 7 shows Indigo’s performance in the multi-flow
case. Figure 7a shows the performance of all of Pan-
theon’s congestion-control schemes on a wired path from
India to AWS India; Indigo is once again on the through-
put/delay tradeoff frontier. Figure 7b is a time-domain
plot of one trial from Figure 7a, suggesting that Indigo
shares fairly, at least in some cases.
Benefit of calibrated emulators. Figures 6 and 7 also
depict a variant of Indigo, “Indigo w/o calib,” that is only
trained on the synthetic emulators, but not the calibrated
emulators. The version trained on calibrated emulators is
always as least as good or better.

7 Discussion, limitations, and future work

Improving Pantheon. Pantheon would be more useful if
it collected more data about congestion-control schemes.
For instance, Pantheon currently gathers data only from
a handful of nodes—vastly smaller than the evaluations
large-scale operators can perform on even a small fraction
of a billion-user population.

Moreover, geographic locality does not guarantee net-
work path similarity: two nodes in the same city can
have dramatically different network connections. Pan-
theon also only tests congestion-control schemes at full
throttle; other traffic patterns (e.g., Web-like workloads)
may provide researchers with valuable information (e.g.,
how their scheme affects page-load times).

Finally, Pantheon currently measures the interaction
between multiple flows of cross-traffic governed by the

same scheme, but we are working to make it measure
interactions between different schemes. These measure-
ments will help evaluate fairness in the real world.

Improving the calibrated emulators. Our current emu-
lators replicate throughput and delay metrics only within
17% accuracy on average. An open question is whether
we can improve emulator fidelity—especially on cellular
paths—without risk of overfitting. Considering metrics
other than 95th-percentile delay and mean throughput
may be one path forward. Adding more schemes to Pan-
theon could also help—or it might reveal that the current
set of emulator parameters, which we have empirically
determined, is insufficient for some schemes.

Indigo. We have presented a case study on Indigo, a data-
driven approach to congestion-control design that cru-
cially relies on Pantheon’s family of emulators. Indigo’s
trained model is complex and may have unknown failure
modes, but the results to date demonstrate how Pantheon
can enable new approaches to protocol design.

8 Conclusion

The Pantheon is a collection of transport protocols and
a distributed system of measurement points and network
emulators for evaluating and developing them. By measur-
ing many transport protocols and congestion-control al-
gorithms across a diverse set of paths, Pantheon provides
a training ground for studying and improving their perfor-
mance. Furthermore, by generating calibrated emulators
that match real-world paths, Pantheon enables researchers
to measure protocols reproducibly and accurately.

Pantheon has assisted in the development of two
recently-published congestion-control algorithms [2, 13],
and has supported our own data-driven approach to proto-
col design. In other areas of computer science, community
benchmarks and recurrent bakeoffs have fueled advances
and motivated researchers to build on each others’ work:
ImageNet in computer vision, the TPC family and Sort
Benchmarks for data processing, Kaggle competitions in
machine learning, etc. We are hopeful that Pantheon will,
over time, serve a similar role in computer networking.
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ClickNF: a Modular Stack for Custom Network Functions

Massimo Gallo and Rafael Laufer
Nokia Bell Labs

Abstract

Network function virtualization has recently allowed
specialized equipment to be replaced with equivalent
software implementation. The Click router was a first
step in this direction, defining a modular platform for
generalized packet processing. Despite its major impact,
however, Click does not provides native L4 implementa-
tion and only uses nonblocking I/O, limiting its scope to
L2-L3 network functions. To overcome these limitations
we introduce ClickNF, which provides modular trans-
port and application-layer building blocks for the devel-
opment of middleboxes and server-side network func-
tions. We evaluate ClickNF to highlight its state-of-the-
art performance and showcase its modularity by compos-
ing complex functions from simple elements. ClickNF is
open source and publicly available.

1 Introduction

Software-defined networking had a significant impact on
the packet forwarding infrastructure, providing flexibil-
ity and controllability to network and datacenter opera-
tors [37]. In a similar trend, network function virtual-
ization (NFV) is sparking novel approaches for deploy-
ing flexible network functions [19], ranging from virtual
machine orchestration [24, 36, 34] to new packet pro-
cessing frameworks [8, 40]. Network functions can com-
bine packet forwarding and simple header rewriting with
awareness of stateful transport logic, and possibly exe-
cute complex application-layer operations.

A modular L2–L7 data plane would offer several ad-
vantages for the development of new network functions,
such as decoupling state and packet processing, exten-
sibility of fine-grained protocol behavior, module reuse,
and a simplification of cross-layer protocol optimizations
and debugging. Among existing approaches, Click [29]
is arguably the best starting point for such an architecture
due to its modularity and extensibility. However, several

functionalities are still missing to make Click into a full-
stack modular data plane for network functions. First, it
lacks L4 native implementation, preventing cross-layer
optimizations and stack customization. Second, it has
no support for blocking I/O primitives, forcing develop-
ers to use more complex asynchronous non-blocking I/O.
Third, Click applications must resort to the OS stack,
which leads to severe I/O bottlenecks. Finally, despite
recent improvements, Click does not support hardware
offloading and efficient timer management preventing it
to scale at high-speed in particular scenarios.

In this paper we introduce ClickNF, a framework that
overcomes the aforementioned limitations and enables
L2–L7 modular network function development in Click.
Along with legacy Click elements, ClickNF enables de-
velopers to overhaul the entire network stack, if desired.
First, it introduces a modular TCP implementation that
supports options, congestion control, and RTT estima-
tion. Second, it introduces blocking I/O support, pro-
viding applications with the illusion of running uninter-
rupted. Third, it exposes standard socket, zero-copy,
and socket multiplexing APIs as well as basic applica-
tion layer building blocks. Finally, to improve scalabil-
ity, ClickNF integrates I/O acceleration techniques first
introduced in Fastclick [9], such as Data Plane Develop-
ment Kit (DPDK) [33] and batch processing with addi-
tional support for hardware acceleration, as well as an
improved timer management system for Click.

ClickNF can be used to deploy a vast class of net-
work functions. For middleboxes, TCP termination is
needed for Split TCP, L7 firewalls, TLS/SSL proxies,
HTTP caches, etc. At the network edge, ClickNF can
be used to implement high-speed modular L7 servers us-
ing socket multiplexing primitives to handle I/O events
efficiently. As proof of concept, we compose an HTTP
cache server with optional SSL/TLS termination and a
SOCKS4 proxy. We show that ClickNF provides equiv-
alent performance and scalability as existing user-space
stacks while enabling L2–L7 modularity.
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The paper is organized as follows. Section 2 describes
ClickNF design. Section 3 details our TCP implemen-
tation in Click and Section 4 presents application layer
modularity. Section 5 highlights a number of original
aspects about the ClickNF implementation that are eval-
uated in Section 6. Section 7 reviews the related work
and Section 8 concludes the paper.

2 ClickNF

ClickNF leverages Click [29], a software architecture for
building modular and extensible routers. Before intro-
ducing its design, we first provide an overview of Click.

2.1 Background
A router in Click is built from a set of fine-grained
packet processing modules, elements, implementing sim-
ple functions (e.g., IP routing). A configuration file
connects these elements together into a directed graph,
whose edges specify the path that packets shall traverse.
Depending on the configuration, users can implement
network functions of arbitrary complexity (e.g., switch).

Each element may define any number of input and out-
put ports to connect to other elements. Ports operate in
either push or pull mode. On a push connection, the
packet starts at the source element and moves to the des-
tination element downstream. On a pull connection, in
contrast, the destination element requests a packet from
the upstream one, which returns a packet if available or a
null pointer otherwise. In addition to push or pull, a port
may also be agnostic and behave as either push or pull
depending on the port it is connected to.

In its underlying implementation, Click employs a task
queue and a timer priority queue. An infinite loop runs
tasks in sequence and timers at expiration. Tasks are
element-defined functions that require CPU scheduling,
and initiate a sequence of push or pull requests. Most ele-
ments, however, do not require their own task, since their
push and pull methods are called by a scheduled task.
Timer callback functions are similar to tasks, except for
being scheduled at a particular time.

2.2 Design
Network protocol stacks are typically implemented as
monolithic packages, either in kernel or user-space. Net-
work function developers often experience hurdles when
attempting to debug and customize their software to ob-
tain the desired effects, as the inner workings of the
stacks are not exposed. Indeed, recent work [22, 17, 39,
38] advocates that legacy network stacks prevent inno-
vation due to the lack of flexibility and propose to move
some of their functionalities outside of the data path.

Modular Ethernet/IP

Modular TCP

Socket API

Modular App

Packet I/O

Ethernet /IP/TCP

Socket API

NIC rings

RegularApp

NIC,
Drivers

User

Kernel

RegularApp

NIC rings NIC rings

Packet I/O

copy DMA DMA

Kernel space 
stack

User space 
stack

ClickNF
stack

Packet I/O

Ethernet /IP/TCP

Socket API

copy

Figure 1: ClickNF design compared to alternatives.

Modular, configurable, and extensible transport proto-
cols were proposed in the past by the research commu-
nity [16, 13] and by the Linux kernel one [1] constituting
a first step in the right direction. Our goal, is along the
same lines but broader. ClickNF aims to give develop-
ers unfettered access to the entire stack by providing a
framework for the construction of modular L2-L7 net-
work functions without the concerns for the correctness
of its behavior nor the constraints added by event-driven
domain-specific APIs [26].

The design of ClickNF combines the modularity
and flexibility of Click with high-speed packet I/O
and ready-made protocol building blocks for trans-
port and application-layer features. Figure 1 com-
pares ClickNF design against legacy OSs and user space
stacks. In contrast with other approaches that con-
ceal network stack complexity into a monolithic pack-
age or does not introduce modularity at all layers, we
decompose the full L2–L7 stack into several simple el-
ements that can be individually replaced, modified or
removed by rewiring the configuration file, providing a
level of flexibility that is not available with alternative
solutions. Additionally, elements can be aggregated into
a single macro-element to hide complexity when desired.
The rationale behind this fine-grained decomposition is
twofold. First, simple elements allow the modification
and control of each aspect and mechanism of network
protocols. This enables module reuse in other contexts,
such as recycling existing congestion control strategies to
implement new protocols like QUIC [30], or new strate-
gies such as BBR [14] or DCTCP [6] with little effort.
Second, this approach helps decoupling protocol state
management and packet processing, simplifying compli-
cated tasks such as full state migration between servers
or across heterogeneous hardware (e.g., between CPUs
and smart NICs).

In the rest of the paper we focus on the description
and evaluation of ClickNF transport and application lay-
ers, and on some important implementation details that
allows ClickNF to sustain line-rate.
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Figure 2: cTCP configuration for incoming network packets.

3 Click TCP

Our modular Click TCP (cTCP) implementation is com-
pliant with IETF standards (RFCs 793 and 1122) and
supports TCP options (RFC 7323), New Reno conges-
tion control (RFCs 5681 and 6582), timer management,
and RTT estimation (RFC 6298). In this section we de-
scribe the cTCP element graphs used to process incom-
ing and outgoing TCP packets.

3.1 Incoming packets
The key element of cTCP is TCPInfo, which enables
state decoupling by providing other elements with access
to important data structures (i.e., TCP Control Block).
Figure 2 shows the cTCP element graph for processing

incoming packets. In essence, elements access and/or
modify the TCP control block (TCB) via the TCPInfo, as
the packet moves along the edges of the graph. The ver-
tical paths are the directions that most received packets
take. The long element sequence on the left represents
the packet processing of an established TCP connection.
The three other paths to the right take care of special sit-
uations, such as connection establishment and termina-
tion. Other paths in the graph represent a disruption in
the expected packet flow, e.g., TCPCheckSeqNo sends
an ACK back if the data is outside the receive window.

Most elements in cTCP only require the TCB to pro-
cess packets. For instance, TCPTrimPacket trims off any
out-of-window data from the packet. TCPReordering en-
forces in-order delivery by buffering out-of-order pack-
ets and releasing them in sequence once the gap is filled.
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Elements like TCPProcess{Rst, Syn, Ack, Fin} inspect
the respective TCP flags and react accordingly. In pres-
ence of new data, TCPProcessData clones the packet
(i.e., only packet’s metadata are copied) and places it
on the RX queue for the application. After receiving
three duplicate ACKs, TCPNewRenoAck retransmits the
first unacknowledged packet. Related elements, such as
TCPNewRenoSyn and TCPNewRenoRTX, handle initial-
ization and retransmissions in congestion control.

In addition to the TCB, other cTCP elements re-
quire information previously computed by other ele-
ments. This is supported in Click via packet annotations,
i.e., packet metadata. cTCP packet annotations include:
TCB pointer: The TCB table is stored as a per-core hash
table in TCPInfo and accessed by other elements using
static functions. For each packet, TCPFlowLookup looks
the TCP flow up in the table and sets the TCB annotation
to allow other elements to easily access/modify the TCB
avoiding multiple flow table lookups.
RTT measurement: TCPAckOptionsParse computes
the RTT from the TCP timestamp, Karn’s algorithm,
and sets it as an annotation. If TCP timestamps are not
provided by NICs or by packet I/O elements, TCPEn-
queue4RTX timestamps each transmitted packet before
storing it in the retransmission (RTX) queue. In both
cases, TCPEstimateRTT uses these annotations to esti-
mate the RTT and update the retransmission timeout.
Acknowledged bytes: TCPProcessAck computes the
number of acknowledged bytes in each packet and sets it
as an annotation. This is later read by TCPNewRenoAck
to increase the congestion window. If this number is zero
and a few other conditions hold (e.g., the receive window
is unchanged), the packet is considered a duplicate ACK
and may trigger a fast retransmission.
Flags: TCP flags are used to indicate certain actions to
other elements. For instance, TCPProcessData sets a
flag when the received packet has new data. TCPAckRe-
quired then checks this flag and, if set, pushes the packet
out to trigger an ACK transmission.

3.2 Outgoing packets

Figure 3 shows the cTCP element graph for processing
outgoing packets. Applications send data using socket
or zero-copy APIs (Section 3.3) that invoke static func-
tions in TCPSocket. For each socket call, this element
looks up the socket file descriptor in a per-core socket
table in TCPInfo. For transmissions, TCPNagle first
checks if the packet should be sent according to Na-
gle’s algorithm. TCPRateControl then verifies whether
send and congestion windows allow packet transmis-
sion. If so, TCPSegmentation breaks the data up into
MTU-sized packets, and TCPAckOptionEncap, TCPAck-
Encap, and TCPIPEncap prepend TCP and IP header re-

to Applicationsfrom Applications
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TCPAckOptionsEncap

TCPNagle

TCPAckOptionsEncapTCPSynOptionsEncap

TCPSynEncap TCPFinEncap

TCPRateControl

TCPAckEncap

TCPSegmentation

to Network

TCPEnqueue4RTX

SetTCPChecksum

SetIPChecksum

TCPIPEncap

connect() close() push()
TCPInfo

Figure 3: cTCP configuration for outgoing packets.

spectively. Before sending it to lower layers, TCPEn-
queue4RTX clones the packet and saves it in the re-
transmission queue until acknowledged by the other end.
To initiate a TCP connection, TCPSynOptionEncap and
TCPSynEncap generate the TCP options and header and
forward the packet downstream. Similarly, to terminate
the connection, TCPAckOptionEncap and TCPFinEncap
form a TCP packet with the FIN flag set.

3.3 Transport APIs
cTCP APIs are designed with two contrasting objectives
in mind: (i) minimize the efforts required to port appli-
cation logic in ClickNF; and (ii) provide primitives to
guarantee high performance at the cost of more complex
development. We therefore provide two APIs to interact
with the ClickNF transport layer, and one for socket I/O
multiplexing.

Socket API: For each socket system call (e.g.,
send), cTCP provides a corresponding function (e.g.,
click send) for both blocking or non-blocking mode.
As in Linux, the operation mode is set on a per-socket
basis using the SOCK NONBLOCK flag. In case of blocking
sockets, the application is blocked when waiting on I/O;
in case of non-blocking sockets, the socket calls return
immediately.
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Zero-copy interface: In addition to standard Socket
API, cTCP provides click push and click pull func-
tions to enable zero-copy operations. For transmissions,
applications first allocate a packet and write data to it be-
fore pushing it down. cTCP then adds the protocol head-
ers and transmits the packet(s) to the NIC. For receptions,
packets are accessed, processed, and placed into the RX
queue of applications. To amortize per-packet overhead,
both functions can also send and receive batches, and op-
erate in either blocking or non-blocking mode.

Socket I/O multiplexing: To avoid busy-waiting on I/O,
cTCP provides a click poll and a click epoll wait

functions to multiplex events from several socket file
descriptors. As in the regular epoll API provided by
Linux kernel, applications must first register the moni-
tored socket file descriptors with click epoll ctl and
then use click epoll wait to wait on I/O.

3.4 Timer Management
In Click, timers corresponds to tasks scheduled at a given
time in the future. TCP timers are used for retransmis-
sions, keepalive messages, and delayed ACKs. Their
implementation in cTCP is critical for performance and
scalability reasons. Figure 4 shows cTCP timers’ config-
uration. After a retransmission timeout task is scheduled,
TCPTimer dequeues the head-of-line packet from the
RTX queue and pushes it out. TCPUpdateTimestamp,
TCPUpdateWindow, and TCPUpdateAckNo update the
respective TCP header fields. Similarly when a keepalive
timeout expires, TCPTimer pushes an empty packet, and
TCPAckOptionsEncap, TCPAckEncap generate the TCP
header of a regular ACK packet. DecTCPSeqNo then
decrements the TCP sequence number to trigger an ACK
back from the other host. Finally, delayed ACKs are sent
for every pair of received data packets unless a 500 ms
timeout elapses. In this case, a regular ACK is sent using
the modules described above.

3.5 Customization and Element Reuse
cTCP modularity enables code reuse and fine-grained
customization of the network stack. For instance, TCP
reliability can be disabled by simply removing TCPEn-
queue4RTX from the configuration file. In this section,
we present concrete examples to showcase the benefits
of our modular TCP implementation.

Building a traffic generator that emulates several TCP
flows concurrently sending at a constant rate is straight-
forward with ClickNF elements. The TCPInfo ele-
ment is inserted in the configuration file and initialized
with the corresponding TCBs. Data packets are gener-
ated and shaped at a constant rate by regular Click ele-
ments, InfiniteSource and Shaper, and then forwarded to

TCPAckEncap TCPAckEncap

TCPAckOptionsEncap TCPAckOptionsEncap

DecTCPSeqNo

TCPIPEncap

TCPTimer
Delayed ACKData RTX Keepalive

TCPNewRenoRTX

TCPUpdateTimestamp

TCPIPEncap

to Network

SetTCPChecksum

SetIPChecksum

TCPUpdateWindow

TCPUpdateAckNo

Figure 4: cTCP configuration for TCP timers.

a new element, TCBSelector, that randomly associates
the packet to an existing TCB using ClickNF annota-
tions. Afterwards, packets go through ClickNF elements
such as TCPAckEncap, TCPIPEncap (plus optionally
SetTCPChecksum, SetIPChecksum) to fill IP and TCP
headers before being forwarded to an I/O element.

Moreover, per-flow congestion control can be used
to ensure that specific traffic classes are processed us-
ing appropriate algorithms. Implementing such a fea-
ture in a monolithic OS network stack (e.g., Linux kernel
one) is, however, quite complicated. Due to its modu-
larity, ClickNF allows the definition of per-flow conges-
tion control by simply inserting a Classifier element that
modifies the behavior of cTCP for specific flows.

Finally, changing TCP New Reno to match data center
TCP (DCTCP) [6] is as simple as adding a new DCTCP-
ProcessECN element right after TCPProcessAck (Fig-
ure 2). This element modifies the TCP window behavior
in presence of explicit congestion notification. Similarly,
the introduction of a new congestion control algorithm,
such as BBR [14], requires the development of few addi-
tional elements of low complexity.

4 Modular application

ClickNF enables the development of modular applica-
tions on top of cTCP. L7 network functions can be imple-
mented using several flow-oriented elements, enabling
the programmer to decouple packet processing from ap-
plication state management logic. To do so, ClickNF
separates network and application execution contexts in
order to allow applications to block their execution when
waiting for I/O operations. ClickNF also provides two
fundamental building blocks, i.e., socket I/O multiplex-
ing and SSL/TLS termination elements, that enable rapid
composition of complex and customized L7 functions.
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Figure 5: Context switch: TCPProcessData reschedules
a blocked task waiting on I/O.

4.1 Blocking Tasks
ClickNF implements blocking I/O to provide develop-
ers with a broader range of I/O options. In Click, tasks
are element-defined functions that require frequent CPU
scheduling, and initiate a sequence of packet process-
ing in the configuration graph. We introduce the con-
cept of blocking tasks, which can yield the CPU if a
given condition does not hold, e.g., an I/O request can-
not be promptly completed. When rescheduled, the task
resumes exactly where it left off, providing applications
with an illusion of continuous execution. Blocking tasks
are backward compatible with regular tasks, and require
no modifications to the Click task scheduler.

Context switching between tasks is light-weight, sav-
ing and restoring registers required for task execution.
ClickNF uses low-level functions to save and restore
the tasks context, just as in POSIX threads. Differently
than POSIX threads, however, ClickNF has access to the
Click task scheduler and relies on cooperative, as op-
posed to preemptive, scheduling. ClickNF uses the Boost
library to perform context switches in a handful of CPU
cycles, i.e., ≈20 cycles in x86 64 (few nanoseconds).

4.2 Network and Application Contexts
ClickNF uses blocking tasks to separate network and ap-
plication execution contexts. The network context is ac-
tive during packet reception (cf. Figure 3) and timeouts
(cf. Figure 4), and runs through regular Click tasks. The
application context, in contrast, is active during applica-
tion processing and packet transmission (cf. Figure 2)
and runs through blocking tasks.

A blocked application is scheduled when the event it is
waiting on occurs, e.g., a task blocked on accept . Fig-
ure 5 presents an example of an application task being
rescheduled by an event. In the example, Application-
Server calls epoll wait to monitor a group of active file
descriptors. Since no one is ready to perform I/O, it calls
yield to save the current context and unschedule the
task. Later on, when a data packet is received, TCPPro-
cessData checks if the application task is waiting for data
packets and calls wake up to reschedule it. The event is
then inserted into a per-core event queue that stores the
events that occurred for the sockets monitored by Ap-

TCPSocket

TCPEpollServer

SSLServer

EchoServer

Figure 6: Configuration graph of a modular echo server
in ClickNF that uses SSL/TLS encryption.

plicationServer (i.e.,different applications have separate
event queues). When the application task is executed, to
amortize the cost of the context switch, a batch of events
is handled before the network context is re-scheduled.

In ClickNF we specify a list of events needed to man-
age cTCP states and error conditions. For instance,
events are generated when the accept queue becomes
non-empty, or when the connection is established to
wake up application tasks waiting on these conditions.
Similarly, events are also generated when the TX queue
becomes non-full, the RX queue becomes non-empty,
and also when the RTX queue becomes empty. Other
events signal that the remote peer wants to close the con-
nection, the connection was closed, or an error occurred
(e.g., a reset or timeout). Despite this fine grain event
characterization, to remain compliant with the original
epoll API, we map cTCP events to standard EPOLLIN,
EPOLLOUT, and EPOLLERR events.

4.3 Application Building Blocks
To simplify application-level programming and promote
code reuse, ClickNF provides four building blocks useful
for practically relevant network functions. Such build-
ing blocks exchange control information with application
layer elements using packet annotations. In this way, ap-
plication elements are informed about the socket file de-
scriptor to which the packets belongs and about new or
closed connections. This allows them to efficiently mul-
tiplex data between different applications and multiple
sockets in both directions.

The first application-layer building block, TCPE-
pollServer, implements an epoll server concealing the
complexity of cTCP event handling and can be used to
rapidly implement server-side network functions. Sim-
ilarly, TCPEpollClient implements an epoll client to
multiplex outgoing connections. Finally, SSLServer
and SSLClient provide SSL/TLS encryption through the
OpenSSL library, and may be used to implement network
function that require end-to-end encryption. Application
data enters in an input port of SSLServer as plaintext and
leaves its output port as ciphertext; received packets take
the reverse path to decrypt ciphertext into plaintext.
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Figure 6 shows an echo server using SSL/TLS encryp-
tion as a straightforward example of a modular appli-
cation assembled from ClickNF building blocks. Upon
reception at TCPEpollServer, packets are decrypted by
SSLServer and forwarded upstream. EchoServer is a
stateless application that simply redirects the received
data back to the client. On the way back, SSLServer
encrypts the data and forwards it downstream to TCPE-
pollServer. This simple example shows how ClickNF
enables a large number of possibilities for customizing
the entire network stack of an application since any of
its building blocks can be easily disabled or rewired. For
instance, the echo server in Figure 6 can easily disable
SSL/TLS for selected flows by introducing a classifier el-
ement into the configuration graph, without any change
to the element that implements the application logic.

5 Implementation

ClickNF benefits from several improvements that the
Click codebase received over time, such as fast packet
I/O and multicore, besides introducing a brand new timer
subsystem that copes with the scaling requirements of
TCP support. This section highlights some notable tech-
nical details that characterize ClickNF implementation.

5.1 Packet I/O

Similarly to Fastclick [9], ClickNF provides fast packet
I/O by using DPDK [33] to directly interface with net-
work cards from user space. For packet reception, the
DPDK element continuously poll the NIC to fetch re-
ceived packet batches. In order to amortize the PCIe
overhead, the DPDK element waits for a batch of 64
packets before transmitting them. To avoid head-of-line
blocking and reduce latency, batches are transmitted after
at most 100 µs. When needed, ClickNF performs batch
processing (i.e., Click elements process packet batches
– implemented through packets’ linked lists – instead
of single packets) to optimize CPU cache performance.
Also in this case, a batch is forwarded downstream after
100 µs even if it is not complete.

As in Fastclick, we modify the Click packet data struc-
ture to be a wrapper around a DPDK memory buffer
(mbuf) to avoid additional memory allocation and copy
operations. Each packet has a fixed size of 8 KB and con-
sists of four sections, namely, the mbuf structure itself,
packet annotations, headroom, and data. DPDK uses the
mbuf for packet I/O whereas ClickNF uses annotations
to store packet metadata (e.g., header pointers) and the
headroom space to allow elements to prepend headers.
Applications allocate a packet by filling only the data
portion before pushing the packet down to lower layers.

Notice that, differently form Fastclick, we use a single
element for both input and output operations in order to
simplify the configuration. Moreover, ClickNF can also
leverage common NIC features to perform flow control,
TCP/IP checksum offloading, TCP segmentation (TSO),
and large receive offloading (LRO) using hardware accel-
eration. Flow control prevents buffer overflows by slow-
ing down transmitters when the RX buffer in the NIC be-
comes full. TCP/IP checksum offloading allows the NIC
to compute header checksums in hardware. TSO seg-
ments a large packet into MTU-sized packets, whereas
LRO aggregates multiple received packets into a large
TCP segment before dispatching it to higher layers. All
of these features can be toggled in ClickNF at run-time.

5.2 Multicore Scalability
Multithreading is implemented to exploit the process-
ing power in multicore CPUs and improve scalability.
We design per-core lock-free data structures aiming for
high performance. Each core maintains dedicated packet
pools, timers, transport, and application layer data struc-
tures. Receive Side Scaling (RSS) is used to distribute
packets to different cores according to their flow identi-
fier, i.e., flow 5-tuple. Each DPDK thread is pinned to a
CPU core and provided with a TX and a RX hardware
queue at the NIC, preserving flow-level core affinity.

To avoid low-level CPU synchronization primitives
each core maintains separate cache-aligned data struc-
tures. In case of multi-connection dependency, such as
a proxy server establishing a connection on behalf of a
client, the source port of the new outgoing connection is
selected such that RSS maps it to the same core of the
original connection, thus avoiding locks at the applica-
tion level. Finally, each application-layer network func-
tion is spawned on multiple cores so that flows directed
can be handled entirely on a specific core.

5.3 Timer Subsystem
Click implements its timer subsystem using a priority
queue in which the root node stores the timer closer to
expire. Given that TCP timers are often canceled be-
fore expiration, we implement a timing wheel sched-
uler for efficiency [47]. Its key advantage is that timing
wheels schedule and cancel timers in O(1), as opposed
to O(logn) in priority queues currently used in Click.

A timing wheel is composed of n buckets, an index b,
a timestamp t, and a tick granularity g (e.g., 1 ms). The
timestamp t keeps the current time and the index b, points
to its corresponding bucket. Each bucket contains timers
expiring in the future, such that bucket b contains timers
expiring within [t, t +g), and so on. To schedule a timer,
we must first find its corresponding bucket. For an ex-
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piration time e in the interval t ≤ e < t + ng, its bucket
index is computed as b(e− t)/gc. Each bucket contains a
doubly linked list to store the timers expiring within the
same interval. Therefore, once the index is computed, the
timer is inserted at the end of the list of the bucket. To
cancel a timer, the timer is just removed from the doubly
linked list. Both operations are done in O(1) with simple
modulo operation to compute the bucket index b.

6 Evaluation

In this section, we evaluate ClickNF with three goals: (i)
evaluate its performance through a series of microbench-
marks; (ii) compare it against Linux and state-of-the-
art user space stacks; and (iii) showcase the usage of
ClickNF and its performance when building network
functions. Our evaluation setup consists of 3 machines
with Intel Xeon R© 40-core E5-2660 v3 2.60GHz pro-
cessors, 64 GB RAM, each equipped with an Intel R©

82599ES network card containing two 10 GbE inter-
faces. The machines run Ubuntu 16.10 (GNU/Linux
4.4.0-51-generic x86 64), Click 2.1, and DPDK 17.02.

6.1 Microbenchmarks
We start by analyzing individual aspects of our system
using microbenchmarks, including packet I/O through-
put, the cost of modularity, and the impact of hardware
offloading. We then evaluate two applications, namely
bulk transfer and echo server, to understand the system
performance in common scenarios. Unless otherwise
specified, the experiments presented in this section are
performed on single-core ClickNF instances.
Packet I/O and the cost of modularity: To evaluate the
throughput of our DPDK element, we run a set of tests
with the DPDK traffic generator (DPDK-TG) [25] on one
side and ClickNF on the other one. For ClickNF, we use
four configurations that respectively generate and imme-
diately discard (no I/O), receive (RX), forward (FW), and
transmit (TX) 64-byte packets. Finally, we evaluate the
cost of modularity by adding PushNull elements that re-
ceive packets on the input port and send them on the out-
put port without doing anything else.

Figure 7 presents the average throughput for the differ-
ent scenarios with a series of PushNull elements. With-
out I/O, ClickNF throughput is limited by the CPU at 43
Mpps. Increasing the number of elements increases the
time spent by a packet inside the Click graph, consider-
ably reducing the system throughput. For the RX, FW,
and TX scenarios, the throughput is limited by the NIC
line rate at 14.88 Mpps. ClickNF is still able to sustain
the line rate with up to 15–20 PushNull elements. At this
point, the throughput is limited by CPU and decreases
further as more elements are placed in the configuration.
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Figure 7: Throughput with 64-byte packets and increas-
ing number of Click elements in different scenarios.

However, using packet batches between Click ele-
ments (Section 5.1) reduces the cost of modularity by
improving instruction and data cache utilization. Indeed,
when processing batches instead of single packets we ex-
perimentally evaluate that ClickNF to sustain line rate
with up to 150 PushNull elements in RX, TX, and FW
configurations. In ClickNF we adopt batch processing
with batches of 32 packets to improve performance.

Checksum offloading: To evaluate hardware check-
sum offloading in our DPDK module, we measure
the throughput using software or hardware checksum
computation-verification. As in the previous tests, we
run the DPDK-TG on one side and ClickNF on the other.
We then use two different configurations for transmitting
(TX) and receiving (RX) packets belonging to a single
TCP flow. For transmissions, ClickNF computes header
checksums before transmitting the packets to the traffic
generator. For receptions, ClickNF verifies whether the
checksums are correct before discarding the packet. Both
operations are performed in hardware or in software.

Figure 8a shows the results for TX and RX with in-
creasing payload size (6–128 bytes). As expected, of-
floading checksum verification provides significant per-
formance benefits and allows ClickNF to sustain line rate
even when receiving small packets. Surprisingly, TX
checksum computation in software is significantly bet-
ter than in hardware. This is because modern CPUs are
very efficient when performing sequential operations on
cached memory, and sometimes even faster than dedi-
cated hardware. However, as we see in the next experi-
ments, this only holds because the CPU is underloaded.

Bulk transfer: To validate ClickNF in a more realistic
scenario we execute a bulk transfer of a 20 GB file from a
client to a server. Moreover, we evaluate the performance
of TCP segment offloading (TSO) and large received of-
floading (LRO), as well as equivalent implementations in
software Click elements. For comparison, we use iperf
[4] running on top of Linux network.
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Figure 8: (a) TCP throughput with and without TCP/IP checksum offloading. (b) TCP goodput in a bulk transfer with
increasing TCP payload size. (c) TCP goodput in a bulk transfer with TSO and LRO enabled.
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Figure 9: Comparison between ClickNF and mTCP. (a)
Echo server message rate with increasing number of
cores. (b) RTT with increasing number of TCP clients.

Figure 8b shows the TCP goodput for increasing pay-
load sizes for ClickNF and Linux. For ClickNF, we
use the socket API with HW checksum computation-
verification (ClickNF-HW-CSUM), the zero-copy API
with either software checksum computation-verification
(ClickNF-ZC-SW-CSUM) or hardware checksum of-
floading (ClickNF-ZC-HW-CSUM). For Linux, we use
iperf for tests with hardware checksum enabled. ClickNF
significantly outperforms Linux and achieves line rate
for TCP payloads larger than 448 bytes when the packet
header overhead is smaller. For 64-byte payload, the
zero-copy API provides roughly 50% throughput im-
provement over the socket API. This occurs because,
with larger packets, the number of calls to memcopy and
recv decreases, limiting the advantage of zero copy. In
the following tests, we use the zero-copy API, as it de-
livers better performance with respect to the socket API.

Unlike what is observed in reception, TX checksum
offloading (ClickNF-ZC-HW-CSUM) provides signifi-
cant benefits with respect to software (ClickNF-ZC-SW-
CSUM). For computationally intensive workloads, TX
checksum offloading prevents the CPU from spending
precious cycles in checksum computation-verification.

Figure 8c presents the results with TSO and LRO en-
abled. ClickNF outperforms Linux, specially for small
payloads suggesting that the Linux stack is particularly
inefficient for small packets, as reported in [20, 35, 10].
ClickNF achieves line rate for TCP payloads larger than
128 bytes while Linux have similar performance with
TSO and LRO for TCP payloads larger than 192 bytes. In
the following, we always enable LRO and TSO to amor-
tize segmentation and reassembly cost.

Echo server: We also evaluate ClickNF in the presence
of short TCP connections and compare its performance
against mTCP [20], a user-space network stack with par-
ticular focus on performance and with similar goals to
ClickNF. To evaluate multicore scalability, we run an
echo server on top of both stacks. Clients running in
two separate 8-core ClickNF instances connect to the
server, send a 64-byte message, and wait for the echo re-
ply. When the client receives the message back, it resets
the connection to avoid port exhausting. The client then
repeats the operation and measures the message rate. To
provide a fair comparison against mTCP, we disable de-
layed ACKs that, when enabled, decrease the overhead
and increase the overall throughput. Figure 6 depicts the
configuration graph of the echo server used in this test,
except for the SSLServer element that is not included.

First we measure the rate obtained by ClickNF and
mTCP with a single core. ClickNF provides high
throughput, 0.5× 106 Msg/s, when using DPDK packet
I/O. Compared to legacy Click elements for packet I/O,
0.169 × 106 Msg/s, (i.e., using PCAP library linked
to FromDevice), ClickNF provides 4x higher through-
put. This shows how important kernel bypass is when
enabling zero-copy packet processing at user space.
Additionally, ClickNF outperforms mTCP, 0.415× 106

Msg/s, by approximately 20%.
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Figure 10: Average goodput of the ClickNF modular HTTP(S) cache server.
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Figure 11: Configuration graphs for an HTTP cache
server with SSL/TLS and for a SOCKS4 Proxy.

Figure 9a presents the message rate obtained with
ClickNF and with mTCP for increasing number of cores.
Despite its modularity, ClickNF provides equivalent per-
formance to mTCP up to 4 cores, and scales slower for
more cores. As observed earlier, modularity has a cost,
but can be amortized with packet batches. In this case,
Click elements receives packet batches instead of sin-
gle packets hence optimizing CPU instruction and data
cache usage. We enable batching in ClickNF for L2–L3
operations to avoid packet reordering issues at L4 and re-
peated the echo server experiment. Figure 9a shows that,
ClickNF outperforms mTCP and achieves line rate with
7 cores. Results with hyperthreading (not reported here)
show higher throughput, reducing the number of cores
required to saturate the link to 4.

Since ClickNF employs batching at all levels, the risk
is that RTT might be undesirably long. Figure 9b shows
the RTT experienced by ClickNF and mTCP in the sin-
gle core echo server test with increasing number of con-
curring clients. Due to the usage of batch timeouts, the
latency introduced with increasing number of clients is
limited and lower when compared to mTCP.

6.2 Modular Network Functions

To evaluate ClickNF performance and show the benefits
of its modularity, we build two sample applications.
HTTP(S) cache: Figure 11 depicts the configuration
graph used to deploy an HTTP cache server. Using the
basic building blocks provided by ClickNF, application
logic is implemented with three simple elements.

To evaluate the performance of our modular HTTP
cache server, we run tests with SSL/TLS termination us-
ing self-signed certificates for 1024- or 2048-byte RSA
keys. Clients running in two 8-core ClickNF instances
first connect to the server and then issue HTTP GET re-
quests for web pages of size 64–8192 bytes, stored in the
HTTP cache server’s main memory. The server responds
to the requests and then closes the TCP connection.

Figure 10a,10b presents the goodput of the ClickNF
HTTP cache server with and without SSL/TLS termi-
nation. With unencrypted HTTP traffic running on 10
cores (cf. Figure 10a), ClickNF achieves high goodput
for small HTTP pages, and scales linearly with bigger
page size. With SSL/TLS termination, the goodput drops
to a maximum of ≈ 1.6 Gbps for 1024-byte keys and
10 cores. This is due to the complexity of public-key
RSA cryptographic operations during SSL/TLS hand-
shake [15]. This overhead, however, can be alleviated
by delegating such operations to GPUs [27, 48].
SOCKS4 proxy: Socket Secure (SOCKS) is a proto-
col for enabling client-server communication through a
proxy. Starting from a basic SOCKS4 proxy implemen-
tation written in C, we built a modular SOCKS4 proxy
composed by three elements namely Socks4Proxy, and
ClickNF building blocks TCPEpollServer and TCPE-
pollClient. Figure 11 depicts the high-level configura-
tion graph for the proxy. Notice that, due to ClickNF
L7 modularity, the SOCKS4 proxy graph can be eas-
ily modified to introduce additional functions (e.g., fire-
wall, SSL encryption) right before the paths connecting
TCPEpollServer and Socks4Proxy.
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To evaluate the performance of our modular SOCKS4
proxy, we run a simple test similar to the one presented
for the HTTP cache. In this case, clients connect to the
SOCKS4 proxy which opens a new connection toward
the HTTP cache. Once the connection is established,
the client requests an HTTP page of fixed size and then
resets the connection. Figure 10c presents the goodput
of the ClickNF SOCKS4 proxy with increasing num-
ber of cores and variable HTTP body sizes. Similarly
to the HTTP cache experiment, when the HTTP mes-
sage is small the overhead (connection establishment and
SOCKS protocol) is significant and prevents the system
from achieving a higher goodput. For larger page sizes,
the overhead decreases and the proxy is able to achieve
close to line rate using just two CPU cores.

7 Related Work

Click [29] and its modular data plane have been im-
proved and extended in multiple directions over almost
two decades. For instance, Routebricks [18] parallelizes
routing functionality across and within software routers
building on top of Click to scale its performance. Re-
cently, Fastclick [9] introduced high-speed packet I/O
such as DPDK and netmap [33, 44] in Click.Moreover,
GPU offloading is also proposed in [28, 46] to in-
crease throughput beyond CPU capabilities. Similarly,
ClickNP [32] provides Click-like programming abstrac-
tions to enable the construction of FPGA-accelerated
network functions. ClickNF is orthogonal to such ex-
tensions and enables the modular composition of L2–L7
stacks, bridging Click’s L2-L3 packet processing with L4
flow processing and L7 modular applications.

Click inspired other modular network function frame-
works [8, 12, 40]. These systems mainly focus on con-
trol plane operations, such as data plane element place-
ment, network function scaling, and traffic steering. For
the data plane, FlowOS [11] is proposed as a middle-
box platform that enables flow processing, but without
TCP support. CoMb [45] and xOMB [7] use Click to
consolidate middleboxes through the composition of dif-
ferent L7 elements. Both rely on the OS for packet I/O
and transport layer, reducing customization and perfor-
mance. Frameworks to enable stack customization of
L2–L7 are proposed in [42, 26]. In [42], authors in-
troduce an overview of the control and data planes of
a modular architecture, with focus on hardware accelera-
tion. In [26], the design of a modular middlebox platform
based on mTCP [20] is presented. Instead of redesign-
ing a framework with Click-like abstractions and/or pro-
viding new event-driven domain-specific APIs, ClickNF
introduces L2–L7 modularity in Click to expose and ex-
ploit its modularity, as well as benefiting from existing
Click extensions and contributions by the community.

Network stacks were proposed to overcome the I/O in-
efficiencies of OS [10, 43, 20, 35, 23, 49, 16]. IX [10]
separates the control plane and data plane processing.
Arrakis [43] is a customized OS that provide applica-
tions with direct access to I/O devices, allowing kernel
bypass for I/O operations. mTCP [20] is a user-level
TCP implementation proposed for multicore systems. It
provides a socket API for application development sup-
porting L2–L4 zero copy. In a different spirit, Stackmap
[49] provides packet I/O acceleration to TCP kernel im-
plementation obtaining better performance compared to
Linux TCP. Sandstorm [35] proposes a specialized net-
work stack with zero-copy APIs merging application and
network logics. Similarly to ClickNF, Modnet [41] has a
modular approach for providing customizable network-
ing stack, but modularity is limited to L2–L4. Few other
efforts [3, 5, 2, 16, 13] also provide efficient, sometimes
modular, networking stacks but cannot completely bene-
fit of L2–L7 modularity provided by ClickNF.

Our previous workshop paper [31] focused on pro-
viding an initial architecture for a modular TCP imple-
mentation in Click. ClickNF extends it in several direc-
tions. For instance, ClickNF takes advantage of hard-
ware offloading, multicore scalability, timing wheels,
and an epoll-based API to improve performance. Appli-
cation level modularity and SSL/TLS termination pro-
vide building blocks for novel network functions to be
deployed with little effort. We hereby propose a more
comprehensive picture of ClickNF’s performance, flexi-
bility, and ease of use.

8 Conclusions

The advent of NFV gives us a different perspective on
the way application servers and middleboxes can be im-
plemented. ClickNF enables the composition of high-
performance network functions at all layers of the net-
work stack and opens up its inner workings for the ben-
efit of developers. In this paper, we illustrated and
benchmarked several concrete examples where ClickNF
can be used to accelerate network function development
by enabling fine-grained code reuse, and highlighted
ClickNF’s good scaling properties and a reasonable price
of modularity, which arguably outweigh many of the
hurdles in network function development. The ClickNF
source code is available for download at [21].
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Abstract
Data analytics are an important class of data-intensive

workloads on public cloud services. However, selecting
the right compute and storage configuration for these ap-
plications is difficult as the space of available options is
large and the interactions between options are complex.
Moreover, the different data streams accessed by analyt-
ics workloads have distinct characteristics that may be
better served by different types of storage devices.

We present Selecta, a tool that recommends near-
optimal configurations of cloud compute and storage re-
sources for data analytics workloads. Selecta uses latent
factor collaborative filtering to predict how an applica-
tion will perform across different configurations, based
on sparse data collected by profiling training workloads.
We evaluate Selecta with over one hundred Spark SQL
and ML applications, showing that Selecta chooses a
near-optimal performance configuration (within 10% of
optimal) with 94% probability and a near-optimal cost
configuration with 80% probability. We also use Se-
lecta to draw significant insights about cloud storage
systems, including the performance-cost efficiency of
NVMe Flash devices, the need for cloud storage with
support for fine-grain capacity and bandwidth allocation,
and the motivation for end-to-end storage optimizations.

1 Introduction

The public cloud market is experiencing unprecedented
growth, as companies move their workloads onto plat-
forms such as Amazon AWS, Google Cloud Platform
and Microsoft Azure. In addition to offering high elastic-
ity, public clouds promise to reduce the total cost of own-
ership as resources can be shared among tenants. How-
ever, achieving performance and cost efficiency requires
choosing a suitable configuration for each given applica-
tion. Unfortunately, the large number of instance types
and configuration options available make selecting the
right resources for an application difficult.
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Figure 1: Performance of three applications on eight
i3.xl instances with different storage configurations.

The choice of storage is often essential, particularly
for cloud deployments of data-intensive analytics. Cloud
vendors offer a wide variety of storage options including
object, file and block storage. Block storage can consist
of hard disks (HDD), solid-state drives (SSD), or high
bandwidth, low-latency NVMe Flash devices (NVMe).
The devices may be local (l) to the cloud instances run-
ning the application or remote (r). These options alone
lead to storage configuration options that can differ by
orders of magnitude in terms of throughput, latency, and
cost per bit. The cloud storage landscape is only becom-
ing more diverse as emerging technologies based on 3D
X-point become available [35, 16].

Selecting the right cloud storage configuration is crit-
ical for both performance and cost. Consider the exam-
ple of a Spark SQL equijoin query on two 128 GB ta-
bles [53]. We find the query takes 8.7× longer when
instances in an 8-node EC2 cluster access r-HDD com-
pared to l-NVMe storage. This is in contrast to a recent
study, conducted with a prior version of Spark, which
found that faster storage can only improve the median job
execution time by at most 19% [50]. The performance
benefits of l-NVMe lead to 8× lower execution cost for
this query, even though NVMe storage has higher cost
per unit time. If we also consider a few options for the
number of cores and memory per instance, the perfor-
mance gap between the best and worst performing VM-
storage configurations is over 30×.
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Determining the right cloud configuration for analyt-
ics applications is challenging. Even if we limit our-
selves to a single instance type and focus on optimizing
performance, the choice of storage configuration for a
particular application remains non-trivial. Figure 1 com-
pares the performance of three Spark applications using
8 i3.xl AWS instances with l-NVMe, r-SSD, and a hy-
brid (r-SSD for input/output data, l-NVMe for interme-
diate data). The first application is I/O-bound and bene-
fits from the high throughput of NVMe Flash. The sec-
ond application has a CPU bottleneck and thus performs
the same with all three storage options. The third ap-
plication is I/O-bound and performs best with the hybrid
storage option since it minimizing interference between
read and write I/Os, which have asymmetric performance
on Flash [40]. This result should not be surprising. An-
alytics workloads access multiple data streams, includ-
ing input and output files, logs, and intermediate data
(e.g., shuffle and broadcast). Each data stream has dis-
tinct characteristics in terms of access frequency, access
patterns, and data lifetime, which make different streams
more suitable for different types of storage devices. For
example, for TPC-DS query 80 in Figure 1, storing in-
put/output data on r-SSD and intermediate data on l-
NVMe Flash outperforms storing all data on l-NVMe as
it isolates streams and eliminates interference.

We present Selecta, a tool that learns near-optimal VM
and storage configurations for analytics applications for
user-specified performance-cost objectives. Selecta tar-
gets analytics jobs that are frequently or periodically re-
run on newly arriving data [1, 25, 55]. A configuration
is defined by the type of cloud instance (core count and
memory capacity) along with the storage type and capac-
ity used for input/output data and for intermediate data.
To predict application performance for different config-
urations, Selecta applies latent-factor collaborative fil-
tering, a machine-learning technique commonly used in
recommender systems [10, 57, 11, 22, 23]. Selecta uses
sparse performance data for training applications profiled
on various cloud configurations, as well as performance
measurements for the target application profiled on only
two configurations. Selecta leverages the sparse training
data to learn significantly faster and more cost-effectively
than exhaustive search. The approach also improves on
recent systems such as CherryPick and Ernest whose per-
formance prediction models require more information
about the target application and hence require more ap-
plication runs to converge [3, 69]. Moreover, past work
does not consider the heterogeneous cloud storage op-
tions or the varying preferences of different data streams
within each application [71].

We evaluate Selecta with over one hundred Spark SQL
and ML workloads, each with two different dataset scal-
ing factors. We show that Selecta chooses a near-optimal

performance configuration (within 10% of optimal) with
94% probability and a near-optimal cost configuration
with 80% probability. We also analyze Selecta’s sensi-
tivity to various parameters such as the amount of in-
formation available for training workloads or the target
application.

A key contribution of our work is our analysis of cloud
storage systems and their use by analytics workloads,
which leads to several important insights. We find that in
addition to offering the best performance, NVMe-based
configurations also offer low execution cost for a wide
range of applications. We observe the need for cloud
storage options that support fine-grain allocation of ca-
pacity and bandwidth, similar to the fine-grain allocation
of compute and memory resources offered by serverless
cloud services [7]. Disaggregated NVMe Flash can pro-
vide the substrate for such a flexible option for cloud stor-
age. Finally, we showcase the need for end-to-end opti-
mization of cloud storage, including application frame-
works, operating systems, and cloud services, as several
storage configurations fail to meet their potential due to
inefficiencies in the storage stack.

2 Motivation and Background

We discuss current approaches for selecting a cloud stor-
age configuration and explain the challenges involved.

2.1 Current Approaches
Conventional configurations: Input/output files for data
analytics jobs are traditionally stored in a distributed file
system, such as HDFS or object storage systems such
as Amazon S3 [62, 6]. Intermediate data is typically
read/written to/from a dedicated local block storage vol-
ume on each node (i.e., l-SSD or l-NVMe) and spilled to
r-HDD if extra capacity is needed. In typical Spark-as-a-
service cloud deployments, two remote storage volumes
are provisioned by default per instance: one for the in-
stance root volume and one for logs [19].

Existing tools: Recent work focuses on automat-
ically selecting an optimal VM configuration in the
cloud [71, 69, 3]. However, these tools tend to ignore
the heterogeneity of cloud storage options, at best distin-
guishing between ‘fast’ and ‘slow’. In the next section,
we discuss the extent of the storage configuration space.

2.2 Challenges
Complex configuration space: Cloud storage comes in
multiple flavors: object storage (e.g., Amazon S3 [6]),
file storage (e.g., Azure Files [45]), and block storage
(e.g., Google Compute Engine Persistent Disks [29]).
Block and object storage are most commonly used for
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data analytics. Block storage is further sub-divided into
hardware options: cold or throughput-optimized hard
drive disk, SAS SSD, or NVMe Flash. Block storage can
be local (directly attached) or remote (over the network)
to an instance. Local block storage is ephemeral; data
persists only as long as the instance is running. Remote
volumes persist until explicitly deleted by the user.

Table 1 compares three block storage options available
in Amazon Web Services (AWS). Each storage option
provides a different performance, cost, and flexibility
trade-off. For instance, l-NVMe storage offers the high-
est throughput and lowest latency at higher cost per bit.
Currently, cloud providers typically offer NVMe in fixed
capacity units directly attached to select instance types,
charged per second or hour. AWS currently charges
$0.023 more per hour for an instance with 475 GB of
NVMe Flash compared to without NVMe. In contrast,
S3 fees are based on capacity ($0.023 per GB/month)
and bandwidth ($0.004 per 10K GET requests) usage.

In addition to the storage configuration, users must
choose from a variety of VM types to determine the right
number of CPU cores and memory, the number of VMs,
and their network bandwidth. These choices often af-
fect storage and must be considered together. For ex-
ample, on instances with 1 Gb/s network bandwidth, the
network limits the sequential throughput achievable with
r-HDD and r-SSD storage volumes in Table 1.

Performance-cost objectives: While configurations
with the most CPU cores, the most memory, and fastest
storage generally provide the highest performance, opti-
mizing for runtime cost is much more difficult. Systems
designed to optimize a specific objective (e.g., predict the
configuration that maximizes performance or minimizes
cost) are generally not sufficient to make recommenda-
tions for more complex objectives (e.g., predict the con-
figuration that minimizes execution time within a spe-
cific budget). By predicting application execution time
on candidate configurations, our approach remains gen-
eral. Unless otherwise specified, we refer to cost as the
cost of executing an application.

Heterogeneous application data: We classify data
managed by distributed data analytics frameworks (e.g.,
Spark [74]) into two main categories: input/output data
which is typically stored long-term and intermediate
data which lives for the duration of job execution. Exam-

Storage Seq
Read
MB/s

Seq
Write
MB/s

Rand
Read
IOPS

Rand
Write
IOPS

Rand
Rd/Wr
IOPS

r-HDD 135 135 132 132 132
r-SSD 165 165 3,068 3,068 3,068
l-NVMe 490 196 103,400 35,175 70,088

Table 1: Block storage performance for 500GB vol-
umes. Sequential IOs are 128 KB, random IOs are 4 KB.
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Figure 2: Comparison of execution time and cost for
TPC-DS query 64 on various VM and storage configu-
rations, defined as <VM size, storage for input/output
data, storage for intermediate data>.

ples of intermediate data include shuffle data exchanged
between mappers and reducers, broadcast variables, and
cached dataset partitions spilled from memory. These
streams typically have distinct access frequency, data
lifetime, access type (random vs. sequential), and I/O
size. For example, input/output data is generally long-
lived and sequentially accessed, whereas intermediate
data is short-lived and most accesses are random.

Storage decisions are complex: Selecting the right
configuration for a job significantly reduces execution
time and cost, as shown in Figure 2, which compares
a Spark SQL query (TPC-DS query 64) on various VM
and storage configurations in an 8-node cluster. We con-
sider 3 i3 VM instance sizes in EC2 (xl, 2xl, and

4xl) and heterogeneous storage options for input/output
and intermediate data. The lowest performing configura-
tion has 24× the execution time of the best performing
configuration. Storing input/output data on r-SSD and
intermediate data on l-NVMe (the lowest cost configura-
tion) has 7.5× lower cost than storing input/output data
on r-HDD and intermediate data on r-SSD.

3 Selecta Design

3.1 Overview
Selecta is a tool that automatically predicts the perfor-
mance of a target application on a set of candidate con-
figurations. As shown in Figure 3, Selecta takes as in-
put: i) execution time for a set of training applications
on several configurations, ii) execution time for the tar-
get application on two reference configurations, and iii) a
performance-cost objective for the target application. A
configuration is defined by the number of nodes (VM in-
stances), the CPU cores and memory per node, as well as
the storage type and capacity used for input/output data
and for intermediate data. Selecta uses latent factor col-
laborative filtering (see §3.2) to predict the performance
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Figure 3: An overview of performance prediction and configuration recommendation with Selecta.

of the target application on the remaining (non-reference)
candidate configurations. With these performance pre-
dictions and the per unit time cost of various VM in-
stances and storage options, Selecta can recommend the
right configuration for the user’s performance-cost ob-
jective. For example, Selecta can recommend configu-
rations that minimize execution time, minimize cost, or
minimize execution time within a specific budget.

As new applications are launched over time, these per-
formance measurements become part of Selecta’s grow-
ing training set and accuracy improves (see § 4.4). We
also feed back performance measurements after running
a target application on a configuration recommended by
Selecta — this helps reduce measurement noise and im-
prove accuracy. Since Selecta takes ∼1 minute to gen-
erate a new set of predictions (the exact runtime de-
pends on the training matrix size), a user can re-run Se-
lect when re-launching the target application with a new
dataset to get a more accurate recommendation. In our
experiments, the recommendations for each target appli-
cation converge after two feedback iterations. The ability
to grow the training set over time also provides Selecta
with a mechanism for expanding the set of configurations
it considers. Initially, the configuration space evaluated
by Selecta is the set of configurations that appear in the
original training set. When a new configuration becomes
available and Selecta receives profiling data for applica-
tions on this configuration, the tool will start predicting
performance for all applications on this configuration.

3.2 Predicting Performance
Prediction approach: Selecta uses collaborative filter-
ing to predict the performance of a target application on
candidate configurations. We choose collaborative filter-
ing as it is agnostic to the details of the data analytics
framework used (e.g., Spark vs. Storm) and it allows us
to leverage sparse training data collected across appli-
cations and configurations [56]. While systems such as

CherryPick [3] and Ernest [69] build performance mod-
els based solely on training data for the target applica-
tion, Selecta’s goal is to leverage training data available
from multiple applications to converge to accurate rec-
ommendations with only two profiling runs of a target
application. We discuss alternatives to collaborative fil-
tering to explain our choice.

Content-based approaches, such as as linear regres-
sion, random forests, and neural network models, build
a model from features such as application characteris-
tics (e.g., GB of shuffle data read/written) and configu-
ration characteristics (e.g., I/O bandwidth or the num-
ber of cores per VM). We find that unless inputs fea-
tures such as the average CPU utilization of the target
application on the target configuration are used in the
model, content-based predictors do not have enough in-
formation to learn the compute and I/O requirements of
applications and achieve low accuracy. Approaches that
require running target applications on all candidate con-
figurations to collect feature data are impractical.

Another alternative is to build performance prediction
models based on the structure of an analytics frame-
work, such as the specifics of the map, shuffle, and re-
duce stages in Spark [36, 75]. This leads to framework-
specific models and may require re-tuning or even re-
modeling as framework implementations evolve (e.g., as
the CPU efficiency of serialization operations improves).

Latent factor collaborative filtering: Selecta’s col-
laborative filtering model transforms applications and
configurations to a latent factor space [10]. This space
characterizes applications and configurations in terms of
latent (i.e., ‘hidden’) features. These features are auto-
matically inferred from performance measurements of
training applications [56]. We use a matrix factoriza-
tion technique known as Singular Value Decomposition
(SVD) for the latent factor model. SVD decomposes an
input matrix P, with rows representing applications and
columns representing configurations, into the product of
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three matrices, U,λ , and V . Each element pi j of P rep-
resents the normalized performance of application i on
configuration j. The latent features are represented by
singular values in the diagonal matrix λ , ordered by de-
creasing magnitude. The matrix U captures the strength
of the correlation between a row in P and a latent feature
in λ . The matrix V captures the strength of the corre-
lation between a column in P and a latent feature in λ .
Although the model does not tell us what the latent fea-
tures physically represent, a hypothetical example of a
latent feature is random I/O throughput. For instance,
Selecta could infer how strongly an application’s perfor-
mance depends on random I/O throughput and how much
random I/O throughput a configuration provides.

One challenge for running SVD is the input matrix P
is sparse, since we only have the performance measure-
ments of applications on certain configurations. In par-
ticular, we only have two entries in the target applica-
tion row and filling in the missing entries corresponds
to predicting performance on the other candidate con-
figurations. Since performing SVD matrix factorization
requires a fully populated input matrix P, we start by
randomly initializing the missing entries and then run
Stochastic Gradient Descent (SGD) to update these un-
known entries using an objective function that minimizes
the mean squared error on the known entries of the ma-
trix [13]. The intuition is that by iteratively decompos-
ing and updating the matrix in a way that minimizes the
error for known entries, the technique also updates un-
known entries with accurate predictions. Selecta uses the
Python sci-kit surprise library for SVD [33].

3.3 Using Selecta
New target application: The first time an application is
presented to Selecta, it is profiled on two reference con-
figurations which, preferably, are far apart in their com-
pute and storage resource attributes. Selecta requires that
reference configurations remain fixed across all applica-
tions, since performance measurements are normalized
to a reference configuration before running SVD. Profil-
ing application performance involves running the appli-
cation to completion and recording execution time and
CPU utilization (including iowait) over time.

Defining performance-cost objectives: After pre-
dicting application performance across all configura-
tions, Selecta recommends a configuration based on a
user-defined ranking function. For instance, to mini-
mize runtime cost, the ranking function is min(runtime
× cost/hour). While choosing a storage technology
(e.g., SSD vs. NVMe Flash), Selecta must also consider
the application’s storage capacity requirements. Selecta
leverages statistics from profiling runs available in Spark
monitoring logs to determine the intermediate (shuffle)
data and and input/output data capacity [63].

Adapting to changes: Recurring jobs and their input
datasets are likely to evolve. To detect changes in appli-
cation characteristics that may impact the choice of op-
timal configuration, Selecta relies on CPU utilization in-
formation from both initial application profiling and sub-
sequent executions rounds. When an application is first
introduced to the system, Selecta assigns a unique ID to
store application specific information such as iowait CPU
utilization. Whenever an application is re-executed, Se-
lecta compares the current iowait time to the stored con-
figuration. Depending on the difference in iowait time,
Selecta will either compute a refined prediction based on
available measurements or treat the workload as new ap-
plication, starting a new profiling run.

Dealing with noise in the cloud: An additional chal-
lenge for recommending optimal configurations is noise
on public cloud platforms, which arises due to interfer-
ence with other tenants, hardware heterogeneity, or other
sources [59]. To account for noise, Selecta relies on the
feedback of performance and CPU utilization measure-
ments. Initially, with few profiling runs, Selecta’s perfor-
mance predictions are affected by noise. As more mea-
surements are fed into the system, Selecta averages per-
formance and CPU utilization and uses reservoir sam-
pling to avoid high skew from outliers [70]. Selecta
keeps a configurable number of sample points for each
entry in the application-configuration matrix (e.g., three)
to detect changes in applications as described above.
If a particular run is heavily impacted by noise such
that the compute and I/O bottlenecks differ significantly
from previous runs, Selecta’s mechanism for detecting
changes in applications identifies the outlier.

4 Selecta Evaluation

Selecta’s collaborative filtering approach is agnostic to
the choice of applications and configurations. We evalu-
ate Selecta for data analytics workloads on a subset of the
cloud configuration space with the goal of understanding
how to provision cloud storage for data analytics.

4.1 Methodology
Cloud configurations: We deploy Selecta on Amazon
EC2 and consider configurations with the instance and
storage options shown in Tables 2 and 3. Among the
possible VM and storage combinations, we consider sev-
enteen candidate configurations. We trim the space to
stay within our research budget and to focus on experi-
ments that are most likely to uncover interesting insights
about cloud storage for analytics. We choose EC2 in-
stance families that are also supported by Databricks, a
popular Spark-as-a-service provider [18]. i3 is currently
the only instance family available with NVMe Flash and
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Instance CPU cores RAM (GB) NVMe
i3.xlarge 4 30 1 x 950 GB
r4.xlarge 4 30 -
i3.2xlarge 8 60 1 x 1.9 TB
r4.2xlarge 8 60 -
i3.4xlarge 16 120 2 x 1.9 TB
r4.4xlarge 16 120 -

Table 2: AWS instance properties

Storage Type Locality
Use for

Input/Output
Data?

Use for
Intermediate

Data?
r-HDD Block Remote X -
r-SSD Block Remote X X
l-NVMe Block Local X X
S3 Object Remote X -

Table 3: AWS storage options considered

r4 instances allow for a fair comparison of storage op-
tions as they have the same memory to compute ratio.
We only consider configurations where the intermediate
data storage IOPS are equal to or greater than the in-
put/output storage IOPS, as intermediate data has more
random accesses. Since we find that most applications
are I/O-bound with r-HDD, we only consider r-HDD for
the instance size with the least amount of cores. We limit
our analysis to r-HDD because our application datasets
are up to 1 TB whereas instances with l-HDD on AWS
come with a minimum of 6 TB disk storage, which would
not be an efficient use of capacity. We do not consider
local SAS/SATA SSDs as their storage capacity to CPU
cores ratio is too low for most Spark workloads. We use
Elastic Block Store (EBS) for remote block storage [5].

We use a cluster of 9 nodes for our evaluation. The
cluster consists of one master node and eight executor
nodes. The master node runs the Spark driver and YARN
Resource Manager. Unless input/output data is stored in
S3, we run a HDFS namenode on the master server as
well. We configure framework parameters, such as the
JVM heap size and number of executors, according to
Spark tuning guidelines and match the number of execu-
tor tasks to the VM’s CPU cores [15, 14].

Applications: We consider Spark [74] as a represen-
tative data analytics framework, similar to previous stud-
ies [50, 68, 3]. We use Spark v2.1.0 and Hadoop v2.7.3
for HDFS. We evaluate Selecta with over one hundred
Spark SQL and ML applications, each with two different
dataset scales, for a total of 204 workloads. Our appli-
cation set includes 92 queries of the TPC-DS benchmark
with scale factors of 300 and 1000 GB [67]. We use the
same scale factors for Spark SQL and ML queries from
the TPC-BB (BigBench) benchmark which has of struc-
tured, unstructured and semi-structured data modeled af-
ter the retail industry domain [27]. Since most BigBench
queries are CPU-bound, we focus on eight queries which
have more substantial I/O requirements: queries 3, 8,

14, 16, 21, 26, 28, 29. We also run 100 and 400 GB
sort jobs [52]. Finally, we run a SQL equijoin query on
two tables with 16M and 32M rows each and 4KB en-
tries [53]. For all input and output files, we use the un-
compressed Parquet data format [26].

Experiment methodology: We run each application
on all candidate configurations to obtain the ground truth
performance and optimal configuration choices for each
application. To account for noise in the cloud we run
each experiment (i.e., each application on each candidate
configuration) three times and use the average across
runs in our evaluation. Two runs are consecutive and one
run is during a different time of day. We also validate our
results by using data from one run as input to Selecta and
the average performance across runs as the ground truth.
To train and test Selecta, we use leave-one-out cross val-
idation [58], meaning one workload at a time serves as
the target application while the remaining workloads are
used for training. We assume training applications are
profiled on all candidate configurations, except for the
sensitivity analysis in §4.4 where we investigate training
matrix density requirements for accurate predictions.

Metrics: We measure the quality of Selecta’s predic-
tions using two metrics. First, we report the relative root
mean squared error (RMSE), a common metric for rec-
ommender systems. The second and more relevant met-
ric for Selecta is the probability of making an accurate
configuration recommendation. We consider a recom-
mendation accurate if the configuration meets the user’s
cost-performance objective within a threshold T of the
true optimal configuration for that application. For ex-
ample, for a minimum cost objective with T = 10%, the
probability of an accurate prediction is the percentage
of Selecta’s recommendations (across all tested applica-
tions) whose true cost is within 10% of the true optimal
cost configuration. Using a threshold is more robust to
noise and allows us to make more meaningful conclu-
sions about Selecta’s accuracy, since a second-best con-
figuration may have similar or significantly worse per-
formance than the best configuration. Our performance
metric is execution time and cost is in US dollars.

4.2 Prediction Accuracy

We provide a matrix with 204 rows as input to Selecta,
where one row (application) is designated as the target
application in each test round. We run Selecta 204 times,
each time considering a different application as the tar-
get. For now, we assume all remaining rows of train-
ing data in the matrix are dense, implying the user has
profiled training applications on all candidate configu-
rations. The single target application row is sparse, con-
taining only two entries, one for each of the profiling runs
on reference configurations.
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Figure 4: Probability of accurate
recommendations within a thresh-
old from optimal. Dotted lines are
after one feedback iteration.

Figure 5: Probability of accu-
rate configuration recommendation
for performance within threshold,
given strict cost restrictions.

perf-predict-using-small 

cost-predict-using-small 

cost*perf-predict-using-small 

perf-predict-using-large 

cost-predict-using-large 

cost*perf-predict-using-large 

Figure 6: Accuracy with large
datasets using predictions from
small dataset vs. re-computing pre-
diction with large dataset.

Selecta predicts performance with a relative RMSE
of 36%, on average across applications. To understand
how Selecta’s performance predictions translate into rec-
ommendations, we plot accuracy in Figure 4 for perfor-
mance, cost and cost*performance objectives. The plot
shows the probability of near-optimal recommendations
as a function of the threshold T defining what percentage
from optimal is considered close enough. When search-
ing for the best performing configuration, Selecta has a
94% probability of recommending a configuration within
10% of optimal. For a minimum cost objective, Selecta
has a 80% probability of recommending a configuration
within 10% of optimal. Predicting cost*performance is
more challenging since errors in Selecta’s relative execu-
tion time predictions for an application across candidate
configurations are squared: cost*performance = (execu-
tion time)2 * config cost per hour.

The dotted lines in Figure 4 show how accuracy im-
proves after a single feedback round. Here, we assume
the target application has the same dataset in the feed-
back round. This provides additional training input for
the target application row (either a new entry if the rec-
ommended configuration was not a reference configura-
tion, or a new sample to average to existing data if the
recommended configuration was a reference configura-
tion). The probability of near-optimal recommendations
increases most noticeably for the cost*performance ob-
jective, from 52% to 65% after feedback, with T =10%.

Figure 5 shows the probability of accurate recommen-
dations for objectives of the form “select the best per-
forming configuration given a fixed cost restriction C.”
For this objective, we consider Selecta’s recommenda-
tion accurate if its cost is less than or equal to the budget
and if its performance is within the threshold of the true
best configuration for the objective. Selecta achieves be-
tween 83% and 94% accuracy for the cost restrictions in
Figure 5 assuming T =10%. The long tail is due to per-
formance prediction errors that lead Selecta to underesti-
mate the execution cost for a small percentage of config-

urations (i.e., cases where Selecta recommends a config-
uration that is actually over budget).

In Figure 7, we compare Selecta’s accuracy against
four baselines. The first baseline is a random forest pre-
dictor, similar to the approach used by PARIS [71]. We
use the following features: the number of CPU cores,
disk IOPS and disk MB/s the configuration provides, the
intermediate and input/output data capacity of the appli-
cation, and the CPU utilization, performance, and total
disk throughput measured when running the application
on each of the two reference configurations. Although
the random forest predictor leverages more features than
Selecta, it has lower accuracy. Collaborative filtering
is a better fit for the sparse nature of the training data.
We find the most important features in the random for-
est model are all related to I/O (e.g., the I/O throughput
measured when running the application on the reference
configurations and the read/write IOPS supported by the
storage used for intermediate data), which emphasizes
the importance of selecting the right storage.

The second baseline (labeled ‘default’) in Figure 7
uses the recommended default configurations docu-
mented in Databricks engineering blog posts: l-NVMe
for intermediate data and S3 for input/output data [19,
21, 20]. The ‘max cost per time’ baseline uses the simple
heuristic of always picking the most expensive instance
per unit time. The ’min cost per time’ baseline chooses
the least expensive instance per unit time. Selecta out-
performs all of these heuristic strategies, confirming the
need for a tool to automate configuration selection.

4.3 Evolving Datasets
We study the impact of dataset size on application per-
formance and Selecta’s predictions using the small and
large dataset scales described in §4.1. We train Selecta
using all 102 workloads with small datasets, then evalu-
ate Selecta’s prediction accuracy for the same workloads
with large datasets. The dotted lines in Figure 6 plots Se-
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lecta’s accuracy when recommending configurations for
applications with large datasets solely based on profil-
ing runs of the application with a smaller dataset. The
solid lines show accuracy when Selecta re-profiles appli-
cations with large datasets to make predictions. For ap-
proximately 8% of applications, profiling runs with small
datasets are not sufficient indicators of performance with
large datasets.

We find that in cases where the performance with a
small dataset is not indicative of performance with a
large dataset, the relationship between compute and I/O
intensity of the application is affected by the dataset size.
As described in §3.3, Selecta detects these situations by
comparing CPU utilization statistics for the small and
large dataset runs. Figure 8 shows an example of a work-
load for which small dataset performance is not indica-
tive of performance with a larger dataset. We use the
Intel Performance Analysis Tool to record and plot CPU
utilization [34]. When the average iowait percentage for
the duration of the run changes significantly between the
large and small profiling runs on the reference configura-
tion, it is generally best to profile the application on the
reference configurations and treat it as a new application.

4.4 Sensitivity Analysis

We perform a sensitivity analysis to determine input ma-
trix density requirements for accurate predictions. We
look at both the density of matrix rows (i.e., the percent-
age of candidate configurations that training applications
are profiled on) and the density of matrix columns (i.e.,
the number of training applications used). We also dis-
cuss sensitivity to the choice of reference configurations.

Figure 9a shows how Selecta’s accuracy for perfor-
mance, cost and cost*performance objectives varies as a
function of input matrix density. Assuming 203 training
applications have accumulated in the system over time,
we show that, on average across target applications, rows
only need to be approximately 20 to 30% dense for Se-
lecta to achieve sufficient accuracy. This means that at
steady state, users should profile training applications on
about 20-30% of the candidate configurations (including
reference configurations). Profiling additional configura-
tions has diminishing returns.

Next, we consider a cold start situation in which a user
wants to jump start the system by profiling a limited set
of training applications across all candidate configura-
tions. Figure 9b shows the number of training applica-
tions required to achieve desired accuracy. Here, for each
target application testing round, we take the 203 training
applications we have and randomly remove a fraction of
the rows (training applications). We ensure to drop the
row corresponding to the different dataset scale factor
run of the target application, to ensure Selecta’s accu-

Figure 7: Selecta’s accuracy compared to baselines.

(a) Query on 300GB is CPU-bound. (b) Query on 1TB is IO-bound.

Figure 8: CPU utilization over time for TPC-DS query
89 on r4.xlarge cluster with r-SSD. For this query,
performance with a small dataset is not indicative of per-
formance with a larger dataset. Selecta detects difference
in average iowait percentage (blue dotted line).

racy does not depend on a training application directly
related to the target application. Since the number of
training applications required to achieve desirable accu-
racy depends on the size of the configuration space a user
wishes to explore, the x-axis in Figure 9b represents the
ratio of the number of training applications to the number
of candidate configurations, R. We find that to jump start
Selecta with dense training data from a cold start, users
should provide 2.5× more training applications than the
number of candidate configurations to achieve desirable
accuracy. In our case, jump starting Selecta with more
than 43 = d2.5×17e training applications profiled on all
17 configurations reaches a point of diminishing returns.

Finally, we investigate whether, a cold start requires
profile training applications on all configurations. We
use R=2.5, which for 17 candidate configurations corre-
sponds to using 43 training applications. Figure 9c plots
accuracy as we vary the percentage of candidate config-
urations on which the training applications are profiled
(including reference configurations, which we assume
are always profiled). The figure shows that for a cold
start, it is sufficient for users to profile the initial train-
ing applications on 40% to 60% of candidate configu-
rations. As Selecta continues running and accumulates
more training applications, the percentage of configura-
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(a) Sensitivity to input matrix density in
steady state: 20% density per row suffices
for accurate predictions.

(b) Sensitivity to number of training ap-
plications, profiled on all configurations:
2.5× the number of configs suffices.

(c) Sensitivity to input matrix density for
cold start: ∼50% density per row (train-
ing application) required.

Figure 9: Sensitivity analysis: accuracy as a function of input matrix density

tions users need to profile for training applications drops
to 20-30% (this is the steady state result from Figure 9a).

We experimented with different reference configura-
tions for Selecta. We find that accuracy is not very sen-
sitive to the choice of references. We saw a slight bene-
fit using references that have different VM and storage
types. Although one reference configuration must re-
main fixed across all application runs since it is used to
normalize performance, we found that the reference con-
figuration used for the second profiling run could vary
without significant impact on Selecta’s accuracy.

5 Cloud Storage Insights

Our analysis of cloud configurations for data analytics
reveals several insights for cloud storage configurations.
We discuss key takeaways and their implications for fu-
ture research on storage systems.

NVMe storage is performance and cost efficient for
data analytics: We find that configurations with NVMe
Flash tend to offer not only the best performance, but
also, more surprisingly, the lowest cost. Although NVMe
Flash is the most expensive type of storage per GB/hr, its
high bandwidth allows applications to run significantly
faster, reducing the overall job execution cost.

On average across applications, we observe that l-
NVMe Flash reduces job completion time of applica-
tions by 27% compared to r-SSD and 75% compared to
r-HDD. Although we did not consider l-SSD or l-HDD
configurations in our evaluation, we validate that local
versus remote access to HDD and SDD achieves simi-
lar performance since our instances have sufficient net-
work bandwidth (up to 10 Gb/s) and modern networking
adds little overhead on top of HDD and SSD access la-
tency [8]. In contrast, a previous study of Spark applica-
tions by Ousterhout et al. concluded that optimizing or
eliminating disk accesses can only reduce job completion

time by a median of at most 19% [50]. We believe the
main reason for the increased impact of storage on end-
to-end application performance is due to the newer ver-
sion of Spark we use in our study (v2.1.0 versus v1.2.1).
Spark has evolved with numerous optimizations target-
ing CPU efficiency, such as cache-aware computations,
code generation for expression evaluation, and serializa-
tion [17]. With ongoing work in optimizing the CPU
cycles spent on data analytics computations, for example
by optimizing the I/O processing path [66], we expect
the choice of storage to be of even greater importance.

The need for flexible capacity and bandwidth allo-
cation: Provisioning storage involves selecting the right
capacity, bandwidth, and latency. Selecta uses statistics
from Spark logs to determine capacity requirements and
applies collaborative filtering to explore performance-
cost trade-offs. However, the cost-efficiency of the stor-
age configuration selected is limited by numerous con-
straints imposed by cloud providers. For example, for re-
mote block storage volumes, the cloud provider imposes
minimum capacity limits (e.g., 500 GB for r-HDD on
AWS) and decides how data in the volume is mapped to
physical devices, which directly affects storage through-
put (e.g., HDD throughput is proportional to the number
of spindles). A more important restriction is for local
storage, such as l-NVMe, which is only available in fixed
capacities attached to particular instance types. The fixed
ratio between compute, memory and storage resources
imposed by cloud vendors does not provide the right bal-
ance of resources for many of the applications we stud-
ied. For example the SQL equijoin query on two 64 GB
tables saturates the IOPS of the 500 GB NVMe device on
a i3.xl instance, but leaves half the capacity underuti-
lized. Furthermore, local storage is ephemeral, meaning
instances must be kept on to retain data on local devices.
Thus, although we showed it is cost-efficient to store in-
put/output and intermediate data on l-NVMe for the du-
ration of a job, storing input/output files longer term on
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l-NVMe would dramatically increase cost compared to
using remote storage volumes or an object storage sys-
tem such as S3.

We make the case for a fast and flexible storage op-
tion in the cloud. Emerging trends in cloud comput-
ing, such as serverless computing offerings like AWS
Lambda, Google Cloud Functions and Azure Functions,
provide fine-grain, pay-per-use access to compute and
memory resources [31, 7, 28, 46]. Currently, there is no
option that allows for fine-grain capacity and bandwidth
allocation of cloud storage with low latency and high
bandwidth characteristics [41]. Although S3 provides
pay-per-use storage with high scalability, high availabil-
ity and relatively high bandwidth, we show that data an-
alytics applications benefit from even higher throughput
(i.e., NVMe Flash). S3 also incurs high latency, which
we observed to be a major bottleneck for short-running
SQL queries that read only a few megabytes of data.

Disaggregated NVMe is a promising option for
fast and flexible cloud storage: Disaggregating NVMe
Flash by enabling efficient access to the resource over
the network is a promising option for fast and flexi-
ble cloud storage. Recent developments in hardware-
assisted [49, 44] and software-only [40] techniques en-
able access to remote NVMe devices with low latency
overheads over a wide range of network options, includ-
ing commodity Ethernet networking with TCP/IP pro-
tocols. These techniques allow us to build disaggre-
gated Flash storage that allows fine-grain capacity and
IOPS allocation for analytics workloads and independent
scaling of storage vs. compute resources. Applications
would allocate capacity and bandwidth on demand from
a large array of remotely accessible NVMe devices. In
this setting, Selecta can help predict the right capacity
and throughput requirements for each data stream in an
analytics workload to guide the allocation of resources
from a disaggregated Flash system.

There are several challenges in implementing flexi-
ble cloud storage based on disaggregated Flash. First,
networking requirements can be high. Current NVMe
devices on AWS achieve 500 MB/s to 4 GB/s sequen-
tial read bandwidth, depending on the capacity. Write
throughput and random access bandwidth is also high.
The networking infrastructure of cloud systems must be
able to support a large number of instances accessing
NVMe Flash remotely with the ability to burst to the
maximum throughput of the storage devices. An addi-
tional challenge with sharing remote Flash devices is in-
terference between read and write requests from differ-
ent tenants [40, 61]. We observed several cases where
separating input/output data and intermediate data on r-
SSD (or S3) and l-NVMe, respectively, led to higher
performance (and lower cost) than storing all data on l-
NVMe. This occurred for jobs where large input data

reads overlapped with large shuffle writes, such as for
TPC-DS query 80 shown in Figure 1. A disaggregated
Flash storage system must address interference using ei-
ther scheduling approaches [40, 47, 61, 51, 60] or device-
level isolation mechanisms [12, 54, 38]. Finally, the are
interesting trade-offs in the interfaces used to expose dis-
aggregated Flash (e.g., block storage, key-value storage,
distributed file system, or other).

The need for end-to-end optimization: In our ex-
periments, remote HDD storage performed poorly, de-
spite its cost effectiveness for long-living input/output
data and its ability to match the sequential bandwidth of-
fered by SSD. Using the Linux blktrace tool [37] to
analyze I/O requests at the block device layer, we found
that although each Spark task reads/writes input/output
data sequentially, streams from multiple tasks running on
different cores interleave at the block device layer. Thus,
the access stream seen by a remote HDD volume consists
of approximately 60% random I/O operations, dramati-
cally reducing performance compared to fully sequen-
tial I/O. This makes solutions with higher throughput for
random accesses (e.g., using multiple HDDs devices or
Flash storage) more appropriate for achieving high per-
formance in data analytics. Increasing random I/O per-
formance comes at a higher cost per unit time. In addi-
tion to building faster storage systems, we should attempt
to optimize throughout the stack for sequential accesses
when these accesses are available at the application level.
Of course, there will always be workloads with intrinsi-
cally random access patterns that will not benefit from
such optimizations.

6 Discussion

Our work focused on selecting storage configurations
based on their performance and cost. Other impor-
tant considerations include durability, availability, and
consistency, particularly for long-term input/output data
storage [42]. Developers may also prefer a particular
storage API (e.g., POSIX files vs. object interface).
Users can use these qualitative constraints to limit the
storage space Selecta considers. Users may also choose
different storage systems for high performance process-
ing versus long term storage of important data.

Our study showed that separating input/output data
and intermediate data uncovers a richer configuration
space and allows for better customization of storage re-
sources to the application requirements. We can further
divide intermediate data into finer-grained streams such
as shuffle data, broadcast data, and cached RDDs spilled
from memory. Understanding the characteristics of these
finer grain streams and how they should be mapped to
storage options in the cloud may reveal further benefits.

Compression schemes offer an interesting trade-off
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between processing, networking, and storage require-
ments. In addition to compressing input/output files, sys-
tems like Spark allow compressing individual interme-
diate data streams using a variety of compression algo-
rithms (lz4, lzf, and snappy) [64]. In future work, we
plan to extend Selecta to consider compression options
in addition to storage and instance configuration.

We used Selecta to optimize data analytics applica-
tions as they represent a common class of cloud work-
loads. Selecta’s approach should be applicable to other
data-intensive workloads too, as collaborative filtering
does not make any specific assumptions about the appli-
cation structure. In addition to considering other types
of workloads, in future work, we will consider scenarios
in which multiple workloads share cloud infrastructure.
Delimitrou et al. have shown that collaborative filter-
ing can classify application interference sensitivity (i.e.,
how much interference an application will cause to co-
scheduled applications and how much interference it can
tolerate itself) [22, 23]. We also believe Selecta’s collab-
orative filtering approach can be extended to help con-
figure isolation mechanisms that limit interference be-
tween workloads, particularly on shared storage devices
like NVMe which exhibit dramatically different behavior
as the read-write access patterns vary [40].

7 Related Work

Selecting cloud configurations: Several recent sys-
tems unearth near-optimal cloud configurations for target
workloads. CherryPick uses Bayesian Optimization to
build a performance model that is just accurate enough to
distinguish near-optimal configurations [3]. Model input
comes solely from profiling the target application across
carefully selected configurations. Ernest predicts perfor-
mance for different VM and cluster sizes, targeting ma-
chine learning analytics applications [69]. PARIS takes
a hybrid online/offline approach, using random forests to
predict application performance on various VM config-
urations based on features such as CPU utilization ob-
tained from profiling [71]. These systems do not con-
sider the vast storage configuration options in the cloud
nor the heterogeneous data streams of analytics applica-
tions which can dramatically impact performance.

Resource allocation with collaborative filtering:
Our approach for predicting performance is most similar
to Quasar [23] and Paragon [22], which apply collabora-
tive filtering to schedule incoming applications on shared
clusters. ProteusTM [24] applies collaborative filtering
to auto-tune a transactional memory system. While these
systems consider resource heterogeneity, they focus on
CPU and memory. While Selecta applies a similar mod-
eling approach, our exploration of the cloud storage con-
figuration space is novel and reveals important insights.

Automating storage configurations: Many previ-
ous systems provide storage configuration recommen-
dations [9, 65, 2, 48, 4, 30, 39]. Our work analyzes
the trade-offs between traditional block storage and ob-
ject storage available in the cloud. We also considering
how heterogeneous streams in data analytics applications
should be mapped to heterogeneous storage options.

Analyzing performance of analytics frameworks:
While previous studies analyze how CPU, memory,
network and storage resources affect Spark perfor-
mance [50, 68, 66, 43], our work is the first to evalu-
ate the impact of new cloud storage options (e.g., NVMe
Flash) and provide a tool to navigate the diverse storage
configuration space.

Tuning application parameters: Previous work
auto-tunes data analytics framework parameters such as
the number of executors, JVM heap size, and compres-
sion schemes [32, 73, 72]. Our work is complementary.
Users set application parameters and then run Selecta to
obtain a near-optimal hardware configuration.

8 Conclusion

The large and increasing number of storage and com-
pute options on cloud services makes configuring data
analytics clusters for high performance and cost effi-
ciency difficult. We presented Selecta, a tool that learns
near-optimal configurations of compute and storage re-
sources based on sparse training data collected across
applications and candidate configurations. Requiring
only two profiling runs of the target application, Se-
lecta predicts near-optimal performance configurations
with 94% probability and near-optimal cost configura-
tions with 80% probability. Moreover, Selecta allowed
us to analyze cloud storage options for data analytics
and reveal important insights, including the cost benefits
of NVMe Flash storage, the need for fine-gain alloca-
tion of storage capacity and bandwidth in the cloud, and
the need for cross-layer storage optimizations. We be-
lieve that, as data-intensive workloads grow in complex-
ity and cloud options for compute and storage increase,
tools like Selecta will become increasingly useful for
end users, systems researchers, and even cloud providers
(e.g., for scheduling ‘serverless’ application code).
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Abstract

We propose an intuitive abstraction for a process to ex-
port its memory to remote hosts, and to access the mem-
ory exported by others. This abstraction provides a sim-
pler interface to RDMA and other remote memory tech-
nologies compared to the existing verbs interface. The
key idea is that a process can export parts of its mem-
ory as files, called remote regions, that can be accessed
through the usual file system operations (read, write,
memory map, etc). We built this abstraction in the Linux
kernel, and evaluated it. We show that remote regions are
easy to use and perform close to RDMA. We demonstrate
it via micro-benchmarks and by adapting two in-memory
single-host applications to use remote memory: R and
Metis. With R, using remote regions requires no changes
to the code and allows R to run with remote memory that
exceeds the physical memory of a host. With Metis, the
modifications amount to ≈100 lines of code and they al-
low Metis to scale its performance across 8 hosts.

1 Introduction
Remote memory allows a process to read and write

the memory of another process in a different host. This
is an exciting idea whose time has come [1]. Remote
memory is available now, using RDMA technology over
Infiniband or Ethernet [49, 29], and other new technolo-
gies are emerging [28, 24, 47]. Many applications are be-
ing redesigned to use remote memory (key-value storage
systems [43, 14, 30, 15], database systems [50, 6, 64],
map-reduce [39], etc).

Unfortunately, remote memory faces two problems
now. First, it has no standard interface. Current tech-
nology uses the RDMA verbs interface, but new hardware
such as Gen-Z and OpenCAPI will have their own in-
terfaces to control mapping, access, etc. Even RDMA is
still changing with key innovations, such as DCT [18],
that are offered in some implementations but not oth-
ers. Second, remote memory today is hard to use. With
RDMA, even the simplest program to access some data
from a remote host requires a complex ritual: code is re-
quired to initialize contexts, register memory, establish
RDMA connections, create queue-pairs, associate them
with connections, transition the queues through various
states, exchange RDMA keys, post commands on queues,
and poll the queues for completions [7]. Furthermore,
RDMA lacks naming and location services that applica-
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Host 1
fd=create(”/regions/oz”, 0644);
ptr=rmalloc(fd, 1024);
sprintf(ptr, ”alice”);
close(fd);

Host 2
fd=open(”/regions/oz”, O RDONLY);
buf=malloc(1024);
lseek(fd, pos buf, 0);
read(fd, buf, 1024); /* gets “alice” */
close(fd);

Figure 1: Using regions, Host 1 creates a region named oz in
REGIONFS, allocates a buffer in the region, and populates the
buffer. Host 2 then reads host 1’s string, similar to an RDMA-read
operation, except that developers need not program with RDMA
directly (which is complex).

tions need, forcing them to reimplement this functional-
ity every time.

In this paper, we propose a simple idea: to use files
as the interface to remote memory, shedding the com-
plexity of RDMA and providing a standard for new tech-
nologies. In particular, we propose remote regions or, in
short, regions. With regions, a process exports parts of its
memory as files in REGIONFS, a file system that a remote
host can then access using the usual file operations (read,
write, memory map, etc). In addition to a simple inter-
face, regions draw features from file systems to provide
functionality lacking in RDMA: name space, timestamps,
access control, etc (§4).

Regions are simple because they replace low-level
RDMA mechanisms with high-level controls that are op-
erated through a familiar interface. Figure 1 shows how
easily a host can use regions to read data in the mem-
ory of another host. By contrast, equivalent RDMA logic
takes around 300 lines of hard-to-understand code [7].

The main challenge in designing regions is to find the
right balance between elegance, expressiveness, and ef-
ficiency, while overcoming the limitations of the hard-
ware. To find this balance, we address questions of
file semantics, memory allocation, data sharing, memory
mapping, page fault preemption, security, data-metadata
separation, caching, cache coherence, and sharing gran-
ularity, while addressing RDMA limits on memory regis-
tration, connections, and keys. The current implementa-
tion of regions targets RDMA, but we believe region’s in-
terface will be applicable to new upcoming remote mem-
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ory technologies [24, 28], providing a common abstrac-
tion with which applications can be written in a portable
fashion across these new technologies.

We have built regions using RDMA in the Linux kernel
v4.8, and we evaluated their cost on a cluster of 8 ma-
chines with RoCE. Using microbenchmarks, we see that
accessing data via regions is reasonably close to RDMA.
We have used regions to extend two applications, R [48]
and Metis [41], to use remote memory. R is a system
for statistical processing of data, while Metis is an in-
memory implementation of map-reduce running on a sin-
gle host. We use regions to adapt R to operate on large
data sets in remote memory exceeding the available local
memory capacity. We do this by using R’s ff package to
store objects in memory-mapped files, and placing these
files in REGIONFS. We also use regions to produce a
distributed version of Metis that runs across many hosts,
sharing in-memory data. This change required only 82
lines of code, and allows Metis to scale to 8 hosts, giv-
ing it more memory and improving performance by 3.5×
compared to a single host.

2 Related work

Same interface, different goal. The file interface is
often used for remote storage, where the main goal is
to provide durable storage capacity. Several such sys-
tems use RDMA to improve performance, such as Oc-
topus [40], Crail [57], Ceph [11], and GlusterFS [25].
DAFS [13] is a file system protocol for RDMA, while [60]
is a proposal to run NFS over RDMA. The file interface
can also be used to manage large local memories [58].
All of the above works rely on a file interface but have a
different goal from our goal of accessing the memory of
remote applications.

Different interface, same goal. Prior work provides re-
mote memory with a different interface. LITE [61] pro-
vides a kernel interface that offers more flexible protec-
tion, and better scalability and isolation than verbs on
RDMA. There is much work in distributed shared mem-
ory (DSM) (e.g., [9, 33, 46, 2, 51, 53, 56, 8]) including
recent work on persistence using non-volatile memory
and replication [54]. FaRM [14, 15] provides transac-
tions over RDMA with lock-free reads. All these systems
provide a simpler interface than RDMA, but they do not
support the well-known file interface, which has many
advantages (§4).

Different interface, different goal. Many systems pro-
vide remote storage with an interface other than files, in-
cluding key-value stores (e.g., [43, 14, 30, 15]), Linda
tuples [10], distributed objects (e.g., [63, 27, 5]), and
database systems. These systems offer a different ab-
straction from regions. For example, key-value stores

provide GETs and PUTs on key-value pairs; Linda pro-
vides a tuple interface; distributed objects require appli-
cations to declare and manipulate the objects provided
by the framework; and database systems use SQL.

Remote memory applications. Several works have pro-
posed replacing disks with remote memory as a faster
target for swapping or paging (e.g., [23, 12, 34, 21, 31,
22, 17]). CacheDM [36] uses remote memory as a cache
for a network file system, while Infiniswap [26] uses re-
mote memory as a cache for a local swap/paging device.
Several of these applications are built with RDMA; they
might have been simpler to develop with regions.

New hardware. Disaggregated memory proposes a
new system architecture that detaches memory from ma-
chines and places it on a common fabric. The work in-
cludes academic papers [26, 37, 20, 4, 23, 45] and up-
coming technologies to support it, such as Gen-Z [24]
and Omni-Path [28]. Regions could provide an elegant
interface to disaggregated memory, though the imple-
mentation of regions will differ from the RDMA imple-
mentation we give (that will depend on the details of
these technologies, which are still work in progress).

3 Assumptions, goals, and motivation
We assume machines are connected to a network with

low latency, high bandwidth, and reliable connectivity—
such as, for example, machines in a few racks in a data
center. We assume a single administrative, trust, and
fault domain. We consider deployments with a couple
to tens of machines. While some companies have large
deployments with thousands of machines, the vast bulk
of our customers are enterprises with deployments of 100
or fewer machines in a private facility, and that is our tar-
get environment. Network partitions are rare and, when
they do occur, it is reasonable for the system to pause as
the rest of the system will be unavailable anyways (e.g.,
network file systems and other servers are unreachable).

Our goal is to provide abstractions for applications to
access the memory of other applications across the net-
work. Currently, the standard way to do that is to employ
one-sided read and write operations using the verbs li-
brary (libibverbs [35]). This interface has three issues
that we want to overcome:
• Complexity. As we mentioned, verbs operations are

complex, and we seek simple and intuitive alternatives.
• Dependency on existing technology. There are other

remote memory technologies under development other
than RDMA, such as Omni-Path [28] and Gen-Z [24]. We
would like to find high-level abstractions so that applica-
tions can be portable across these technologies.
• Resource limitations. RDMA has limitations on re-

sources at the network adapter, such as limited cache
sizes for connections and memory translations [14]. We
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want to design abstractions that can hide or overcome
these limitations without concerning applications.

We expect a simpler interface to have performance
costs but want them to be reasonable and we certainly
want to understand them, much like a developer needs to
understand the cost of other high-level features, such as
garbage collection, lambdas, etc.

4 Why files?
By using a file interface, regions get many benefits:
• Well-known. All developers know files.
• Utilities. The file interface inherits a vast repertoire

of utilities: editors, backup, grep, find, cp, cat, sed, awk,
etc. Regions allow these to be used with remote memory.
• Language support. Most of the functionality of

regions is in REGIONFS, and all major programming
languages support files. There is only a small library
(with synchronization and stub functions) that needs to
be ported to a given language.
• Interposition support. There are many tools to in-

terpose on file system calls, for tracing, debugging, au-
diting, and profiling (e.g., DFSTrace [44]). These tools
all work with REGIONFS.
• Name space. Directories and files make it easy to

find and organize data across applications in the network.
• Users and access permissions. Applications can use

the notion of users from the operating system combined
with access permissions to control who has access.

We get these benefits for free because the file interface
is well matched to our problem. In contrast, other inter-
faces to remote memory, such as RDMA, provide none of
these benefits.

5 The regions abstraction
We now explain how regions appear to users as an ab-

straction, and we explain how we arrived at this abstrac-
tion. We show how to provide the abstraction in §6.

In its simplest form, a (remote) region is a logically
contiguous part of the memory of a process, called the
owner process. The owner creates a region like a file, and
can operate on it by memory mapping, reading, writing,
or allocating variables using a special rmalloc function
(§5.2); these operations refer to data in local memory.
Processes in other hosts can also perform these opera-
tions, to access data in the memory of the owner.

5.1 Basic functions
Regions provide a file system called REGIONFS

mounted in a known location, such as /regions. Each
file in REGIONFS is a region stored in memory, either
locally or remotely. REGIONFS supports the usual file
operations (e.g., creat, unlink, open, close, read, write,
chmod, stat) in addition to mmap (§5.7). By default, a
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Figure 2: Example of the use of regions on a map-reduce style of
computation. (1) Three mapper processes in different hosts cre-
ate a region each, run some computation, and store the results
in their region; (2) a fourth reducer process reads the data in the
regions, and (3) creates a region and writes the result there; (4)
a fifth process reads that region and (5) produces a graph in the
display of a user.

region disappears when its creator process terminates or
crashes (accessing it results in an I/O error).

A directory in REGIONFS is not a region but organizes
regions, much like regular file systems; but unlike regu-
lar file systems, directories carry some special extended
attributes that regions inherit upon creation (§5.4).

5.2 Memory allocation
An application often dynamically allocates and de-

stroys many buffers in its lifetime. Rather than creat-
ing/deleting a region for each buffer, applications can
dynamically allocate/free buffers within a region, using
these functions:

void *rmalloc(int regionfd, size t len)
int rfree(void *ptr)

where regionfd is a descriptor for a region open in write
mode. Calling rmalloc is faster than creating a region:
the former executes entirely in memory, while the lat-
ter requires contacting a metadata manager over the net-
work (§6.6). In fact, an application might create just one
region and then allocate its buffers within that region.

5.3 Example of usage
We illustrate the use of a region with an example with

five processes that run a map-reduce style of computa-
tion (Figure 2). In existing map-reduce systems, pro-
cesses exchange data using a distributed file system such
as the Hadoop Distributed File System (HDFS) [3]. With
regions, processes can exchange data directly in mem-
ory, as with RDMA, but with the simplicity of using files.
Also, this is distinct from using an RDMA-enabled file
system (e.g., [40, 11, 25]), where processes store data in
a storage server and use RDMA to access the server; with
regions, processes can directly export data in their mem-
ory and read data from the memory of other processes.
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Attribute Type Description
OWNERPID pid t pid of process owning region
PERSISTENT bool keep region when process ends (§5.5)
MULTIHOSTED bool store region across many hosts (§5.6)
FIXVADDR uint64 t fixed virtual address (§5.7)
ONEWRITER bool only one process can open for writing
HOSTALLOC ip list hosts storing region if MULTIHOSTED (§5.6)

Figure 3: Region-specific attributes.

5.4 Region attributes

Beyond the attributes of a typical file (access bits, uid,
gid, etc), each region has some additional region-specific
metadata that determine certain behaviors (Figure 3).
The owner indicates the process who created the region;
this is different from the owner uid of a region/file, which
is a user. When this process ends, the region is auto-
matically deleted unless the PERSISTENT attribute is set
(§5.5). A region gets a fixed virtual address across hosts
if FIXVADDR is set (§5.7). A region can be opened for
writing by at most one process if ONEWRITER is set; this
is enforced across hosts. When a region grows in size,
new memory is typically allocated from the host of the
owner, but it is possible to allocate it from remote hosts
as well if MULTIHOSTED is set, in which case HOSTAL-
LOC indicates the hosts to allocate from (§5.6).

Applications set these attributes when the region is
created. Since we use the standard creat() call to cre-
ate regions, which cannot specify attributes, we define
an additional function

int rsetdefaultattr(int attr, char *val, int len) /* returns error flag */

that sets the default attributes of new regions for the call-
ing thread.

5.5 Persistent regions

By default, a region is backed by the memory of a pro-
cess. If the process terminates, its memory is deallocated
and the region is automatically deleted. This could be un-
desirable in some cases: the process might wish to leave
the data in memory for a short while until it is consumed
by another process. One solution to this problem is for
the process to defer its termination until its data has been
consumed. This solution is complex because it requires
the process to coordinate with other applications.

We provide a simpler solution: to retain the region
contents after the process terminates. Upon termination,
a process releases its memory but not the region. We call
such regions persistent regions. Persistent regions should
be deleted by the consuming process later. They are also
deleted when the host reboots. To create a persistent re-
gion, a process sets the attribute PERSISTENT.

5.6 Multi-hosted regions
A multi-hosted region is a special type of region that is

stored across many hosts. These regions can store large
data that exceed the physical memory of any single host.

To create a multi-hosted region, a process sets attribute
MULTIHOSTED and optionally chooses the hosts where
the region will be allocated via attribute HOSTALLOC
(§5.4); if this is not set, the default is to use all hosts.

5.7 Memory mapping
Processes can memory map a region using mmap(),

so that the region can be accessed by memory opera-
tions instead of read() and write(). The function returns a
pointer where the region is mapped. If a region is created
with the FIXVADDR attribute, it is given a fixed virtual
address [54]: it always maps to that address, no matter
which process or host maps the region. This ensures that
pointers to data in regions remain valid across hosts, al-
lowing regions to store dynamic data structures and other
data that require indirection. To implement this feature,
we reserve virtual addresses across the cluster (§6.10).

5.8 Performance enhancing functions
Memory mapping of a region on a remote host is

implemented using page faults. Page faults have two
causes: (1) when a process first accesses a page, to fetch
the page; (2) when the process first writes to the page,
to mark it dirty. If the first access is a write, one page
fault both fetches and marks it dirty. Because page faults
are expensive, we provide two ways to prevent them:
prefetch and mark-dirty. With prefetch, applications re-
quest the system to fetch pages immediately, by calling

int rprefetch(void *addr, size t len, bool sync) /* ret: error flag */

which prefetches data in a region starting at addr with
length len; if sync is set, it waits until the data it fetched.
To avoid page faults due to writes, applications can re-
quest the system to mark the page dirty, by calling

int rmarkdirty(void *addr, size t len, bool zero) /* ret: err flag */

before writing to a page. If parameter zero is true, this
function zeroes the pages without reading their contents.
This is useful to avoid the overhead of a read-modify-
write cycle if the application intends to completely over-
write the pages (see §8.3).

Function rprefetch is just an optimization that does
not change application semantics. Function rmarkdirty
is also an optimization when parameter zero is false; if
zero is true, rmarkdirty is equivalent to bzero().

5.9 Synchronization
When using regions, one might need to synchronize

processes across hosts (e.g., to share data, as in §5.3). We
provide several distributed synchronization primitives:
barriers, mutexes, and door bells (Figure 4). These are

778    2018 USENIX Annual Technical Conference USENIX Association



Function Description
rbarrier init(name, n) Create barrier for n callers
rbarrier wait(name) Wait for barrier
rmutex init(name) Create mutex
rmutex lock Acquire mutex
rmutex unlock Release mutex
rbell init(name) Create door bell
rbell ring(name) Increment bell value
rbell wait(name) Wait for new value, return it
rdelete(name) Deallocate

Figure 4: Available synchronization primitives.

offered in a user library, since a file system has no such
functionality. A barrier has a parameter n and the caller
blocks until the barrier has been called at least n times.
This serves to synchronize a group of processes. A mu-
tex ensures at most one caller gets the mutex at once. A
door bell has an initial value 0; the ring function incre-
ments it; the wait function waits for it to be incremented
since its last call, returning the current value.

5.10 Caching
When a process uses a region of a different host,

the system locally maintains a page cache of data that
has been recently read or that has been modified. The
cache is a write-back cache (modifications are propa-
gated back to the region in the background). The system
does not provide cache coherence, because it is too ex-
pensive; rather applications can obtain coherence at the
moments of their choice by explicitly using two mecha-
nisms, flushing and clearing caches:

int msync(void *addr, size t len, int flags) /* returns error flag */
int rclearcache(void *addr, size t len) /* return error flag */

where addr is the address within one of the open regions.
Flushing [msync] causes dirty pages to be written back
to the region, so the owner can observe the modified
data. Clearing pages [rclearcache] removes them from the
cache, so that the calling process subsequently obtains
fresh data from the owner. These functions produce an
effect only at a process remote to the region or for multi-
hosted regions, as the owner of single-hosted region does
not have a cache. After clearing a page, a process might
invoke rprefetch() to avoid a page fault (§5.8).

Processes sharing a region must follow some disci-
pline on how to use these functions to avoid data cor-
ruption. We propose a simple and effective scheme in
the next section.

5.11 Sharing data
To correctly share data, processes must flush and clear

their caches carefully. Doing so is not easy in general,
but we now describe a simple scheme that works well
in the use cases that regions are designed for. To ex-

Type Regions RDMA
Owner-
remote

Owner writes to region and
remote process reads, or re-
mote process writes to re-
gion and owner reads

One process writes locally
and another RDMA-reads, or
one process RDMA-writes
and another reads locally

Remote-
remote

A remote process writes to
region and a remote process
reads from region

One process RDMA-writes
to third party’s memory and
another RDMA-reads

Figure 5: Two patterns of sharing data between processes in
different hosts using regions and the analogue using RDMA.

plain how this is done, we broadly classify sharing of
data alongside two dimensions.

The first dimension is who participates in the sharing
relative to who owns the data. There are two possibil-
ities: owner-remote sharing and remote-remote sharing
(Figure 5). With owner-remote sharing, one of the pro-
cesses sharing owns the region or the memory. With
remote-remote, the process that owns the region or mem-
ory is a third party. Owner-remote sharing is simpler to
deal with, because there is only one cache involved (the
cache of the remote process), while remote-remote shar-
ing involves two caches, one for each remote process.

The second dimension is what we call the granularity
of sharing. With fine-grained sharing, processes inter-
leave their execution often and share small bits of data
(e.g., one or a few variables) at a time, with frequent
coordination. For example, in a mutual exclusion algo-
rithm, two processes frequently read and write common
variables containing the state of flags or counters, often
changing the role of who reads and writes the shared
information. With coarse-grained sharing, one process
produces a large chunk of data before another process
consumes it; for example, in the map-reduce computa-
tion of Figure 2, the mappers produce large outputs that
are later consumed by the reducer.

We anticipate that regions will be used for both owner-
remote and remote-remote sharing alongside the first di-
mension, but only for coarse-grained sharing alongside
the second dimension, because fine-grained sharing over
the network is generally too costly. Coarse-grained shar-
ing does not require the cache to be coherent very of-
ten: it suffices to be coherent in the instant after the
producer has finished writing and before the consumer
starts reading. Accordingly, processes can flush or clear
their caches at that moment, as follows. With owner-
remote sharing, the remote process either flushes or clear
its cache, depending on whether it is producing or con-
suming data. With remote-remote sharing, the remote
process that produces data flushes its cache, while the
remote process that consumes data clears its cache.

5.12 Pseudo file system
Regions have more metadata than files. We expose this

metadata to users in a pseudo file system /proc/regions,
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File name Description
hosts List of hosts using regions
memusage Aggregate memory usage of regions hosted locally
pools List of pools (§6.7) with used/free space and daemon’s

logical address
daemon pid of daemon process (§6.4)
procs pid of local processes using regions
files/pathname Metadata of region in pathname: vaddr, maximum

size, pool, attributes

Figure 6: Region metadata stored in pseudo file system
/proc/regions.

accessible only by root. Available Information includes
local memory usage of regions, a list of local pools, and
the local processes using regions (Figure 6). Moreover,
for each region r, /proc/regions/files/r indicates the re-
gion’s fixed virtual address, maximum size, pools from
which memory is allocated, and attributes.

5.13 Limitations
Regions have a limitation: a process cannot use them

to export data in its stack or static variables, because
the process must allocate data in regions using rmalloc.
However, these limitations may not matter: it is easy to
change static variables to heap variables, and it is proba-
bly a bad idea for applications to export data in the stack,
since that data disappears when its call frame is deleted.

6 Realizing regions using RDMA
We now describe how we realize regions using RDMA.

While the design is centered around RDMA, we expect
that its key ideas will be applicable to future disaggre-
gated memory hardware.

6.1 Basic architecture
Figure 7 shows the architecture of regions. There are

four main logical components: REGIONFS file system,
user library, daemon, and manager. Broadly, the RE-
GIONFS file system component implements the VFS ker-
nel operations required of a file system, while the user
library implements synchronization and performance-
enhancing functions. The first module is instantiated
once per host; the second, once per application. The dae-
mon (one per host) allocates and maintains large pools of
memory in which regions are allocated, and shares these
pools with both local and remote processes. The man-
ager provides the control plane, handling every file sys-
tem operation except reading and writing data. The man-
ager has one instance but it is replicated for high avail-
ability using standard mechanisms, such as Paxos state
machine replication [32, 52]. We provide more details in
the next sections.

6.2 RegionFS file system component
This component is a kernel module that implements

the file system for region, with functionality to drive the
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Module Description Section
regionfs file system for regions §6.2
user lib user-level file system §6.3
daemon holds and exports memory pools §6.4
manager handles control operations §6.5
sync funcs barrier, mutex, doorbell §6.3
local alloc kmalloc §6.3
ioctl stubs functions without VFS analogues §6.3
kernel lib communication library §6.12
RPC comm for communicating with manager §6.12
RDMA comm for communicating with daemons §6.12
open regions list list of regions that client has opened §6.2
region map tracks where a region is stored §6.8
vfs ops VFS interface to file system §6.6
RDMA handler accepts RDMA connections §6.12
vaddr allocator allocates virtual addresses §6.10
RPC handler handles requests from clients §6.12
open regions all open regions in the system §6.5
pool allocator allocates cluster memory §6.9
region list all regions in the system §6.5
pool list all pools in the system §6.5
host list keep track of hosts §6.5

Figure 7: Architecture. Region components are in gray. The
figure shows two application hosts, but we expect a few dozens
of them. There is a single manager, and it is replicated for fault
tolerance. The manager is involved only in infrequent control
operations, staying out of the performance-critical data path.

execution of file system operations, coordinating with
the manager and the other hosts’ daemons. The module
keeps an important data structure, the open region list,
which tracks all regions that the application has opened,
with their virtual addresses, and map for locating the data
within the region. We detail the VFS operations in §6.6
after some more background, but they fall into two cate-
gories: Data operations (read, write, readpage, etc) exe-
cute locally or over RDMA, depending on where a region
resides. Metadata operations (directories, file attributes,
etc) are similar to the implementation of a network file
system (e.g., to create a directory, it calls the manager,
which then records information about the directory).

6.3 User library component
The user library provides the synchronization func-

tions (§5.9), an allocator for rmalloc (§5.2), and ioctl
stubs. The synchronization functions issue an RPC to the
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manager, which implements the actual functionality. The
RPC call blocks until the synchronization occurs (e.g., a
barrier gets all its participants). For the rmalloc allocator,
we memory map the region (if it has not been mapped
already) and organize the space using a buddy allocator.
The allocator uses a magic number at the beginning of
the region to know if the allocator structures must be ini-
tialized. The ioctl stubs provide region-specific functions
without a corresponding VFS operation (rsetdefaultattr
(§5.4), rprefetch (§5.8), rmarkdirty (§5.8), rclearcache
(§5.10)). The stubs translate these functions into ioctl’s
that get handled by VFS.

6.4 The daemon
The daemon serves three purposes. First, it overcomes

resource limitations of the RDMA network adapter, which
cannot keep many connections or export many buffers
because its internal cache is small [14]. To address these
problems, the daemon allocates big pools of physical
memory (§6.7) and then allocates regions within these
pools. Thus, a host exports a few pools (rather than many
regions) and a remote process can connect just with the
daemon to access the data of all applications in the host
(instead of connecting to each application). Second, the
daemon allows a host to offer memory to multi-hosted re-
gions (§5.6) even if the host has no running applications.
Third, the daemon supports persistent regions (§5.5) by
holding the region’s data when a process terminates.

6.5 Manager
A central manager handles all control operations: cre-

ation, opening, closing, deletion, and memory-mapping
of regions; file system metadata operations (create and
delete directories, set and get inode attributes); alloca-
tion of memory for regions; and allocation of global vir-
tual addresses. To do that, the manager keeps track of the
hosts in the system, file system metadata (inodes and di-
rectory contents), memory usage of all pools at each host,
allocation of regions, allocation of virtual addresses, and
list of all open regions. The manager is not involved
in reading and writing data in regions—the performance
critical operations—so it is not a bottleneck. However, a
larger system might require distributing the manager.

6.6 VFS operations
To open a region [open()], the client calls the manager;

if the region exists, the manager returns its starting vir-
tual address and region map (§6.8); the client adds the
region to its open regions list and stores its virtual ad-
dress and region map. To create a region, the client calls
the manager to check if the region already exists, to pre-
allocate an initial set of pages to it, to allocate virtual ad-
dresses (§6.10), and to return the starting virtual address
and region map, which the client stores.

To read a region [read()], the client consults the re-

A B region XC region Y1 2 3 4

host 1

C ... pool 2

pool 1A B 1 2 ...

128 KB

host 2

... pool 4

pool 33 4 ...

Figure 8: Four pools in two hosts. Region X stores its data in two
pools of a host. Region Y is multi-hosted, spanning pools of two
different hosts.

gion map and issues RDMA read(s) to the proper host(s);
it then copies the result to the user-provided buffer. To
write a region [write()], the client checks if the write falls
outside the preallocated space for the region; if it does, it
contacts the manager to extend the region and the region
map; then, the library copies the user-provided buffer
into RDMA-registered memory, consults the region map
to determine the host(s) to contact, and issues RDMA-
write(s) to the proper host(s).

To prefetch data [ioctl for rprefetch()], the client con-
sults the region map to determine where to read the data
from, reads over RDMA, and places it in the file system
cache. Similarly, to write back [msync()] a page, the
client consults the region map, write-protects the page,
writes the page over RDMA, and marks the page clean.
To mark a page dirty [ioctl for rmarkdirty()], the client
sets the dirty bit for the page. To clear a page from the
cache [ioctl for rclearcache()], the client evicts it from
the file system cache.

6.7 Pools
A pool is a chunk of physical memory, at one of the

hosts, that is used to store a region or parts thereof (Fig-
ure 8). Pools are allocated by the daemon (§6.4) and
are shared with local processes (using shared memory)
and with remote processes (using RDMA). To share lo-
cally, the daemon allocates its pools using anonymous
files [38], which are chunks of anonymous memory that
can be memory mapped at many processes. More pre-
cisely, the daemon creates a pool using memfd create;
then, an application process can memory map the pool at
the addresses that correspond to a region that the process
needs. Regions need not be contiguous within a pool;
however, to reduce the number of memory maps, the dae-
mon allocates the region in large contiguous chunks.

To share its pools with remote hosts, the daemon
RDMA-registers each pool so that it can be read and writ-
ten over RDMA. RDMA provides access control through
a key for each buffer that a host exports. Because a pool
is a single buffer, this mechanisms is coarse-grained: it
provides identical access to all data in the pool.

6.8 Finding region data
A region map tracks where a region is stored, by map-

ping offsets in a region to a host, a pool in that host, and
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an offset in that pool. The map has entries, each repre-
senting a fixed-length contiguous chunk of memory on
one pool at one host. There are two aspects to this map:
its granularity and how to represent hosts and pools.

Granularity. The granularity involves a trade-off be-
tween the size and the flexibility of the map. A small
grain leads to a prohibitively large map; a large grain
leads to internal fragmentation. A natural size might be
the page size (4 KB), but that causes a significant 0.2%
space overhead for the map (e.g., 2 GB for a 1 TB re-
gion). We chose the granularity to be 128 KB for an
overhead of 64 KB for a 1 TB region.

Target representation. We want map entries to take at
most 64 bits. We use 47 bits to represent a 64-bit address
within a host, by dropping the lower 17 bits and aligning
over 217 =128 KB chunks, which coincides with the map
granularity above. We use the remaining 17 bits as a
global identifier that maps to a host and a pool in that
host; this map is kept by the manager (“pool list” box in
Figure 7) and cached by the user library.

6.9 Managing memory

There are two aspects to memory management: local
and cluster allocation.

Local allocation. Each host has limited memory and one
needs to decide how much to reserve for pools and re-
gions. We make this determination locally at each host,
where the daemon allocates and frees pools as needed.

Cluster allocation. When an application needs mem-
ory, one needs to decide which pool(s) to use; for multi-
hosted regions, one needs to also decide which hosts will
provide memory. We make this determination in a cen-
tralized fashion: the manager knows about all participat-
ing hosts, their pools, and the free space in each pool
(“pool allocator” box in Figure 7). The manager receives
requests to create new regions, with an initial space to
preallocate for future region growth. It then decides from
what pools to allocate the memory using some alloca-
tion policy. The current policy is as follows. For re-
gions in a single host, the manager picks from the pools
in that host; if the host does not have enough memory,
it asks the daemon to create more pools; if the daemon
is unable, the request to create or expand a region fails.
For multi-hosted regions (§5.6), the manager picks mem-
ory from the hosts in a round-robin fashion, allocating
ALLOCSIZE≥217 bytes at a time. Note that ALLOCSIZE
becomes the maximum contiguous size that a client can
transfer in one RDMA request. We pick ALLOCSIZE to
be 2 MB—a value large enough to offset the initial fixed
costs of an RDMA transfer (with a 40 Gbps network, the
initial cost to transfer 2 MB is 0.3% of the total cost).

6.10 Allocating virtual addresses
Regions are assigned a fixed and unique virtual ad-

dress (§5.7). Therefore, we must ensure that (a) differ-
ent regions get assigned disjoint virtual addresses, even
if they are created by different applications in different
hosts, and (b) an application will not use a region’s vir-
tual addresses for other purposes. To ensure (a), we use
centralization: region creation goes through the man-
ager, who knows about all virtual addresses in use by
regions. The manager assigns unique virtual addresses
to each region (“vaddr allocator” box in Figure 7). To
ensure (b), we reserve a range of virtual addresses for
regions using the dynamic linker responsible for load-
ing binaries. There are many ways to do that in Linux.
First, we can specify an ET EXEC object file type in
the ELF binary and then create a program header with
attributes p vaddr and p memsz, indicating the address
and size of the virtual address to reserve [19]; this re-
quires statically linking all libraries. Second, we can use
a custom dynamic linker that avoids the virtual addresses
reserved for regions; we do that by including in the ELF
binary an INTERP program header with the path to the
linker [16]. These approaches require modifying the ap-
plication binary. A third approach, which requires no
binary changes, is to modify the default dynamic linker,
ld-linux.so.

Are there enough virtual addresses? Today, Intel pro-
cessors use page tables with four levels, addressing 48
bits of addresses; one bit is used by the Linux kernel,
leaving 47 bits for applications. If we reserve another bit
for regions, that leaves 64 TB for each application and
64 TB for all regions. If that is not enough, Intel plans
to support five-level page tables, which add 9 bits of vir-
tual addressing [55]; reserving one bit for regions gives
32 PB for each application and 32 PB for all regions.

6.11 Security
We enforce access control using the file system, which

assumes that the kernel is trusted. This provides reason-
able security against damage from bugs and human er-
rors, but an attacker of a host gets access to the regions
in every host. Providing stronger security is future work.

6.12 Other modules
The kernel lib consists of two kernel modules: (1) RPC

comm module implements RPC’s to the manager, and (2)
the RDMA comm modules establishes a reliable RDMA
connection to remote hosts and implements one-sided
RDMA read and write. The RPC handler module at the
manager handles RPC requests from clients. The RDMA
handler at the daemons registers the pools with RDMA,
reports the RDMA key and pool address to the manager
so that clients can later access the pool, and accepts reli-
able RDMA connections from remote daemons.
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System Description
rdma RDMA read or write
nfs-tmpfs NFS to a ramdisk
tmpfs local ramdisk

rr regions
rr+ regions with prefetching

Figure 9: Baselines (top) and systems under study (bottom).

6.13 User-level file interface
An earlier version of REGIONFS was implemented

as a user-level file system [42] and a user-level page-
fault handler [62]. We found that data operations were
faster, because they could use RDMA’s user-level inter-
face. However, page fault handling was slower. As fu-
ture research, it would be interesting to explore a hybrid
design that provides both user-level and kernel interfaces
to the same file system to get the best of both worlds.

7 Implementation
We implemented a prototype of regions for the Linux

kernel v4.8 with 7700 lines of C/C++. Our current im-
plementation differs from the design in a few significant
ways: (1) we do not replicate the manager, (2) at each
daemon, we have a fixed number of pools, hence a fixed
amount of memory for regions, and (3) our VFS file sys-
tem implements only the functionality needed to run our
applications and benchmarks.

8 Evaluation
Our goal is to understand how well do regions per-

form, and how easy it is to use them in practice. To
answer these questions, we use micro-benchmarks, ex-
amine code complexity, modify two applications to use
regions, and measure their performance.

8.1 Testbed
Our testbed has 8 machines connected to a 100 Gbps

RoCE switch. Each server has 128 GB RAM, a 800 GB
SATA SSD, dual Intel Haswell-EP 2.4 GHz processors
with a Mellanox ConnectX-4 NIC and Linux kernel 4.8.

8.2 Baselines
We compare the performance of regions against three

baselines (Figure 9). RDMA offers a different interface
to remote memory (RDMA verbs). Nfs-tmpfs and tmpfs
provide a similar interface as regions (files), but without
access to remote memory: nfs-tmpfs accesses files in a
RAM disk of the NFS server, while tmpfs accesses files
in a local RAM disk without network overheads, repre-
senting an upper bound on achievable performance.

We consider two variants of regions (rr and rr+) with-
out and with performance enhancements that we describe
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Figure 10: Latency for transferring data (no caching).

in each experiment. In all experiments, we configure a
region to be stored remotely from the benchmark or ap-
plication operating on it, and so they access the region
over the network rather than locally.

8.3 Performance of memory-mapped access

Setup. We study the time it takes for regions to read and
write memory-mapped data. In an experiment, we mem-
ory map a file or region, and then sequentially read or
write bytes. We choose an operation type (read or write),
and operation size (number of bytes to read or write), and
repeat the operation 100 times, measuring the latency of
each operation. We compare regions against the base-
lines (nfs-tmpfs, tmpfs, rdma); RDMA does not support
memory-mapping, so we instead read or write the data
using one-sided RDMA verbs. We consider two varia-
tions of region. One variant (rr) performs raw operations
without caching: we drop the cache after every opera-
tion, so that every operation must go over the network.
The other variant (rr+) caches the most recently accessed
page, so that consecutive operations on the same page ac-
cess the cache, and writes to a page are buffered until the
entire page is written. We also consider a variant of nfs-
tmpfs that caches a page in the same way (nfs-tmpfs+).

Results. Figure 10 shows the results. For reads (left),
we see that nfs-tmpfs and rr are flat from 64 bytes un-
til 4K; this is because the file system operates at a page
granularity, so it fetches an entire page even if the re-
quest needs fewer bytes. RDMA and tmpfs have the low-
est latency, at 41% and 54% of rr’s latency on 64 bytes,
and 38% and 28% on 1MB. This is because rr suffers
from overheads of page faults, 4KB-transfer granular-
ity, and the file cache; tmpfs also incurs those overheads,
but it compensates by avoiding the network latency. nfs-
tmpfs is the worst due to higher network overheads. For
writes (right), results are qualitatively similar; for rr and
nfs-tmpfs, writes are slower than reads because the file
system performs a read-modify-write operation, where
it first reads the page before it writes it, requiring two
network round trips. With RDMA, writes are faster than
reads because RDMA writes complete as soon as they are
posted on the PCIe bus at the remote host, whereas reads
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Figure 12: Distribution of latency for reading and writing 4 KB on
a memory-mapped region using rr.

need to get data from memory.
These comparisons are unfair to file systems: unlike

RDMA, they fetch full 4KB pages even for small requests,
and cache them; doing so benefits applications that use
the page later, but Figure 10 gives no credit for that. So,
we now consider the effects of having a cache. Figure 11
shows the results with caching of the last page accessed.
We see much improvement for small requests. Here, rr+
performs better than RDMA up to 4KB (reads) or 1KB
(writes). We include RDMA in the graph for comparison,
but it has no cache. Theoretically, an application can im-
plement its own caching for RDMA, but doing so makes
RDMA even more complex. In contrast, caching comes
for free with a file system, without any application effort.

Figure 12 shows the cdf for reading or writing 4 KB
of data using rr (no cache). We see a concentration from
10–11 us for reads, with the 95-percentile at 12 us; and
a concentration from 23–26 us for writes, with the 95-
percentile at 25.8 us. As we pointed out, writes are
slower because the file system performs a read-modify-
write operation (with memory-mapping, the system does
not know that the application will eventually overwrite
the entire page). This overhead is avoided by calling
rmarkdirty (§5.8) prior to writing a page (not shown).

8.4 Performance of the file system

Setup. We run Sysbench, a standard file IO bench-
mark [59], to measure the performance of reading data
from REGIONFS. We configure Sysbench with a single
thread that reads from a 2GB file and reports throughput,
average latency, and 95% latency. We study sequential
and random reads of 16 KB chunks. We compare RE-
GIONFS against nfs-tmpfs and local tmpfs.

Seq Seq Seq Rnd Rnd Rnd
Tput LatAve Lat95 Tput LatAve Lat95

System (MB/s) (ms) (ms) (MB/s) (ms) (ms)
nfs-tmpfs 4871 0 0.01 4247 0 0.01
rr 5432 0 0.01 4821 0 0.01
tmpfs 6556 0 0 6048 0 0

Figure 13: Sysbench file IO benchmark results. Seq refers to
sequential reads, Rnd to random reads.

regions RDMA
Functionality Description loc loc
Initialization Code needed in every application 6 229
Producer-consumer Simple message queue 29 103
Linked list Traverse linked list 18 68
Hash table Lookup operation of hash table 14 78
Access revocation Remove access from a host 1 37

Figure 14: Equivalent functionality in regions and RDMA.

Results. Figure 13 shows the results. For throughput,
tmpfs performs the best: 6.5 and 6.0 GB/s for sequen-
tial and random reads, respectively, while REGIONFS
is within 83% and 80%—reasonably close to the in-
memory performance of tmpfs, despite going to the net-
work. Nfs-tmpfs is the worst at 4.9 and 4.2 GB/s. For la-
tency, the resolution of the benchmark is 0.01ms, which
is too large to reflect the difference between the differ-
ent systems. (Please refer to the previous experiments,
where we report other latency numbers.)

8.5 Code complexity

Setup. To study code complexity, we implement func-
tionality that is commonly used in remote memory appli-
cations, and compare the number of lines of code (LOC)
to implement them using REGIONFS and RDMA verbs.

Results. Figure 14 shows the complexity results. We
see that region code has much fewer lines of code –
4.2 times on average, excluding initialization and revoca-
tion. For initialization, region requires just opening and
memory mapping a file, while RDMA requires initializing
contexts, memory registration, establishing connections,
creating, transitioning and initializing queue pairs, key
exchange, and more. For the other functionality, regions
are similarly simpler, requiring just memory or file oper-
ations, while RDMA code must manually submit requests
to queue pairs, monitor for completions, etc. In addi-
tion, RDMA verbs require explicit management of a par-
titioned global address space, which translates to more
work at the application level. This complexity makes it
hard for new developers to even get started on RDMA.

Next, we further study complexity, by using regions to
adapt two applications to use remote memory.

8.6 Application: R
R is a statistical processing system for data in mem-

ory. Using regions, we adapt R to use remote memory. R
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Figure 15: R application. Bars show total runtime (smaller is
better). Error bars show std deviation.

has a large number of packages to extend its core func-
tionality, including a package ff that extends R’s memory
capacity using memory-mapped files. ff provides objects
that are each stored in a file; to limit memory consump-
tion, small parts of the file called sections get memory
mapped and unmapped as needed, with at most one sec-
tion per file mapped at a time. We set up ff to use the files
in REGIONFS, and to use sections that are 128KB wide.

Setup. In each experiment, we choose a workload for
R and an input size. We use R to process the workload
with an input of the given size, and we measure the time
it takes. The workload mimics a data analyst that has a
large data set and uses R to analyze parts of it. The data
set is a large matrix stored in a host different from the
one running R, representing data generated elsewhere in
the network that does not fit in R’s memory. The matrix
is stored as several ff objects, one per column, with 200
columns and a number of rows that varies from 5 to 20
million. We consider two workloads:
• R-Agg. Compute an aggregation (mean) over ten

columns of the matrix. This workload represents an ex-
treme in terms of the ratio of computation to memory
accesses: it almost entirely performs memory accesses,
by reading data and only computing a sum.
• R-LR. Compute a linear regression over ten columns

of the matrix. The algorithm accesses the rows of the ma-
trix several times, but performs significant more compu-
tation than R-Agg, representing a balance between mem-
ory accesses and compute.

We consider three systems: rr, tmpfs, and nfs-tmpfs.

Results. Figure 15 (right) shows the R-Agg workload.
Regions approach tmpfs within 1%, despite having to
read the input from a remote host. In comparison, nfs-
tmpfs is within 6% of tmpfs.

For the R-LR workload (Figure 15 left), we see a simi-
lar trend but with a larger running time incurred by linear
regression. Regions are again within 1% of tmpfs, while
nfs-tmpfs is within 9% of tmpfs.

While the performances of tmpfs and nfs-tmpfs are
similar to rr, tmpfs and nfs-tmpfs do not permit R to run
with a large memory because their capacity is limited by

the available memory locally or in the nfs server. By con-
trast, regions can be multihosted (§5.4) to aggregate the
memory of many machines.

We also ran R and placed the ff-generated files in an
SSD rather than in REGIONFS, as a way to obtain more
space. The running time of R increased by 2.5× (for R-
agg) and 2.7× (for R-LR) relative to rr.

As for code complexity, we made no changes to R’s ff
package; we just set it up to use files in REGIONFS.

8.7 Applications: Metis
Metis is an in-memory map-reduce processing frame-

work. Metis reads its initial input from a file, and
launches many threads to run map-reduce. In map-
reduce, the data is partitioned across a set of mappers,
each producing an output; the outputs of all mappers are
grouped based on a key, and the groups are partitioned
across the reducers; each reducer produces some output,
and all outputs are aggregated in the end. Metis runs on
a single host, using work queues to distribute map and
reduce tasks among many threads.

We modify Metis to run across many hosts, using re-
gions to share its input and output. More specifically,
the modified Metis does three things: (1) reads the ini-
tial input from remote hosts using regions, representing
data produced by another computation, such as a previ-
ous map-reduce job1, (2) runs threads across many hosts,
with each host writing the output to a region to make it
available to the other hosts, and (3) collects the regions
with the results from all the hosts and aggregates the out-
put. In effect, we produce a distributed version of Metis,
while retaining its in-memory processing.

Setup. In each experiment, we run a map-reduce job to
produce a histogram. In this job, each mapper processes
a partition of the input and produces a partial histogram;
the reducers then aggregate the bins, each reducer re-
sponsible for a disjoint set of bins; a final stage collects
the bins from the reducers.

We consider two systems: the original Metis and our
distributed version. We vary the number of threads in
each system; for the distributed version, we vary the
number of hosts. We measure the time to run the map-
reduce computation. The input is a 2.6 GB image file,
and the output produces 403 bins. Metis has an option
called prefault to initially preload all input to memory.

Results. Figure 16 (left) shows the results for a single
host as we increase the number of threads. We see that rr
is faster because it reads the input from remote memory,
while Metis reads from an SSD. For one host and one
thread, rr is 2.0× faster than Metis; for 4 threads, it is
3.5× faster. By increasing the number of threads to 4,

1The motivation is that many map-reduce applications run a chain
of map-reduce jobs, each consuming the output of the previous job.
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Figure 16: Metis application performance. On the left, there is
a single host; rr refers to our distributed version of Metis, while
orig and pf refer to the original Metis, where pf enables Metis’s
prefault option. On the right, we show our distributed version of
Metis on 8 hosts (there are no bars for the original Metis since
it runs only on 1 host). The y-axis is running time (smaller is
better). Error bars show std deviation.

Metis and rr improve by 1.91× and 3.4×. If we exclude
reading the input (with prefault), performance improves
by 2.3–2.9× compared to rr.

Figure 16 (right) shows the results for our distributed
version of Metis running on eight hosts and 1–4 threads
per host. We see that performance improves compared to
running with one host. Using 8 hosts, rr is 3.5, 2.5, 1.7×
faster for 1, 2, 4 threads than rr using a single host with
the same number of threads. The improvement comes
from the hosts running the computation in parallel. The
scalability is not linear because the running time is only
a few seconds and so the overhead of synchronizing the
hosts between phases is relatively high.

As for code complexity, the modifications to Metis
consist of 82 lines. This is small, as the changes amount
to changing a centralized system into a distributed one.

9 Conclusion
In this paper, we applied the Unix idea that “every-

thing is a file” to remote memory, obtaining an abstrac-
tion in which a process exports parts of its memory as
a file that remote processes can access. We studied the
design behind this abstraction, described a prototype that
achieves reasonable performance, and showed that appli-
cations can easily benefit from it.
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Abstract

Serverless computing frameworks allow users to launch
thousands of concurrent tasks with high elasticity and
fine-grain resource billing without explicitly managing
computing resources. While already successful for IoT
and web microservices, there is increasing interest in
leveraging serverless computing to run data-intensive
jobs, such as interactive analytics. A key challenge in
running analytics workloads on serverless platforms is
enabling tasks in different execution stages to efficiently
communicate data between each other via a shared data
store. In this paper, we explore the suitability of different
cloud storage services (e.g., object stores and distributed
caches) as remote storage for serverless analytics. Our
analysis leads to key insights to guide the design of an
ephemeral cloud storage system, including the perfor-
mance and cost efficiency of Flash storage for server-
less application requirements and the need for a pay-
what-you-use storage service that can support the high
throughput demands of highly parallel applications.

1 Introduction

Serverless computing is an increasingly popular execu-
tion model in the cloud. With services such as AWS
Lambda, Google Cloud Functions, and Azure Functions,
users write applications as collections of stateless func-
tions which they deploy directly to a serverless frame-
work instead of running tasks on traditional virtual ma-
chines with pre-allocated resources [8, 14, 19, 2]. The
cloud provider schedules user tasks onto physical re-
sources with the promise of automatically scaling ac-
cording to application demands and charging users only
for the fine-grain resources their tasks consume.

While already popular for web microservices and IoT
applications, the elasticity and fine-grain billing advan-
tages of serverless computing are also appealing for
a broader range of applications, including interactive

data analytics. Several frameworks are being developed
which leverage serverless computing to exploit high de-
grees of parallelism in analytics workloads and achieve
near real-time performance [13, 17, 10].

A key challenge in running analytics workloads on
serverless computing platforms is efficiently sharing data
between tasks. In contrast to simple event-driven appli-
cations that consist of a single task executed in response
to an event trigger, analytics workloads typically consist
of multiple stages and require intermediate results to be
shared between stages of tasks. In traditional analytics
frameworks (e.g., Spark, Hadoop), tasks buffer interme-
diate data in local storage and exchange data between
tasks directly over the network [25, 24]. In contrast,
serverless computing frameworks achieve high elastic-
ity and scalability by requiring tasks to be stateless [15].
In other words, a task’s local file system and child pro-
cesses are limited to the lifetime of the task itself. Fur-
thermore, since serverless platforms do not expose con-
trol over task scheduling and placement, direct commu-
nication between tasks is difficult. Thus, the natural ap-
proach for inter-task communication is to store interme-
diate data in a common, remote storage service. We refer
to data exchanged between tasks as ephemeral data.

There are several storage options for data sharing in
serverless analytics jobs, each providing different cost,
performance and scalability trade-offs. Managed object
storage services like S3 offer pay-what-you-use capac-
ity and bandwidth for storage resources managed by the
provider [7]. Although primarily intended for long term
data storage, they can also be used for ephemeral data.
In-memory key-value stores like Redis and Memcached
offer high performance, at the high cost of DRAM [21,
4]. They also require users to manage their own stor-
age VMs. It is not clear whether existing storage options
meet the demands of serverless analytics or how we can
design a storage system to rule them all.

In this paper, we characterize the I/O requirements
for data sharing in three different serverless applications
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including MapReduce sort, distributed software com-
pilation, and video processing. Using AWS Lambda
as our serverless platform, we analyze application per-
formance using three different types of storage sys-
tems. We consider a disk-based, managed object stor-
age service (Amazon S3), an in-memory key value store
(ElastiCache Redis), and a Flash-based distributed stor-
age system (Apache Crail with a ReFlex Flash back-
end [1, 23, 18]). Our analysis leads to key insights for
the design of distributed ephemeral storage, such as the
use of Flash to cost-efficiently support the throughput,
latency and capacity requirements of most applications
and the need for a storage service that scales to meet the
demands of applications with abundant parallelism. We
conclude with a discussion of remaining challenges such
as resource auto-scaling and QoS-aware data placement.

2 Serverless Analytics I/O Properties

We study three different serverless analytics applications
and characterize their throughput and capacity require-
ments, data access frequency and I/O size. We use AWS
Lambda as our serverless platform and configure lamb-
das with the maximum supported memory (3 GB) [8].
Figure 1 plots each job’s cumulative storage bandwidth
usage over time. Figure 2 shows the I/O size distribution.

Parallel software build: We use a framework called
gg to automatically synthesize the dependency tree of a
software build system and coordinate lambda invocations
for distributed compilation [12, 3]. Each lambda fetches
its dependencies from ephemeral storage, computes (i.e.,
compiles, archives or links depending on the stage), and
writes an output file. Compilation stage lambdas read
source files which are generally up to 10s of KBs. While
55% of files are read only once (by a single lambda), oth-
ers are read hundreds of times (by many lambdas in par-
allel), such as glibc library files. Lambdas which archive
or link read objects up to 10s of MBs in size. We use gg
to compile cmake which has 850 MB of ephemeral data.

MapReduce Sort: We implement a MapReduce
style sort application on AWS Lambda, similar to Py-
Wren [17]. Map lambdas fetch input files from long-term
storage (S3) and write intermediate files to ephemeral
storage. Reduce lambdas merge and sort intermediate
data read from ephemeral storage and write output files
to S3. Sorting is I/O-intensive. For example, we measure
up to 7.5 cumulative GB/s when sorting 100 GB with 500
lambdas. Each intermediate file is written and read only
once and its size is directly proportional to the dataset
size and inversely related to the number of workers.

Video analytics: We use Thousand Island Scanner
(THIS) to run distributed video processing on lamb-
das [20]. The input is an encoded video that is divided
into batches and uploaded to ephemeral storage. First

Figure 1: Cumulative throughput over time.

Figure 2: I/Os range from 100s of bytes to 100s of MBs.

stage lambdas read a batch of encoded video frames from
ephemeral storage and write back decoded video frames.
Each lambda then launches a second stage lambda which
reads a set of decoded frames from ephemeral storage,
computes a MXNET deep learning classification algo-
rithm and outputs a classification result. We use a video
consisting of 6.2K 1080p frames and tune the batch size
to optimize runtime (62 lambdas in the decode stage and
310 lambdas for classification). The total ephemeral stor-
age capacity is 6 GB.

3 Remote Storage for Data Sharing

We consider three different categories of storage sys-
tems for ephemeral data sharing in serverless analytics:
fully managed cloud storage (e.g., S3), in-memory key-
value storage (e.g., Redis), and distributed Flash storage
(e.g., Crail-ReFlex). We focus on ephemeral storage as
the original input and final output data of analytics jobs
typically has long-term availability requirements that are
well served by various existing cloud storage systems.

Simple Storage Service (S3): Amazon S3 is a fully
managed object storage system that achieves high avail-
ability and scalability by replicating data across multiple
nodes with eventual consistency [9]. Users pay only for
the storage capacity and bandwidth they use, without ex-
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Figure 3: Peak storage throughput per lambda

Read Write Metadata lookup
S3 12.1 ms 25.8 ms –
Redis 230 µs 232 µs –
Crail-ReFlex 283 µs 386 µs 185 µs

Table 1: Average unloaded latency for 1KB requests.

plicitly managing storage resources. S3 has significant
overhead, particularly for small requests. As shown in
Table 1, it takes on average over 25 ms to write 1KB. For
requests smaller than 100 KB, Figure 3 shows that a sin-
gle lambda achieves less than 5 MB/s (40 Mb/s) through-
put. For requests 10 MB or larger, throughput goes up to
70 MB/s. With up to 2500 concurrent lambda clients,
S3 scales to 80 GB/s with each client achieving approxi-
mately 30 MB/s (not shown in the figure).

Elasticache Redis: DRAM is a viable storage media
for ephemeral data, which is short-lived. We use Elas-
tiCache Redis with cluster mode enabled as an example
in-memory key-value store [21, 6]. Table 1 shows that
Redis latency is ∼240 µs, two orders of magnitude lower
than S3 latency. We find that AWS Lambda infrastruc-
ture introduces some overhead as the same c4.8xlarge
Redis cluster has ∼ 115µs lower round-trip latency from
a r4.8xlarge EC2 client (10 GbE). We also confirm the
640 Mb/s peak per-lambda throughput in Figure 3 is an
AWS Lambda limitation; the EC2 client achieves up to 5
Gb/s for the same, single TCP connection test. Since we
occasionally observe lambda throughput burst above 640
Mb/s, we suspect AWS throttles a 1 Gb/s link.

Crail-ReFlex: Finally, we consider a Flash-based dis-
tributed storage system as Flash offers a medium ground
between disk and DRAM for both performance and cost.
In particular, NVM Express (NVMe) Flash devices are
becoming increasingly popular in the cloud, offering
high performance and capacity per dollar [5]. We choose
to use the Apache Crail distributed storage system as
it is designed for high performance access to data with
low durability requirements, which matches the prop-
erties of ephemeral data. While Crail is originally de-

signed for RDMA networks which are not available on
AWS, its modular architecture supports pluggable stor-
age tiers. We implement a NVMe Flash storage tier for
Crail based on ReFlex, an open-source software system
for low-latency, high throughput access to Flash over
commodity networks [18]. We deploy Crail-ReFlex on
i3 EC2 nodes. Table 1 shows that from a lambda client,
remote access to Flash (using Crail-ReFlex) has similar
read latency as remote access to DRAM (using Redis).
However, while Redis uses a simple hash to assign keys
to storage servers, Crail relies on metadata servers to
route client requests and manage data placement across
nodes for more control over load balancing and quality
of service. Thus, Crail requires an extra round-trip for
metadata lookup which takes 185 µs.

4 Serverless Analytics Storage Analysis

We compare three different storage systems for
ephemeral data sharing in serverless analytics and dis-
cuss how application latency sensitivity, parallelism, and
I/O intensity impact ephemeral storage requirements.

Latency-sensitive jobs: We find that jobs in which
lambdas mostly issue fine-grain I/O operations are
latency-sensitive. Out of the applications we study, only
gg shows some sensitivity to storage latency since the
majority of files accessed are under 100 KB. Figure 4
shows the runtime for a parallel build of cmake as a
function of the number of concurrent lambdas (gg allows
users to set the maximum lambda concurrency, similar to
-j in make). The job benefits from the lower latency of
Redis storage compared to S3 with up to 100 concurrent
lambdas. The runtime with S3 and Redis converges as
we increase concurrency because the job eventually be-
comes compute-bound on AWS Lambda.

Jobs with limited parallelism: While serverless plat-
forms allow users to exploit high application parallelism
by launching many concurrent lambdas, individual lamb-
das are wimpy. Hence, we find that jobs with inherently
limited parallelism (e.g., due to dependencies between
lambdas) are likely to experience lambda resource bot-
tlenecks (e.g., memory, compute and/or network band-
width limits) rather than storage bottlenecks. This is the
case for gg . The first stage of the software build process
has high parallelism as each file can be pre-processed,
compiled and assembled independently. However, sub-
sequent lambdas which archive and link files depend on
the outputs of earlier stages. Figure 5 plots the per-
lambda read, compute and write times when using gg to
compile cmake with up to 650 concurrent lambdas (650
is the highest degree of parallelism in the job’s depen-
dency graph). Using Redis (Figure 5b) compared to S3
(Figure 5a) reduces the average time that lambdas spend
on I/O from 51% to 11%. However, the job takes approx-
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Figure 4: Distributed compilation of cmake is latency-
sensitive at low concurrency and becomes compute-
bound when run with ∼100 or more concurrent lambdas.

imately 30 seconds to complete, regardless of the stor-
age system. This is because optimizing I/O does not af-
fect the lambdas with particularly high compute latency
which become the bottleneck.

Throughput-intensive jobs: MapReduce sort is an
I/O-intensive application with abundant parallelism. Fig-
ure 6 shows the average time each lambda spends on
I/O and compute to sort a 100 GB dataset [16]. We
use S3 for input/output files and compare performance
with S3, Redis (12 cache.r4.2xlarge nodes), Crail-
ReFlex (12 i3.2xlarge nodes) as ephemeral storage.
Storing ephemeral data in remote DRAM (Redis) or re-
mote Flash (Crail-ReFlex) gives similar end-to-end per-
formance, since we provision sufficient bandwidth in the
storage clusters and the bottleneck becomes lambda CPU
usage. Performance scales linearly as we increase the
number of lambdas. S3 achieves lower throughput than
Redis and Crail-ReFlex with 250 lambdas, leading to
higher execution time. However, S3 outperforms a single
node Redis or Crail-ReFlex cluster since a single node’s
network link becomes a bottleneck (not shown in the fig-
ure). Using S3 for ephemeral data shuffling with more
than 250 lambdas in the 100 GB sort job results in I/O
rate limit errors, preventing the job from completing.

Video analytics is another application with abundant
parallelism. Figure 7 shows the average time lambdas
in each stage spend reading, computing, and writing
data. Reading and writing ephemeral data to/from S3
increases execution time compared to Redis and Crail-
ReFlex. Stage 2 read time is higher with Crail-ReFlex
than Redis due to read-write interference on Flash. Some
lambdas in the first stage complete and launch second
stage lambdas sooner than others. Thus read I/Os for
some second stage lambdas interfere with the write re-
quests from first stage lambdas that are still running. This
interference can be problematic on Flash due to asym-
metric read-write latency [18]. However, this does not
noticeably affect overall performance as stage 2 lambdas
are compute-bound. Stage 2 has low write time as its
output (a list of objects detected in the video) is small.

(a) gg cmake with up to 650 concurrent workers and S3 storage

(b) gg cmake with up to 650 concurrent workers and Redis storage

Figure 5: Redis reduces I/O time compared to S3, but
compute is the bottleneck. Based on Figure 6 from [12].

5 Discussion

Our analysis leads to several insights for the design of
ephemeral storage for serverless analytics. We summa-
rize the properties an ephemeral storage system should
provide to address the needs of serverless analytics appli-
cations, make recommendations for the choice of storage
media, and outline areas for future work.

Desired ephemeral storage properties: To meet the
I/O demands of serverless applications, which can con-
sist of thousands of lambdas in one execution stage and
only a few lambdas in another, the storage system should
have high elasticity. The system should also support high
IOPS and high throughput. Since the granularity of data
access varies widely (Figure 2), storing both small and
large objects should be cost and performance efficient.
To relieve users from the difficulty of managing storage
clusters, the storage service should auto-scale resources
based on load and charge users for the bandwidth and
capacity used. This effectively extends the serverless
abstraction to storage. Finally, the storage system can
leverage the unique characteristics of ephemeral data.
Namely, ephemeral data is short-lived and can easily be
re-generated by re-running a job’s tasks. Thus, unlike
traditional long-term storage, an ephemeral storage sys-
tem can provide low data durability guarantees. Further-
more, since the majority of ephemeral data is written and
read only once (e.g., a mapper writes intermediate results
for a particular reducer), the storage system can optimize
capacity usage with an API that allows users to hint when
data should be deleted right after it is read.
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Figure 6: Average time per lambda for 100GB sort. S3
gives I/O rate limit errors with over 250 lambdas.

Choice of storage media: A storage system can sup-
port arbitrarily high throughput by scaling resources up
and/or out. The more interesting question is which stor-
age technology allows the system to cost effectively sat-
isfy application throughput, latency and capacity require-
ments. Figure 1 plots cumulative GB/s over time for gg
cmake, sort, and video analytics which have 0.85, 100,
and 6 GB ephemeral datasets, respectively. Considering
typical throughput-capacity ratios for each storage tech-
nology (DRAM: 20GB/s

64GB = 0.3, Flash: 3.2GB/s
500GB = 0.006,

HDD: 0.7GB/s
6TB = 0.0001), we conclude that the sort ap-

plication is best suited for Flash-based ephemeral stor-
age. The throughput-capacity ratios of the gg-cmake and
video analytics jobs fall into the DRAM regime. How-
ever we observed that using Flash gives similar end-to-
end performance for these applications at lower cost per
GB, as lambda CPU is the bottleneck. I/O intensive ap-
plications with concurrent ephemeral read and write I/Os
are likely to prefer DRAM storage as Flash tail read la-
tency increases significantly with concurrent writes [18].

Future research directions: The newfound elastic-
ity and fine resource granularity of serverless comput-
ing platforms motivates many systems research direc-
tions. Serverless computing places the burden of re-
source management on the cloud provider, which typi-
cally has no upfront knowledge of user workload charac-
teristics. Hence, building systems that dynamically and
autonomously rightsize cluster resources to meet elastic
application demands is critical. The challenge involves
provisioning resources across multiple dimensions (e.g.,
compute resources, network bandwidth, memory and
storage capacity) in a fine-grain manner to find low cost
allocations that satisfy application performance require-
ments. With multiple tenants sharing serverless comput-
ing infrastructure to run jobs with high fan-out, another
challenge is providing predictable performance. Interfer-
ence often leads to high variability, yet a job’s runtime
often depends on the slowest lambda [11]. Developing
fine-grain isolation mechanisms and QoS-aware resource
sharing policies is an important avenue to explore.

Figure 7: Video analytics I/O vs. compute breakdown,
storing ephemeral data in S3, Redis and Crail-ReFlex.

6 Related Work

Fouladi et al. leverage serverless computing for dis-
tributed video processing and overcome the challenge
of lambda communication by implementing the mu soft-
ware framework to orchestrate lambda invocations with a
long lived coordinator that is aware of each worker’s state
and execution flow [13]. While their system uses S3 to
store ephemeral data, we study the suitability of three dif-
ferent types of storage systems for ephemeral data stor-
age. Jonas et al. implement PyWren to analyze the
applicability of serverless computing for generic work-
loads, including MapReduce jobs, and find storage to be
a bottleneck [17]. We build upon their work, provide
a more thorough analysis of ephemeral storage require-
ments for analytics jobs, and draw insights to guide the
design of future systems. Singhvi et al. show that current
serverless infrastructure does not support network inten-
sive functions like packet processing [22]. Among their
recommendations for future platforms, they also identify
the need for a scalable remote storage service.

7 Conclusion

To support data-intensive analytics on serverless plat-
forms, our analysis motivates the design of an ephemeral
storage service that supports automatic and fine-grain al-
location of storage capacity and throughput. For the three
different applications we studied, throughput is more im-
portant than latency and Flash storage provides a good
balance for performance and cost.
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Abstract
Efficient transaction processing over large databases is a
key requirement for many mission-critical applications.
Though modern databases have achieved good perfor-
mance through horizontal partitioning, their performance
deteriorates when cross-partition distributed transactions
have to be executed. This paper presents Solar, a dis-
tributed relational database system that has been success-
fully tested at a large commercial bank. The key fea-
tures of Solar include: 1) a shared-everything architec-
ture based on a two-layer log-structured merge-tree; 2) a
new concurrency control algorithm that works with the
log-structured storage, which ensures efficient and non-
blocking transaction processing even when the storage
layer is compacting data among nodes in the background;
3) fine-grained data access to effectively minimize and
balance network communication within the cluster. Ac-
cording to our empirical evaluations on TPC-C, Small-
bank and a real-world workload, Solar outperforms the
existing shared-nothing systems by up to 50x when there
are close to or more than 5% distributed transactions.

1 Introduction
The success of NoSQL systems has shown the advantage
of the scale-out architecture for achieving near-linear
scalability. However, it is hard to support transaction in
them, an essential requirement for large databases, due
to the distributed data storage. For example, Bigtable [5]
only supports single-row transactions, while others like
Dynamo [6] do not support transactions at all. In re-
sponse to the need for transaction support, NewSQL sys-
tems are designed for efficient OnLine Transaction Pro-
cessing (OLTP) on a cluster with distributed data storage.

Distributed transaction processing is hard because of
the need of efficient synchronization among nodes to en-
sure ACID properties and maintain good performance.
Despite the significant progress and success achieved by
many recently proposed systems [12, 27, 29, 19, 9, 23,
8, 37, 33], they still have various limitations. For exam-
ple, the systems relying on shared-nothing architecture
and 2PC (two-phase commit) heavily suffer from cross-
partition distributed transactions, and thus require care-
ful data partitioning with respect to given workloads. On
the other hand, distributed shared-data systems like Tell

[19] require specific hardware supports that are not com-
monly available yet at large scale.

That said, when no prior assumption can be made re-
garding the transaction workloads, and with no special
hardware support, achieving high performance transac-
tion processing on a commodity cluster is still a challeng-
ing problem. Meanwhile, prior studies have also shown
it is possible to design high performance transaction en-
gines on a single node by exploring the multi-core and
multi-socket (e.g, NUMA) architecture. Both Silo [30]
and Hekaton [7] have used a single server for transaction
processing and demonstrated high throughput. However,
such systems may not meet the needs of big data appli-
cations whose data cannot fit on a single node, hence re-
quiring the support for a distributed data storage.

Inspired by these observations, our objective is to de-
sign a transactional database engine that combines the
benefits of scalable data storage provided by a cluster of
nodes and the simplicity for achieving efficient transac-
tion processing on a single server node, without making
any apriori assumptions on the transactional workloads
and without requiring any special hardware support.

Bank of Communications, one of the largest banks in
China, has faced these challenges. On one hand, new
e-commerce applications from its own and its partners’
mobile and online apps have driven the need for the sup-
port of ad-hoc transactions over large data, where little or
no knowledge/assumptions can be made towards the un-
derlying workloads as new apps emerge constantly. On
the other hand, the bank has a strong interest towards
better utilization of its existing hardware infrastructures
to avoid costly new hardware investment if possible.

With that in mind, Solar is designed using a shared-
everything architecture, where a server node (called T-
node) is reserved for in-memory transaction processing
and many storage nodes (called S-nodes) are used for
data storage and read access. In essence, the S-nodes
in Solar form a distributed storage engine and the T-
node acts as a main-memory transaction engine. The
distributed storage engine takes advantage of a cluster
of nodes to achieve scalability in terms of the database
capacity and the ability to service concurrent reads. The
transaction engine provides efficient transaction process-
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ing and temporarily stores committed updates through its
in-memory committed list. Periodically, recently com-
mitted data items on T-node are merged back into S-
nodes through a data compaction procedure running in
the background, without interrupting ongoing transac-
tions. Overall, Solar is designed to achieve high perfor-
mance transaction processing and scalable data storage.

To speed up update operations in the system, the in-
memory committed list on T-node and the disk storage
from all S-nodes collectively form a distributed two-
layer log-structured merge-tree design [22]. Further-
more, a processing layer called P-unit is introduced to
carry out both data access from S-nodes and any com-
putation needed in a transaction so that the T-node can
be freed from the burden of coordinating data access and
performing business logic computation. This separation
of storage and computation also enables the system to
leverage all CPU resources for transaction scheduling
and validation. Towards realizing the above design prin-
ciple, we also design and implement a number of opti-
mizations and algorithms to minimize the overhead in the
system. Our contributions are summarized as follows:
• A distributed shared everything architecture with a

T-node, a set of S-nodes and P-units is proposed for
achieving high performance transaction processing.
• A hybrid concurrency control scheme called

MVOCC is explored that combines the OCC (opti-
mistic concurrency control) and the MVCC (multi-
version concurrency control) schemes.
• A data compaction algorithm, as part of MVOCC,

is designed to efficiently merge the committed list
on T-node back to S-nodes periodically, without in-
terrupting transaction processing on T-node.
• Several optimizations are investigated to improve

the overall performance, e.g., separation of compu-
tation and storage through P-units, grouping multi-
ple data access operations in one transaction, main-
taining a bitmap for avoiding unnecessary data ac-
cess to the distributed storage engine.

In our empirical evaluation on TPC-C, Smallbank
and a real-world workload, Solar outperforms existing
shared-nothing systems by 50x when the transactions re-
quiring distributed commits are close to or more than 5%.

2 Solar Architecture
Solar is a distributed shared-everything relational
database that runs concurrent transactions on a cluster
of commodity servers. Figure 1 shows its architecture.

2.1 Design considerations
Shared-everything architecture. Shared-nothing archi-
tecture [12, 27] places data in non-overlapping partitions
on different nodes in the hope that it can avoid expensive
2PC among nodes when almost all of the transactions

only need to touch data on one partition and thus can
run independently. For distributed transactions, multiple
partitions with data involved need to be locked, blocking
all other transactions that need to touch those partitions,
which greatly increases system latency. Even worse, it
only takes merely a handful of distributed transactions to
always have locks on all the partitions and, as a result,
system throughput can be reduced to nearly zero.

Instead, Solar employs a shared-everything architec-
ture, where a transaction processing unit can access any
data. ACID can be enforced at a finer granularity of in-
dividual records rather than at partitions. It also avoids
expensive 2PC by storing updates on a single high-end
server, enabling a higher transaction throughput.
In-memory transaction processing and scalable stor-
age. Traditional disk-based databases rely on buffering
mechanisms to reduce the latency of frequent random
access to the data. However, this is several magnitudes
slower than accessing in-memory data due to the limited
size of the buffers and complication added to recovery.

In-memory transaction processing proves to be much
more efficient than disk-based designs [7, 12]. Limited
memory is always a key issue with in-memory transac-
tion processing. Databases must have mechanisms to
offload data to stable storage to free up memory for an
unbounded stream of transactions. A key observation is
that transactions typically only touch a very small subset
of the whole database, writing a few records at a time
in a database of terabytes of data. Thus, Solar reduces
transaction processing latency by writing completely in
memory while having an unbounded capacity by storing
a consistent snapshot on a distributed disk-based storage,
which can be scaled out to more nodes if needed.

Fine-grained data access control. In Solar, process-
ing nodes directly access data stored in remote nodes via
network, which can lead to overheads. Existing studies
have shown that it is advantageous to use networks such
as InfiniBand and Myrinet [19]. However, they are far
from widely available. They require special software and
hardware configurations. It is still unclear how to do that
on a cluster of hundreds of off-the-shelf machines.

Solar is designed to work on a cluster of commodity
servers, and thus uses a standard networking infrastruc-
ture based on Ethernet/IP/TCP. But network latency is
significant because of the transition and data copying into
and out of kernel. It also consumes more CPU than In-
finiband, where data transport is offloaded onto NIC. To
address the issue, we designed fine-grained data access
to reduce network overhead, including caching, avoiding
unnecessary reads and optimizing inter-node communi-
cation via transaction compilation. Fine-grained data ac-
cess brings the transaction latency on par with the state-
of-the-art systems and improves throughput by 3x.
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Figure 1: Architecture of Solar

2.2 Architecture overview
Figure 1 provides an overview of Solar’s architecture.
Solar separates transaction processing into computation,
validation and commit phases using a multi-version op-
timistic concurrency control protocol. A transaction can
be initiated on any one of the P-units, which do not store
any data except several small data structures for data ac-
cess optimization (Section 4). The P-unit handles all the
data fetches from either T-node or S-nodes as well as
transaction processing. The writes are buffered at the P-
unit until the transaction commits or aborts. When the
transaction is ready to commit, the P-unit sends the write
set to T-node for validation and commit. Once T-node
completes the validation, it writes the updates to its in-
memory storage, and also a Write-Ahead Log to ensure
durability. Finally, T-node notifies the P-unit if the trans-
action is successfully committed. P-units can be instan-
tiated on any machine in or outside the cluster (typically
on S-nodes or at client side). They offload most of the
computation burden from T-node so that T-node can be
dedicated to transaction management. Cluster informa-
tion (e.g. states of all nodes, data distribution) are main-
tained by a manager node, and cached by other nodes.
Solar adopts a two-layer distributed storage that mim-

ics the log-structured merge tree (LSM-tree) [22]. The
storage layer consists of 1) a consistent database snap-
shot; and 2) all committed updates since the last snap-
shot. The size of the snapshot can be arbitrarily large and
thus is stored in a distributed structure called SSTable
across the disks of the S-nodes. Records in a table are
dynamically partitioned into disjoint ranges according to
their primary keys. Each range of records is stored in a
structure called tablet (256 MB in size by default), which
is essentially a B-tree index. The committed updates are
stored in Memtable on T-node, which are from recent
transactions and are typically small enough to fit entirely
in memory. Memtable contains both a hash index and a
B-tree index on the primary keys. The data entry points
to all the updates (updated columns only) since the last
snapshot, sorted by their commit timestamp. To access a
specific record, a P-unit first queries Memtable. If there’s
no visible version in Memtable, it then queries SSTable

for the version from the last snapshot.
The size of Memtable increases as transactions are

committed. When it reaches certain memory threshold
or some scheduled off-peak time (e.g. 12:00 am - 4:00
am for Bank of Communications), Solar performs a data
compaction operation to merge the updates in Memtable
into SSTable to free up the memory on T-node. At the
end of data compaction, a new consistent snapshot is cre-
ated in SSTable and Memtable drops all the committed
updates prior to the start of the data compaction.

During data compaction, a new Memtable is created
to handle new transactions arriving after the start of the
data compaction. Then the old Memtable is merged into
SSTable in a way similar to LSM-tree, namely merging
two sorted lists from the leaf level of B-Tree index. In-
stead of overwriting the data blocks with new contents,
we make new copies and apply updates on the copies.
As we will explain in Section 3, transactions that have
already started at the start of data compaction might still
need to access the old SSTable. Thus, this approach min-
imizes the interruption to ongoing transactions.

Note that the function of T-node is twofold: it works as
a transaction manager that performs timestamp assign-
ment, transaction validation as well as committing up-
dates; on the other hand, it serves as the in-memory por-
tion of the log-structured storage layer. This architec-
ture allows low-latency and high-throughput insertion,
deletion and update through the in-memory portion. The
log-structured storage also enables fast data compaction,
which has a very small impact on the system perfor-
mance because it mainly consumes network bandwidth
instead of T-node’s CPU resource.

Finally, Solar uses data replication to provide high
availability and resistance to node failures. In SSTable,
each tablet has at least 3 replicas and they are assigned to
different S-nodes. Replication also contributes to achieve
better load balancing among multiple S-nodes: a read re-
quest can access any one of the replicas. Memtable is
replicated on two backup T-nodes. Details of data repli-
cation and node failures are discussed in Section 3.2.
3 Transaction Management
Solar utilizes both Optimistic Concurrency Control
(OCC) and Multi-Version Concurrency Control (MVCC)
to provide snapshot isolation [2]. Snapshot isolation
is widely adopted in real-world applications, and many
database systems (e.g. PostgreSQL prior to 9.1, Tell
[19]) primarily support snapshot isolation, although it
admits the write-skew anomaly that is prevented by se-
rializable isolation. This paper focuses on Solar’s sup-
port for snapshot isolation, and leave the discussion of
serializable isolation to a future work. To ensure dura-
bility and support system recovery, redo log entries are
persisted into the durable storage on T-node before trans-
action commits (i.e., write-ahead logging).
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3.1 Supporting snapshot isolation
Solar implements snapshot isolation through combining
OCC with MVCC [15, 2]. More specifically, MVOCC is
used by T-node over Memtable. Recall that each record
in Memtable maintains multiple versions. A transaction
tx is allowed to access versions created before its start
time, which is called the read-timestamp and can be any
timestamp before its first read. At the commit time, a
transaction obtains a commit-timestamp, which should
be larger than any existing read-timestamp or commit-
timestamp of other transactions. Transaction tx should
also verify that no other transactions ever write any data,
between tx’s read-timestamp and commit-timestamp, that
tx has also written. Otherwise, tx should be aborted to
avoid lost-update anomaly [2]. When a transaction is al-
lowed to commit, it updates a record by creating a new
version tagged with its commit-timestamp.

With MVOCC, SSTable contains, for all records in
the database, the latest versions created by transactions
with commit-timestamps are smaller than the last data
compaction time (compaction-timestamp). Memtable
contains newer versions created by transactions with
commit-timestamps larger than compaction-timestamp.

T-node uses a global, monotonically increasing,
counter to allocate timestamps for transactions. Transac-
tion processing in Solar is decomposed into three phases:
processing, validating and writing/committing.
Processing. In the processing phase, a worker thread

of a P-unit executes the user-defined logic in a transac-
tion tx and reads records involved in tx from both T-node
and S-nodes. A transaction tx obtains its read-timestamp
(rtx for short) when it first communicates with T-node.
The P-unit for processing tx reads the latest version of
each record involved in tx, whose timestamp is smaller
than rtx. In particular, it first retrieves the latest version
from Memtable. If a proper version (i.e., timestamp less
than rtx) is not fetched, it continues to access the corre-
sponding tablet of SSTable to read the record. During
this process, tx buffers its writes in a local memory space
on the P-unit. When tx has completed all of its business
logic code, it enters the second phase. The P-unit sends a
commit request for tx containing tx’s write-set to T-node.
T-node would then validate and commit the transaction.
Validating. The validation phase is conducted on T-

node, which aims to identify potential write-write con-
flicts between tx and other transactions. During the val-
idation phase, T-node attempts to lock all records in tx’s
write-set (denoted as wx) on Memtable and checks, for
any record r ∈ wx, whether there is any newer version of
r in Memtable whose timestamp is larger than rtx. When
all locks are successfully held by tx and no newer ver-
sion for any record in wx is found, T-node guarantees
that tx has no write-write conflict and can continue to
commit. Otherwise, T-node will abort tx due to the lost

update anomaly. Hence, after validation, T-node deter-
mines whether to commit or abort a transaction tx. If it
decides to abort tx, T-node sends the abort decision back
to the P-unit who sent in the commit request for tx. The
P-unit will simply remove the write-set wx. Otherwise,
the transaction tx continues to the third phase.

Writing/Committing. In this phase, a transaction tx
first creates a new version for each record from its write-
set wx in Memtable, and temporarily writes its transac-
tion ID x into the header field of each such record. Next,
T-node obtains a commit-timestamp for tx by increment-
ing the global counter. T-node then replaces the transac-
tion identifier with tx’s commit-timestamp for each record
with transaction ID x in Memtable (i.e., those from wx).
Lastly, T-node releases all locks held by tx.
Correctness. Given a transaction tx with read-timestamp
(rtx) and commit-timestamp (ctx), Solar guarantees that tx
reads a consistent snapshot of the database and there is
no lost update anomaly.

Consistent snapshot read: Firstly, tx sees the versions
written by all transactions committed before rtx because
those transactions have finished creating new versions for
their write-sets and obtained their commit-timestamps
before tx is assigned rtx as its read-timestamp. Secondly,
the remaining transactions in the system always write a
new data version using a commit-timestamp that is larger
than rtx. Hence, their updates will not be read by tx.
Hence, tx always operates on a consistent snapshot.

Prevention of Lost Update: Lost update anomaly hap-
pens when a new version of record r is created by another
transaction for r ∈ wx, and the version’s timestamp is in
the range of (rtx,ctx). Assume the version is created by
ty. There are two cases:

1) ty acquired the lock on record r prior to tx’s attempt
to lock r. Thus, tx only gets the lock after ty has commit-
ted and created a new version of r. Hence, tx will see the
newer version of r during validation and be aborted.

2) ty acquires the lock on r after tx has secured the lock.
In this case, ty will not be able to obtain a commit times-
tamp until it has acquired the lock released by tx, which
means cty > ctx. This contradicts with the assumption
that the new version of r has a timestamp within (rtx,ctx).
Recall that the timestamp of a new version for a record
r ∈ wy is assigned the commit-timestamp of ty.
3.2 System recovery
Failure of P-unit. When a P-unit fails, a transaction
may still be in the processing phase if it has not issued
the commit request. Such a transaction is treated as be-
ing aborted. For transactions in either the validation or
the committing phase, they can be terminated by T-node
without communicating with the failed P-unit. T-node
will properly validate a transaction in this category and
decide whether to commit or to abort. Both the snapshot
isolation and durability are guaranteed, and all affected
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transactions are properly ended after a P-unit fails.
Failure of T-node. T-node keeps its Memtable in main
memory. To avoid data loss, it uses WAL and forces redo
log records to its disk storage for all committed transac-
tions. When T-node fails, it is able to recover committed
data by replaying the redo log. Moreover, to avoid be-
ing the single point of failure, Solar also synchronizes
all redo log records to two replicas of T-node using a
primary-backup scheme. Each replica catches up the
content of T-node by replaying the log. When the pri-
mary T-node crashes, all actively running transactions
are terminated; and further transaction commit requests
are redirected to a secondary T-node quickly. As a result,
Solar is able to recover from T-node failure and resume
services in just a few seconds.
Failure of S-node. An S-node failure does not lead to
loss of data as an S-node keeps all tablets on disk. The
failure of a single S-node does not negatively impact the
availability of system because all tablets have at least
three replicas on different S-nodes. When one S-node
has crashed, a P-unit can still access records of a tablet
from the copy on another S-node.

3.3 Snapshot isolation in data compaction
Data compaction recycles memory used for Memtable.
It produces a new SSTable by merging the current
Memtable from T-node into the SSTable on S-nodes.
Data compaction. Let m0 and s0 be the current
Memtable and SSTable respectively. Data compaction
creates a new SSTable s1 by merging m0 and s0. An
empty Memtable m1 replaces m0 on T-node to service
future transaction writes. Note that s1 contains the latest
version of each record originally stored in either m0 or
s0, and is a consistent snapshot of the database. It indi-
cates that there is a timestamp tdc for the start of com-
paction such that transactions committed before tdc store
their updates in s1 and transactions committed after tdc
keep new versions in m1.

When data compaction starts, T-node creates m1 for
servicing new write requests. A transaction is allowed to
write data into m0 if and only if its validation phase oc-
curred before data compaction started. T-node waits till
all such transactions have committed (i.e., no more trans-
action will update m0 any more). At this point, S-nodes
start to merge m0 with their local tablets. An S-node does
not overwrite an existing tablet directly. Rather, it writes
the new tablet using the copy-on-write strategy. Thus,
ongoing transactions can still read s0 as usual. An S-
node acknowledges T-node when a tablet on that S-node
involving some records in m0 is completely merged with
the new versions of those records from m0. Data com-
paction completes when all new tablets have been cre-
ated. T-node is now allowed to discard m0 and truncate
the associated log records.

Merged

Merging

Frozen Memtable (m0)

Read s1

Active Memtable (m1)

Read m1

Tablet 1'(s1)

Tablet 2(s0)

Tablet 1(s0)

Tablet 2'(s1)

Figure 2: Data access during data compaction.

Figure 2 illustrates how to serve read access during
data compaction. A read request for any newly commit-
ted record versions (after tdc) is served by m1; otherwise
it is served by s1. There are two cases when accessing s1:
if the requested record is in a tablet that has completed
the merging process, only the new tablet in s1 needs to
be accessed (e.g., Tablet 1’ in Figure 2); if the requested
record is in a tablet that is still in the merging process
(e.g., Tablet 2 in Figure 2), we need to access both that
tablet from so and m0.

Concurrency control. Snapshot isolation needs to be
upheld during data compaction. The following concur-
rency control scheme is enforced. 1) If a transaction
starts its validation phase before a data compaction op-
eration is initiated, it validates and writes on m0 as de-
scribed in Section 3.1. 2) A data compaction operation
can acquire a timestamp tdc only when each transaction
that started validation before the data compaction op-
eration is initiated either aborts or acquires a commit-
timestamp. 3) The data compaction can actually be
started once all transactions with a commit-timestamp
smaller than tdc finish. 4) If a transaction tx starts its val-
idation phase after a data compaction operation is initi-
ated, it can start validation only after the data compaction
operation obtains its timestamp tdc. The transaction tx
validates against both m0 and m1 but only writes to m1.
During validation, tx acquires locks on both m0 and m1
for each record in its write set wx, and verifies that no
newer version is created relative to tx’s read-timestamp.
Once passing validation, tx writes its updates into m1, af-
ter which tx is allowed to acquire its commit-timestamp.
5) If a transaction acquires a read-timestamp which is
larger than tdc, it validates against and writes to m1 only.

Correctness. Consistent snapshot read is guaranteed
by assigning a read-timestamp to each transaction. Its
correctness follows the same analysis as discussed for
the normal transaction processing. The above proce-
dure also prevents lost update during data compaction.
Consider a transaction tx with read timestamp rtx and
commit-timestamp ctx. Assume that another transaction
ty exists, which has committed between rtx and ctx, i.e.,
rtx < cty < ctx, and ty has written some records that tx
will also write later after ty has committed. We only need
to consider the case where cty < tdc < ctx, since, other-
wise, lost update anomaly is guaranteed not to happen

USENIX Association 2018 USENIX Annual Technical Conference    799



because both tx and ty will validate against the same set
of Memtables (m0 and/or m1). This leads to the situa-
tion where rtx < cty < tdc < ctx. Thus, tx will be vali-
dated against both m0 and m1, and it will guarantee to
see the committed updates made by ty. As a result, tx
will be aborted since it will find at least one record with
timestamp greater than its read timestamp rtx. Hence,
lost update anomaly still never happens even when data
compaction runs concurrently with other transactions.
Recovery. The recovery mechanism is required to cor-
rectly restore both m0 and m1 when a node fails during
an active data compaction. Data compaction acts as a
boundary for recovery. Transactions committed before
the start of the latest data compaction (that was actively
running when a crash happened) should be replayed into
m0 while those committed after that should be replayed
into m1. Furthermore, we do not need to replay any trans-
actions committed before the completion of the latest
completed data compaction, since they have already been
successfully persisted to SSTable through the merging
operation of that completed data compaction. To achieve
that, a compaction start log entry (CSLE) is persisted into
the log on disk storage, when a data compaction starts, to
document its tdc. A compaction end log entry (CELE) is
persisted when a data compaction ends with its tdc serv-
ing as a unique identifier to identify this data compaction.

That said, failure of any P-unit does not lead to data
loss or impact data compaction. When T-node fails, the
recovery procedure replays the log from the CSLE with
timestamp tdc, which can be found in the last CELE. Ini-
tially, it replays the log into the Memtable m0. When a
CSLE is encountered, it creates a new Memtable m1 and
replays subsequent log entries into m1. The merging into
S-nodes continues after m0 is restored from the recovery.

If an S-node fails during a data compaction, no data is
lost since S-nodes use disk storage. But an S-node β may
still be in the process of creating new tablets when it fails.
Thus, when β recovers and rejoins the cluster, it contains
the tablets of old SSTable and incomplete tablets pro-
duced during merging. If the system has already com-
pleted the data compaction (using other replicas for the
failed node), there is at least one replica for each tablet in
the new SSTable. The recovered node β simply copies
the necessary tablets from a remote S-node. If data com-
paction has not completed, β would continue merging by
reading records in m0 from T-node.
Storage management. During data compaction, m0 and
s0 (the existing SSTable before the current compaction
starts) remain read only while s1 and m1 are being up-
dated. When compaction completes, m0 and s0 are to be
truncated. But they can only be truncated when no longer
needed for any read access. In summary, m0 and s0 can
be truncated when the data compaction has completed
and no transaction has a read timestamp smaller than tdc.

4 Optimization
It is important for Solar to reduce the network communi-
cation overhead among P-units, S-nodes and T-node. To
achieve better performance, we design fine-grained data
access methods between P-units and the storage nodes.

4.1 Optimizing data access
The correct data version that a transaction needs to read
is defined by the transaction’s read-timestamp, which
could be stored either in SSTable on S-nodes or in
Memtable on T-node. Thus, Solar does not know where
a record (or columns of a record) should be read from,
and P-units have to access both SSTable on S-nodes and
Memtable on T-node to ensure read consistency (though
one of which will turn out to be an incorrect version).

Here, we first present an SSTable cache on P-units to
reduce data access between P-units and S-nodes. Then,
an asynchronous bit array is designed to help P-units
identify potentially useless data accesses to T-node.

4.1.1 SSTable cache
A P-unit needs to pull records from SSTable. These re-
mote data accesses can be served efficiently using a data
cache. The immutability of SSTable makes it easy to
build a cache pool on a P-unit. The cache pool holds
records fetched from SSTable and serves data accesses
to the same records.

The cache pool is a simple key-value store. The key
stores the primary key and the value holds the corre-
sponding record. All entries are indexed by a hash map.
A read request on a P-unit first looks for the record from
its cache pool. Only if there is a cache miss, the P-unit
pulls the record from an S-node and adds it to its cache
pool. The cache pool uses a standard buffer replacement
algorithm to satisfy a given memory budget constraint.

Since SSTable is immutable and persisted on disk, So-
lar does not persist the cache pools. Entries in a cache
pool do expire when the SSTable they were fetched from
is obsolete after a data compaction operation. A P-unit
builds a new cache pool when that happens.

4.1.2 Asynchronous bit array
SSTable is a consistent snapshot of the whole database.
In comparison, Memtable only stores the newly created
data versions after the last data compaction, which must
be a small portion of the database. As a result, most
likely a read request sent to a T-node would fetch noth-
ing from T-node. We call this phenomenon empty read.
These requests are useless and have negative effects.
They increase latency and consume T-node’s resources.

To avoid making many empty reads, T-node uses a
succinct structure called memo structure to encode the
existence of items in Memtable. The structure is period-
ically synchronized to all P-units. Each P-unit examines
its local memo to identify potential empty reads.
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The memo structure is a bit array. In the bit array, each
bit is used to represent whether a column of a tablet has
been modified or not. That is to say, if any record of a
tablet T has its column C modified, the bit correspond-
ing to (T,C) is turned on. Otherwise, the bit is turned
off. Other design choices are possible, e.g., to encode
the record-level information, but that would increase the
size of the bit-array dramatically.
Solar keeps two types of bit arrays. The first type is a

real-time bit array on T-node, denoted as b. The second
type is an asynchronous bit array on each P-unit, which
is a copy of b at some timestamp t, denoted as b′ = bt
where bt is the version of b at time t. A P-unit queries b′

to find potential empty reads without contacting T-node.
On T-node, b is updated when a new version is created

for any column of a record for the first time. Note that
when a version is created for a data item (a column value)
that already exists in Memtable, it is not necessary to
update b, as that has already been encoded in b. Each
P-unit pulls b from T-node periodically to refresh and
synchronize its local copy b′.

During query processing for a transaction tx on a P-
unit p, p examines its local b′ to determine whether T-
node contains newer versions for the columns of interest
of any record in tx’s read set. If (T,C) is 0 in b′ for such a
column C, p treats the request as an empty read and does
not contact T-node; otherwise, p will send a request to
pull data from T-node.

Clearly, querying b′ leads to false positives due to the
granularity of the encoding, and such false positives will
lead to empty reads to T-node. Consider in tablet T , row
r1 has its column C updated and row r2 has not updated
its column C. When reading column C of r2, a P-unit may
find the bit (T,C) in b′ is set while there is no version
for r2.C on T-node. In fact, the above method is most
effective for read-intensive or read-only columns. They
seldom have their bits turned on in the bit array.

Querying b′ may also return false negatives because
it is not synchronized with the latest version of b on T-
node. Once a false negative is present, a P-unit may miss
the latest version of some values it needs to read and end
up using an inconsistent snapshot. To address this issue,
a transaction must check all potential empty reads during
its validation phase. If a transaction sees the bit for (T,C)
is 0 in b′ during processing, it needs to check whether
the bit is also 0 in b during validation. If any empty read
previously identified by b′ cannot be confirmed by b, a
transaction has to be re-processed by reading the latest
versions in Memtable. False negatives are rare because
b does not see frequent update: it is only updated at the
first time any row in tablet T has its column C modified.

4.2 Transaction compilation
Solar supports JDBC/ODBC connections, as well as
stored procedures. The latter takes the one-shot execu-

tion model [26] and avoids client-server interaction. This
poses more processing burden on the DBMS, but enables
server-side optimizations [33, 39, 40]. Solar designs a
compilation technique to optimize inter-nodes commu-
nication by generating an optimized physical plan.

read
Memtable read
SSTable read

write update local buffer on P-unit (local operation)
process expression, project, sort, join ... (local operation)
compound loop, branch

Table 1: Possible operations in a physical plan.
Execution graph. The physical plan, to be executed
by a P-unit, of a stored procedure is represented as a se-
quence of operations in Table 1 (nested structures, such
as branch or loop, can be viewed as a compound opera-
tion). Reads are implemented via RPC while write and
process/computation are local operations. Hence, reads
are the key to optimizing network communication.

SSTable Read(Cust, r2)

Memtable Read(Cust, r2)1) Memtable Read(Item, r1)
2) SSTable      Read(Item, r1)
3) price           =     r1.price
4) Memtable Read(Cust, r2)
5) SSTable      Read(Cust, r2)
6) balance     =      r2.balance
7) balance   -=       price
8) Memtable Write(Cust, r2,
                                   balance)

Memtable Read(Item, r1)

SSTable Read(Item, r1)

balance = r2.balance price = r1.price

balance -= price Memtable Write(Cust, 
r2, balance)

Figure 3: Example of operation sequence and execution graph.
Two operations have to be executed in order if they

have 1) procedure constraint: two operations contain
data/control dependence [21]; or 2) access constraint:
two operations access the same record and one operation
is a write. In practice, we cannot always determine two
database records are the same during compilation, so we
treat it as a potential access constraint if two operations
are accessing the same table. Then, we can represent
an operation sequence as an execution graph, where the
nodes are operations and edges are the constraints and
represent the execution order (Figure 3).

We also support branches and loops as compound op-
erations. A compound operation is a complex operation
if it contains multiple reads. If it only contains one read,
the compound operation is viewed as the same type of
read (defined in Table 1) as that single read. Otherwise,
a compound operation is viewed as a local operation. We
adopt loop distribution [14] to split a large loop into mul-
tiple smaller loops so that they can be categorized more
specifically. For a read operation in a branch block, it
can be moved out for speculative execution since reads
do not have side effect and thus are safe to execute even
if the corresponding branch is not taken.
Grouping Memtable Reads. To reduce the number of
RPCs to T-node, we can group multiple Memtable reads
together in one RPC to T-node if they do not have con-
straints between them. This is done in two passes over
the physical plan. The first pass finds all the Memtable
reads not constrained by any other reads via a BFS over
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the execution graph. The second pass starts from the un-
constrained Memtable reads and marks all local oper-
ations that precede them. Before executing transaction
logics, all those local operations marked in pass 2 get ex-
ecuted first. Then the Memtable reads marked in pass 1
are sent in a single RPC request to T-node.
Pre-executing SSTable Reads. SSTable reads can be is-
sued even before a transaction obtains its read-timestamp
from T-node and we concurrently execute them with
other operations, since there is only one valid snapshot
in SSTable at a time. This requires that the SSTable
reads are not constrained by other operations. During
execution, the result of a SSTable read might or might
not be used depending on if there is update to the same
record in Memtable. Though this optimization might in-
troduce unused SSTable reads, the problem can be mit-
igated by the SSTable cache pool. The main benefit of
pre-executing SSTable reads is reducing wait time and
thus reducing latency. The SSTable reads that can be
pre-executed can be found using a similar algorithm to
the one that finds Memtable reads that can be grouped.

Remarks. The optimizations described in this section
are desgined for short transactions. Other workloads,
such as bulk loading, OLAP, require additional optimiza-
tions. For bulk loading, it is possible to skip the T-node
and directly load data into S-nodes. For OLAP queries,
they can be executed upon a consistent database snap-
shot, and some relational operators can be pushed down
into storage nodes to reduce inter-node data exchange.
5 Experiment
We implemented Solar by extending the open-sourced
version of Oceanbase (OB) [1]. In total, 58,281 lines
were added or modified on its code base. Hence, So-
lar is a full-fledged database system, implemented in
457,206 lines of C++ code. In order to compare it to
other systems that require advanced networking infras-
tructures, we conducted all experiments using 11 servers
on Emulab [38], which allows configuring different net-
work topologies and infrastructures. Each server has two
2.4 GHz 8-Core E5-2630 processors (32 threads in to-
tal when hyper-threading enabled) and 64GB DRAM,
connected through a 1 Gigabits Ethernet by default. By
default ten servers are used to deploy the database sys-
tem. One server is used to simulate clients. We compared
Solar with MySQL-Cluster 5.6, Tell (shared-everything)
[19], and VoltDB Enterprise 6.6 (shared-nothing) [27].
Though Tell is designed for InfiniBand, we used a simu-
lated InfiniBand over Ethernet to have a fair comparison.
We use Tell-1G (Tell-10G) to represent the Tell system
using 1-Gigabits (10-Gigabits) network respectively.

Solar is not compared with lightweight prototype sys-
tems that aim at verifying the performance of new con-
currency control scheme, such as Silo [30]. These sys-
tems achieve impressive throughput, but their implemen-

tations lack many important features, such as durable
logging, disaster recovery and a SQL engine. These fea-
tures often introduce significant performance overhead,
but are ignored by these lightweight system prototypes.

Solar deploys the T-node on a single server. It deploys
both an S-node and a P-unit on each of the remaining
nodes. Tell deploys a commit manager on a single server.
It uses two servers for storage node deployment and the
rest for processing nodes. We tested different combina-
tions of processing node and storage node instances and
chose the best configuration. Tell uses more process-
ing node instances and fewer storage nodes. MySQL-
Cluster deploys both a mysqld and a ndbmtd instance on
each server. VoltDB creates 27 partitions on each server,
which is based on the officially recommended strategy
[32]. It was determined by adjusting partition numbers
to achieve the best performance on a single server.

We used three different benchmarks. Performance of
different systems are evaluated by transaction processed
per second (TPS). In each test instance, we adjusted the
number of clients to get the best throughput.
5.1 TPC-C benchmark
We use a standard TPC-C workload with 45%
NewOrder, 43% Payment, 4% OrderStatus, 4% De-
livery and 4 % StockLevel requests. Request param-
eters are generated according to the TPC-C specifica-
tion. By default, 200 warehouses are populated in the
database. Warehouse keys are used for horizontal par-
titioning. Initially, Solar stores 1.6 million records (2.5
GB) in the Memtable and 100 million records (42GB)
in the SSTable (with 3x replication enabled). After
the benchmark finishes, there are 11 GB data in the
Memtable and the size of SSTable is about 655 GB.

Figure 4 shows the performance of different systems
when we vary the number of warehouses. Solar achieves
about 53k TPS on 50 warehouse, and increases to about
75k TPS with 350 warehouses. When more warehouses
are populated, there are less access contention in the
workload, leading to fewer conflicts and higher concur-
rency. Solar clearly outperforms the other systems. Its
throughput is 4.8x of that of Tell-10G (about 15.6k TPS)
with 350 warehouses. Note that Tell-1G, which uses
the same network infrastructure as Solar, performs even
worse than Tell-10G. VoltDB exhibits the worst perfor-
mance due to distributed transactions. Lastly, Oceanbase
is primarily designed for processing very short transac-
tions and thus is inefficient on general transaction work-
loads. Solar always achieves at least 10x throughput im-
provement over Oceanbase. Therefore, we skip Ocean-
base in other benchmarks.

Figure 5 evaluates the scalability when using differ-
ent number of nodes. The throughputs of Solar, Tell and
MySQL-Cluster increase with more nodes. In contrast,
the throughput of VoltDB deteriorates for the following
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Figure 4: TPC-C: vary num-
ber of warehouses.
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Figure 5: TPC-C: vary num-
ber of servers.
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Figure 6: TPC-C: vary ratio of
cross-warehouse transactions.
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Figure 7: Smallbank: vary
number of accounts.

reason. Distributed transactions are processed by a single
thread in VoltDB. They block all working threads of the
system. With more servers being used, it becomes more
expensive for such request to be processed. The through-
put growth in Solar slows down with more than 7 servers.
As there are more access conflicts with a higher number
of client requests, more transactions fail in the valida-
tion phase. Another reason is that T-node receives more
loads when working with more P-units, and in our exper-
imental setting, T-node uses the same type of machine as
that used for P-units. Hence, the overall performance
increases sub-linear with the number of P-units. How-
ever, in the real deployment of Solar, a high-end server is
recommended for T-node, whereas P-units (and S-nodes)
can be served with much less powerful machines.

Figure 6 shows the results when we vary the ratio of
cross-warehouse transactions. If a transaction accesses
records from multiple warehouse, it is a distributed trans-
action. VoltDB achieves the best performance (141k
TPS) when there are no distributed transactions, which is
about 2.0x of Solar (about 70k TPS). But as the ratio of
distributed transactions increase, VoltDB’s performance
drops drastically as it uses horizontal partitioning to scale
out. The other systems are not sensitive to this ratio.

Latency(ms) Solar
Tell
-1G

Tell
-10G

MySQL-
Cluster VoltDB OB

Payment 6 17 7 17 15619 38
NewOrder 15 28 12 103 30 60

OrderStatus 6 20 8 23 14 30
Delivery 40 160 53 427 14 174

StockLevel 9 14 7 17 14 60
Overall 12 30 12 95 2751 54

Table 2: 90th Latency, TPC-C workload.
Table 2 lists the 90th latency. Solar has a short la-

tency for each transaction. Tell benefits from the bet-
ter network. It gets better latency with the 10-Gbit net-
work than the 1-Gbit one. The long latency of MySQL-
Cluster comes from the network interaction between the
database servers and clients because it uses JDBC in-
stead of stored procedures. VoltDB is slow on dis-
tributed transactions. Under the standard TPC-C mix,
about 15.0% Payment and 9.5% NewOrder requests are
distributed transactions. Hence, the 90th latency of Pay-
ment is long. Though the 90th latency of NewOrder is
small, its 95th latency reaches 15,819 ms.
5.2 Smallbank benchmark
Smallbank simulates a banking application. It contains
3 tables and 6 types of transactions. The workload
contains 15% Amalgamate transactions, 15% Balance

transactions, 15% DepositChecking transactions, 25%
SendPayment transactions, 15% TransactSavings trans-
actions and 15% WriteCheck transactions. Amalgamate
and SendPayment operate on two accounts at a time.
The other transactions access only a single account. We
populated 10 million users into the database. Initially,
there are 8M records (3 GB) in Memtable and 30M
records (1.1 TB) in SSTable. After execution, Memtable
has 5.2 GB data, and SSTable has about 1.1 TB data.

Figure 7 evaluates different systems by populating dif-
ferent number of accounts in the database. Note that x-
axis is shown in log-scale. Solar has the best overall per-
formance. Its throughput initially increases as the num-
ber of accounts increases, because less contention when
there are more accounts. Due to the drop of SSTable’s
cache hit ratio as the number accounts further increases
to 10M, P-units need to issue remomte data access to S-
nodes. As a result, its throughput slightly drops.

Latency(ms) Solar Tell-1G Tell-10G MySQL-
Cluster VoltDB

Amalgamate 5 5 4 8 100
Balance 3 3 3 4 5
Deposit 4 4 4 3 5

SendPayment 7 4 4 12 102
Xact Savings 3 4 4 6 5
WriteCheck 5 4 4 5 6

Overall 5 4 4 8 92

Table 3: 90th Latency, Smallbank workload.
Tell shows a fairly stable performance, but 10G Ether-

net only improves its throughput slightly. MySQL Clus-
ter also has a better performance initially with more ac-
counts, but stabilizes once it has maxed out all hardware
resources. The performance of VoltDB is limited by
cross-partition transactions. Table 3 lists the 90th latency
number. It takes VoltDB much longer time than others
to process Amalgamate and SendPayment and there are
40% such transactions in this workload.

Figure 8 evaluates each systems with different num-
ber of servers. Here, we populated 1M accounts in the
database. Solar shows the best performance and scalabil-
ity with respect to the number of servers. The through-
puts of Solar, Tell and MySQL-Cluster scale linearly
with the number of servers. The throughput of VoltDB is
still quite limited by distributed transaction processing.

5.3 E-commerce benchmark
E-commerce is a workload from an e-business client of
Bank of Communications. It includes 7 tables and 5
transaction types. There are two user roles in this ap-
plication: buyer and seller. There are 4 tables for buyers:
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Figure 8: Smallbank: vary
number of servers.
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Figure 9: E-commerce: vary
number of servers.
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Figure 10: TPC-C: data com-
paction.
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Figure 11: Solar: throughput
under node failures.

User, Cart, Favorite and Order and 3 tables for sellers:
Seller, Item and Stock. These tables are partitioned by
user id and seller id respectively. At the start of the ex-
periment, Solar has 11M records (5GB) in Memtable,
and 25M records (815GB) in SSTable. When all experi-
ments are completed, the Memtable has 8.6 GB data and
the size of SSTable is 881GB.

The workload has 88% OnClick transactions, 1% Ad-
dCart transactions, 6% Purchase transactions and 5%
AddFavorite transactions. The OnClick request is a read-
only transaction while the others are read-write ones.
OnClick reads an item and accesses Item and Stock. Add-
Cart inserts an item into a buyer’s cart and accesses User
and Cart. AddFavorite inserts an item into a buyer’s fa-
vorite list and updates the item’s popular level. It ac-
cesses User, Favorite and Item. Purchase creates an or-
der for a buyer and decrements the item’s quantity. It
accesses User, Order, Item and Stock.

Latency(ms) Solar Tell-1G Tell-10G MySQL-
Cluster VoltDB

OnClick 1 8 4 4 4
AddFavorite 2 12 5 6 47

AddCart 2 2 14 4 4
Purchase 4 12 4 6 49
Overall 1 8 4 4 19

Table 4: 90th Latency, E-commerce workload.
Figure 9 shows the performance of each system using

different number of servers. The throughput of Solar in-
creases with the number of servers used. It has achieved
about 438k TPS when 10 servers are used, and is at
least 3x that of any other system. As shown in Table 4
for the 90th latency, most transactions completed within
1ms by Solar. MySQL-Cluster and Tell also see perfor-
mance improvement when more servers are used. But
they have higher latency as shown in Table 4. VoltDB is
highly inefficient on AddFavorite and Purchase because
tables accessed by these transactions use different parti-
tion keys. These transactions may visit multiple parti-
tions which block other single-partition transactions. As
a result, OnClick and AddCart also have longer latency.
5.4 Data compaction
During transaction processing, Solar may initiate a data
compaction in the background. Figure 10 shows the im-
pact of data compaction on the performance, when Solar
is processing the standard TPC-C workload. As shown
in Figure 10, data compaction has little negative effect
on the performance when 5 or less servers are used. It is
because the performance is mainly limited by the num-
ber of P-units in these cases, and compaction would not

influence the operation of P-units. When more servers
are used, there is about 10% throughput loss. This is be-
cause at this point T-node has more impact on the overall
system performance when more servers are introduced.
Data compaction consumes part of the network band-
width and CPU resources, which are also required by
transaction processing on T-node.
5.5 Node failures
We next investigate the impact of node failures in So-
lar. In this experiment, 3 servers were used to deploy
T-nodes, and 7 servers were used to deploy S-nodes and
P-units. One T-node acts as the primary T-node, and the
other two are secondary T-nodes. The TPC-C benchmark
was used with 200 warehouses populated, and we termi-
nated some servers at some point during execution. Fig-
ure 11 plots the changes of throughput against the time.

Removing 2 S-nodes does not impact the performance,
as the SSTable keeps 3 replicas for each tablet and each
P-unit also caches data from SSTable. Thus, losing 2
S-nodes does not influence performance. We then ter-
minated the primary T-node. Immediately after it went
down, the throughput drops to 0 because no T-node can
service write requests now. After about 7 seconds, a sec-
ondary T-node becomes the primary and the system con-
tinues to function. After the failed T-node re-joins the
cluster, the new primary T-node has to read redo log en-
tries from the disk and send them to the T-node in recov-
ery. Thus, the performance fluctuates and drops a little
bit due to this overhead. It takes about 40 seconds for
the failed T-node to catch up with the new primary, after
which the system throughput returns to the normal level.
5.6 Access optimizations
Figure 12 evaluates the performance improvement
brought by different access optimizations. The y-axis
shows the normalized performance to a baseline system
without using any optimization. The figure shows the
improvement brought by enabling each individual opti-
mization, as well as all of them, using the TPC-C work-
load. Other workloads share the similar performance
trends. With more P-units and S-nodes deployed in sys-
tem, the individual optimizations show different trends
of improvement. The effectiveness of SSTable cache
drops because the overall data access throughput in-
creases when more S-nodes are deployed. However, the
accesses to T-node are more contentious as more P-units
communicate with the single T-node. With transaction
compilation enabled, small data accesses to T-node are

804    2018 USENIX Annual Technical Conference USENIX Association



2 4 6 8 1 0

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

 c a c h e             b i t  a r r a y   

 c o m p i l a t i o n    a l l  

T
h
ro

u
g
h
p
u
t 

(N
o
rm

.)

N u m b e r  o f  S e r v e r s  ( # )
Figure 12: Improvements under different optimizations.

combined, which improves the overall throughput when
there are more P-units. The bit array shows a relatively
stable impact to the throughput because it prunes data ac-
cess to T-node at the column level, which is related to the
workload rather than the number of servers. As long as
a column is not read-only in any row in a tablet, it can-
not prune the data access to T-node. When all optimiza-
tions are used together, they bring about 3x throughput
improvement regardless of the number of servers used.

6 Related Work
Single-node system. Single-node in-memory sys-
tems have exploited NUMA architectures, RTM, latch-
free data structures, and other novel techniques to
achieve high performance transaction processing, such
as Silo [30], Hekaton [7], Hyper [13, 24], DBX [34], and
others. The usage of these systems are subject to the
main memory capacity on a single node as they require
all data stored in the memory. Deuteronomy’s [17] trans-
action component (TC) uses pessimistic, timestamp-
based MVCC with decoupled atomic record stores. It
can manage data sharded over multiple record stores, but
Deuteronomy is not itself networked or distributed; in-
stead stores are on different CPU sockets. It ships up-
dates to the data storage via log replaying and all reads
have to go through TC. In contrast, Solar uses MVOCC
and a cluster of data storage, and it can potentially skip
T-node access using its asynchronous bit arrays.
Shared-nothing systems. Horizontal partitioning is
widely used to scale out. Examples include HStore [12,
26], VoltDB [27], Accordion [25], E-Store [28]. We
have discussed their limitations in Section 2.1. Calvin
[29] takes advantage of deterministic execution to main-
tain high throughput even with distributed transactions.
However, it requires a separate reconnaissance query to
predict unknown read/write set. Oceanbase [1] is Al-
ibaba’s distributed shared-nothing database designed for
short transactions. In shared-nothing systems, locking
happens at partition level. To get subpartition locking,
distributed locks or a central lock manager must be im-
plemented, which goes against the principle for strict
partitioning (i.e., get rid of distributed locking/latching),
and reintroduces (distributed) locking and latching coor-
dination overheads and defeats the gains of shared noth-
ing. That said, new concurrency control schemes can im-
prove the performance of distributed transactions (e.g.,
[20]), when certain assumptions are made (e.g., knowing
the workload apriori, using offline checking, determinis-

tic ordering, and dependency tracking).
Shared-everything systems. The shared-everything ar-
chitecture is an alternative choice to enable high scal-
ability and high performance, where any node can ac-
cess and modify any record in the system. Traditional
shared-everything databases, like IBM DB2 Data Shar-
ing [11] and Oracle RAC [4], suffer from expensive dis-
tributed lock management. Modern shared-everything
designs exploit advanced hardware to improve perfor-
mance, such as Tell [19], DrTM [37] and DrTM+B
[36] (with live reconfiguration and data repartitioning),
HANA SOE [10]. Solar, on the other hand, uses com-
modity servers and does not rely on special hardwares.
Log-structured storage. The log-structured merge
tree [22] is optimized for insertion, update and dele-
tion. It is widely adopted by many NoSQL vendors, such
as LevelDB [18], BigTable [5], Cassandra [16] and etc.
However, none of these supports multi-row transactions.
LogBase [31] is a scalable log-structured database with
a log file only storage where the objective is to remove
the write bottleneck and to support fast system recovery,
rather than optimizing OLTP workloads. Hyder II opti-
mizes OCC for tree-structured, log-structured databases
[3] which Solar may leverage for further improving its
concurrency control scheme. vCorfu [35] implements
materialized streams on a shared log to support fast ran-
dom reads. But, it increases transaction latency as com-
mitting requires at least four network roundtrips.

7 Conclusion
This work presents Solar, a high performance and scal-
able relational database system that supports OLTP over
a distributed log-structured storage. Extensive empirical
evaluations have demonstrated the advantages of Solar
compared to other systems on different workloads. Solar
has been deployed at Bank of Communications to han-
dle its e-commerce OLTP workloads. We plan to open
source Solar on GitHub. Current and future works in-
clude designing a more effective query optimizer and
task processing module, by leveraging the NUMA archi-
tecture, improving its concurrency control scheme, and
designing an efficient and scalable OLAP layer.
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Abstract

Recent studies show that mixing concurrency control
protocols within a single database can significantly out-
perform a single protocol. However, prior projects to mix
concurrency control either are limited to specific pairs
of protocols (e.g mixing two-phase locking (2PL) and
optimistic concurrency control (OCC)) or introduce ex-
tra concurrency control overhead to guarantee their gen-
eral applicability, which can be a performance bottle-
neck. In addition, due to unknown and shifting access
patterns within a workload, candidate protocols should
be chosen dynamically in response to workload changes.
This requires changing candidate protocols online with-
out having to stop the whole system, which prior work
does not fully address. To resolve these two issues, we
present CormCC, a general mixed concurrency control
framework with no coordination overhead across candi-
date protocols while supporting the ability to change a
protocol online with minimal overhead. Based on this
framework, we build a prototype main-memory multi-
core database to dynamically mix three popular proto-
cols. Our experiments show CormCC has significantly
higher throughput compared with single protocols and
state-of-the-art mixed concurrency control approaches.

1 Introduction

With an increase in CPU core counts and main-memory
capacity, concurrency control has become a new bot-
tleneck in multicore main-memory databases due to the
elimination of disk stalls [8, 34]. New concurrency con-
trol protocols and architectures focus on enabling high
throughput by fully leveraging available computation ca-
pacity, while supporting ACID transactions. Some pro-
tocols try to minimize the overhead of concurrency con-
trol [10], while other protocols strive to avoid single
contention points across many cores [27, 35]. How-
ever, these single protocols are typically designed for

specific workloads, may only exhibit high performance
under their optimized scenarios, and have poor perfor-
mance in others. Consider H-Store’s concurrency con-
trol protocol that uses coarse-grained exclusive partition
locks and a simple single-threaded executor per parti-
tion [10]. This approach is ideal for partitionable work-
loads that have tuples partitioned such that a transaction
is highly likely to access only one partition. But this
approach suffers decreasing throughput with increasing
cross-partition transactions [34, 27, 20]. Here, an opti-
mistic protocol may be preferred if the workload mainly
consists of read operations or a pessimistic protocol may
be ideal if the workload exhibits high conflicts. An ap-
pealing solution to this tension is to combine different
protocols such that each protocol can be used to process
a part of workload that they are optimized for, and avoid
being brittle to scenarios where single protocols suffer.

Efficiently mixing multiple concurrency control pro-
tocols is challenging in several ways. First, it should not
be limited to a specific set of protocols (e.g. OCC and
2PL [22, 28]), but be able to extend to new protocols
with reasonable assumptions. Second, the overhead of
mixing multiple protocols should be minimized such that
the overhead is not a performance bottleneck in any sce-
nario. A robust design should ensure that in any case the
mixed execution does not perform worse than any single
candidate protocol involved. Finally, as many transac-
tional databases back user-facing applications, dynami-
cally switching protocols online in response to workload
changes is necessary to maintain performance.

While several recent studies focus on mixed concur-
rency control, they only address a part of the above chal-
lenges. For example, MOCC [28] and HSync [22] are de-
signed to mix OCC and 2PL with minimal mixing over-
head but fails to extend to other protocols; Callas [31]
and Tebaldi [23] provide a general framework that can
cover a large number of protocols, but their overhead of
mixing candidate protocols is non-trivial in some scenar-
ios and do not support online protocol switch thus failing
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to address the workload changes. Our prior work [25]
envisions an adaptive database that mixes concurrency
control, but does not includes a general framework to ad-
dress these challenges.

In this paper, we present a general mixed concur-
rency control scheme CormCC (Coordination-free and
Reconfigurable Mixed Concurrency Control) to sys-
tematically address all the aforementioned challenges.
CormCC decomposes a database into partitions accord-
ing to workload access patterns and assigns a specific
protocol to each partition, such that a protocol can be
used to process the parts of a workload they are opti-
mized for. We then develop several criteria to regulate
the mixed execution of multiple forms of concurrency
control to maintain ACID properties. We show that un-
der reasonable assumptions, this method allows correct
mixed execution without coordination across different
protocols, which minimizes the mixing overhead. In ad-
dition, we develop a general protocol switching method
(i.e. reconfiguration) to support changing protocols on-
line with multiple protocols running together; the key
idea is to compose a mediated protocol compatible with
both the old and new protocol such that switch process
does not have to stop all transaction workers while mini-
mizing the impact on throughput and latency. To validate
the efficiency and effectiveness of CormCC, we develop
a prototype main-memory database on multi-core sys-
tems that supports mixed execution and dynamic switch-
ing of three widely-used protocols: a single-threaded
partition based concurrency control (PartCC) from H-
Store [10], an optimistic concurrency control (OCC)
based on Silo [27], and a two-phase locking based on
VLL (2PL) [21]. 1

The main contributions of this paper over our vision
paper [25] are the following:

• A detailed analysis of mixed concurrency control
design space, a general framework that is not limited
to a specific set of protocols to mix multiple forms
of concurrency control without introducing extra over-
head of coordinating conflicts across protocols.

• A general protocol switching method to reconfigure
a protocol for parts of a workload without stopping the
system or introducing significant overhead.

• A thorough evaluation of state-of-the-art mixed
concurrency control approaches, CormCC’s end-to-
end performance over varied workloads, and the per-
formance benefits and overhead of CormCC’s mixed
execution and online reconfiguration.

1Note that we use strong 2PL (SS2PL), but refer to it as 2PL

2 Related Work

With the increase of main memory capacity and the num-
ber of cores for a single node, recent research focuses
on improving traditional concurrency control protocols
on modern hardware. We classify these works into opti-
mizing single protocols, mixing multiple protocols, and
adaptable concurrency control.

Optimizing Single Protocols Many recent projects
consider optimizing a single protocol, which we believe
are orthogonal to this project. H-Store [8, 10] developed
a partitioned based concurrency control (PartCC) to min-
imize concurrency control overhead. The basic idea is
to divide databases into disjoint partitions, where each
partition is protected by a lock and managed by a sin-
gle thread. A transaction can execute when it has ac-
quired the locks of all partitions it needs to access. Ex-
ploiting data partitioning and the single-threaded model
is also adopted by several research systems [8, 10, 32, 18,
19, 11]. Other projects propose new concurrency con-
trols optimized for multi-core main-memory databases
[6, 14, 27, 17, 35, 20, 13, 29, 30, 36, 12, 37, 16] or new
data structures to remove the bottlenecks of traditional
concurrency control [34, 21, 15, 9].

Mixing Multiple Protocols Callas [31] and its succes-
sive work Tebaldi [23] provide a modular concurrency
control mechanism to group stored procedures and pro-
vide an optimized concurrency control protocol for each
group based on offline workload analysis; for transac-
tion conflicts across groups, Callas and Tebaldi intro-
duce one or multiple protocols in addition to protocols
for each group to resolve them. While stored proce-
dure oriented protocol assignment can process conflicts
within the same group more efficiently, the additional
concurrency control overhead from executing both in-
group and cross-group protocols can become the per-
formance bottleneck for a main-memory database on a
multi-core server. Section 3 shows a detailed discussion.
In addition, the grouping based on offline analysis as-
sumes workload conflicts are known upfront, which may
not be true in real applications. Our work differs from
Callas and Tebaldi in that our mixed concurrent control
execution does not introduce any extra concurrency con-
trol overhead, which greatly reduces the mixing over-
head. Additionally, we do not assume a static work-
load or require any knowledge about workload conflicts
in advance, but allow protocols are chosen and reconfig-
ured online in response to dynamic workloads. Some
other projects exploit the mixed execution of 2PL or
OCC [33, 6, 28, 22]. CormCC differs in that our frame-
work is more general and can be extended to more pro-
tocols.

Adaptable Concurrency Control Adaptable concur-
rency control has been studied in several research works.
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1) One Protocol per Record/Transaction 2) One Protocol per Record, Multiple Protocols Per Transaction 3) Multiple Protocols per Record, One Protocol Per Transaction 4) Multiple Protocols per Record/Transaction

Figure 1: Design choices of mixed concurrency control

At the hardware level, ProteusTM [7] is proposed to
adaptively switch across multiple transaction memory al-
gorithms for different workloads, but cannot mix them
to process different parts of a workload. Tai et al. [24]
shows the benefits of adaptively switching between OCC
and 2PL. RAID [4, 3] proposes a general way to change
a single protocol online. CormCC differs in that it al-
lows multiple protocols running in the same system and
supports to reconfigure a protocol for parts of workload.
In this scenario, the presence of multiple protocols dur-
ing the reconfiguration presents new challenges we are
addressing.

3 Design Choices

While combining multiple protocols into a single sys-
tem can potentially allow more concurrency to improve
the overall throughput, it comes with the cost of higher
concurrency control overhead. In this section, we dis-
cuss two key design choices to explore this trade-off
and show how this trade-off motivates the design of
CormCC. Specifically, we consider whether a record can
be accessed (i.e. read/write) by multiple protocols and
whether a single transaction involves multiple protocols.
Based on the design choices, the overhead can be de-
fined as the cost of executing more than one protocol for
each transaction plus the cost of synchronizing the con-
current read/write operations across different protocols
for each record in the database. Note that in this paper,
we assume all the transaction logic and the correspond-
ing concurrency control logic of a transaction are exe-
cuted by a single thread (i.e. transaction worker), which
is a common model in the design of mixed concurrency
control [31, 23, 28, 22, 6]. We now discuss the four pos-
sible designs that are shown in Figure 1.

One Protocol per Record and per Transaction This
is the simplest case, which is the left most part of Fig-
ure 1. We see that each transaction (denoted by T) can
only choose one protocol (i.e. CC in Figure 1) and each
record (denoted by R) can be accessed via one proto-
col. While the mixing overhead is minimal (based on
our overhead definition), this design has very limited ap-
plicability since each transaction can only access the par-
tition of records managed by a specific protocol. To the
best of our knowledge, no previous work adopts it.

One Protocol per Record, Multiple Protocols per
Transaction This design further allows that one trans-

action executes multiple protocols (shown in the second
design in Figure 1); it provides the flexibility that trans-
actions can access any record and allows a specific proto-
col to process all access to each record according to their
access patterns. On the other hand, the execution of a
single transaction may involve a larger set of instructions
from multiple protocols, which makes CPU instruction
cache less efficient. However, according to our exper-
iment in Section 6.5 this mixing overhead is very low.
MOCC [28] adopts this design to mix OCC and 2PL, but
does not have a general framework.

Multiple Protocols per Record, One Protocol per
Transaction An alternative design (the third one in Fig-
ure 1) is that each record can be accessed via multi-
ple protocols and each transaction executes one protocol.
This design is useful when the semantics of a subset of
transactions (e.g. from stored procedures) can be lever-
aged by an optimized protocol. It raises a problem, how-
ever, that co-existence of multiple protocols on the same
set of records should be carefully synchronized. One so-
lution is to let all protocols share the same set of concur-
rency control metadata and carefully design each proto-
col such that all concurrent access to the same records
can be synchronized without introducing additional co-
ordination. This solution requires specialized design for
all protocols and thus is limited in its applicability. Prior
works Hekaton [6] and HSync [22] adopt this design, but
can only combine 2PL and OCC.

Multiple Protocols per Record and per Transaction
This design (the fourth one in Figure 1) provides the
most fine-grained and flexible mixed concurrency con-
trol; each transaction can mix multiple protocols and
each record can be accessed via different protocols. To
process the concurrent access from different protocols
over the same records, additional protocols are intro-
duced. For example, Callas [31] and its successive work
Tebaldi [23] organized protocols into a tree, where the
protocols in leaf nodes process conflicts of the assigned
transactions and the protocols in interior nodes process
conflicts across its children. The overhead here is that for
each record access, multiple concurrency control logic
should be executed to resolve the conflicts across dif-
ferent protocols over that record. Such overhead, as we
show in Section 6.3, can become a performance bottle-
neck in the multi-core main-memory database.

Summary The above discussion (and our experi-
ments) show that the second design, which lets each pro-
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Figure 2: An Example of CormCC execution

tocol exclusively process the access of a subset of records
to minimize synchronization cost and allows protocols
are mixed within a transaction to provide mixing flex-
ibility, strikes a good trade-off between leveraging the
performance benefits of single protocols and minimizing
mixing overhead. CormCC draws its spirit and builds a
general and coordination-free framework.

4 CormCC Design

We consider a main-memory database with multiple
forms of concurrency control on a multi-core machine.
Each table includes one primary index and zero or more
secondary indices. A transaction can be composed into
read, write (i.e. update), delete, and insert operations to
access the database via either primary or secondary in-
dices in a key-value way. The database is (logically)
partitioned with respect to candidate protocols within the
system, that is, each partition is assigned a single proto-
col. Each protocol maintains an independent set of meta-
data for all records. For all operations on the records of
a partition, the associated protocol executes its own con-
currency control logic to process these operations (e.g.
preprocess, reading/writing, commit), which we denote
as a protocol managing this partition. We use a con-
currency control lookup table to store the mapping from
primary keys to the protocol. The lookup table maintains
the mapping for the whole key space and is shared by all
transaction workers. Prior work [26] shows that such a
lookup table can be implemented in a memory-efficient
and fast way, and thus will not be the performance bottle-
neck of CormCC. CormCC regards secondary indices as
logically additional tables storing entries to primary keys
(not pointers to records); it adopts a dedicated protocol
(e.g. OCC) to process all concurrent operations over sec-
ondary indices. Transactions are routed to a global pool
of transaction workers, each of which is a thread or a pro-
cess occupying one physical core. This worker executes
the transaction to the end (i.e. commit or abort) with-
out interruption. We additionally use a coordinator to
manage the online protocol reconfiguration for all trans-
action workers. It collects statistical information periodi-
cally from all workers, builds a new lookup table accord-
ingly, and finally lets all workers use it. We first outline
the CormCC protocol and then show the correctness of
CormCC. After that, we discuss online protocol recon-
figuration within CormCC.

4.1 CormCC Protocol

CormCC divides a transaction’s life cycle into four
phases: Preprocess, Execute transaction logic (Execu-
tion), Validation, and Commit. We adopt this four-phase
model because most concurrency control protocols can
fit into it. We use a transaction execution example in
Figure 2 to explain the four phases.

Preprocess The preprocess phase executes concur-
rency control logic that should be executed before the
transaction logic. Figure 2 shows that CormCC iter-
ates over all candidate protocols (denoted as CC) and
executes their preprocess phases respectively. Typical
preprocess phase includes initializing protocol-specific
metadata. For example, 2PL Wait-die needs to acquire a
transaction timestamp to determine the relative order to
concurrent transactions, or partition-based single-thread
protocol (e.g. PartCC) acquires locks in a predefined or-
der for partitions the transaction needs to access.

Execution Transaction logic is executed in this phase.
As shown in Figure 2, for each operation (denoted as OP)
issued from the transaction, CormCC first finds the pro-
tocol managing the record using the concurrency control
lookup table. Then, CormCC utilizes the protocol’s con-
currency control logic to process this operation. For ex-
ample, if the transaction reads an attribute of a record
managed by 2PL, it acquires its read lock and returns the
attribute’s value. Note that insert operations can find the
corresponding protocol in the lookup table even though
the record to be inserted is not in the database because
the table stores the mapping of the whole key space.

Validation Each validation phase of all protocols are
executed sequentially in this phase. If the transac-
tion passes all validation, it enters the Commit phase;
otherwise, CormCC aborts it. For example, if OCC
is involved, CormCC executes its validation to verify
whether records read by OCC during Execution have
been modified by other transactions. If yes, the trans-
action is aborted; otherwise, it passes this validation.

Commit Finally, CormCC begins an atomic Commit
phase by executing commit phases of all protocols. For
example, one typical commit phase, like OCC, will ap-
ply all writes to the database and make them visible to
other transactions via releasing all locks. Note that an
abort can happen in the Execution or Validation phase,
in which case CormCC calls the abort functions of all
protocols respectively.

4.2 Correctness

We first show the criteria for CormCC to generate se-
rializable schedule for a set of concurrent transactions
(i.e. its result is equivalent to some serial history of these
transactions) to guarantee the consistency of databases.
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We then discuss how CormCC avoids deadlock, and
show that CormCC is recoverable (i.e. any committed
transaction has not read data written by an aborted trans-
action).

Serializability To guarantee that CormCC is serializ-
able, we require all candidate protocols are commit or-
dering conflict serializable (COCSR). It means that if
two transactions ti and t j have conflicts on a record r (i.e.
ti and t j reads/writes r and at least one of them is a write)
and t j depends on ti (i.e. ti accesses r before t j), then ti
must be committed earlier than t j.

Given that all candidate protocols are COCSR, we
now show that CormCC is also COCSR. Suppose that
two transactions ti and t j have conflicts on a record set
R, we consider two cases. First, if for any conflicted
record r ∈ R the conflicted operation of ti accesses r be-
fore t j, then we have t j depends on ti. Since any can-
didate protocol is COCSR, for each conflicted record r
they ensure that ti is committed before t j. Therefore in
this case, CormCC can maintain COCSR property. In
the second case, there exist two records r1 and r2 ∈ R,
and ti accesses r1 before t j and t j accesses r2 before ti.
We have t j depends on ti and ti depends on t j. In this
case, r1 and r2 must be managed by two separate pro-
tocols p1 and p2 since each single protocol is COCSR
and it is not possible to form a conflict-cycle in one pro-
tocol. Consider p1, which manages r1. Because it is
COCSR, it enforces that ti is committed earlier than t j
since t j depends on ti based on their conflicts on r1. On
the other hand, p2 enforces that ti is committed earlier
than t j. Therefore, there is no valid commit time for both
ti and t j to suffice the above two constraints. Thus, in
this case committing both transactions is impossible and
the COCSR property of CormCC is also maintained. Fi-
nally, since COCSR is a sufficient condition for conflict
serializable [2], CormCC is conflict serializable.

Preprocess Execution Validation

CC2 

 T1  

 T2  

 

 

T1  

T2  

CC1 

CC2 

(1) (2)

CC1 

Figure 3: Examples of deadlock across protocols

Deadlock Avoidance While each individual protocol
can provide mechanisms to avoid or detect deadlocks,
mixing them using CormCC without extra regulation
may not make the system deadlock-free. One potential
solution can be using a global deadlock detection mech-
anism. However, this contradicts our spirit of not coordi-
nating candidate protocols.

Alternatively, we examine the causes of deadlock and
find that under reasonable assumptions, CormCC can
mix single protocols without coordination. Specifically,

the deadlock can happen within a single phase or across
phases when two transactions wait for each other due to
their conflicts on records that are managed by separate
protocols. Figure 3 shows two such cases. The first case
shows that the single-phase deadlock happens because
both protocols CC1 and CC2 can make transactions T1
and T2 wait within one phase. For the second case, we see
that T1 waits for T2 in the Execution phase due to CC1 and
additionally introduce conflicts to make T2 wait for itself
based on CC2 in the Validation phase. Such deadlock
is possible because a protocol (e.g. CC2) can introduce
conflicts across phases, that is, the conflicts introduced
by T1 in Execution are detected by T2 in Validation.

CormCC avoids the two cases by requiring each pro-
tocol make transactions wait due to conflicts in no more
than one phase, and in each phase only one protocol
make transactions wait because of conflicts. If CormCC
can meet the two criteria and each protocol can avoid or
detect deadlocks, then CormCC is deadlock-free.

Recoverable To guarantee CormCC recoverable, we
require that each candidate protocol is strict, which
means that a record modified by a transaction is not vis-
ible to concurrent transactions until the transaction com-
mits. This ensures transactions never read dirty writes
(i.e. uncommited writes) and thus are recoverable [2].
Since each record written by a transaction is managed
by a single strict protocol, the execution of CormCC will
never read dirty writes and is recoverable.

Supported Protocols A candidate protocol incorpo-
rated in CormCC should be COCSR and strict. We find a
wide range of protocols can meet these criteria including
traditional 2PL and OCC [2], VLL [21], Orthrus [20],
PartCC from H-Store [10], and Silo [27].

To enforce that CormCC meets the criteria of
deadlock-free, CormCC requires each protocol specifies
the phases where it makes transactions wait. Based on
these specification, it is easy to detect whether the above
criteria hold for a given set of protocols.

4.3 Online Reconfiguration

Online reconfiguration is to switch a protocol for a sub-
set of records without stopping all transaction workers.
CormCC uses a coordinator to manage this process. At
first, the coordinator collects statistical information from
all workers periodically and generates a new concurrency
control lookup table. When a worker completes a trans-
action, it adopts the new lookup table while workers that
have not finished their current transactions still use the
old one. After all workers use the new table, the old one
is deleted. We now introduce the challenge of supporting
such online protocol switch.

Challenge The potential problem is that some transac-
tion workers may use the new lookup table while others
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Figure 4: Problems during protocol reconfiguration

are using the old one. Figure 4 shows an example of this
problem. Consider two workers W1 and W2, which ex-
ecute transactions T1 and T2 respectively. Assume that
both T1 and T2 access a record (i.e. R1) that is man-
aged by OCC. During their execution, the coordinator in-
forms that the protocol managing R1 should be switched
to 2PL. Therefore, after T1 finishes W1 checks this mes-
sage, performs the switch (i.e. using 2PL to access R1),
and starts a new transaction (T3). Since OCC and 2PL
maintain a different set of metadata, T3 and T2 are not
aware of the conflict of T2 reading R1 and T3 writing R1,
which may make database result in an inconsistent state.

Mediated Switching To address this issue, we pro-
pose mediated switching; it adopts a mediated protocol
that is compatible with both old and new protocols. Dur-
ing reconfiguration, the coordinator lets all workers asyn-
chronously change the old protocol to the mediated one;
After all workers use the mediated protocol, the coordi-
nator then informs them to adopt the new protocol.

We compose a mediated protocol that can execute con-
currency control logic of both old and new protocols.
Specifically, a mediated protocol first executes the Pre-
process logic of both old and new protocols; then, it
enters the Execution phase, where for each record ac-
cess the mediated protocol executes the Execution logic
of both protocols. The mediated protocol’s Validation,
Commit, and Abort also executes the corresponding
logic of both protocols. While it is easy to compose a
protocol that executes the logic of both protocols, one
problem is how to unify different ways of applying mod-
ifications (i.e. insert/delete/write) of different protocols.
We find there are two ways to apply modifications: in-
place modification during execution and lazy modifica-
tion during commit phase. In the mediated protocol, we
always opt for lazy modification, which means storing
the modification in a local buffer during execution and
applying them when the transaction is committed. Since
all protocols are strict, deferring the actual modification
to the commit phase does not violate correctness of pro-
tocols. For example, 2PL performs in-place write, while
OCC writes the new value into a local buffer and applies
it in the commit phase. In our mediated protocol, we
choose the OCC approach of applying writes.

We use the example in Figure 5 to illustrate this pro-
cess, where we need to switch the protocol managing R1
from OCC to 2PL. The mediated protocol here will exe-
cute the logic of both OCC and 2PL (denoted as OPCC).
OPCC adopts the following logic:

T1 Switch

Switch

T2 

R1 
OCC

W1 

T3 

OPCC

W2 

OCC
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Time

Upgrade

Switch
R1 

2PL

W1 

2PL

W2 
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T3 

T5 

Time

Degrade

T6 
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Figure 5: An Example of mediated switching

• If OPCC reads a record, it applies a read lock (2PL)
and reads its value and timestamp into the read set
(OCC).

• If OPCC writes a record, it applies a write lock
(2PL) and stores the record along with new data into
the write set (OCC).

• In the validation phase, it locks all records in write
set (e.g. for critical section of Silo OCC)2 and then
validate the read set using OCC logic.

• In the commit phase, it applies all writes and release
locks acquired by OCC and 2PL respectively.
The switch via mediated protocol is composed of two

phases: upgrade and degrade. The protocol switch is
initiated when the coordinator finds that the protocol for
a record set RS should be changed. It starts the up-
grade phase by issuing a message to all workers to let
them switch the protocol for RS to the mediated proto-
col. Each transaction worker checks for this message be-
tween transactions and acknowledges the message to the
coordinator. During this asynchronous process, workers
that have received the message access RS using the medi-
ated protocol, while other workers may access RS using
the old protocol, which happens when they are running
transactions that started before the switch. The left part
of Figure 5 shows an example of upgrade phase. We see
that worker W2 finished T2 first; thus, it begins to access
R1 using OPCC (i.e. in transaction T3). At the same
time, T1 still accesses R1 using OCC. According to the
above OPCC description, we see that the conflicts on R1
from W1 and W2 can be serialized because OPCC runs
the full logic of OCC. After all workers acknowledge the
switch for RS, the degrade phase begins with the coor-
dinator messaging workers about the degrade to the new
protocol. Therefore, workers are using either the me-
diated protocol or the new protocol, and serializability is
guaranteed by the new protocol logic (e.g. 2PL in our ex-
ample) used in both execution modes. The right part of
Figure 5 shows an example of degrade phase, where the
conflicts over R1 can be serialized because OPCC also
executes the full logic of 2PL.

2Note that OCC and 2PL use different sets of metadata; no deadlock
can exist between them
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5 Prototype Design

We build a prototype main-memory multi-core database
that can dynamically mix PartCC from H-Store [10],
OCC from Silo [27], and 2PL from VLL [21] using
CormCC. PartCC partitions the database and associates
each partition an exclusive lock. Every transaction first
acquires all locks for the partitions it needs to read/write
in a predefined order before the transaction logic is ex-
ecuted. Then, the transaction is executed by a single
thread to the end without additional coordination. In Silo
OCC, each record is assigned a timestamp. During trans-
action execution, Silo OCC tracks read/write operations,
and stores the records read by the transactions along with
their associated timestamps into a local read set and all
writes into a local write set. In the validation phase, Silo
OCC locks the write set and validates whether records in
read set are changed using their timestamps. If the val-
idation succeeds, it commits; otherwise, it aborts. VLL
is an optimized 2PL by co-locating each lock with each
record to remove the contention of the centralized lock
manager.

Our prototype partitions primary indices and corre-
sponding records using an existing partitioning algo-
rithm [5]. Each partition is assigned with a transaction
worker (i.e. thread or process) and each worker is only
assigned transactions that will access some data in its
partition (the base partition), but may also access data in
other partitions (the remote partition). CormCC selects a
protocol for each partition according to its access pattern.
A partition routing table maintains the mapping from pri-
mary keys to partition numbers and also corresponding
protocols. We use stored procedures as the primary in-
terface, which is a set of predefined and parameterized
SQL statements. Stored procedures can provide a quick
mapping from database operations to the corresponding
partitions by annotating the parameters that can be used
to identify a base partition to execute the transaction and
other involved partitions [10].

The mixed execution of the three protocols start with
Preprocess phase, where PartCC acquires all partition
locks in a predefined order. Transactions may wait in
this phase because of partition lock requests. Next, trans-
actions enter Execution, where CormCC uses PartCC,
OCC, and 2PL to process record access operations ac-
cording to which partition the record belongs to. Note
that only 2PL will make transactions wait in this phase,
so transactions in the Execution phase will not wait for
those blocked in the Preprocess, which indicates dead-
locks across PartCC and 2PL is impossible. After the
Execution phase, Validation begins and OCC acquires
write locks and validates the read set [27]. Only OCC re-
quires transactions to wait; thus, they will not be blocked
by previous phases. Finally, there is no wait in commit

phase; all protocols apply writes and release all locks.
We show that such mixed execution is correct. First, for
PartCC and 2PL if a transaction ti conflicts with another
transaction t j, ti cannot proceed until t j commits or vice
versa, so PartCC and 2PL are COCSR. Shang et al. [22]
have proven that Silo OCC is also COCSR. Therefore,
their mixed execution using CormCC maintains COCSR.
In addition, each of PartCC, 2PL, and OCC can indepen-
dently either avoid or detect deadlocks and make transac-
tions conflict-wait in only one mutually exclusive phase
among Preprocess, Execution, or Validation. Thus, their
mixed execution can also prevent or detect deadlocks. Fi-
nally, all protocols are strict, so is their mixed execution.

To enable dynamic protocol reconfiguration, we build
two binary classifiers to predict the ideal protocol for
each partition. The detailed discussion of classifiers are
presented in a technical report [1].

6 Experiments

We now evaluate the effectiveness of mixed execution
and online reconfiguration of CormCC. Our experiments
answer four questions: 1) How does CormCC perform
compared to state-of-the-art mixed concurrency control
approaches (Section 6.3)? 2) How does CormCC adap-
tively mix protocols under varied workloads over time
(Section 6.4)? 3) What is the performance benefit and
overhead of mixed execution (Section 6.5)? 4) What is
the performance benefit and overhead of online reconfig-
uration (Section 6.6)?

All experiments are run on a single server with four
NUMA nodes, each of which has a 8-core Intel Xeon
E7-4830 processor (2.13 GHz), 64 GB of DRAM and
24 MB of shared L3 cache, yielding 32 physical cores
and 256 GB of DRAM in total. Each core has a pri-
vate 32 KB of L1 cache and 256 KB of L2 cache. We
disable hyperthreading such that each worker occupies a
physical core. To eliminate network client latency, each
worker combines a client transaction generator.

6.1 Prototype Implementation
We develop a prototype based on Doppel [17], an open-
source multi-core main-memory transactional database.
Clients issue transaction requests using pre-defined
stored procedures, where all parameters are provided
when a transaction begins, and transactions are exe-
cuted to the completion without interacting with clients.
Stored procedures issue read/write operations using in-
terfaces provided by the prototype. Each transaction is
dispatched to a worker that runs this transaction to the
end (commit or abort).

Workers access records via key-value hash tables.
Each worker thread occupies a physical core and main-
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Figure 6: A three-layer configuration of Tebaldi
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Figure 7: Comparison under different partitionability
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Figure 8: Comparison unber different conflicts

tains its own memory pool to avoid memory allocation
contention across many cores [34]. A coordinator thread
is used for extracting features for the prediction classi-
fiers from statistics collected by workers and predicting
the ideal protocol to be used. Our prototype supports
automatically selecting PartCC [10], Silo OCC [27],
or No-Wait VLL [21] for each partition. Note that we
have compared 2PL variants No-Wait and Wait-Die, and
find that 2PL No-Wait performs best in most cases be-
cause of lower synchronization overhead of lock man-
agement [20]. We do not implement logging in CormCC
since prior work shows that logging is not a performance
bottleneck [17, 38]. Our comparison additionally in-
cludes a general mixed concurrency control framework
based on Tebaldi [23] (denoted as Tebaldi) and a hybrid
approach of OCC and 2PL [22, 28] (denoted as Hybrid),
that adopts locks to protect highly conflicted records but
uses validation for the rest. We statically tune the set of
highly conflicted records to make Hybrid have the high-
est throughput. Specifically, for our highly conflicted
workload we protect 1000 mostly-conflicted records for
each partition and for our lowly conflicted workload no
records will be locked and we use OCC for them.

6.2 Benchmarks & Experiment Settings

We use YCSB and TPC-C in our experiments. We
generate one table for YCSB that includes 10 million
records, each with 25 columns and 20 bytes for each
column. Transactions are composed of mixed read and
read-modify-write operations. The partitioning of YCSB
is based on hashing its primary keys. TPC-C simulates
an order processing application. We generate 32 ware-
houses and partition the store according to warehouse
IDs except the Item table, which is shared by all workers.
We use the full mix of five procedures.

To generate varied workloads, we tune three parame-
ters. The first is the percentage of cross-partition trans-
actions ranging from 0 to 100. We set the number of
partitions a cross-partition transaction will access as 2;
The second is the mix of stored procedures for a work-
load. Note that YCSB only has one stored procedure,
and we tune the number of operations per transaction and
the ratio of read operations. Finally, we vary data access
skewness. We use Zipf to generate record access distri-

bution within a partition. T heta of Zipf can be varied
from 0 to 1.5. This means for TPC-C within a partition
determined by WarehouseID, we skew record access for
related tables. We also vary these parameters to train our
classifiers for protocol prediction. The detailed configu-
ration of training classifiers is illustrated in [1].

6.3 Comparison with Tebaldi

Tebaldi [23] is a general mixed concurrency control
framework that groups stored procedures according to
their conflicts and build a hierarchical concurrency con-
trol protocols to address in-group and cross-group con-
flicts. Figure 6 shows a three-layer configuration for
TPC-C. We see that NewOrder (NO) and Payment (PM)
are in the same group and their conflicts are managed by
runtime pipeline (RL). Runtime pipeline is an optimized
2PL that can leverage the semantics of stored procedures
to pipeline conflicted transactions. Delivery (DEL) alone
is in another group also run by runtime pipeline. Con-
flicts between the two groups are processed by 2PL. Or-
derStatus (OS) and StockLevel (SL) are executed in a sep-
arate group. Their conflicts with the rest of the groups
are processed by Serializable Snapshot Isolation (SSI).
For every operation issued by a transaction, it needs to
execute all concurrency control logic from the root node
to the leaf node to delegate the conflicts to specific pro-
tocols. For example, any operation issued by NewOrder
needs to go through the logic of SSI, 2PL, and RL. While
this approach can process conflicts in a more fine-grained
way, the overhead of multiple protocols for all opera-
tions can limit the performance. Another restriction of
Tebaldi is that it relies on the semantics of stored proce-
dures to assign protocols. For workloads including data
dependent behaviour (e.g. hot keys or affinity between
keys) and not having stored procedures with rich seman-
tics (i.e. YCSB in our test), Tebaldi can only use one
protocol to process the whole workload. In our test, we
use this 3-layer configuration for Tebaldi, which has the
best performance for TPC-C [23]. Note that we use an
optimized Runtime Pipeline reported in [31], which can
eliminate the conflicts between Payment and NewOrder.

We first compare CormCC with Tebaldi, imple-
mented in our prototype, using TPC-C over mixing well-
partitionable and non-partitionable workloads. We par-
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Figure 9: Holistic test for CormCC under YCSB varied workloads over time
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Figure 10: Holistic test for CormCC under TPC-C varied workloads over time
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Figure 11: CormCC throughput ratio to single protocols for YCSB
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Figure 12: CormCC throughput ratio to single protocols for TPC-C

tition the database into 32 warehouses and start our test
with a well-partitionable workload (i.e. each partition
receives 100% single-partition transactions), and then in-
crease the number of non-partitionable warehouses (i.e.
each receives 100% cross-partition transactions) by an
interval of 4. Throughout this test, we use default trans-
action mix of TPC-C. Since both Tebaldi and CormCC
use 2PL as their candidate protocol, our test additionally
includes the results of 2PL.

Figure 7 shows the performance results of three proto-
cols. CormCC first adopts PartCC and then proceeds to
mix PartCC and 2PL for workloads with mixed partition-
ability. When the workload becomes non-partitionable,
2PL is used by CormCC. We see that CormCC always
performs better than Tabaldi and 2PL because it can
leverage the partitionable workloads. Tebaldi always
performs slightly worse than 2PL because of its concur-
rency control overhead from multiple protocols. While
such overhead is not substantial in a distributed environ-
ment as shown in the original paper [23], it can become
a bottleneck in a main-memory multi-core database due
to the elimination of network I/O operations.

To highlight Tebaldi’s performance benefits of effi-
ciently processing conflicts, we increase the access skew-
ness within each warehouse by varying the theta of Zipf
distribution from 0 to 1.5 with an interval 0.3. Here,
we choose 16 warehouses as partitionable and the rest
as non-partitionable. Figure 8 shows that the throughput

of all protocols increases at first, because more access
skewness introduces better access locality and improves
CPU cache efficiency. Then, high conflicts dominate the
performance and the throughput decreases for all proto-
cols. We see that with higher conflicts Tebaldi gradually
outperforms 2PL, and suffers less throughput loss in the
workload with very high conflicts.

These tests show that while Tebaldi can efficiently pro-
cess conflicts, it comes with a non-trivial concurrency
control overhead. In addition, Tebaldi needs to know the
conflicts of a workload a priori such that it can utilize
the static analysis [23] to make an efficient configuration
offline. In contrast, CormCC mixes protocols with mini-
mal overhead, requires no knowledge of conflicts before-
hand, and can dynamically choose protocols online.

6.4 Tests on Varied Workloads

We evaluate the holistic benefits of CormCC by running
YCSB with randomizing benchmark parameters every 5
seconds. We compare the same randomized run (e.g.
same parameters at each interval) with fixed protocols
and Hybrid. CormCC collects features every second and
concurrently selects the ideal protocol for each partition.

We randomly vary five parameters: i) read rate chosen
in 50%, 80%, and 100%; ii) number of operations per
transaction, selected between 15 and 25; iii) theta of Zipf
for data access distribution; chosen from 0, 0.5, 1, and
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Figure 13: Measuring partitionability
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Figure 14: Measuring read/write ratio
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Figure 15: Testing the overhead of mixed execution

1.5; iv) the number of partitions that have cross-partition
transactions (with the remaining partitions as well parti-
tionable): we randomly choose the number from 0 to 32
with the interval 4; v) the percentage of cross-partition
transactions for partitions in (iv), randomly selected be-
tween 50% and 100%.

The test starts with a well-partitionable workload of
80% read rate, 15 operations per transaction, and a uni-
form access distribution (i.e. theta = 0). Figure 9 shows
the test results of every 2 seconds for 100 seconds in to-
tal. We see that in almost all cases CormCC can either
choose the best protocol or find a mixed execution to out-
perform any candidate protocols and Hybrid approach,
while not experiencing long periods of throughput degra-
dation due to switching. CormCC can achieve at most
2.5x, 1.9x, 1.8x, and 1.7x throughput of PartCC, OCC,
2PL, and Hybrid respectively.

We additionally test the performance variations of
CormCC under randomized varied workloads of TPC-
C. We partition the database into 32 warehouses, and
have each worker collect features every second and se-
lect the ideal protocol for each warehouse at runtime. We
permute four parameters to generate varied workloads.
First, we randomly select a transaction mix in 10 can-
didates, where one is default transaction mix of TPC-C
and other nine are randomly generated. Then, we vary
the three parameters: record skew for related tables, the
number of warehouses that have cross-partition transac-
tions, and the percentage of cross-partition transactions
in the same way as YCSB test. We report the results of
every 2 seconds in Figure 10. The test starts with well-
partitionable default transaction mix of TPC-C and varies
workload every 5 seconds. We see that it has similar be-
haviours of Figure 9, where CormCC can almost always
perform the best. In this test, CormCC can achieve at
most 2.8x, 2.4x, 1.7x, and 1.8x throughput of PartCC,
OCC, 2PL, and Hybrid respectively.

We then report the ratios of the mean throughput of
CormCC (after protocol switching) to that of the worst
and best single protocols (labeled by max and min respec-
tively) for each varied workload (i.e. every 5s) of both
benchmarks in Figure 11 and Figure 12. We addition-
ally report the ratio of the mean throughput of CormCC
to the average throughput of three single fixed protocols
(labelled by avg) in each varied workload. We see that

the highest ratio CormCC can achieve for YCSB and
TPC-C is 2.2x and 2.6x respectively. For 55% work-
loads of YCSB and 85% workloads of TPC-C, the av-
erage ratio is at least 1.2x. The lowest ratio in YCSB
and TPC-C test is 0.91x and 0.94x respectively, which
means that for the two benchmarks CormCC can achieve
at least 91% and 94% throughput of the best protocol due
to wrong protocol selection for some partitions. These
results show that CormCC can achieve significant per-
formance gains when a wrong protocol is selected for a
workload, can improve the throughput over single proto-
cols for a wide range of varied workloads, and is robust
to dynamic workloads.

6.5 Evaluating Mixed Execution
In this subsection, we first evaluate the performance ben-
efits of CormCC over single protocols and Hybrid ap-
proaches, and then test the overhead of CormCC.

We first show how mixed well-partitionable and non-
partitionable workloads based on YCSB benchmark in-
fluence the relative performance of CormCC to other
protocols. We partition the database into 32 partitions,
and start our test with a well-partitionable workload and
then increase the number of non-partitionable partitions
by an interval of 4. In this test, each transaction includes
80% read operations. For these tests, we use transactions
consisting 20 operations and skew record access within
each partition using Zipf distribution with theta = 1.5.

Figure 13 shows that CormCC always performs best
because it starts with PartCC and then adaptively mixes
PartCC for partitionable workloads and 2PL for highly
conflicted non-partitionable counterpart. Compared to
CormCC, the performance of PartCC degrades rapidly
due to high partition conflicts and other protocols cannot
take advantage of partitionable workloads.

We then test workloads with the increasing percent-
age of read operations. Initially, operations accessing
each partition include 80% read operations; we increase
the number of partitions receiving 100% read opera-
tions by an interval of 4. In this test, our workload in-
cludes 16 partitions having 100% cross-partition trans-
actions among them, while the others are only accessed
by single-partition transactions.

Figure 14 shows that CormCC has remarkable
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throughput improvement over other protocols by com-
bining the benefits of PartCC, OCC, and 2PL. Specif-
ically, CormCC first mixes PartCC and 2PL, and then
applies OCC for non-partitionable and read-only parti-
tions. While Hybrid can adaptively mix OCC and 2PL,
it is sub-optimal due to failing to leverage the benefits
of PartCC. In these tests, the speed-ups of CormCC over
PartCC, OCC, 2PL, and Hybrid can be up to 3.4x, 2.2x,
1.9x, and 2.0x respectively.

Next, we test the overhead of CormCC. We first exe-
cute transactions using CormCC and track the percent-
age of each transaction’s operations executed on records
owned by a specific protocol (e.g. 1/2 of the transaction’s
records use OCC and 1/2 of the transaction’s records use
2PL). With the percentages collected, we execute a mix
of transactions where a corresponding percentage of the
transactions are executed exclusively on a single proto-
col (e.g. 1/2 of the transactions are only OCC and 1/2 are
only 2PL), and compare the throughputs of the two ap-
proaches. Note that to test the overhead without involv-
ing the performance advantages of CormCC over single
protocols, we use a single core to execute all transactions.

Figure 15 shows a micro-benchmark to evaluate mixed
execution overhead. We execute 50,000 transactions,
each having 20 operations with 50% read operations,
with the rest as read-modify-write operations. Key ac-
cess distribution is uniform. The dataset is partitioned
into 32 partitions; 10 of them are managed by OCC, 10
of them are for 2PL, and 12 are PartCC. The “mixed pro-
tocols” shows the average throughput of CormCC with
different percentage of operations executed by different
protocols; the “single protocol” results show the average
throughput of a single protocol (e.g. 100% of transac-
tions use OCC), or using single protocols to exclusively
execute a corresponding percentage of transactions. We
find that our method has roughly the same throughput
as a mix of “single protocols”, which shows that the
overhead of mixed concurrency control is minimal in
CormCC. This is largely due to the fact that we do not
add extra meta-data operations to synchronize conflicts
across protocols.

6.6 Evaluating Mediated Switching

To evaluate the performance benefits and overhead of
mediated switching (denoted as Mediated), we com-
pare it with a method of stopping all protocol execu-
tion and applying the new protocol (denoted as StopAll).
In our test, we perform a protocol switch from OCC
to 2PL using five YCSB workloads with uniform key
access distribution. The first workload only includes
short-lived transactions with each having 10 read and 10
read-modify-write operations. The other workloads in-
clude a mix of short and long-running transactions. We
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Figure 16: Testing mediated switching

generate long-running transactions by introducing client
think/wait time to short transactions. The long transac-
tions last 0.5s, 1s, 2s, and 4s for the four workloads re-
spectively and are dedicated to one worker. We collect
throughput every second and report the average through-
put during protocol switching. We ensure that switch
happens at the start, end, and middle of a long running
transaction, which represent that switch waits for little,
whole, and half of the transaction respectively, and re-
port three test cases for each mixed workload.

As shown in Figure 16, we see that Mediated and
StopAll have a minimal throughput drop compared to
2PL when the workload only includes short transac-
tions. When long-running transactions are introduced,
StopAll suffers due to waiting for the completion of long-
running transactions, while Mediated can still maintain
high throughput during the switch because Mediated
does not stop all workers, but let them adopt both 2PL
and OCC (i.e. upgrade phase); then, the coordinator no-
tifies all workers to adopt 2PL (i.e. degrade phase) after
the long transaction ends. Mediated protocol can achieve
at least 93% throughput of OCC or 2PL due to the over-
head of executing the logic of two protocols.

In addition, we perform the same test for all other
pairwise protocol switching. We find that the over-
head is minimal under short-only workload. When
long-running transactions are introduced, the maximum
throughput drop is about 20% during protocol switch-
ing from PartCC to OCC. This is acceptable compared
to StopAll, which cannot process new transactions in the
switch process. These experiments show that Mediated
can maintain reasonable throughput during a protocol
switch, even in the presence of long transactions.

7 Conclusion

By exploring the design space of mixed concurrency con-
trol, CormCC presents a new approach to generally mix-
ing multiple concurrency control protocols, while not in-
troducing coordination overhead. In addition, CormCC
proposes a novel way to reconfigure a protocol for parts
of a workload online with multiple protocols running.
Our experiments show that CormCC can greatly outper-
form static protocols, and state-of-the-art mixed concur-
rency control approaches in various workloads.
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Abstract
Measurement plays a key role in network operation

and management. An important but unaddressed prac-
tical requirement in high speed networks is supporting
concurrent applications with diverse and potentially dy-
namic measurement objectives. We introduce *Flow, a
switch accelerated telemetry system for efficient, concur-
rent, and dynamic measurement. The design insight is to
carefully partition processing between switch ASICs and
application software. In *Flow, the switch ASIC imple-
ments a pipeline that exports telemetry data in a flexi-
ble format that allows applications to efficiently compute
many different statistics. Applications can operate con-
currently and dynamically on identical streams without
impacting each other. We implement *Flow as a line rate
P4 program for a 3.2 Tb/s commodity switch and evalu-
ate it with four example monitoring applications. The
applications can operate concurrently and dynamically,
while scaling to measure terabit rate traffic with a single
commodity server.

1 Introduction
Measurement plays a critical role in networking. Moni-
toring systems measure traffic for security [6, 35, 51, 36],
load balancing [1, 26] and traffic engineering [55, 23,
27]; while engineers measure traffic and data plane per-
formance to diagnose problems [14, 59, 25, 58, 56] and
design new network architectures and systems [47, 5].

In high speed networks, which in 2018 have 100 Gb/s
links and multi-Tb/s switches, it is challenging to support
measurement without compromising on important prac-
tical requirements. Traditional switch hardware is inflex-
ible and supports only coarse grained statistics [21, 45],
while servers are prohibitively expensive to scale [50].

Fortunately, advances in switch hardware are present-
ing new opportunities. As the chip space and power cost
of programmability drops [49, 7], switches are quickly
moving towards reconfigurable ASICs [42, 44] that are
capable of custom packet processing at high line rates.

Recent telemetry systems [50, 40] have shown that these
programmable forwarding engines (PFEs) can imple-
ment custom streaming measurement queries for fine-
grained traffic and network performance statistics.

An open question, however, is whether telemetry sys-
tems can harness the flexibility and performance of PFEs
while also meeting requirements for practical deploy-
ment. Current PFE accelerated telemetry systems [50,
40] focus on efficiency, compiling queries to minimize
workload on servers in the telemetry infrastructure. Effi-
ciency matters, but compiled queries do not address two
other practical requirements that are equally important:
concurrent measurement and dynamic queries.

First, support for concurrent measurement. In prac-
tice, there are likely to be multiple applications measur-
ing the network concurrently, with queries for different
statistics. A practical telemetry system needs to multi-
plex the PFE across all the simultaneously active queries.
This is a challenge with compiled queries. Each query
requires different computation that, given the line-rate
processing model of a PFE [49], must map to dedicated
computational resources, which are limited in PFEs.

Equally important for practical deployment is support
for dynamic querying. As network conditions change,
applications and operators will introduce or modify
queries. A practical telemetry system needs to support
these dynamics at runtime without disrupting the net-
work. This is challenging with compiled PFE queries
because recompiling and reloading the PFE is highly dis-
ruptive. Adding or removing a query pauses not only
measurement, but also forwarding for multiple seconds.

Introducing *Flow. We introduce *Flow, a practical
PFE accelerated telemetry system that is not only flexible
and efficient, but also supports concurrent measurement
and dynamic queries. Our core insight is that concur-
rency and disruption challenges are caused by compiling
too much of the measurement query to the PFE, and can
be resolved without significant impact to performance by
carefully lifting parts of it up to software.
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At a high level, a query can be decomposed into three
logical operations: a select operation that determines
which packet header and metadata features to capture;
a grouping operation that describes how to map pack-
ets to flows; and a aggregation function that defines how
to compute statistics over the streams of grouped packet
features. The primary benefit of using the PFE lies in
its capability to implement the select and grouping op-
erations efficiently because it has direct access to packet
headers and low latency SRAM [40]. The challenge is
implementing aggregation functions in the PFE, which
are computationally complex and query dependent.
*Flow is based on the observation that for servers, the

situation is exactly reversed. A server cannot efficiently
access the headers of every packet in a network, and
high memory latency makes it expensive to group pack-
ets. However, once the packet features are extracted and
grouped, a server can perform coarser grained grouping
and mathematical computation very efficiently.
*Flow’s design, depicted in Figure 2, plays to the

strengths of both PFEs and servers. Instead of compil-
ing entire queries to the PFE, *Flow places parts of the
select and grouping logic that are common to all queries
into a match+action pipeline in the PFE. The pipeline
operates at line rate and exports a stream of records that
software can compute a diverse range of custom stream-
ing statistics from without needing to group per-packet
records. This design maintains the efficiency benefits of
using a PFE while eliminating the root causes of concur-
rency and disruption issues. Further, it increases flexibil-
ity by enabling more complex aggregation functions than
a PFE can support.

Grouped Packet Vectors. To lift the aggregation func-
tion off of the PFE, *Flow introduces a new record for-
mat for telemetry data. In *Flow, PFEs export a stream
of grouped packet vectors (GPVs) to software proces-
sors. A GPV contains a flow key, e.g., IP 5-tuple, and a
variable-length list of packet feature tuples, e.g., times-
tamps and sizes, from a sequence of packets in that flow.

Each application can efficiently measure different ag-
gregate statistics from the packet feature tuples in the
same GPV stream. Applications can also dynamically
change measurement without impacting the network,
similar to what a stream of raw packet headers [25]
would allow, but without the cost of cloning each packet
to a server or grouping in software.

Dynamic in-PFE Cache. Switches generate GPVs at
line rate by compiling the *Flow cache to their PFEs,
alongside other forwarding logic. The cache is an append
only data structure that maps packets to GPVs and evicts
them to software as needed.

To utilize limited PFE memory, e.g., around 10MB as
efficiently as possible, we introduce a key-value cache

that supports dynamic memory allocation and can be
implemented as a sequence of match+action tables for
PFEs. It builds on recent match+action implementations
of fixed width key-value caches [40, 29, 50] by introduc-
ing a line rate memory pool to support variable sized en-
tries. Ultimately, dynamic memory allocation increases
the average number of packet feature tuples that accumu-
late in a GPV before it needs to be evicted, which lowers
the rate of processing that software must support.

Implementation and Evaluation. We implemented the
*Flow cache 1 for a 100BF-32X switch, a 3.2 Tb/s switch
with a Barefoot Tofino [42] PFE that is programmable
with P4 [8]. The cache is compiler-guaranteed to run
at line rate and uses a fixed amount of hardware re-
sources regardless of the number or form of measure-
ment queries.

To demonstrate the practicality of *Flow, we imple-
mented three example monitoring applications that mea-
sure traffic in different ways: a host profiler that collects
packet level timing details; a traffic classifier that mea-
sures complex flow statistics; and a micro-burst attributer
that analyzes per-packet queue depths. Although these
applications measure different statistics, they all can op-
erate concurrently on the same stream of GPVs and dy-
namically change measurements without disrupting the
network. Benchmarks show that the applications can
scale to process GPVs at rates corresponding to Terabit-
rate traffic while using under 10 cores.

To further demonstrate the practicality of *Flow, we
also introduce a simple adapter for executing Marple [40]
traffic queries on GPV streams. The adapter, built on top
of RaftLib [3], supports high level query primitives (map,
filter, groupby, and zip) designed for operator-driven
performance monitoring. Using *Flow along with the
adapter allows operators to run many different queries
concurrently, without having to compile them all to the
PFE or pause the network to change queries. Analy-
sis shows that the *Flow PFE pipeline requires only as
many computational resources in the PFE as one com-
piled Marple query. Currently, the adapter scales to mea-
sure 15-50 Gb/s of traffic per core, bottlenecked only by
overheads in our proof-of-concept implementation.

Contributions. This paper has four main contributions.
First, the idea of using grouped packet vectors (GPVs)
to lift the aggregation functions of traffic queries out of
data plane hardware. Second, the design of a novel PFE
cache data structure with dynamic memory allocation for
efficient GPV generation. Third, the evaluation of a pro-
totype of *Flow implemented on a readily available com-
modity P4 switch. Finally, four monitoring applications
that demonstrate the practicality of *Flow.

1https://github.com/jsonch/starflow
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Efficient Flexible Concurrent Dynamic
Netflow 3 7 3 3

Software 7 3 3 3
PFE Queries 3 3 7 7

*Flow 3 3 3 3

Table 1: Practical requirements for PFE supported net-
work queries.

2 Background
In this section, we motivate the design goals of *Flow
and describe prior telemetry systems.

2.1 Design Goals
*Flow is designed to meet four design goals that are im-
portant for a practical PFE accelerated telemetry system.

Efficient. We focus on efficient usage of processing
servers in the telemetry and monitoring infrastructure of
a network. Efficiency is important because telemetry
and monitoring systems need to scale to high through-
puts [50] and network coverage [32]. An inefficient
telemetry system deployed at scale can significantly in-
crease the total cost of a network, in terms of dollars and
power consumption.

Flexible. A flexible telemetry system lets applications
define the aggregation functions that compute traffic and
data plane performance statistics. There are a wide range
of statistics that are useful in different scenario and for
different applications. Customizable aggregation func-
tions allow a telemetry system to offer the broadest sup-
port.

Flexibility is also important for supporting future ap-
plications that may identify new useful metrics and sys-
tems that apply machine learning algorithms to analyze
the network in many dimensions [43].

Concurrent. Concurrency is the capability to support
many measurement queries at the same time. Concur-
rency is important because different applications require
different statistics and, in a real network, there are likely
to be many types of applications in use.

Consider a scenario where an operator is debugging
an incast [15] and a network-wide security system is au-
diting for compromised hosts [36]. These applications
would ideally run concurrently and need to measure dif-
ferent statistics. Debugging, for example, may bene-
fit from measuring the number of simultaneously active
TCP flows in a switch queue over small epochs, while a
security application many require per-flow packet coun-
ters and timing statistics.

Dynamic. Support for dynamic queries is the capabil-
ity to introduce or modify new queries at run time. It is
important for monitoring applications, which may need
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Figure 1: Network disruption from recompiling a PFE.

to adapt as network conditions change, or themselves
be launched at network run-time. Dynamic queries also
enable interactive measurement [40] that can help net-
work operators diagnose performance issues, e.g., which
queue is dropping packets between these hosts?

2.2 Prior Telemetry Systems
Prior telemetry systems meet some, but not all, of the
above design goals, as summarized in Table 1.

NetFlow Hardware. Many switches integrate hard-
ware to generate NetFlow records [18] that summarize
flows at the granularity of IP 5-tuple. NetFlow records
are compact because they contain fully- computed aggre-
gate statistics. ASICs [60, 20] in the switch data path do
all the work of generating the records, so the overhead for
monitoring and measurement applications is low. Net-
Flow is also dynamic. The ASICs are not embedded into
the forwarding path, so a user can select different Net-
Flow features without pausing forwarding.

However, NetFlow sacrifices flexibility. Flow records
have a fixed granularity and users choose statistics from a
fixed list. Newer NetFlow ASICs [20] offer more statis-
tics, but cannot support custom user-defined statistics or
different granularities.

Software Processing. A more flexible approach is mir-
roring packets, or packet headers, to commodity servers
that compute traffic statistics [19, 24, 22, 37]. Servers
can also support concurrent and dynamic telemetry, as
they are not in-line with data plane forwarding.

The drawback of software is efficiency. Two of
the largest overheads for measurement in software are
I/O [46], to get each packet or header to the measurement
process, and hash table operations, to group packets by
flow [50, 40, 33]. To demonstrate, we implemented a
simple C++ application that reads packets from a PCAP,
using lpcap, and computes the average packet length for
each TCP flow. The application spent an average of 1535
cycles per packet on hash operations alone, using the
relatively efficient C++ std::unordered map [4]. In an-
other application, which computed average packet length
over pre-grouped vectors of packet lengths, the compu-
tation only took an average of 45 cycles per packet.

The benchmarks illustrate that mathematical opera-
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tions for computing aggregate statistics are not a signif-
icant bottleneck for measurement in software. Modern
CPUs with vector instructions can perform upwards of 1
trillion floating point operations per second [39].

PFE Compiled Queries. Programmable forwarding
engines (PFEs), the forwarding ASICs in next genera-
tion commodity switches [42, 13, 44, 41, 17, 53], are ap-
pealing for telemetry because they can perform stateful
line-rate computation on packets. Several recent systems
have shown that traffic measurement queries can compile
to PFE configurations [50, 40]. These systems allow ap-
plications (or users) to define custom statistics computa-
tion functions and export records that include the aggre-
gate statistics. Compiled queries provide efficiency and
flexibility. However, they are not well suited for concur-
rent or dynamic measurement.

Concurrency is a challenge because of the processing
models and computational resources available in a PFE.
Each measurement query compiles to its own dedicated
computational and memory resources in the PFE, to run
in parallel at line rate. Computational resources are ex-
tremely limited, particularly those for stateful computa-
tion [49], making it challenging to fit more than a few
queries concurrently.

Dynamic queries are a challenge because PFEs pro-
grams are statically compiled into configurations for the
ALUs in the PFE. Adding a compiled query requires
reloading the entire PFE program, which pauses all for-
warding for multiple seconds, as Figure 1 shows. While
it is possible to change forwarding rules at run-time to di-
rect traffic through different pre-compiled functions, the
actual computation can only be changed at compile time.

3 PFE Accelerated Telemetry with *Flow

*Flow is a PFE accelerated telemetry system that sup-
ports efficient, flexible, concurrent, and dynamic network
measurement. It gains efficiency and flexibility by lever-

key sizets key sizets key sizets

key sizets sizets sizets

Packet Records

Grouped Packet Vectors

key duration
Flow Records

total size

Figure 3: Comparison of grouped packet vectors, flow
records, and packet records.

aging the PFE to select features from packet headers and
group them by flow. However, unlike prior systems,
*Flow lifts the complex and measurement-specific statis-
tic computation, which are difficult to support in the PFE
without limiting concurrent and dynamic measurement,
up into software. Although part of the measurement is
now in software, the feature selection and grouping done
by the PFE reduces the I/O and hash table overheads sig-
nificantly, allowing it to efficiently compute statistics and
scale to terabit rate traffic using a small number of cores.

In this section, we overview the architecture of *Flow,
depicted in Figure 2.

Grouped Packet Vectors. The key to decoupling fea-
ture selection and grouping from statistics computation
is the grouped packet vector (GPV), a flexible and effi-
cient format for telemetry data streamed from switches.
A GPV stream is flexible because it contains per-packet
features. Each application can measure different statis-
tics from the same GPV stream and dynamically change
measurement as needed, without impacting other appli-
cations or the PFE. GPVs are also efficient. Since the
packet features are already extracted from packets and
grouped, applications can compute statistics with mini-
mal I/O or hash table overheads.

*Flow Telemetry Switches. Switches with pro-
grammable forwarding engines [42, 49] (PFEs) compile
the *Flow cache to their PFEs to generates GPVs. The
cache is implemented as a sequence of match+action ta-
bles that applies to packets at line rate and in parallel
with other data plane logic. The tables extract features
tuples from packets; insert them into per-flow GPVs; and
stream the GPVs to monitoring servers, using multicast
if there are more than 1.

GPV Processing. A thin *Flow agent running on a
server receives GPVs from the switch and copies them
to per-application queues. Each application defines its
own statistics to compute over the packet tuples in GPVs
and can dynamically change them as needed. Since
the packet tuples are pre-grouped, the computation is
extremely efficient because the bottleneck of mapping
packets to flows is removed. Further, if fine granular-
ity is needed, the applications can analyze the individual
packet feature themselves, e.g., to identify the root cause
of short lived congestion events, as Section 6.2 describes.
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4 Grouped Packet Vectors (GPVs)
*Flow exports telemetry data from the switch in the
grouped packet vector (GPV) format, illustrated in Fig-
ure 3, a new record format designed to support the de-
coupling of packet feature selection and grouping from
aggregate statistics computation. A grouped packet vec-
tor contains an IP 5-tuple flow key and a variable length
vector of feature tuples from sequential packets in the
respective flow. As Figure 3 shows, a GPV is a hybrid
between a packet record and a flow record. It inherits
some of the best attributes of both formats and also has
unique benefits that are critical for *Flow.

Similar to packet records, a stream of GPVs contains
features from each individual packet. Unlike packet
records, however, GPVs get the features to software in
a format that is well suited for efficient statistics compu-
tation. An application can compute aggregate statistics
directly on a GPV, without paying the overhead of receiv-
ing each packet, extracting features from it, or mapping
it to a flow.

Similar to flow records, each GPV represents multi-
ple packets and deduplicates the IP 5-tuple. They are
around an order of magnitude smaller than packet header
records and do not require software to perform expen-
sive per-packet key value operations to map packet fea-
tures to flows. Flow records are also compact and can
be processed by software without grouping but, unlike
flow records, GPVs do not lock the software into specific
statistics. Instead, they allow the software to compute
any statistics, efficiently, from the per-packet features.
This works well in practice because many useful statis-
tics derive from small, common subsets of packet fea-
tures. For example, the statistics required by the 3 mon-
itoring applications and 6 Marple queries we describe in
Section 6 can all be computed from IP 5-tuples, packet
lengths, arrival timestamps, queue depths, and TCP se-
quence numbers.

5 Generating GPVs
The core of *Flow is a cache that maps packets to GPVs
and runs at line rate in a switch’s programmable for-
warding engine (PFE). A GPV cache would be simple
to implement in software. However, the target plat-
forms for *Flow are the hardware data planes of next-
generation networks; PFE ASICs that process packets
at guaranteed line rates exceeding 1 billion packets per
second [49, 9, 16]. To meet chip space and timing
requirements, PFEs significantly restrict stateful opera-
tions, which makes it challenging to implement cache
eviction and dynamic memory allocation.

In this section, we describe the architecture and lim-
itations of PFEs, cache eviction and memory allocation
policies that can be implemented in a PFE, and our P4
implementation of the *Flow cache for the Tofino.
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Figure 4: PFE architecture.

5.1 PFE Architecture

Figure 4 illustrates the general architecture of a PFE
ASIC. It receives packets from multiple network in-
terfaces, parses their headers, processes them with a
pipeline of match tables and action processors, and fi-
nally deparses the packets and sends them to an out-
put buffer. PFEs are designed specifically to implement
match+action forwarding applications, e.g., P4 [8] pro-
grams, at guaranteed line rates that are orders of magni-
tude higher than other programmable platforms, such as
CPUs, network processors [54], or FPGAs, assuming the
same chip space and power budgets. They meet this goal
with highly specialized architectures that exploit pipelin-
ing and instruction level parallelism [49, 9]. PFEs make
it straightforward to implement custom terabit rate data
planes, so long as they are limited to functionality that
maps naturally to the match+action model, e.g., forward-
ing, access control, encapsulation, or address translation.

It can be challenging to take advantage of PFEs for
more complex applications, especially those that require
state persisting across packets, e.g., a cache. Persistent
arrays, called “register arrays” in P4 programs, are stored
in SRAM banks local to each action processor. They are
limited in three important ways. First, a program can
only access a register array from tables and actions im-
plemented in the same stage. Second, each register array
can only be accessed once per packet, using a stateful
ALU that can implement simple programs for simulta-
neous reads and writes, conditional updates, and basic
mathematical operations. Finally, the sequential depen-
dencies between register arrays in the same stage are lim-
ited. In currently available PFEs [42], there can be no
sequential dependencies; all of the registers in a stage
must be accessed in parallel. Recent work, however, has
demonstrated that future PFEs can ease this restriction
to support pairwise dependencies, at the cost of slightly
increased chip space [49] or lower line rates [16].
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5.2 Design
To implement the *Flow cache as a pipeline of
match+action tables that can compile to PFEs with the
restrictions described above, we simplified the algo-
rithms used for cache eviction and memory allocation.
We do not claim that these are the best possible heuris-
tics for eviction and allocation, only that they are intu-
itive and empirically effective starting points for a vari-
able width flow cache that operates at multi-terabit line
rates on currently available PFEs.

Cache Eviction. The *Flow cache uses a simple evict
on collision policy. Whenever a packet from an un-
tracked flow arrives and the cache needs to make room
for a new entry, it simply evicts the entry of a currently
tracked flow with the same hash value. This policy
is surprisingly effective in practice, as prior work has
shown [34, 50, 40], because it approximates a least re-
cently used policy.

Memory Allocation. The *Flow cache allocates a nar-
row ring buffer for each flow, which stores GPVs. When-
ever the ring buffer fills up, the cache flushes its contents
to software. When an active flow fills its narrow buffer
for the first time, the cache attempts to allocate a wider
buffer for it, drawn from a pool with fewer entries than
there are cache slots. If the allocation succeeds, the entry
keeps the buffer until the flow is evicted; otherwise, the
entry uses the narrow buffer until it is evicted.

This simple memory allocation policy is effective for
*Flow because it leverages the long-tailed nature of
packet inter-arrival time distributions [5]. In any given
time interval, most of the packets arriving will be from
a few highly active flows. A flow that fills up its narrow
buffer in the short period of time before it is evicted is
more likely to be one of the highly active flows. Allocat-
ing a wide buffer to such a flow will reduce the overall
rate of messages to software, and thus its workload, by
allowing the cache to accumulate more packet tuples in
the ring buffer before needing to flush its contents to soft-
ware.

This allocation policy also frees memory quickly once
a flow’s activity level drops, since frees happen automat-
ically with evictions.

5.3 Implementation
Using the above heuristics for cache eviction and mem-
ory allocation, we implemented the *Flow cache as a
pipeline of P4 match+action tables for the Tofino [42].
The implementation consists of approximately 2000
lines of P4 code that implements the tables, 900 lines
of Python code that implements a minimal control pro-
gram to install rules into the tables at runtime, and a
large library that is autogenerated by the Tofino’s com-
piler toolchain. The source code is available at our repos-

itory 2 and has been tested on both the Tofino’s cycle-
accurate simulator and a Wedge 100BF-32X.

Figure 5 depicts the control flow of the pipeline. It ex-
tracts a tuple of features from each packet, maps the tuple
to a GPV using a hash of the packet’s key, and then either
appends the tuple to a dynamically sized ring buffer (if
the packet’s flow is currently tracked), or evicts the GPV
of a prior flow, frees memory, and replaces it with a new
entry (if the packet’s flow is not currently tracked).

We implemented the evict on collision heuristic using
a simultaneous read / write operations when updating the
register arrays that store flow keys. The update action
writes the current packet’s key to the array, using its hash
value as an index, and reads the data at that position into
metadata in the packet. If there was a collision, which
the subsequent stage can determine by comparing the
packet’s key with the loaded key, the remaining tables
will evict and reset the GPV. Otherwise, the remaining
tables will append the packet’s features to the GPV.

We implemented the memory allocation using a stack.
When a cache slot fills its narrow buffer for the first
time, the PFE checks a stack of pointers to free exten-
sion blocks. If the stack is not empty, the PFE pops the
top pointer from the stack. It stores the pointer in a reg-
ister array that tracks which, if any, extension block each
flow owns. For subsequent packets, the PFE loads the
pointer from the array before updating its buffers. When
the flow is evicted, the PFE removes the pointer from the
array and pushes it back onto the free stack.

This design requires the cache to move pointers be-
tween the free stack and the allocated pointer array in
both directions. We implemented it by placing the stack
before the allocated pointer array, and resubmitting the
packet to complete the free operation by pushing its
pointer back onto the stack. The resubmission is nec-
essary on the Tofino because sequentially dependent reg-
ister arrays must be placed in different stages and there
is no way to move “backwards” in the pipeline.

5.4 Configuration

Compile-time. The current implementation of the
*Flow cache has three compile-time parameters: the
number of cache slots; the number of entries in the dy-
namic memory pool; the width of the narrow and wide
vectors; and the width of each packet feature tuple.

Feature tuple width depends on application require-
ments. For the other parameters, we implemented an
OpenTuner [2] script that operates on a trace of packet
arrival timestamps and a software model of the *Flow

cache. The benchmarks in Section 7 show that perfor-
mance under specific parameters is stable for long peri-
ods of time.

2https://github.com/jsonch/starflow
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Figure 5: The *Flow cache as a match+action pipeline. White boxes represent sequences of actions, brackets represent
conditions implemented as match rules, and gray boxed represent register arrays.

Run-time. The *Flow cache also allows operators to
configure the following parameters at run-time by in-
stalling rules into P4 match+action tables. Immediately
proceeding the *Flow cache, a filtering table lets opera-
tors install rules that determine which flows *Flow ap-
plies to, and which packet header and metadata fields go
into packet feature tuples. After the *Flow cache, a table
sets the destination of each exported GPV. The table can
be configured to multicast GPVs to multiple servers and
filter the GPV stream that each multicast group receives.

6 Processing GPVs
The *Flow cache streams GPVs to processing servers.
There, measurement and monitoring applications (poten-
tially running concurrently) can compute a wealth of traf-
fic statistics from the GPVs and dynamically change their
analysis without impacting the network.

In this section, we describe the *Flow agent that re-
ceives GPVs from the *Flow cache, three motivating
*Flow monitoring applications, and the *Flow adapter to
execute operator-driven network performance measure-
ment queries on GPV streams.

6.1 The *Flow Agent
The *Flow agent, implemented as a RaftLib [3] appli-
cation, reads GPV packets from queues filled by NIC
drivers and pushes them to application queues. While
applications can process GPVs directly, the *Flow agent
implements three performance and housekeeping func-
tions that are generally useful.

Load Balancing. The *Flow agent supports load bal-
ancing in two directions. First, a single *Flow agent
can load balance a GPV stream across multiple queues
to support applications that require multiple per-core in-
stances to support the rate of the GPV stream. Second,
multiple *Flow agents can push GPVs to the same queue,
to support applications that operate at higher rates than a
single *Flow agent can support.

GPV Reassembly. GPVs from a *Flow cache typi-
cally group packets from short intervals, e.g., under 1
second on average, due to the limited amount of memory
available for caching in PFEs. To reduce the workload of
applications, the *Flow agent can re-assemble the GPVs
into a lower-rate stream of records that each represent a
longer interval.

Cache Flushing. The *Flow agent can also flush the
*Flow cache if timely updates are a priority. The *Flow
agent tracks the last eviction time of each slot based on
the GPVs it receives. It scans the table periodically and,
for any slot that has not been evicted within a threshold
period of time, sends a control packet back to the *Flow
cache that forces an eviction.

6.2 *Flow Monitoring Applications
To demonstrate the practicality of *Flow, we imple-
mented three monitoring applications that require con-
current measurement of traffic in multiple dimensions or
packet-level visibility into flows. These requirements go
beyond what prior PFE accelerated systems could sup-
port with compiled queries. With *Flow, however, they
can operate efficiently, concurrently, and dynamically.

The GPV format for the monitoring applications was a
192 bit fixed width header followed by a variable length
vector of 32 bit packet feature tuples. The fixed width
header includes IP 5-tuple (104 bits), ingress port ID
(8 bits), packet count (16 bits), and start timestamp (64
bits). The packet feature tuples include a 20 bit times-
tamp delta (e.g., arrival time - GPV start time), an 11
bit packet size, and a 1 bit flag indicating a high queue
length during packet forwarding.

Host Timing Profiler. The host timing profiler gen-
erates vectors that each contain the arrival times of all
packets from a specific host within a time interval. Such
timing profiles are used for protocol optimizers [55],
simulators [10], and experiments [52].

Prior to *Flow, an application would build these vec-
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tors by processing per- packet records in software, per-
forming an expensive hash table operation to determine
which host transmitted each packet.

With *Flow, however, the application only performs 1
hash operation per GPV, and simply copies timestamps
from the feature tuples of the GPV to the end of the re-
spective host timing vector. The reduction in hash table
operations lets the application scale more efficiently.

Traffic Classifier. The traffic classifier uses machine
learning models to predict which type of application gen-
erated a traffic flow. Many systems use flow classifi-
cation, such as for QoS aware routing [23, 27], secu-
rity [35, 51], or identifying applications using random
port numbers or share ports. To maximize accuracy,
these applications typically rely on feature vectors that
contain dozens or even hundreds of different flow statis-
tics [35]. The high cardinality is an obstacle to using
PFEs for accelerating traffic classifiers, because it re-
quires concurrent measurement in many dimensions.
*Flow is an ideal solution, since it allows an applica-

tion to efficiently compute many features from the GPV
stream generated by the *Flow cache. Our example clas-
sifier, based on prior work [43], measures the packet
sizes of up to the first 8 packets, the means of packet
sizes and inter-arrival times, and the standard deviations
of packet size and inter-arrival times.

We implemented both training and classification ap-
plications, which use the same shared measurement and
feature extraction code. The training application reads
labeled “ground truth” GPVs from a binary file and
builds a model using Dlib [30]; the classifier reads GPVs
and predicts application classes using the model.

Micro-burst Diagnostics. This application detects
micro-bursts [28, 48, 15], short lived congestion events in
the network, and identifies the network hosts with pack-
ets in the congested queue at the point in time when the
micro-burst occurred. This knowledge can help an op-
erator or control application diagnose the root cause of
periodic micro-bursts, e.g., TCP incasts [15], and also un-
derstand which hosts are affected by them.

Micro-bursts are difficult to debug because they occur
at extremely small timescales, e.g., on the order of 10
microseconds [57]. At these timescales, visibility into
host behavior at the granularity of individual packets is
essential. Prior to *Flow, the only way for a monitoring
system to have such visibility was to process a record
from each packet in software [59, 25, 58, 56] and pay the
overhead of frequent hash table operations.

With *Flow, however, a monitoring system can di-
agnose micro-bursts efficiently by processing a GPV
stream, making it possible to monitor much more of the
network without requiring additional servers.

The *Flow micro-burst debugger keeps a cache of

GPVs from the most recent flows. When each GPV first
arrives, it checks if the high queue length flag is set in any
packet tuple. If so, the debugger uses the cached GPVs
to build a globally ordered list of packet tuples, based on
arrival timestamp. It scans the list backwards from the
packet tuple with the high queue length flag to identify
packet tuples that arrived immediately before it. Finally,
the debugger determines the IP source addresses from
the GPVs corresponding with the tuples and outputs the
set of unique addresses.

6.3 Interactive Measurement Framework
An important motivation for network measurement, be-
sides monitoring applications, is operator-driven perfor-
mance measurement. Marple [40] is a recent system that
lets PFEs accelerate this task. It presents a high level
language for queries based around simple primitives (fil-
ter, map, group, and zip) and statistics computation func-
tions. These queries, which can express a rich variety
of measurement objectives, compile directly to the PFE,
where they operate at high rates.

As discussed in Section 2, compiled queries make it
challenging to support concurrent or dynamic measure-
ment. Using *Flow, a measurement framework can gain
the throughput benefits of PFE acceleration without sac-
rificing concurrency or dynamic queries, by implement-
ing measurement queries in software, over a stream of
GPVs, instead of in hardware, over a stream of packets.

To demonstrate, we extended the RaftLib [3] C++
stream processing framework with kernels that imple-
ment each of Marple’s query primitives on a GPV stream.
A user can define any Marple query by connecting the
primitive kernels together in a connected graph defined in
a short configuration file, similar to a Click [31] config-
uration file, but written in C++. The configuration com-
piles to a compact Linux application that operates on a
stream of GPVs from the *Flow agent.

We re-wrote 6 example Marple queries from the orig-
inal publication [40] as RaftLib configurations, listed in
Table 4. The queries are functionally equivalent to the
originals, but can all run concurrently and dynamically,
without impacting each other or the network. These ap-
plications operate on GPVs with features used by the
*Flow monitoring application, plus a 32 bit TCP se-
quence number in each packet feature tuple.

7 Evaluation
In this section, we evaluate our implementations of the
*Flow cache, *Flow agent, and GPV processing appli-
cations. First, we analyze the PFE resource requirements
and eviction rates of the *Flow cache to show that it
is practical on real hardware. Next, we benchmark the
*Flow agent and monitoring applications to quantify the
scalability and flexibility benefits of GPVs. Finally, we
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Key Memory Pkt. Feature Total
Update Management Update

Computational

Tables 3.8% 3.2% 17.9% 25%
sALUs 10.4% 6.3% 58.3% 75%
VLIWs 1.6% 1.1% 9.3% 13%
Stages 8.3% 12.5% 29.1% 50%

Memory

SRAM 4.3% 1.0% 10.9% 16.3%
TCAM 1.1% 1.1% 10.3% 12.5%

Table 2: Resource requirements for *Flow on the Tofino,
configured with 16384 cache slots, 16384 16-byte short
buffers, and 4096 96-byte wide buffers.

compare the *Flow measurement query framework with
Marple, to showcase *Flow’s support for concurrent and
dynamic measurement.

All benchmarks were done with 8 unsampled traces
from 10 Gbit/s core Internet routers taken in 2015 [11].
Each trace contained around 1.5 billion packets.

7.1 The *Flow Cache
We analyzed the resource requirements of the *Flow

cache to understand whether it is practical to deploy and
how much it can reduce the workload of software.

PFE Resource Usage. We analyzed the resource re-
quirements of the *Flow cache configured with a tuple
size of 32-bits, to support the *Flow monitoring applica-
tions, and a maximum GPV buffer length of 28, the max-
imum length possible while still fitting entirely into an
ingress or egress pipeline of the Tofino. We used the tun-
ing script, described in Section 5.4, to choose the remain-
ing parameters using a 60 second trace from the 12/2015
dataset [12] and a limit of 1 MB of PFE memory.

Table 7.1 shows the computational and memory re-
source requirements for the *Flow cache on the Tofino,
broken down by function. Utilization was low for most
resources, besides stateful ALUs and stages. The cache
used stateful ALUs heavily because it striped flow keys
and packet feature vectors across the tofino’s 32 bit reg-
ister arrays, and each register array requires a separate
sALU. It required 12 stages because many of the stateful
operations were sequential: it had to access the key and
packet count before attempting a memory allocation or
free; and it had to perform the memory operation before
updating the feature tuple buffer.

Despite the high sALU and stage utilization, it is still
practical to deploy the *Flow cache alongside other com-
mon data plane functions. Forwarding, access control,
multicast, rate limiting, encapsulation, and many other
common functions do not require stateful operations,

and so do not need sALUs. Instead, they need tables
and SRAM, for exact match+action tables; TCAM, for
longest prefix matching tables; and VLIWs, for modify-
ing packet headers. These are precisely the resources that
*Flow leaves free.

Further, the stage requirements of *Flow do not im-
pact other applications. Tables for functions that are in-
dependent of *Flow can be placed in the same stages
as the *Flow cache tables. The Tofino has high instruc-
tion parallelism and applies multiple tables in parallel,
as long as there are enough computational and memory
resources available to implement them.

PFE Resources Vs. Eviction Rate. Figure 6 shows
the average packet and GPV rates for the Internet router
traces, using the *Flow cache with the Tofino pipeline
configuration described above. Shaded areas represent
the range of values observed. An application operating
on GPVs from the *Flow cache instead of packet head-
ers needed to process under 18% as many records, on
average, while still having access to the features of in-
dividual packets. The cache tracked GPVs for an aver-
age of 640MS and a maximum of 131 seconds. 14% of
GPVs were cached for longer than 1 second and 1.3%
were cached for longer than 5 seconds.

To analyze workload reduction with other configura-
tions, we measured eviction ratio: the ratio of evicted
GPVs to packets. Eviction ratio depends on the con-
figuration of the cache: the amount of memory it has
available; the maximum possible buffer length; whether
it uses the dynamic memory allocator; and its eviction
policy. We measured eviction ratio as these parameters
varied using a software model of the *Flow cache. The
software model allowed us to evaluate how *Flow per-
forms on not only today’s PFEs, but also on future archi-
tectures. We analyzed configurations that use up to 32
MB of memory, pipelines long enough to store buffers
for 32 packet feature tuples, and hardware support for
an 8 way LRU eviction policy. Larger memories, longer
pipelines, and more advanced eviction policies are all
proposed features that are practical to include in next
generation PFEs [9, 16, 40].

Figure 7 plots eviction ratio as cache memory size
varies, for 4 configurations of caches: with or without
dynamic memory allocation; and with either a hash on
collision eviction policy or an 8 way LRU. Division of
memory between and buffer slots between the narrow
and wide buffers was selected by the AutoTuner script.
With dynamic memory allocation, the eviction ratio was
between 0.25 and 0.071. This corresponds to an event
rate reduction of between 4X and 14X for software, com-
pared to processing packet headers directly.

On average, dynamic memory allocation reduced the
amount of SRAM required to achieve a target eviction
ratio by a factor of 2. It provided as much benefit as an 8
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Figure 6: Min/avg./max of packet and
GPV rates with *Flow for Tofino.
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Figure 8: GPV buffer length vs evic-
tion ratio.

# Cores Agent Profiler Classifier Debugger

1 0.60M 1.51M 1.18M 0.16M
2 1.12M 3.02M 2.27M 0.29M
4 1.85M 5.12M 4.62M 0.55M
8 3.07M 8.64M 7.98M 1.06M
16 3.95M 10.06M 11.43M 1.37M

Table 3: Average throughput, in GPVs per second, for
*Flow agent and applications.

way LRU, but without requiring new hardware.
Figure 8 shows eviction rates as the maximum buffer

length varied. Longer buffers required more pipeline
stages, but significantly reduced eviction ratio when dy-
namic memory allocation was enabled.

7.2 *Flow Agent and Applications
We benchmarked the *Flow agent and monitoring ap-
plications, described in Section 6.2, to measure their
throughput and quantify the flexibility of GPVs.

Experimental Setup. Our test server contained a In-
tel Xeon E5-2683 v4 CPU (16 cores) and 128 GB of
RAM. We benchmarked maximum throughput by pre-
populating buffers with GPVs generated by the *Flow

cache. We configured the *Flow agent to read from
these buffers and measured its throughput for reassem-
bling the GPVs and writing them to a placeholder appli-
cation queue. We then measured the throughput of each
application individually, driven by a process that filled
its input queue from a pre-populated buffer of reassem-
bled GPVs. To benchmark multiple cores, we divided
the GPVs across multiple buffers, one per core, that was
each serviced by separate instances of the applications.

Throughput. Table 7.2 shows the average through-
put of the *Flow agent and monitoring applications, in
units of reassembled GPVs processed per second. For
perspective, the average reassembled GPV rates for the
2015 10 Gbit/s Internet router traces, which are equal to
their flow rates, are under 20 thousand per second [11].
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Figure 9: Recall of *Flow and baseline classifiers.

The high throughput makes it practical for a single server
to scale to terabit rate monitoring. A server using 10
cores, for example, can scale to cover over 100 such 10
Gb/s links by dedicating 8 cores to the *Flow agent and
2 cores to the profiler or classifier.

Throughput was highest for the profiler and classifier.
Both applications scaled to over 10 M reassembled GPVs
per second, each of which contained an average of 33
packet feature tuples. This corresponds to a process-
ing rate of over 300 M packet tuples per second, around
750X the average packet rate of an individual 10 Gb/s
Internet router link.

Throughput for the *Flow agent and debugging ap-
plication was lower, bottlenecked by associative opera-
tions. The bottleneck in the *Flow agent was the C++
std::unordered map that it used to map each GPV to a
reassembled GPV. The reassembly was expensive, but al-
lowed the profiler and classifier to operate without simi-
lar bottlenecks, contributing to their high throughput.

In the debugger, the bottleneck was the C++ std::map

it used to globally order packet tuples. In our bench-
marks, we intentionally stressed the debugger by setting
the high queue length flag in every packet feature tu-
ple, forcing it to apply the global ordering function fre-
quently. In practice, throughput would be much higher
because high queue lengths only occur when there are
problems in the network.
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Configuration # Stages # Atoms Max Width

*Flow cache 11 33 5

Marple Queries

Concurrent Connections 4 10 3
EWMA Latencies 6 11 4
Flowlet Size Histogram 11 31 6
Packet Counts per Source 5 7 2
TCP Non-Monotonic 5 6 2
TCP Out of Sequence 7 14 4

Table 4: Banzai pipeline usage for the *Flow cache and
compiled Marple queries.

Classifier Accuracy. To quantify the flexibility ben-
efits of GPVs, we compared the *Flow traffic classifier
to traffic classifiers that only use features that prior, less
flexible, telemetry systems can measure. The NetFlow
classifier uses metrics available from a traditional Net-
Flow switch: duration, byte count, and packet count.
The Marple classifier also includes the average and max-
imum packet sizes as features, representing a query that
compiles to use approximately the same amount of PFE
resources as the *Flow cache.

Figure 9 shows the recall of the traffic classifiers on the
12/2015 Internet router trace. The *Flow classifier per-
formed best because it had access to additional features
from the GPVs. This demonstrates the inherent benefit
of *Flow, and flexible GPV records, for monitoring ap-
plications that rely on machine learning and data mining.
Also, as Table 7.2 shows, the classifier was performant
enough to classify >1 million GPVs per second per core,
making it well suited to live processing.

7.3 Comparison with Marple
Finally, to showcase *Flow’s support for concurrent and
dynamic measurement, we compare the resource require-
ments for operator driven measurements using compiled
Marple queries against the requirements using *Flow

and the framework described in Section 6.3.

PFE Resources. For comparison, we implemented the
*Flow cache for the same platform that Marple queries
compile to: Banzai [49], a configurable machine model
of PFE ASICs. In Banzai, the computational resources
of a PFE are abstracted as atoms, similar to sALUs, that
are spread across a configurable number of stages. The
pipeline has a fixed width, which defines the number of
atoms in each stage.

Table 4 summarizes the resource usage for the Banzai
implementation. The requirements for *Flow were simi-
lar to those of a single statically compiled Marple query.
Implementing all 6 queries, which represent only a small
fraction of the possible queries, would require 79 atoms,
over 2X more than the *Flow cache. A GPV stream con-

tains the information necessary to support all the queries
concurrently, and software can dynamically change them
as needed without interrupting the network.

Server Resources. The throughput of the *Flow analyt-
ics framework was between 40 to 45K GPVs/s per core.
This corresponded to a per-core monitoring capacity of
15 - 50 Gb/s, depending on trace. Analysis suggested
that the bottleneck in our current prototype is message
passing overheads in the underlying stream processing
library that can be significantly optimized [38].

Even without optimization, the server resource re-
quirements of the *Flow analytics framework are similar
to Marple, which required around one 8 core server per
640 Gb/s switch [40] to support measurement of flows
that were evicted from the PFE early.

8 Conclusion
Measurement is important for both network monitoring
applications and operators alike, especially in large and
high speed networks. Programmable forwarding engines
(PFEs) can enable flexible telemetry systems that scale to
the demands of such environments. Prior systems have
focused on leveraging PFEs to scale efficiently with re-
spect to throughput, but have not addressed the equally
important requirement of scaling to support many con-
current applications with dynamic measurement needs.
As a solution, we introduced *Flow, a PFE-accelerated
telemetry system that supports dynamic measurement
from many concurrent applications without sacrificing
efficiency or flexibility. The core idea is to intelligently
partition the query processing between a PFE and soft-
ware. In support of this, we introduced GPVs, or grouped
packet vectors, a flexible format for network telemetry
data that is efficient for processing in software. We de-
signed and implemented a *Flow cache that generates
GPVs and operates at line rate on the Barefoot Tofino, a
commodity 3.2 Tb/s P4 forwarding engine. To make the
most of limited PFE memory, the *Flow cache features
the first implementation of a dynamic memory allocator
in a line rate P4 program. Evaluation showed that *Flow
was practical in the switch hardware and enabled power-
ful GPV based applications that scaled efficiently to ter-
abit rates with the capability for flexible, dynamic, and
concurrent measurement.
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your software-based traffic generator? IEEE Communications
Magazine 48, 9 (2010).

[11] CAIDA. Statistics for caida 2015 chicago direction b
traces. https://www.caida.org/data/passive/trace_

stats/, 2015.

[12] CAIDA. Trace statistics for caida passive oc48 and oc192 traces
– 2015-12-17. https://www.caida.org/data/passive/

trace_stats/, December 2015.

[13] CAVIUM. Cavium / xpliant cnx880xx product brief. https://

www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf?x=2,
2015.

[14] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. The good, the bad, and the differences: Better network
diagnostics with differential provenance. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference (2016),
ACM, pp. 115–128.

[15] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND JOSEPH,
A. D. Understanding tcp incast throughput collapse in datacenter
networks. In Proceedings of the 1st ACM workshop on Research
on enterprise networking (2009), ACM, pp. 73–82.

[16] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VAR-
GAFTIK, S., BERGER, A., MENDELSON, G., ALIZADEH, M.,
CHUANG, S.-T., KESLASSY, I., ET AL. drmt: Disaggregated
programmable switching. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (2017),
ACM, pp. 1–14.

[17] CISCO. The cisco flow processor: Cisco’s next gen-
eration network processor solution overview. http:

//www.cisco.com/c/en/us/products/collateral/

routers/asr-1000-series-aggregation-services-

routers/solution_overview_c22-448936.html.

[18] CISCO. Introduction to cisco ios netflow. https:

//www.cisco.com/c/en/us/products/collateral/

ios-nx-os-software/ios-netflow/prod_white_

paper0900aecd80406232.html, 2012.

[19] CISCO. Cisco netflow generation appliance 3340 data
sheet. http://www.cisco.com/c/en/us/products/

collateral/cloud-systems-management/netflow-

generation-3000-series-appliances/data_sheet_

c78-720958.html, July 2015.

[20] CISCO. Cisco nexus 9200 platform switches archi-
tecture. https://www.cisco.com/c/dam/en/us/

products/collateral/switches/nexus-9000-series-

switches/white-paper-c11-737204.pdf, 2016.

[21] CLAISE, B. Cisco systems netflow services export version 9.
https://tools.ietf.org/html/rfc3954, 2004.

[22] DERI, L., AND SPA, N. nprobe: an open source netflow probe
for gigabit networks. In TERENA Networking Conference (2003).

[23] EGILMEZ, H. E., CIVANLAR, S., AND TEKALP, A. M. An op-
timization framework for qos-enabled adaptive video streaming
over openflow networks. IEEE Transactions on Multimedia 15, 3
(2013), 710–715.

[24] ENDACE. Endaceflow 4000 series netflow generators. https://
www.endace.com/endace-netflow-datasheet.pdf, 2016.

[25] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES,
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Abstract
Concurrency bugs widely exist and severely threaten
system availability. Techniques that help recover from
concurrency-bug failures during production runs are
highly desired. This paper proposes BugTM, an ap-
proach that leverages Hardware Transactional Mem-
ory (HTM) on commodity machines for production-
run concurrency-bug recovery. Requiring no knowl-
edge about where are concurrency bugs, BugTM uses
static analysis and code transformation to insert HTM in-
structions into multi-threaded programs. These BugTM-
transformed programs will then be able to recover from a
concurrency-bug failure by rolling back and re-executing
the recent history of a failure thread. BugTM greatly
improves the recovery capability of state-of-the-art tech-
niques with low run-time overhead and no changes to OS
or hardware, while guarantees not to introduce new bugs.

1 Introduction
1.1 Motivation
Concurrency bugs are caused by untimely accesses to
shared variables. They are difficult to expose dur-
ing in-house testing. They widely exist in production-
run software [26] and have caused disastrous failures
[23, 32, 40]. Production run failures severely hurt sys-
tem availability: the restart after a failure could take long
time and even lead to new problems if the failure leaves
inconsistent system states. Furthermore, comparing with
many other types of bugs, failures caused by concurrency
bugs are particularly difficult to diagnose and fix cor-
rectly [50]. Techniques that handle production-run fail-
ures caused by concurrency bugs are highly desired.

Rollback-and-reexecution is a promising approach to
recover failures caused by concurrency bugs. When a
failure happens during a production run, the program
rolls back and re-executes from an earlier checkpoint.
Due to the unique non-determinism nature of concur-
rency bugs, the re-execution could get around the failure.

This approach is appealing for several reasons. It is
generic, requiring no prior knowledge about bugs; it im-
proves availability, masking the manifestation of concur-
rency bugs from end users; it avoids causing system in-
consistency or wasting computation resources, which of-

failure	

Rollback	Point		

Re-Execu2on	
Point		 Re-execu'on	gets	around	failure	

Thread	1	
Thread	2	

Thread	F	

…	

Figure 1: Single-threaded recovery for concurrency bugs

ten come together with naive failure restarts; even if not
successful, the recovery attempts only delays the failure
by a negligible amount of time.

This approach also faces challenges in performance,
recovery capability, and correctness (i.e., not introducing
new bugs), as we elaborate below.

Traditional rollback recovery conducts full-blown
multi-threaded re-execution and whole-memory check-
pointing. It can help recover almost all concurrency-bug
failures, but incurs too large overhead to be deployed in
production runs [35, 39]. Even with support from operat-
ing systems changes, periodic full-blown checkpointing
still often incurs more than 10% overhead [35].

A recently proposed recovery technique, ConAir,
conducts single-threaded re-execution and register-only
checkpointing [55]. As shown in Figure 1, when a fail-
ure happens at a thread, ConAir rolls back the register
content of this thread through an automatically inserted
longjmp and re-executes from the return of an automat-
ically inserted setjmp, which took register checkpoints.
This design offers great performance (<1% overhead),
but also imposes severe limitations to failure-recovery
capability. Particularly, with no memory checkpoints
and re-executing only one thread, ConAir does not al-
low its re-execution regions to contain writes to shared
variables (referred to as Ws) for correctness concerns,
severely hurting its chance to recover many failures.

This limitation can be demonstrated by the real-world
example in Figure 2. In this example, the NULL assign-
ment from Thread-2 could execute between the write
(A1) and the read (A2) on s→table from Thread-1, and
cause failures. At the first glance, the failure could be
recovered if we could rollback Thread-1 and re-execute
both A1 and A2. However, such rollback and re-execution
cannot be allowed by ConAir, as correctness can no
longer be guaranteed if a write to a shared variable is
re-executed (Ws in Figure 2): another thread t could have
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read the old value of s→table, saved it to a local pointer,
the re-execution then gave s→table a new value, caus-
ing inconsistency between t and Thread-1 and deviation
from the original program semantics.

1 //Thread-1

2 s->table = newTable(...); //A1, Ws

3
4 if(!s->table) //A2

5 //fatal-error message; software fails

1 //Thread-2

2
3 s->table = NULL;

Figure 2: A real-world concurrency bug from Mozilla

Overhead	(%)	 10	3	0.5	 1.5	

ConAir	

Rx	

BugTMH	
BugTMHS	

Re
co
ve
ry
	C
ap
ab
ili
ty
	

Figure 3: Design space of concurrency-bug failure re-
covery (Heart: non-existing optimal design; Rx [35] changes OS)

1.2 Contributions
Existing recovery techniques only touch two corners of
the design space — good performance but limited re-
covery capability or good recovery capability but lim-
ited performance — as shown in Figure 3. It is desir-
able to have new recovery techniques that combine the
performance and recovery capability strengths of the ex-
isting two corners of design, while maintaining correct-
ness guarantees. BugTM provides such a new technique
leveraging hardware transactional memory (HTM) sup-
port that already exists in commodity machines.

At the first glance, the opportunity seems obvious, as
HTM provides a powerful mechanism for concurrency
control and rollback-reexecution. Previous work [46]
also showed that TM can be used to manually fix con-
currency bugs after they are detected.

However, automatically inserting HTMs to help
tackle unknown concurrency bugs during production
runs faces many challenges not encountered by manu-
ally fixing already detected concurrency bugs off-line:

Performance challenges: High frequency of transac-
tion uses would cause large overhead unacceptable for
production runs. Unsuitable content of transactions, like
trapping instructions1, high levels of transaction nesting,
and long loops, would also cause performance degrada-
tion due to repeated and unnecessary transaction aborts.

Correctness challenges: Unpaired transaction-start
and transaction-commit could cause software to crash.

1Certain instructions such as system calls will deterministically
cause HTM abort and are referred to as trapping instructions.

ReExecution RollBack Checkpoint ReExecution
Point Point Memory ? contains Ws?

ConAir setjmp longjmp 7 7
BugTMH StartTx AbortTx X X

BugTMHS
setjmp longjmp

X– Xor StartTx or AbortTx

Table 1: Design comparisons (Ws: shared-variable writes)

Deterministic aborts, such as those caused by trapping
instructions, could cause software to hang if not well
handled. We need to guarantee these cases do not happen
and ensure software semantics remains unmodified.

Failure recovery challenges: In order for HTM to
help recovery, we need to improve the chances that soft-
ware executes in a transaction when a failure happens
and we need to carefully design HTM-abort handlers to
correctly process the corresponding transaction aborts.

BugTM addresses these challenges by its carefully de-
signed and carefully inserted, based on static program
analysis, HTM start, commit, and abort routines. Specif-
ically, we have explored two BugTM designs: BugTMH
and BugTMHS, as highlighted in Table 1. They are both
implemented as LLVM compiler passes that automati-
cally instrument software in the following ways.

Hardware BugTM, short for BugTMH , uses HTM
techniques2 exclusively to help failure recovery. When a
failure is going to happen, a hardware transaction abort
causes the failing thread to roll back. The re-execution
naturally starts from the beginning of the enclosing trans-
action, carefully inserted by BugTMH .

BugTMH provides better recovery capability than
ConAir — benefiting from HTM, its re-execution region
can contain shared variable writes. However, HTM costs
more than setjmp/longjmp. Therefore, the performance
of BugTMH is worse than ConAir, but much better than
full-blown checkpointing, as shown in Figure 3.

Hybrid BugTM, short for BugTMHS, uses HTM
techniques and setjmp/longjmp together to help failure re-
covery. BugTMHS inserts both setjmp/longjmp and HTM
APIs into software, with the latter inserted only when
beneficial (i.e., when able to extend re-execution re-
gions). When a failure is going to happen, the rollback
is carried out through transaction abort if under an active
transaction or longjmp otherwise.

BugTMHS provides performance almost as good
as ConAir and recovery capability even better than
BugTMH by carefully combining BugTMH and ConAir.

We thoroughly evaluated BugTMH and BugTMHS us-
ing 29 real-world concurrency bugs, including all the
bugs used by a set of recent papers on concurrency bug
detection and avoidance [17, 19, 41, 55, 56, 57]. Our
evaluation shows that BugTM schemes can recover from

2This paper’s implementation is based on Intel TSX. However, the
principles apply to other vendors’ HTM implementations.
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many more concurrency-bug failures than state of the art,
ConAir, while still provide good run-time performance
— 3.08% and 1.39% overhead on average for BugTMH
and BugTMHS, respectively.

Overall, BugTM offers an easily deployable technique
that can effectively tackle concurrency bugs in produc-
tion runs, and presents a novel way of using HTM.
Instead of using transactions to replace existing locks,
BugTM automatically inserts transactions to harden the
most failure-vulnerable part of a multi-threaded pro-
gram, which already contains largely correct lock-based
synchronization, with small run-time overhead.

2 Background
2.1 Transactional Memory (TM)

TM is a widely studied parallel programming construct
[13, 15]. Developers can wrap a code region in a trans-
action (Tx), and the underlying TM system guarantees
its atomicity, consistency, and isolation. Hardware trans-
actional memory (HTM) provides much better perfor-
mance than its software counterpart (STM), and has been
implemented in IBM [12], Sun [8], and Intel commercial
processors [1].

In this paper, we focus on Intel Transactional Synchro-
nization Extensions (TSX). TSX provides a set of new
instructions: XBEGIN, XEND, XABORT, and XTEST. We will de-
note them as StartTx, CommitTx, AbortTx, and TestTx, re-
spectively for generality. Here, CommitTx may succeed
or fail with the latter causing Tx abort. AbortTx explic-
itly aborts the current Tx, which leads to Tx re-execution
unless special fallback code is provided. TestTx checks
whether the current execution is under an active Tx.

There are multiple causes for Tx aborts in TSX. Un-
known abort is mainly caused by trapping instructions,
like exceptions and interrupts (abort code 0x00). Data
conflict abort is caused by conflicting accesses from an-
other thread that accesses (writes) the write (read) set of
the current Tx (abort code 0x06). Capacity abort is due
to out of cache capacity (abort code 0x08). Nested trans-
action abort happens when there are more than 7 levels
Tx nesting (abort code 0x20). Manual abort is caused
by AbortTx operation, with programmers specifying abort
code.

2.2 ConAir
ConAir is a static code transformation tool built upon
LLVM compiler infrastructure [22]. It is a state-of-the-
art concurrency bug failure recovery technique as dis-
cussed in Section 1. We describe some techniques and
terminologies that will be used in later sections below.

Recovery capability limitations ConAir does not al-
low its re-execution regions to contain any writes to
shared variables. Many of its re-execution points (i.e.,

1 //Thread-1

2 if(thd->proc){ //A1

3 *buf++ = ’ ’; //Ws

4 strcat(buf,thd->proc);//A2

5 //failure site

6 }

1 //Thread-2

2
3
4 thd->proc = NULL;

Figure 4: A real-world concurrency bug from MySQL

setjmps) are put right after shared-variable writes, which
prevent re-execution regions from growing longer and
severely limit the recovery capability of ConAir.

ConAir fundamentally cannot recover any RAW3 vi-
olations (e.g., the bug in Figure 2) and WAR violations,
as Table 2 shows. The reason is that the (RA)W and
W(AR) have to be re-executed for successful recoveries,
but ConAir cannot re-execute shared-variable writes.

ConAir also cannot recover other types of concurrency
bugs if a shared-variable write happens to exist between
the failure location and the ideal re-execution point. For
example, the RAR atomicity violation in Figure 4 cannot
be recovered by ConAir due to the write to *buf on Line
3. If Line 3 did not exist, ConAir could have rolled back
Thread-1 to re-execute Line 2 and gotten around the fail-
ure. With Line 3, ConAir can only repeatedly re-execute
the strcat on Line 4, with no chance of recovery.

Failure instruction f ConAir automatically identifies
where failures may happen so that rollback APIs can be
inserted right there. This identification is based on pre-
vious observations that >90% of concurrency bugs lead
to four types of failures [56]: assertion violations, seg-
mentation faults, deadlocks, and wrong outputs. BugTM
will reuse this technique to identify potential failure loca-
tions, denoted as failure instructions f in the remainder
of the paper. Specifically, ConAir identifies the invoca-
tions of __assert_fail or other sanity-check macros as
failure instructions for assertion failures. ConAir then
automatically transforms software to turn segmentation
faults and deadlocks into assertion failures: ConAir au-
tomatically inserts assertions to check whether a shared
pointer variable v is null right before v’s dereference
and check whether a pointer parameter of a string-library
function is null right before the library call; ConAir au-
tomatically turns lock functions into time-out lock func-
tions, with a long timeout indicating a likely deadlock
failure, and inserts assertions accordingly. ConAir can
help recover from wrong output failures as long as de-
velopers provide output specifications using assertions.

3 BugTMH

3.1 High-Level Design
We discuss our high-level idea about where to put Txs,
and compare with some strawman ideas based on perfor-

3(R/W)A(R/W) is short for (Read/Write)-after-(Read/Write).
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Atomicity Violations Order Violations Deadlocks

Read-after-Read Read-after-Write Write-after-Read Write-after-Write
(a) RAR (b) RAW (c) WAR (d) WAW (e) (f)

Types
R	 w	
R	

w	 w	
R	

R	 w	
w	

w	 R	
w	

R	
w	

lock	A	
lock	B	 lock	B	

lock	A	

BugTMH XX XX XX XX XX XX
ConAir X − − X X X

Table 2: Common types of concurrency bugs and how BugTMH and ConAir attempt to recover from them. (R/W:
read/write to a shared variable; thick vertical line: the execution of one thread; dashed arrowed line: the re-execution region of BugTMH ; thin
arrowed line: the re-execution region of ConAir; explosion symbol: a failure; -: cannot recover; X: sometimes can recover if the recovery does not
require re-executing shared-variable writes; XX: mostly can recover. The recovery procedure under BugTMHS is a mix of BugTMH and ConAir
and hence is not shown in table.)

mance and failure-recovery capability.

Strawman approaches One approach is to chunk soft-
ware to many segments and put every segment inside
a hardware Tx [28]. This approach could avoid some
atomicity violations, the most common type of concur-
rency bugs. However, it does not help recover from or-
der violations, another major type of concurrency bugs.
Furthermore, its excessive use of Txs will lead to unac-
ceptable overhead for production-run deployment. An-
other approach is to replace all lock critical regions with
Tx. However, this approach will not help eliminate many
failures that are caused by missing lock.

Our approach In BugTMH , we selectively put hard-
ware Txs around places where failures may happen, like
the invocation of an __assert_fail, the dereference of
a shared pointer, etc. This design has the potential to
achieve good performance because it inserts Txs only at
selected locations. It also has the potential to achieve
good recovery capability because in theory it can recover
from all common types of concurrency bugs, as shown in
Table 2 and explained below.

An atomicity violation (AV) happens when the atom-
icity of a code region C is unexpectedly violated, such as
the bug shown in Figure 2. It contributes to more than
70% of non-deadlock concurrency bugs based on empir-
ical studies [26], and can be further categorized into 4
sub-types depending on the nature of C, as demonstrated
in Table 2. Conflicting accesses would usually trigger a
rollback recovery before the failure occurs, shown by the
dashed arrow lines in Table 2(a)(b)(c), benefiting from
the strong atomicity guarantee of Intel TSX — a Tx will
abort even if the conflicting access comes from non-Tx
code. For the bug shown in Figure 2 (an RAW atomicity
violation), if we put the code region in Thread-1 inside
a Tx, the interleaving NULL assignment from Thread-
2 would trigger a data conflict abort in Thread-1 before
the if statement has a chance to read the NULL. The re-
execution of Thread-1 Tx will then re-assign the valid
value to s → table for the if statement to read from,

successfully avoiding the failure.
An order violation (OV) happens when an instruction

A unexpectedly executes after, instead of before, instruc-
tion B, such as the bug in Figure 5. Different from AVs,
conflicting memory accesses related to OVs may not all
happen inside a small window. In fact, A may not have
executed when a failure occurs in the thread of B. Conse-
quently, the Tx abort probably will be triggered by a soft-
ware failure, instead of a conflicting access, depicted by
the dashed arrow in Table 2(e). Fortunately, the rollback
reexecution will still give the software a chance to cor-
rect the unexpected ordering and recover from the fail-
ure. Take the bug shown in Figure 5 as an example. If
we put a hardware Tx in Thread-1, when order violation
leads to the assertion failure, the Tx will abort, rollback,
and re-execute. Eventually, the pointer ptr will be ini-
tialized and the Tx will commit.

1 //Thread-1

2
3 assert (ptr); //B

4 //should execute after A

1 //Thread-2

2 //ptr is NULL until

3 //initialized at A

4 ptr = malloc (K); //A

Figure 5: A real-world OV bug (simplified from Transmission)

Deadlock bugs occur when different threads each
holds resources and circularly waits for each other. As
shown in Table 2(f), it can be recovered by Tx rollback
and re-execution too, as long as deadlocks are detected.

Of course, BugTMH cannot recover from all failures,
because some error-propagation chains cannot fit into a
HTM Tx, which we will discuss more in Section 7.

Next, we will discuss in details how BugTMH sur-
rounds failure sites with hardware Txs— how to auto-
matically insert StartTx, CommitTx, AbortTx, and fallback-
/retry code into software, while targeting three goals:
(1) good recovery capability; (2) good run-time perfor-
mance; (3) not changing original program semantics.

3.2 Design about AbortTx
BugTMH uses the same technique as ConAir to iden-
tify where failures would happen as discussed in Sec-
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1 if(_xtest()){

2 //manually abort with abort code 0xFF

3 _xabort(0xFF);

4 }

Figure 6: BugTMHAbortTx wrapper function (my_xabort)

tion 2.2. BugTMH puts an AbortTx wrapper function
my_xabort right before every failure instruction f , so that
a Tx abort and re-execution is triggered right before a
failure manifests. my_xabort uses a unique abort code
0xFF for its AbortTx operation (as shown in Figure 6),
so that BugTMH can differentiate different causes of Tx
aborts and handle them differently.

3.3 Design about StartTx and CommitTx

Challenges We elaborate on two key challenges in
placing StartTx and CommitTx, and explain why we
cannot simply insert well-structured atomic blocks (e.g.,
__transaction_atomic supported by GCC) into programs.

First, poor placements could cause frequent Tx aborts.
Trapping instructions (e.g., system calls) and heavy TM
nesting (>7 level) deterministically cause aborts, while
long Txs abort more likely than short ones due to timer-
interrupts and memory-footprint threshold. These aborts
hurt not only performance, but also recovery — deter-
ministic aborts of a Tx will eventually force us to execute
the Tx region4 in non-transaction mode, leaving no hope
for failure recovery.

Second, poor placements could cause unpaired execu-
tion of StartTx and CommitTx, hurting both correctness and
performance. When CommitTx executes without StartTx,
the program will crash; when StartTx executes without a
pairing CommitTx, its Tx will repeatedly abort.

Taking Figure 7 as an example, we want to put A1 and
A2, both accessing global variable G, into a Tx together
with __assert_fail on Line 6 for failure recovery. How-
ever, if we naively put StartTx on Line 2 and CommitTx on
Line 12, forming a well structured atomic block, correct
runs will incur repeated Tx aborts and huge slowdowns
due to I/Os on Line 10. Simply moving CommitTx to right
after Line 4 and keeping StartTx on Line 2 still will not
work — when else is taken, the earlier StartTx has no
pairing CommitTx and the Tx still aborts due to I/Os.

We address the first challenge by carefully placing
StartTx and CommitTx. We address the second challenge
mainly through our StartTx, CommitTx wrapper-functions.

Where to StartTx and CommitTx The design principle
is to minimize the chance of aborts that are unrelated
to concurrency bugs, tackling the first challenge above.
BugTMH achieves this by making sure that its Txs do

4We will refer to the code region between our my_xbegin and my_xend

as a Tx region, which may be executed in transactional mode.

1 void func(...){

2
3 G = g; //A1

4 if(!G){ //A2

5
6 __assert_fail;//f: failure instr.

7 }

8 else{

9
10 IO(...); //computation & I/O

11 }

12
13 }

1 void func(...){

2 + my_xbegin();

3 G = g;

4 if(!G){

5 + my_xabort();

6 __assert_fail;

7 }

8 else{

9 + my_xend();

10 IO(...);

11 }

12 + my_xend();

13 }

Figure 7: A toy example adapted from Figure 2 (left-
side) and its BugTMH transformation (right-side)

1 if(_xtest() == 0){//no active Tx

2 Retrytimes = 0;

3 prev_status = -1;

4 retry: if((status = _xbegin()) == _XBEGIN_STARTED){

5 //Tx starts

6 }else{

7 //abort fallback handler, no active Tx at this point

8 Retrytimes++;

9 if(status==0x00||status==0x08){

10 //unknown or capacity abort

11 if(!(prev_status==0x00 && status==0x00) &&

12 !(prev_status==0x08 && status==0x08))

13 { prev_status=status; goto retry;}

14 }else if(status==0x06 || status==0xFF){

15 if(Retrytimes < RetryThreshold)

16 {prev_status=status; goto retry;}

17 }

18 //continue execution in non-Tx mode

19 }

20 }

Figure 8: BugTMHStartTx wrapper function (my_xbegin)

not contain function calls, which avoids system calls
and many trapping instructions, or loops, which avoids
large memory footprints. The constraint of not contain-
ing function calls will be relaxed in Section 3.5.

Specifically, for every failure instruction f inside a
function F , BugTMH puts a StartTx wrapper function
right after the first function call instruction or loop-exit
instruction or the entrance of F , whichever encountered
first along every path tracing backward from f to the
entrance of F . BugTMH puts CommitTx wrapper func-
tions right before the exit of F , every function call in
F , and every loop header instruction in F , unless the cor-
responding loop contains a failure instruction, in which
case we want to extend re-execution regions for possible
failures inside the loop.

Analysis for different failure instructions may decide
to put multiple StartTx (CommitTx) at the same program
location. In these cases, we will only keep one copy.

For the toy example in Figure 7, the intra-procedural
BugTMH identifies Line 2 to put a StartTx, and identifies
Line 9 and 12 to put CommitTx, as shown in the figure.
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1 if(_xtest())

2 _xend(); //terminate an active transaction

Figure 9: BugTMHCommitTx wrapper function (my_xend)

How to StartTx and CommitTx The above algorithm
does not guarantee one-to-one pairing of the execution
of StartTx and CommitTx, the second challenge discussed
above. BugTMH addresses this through TestTx check-
ings conducted in my_xbegin and my_xend, BugTMH wrap-
per functions for StartTx and CommitTx. That is, StartTx
will execute only when there is no active Txs, as shown
in Figure 8; CommitTx will execute only when there exists
an active Tx, as shown in Figure 9.

Overall, our design so far satisfies performance, cor-
rectness, and failure-recovery goals by guaranteeing a
few properties. For performance, BugTMH guarantees
that its Txs do not contain system/library calls or loops
or nested Txs, and always terminate by the end of the
function where the Tx starts. For correctness, BugTMH
guarantees not to introduce crashes caused by unpairing
CommitTx. For recovery capability, BugTMH makes the
best effort in letting failures occur under active Txs.

3.4 Design for fallback and retry

Challenges It is not trivial to automatically and cor-
rectly generate fallback/retry code for all Txs inserted
by BugTMH . Since many Tx aborts may be unrelated
to concurrency bugs, inappropriate abort handling could
lead to performance degradation, hangs, and lost failure-
recovery opportunities.

Solutions BugTMH will check the abort code and re-
act to different types of aborts differently. Specifically,
BugTMH implements the following fallback/retry strat-
egy through its my_xbegin wrapper (Figure 8).

Aborts caused by AbortTx inserted by BugTMH indi-
cates software failures. We should re-execute the Tx un-
der HTM, hoping that the failure will disappear in retry
(Line 14–17). To avoid endless retry, BugTMH keeps a
retry-counter Retrytimes (Figure 8). This counter is con-
figurable in BugTMH , with the default being 1000000.

Data conflict aborts (Line 14–17) are caused by con-
flicting accesses from another thread. They are handled
in the same way as above, because they could be part of
the manifestation of concurrency bugs.

Unknown aborts and capacity aborts (Line 9–13) have
nothing to do with concurrency bugs or software fail-
ures. In fact, the same abort code may appear re-
peatedly during retries, causing performance degrada-
tion without increasing the chance of failure recovery.
Therefore, the fallback code will re-execute the Tx re-
gion in non-transaction mode once these two types of
aborts are observed in two consecutive aborts. Nested

Tx aborts would not be encountered by BugTMH , be-
cause BugTMH Txs are non-nested.

The above wrapper function not only implements fall-
back/retry strategy, but also allows easy integration into
the target software, as demonstrated in Figure 7.

3.5 Inter-procedural Designs and Others
The above algorithm allows no function calls or returns
in Txs, keeping the whole recovery attempt within one
function F . This is too conservative as many functions
contain no trapping instructions and could help recovery.

To extend the re-execution region into callees of F , we
put my_xend before every system/library call instead of ev-
ery function call. To extend the re-execution region into
the callers of F , we slightly change the policy of putting
my_xbegin. When the basic algorithm puts my_xbegin at
the entrance of F , the inter-procedural extension will find
all possible callers of F , treat the callsite of F in its caller
as a failure instruction, and apply my_xbegin insertion and
my_xend insertion in the caller.

We then adjust our strategy about when to finish a
BugTMH Tx. The basic BugTMH may end a Tx too
early: by placing my_xend before every function exit, the
re-execution will end in a callee function of F before re-
turning to F and reaching the potential failure site in F .
Our adjustment changes the my_xend wrapper inserted at
function exits, making it take effect only when the func-
tion is the one which starts the active Tx.

Finally, as an optimization, we eliminate Txs that con-
tain no shared-variable reads the failure instruction f
has control or data dependency on. In these cases, the
execution and outcome of f is deterministic during re-
execution, and hence the failure cannot be recovered.

4 BugTMHS

Rollback and re-execution techniques based on HTM
(Section 3) and setjmp/longjmp [55] each has its own
strengths and weaknesses. The former allows re-
execution regions to contain shared variable writes,
which is a crucial improvement over the latter in terms
of failure recovery capability. However, it also has
higher overhead than the latter. Furthermore, some op-
erations not allowed inside an HTM Tx (e.g. malloc,
memcpy, pthread_cond_wait), could potentially be correctly
re-executed through software techniques [37, 45].

To combine the strengths of the above two approaches,
we design BugTMHS. The high level idea is that we
apply ConAir to insert setjmp and longjmp recovery
code into a program first5; and then, only at places
where the growth of re-execution regions are stopped by
shared-variable writes, we apply BugTMH to extend re-
execution regions through HTM-based recovery.

5Intel TSX allows setjmp/longjmp to execute inside Txs.
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Next, we will discuss in details how we carry out this
high level idea to achieve the union of BugTMH and
ConAir’s recovery capability, while greatly enhancing
the performance of BugTMH .

Where to setjmp and StartTx ConAir and BugTMH in-
sert setjmp and StartTx using similar algorithms, easing
the design of BugTMHS. That is, for every failure in-
struction f inside a function F , ConAir (BugTMH ) tra-
verses backward through every path p that connects f
with the entrance of F on CFG, and puts a setjmp wrap-
per function (StartTx wrapper function) right after the
first appearance of a killing instruction. We will refer to
this location as locsetjmp and locStartTx, respectively. For
ConAir, the killing instructions include the entrance of F ,
writes to any global or heap variables, and a selected set
of system/library calls; for BugTMH , the killing instruc-
tions include the entrance of F , the loop-exit instruction,
and all system/library calls 6.

BugTMHS slightly modifies the above algorithm.
Along every path p, BugTMHS inserts the setjmp wrapper
function at every locsetjmp, where ConAir would insert it.
In addition, BugTMHS inserts the StartTx wrapper func-
tion at locStartTx, when locStartTx is farther away from f
than locsetjmp (i.e., offering longer re-execution). Note
that BugTMHS inserts setjmp at every location locsetjmp
where ConAir would have inserted setjmp because ev-
ery locsetjmp might be executed without an active hard-
ware transaction due to unexpected HTM aborts and
others. When locsetjmp is same as locStartTx, BugTMHS
would only insert setjmp without inserting StartTx wrap-
per function.

Where to CommitTx BugTMHS inserts CommitTx wrap-
per functions exactly where BugTMH inserts them. Note
that, BugTMHS inserts fewer StartTx than BugTMH , and
hence starts fewer Txs at run time. Fortunately, this
does not affect the correctness of how BugTMHS inserts
CommitTx, because the wrapper function makes sure that
CommitTx executes only under an active Tx.

How to retry ConAir and BugTMH insert longjmp

and AbortTx wrapper functions, which are responsible
for triggering rollback-based failure recovery, using the
same algorithm — right before a failure is going to hap-
pen as described in Section 2.2 and Section 3.2.

BugTMHS inserts its rollback function (Figure 10) at
the same locations. We design BugTMHS rollback wrap-
per to first invoke HTM-rollback (i.e., AbortTx) if it is
under an active transaction, which will allow a longer
re-execution region and hence a higher recovery proba-
bility. The BugTMHS rollback wrapper invokes longjmp

rollback if it is not under an active transaction. To make

6BugTMHS also combines the inter-procedural recovery of ConAir
and BugTMH in a similar way. We skip details for space constraints.

1 if(_xtest())

2 _xabort(0xFF); //terminate an active transaction

3 else //use longjmp for recovery

4 if(longjmp_retry ++ < 1000000) // avoid endless retry

5 longjmp(buf1,-1);

Figure 10: BugTMHS rollback wrapper function

sure that the program would not keep attempting hope-
less recoveries, BugTMHS continues to use the HTM-
abort statistics in the StartTx wrapper function shown in
Figure 8 and continues to keep the longjmp retry count
threshold shown in Figure 10.

For examples shown in Figure 2, 4, and 7, BugTMHS
would insert both setjmp and StartTx into the buggy
code regions, because StartTx would provide longer
re-execution regions in all three cases. However, if
the *buf++ = ’ ’; statement does not exist in Figure 4,
BugTMHS would not insert StartTx there. Consequently,
if failures happen, longjmp will be used for recovery.

Overall, we expect BugTMHS to improve the perfor-
mance of BugTMH and improve the recovery capability
of both BugTMH and ConAir. This will be confirmed
through experiments in Section 7.

5 Failure Diagnosis

Previous recovery techniques like ConAir and naive sys-
tem restart leave failure diagnosis completely to develop-
ers, which is often very time consuming. To address this
limitation, we design BugTMHS to support failure diag-
nosis through the root-cause inference routine shown in
Figure 11 and extra logging during recovery.

The root-cause inference shown in Figure 11 is mostly
straightforward. The rationale of diagnosis based on the
number of re-executions (Line 5 and 7) is the following.
If the recovery success relies on a code region C in the
failure thread to re-execute atomically, probably one re-
execution attempt is sufficient, because another unserial-
izable interleaving during re-execution is very rare. This
case applies to RAR violation, as shown in Table 2. If
the recovery success relies on something to happen in an-
other thread, multiple re-executions are probably needed.
This applies to WAW violations and order violations, as
shown in Table 2.

Note that, BugTMHS and BugTMH could detect and
recover the software from concurrency bugs before ex-
plicit failures getting triggered. As shown in Table 2, for
several types of atomicity violation bugs, the retry would
be triggered by HTM data-conflict aborts, instead of ex-
plicit failures. In these cases (Line 9), BugTMHS cannot
affirmatively conclude that concurrency bugs have hap-
pened. It can only provide hints that certain types of
atomicity violations may be the reason for HTM aborts.
Along this line, future work could extend BugTM to con-
tain more concurrency-bug detection capability, in addi-
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1 Input: information from a successful recovery

2 if (timeout failures)

3 output: deadlock

4 else if (other explicit failures)

5 if (first re-execution succeeds)

6 output: RAR atomicity violation

7 else

8 output: Order Violation or WAW atomicity violation

9 else if (implicit failures) //HTM data conflict aborts

10 output: possible RAR, WAR, or RAW atomicity violations

Figure 11: Recovery-guided root-cause diagnosis

tion to its failure recovery capability.
BugTMHS also logs memory access type (read/write),

addresses, values, and synchronization operations dur-
ing re-execution, which helps diagnosis with no run-time
overhead and only slight recovery delay.

Of course, some real-world concurrency bugs are
complicated. However, complicated bugs can often be
decomposed into simpler ones. Furthermore, some prin-
ciples still hold. For example, if the re-execution suc-
ceeds with just one attempt, it is highly likely that an
atomicity violation happened to the re-execution region.

6 Methodology
Implementation BugTM is implemented using LLVM
infrastructure (v3.6.1). We obtained the source code of
ConAir, also built upon LLVM. All the experiments are
conducted on 4-core Intel Core i7-5775C (Broadwell)
machines with 6MB cache, 8GB memory running Linux
version 2.6.32, and O3 optimization level.

Benchmark suite We have evaluated BugTM on 29
bugs, including all the real-world bug benchmarks in
a set of previous papers on concurrency-bug detection,
fixing, and avoidance [17, 19, 41, 55, 56, 57]. They
cover all common types of concurrency-bug root causes
and failure symptoms. They are from server applica-
tions (e.g., MySQL database server, Apache HTTPD
web server), client applications (e.g., Transmission Bit-
Torrent client), network applications (e.g., HawkNL net-
work library, HTTrack web crawler, Click router), and
many desktop applications (e.g., PBZIP2 file compres-
sor, Mozilla JavaScript Engine and XPCOM). The sizes
of these applications range 50K — 1 million lines of
code. Finally, our benchmark suite contains 3 extracted
benchmarks: Moz52111, Moz209188, and Bank.

The goal of BugTM is to recover from production-run
failures, not to detect bugs. Therefore, our evaluation
uses previously known concurrency bugs that we know
how to trigger failures. In all our experiments, the evalu-
ated recovery tools do not rely on any knowledge about
specific bugs in their failure recovery attempts.

Setups and metrics We will measure the recovery ca-
pability and overhead of BugTMH and BugTMHS. We
will also evaluate and compare with ConAir [55], the
state of the art concurrency-bug recovery technique.

RootCause ConAir BugTMH BugTMHS

MySQL2011 AVRAR − X X
MySQL38883 AVRAR − X X
Apache21287 AVRAW − X X
Moz-JS18025 AVRAW − X X
Moz-JS142651 AVRAW − X X
Bank AVWAR − X X
Transmission OV X − X

Total 1 6 7

Table 3: Recovery capability comparison (Moz-JS:
Mozilla JavaScript Engine.)

To measure recovery capability, we follow the
methodology of previous work [18, 55], and insert sleeps
into software, so that the corresponding bugs will man-
ifest frequently. We then run each bug-triggering work-
load with each tool applied for 1000 times.

To measure the run-time overhead. We run the original
software without any sleeps with each tool applied. We
report the average overhead measured during 100 failure-
free runs, reflecting the performance during regular ex-
ecution. We also evaluate alternative designs of BugTM,
such as not conducting inter-procedural recovery, not ex-
cluding system calls from Txs, not excluding loops, etc.
Due to space constraints, we only show this set of eval-
uation results on Mozilla and MySQL benchmarks, two
widely used client and server applications.

7 Experimental Results

Overall, BugTMH and BugTMHS both have better recov-
ery capability than ConAir, and both provide good per-
formance. BugTMHS provides the best combination of
recovery capability and performance among the three.

7.1 Failure recovery capability
Among all the 29 benchmarks, 9 cannot be recovered
by any of the evaluated techniques, no matter ConAir
or BugTM, and the remaining 20 can be recovered by
at least one of the techniques (BugTMHS can recover all
of these 20). Table 3 shows the result of 7 benchmarks
where different tools show different recovery capability.

ConAir fails to recover from 6 out of 7 failures in Ta-
ble 3, mainly because it does not allow shared-variable
writes in re-execution regions. As a result, it cannot re-
cover from any RAW or WAR atomicity bugs, and some
RAR bugs, including the one in Figure 4.

BugTMH can successfully recover from all the 6 fail-
ures that ConAir cannot in Table 3. BugTMH cannot
recover from the Transmission bug, because recovering
this bug requires re-executing malloc, a trapping oper-
ation for Intel TSX but handled by ConAir. In fact,
malloc is allowed in some more sophisticated TM designs
[37, 45].

BugTMHS combines the strengths of BugTMH and
ConAir, and hence can successfully recover from all 7
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Run-time Overhead #setjmp #StartTx #StartTx per 10µs Abort%

ConAir BugTMH BugTMHS BugTMHS BugTMH BugTMHS BugTMH BugTMHS BugTMH BugTMHS

MySQL2011 0.05% 0.13% 0.08% 643425 2746031 778024 2.3 0.7 0.01 0.01
MySQL3596 0.40% 3.10% 1.12% 144212 110476 39913 3.9 1.4 0.12 0.20
MySQL38883 0.40% 3.08% 1.11% 144119 110471 39904 3.9 1.4 0.11 0.19
Apache21287 0.55% 3.77% 3.00% 40023 72093 45520 22.8 14.5 0.08 0.11
Moz-JS18025 0.57% 9.03% 2.62% 3992 6850 1159 16.3 2.8 0.29 0.04
Moz-JS142651 0.76% 11.9% 5.30% 2145 9666 4007 30.4 12.6 0.33 0.17
Bank 0.15% 2.18% 2.95% 6 5 5 0.1 0.1 0.0 0.0
Moz-ex52111 0.47% 0.53% 0.41% 4 3 0 0.0 0.0 0.0 0.0
Moz-ex209188 0.12% 0.58% 0.77% 2 1 1 0.0 0.0 0.0 0.0
MySQL791 0.35% 1.98% 0.24% 48998 4948 602 2.5 0.4 0.35 0.01
MySQL16582 0.15% 3.03% 0.99% 269543 153532 31222 3.8 0.8 0.03 0.06
Click 0.57% 8.11% 3.60% 4681 5142 2123 18.7 8.1 0.96 0.12
FFT 0.05% 0.03% 0.14% 23 25 19 0.0 0.0 0.0 0.0
HTTrack 0.15% 0.64% 0.04% 9212 15649 1572 0.1 0.0 0.83 0.11
Moz-xpcom 0.38% 0.45% 0.03% 324 1933 154 0.0 0.0 0.31 0.51
Transmission 0.11% 0.22% 0.07% 1093 2123 919 0.1 0.0 0.56 0.40
zsnes 0.05% 0.03% 0.44% 10462 11737 372 0.5 0.0 0.13 0.23
HawkNL 0.09% 0.00% 0.15% 10 19 16 0.0 0.0 0.0 0.07
Moz-JS79054 0.84% 11.7% 4.20% 338 1325 360 9.4 2.6 0.23 0.44
SQLite1672 0.05% 0.98% 0.50% 6 3 3 0.1 0.1 0.0 0.06
Avg. 0.31% 3.08% 1.39% - - - - - - -

Table 4: Overhead during regular execution and detailed performance comparison (red font denotes >3% overhead; #:
count of dynamic instances; Abort%: percentage of aborted dynamic Txs.)

benchmarks in Table 3. It recovers the first 6 failures
through HTM retries. It recovers from the Transmission
failure through longjmp (it rolls back the malloc that can-
not be handled by HTM-retry through free).

Unrecoverable benchmarks There are 9 benchmarks
that no tools can help recover for mainly three reasons.
Some of these issues go beyond the scope of failure re-
covery, yet others are promising to address in the fu-
ture. First, two order violation benchmarks cause failures
when the failure thread is unexpectedly slow. Therefore,
re-executing the failure thread would not help correct
the timing. Fortunately, both failures can be prevented
by delaying resource deallocation, a prevention approach
proposed before for memory-bug failures [29, 35]. Sec-
ond, three benchmarks, Cherokee326, Apache25520,
and MySQL169, cause failures that are difficult to detect
(i.e., silent data corruption). Tackling them goes beyond
the scope of failure recovery. Third, the remaining four
failures cannot be recovered due to un-reexecutable in-
structions, which are promising to address. For example,
Intel TSX does not support putting memcpy, cond_wait, or
I/O into its Txs. More sophisticated TMs with OS sup-
port [37, 45] could help recover these failures.

7.2 Performance
Table 4 shows the regular-run overheads of applying
BugTM schemes to 20 benchmarks, all the benchmarks
that are recoverable by BugTMHS.

BugTMH incurs more overhead, about 3% on average,
than ConAir does, about 0.3% on average, mainly be-
cause a Tx is much more expensive than a setjmp.

Fortunately, BugTMHS wins most of the lost perfor-
mance back, incurring 1.4% overhead on average and
less than 3% for all but 3 benchmarks. In the worst

cases, it incurs 4.2% and 5.3% overhead for two bench-
marks in Mozilla JavaScript Engine (JSE), a browser
component with little I/O. If we apply BugTMHS to the
whole browser, the overhead would be much smaller, as
JSE never takes >20% of the whole page-loading time
based on our profiling and previous work [31].

Comparing BugTMHS with BugTMH , BugTMHS is
faster mainly because it has greatly reduced the num-
ber of transactions at run time. For example, for the
four benchmarks that incur the largest overhead un-
der BugTMH (Moz-JS18025, Moz-JS142651, Click, and
Moz-JS79054), BugTMHS reduces the #StartTx per 10µs
from 9.4 — 30.4 to 2.6 — 12.6, and hence dropping the
overhead from 8.11–11.9% to 2.6–5.3%.

Tx abort rate is less than 1% for all benchmarks, with
more than 95% of all aborts being unknown aborts (timer
interrupts, etc.). As Section 7.4 will show, abort rates and
overhead are much worse in alternative designs.
Recovery time & Comparison with whole-program
restart A successful BugTM failure recovery takes lit-
tle time. In our experiments, the recovery of atomic-
ity violations and deadlocks mostly takes less than 100
µ-seconds (median is 76 µ-seconds). The recovery of
order violations takes slightly longer time, as it highly
depends on how much sleep is inserted to trigger the
failure. BugTM recovery is much faster than a system
restart, which could take a few minutes or even more
for complicated systems. It also avoids wasting already
conducted computation and crash inconsistencies. For
example, without BugTM, MySQL791 would crash the
database after a table is changed but before this change
is logged, leaving inconsistent persistent states.
Understanding BugTMH overhead The overhead of
BugTMH differs among benchmarks, ranging from

USENIX Association 2018 USENIX Annual Technical Conference    845



BugTMH Intra-proc Trapping-Ins Loop

Moz-xpcom 0.45% X 0.44% 7 0.54% X 0.20% X
Moz-JS18025 9.03% X 7.01% X 16.8% X 11.3% X
Moz-JS79054 11.7% X 11.4% 7 14.0% X 11.1% X
Moz-JS142651 11.9%X 7.6% 7 19.6% X 12.2%X
MySQL791 1.98% X 1.50% X 11.4% X 11.5% X
MySQL2011 0.13% X 0.13% 7 1.50% X 0.06% X
MySQL3596 3.10% X 3.05% X 108% 7 2.63% X
MySQL16582 3.03% X 0.16% X 93.1% X 1.89% X
MySQL38883 3.08% X 3.04% X 106% 7 2.52% X

Table 5: BugTMH vs. alternative designs (%: the over-
head over baseline execution w/o recovery scheme ap-
plied; X: failure recovered; 7: failure not recovered.)

0.00% to 11.9%. As TM researchers found before, per-
formance in TM systems is often complicated [4, 34]. An
indicating metrics for our benchmarks is the frequency of
dynamic StartTx. As shown in the #StartTx per 10µs col-
umn of Table 4, BugTMH executes more than 1 StartTx

per 10 micro second on average for 10 benchmarks, and
incurs more than 1% overhead for 9 of them.

7.3 Diagnosis
BugTMHS can provide diagnosis information for all the
20 benchmarks that it can help recover from. For 13
benchmarks, recoveries through longjmp or HTM roll-
back are initiated right before explicit failures, for which
BugTMHS provides accurate root-cause diagnosis fol-
lowing Figure 11. For the other 7, the recoveries are trig-
gered by HTM data-conflict aborts, for which BugTMHS
correctly suggests that there might be RAR, RAW, or
WAR atomicity violations behind these aborts but can-
not provide more detailed root-cause information.

BugTMHS provides the option to log memory accesses
during failure recovery attempts initiated by longjmp.
Evaluation shows that this extra logging incurs 1.01X –
2.5X slowdowns to failure recovery with no overhead to
regular execution. The 2.5X slowdown happens during a
fast half-microsecond recovery.

7.4 Alternative designs of BugTM
Table 5 shows the performance and recovery capabil-
ity of three alternative designs of BugTMH . Due to
space constraints, we only show results on benchmarks
in MySQL database server and Mozilla browser suite
(non-extracted). Since BugTMH is the foundation of
BugTMHS, an alternative design that degrades the per-
formance or recovery capability of BugTMH will also
degrade BugTMHS accordingly as discussed below.

Inter-procedural vs. Intra-procedural BugTMH
uses the inter-procedural algorithm discussed in Section
3.5. This design adds 0.00 – 4.3 % overhead to its intra-
procedural alternative, as shown in Table 5. In exchange,
there are 4 benchmarks in Table 5 that require inter-
procedural re-execution of BugTMH to recover from.

Among them, two can be recovered by ConAir and hence
can still be recovered by intra-procedural BugTMHS; the
other two require inter-procedural BugTMHS to recover.
Recovering MySQL2011, Moz-xpcom, Moz-JS79054
has to re-execute not only function F where failures oc-
cur, but also F’s caller. As for Moz-JS142651, we need
to re-execute a callee of F where a memory access in-
volved in the atomicity violation resides.

Including trapping instructions in Txs Clearly, if
BugTMH did not intentionally exclude system calls from
its Txs, more Txs will abort. This alternative design hurts
performance a lot, incurring around 100% overhead for
three MySQL benchmarks shown in Table 5. Such de-
sign also causes BugTMHS to incur more than 20% over-
head on these benchmarks. Furthermore, these aborts
may hurt recovery capability, as they will cause corre-
sponding Tx regions to execute in non-transaction mode
to avoid endless aborts and hence lose the opportunity
of failure recovery. This indeed happens for two bench-
marks in Table 5. One of them will also fail to be recov-
ered by BugTMHS under this alternative design.

Including loops in Txs could lead to more capacity
aborts, which are indeed observed for all benchmarks in
Table 5. The overhead actually does not change much
for most benchmarks. Having said that, it raises the over-
head of MySQL791 from 1.98% to 11.5%.

More Txs We also tried randomly inserting more
StartTx. The overhead increases significantly. For Moz-
JS142651, when we double, treble, and quadruple the
number of dynamic Txs through randomly inserted Txs,
the overhead goes beyond 30%, 100%, and 800%. The
impact to BugTMHS would also be huge accordingly.

7.5 Discussion
As the evaluation and our earlier discussion show,
BugTM does not guarantee to recover from all concur-
rency bug failures, particularly if the bug has a long er-
ror propagation before causing a failure. However, we
believe BugTM, particularly BugTMHS, would provide
a beneficial safety net to most multi-threaded software
with little deployment cost or performance loss.

Several practices can help further improve the benefit
of BugTM. First, as discussed in Section 7.1, some im-
provements of HTM design would greatly help BugTM
to recover from more concurrency-bug failures. Sec-
ond, developers’ practices of inserting sanity checks into
software would greatly help BugTM. With more sanity
checks, fewer concurrency bugs would have long error
propagation and hence more concurrency-bug failures
would be recovered by BugTM. Third, different from
locks, which protect the atomicity of a code region only
when the region and all its conflicting code are all pro-
tected by the same lock, BugTM can help protect a code
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region regardless how other code regions are written.
Consequently, developers could choose to selectively ap-
ply BugTM to parts of software where he/she is least cer-
tain about synchronization correctness.

Finally, BugTM can be applied to software that is al-
ready using HTMs. BugTM will choose not to make its
HTM regions nesting with existing HTM regions.

8 Related Work
Concurrency-bug failure prevention The prevention
approach works by perturbing the execution timing, hop-
ing that failure-triggering interleavings would not hap-
pen. It either relies on prior knowledge about a bug/fail-
ure [19, 27] to prevent the same bug from manifesting
again, or relies on extensive off-line training [53, 51] to
guide the production run towards likely failure-free tim-
ing. It is not suitable for avoiding production-run fail-
ures caused by previously unknown concurrency bugs.
Particularly, the LiteTx work [51] proposes hardware ex-
tensions that are like lightweight HTM (i.e., without ver-
sioning or rollback) to constrain production-run thread
interleavings, proactively prohibiting interleavings that
have not been exercised during off-line testing. BugTM
and LiteTx are fundamentally different on how they
prevent/recover-from concurrency-bug failures and how
they use hardware support.

Automated concurrency-bug fixing Static analysis
and code transformation techniques have been proposed
to automatically generate patches for concurrency bugs
[17, 18, 25, 47]. They work at off-line and rely on accu-
rate bug-detection results. A recent work [16] proposes a
data-privatization technique to automatically avoid some
read-after-write and read-after-read atomicity violations.
When a thread may access the same shared variable with
no blocking operations in between, this technique would
create a temporary variable to buffer the result of the ear-
lier access and feed it to the later read access. Although
inspiring, this previous work is clearly different from
BugTM. It does not handle many other types of con-
currency bugs, including write-after-read and write-after-
write atomicity violations and order violations. Further-
more, it relies on analyzing traces of previous execution
of the program to carry out data privatization. The dif-
ferent usage contexts lead to different designs.

Failure recovery Rollback and re-execution have long
been a valuable recovery [35, 44] and debugging [7,
20, 33, 43] technique. Many rollback-reexecution tech-
niques target full system/application replay and hence
are much more complicated and expensive than BugTM.

Feather-weight re-execution based on idempotency
has been used before for recovering hardware faults
[6, 9]. Using it to help recover from concurrency-bug
failures was recently pioneered by ConAir [55]. BugTM

greatly improved ConAir. BugTMH and ConAir use not
only different rollback/reexecution mechanisms, but also
completely different static analysis and code transfor-
mation. The setjmp and longjmp used by ConAir have
different performance and correctness implications from
StartTx, CommitTx, and AbortTx, which naturally led to
completely different designs in BugTMH and ConAir.

Recent work leverages TM to help recover from tran-
sient hardware faults [21, 24, 49]. Due to the different
types of faults/bugs these tools and BugTM are facing,
their designs are different from BugTM. They wrap the
whole program into transactions, which inevitably leads
to large overhead (around 100% overhead [21, 49]) or
lots of hardware changes to existing HTM [24], and dif-
ferent design about how/where to insert Tx APIs. They
use different ways to detect and recover from the occur-
rence of faults, and hence have different Tx abort han-
dling from BugTM. They either rely on non-existence
of concurrency bugs to guarantee determinism [21] or
only apply for single-threaded software [24, 49], which
is completely different from BugTM.

Others Lots of research was done on HTM and STM
[2, 3, 5, 11, 13, 14, 30, 36, 42]. Recent work explored
using HTM to speed up distributed transaction systems
[48], race detection [10, 54], etc. Previous empirical
studies have examined the experience of using Txs, in-
stead of locks, in developing parallel programs [38, 52].
They all look at different ways of using TM systems from
BugTM.

9 Conclusions
Concurrency bugs severely affect system availability.
This paper presents BugTM that leverages HTM avail-
able on commodity machines to help automatically re-
cover concurrency-bug failures during production runs.
BugTM can recover failures caused by all major types of
concurrency bugs and incurs very low overhead (1.39%).
BugTM does not require any prior knowledge about con-
currency bugs in a program and guarantees not to intro-
duce any new bugs. We believe BugTM improves the
state of the art of failure recovery, presents novel ways
of using HTM techniques, and provides a practical and
easily deployable solution to improve the availability of
multi-threaded systems with little cost.
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Abstract
Replication is essential for fault-tolerance. However,
in in-memory systems, it is a source of high overhead.
Remote direct memory access (RDMA) is attractive to
create redundant copies of data, since it is low-latency
and has no CPU overhead at the target. However, ex-
isting approaches still result in redundant data copying
and active receivers. To ensure atomic data transfers, re-
ceivers check and apply only fully received messages.
Tailwind is a zero-copy recovery-log replication proto-
col for scale-out in-memory databases. Tailwind is the
first replication protocol that eliminates all CPU-driven
data copying and fully bypasses target server CPUs, thus
leaving backups idle. Tailwind ensures all writes are
atomic by leveraging a protocol that detects incomplete
RDMA transfers. Tailwind substantially improves repli-
cation throughput and response latency compared with
conventional RPC-based replication. In symmetric sys-
tems where servers both serve requests and act as repli-
cas, Tailwind also improves normal-case throughput by
freeing server CPU resources for request processing. We
implemented and evaluated Tailwind on RAMCloud, a
low-latency in-memory storage system. Experiments
show Tailwind improves RAMCloud’s normal-case re-
quest processing throughput by 1.7×. It also cuts down
writes median and 99th percentile latencies by 2x and 3x
respectively.

1 Introduction

In-memory key-value stores are an essential building
block for large-scale data-intensive applications [3, 19].
Recent research has led to in-memory key-value stores
that can perform millions of operations per second per
machine with a few microseconds remote access times.
Harvesting CPU power and eliminating conventional
network overheads has been key to these gains. How-
ever, like many other systems, they must replicate data
in order to survive failures.

As the core frequency scaling and multi-core archi-
tecture scaling are both slowing down, it becomes criti-
cal to reduce replication overheads to keep-up with shift-
ing application workloads in key-value stores [13]. We
show that replication can consume up to 80% of the CPU
cycles for write-intensive workloads (§4.4), in strongly-
consistent in-memory key-value stores. Techniques like
remote-direct memory access (RDMA) are promising to

improve overall CPU efficiency of replication and keep
predictable tail latencies.

Existing RDMA-based approaches use message-
passing interfaces: a sender remotely places a message
into a receiver’s DRAM; a receiver must actively poll
and handle new RDMA messages. This approach guar-
antees the atomicity of RDMA transfers, since only fully
received messages are applied by the receiver [4, 10, 30].
However, this approach defeats RDMA efficiency goals
since it forces receivers to use their CPU to handle in-
coming RDMA messages and it incurs additional mem-
ory copies.

The main challenge of efficiently using RDMA for
replication is that failures could result in partially ap-
plied writes. The reason is that receivers are not aware of
data being written to their DRAM. Leaving receivers idle
is challenging because there is no protocol to guarantee
data consistency in the event of failures.

A second key limitation with RDMA is its low scal-
ability. This limitation comes from the connection-
oriented nature of RDMA transfers. Senders and re-
ceivers have to setup queue pairs (QP) to perform
RDMA. Lots of recent work has observed the high cost
of NIC connection cache misses [4, 11, 32]. Scalability
is limited as it typically depends on the cluster size.

To address the above challenges, we developed Tail-
wind, a zero-copy primary-backup log replication proto-
col that completely bypasses CPUs on all target backup
servers. In Tailwind, log records are transferred directly
from the source server’s DRAM to I/O buffers at tar-
get servers via RDMA writes. Backup servers are com-
pletely passive during replication, saving their CPUs for
other purposes; they flush these buffers to solid-state
drives (SSD) periodically when the source triggers it via
remote procedure call (RPC) or when power is inter-
rupted. Even though backups are idle during replication,
Tailwind is strongly consistent: it has a protocol that al-
lows backups to detect incomplete RDMA transfers.

Tailwind uses RDMA write operations for all data
movement, but all control operations such as buffer al-
location and setup, server failure notifications, buffer
flushing and freeing are all handled through conventional
RPCs. This simplifies such complex operations without
slowing down data movement. In our implementation,
RPCs only account for 10−5 of the replication requests.
This also makes Tailwind easier to use in systems that
use log replication over distributed blocks even if they
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were not designed to exploit RDMA.
Since Tailwind needs only to maintain connections be-

tween a primary server and its backups, the number of
connections scales with the size of a replica group, not
with the cluster size, making Tailwind a scalable ap-
proach.

We implemented and evaluated Tailwind on RAM-
Cloud, a scale-out in-memory key-value store that ex-
ploits fast kernel-bypass networking. Tailwind is suited
to RAMCloud’s focus on strong consistency and low
latency. Tailwind significantly improves RAMCloud’s
throughput since each PUT operation in the cluster re-
sults in three remote replication operation that would oth-
erwise consume server CPU resources.

Tailwind improves RAMCloud’s throughput by 1.7×
on the YCSB benchmark, and it reduces durable PUT
median latency from 32 µs to 16 µs and 99th percentile
latency from 78 µs to 28 µs. Theses results stem from
the fact that Tailwind significantly reduces the CPU cy-
cles used by the replication operations: Tailwind only
needs 1/3 of the cores RAMCloud uses to achieve the
same throughput.

This paper makes four key contributions;

• it analyzes and quantifies CPU related limitations in
modern in-memory key-value stores;

• it presents Tailwind’s design, it describes its imple-
mentation in the RAMCloud distributed in-memory
key-value store, and it evaluates its impact on RAM-
Cloud’s normal-case and recovery performance;

• to our knowledge, Tailwind is the first log repli-
cation protocol that eliminates all superfluous data
copying between the primary replica and its back-
ups, and it is the first log replication protocol that
leaves servers CPU idle while serving as replication
targets; this allows servers to focus more resources
on normal-case request processing;

• Tailwind separates the replication data path and
control path and optimizes them individually; it
uses RDMA for heavy transfer, but it retains the
simplicity of RPC for rare operations that must deal
with complex semantics like failure handling and
resource exhaustion.

2 Motivation and Background
Replication and redundancy are fundamental to fault tol-
erance, but at the same time they are costly. Primary-
backup replication (PBR) is popular in fault-tolerant stor-
age systems like file systems and key-value stores, since
it tolerates f stop-failures with f +1 replicas. Note that,
we refer to a primary replica server as primary, and sec-
ondary replica server as secondary or backup. In some
systems, backup servers don’t process user-facing re-
quests, but in many systems each node acts as both a
primary for some data items and as a backup for other
data items. In some systems this is implicit: for exam-
ple, a key-value store may store its state on HDFS [28],
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and a single physical machine might run both a key-value
store frontend and an HDFS chunkserver.

Replication is expensive for three reasons. First, it is
inherently redundant and, hence, brings overhead: the
act of replication itself requires moving data over the net-
work. Second, replication in strongly consistent systems
is usually synchronous, so a primary must stall while
holding resources while waiting for acknowledgements
from backups (often spinning a CPU core in low-latency
stores). Third, in systems, where servers (either explic-
itly or implicitly) serve both client-facing requests and
replication operations, those operations contend.

Figure 1 shows this in more detail. Low-latency, high-
throughput stores use kernel-bypass to directly poll NIC
control (with a dispatch core) rings to avoid kernel code
paths and interrupt latency and throughput costs. Even
so, a CPU on a primary node processing an update op-
eration must receive the request, hand the request off to
a core (worker core) to be processed, send remote mes-
sages, and then wait for multiple nodes acting as backup
to process these requests. Batching can improve the
number of backup request messages each server must re-
ceive, but at the cost of increased latency. Inherently,
though, replication can double, triple, or quadruple the
number of messages and the amount of data generated
by client-issued write requests. It also causes expensive
stalls at the primary while it waits for responses. In these
systems, responses take a few microseconds which is too
short a time for the primary to context switch to another
thread, yet its long enough that the worker core spends a
large fraction of its time waiting.

2.1 The Promise of RDMA
Recently, remote-direct memory access (RDMA) has
been used in several systems to avoid kernel overhead
and to reduce CPU load. Though the above kernel-
bypass-based request processing is sometimes called
(two-sided) RDMA, it still incurs request dispatching
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Figure 2: Dispatch and worker cores utilization percentage of a sin-
gle RAMCloud server. Requests consist of 95/5 GET/PUT ratio.

and processing overhead because a CPU, on the desti-
nation node, must poll for the message and process it.
RDMA-capable NICs also support so called one-sided
RDMA operations that directly access the remote host’s
memory, bypassing its CPU altogether. Remote NICs di-
rectly service RDMA operations without interrupting the
CPU (neither via explicit interrupt nor by enqueuing an
operation that the remote CPU must process). One-sided
operations are only possible through reliable-connected
queue pairs (QP) that ensure in-order and reliable mes-
sage delivery, similar to the guarantees TCP provides.
2.1.1 Opportunities
One-sided RDMA operations are attractive for replica-
tion; replication inherently requires expensive, redundant
data movement. Backups are (mostly) passive; they often
act as dumb storage, so they may not need CPU involve-
ment. Figure 2 shows that RAMCloud, an in-memory
low-latency kernel-bypass-based key-value store, is of-
ten bottlenecked on CPU (see §4 for experimental set-
tings). For read-heavy workloads, the cost of polling
network and dispatching requests to idle worker cores
dominates. Only 8 clients are enough to saturate a sin-
gle server dispatch core. Because of that, worker cores
cannot be fully utilized. One-sided operations for repli-
cating PUT operations would reduce the number of re-
quests each server handles in RAMCloud, which would
indirectly but significantly improve read throughput. For
workloads with a significant fraction of writes or where
a large amount of data is transferred, write throughput
can be improved, since remote CPUs needn’t copy data
between NIC receive buffers and I/O or non-volatile stor-
age buffers.
2.1.2 Challenges
The key challenge in using one-sided RDMA operations
is that they have simple semantics which offer little con-
trol on the remote side. This is by design; the remote
NIC executes RDMA operations directly, so they lack
the generality that a conventional CPU-based RPC han-
dlers would have. A host can issue a remote read of
a single, sequential region of the remote processes vir-
tual address space (the region to read must be registered
first, but a process could register its whole virtual address
space). Or, a host can issue a remote write of a single,

sequential region of the remote processes virtual address
space (again, the region must be registered with the NIC).
NICs support a few more complex operations (compare-
and-swap, atomic add), but these operations are currently
much slower than issuing an equivalent two-sided oper-
ation that is serviced by the remote CPU [11, 30]. These
simple, restricted semantics make RDMA operations ef-
ficient, but they also make them hard to use safely and
correctly. Some existing systems use one-sided RDMA
operations for replication (and some also even use them
for normal case operations [4, 5]).

However, no existing primary-backup replication
scheme reaps the full benefits of one-sided operations. In
existing approaches, source nodes send replication oper-
ations using RDMA writes to push data into ring buffers.
CPUs at backups poll for these operations and apply
them to replicas. In practice, this is is effectively emulat-
ing two-sided operations [4]. RDMA reads don’t work
well for replication, because they would require backup
CPUs to schedule operations and “pull” data, and pri-
maries wouldn’t immediately know when data was safely
replicated.

Two key, interrelated issues make it hard to use
RDMA writes for replication that fully avoids the re-
mote CPUs at backups. First, a primary can crash when
replicating data to a backup. Because RDMA writes (in-
herently) don’t buffer all of the data to be written to re-
mote memory, its possible that an RDMA write could
be partially applied when the primary crashes. If a pri-
mary crashes while updating state on the backup, the
backup’s replica wouldn’t be in the “before” or “after”
state, which could result in a corrupted replica. Worse,
since the primary was likely mutating all replicas concur-
rently, it is possible for all replicas to be corrupted. Inter-
estingly, backup crashes during RDMA writes don’t cre-
ate new challenges for replication, since protocols must
deal with that case with conventional two-sided oper-
ations too. Well-known techniques like log-structured
backups [18, 23, 25] or shadow paging [35] can be used
to prevent update-in-place and loss of atomicity. Tradi-
tional log implementations enforce a total ordering of log
entries [9]. In database systems, for instance, the order is
used to recreate a consistent state during recovery.

Unfortunately, a second key issue with RDMA oper-
ations makes this hard: each operation can only affect a
single, contiguous region of remote memory. To be ef-
ficient, one-sided writes must replicate data in its final,
stable form, otherwise backup CPU must be involved,
which defeats the purpose. For stable storage, this gen-
erally requires some metadata. For example, when a
backup uses data found in memory or storage it must
know which portions of memory contain valid objects,
and it must be able to verify that the objects and the
markers that delineate them haven’t been corrupted. As
a result, backups need some metadata about the objects
that they host in addition to the data items themselves.
However, RDMA writes make this hard. Metadata must
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inherently be intermixed with data objects, since RDMA
writes are contiguous. Otherwise, multiple round trips
would be needed, again defeating the efficiency gains.

Tailwind solves these challenges through a form of
low-overhead redundancy in log metadata. Primaries in-
crementally log data items and metadata updates to re-
mote memory on backups via RDMA writes. Backups
remain unaware of the contents of the buffers and blindly
flush them to storage. In the rare event when a primary
fails, all backups work in parallel scanning log data to re-
construct metadata so data integrity can be checked. The
next section describes its design in detail.

3 Design
Tailwind is a strongly-consistent RDMA-based replica-
tion protocol. It was designed to meet four requirements:

Zero-copy, Zero-CPU on Backups for Data Path. In
order to relieve backups CPUs from processing replica-
tion requests, Tailwind relies on one-sided RDMA writes
for all data movement. In addition, it is zero-copy at
primary and secondary replicas; the sender uses kernel-
bypass and scatter/gather DMA for data transfer; on the
backup side, data is directly placed to its final storage
location via DMA transfer without CPU involvement.

Strong Consistency. For every object write Tailwind
synchronously waits for its replication on all backups be-
fore notifying the client. Although RDMA writes are
one-sided, reliable-connected QPs generate work com-
pletion to notify the sender once a message has been
correctly sent and acknowledged by the receiver NIC
(i.e. written to remote memory) [8]. One-sided opera-
tion raise many issues, Tailwind is designed to cover all
corner cases that may challenge correctness (§3.4).

Overhead-free Fault-Tolerance. Backups are un-
aware of replication as it happens, which can be unsafe
in case of failures. To address this, Tailwind appends a
piece of metadata in the log after every object update.
Backups use this metadata to check integrity and locate
valid objects during recovery. Although a few backups
have to do little extra work during crash recovery, that
work has no impact on recovery performance (§4.6).

Preserves Client-facing RPC Interface. Tailwind
has no requirement on the client side; all logic is imple-
mented between primaries and backups. Clients observe
the same consistency guarantees. However, for write op-
erations, Tailwind highly improves end-to-end latency
and throughput from the client perspective (§4.2).

3.1 The Metadata Challenge
Metadata is crucial for backups to be able to use repli-
cated data. For instance, a backup needs to know which
portions of the log contain valid data. In RPC-based sys-
tems, metadata is usually piggybacked within a replica-
tion request [11, 21]. However, it is challenging to up-
date both data and metadata with a single RDMA write
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Figure 3: The three replication steps in Tailwind. During the first
(open) and third (close) steps, the communication is done through
RPCs. While the second step involves one-sided writes only.

since it can only affect a contiguous memory region. In
this case, updating both data and metadata would re-
quire sending two messages which would nullify one-
sided RDMA benefits. Moreover, this is risky: in case of
failures a primary may start updating the metadata and
fail before finishing, thereby invalidating all replicated
objects.

For log-structured data, backups need two pieces of in-
formation: (1) the offset through which data in the buffer
is valid. This is needed to guarantee the atomicity of
each update. An outdated offset may lead the backup
to use old and inconsistent data during crash recovery.
(2) A checksum used to check the integrity of the length
fields of each log record during recovery. Checksums are
critical for ensuring log entry headers are not corrupted
while in buffers or on storage. These checksums ensure
iterating over the buffer is safe; that is, a corrupted length
field does not “point” into the middle of another object,
out of buffer, or indicate an early end to the buffer.

The protocol assumes that each object has a header
next to it [4, 12, 26]. Implementation-agnostic informa-
tion in headers should include: (1) the size of the object
next to it to allow log traversal; (2) an integrity check that
ensures the integrity of the contents of the log entry.

Tailwind checksums are 32-bit CRCs computed over
log entry headers. The last checksum in the buffer covers
all previous headers in the buffer. For maximum protec-
tion, checksums are end-to-end: they should cover the
data while it is in transit over the network and while it
occupies storage.

To be able to perform atomic updates with one-sided
RDMAs in backups, the last checksum and the current
offset in the buffer must be present and consistent in the
backup after every update. A simple solution is to ap-
pend the checksum and the offset before or after every
object update. A single RDMA write would suffice then
for both data and metadata. The checksum must nec-
essarily be sent to the backup. Interestingly, this is not
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the case for the offset. The nature of log-structured data
and the properties of one-sided RDMA make it possi-
ble, with careful design, for the backup to compute this
value at recovery time without hurting consistency. This
is possible because RDMA writes are performed (at the
receiver side) in an increasing address order [8]. In addi-
tion, reliable-connected QPs ensure that updates are ap-
plied in the order they were sent.

Based on these observations, Tailwind appends a
checksum in the log after every object update; at any
point of time a checksum guarantees, with high proba-
bility, the integrity of all previous headers preceding it in
the buffer. During failure-free time, a backup is ensured
to always have the latest checksum, at the end of the log.
On the other hand, backups have to compute the offset
themselves during crash recovery.

3.2 Non-volatile Buffers
In Tailwind, at start up, each backup machine allocates a
pool of in-memory I/O buffers (8 MB each, by default)
and registers them with the NIC. To guarantee safety,
each backup limits the number of buffers outstanding un-
flushed buffers it allows. This limit is a function of its
local, durable storage speed. A backup denies opening a
new replication buffer for a primary if it would exceed
the amount of data it could flush safely to storage on
backup power. Buffers are pre-zeroed. Servers require
power supplies that allow buffers to be flushed to stable
storage in the case of a power failure [4, 5, 20]. This
avoids the cost of a synchronous disk write on the fast
path of PUT operations.

Initiatives such as the OpenCompute Project propose
standards where racks are backed by batteries backup,
that could provide a minimum of 45 seconds of power
supply [1] at full load, including network switches.
Battery-backed DIMMs could have been another option,
but they require more careful attention. Because we use
RDMA, batteries need to back the CPU, the PCIe con-
troller, and the memory itself. Moreover, there exists
no clear way to flush data that could still be residing in
NIC cache or in PCIe controller, which would lead to
firmware modifications and to a non-portable solution.

3.3 Replication Protocol
3.3.1 Write Path
To be able to perform replication through RDMA, a pri-
mary has to has to reserve an RDMA-registered memory
buffer from a secondary replica. The first step in Figure 3
depicts this operation: a primary sends an open RPC to a
backup 1 . Tailwind does not enforce any replica place-
ment policy, instead it leaves backup selection up to the
storage system. Once the open processed 2 + 3 , the
backup sends an acknowledgement to the primary and
piggybacks necessary information to perform RDMA
writes 4 (i.e. remote_key and remote_address [8]).
The open call fails if there are no available buffers. The
primary has then to retry.
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Figure 4: Primary DRAM storage consists of a monotonically grow-
ing log. It is logically split into fixed-size segments.

At the second step in Figure 3, the primary is able to
perform all subsequent replication requests with RDMA
writes 1 . Backup NIC directly put objects to memory
buffers via DMA transfer 2 without involving the CPU.
The primary gets work completion notification from its
corresponding QP 3 .

The primary keeps track of the last written offset in
the backup buffer. When the next object would exceed
the buffer capacity, the primary proceeds to the third step
in Figure 3. The last replication request is called close
and is performed through an RPC 1 . The close notifies
the backup 2 + 3 that the buffer is full and thus can be
flushed to durable storage. This eventually allows Tail-
wind to reclaim buffers and make them available to other
primaries. Buffers are zeroed again when flushed.

We use RPCs for open and close operations because
it simplifies the design of the protocol without hurting
latency. As an example of complication, a primary may
choose a secondary that has no buffers left. This can be
challenging to handle with RDMA. Moreover, these op-
erations are not frequent. If we consider 8 MB buffers
and objects of 100 B, which corresponds to real work-
loads object size [19], open and close RPCs would ac-
count for 2.38×10−5 of the replication requests. Larger
buffers imply less RPCs but longer times to flush backup
data to secondary storage.

Thanks to all these steps, Tailwind can effectively
replicate data using one-sided RDMA. However, without
taking care of failure scenarios the protocol would not be
correct. Next, we define essential notions Tailwind relies
on for its correctness.

3.3.2 Primary Memory Storage
The primary DRAM log-based storage is logically sliced
into equal segments (Figure 4). For every open and
close RPC the primary sends a metadata information
about current state: logID, latest checksum, segmentID,
and current offset in the last segment. In case of failures,
this information helps the backup in finding backup-data
it stores for the crashed server.

At any given time, a primary can only replicate a sin-
gle segment to its corresponding backups. This means
a backup has to do very little work during recovery; if
a primary replicates to r replicas then only r segments
would be open, in case the primary fails.
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input : Pointer to a memory buffer rdmaBuf
output: Size of durably replicated data offset

1 currPosition = rdmaBuf ;
2 offset = currPosition ;
3 while currPosition < MAX_BUFFER_SIZE do

/* Create a header in the current position */
4 header = (Header)currPosition;
5 currPosition += sizeof(header);

/* Not Corrupted or incomplete header */
6 if header→type != INVALID then
7 if header→type == checksumType then
8 checksum = (Checksum)currPosition;
9 if checksum != currChecksum then

/* Primaries never append a zero
checksum, check if it is 1. */

10 if currChecksum == 0 and checksum == 1 then
11 offset = currPosition + sizeOf(checksum);
12 else
13 return offset;

14 else
/* Move the offset at the end of

current checksum */
15 offset = currPosition + sizeOf(checksum);

16 else
17 currChecksum = crc32(currChecksum, header);

18 else
19 return offset;

/* Move forward to next entry */
20 currPosition += header→objectSize;

/* We should only reach this line if a primary
crashed before sending close */

21 return offset;
Algorithm 1: Updating RDMA buffer metadata

3.4 Failure Scenarios
When a primary or secondary replica fail the protocol
must recover from the failure and rebuild lost data. Pri-
mary and secondary replicas failure scenarios require
different actions to recover.
3.4.1 Primary-replica Failure
Primary replica crashes are one of the major concerns
in the design. In case of such failures, Tailwind has to:
(1) locate backup-data (of crashed primary) on secondary
replicas; (2) rebuild up-to-date metadata information on
secondary replicas; (3) ensure backup-data integrity and
consistency; (4) start recovery.
Locating Secondary Replicas. After detecting a pri-
mary replica crash, Tailwind sends a query to all sec-
ondary replicas to identify the ones storing data belong-
ing to the crashed primary. Since every primary has a
unique logID it is easy for backups to identify which
buffers belong to that logID.
Building Up-to-date Metadata. Backup buffers can
either be in open or close states. Buffers that are
closed do not pose any issue, they already have up-to-
date metadata. If they are in disk or SSD they will be
loaded to memory to get ready for recovery. However,
for open buffers, the backup has to compute the offset
and find the last checksum. Secondary replicas have to
scan their open buffers to update their respective check-
sum and offset. To do so, they iterate over all entries as
depicted in Algorithm 1.
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Figure 5: From top to bottom are three scenarios that can happen
when a primary replica crashes while writing an object (B in this case)
then synchronizing with backups. In the first scenario the primary
replica fully writes the message to the backup leaving the backup in
a correct state. B can be recovered in this case. In the second scenario,
the object B is written but the checksum is partially written. Therefore,
B is discarded. Similarly for the third scenario where B is partially
written.

Basically, the algorithm takes an open buffer and tries
to iterate over its entries. It moves forward thanks to the
size of the entry which should be in the header. For every
entry the backup computes a checksum over the header.
When reaching a checksum in the buffer it is compared
with the most recently computed checksum: the algo-
rithm stops in case of checksum mismatch. There are
three stop conditions: (1) integrity check failure; (2) in-
valid object found; (3) end of buffer reached.

A combination of three factors guarantee the correct-
ness of the algorithm: (1) the last entry is always a
checksum; Tailwind implicitly uses this condition as an
end-of-transmission marker. (2) Checksums are not al-
lowed to be zero; the primary replica always verifies
the checksum before appending it. If it is zero it sets
it to 1 and then appends it to the log. Otherwise, an in-
complete object could be interpreted as valid zero check-
sum. (3) Buffers are pre-zeroed; combined with condi-
tion (2), a backup has a means to correctly detect the last
valid offset in a buffer by using Algorithm 1.

3.4.2 Corrupted and Incomplete Objects
Figure 5 shows the three states of a backup RDMA buffer
in case a primary replica failure. The first scenario shows
a successful transmission of an object B and the check-
sum ahead of it. If the primary crashes, the backup is
able to safely recover all data (i.e. A and B).

In the second scenario. the backup received B, but the
checksum was not completely received. In this case the
integrity check will fail. Object A will be recovered and
B will be ignored. This is safe, since the client’s PUT of
B could not have been acknowledged.

The third scenario is similar: B was not completely
transmitted to the backup. However, there creates two
possibilities. If B’s header was fully transmitted, then the
algorithm will look past the entry and find a 0-byte at the
end of the log entry. This way it can tell that the RDMA
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operation didn’t complete in full, so it will discard the
entry and treat the prefix of the buffer up through A as
valid. If the checksum is partially written, it will still be
discarded, since it will necessarily end in a 0-byte: some-
thing that is disallowed for all valid checksums that the
primary creates. If B’s header was only partially written,
some of the bytes of the length field may be left zero.
Imagine that o is the offset of the start of B. If the pri-
mary intended B to have length l and l′ is the length
actually written into the backup buffer. It is necessar-
ily the case that l′ < l, since lengths are unsigned and
l′ is a subset of the bits in l. As a result, o + l′ falls
within the range where the original object data should
have been replicated in the buffer. Furthermore, the data
there consists entirely of zeroes, since an unsuccessful
RDMA write halts replication to the buffer, and replica-
tion already halted before o+ sizeof(Header). As a
result, this case is handled identically to the incomplete
checksum case, leaving the (unacknowledged) B off of
the valid prefix of the buffer.

A key property maintained by Tailwind is that torn
writes never depend on checksum checks for correctness.
They can also be detected by careful construction of the
log entries headers and checksums and the ordering guar-
antees that RDMA NICs provide.
Bit-flips The checksums, both covering the log entry
headers and the individual objects themselves ensure that
recovery is robust against bit-flips. The checksums en-
sure with high probability that bit-flip anywhere in any
replica will be detected. In closed segments, whenever
data corruption is detected, Tailwind declares the replica
corrupted. The higher-level system will still successfully
recover a failed primary, but it must rely on replicas from
other backups to do so. In open segments data corrup-
tion is treated as partially transmitted buffers; as soon as
Tailwind immediately stops iterating over the buffer and
returns the last valid offset.
3.4.3 Secondary-replica Failure
When a server crashes the replicas it contained become
unavailable. Tailwind must re-create new replicas on
other backups in order to keep the same level of dura-
bility. Luckily, secondary-replica crashes are dealt with
naturally in storage systems and do not suffer from one-
sided RDMA complications. Tailwind takes several steps
to allocate a new replica: (1) It suspends all operations
on the corresponding primary replica; (2) It atomically
creates a new secondary replica; (3) It resumes normal
operations on the primary replica. Step (1) ensures that
data will always have the same level of durability. Step
(2) is crucial to avoid inconsistencies if a primary crashes
while re-creating a secondary replica. In this case the
newly created secondary replica would not have all data
and cannot be used.

However, it can happen that a secondary replica stops
and restarts after some time, which could lead to incon-
sistent states between secondary replicas. To cope with
this, Tailwind keeps, at any point of time, a version num-

ber for replicas. If a secondary replica crashes, Tailwind
updates the version number on the primary and secon-
daries. Since secondaries need to be notified, Tailwind
uses an RPC instead of an RDMA for this operation.
Tailwind updates the version number right after the step
(2) when re-creating a secondary replica. This ensures
that the primary and backups are synchronized. Replica-
tion can start again from a consistent state. Note that this
RPC is rare and only occurs after the crash of a backup.

3.4.4 Network Partitioning
It can happen that a primary is considered crashed by a
subset of servers. Tailwind would start locating its back-
ups, then rebuilding metadata on those backups. While
metadata is rebuilt, the primary could still perform one-
sided RDMA to its backups, since they are always un-
aware of these type of operations. To remedy this, as
soon as a primary or secondary failure is detected, all ma-
chines close their respective QPs with the crashed server.
This allows Tailwind to ensure that servers that are alive
but considered crashed by the environment do not inter-
fere with work done during recovery.

4 Evaluation
We implemented Tailwind on RAMCloud a low-latency
in-memory key-value store. Tailwind’s design perfectly
suits RAMCloud in many aspects:
Low latency. RAMCloud’s main objective is to pro-
vide low-latency access to data. It relies on fast net-
working and kernel-bypass to provide a fast RPC layer.
Tailwind can further improve RAMCloud (PUT) latency
(§4.2) by employing one-sided RDMA without any ad-
ditional complexity or resource usage.
Replication and Threading in RAMCloud. To
achieve low latency, RAMCloud dedicates one core
solely to poll network requests and dispatch them to
worker cores (Figure 1). Worker cores execute all client
and system tasks. They are never preempted to avoid
context switches that may hurt latency. To provide strong
consistency, RAMCloud always requests acknowledge-
ments from all backups for every update. With the above
threading-model, replication considerably slows down
the overall performance of RAMCloud [31]. Hence Tail-
wind can greatly improve RAMCloud’s CPU-efficiency
and remove replication overheads.
Log-structured Memory. RAMCloud organizes its
memory as an append-only log. Memory is sliced into
smaller chunks called segments that also act as the unit
of replication, i.e., for every segment a primary has to
choose a backup. Such an abstraction makes it easy to
replace RAMCloud’s replication system with Tailwind.
Tailwind checksums can be appended in the log-storage,
with data, and replicated with minimal changes to the
code. In addition, RAMCloud provides a log-cleaning
mechanism which can efficiently clean old checksums
and reclaim their storage space.
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CPU Xeon E5-2450 2.1 GHz 8 cores, 16 hw threads

RAM 16 GB 1600 MHz DDR3

NIC Mellanox MX354A CX3 @ 56 Gbps

Switch 36 port Mellanox SX6036G

OS Ubuntu 15.04, Linux 3.19.0-16,
MLX4 3.4.0, libibverbs 1.2.1

Table 1: Experimental cluster configuration.

We compared Tailwind with RAMCloud replication
protocol, focusing our analysis on three key questions:

Does Tailwind improve performance? Measure-
ments show Tailwind reduces RAMCloud’s median write
latency by 2× and 99th percentile latency by 3× (Fig-
ure 7). Tailwind improves throughput by 70% for write-
heavy workloads and by 27% for workloads that include
just a small fraction of writes.
Why does Tailwind improve performance? Tailwind
improves per-server throughput by eliminating backup
request processing (Figure 9), which allows servers to
focus effort on processing user-facing requests.
What is the Overhead of Tailwind? We show that
Tailwind’s performance improvement comes at no cost.
Specifically, we measure and find no overhead during
crash recovery compared to RAMCloud.

4.1 Experimental Setup
Experiments were done on a 35 server Dell r320 cluster
(Table 1) on the CloudLab [24] testbed.

We used three YCSB [2] workloads to evaluate
Tailwind: update-heavy (50% PUTs, 50% GETs),
read-heavy (5% PUTs, 95% GETs), and update-only
(100% PUTs). We intitially inserted 20 million objects
of 100 B plus 30 B for the key. Afterwards, we ran up to
30 client machines. Clients generated requests accord-
ing to a Zipfian distribution (θ = 0.99). Objects were
uniformly inserted in active servers. The replication fac-
tor was set to 3 and RDMA buffers size was set to 8 MB.
Every data point in the experiments is averaged over 3
runs.

RAMCloud’s RPC-based replication protocol served
as a baseline for comparison. Note that, in the compar-
ison with Tailwind, we refer to RAMCloud’s replication
protocol as RAMCloud for simplicity.

4.2 Performance Improvement
The primary goal of Tailwind is to accelerate basic op-
erations throughput and latency. To demonstrate how
Tailwind improves performance we show Figure 6, i.e.
throughput per server as we increase the number of
clients. When client operations consist of 5% PUTs
and 95% GETs, RAMCloud achieves 500 KOp/s per
server while Tailwind reaches up to 635 KOp/s. Increas-
ing the update load enables Tailwind to further improve

the throughput. For instance with 50% PUTs Tailwind
sustains 340 KOp/s against 200 KOp/s for RAMCloud,
which is a 70% improvement. With update-only work-
load, improvement is not further increased: In this case
Tailwind improves the throughput by 65%.

Tailwind can improve the number of read operations
serviced by accelerating updates. CPU cycles saved al-
low servers (that are backups as well) to service more
requests in general.

Figure 7 shows that update latency is also consider-
ably improved by Tailwind. Under light load Tailwind
reduces median and 99th percentile latency of an update
from 16 µs to 11.8 µs and from 27 µs to 14 µs respec-
tively. Under heavy load, i.e. 500 KOp/s Tailwind re-
duces median latency from 32 µs to 16 µs compared to
RAMCloud. Under the same load tail latency is even
further reduced from 78 µs to 28 µs.

Tailwind can effectively reduce end-to-end client la-
tency. With reduced acknowledgements waiting time,
and more CPU power to process requests faster, servers
can sustain a very low latency even under heavy concur-
rent accesses.

4.3 Gains as Backup Load Varies
Since all servers in RAMCloud act as both backups and
primaries, Tailwind accelerates normal-case request pro-
cessing indirectly by eliminating the need for servers to
actively process replication operations. Figure 8 shows
the impact of this effect. In each trial load is directed
at a subset of four RAMCloud storage nodes; “Active
Primary Servers” indicates the number of storage nodes
that process client requests. Nodes do not replicate data
to themselves, so when only one primary is active it is re-
ceiving no backup operations. All of the active primary’s
backup operations are directed to the other three other-
wise idle nodes. Note that, in this figure, throughput is
per-active-primaries. So, as more primaries are added,
the aggregate cluster throughput increases.

As client GET/PUT operations are directed to more
nodes (more active primaries), each node slows down
because it must serve a mix of client operations inter-
mixed with an increasing number of incoming backup
operations. Enough client load is offered (30 clients) so
that storage nodes are the bottleneck at all points in the
graphs. With four active primaries, every server node is
saturated processing client requests and backup opera-
tions for all client-issued writes.

Even when only 5% of client-issued operations are
writes (Figure 8a), Tailwind increasingly improves per-
formance as backup load on nodes increases. When a
primary doesn’t perform backup operations Tailwind im-
proves throughput 3%, but that increases to 27% when
the primary services its fair share of backup operations.
The situation is similar when client operations are a
50/50 mix of reads and writes (Figure 8b) and when
clients only issue writes (Figure 8c).

As expected, Tailwind enables increasing gains over
RAMCloud with increasing load, since RDMA elimi-
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Figure 7: (a) Median latency and (b) 99th percentile latency of PUT
operations when varying the load.

nates three RPCs that each server must handle for each
client-issued write, which, in turn, eliminates worker
core stalls on the node handling the write.

In short, the ability of Tailwind to eliminate replica-
tion work on backups translates into more availability for
normal request processing, and, hence, better GET/PUT
performance.

4.4 Resource Utilization
The improvements above have shown how Tailwind can
improve RAMCloud’s baseline replication normal-case.
The main reason is that operations contend with backup
operations for worker cores to process them. Figure 9a
illustrates this: we vary the offered load (updates-only)
to a 4-server cluster and report aggregated active worker
cores. For example, to service 450 KOp/s, Tailwind uses
5.7 worker cores while RAMCloud requires 17.6 active
cores, that is 3× more resources. For the same scenario,
we also show Figure 9b that shows the aggregate active
dispatch cores. Interestingly, gains are higher for dis-
patch, e.g., to achieve 450 KOp/s, Tailwind needs only
1/4 of dispatch cores used by RAMCloud.

Both observations confirm that, for updates, most of
the resources are spent in processing replication requests.
To get a better view on the impact when GET/PUT oper-
ations are mixed, we show Figure 10. It represents active
worker and dispatch cores, respectively, when varying
clients. When requests consist of updates only, Tailwind
reduces worker cores utilization by 15% and dispatch

core utilization by 50%. This is stems from the fact that
a large fraction of dispatch load is due to replication re-
quests in this case. With 50/50 reads and writes, worker
utilization is slightly improved to 20% while it reaches
50% when the workload consists of 5% writes only.

Interestingly, dispatch utilization is not reduced when
reducing the proportion of writes. With 5% writes
Tailwind utilizes even more dispatch than RAMCloud.
This is actually a good sign, since read workloads are
dispatch-bound. Therefore, Tailwind allows RAMCloud
to process even more reads by accelerating write opera-
tions. This is implicitly shown in Figure 10 with ”Repli-
cation” graphs that represent worker utilization due to
waiting for replication requests. For update-only work-
loads, RAMCloud spends 80% of the worker cycles in
replication. With 5% writes RAMCloud spends 62% of
worker cycles waiting for replication requests to com-
plete against 49% with Tailwind. The worker load dif-
ference is spent on servicing read requests.

4.5 Scaling with Available Resources
We also investigated how Tailwind improves internal
server parallelism (i.e. more cores). Figure 11 shows
throughput and worker utilization with respect to avail-
able worker cores. Clients (fixed to 30) issue 50/50 reads
and writes to 4 servers. Note that we do not count the
dispatch core with available cores, as it is always avail-
able. With only a single worker core per machine, RAM-
Cloud can serve 430 KOp/s compared to 660 KOp/s for
Tailwind with respectively 4.5 and 3.5 worker cores uti-
lization. RAMCloud can over-allocate resources to avoid
deadlocks, which explains why it can go above the limit
of available cores. Interestingly, when increasing the
available worker cores, Tailwind enables better scaling.
RAMCloud does not achieve more throughput with more
than 5 available cores. Tailwind continues to improve
throughput up to all 7 available cores per machine.

Even though both RAMCloud and Tailwind exhibit a
plateau, this is actually due to the dispatch thread limit
that cannot take more requests in. This suggests that Tail-
wind allows RAMCloud to better take advantage of per-
machine parallelism. In fact, by eliminating the replica-
tion requests from dispatch, Tailwind allows more client-
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Figure 9: Total (a) worker and (b) dispatch CPU core utilization on
a 4-server cluster. Clients use the WRITE-ONLY workload.

issued requests in the system.

4.6 Impact on Crash Recovery
Tailwind aims to accelerate replication while keeping
strong consistency guarantees and without impacting re-
covery performance. Figure 12 shows Tailwind’s recov-
ery performance against RAMCloud. In this setup data
is inserted into a primary replica with possibility to repli-
cate to 10 other backups. RAMCloud’s random backup
selection makes it so that all backups will end up with ap-
proximately equal share of backup data. After inserting
all data, the primary kills itself, triggering crash recovery.

As expected, Tailwind almost introduces no overhead.
For instance, to recover 1 million 100 B objects, it takes
half a second for Tailwind and 0.48 s for RAMCloud.
To recover 10 million 100 B objects, Both Tailwind and
RAMCloud take roughly 2.5 s.

Tailwind must reconstruct metadata during recovery
(§3.4.1), but this only accounts for a small fraction of the
total work of recovery. Moreover, reconstructing meta-
data is only necessary for open buffers, i.e. still in mem-
ory. This can be orders of magnitude faster than loading
a buffer previously flushed on SSD, for example.

5 Discussion
5.1 Metadata Space Overhead
In its current implementation, Tailwind appends meta-
data after every write to guarantee RDMA writes atom-
icity (§3.1). Although this approach appears to introduce

space overhead, RAMCloud’s log-cleaning mechanism
efficiently removes old checksums without performance
impact [26]. In general, Tailwind adds only 4 bytes per
object which is much smaller than, for example, RAM-
Cloud headers (30 bytes).

5.2 Applicability
Tailwind can be used in many systems that leverage dis-
tributed logging [4, 12, 18, 20, 22, 33] provided they have
access to RDMA-based networks. Recently, RDMA is
supported in Ethernet in the form of RoCE or iWARP [8]
and is becoming prevalent in datacenters [17, 39]. To be
properly integrated in any system, Tailwind needs: (1)
appending a checksum after each write; (2) implement-
ing algorithm 1 during recovery. Aspects such as memo-
ry/buffer management do not impact Tailwind’s core de-
sign nor performance gains because Tailwind reclaims
replication-processing CPU cycles at backups.

6 Related Work
One-sided RDMA-based Systems. There is a wide
range of systems recently introduced that leverage
RDMA [4, 5, 10, 15, 16, 27, 30, 33, 34, 36, 38]. For
instance, many of them use RDMA for normal-case op-
erations. Pilaf [15] implements client-lookup opera-
tions with one-sided RDMA reads. In contrast, with
HERD [10] clients use one-sided RDMA writes to send
GET and PUT requests to servers, that poll their receive
RDMA buffers to process requests. In RFP [10] clients
use RDMA writes to send requests, and RDMA reads to
poll (remotely) replies. Crail [29] uses one-sided RDMA
to transfer I/O blocks, but it is not designed for availabil-
ity or fault-tolerance. LITE [32] is a kernel module pro-
viding efficient one-sided operations and could be used
to implement Tailwind.

Many systems also use one-sided RDMA for repli-
cation. For instance, FaRM [4, 5], HydraDB [33],
and DARE [22] use one-sided RDMA writes to build a
message-passing interface. Replication uses this inter-
face to place messages in remote ring buffers. Servers
have to poll these ring buffers in order to fetch mes-
sages, process them, and apply changes. In [6] authors
use one-sided RDMA for VM migration. The sender
asynchronously replicate data and notifies the receiver at
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the end of transfer then the backup applies changes in a
transactional way.

No system that uses RDMA writes for replication
leaves the receiver CPU completely idle. Instead, the
receiver must poll receive buffers and process requests,
which defeats one-sided RDMA efficiency purposes.
Tailwind frees the receiver from processing requests by
directly placing data to its final storage location.

Reducing Replication Overheads. Many systems try
to reduce replication overheads either by relaxing/tun-
ing consistency guarantees [3, 7, 14] or using differ-
ent approaches for fault-tolerance [37]. Mojim [38] is

a replication framework intended for NVMM systems.
For each server it considers a mirror (backup) machine
to which it will replicate all data through (two-sided)
RDMA. It supports multiple levels of consistency and
durability. RedBlue [14] and Correctables [7] provide
different consistency levels to the applications and al-
lows them to trade consistency for performance. Tail-
wind does not sacrifice consistency to improve normal-
case system performance.

7 Conclusion
Tailwind is the first replication protocol that fully ex-
ploits one-sided RDMA; it improves performance with-
out sacrificing durability, availability, or consistency.
Tailwind leaves backups unaware of RDMA writes as
they happen, but it provides them with a protocol to re-
build metadata in case of failures. When implemented
in RAMCloud, Tailwind substantially improves through-
put and latency with only a small fraction of resources
originally needed by RAMCloud.
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Abstract
Erasure codes are used in large-scale storage systems to
allow recovery of data from a failed node. A recently de-
veloped class of erasure codes, termed locally repairable
codes (LRCs), offers tradeoffs between storage overhead
and repair cost. LRCs facilitate more efficient recovery
scenarios by storing additional parity blocks in the sys-
tem, but these additional blocks may eventually increase
the number of blocks that must be reconstructed. Exist-
ing codes differ in their use of the additional parity blocks,
but also in their locality semantics and in the parameters
for which they are defined. As a result, existing theoret-
ical models cannot be used to directly compare different
LRCs to determine which code will offer the best recov-
ery performance, and at what cost.

In this study, we perform the first systematic compar-
ison of existing LRC approaches. We analyze Xorbas,
Azure’s LRCs, and the recently proposed Optimal-LRCs
in light of two new metrics: the average degraded read
cost, and the normalized repair cost. We show the trade-
off between these costs and the code’s fault tolerance, and
that different approaches offer different choices in this
tradeoff. Our experimental evaluation on a Ceph cluster
deployed on Amazon EC2 further demonstrates the differ-
ent effects of realistic network and storage bottlenecks on
the benefit from each examined LRC approach. Despite
these differences, the normalized repair cost metric can
reliably identify the LRC approach that would achieve the
lowest repair cost in each setup.

1 Introduction
In large-scale storage systems consisting of hundreds of
thousands of servers, node failures are the norm rather
than the exception. For this reason, redundancy is added
to ensure availability of the data despite the failures. Typ-
ically, the redundancy of hot data is achieved by replica-
tion of each data object, ensuring the availability of the
data as long as one replica is available. This also allows
efficient reconstruction of data that was stored on a failed
node from the surviving replicas.

Due to the high overhead of replication, most of the
data is stored redundantly by erasure coding. With an
(n,k) erasure code, the data is split into k data blocks

that are used to generate n− k parity blocks. The blocks
are distributed across n different nodes, so that the origi-
nal data can be reconstructed as long as at least k blocks
are available. The storage overhead of erasure coding is
n
k —considerably lower than that of replication. How-
ever, reconstruction of one data block requires reading k
surviving blocks—an overhead considerably higher than
that of replication.

Storage systems distinguish between two types of node
failures. Transient failures may be caused by system
restarts or updates, after which the node is available again.
During this time, read operations of data stored on the
failed node are served as degraded reads—only the re-
quired data blocks are reconstructed from the surviving
blocks. Permanent failures occur when the node mal-
functions and is no longer accessible. Typically, a failure
is considered permanent after 15 minutes of unavailabil-
ity, which triggers full recovery of its data. Recent stud-
ies indicate that transient failures comprise 90% of fail-
ure events [28], and only the remaining 10% trigger full
node recovery. Nevertheless, recovery traffic incurs sig-
nificant load on the data center’s servers and network—up
to 180TB of data transfer between racks each day, accord-
ing to a recent study on Facebook’s data centers [24].

The vast majority of failures (up to 98% [24]) constitute
exactly one unavailable node. Thus, several approaches
have been used to design erasure codes that can withstand
several concurrent failures, but optimize the recovery cost
of a single node. These include preprocessing the surviv-
ing data to minimize repair network bandwidth [6,22,25],
and reducing the amount of data read from each surviving
node [7, 9, 12, 14, 23, 38]. These codes can reduce the
amount of data read by up to 50%, but in many realistic
settings, this reduction is no more than 25%, or not appli-
cable due to the required I/O granularity [18].

A different approach increases the storage overhead
and utilizes the added redundancy to optimize the recov-
ery of a single data node. An (n,k,r) locally repairable
code (LRC) supports the local recovery of an unavailable
block by reading at most r surviving blocks. These codes
were originally designed to reduce the cost of degraded
reads, and thus most of them optimize only the recovery
of data blocks [10,11]. Others further optimize the recov-
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ery of all of the parity blocks, but do so for a limited set of
system parameters [28]. In a recent work [30], new codes
were constructed that support local recovery of both data
and parity blocks, with the same storage overhead as pre-
viously known constructions.

LRCs present an inherent tradeoff. On the one hand,
they considerably reduce the amount of data that must be
read for degraded reads and recovery. On the other hand,
in order to store the additional parity, the system must
store more blocks on each of its nodes, or allocate more
nodes for the same amount of data. In the first case, more
data must be reconstructed whenever a node fails, while
the latter increases the probability of failure in the sys-
tem. As a result, LRCs not only increase the system’s
storage overhead, but might also increase its overall re-
covery costs. Different codes offer different tradeoffs be-
tween storage overhead and recovery cost, and between
recovery cost and the cost of degraded reads. Further-
more, they are defined for different (n,k,r) combinations
and differ in their locality semantics. Thus, directly com-
paring their costs and benefits is a nontrivial task, which
makes it hard to choose the optimal code and configura-
tion for a given system.

In this study, we perform the first comprehensive anal-
ysis of the different LRC approaches. We take into ac-
count the overall cost of recovery, including data and
parity blocks, as well as the maximum number of failed
blocks the code can recover. Our analysis includes Xor-
bas [28], Azure-LRC—the LRC codes used by Microsoft
Azure [11], and Optimal-LRC—a recently proposed the-
oretically optimal code [30]. We also define a new code,
Azure-LRC+1, which is based on Azure-LRC and sup-
ports efficient recovery of all parity blocks.

We conduct a theoretical comparison between the dif-
ferent LRC approaches. Our analysis demonstrates the
limitations of existing measures, such as locality and av-
erage repair cost. Thus, we define new metrics that model
each code’s overhead, full-node repair cost, degraded read
cost, and fault tolerance. Our results demonstrate the
tradeoff between the objectives measured by these costs,
and how different codes optimize different objectives.

We follow the theoretical analysis with an evaluation
of these codes in a Ceph cluster deployed in AWS EC2.
Our experimental evaluation shows that we can accurately
predict the amount of data required by each code for re-
constructing an entire storage node. This prediction also
provides a good estimate of the time required for recon-
struction, for most combinations of storage type, network
configurations, and foreground traffic.

The rest of this paper is organized as follows. Section 2
presents LRCs and motivates our analysis. We describe
our new LRC and metrics in Section 3, and our theoretical
analysis in Section 4. Our system-level setup is described
in Section 5, with the evaluation in Section 6. We survery
related work in Section 7, and conclude in Section 8.

2 Preliminaries
The storage overhead of an erasure code is defined as n

k .
Its minimal distance, d, is defined as the smallest number
of concurrent node failures that may cause data loss. In
other words, there is at least one combination of d node
failures from which the code will not be able to recover
the data. An important class of codes, termed maximum
distance separable (MDS) codes, is characterized by the
relation d = n− k+ 1, and provides the largest possible
d for given n and k. In MDS codes, k surviving blocks
are required to recover a failed block. Reed-Solomon
codes [26] are the most commonly used MDS codes ow-
ing to their parameter flexibility and efficient implemen-
tation.

An (n,k,r) locally repairable code (LRC) consists of k
data blocks and n− k parity blocks. The data blocks are
grouped into local groups no larger than r. A local parity
is computed from each local group of blocks and can be
used for the recovery of any block in this group. In total,
each local group of LRC contains at most r+1 blocks. In
case of an arbitrary failure of one block in a local group,
r surviving blocks are required for its recovery. A global
parity is a function of all data blocks, and can thus be used
to recover any lost block. Pyramid codes [10], which
are based on (n,k) Reed-Solomon codes were the first
suggested family of LRCs. Another family, Azure-LRC,
is a variation of Pyramid codes and is used in Windows
Azure [11].

Figure 1 depicts a (10,6) Reed-Solomon code, and Fig-
ure 2 shows the (11,6,3) Azure-LRC which results from
replacing one of its global parities with two local pari-
ties. In this example, P3 was replaced with L0 and L1,
which can be used in the recovery of groups (X0,X1,X2)
and (X3,X4,X5), respectively. In the new code, any of the
data blocks can be repaired by reading the remaining three
blocks in its local group. Thus, the recovery cost of a
data block is reduced by 50%. However, the overhead in-
creases by 10%, from 10

6 to 11
6 . Note also that the new

code is non-MDS: it can repair any four missing blocks
but not any five, therefor d = 5, but n− k+1 = 6.

Azure-LRC successfully reduces the repair cost of data
blocks and local parities, and, as a result, the degraded
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Figure 4: Three LRCs with the same k, demonstrating different
tradeoffs between locality and overhead.

read cost. However, due to the allocation of blocks to
nodes, when an entire node must be reconstructed, this
node will include a significant number of global parities,
which will require k surviving blocks for recovery. For
example, in (11,6,3) Azure-LRC, which contains m = 3
global parities, an average of 3

11 = 27.2% of the blocks
stored on each node will be global parities.

Coding theory distinguishes between two types of
(n,k,r) LRCs. In codes with information-symbol local-
ity, only the data blocks can be repaired in a local fashion
by r surviving blocks, while the global parities require
k blocks for recovery. We refer to these codes as data-
LRCs. Pyramid and Azure-LRC are data-LRCs. In con-
trast, in codes with all-symbol locality, all the blocks, in-
cluding the global parities, can be repaired locally from r
surviving blocks. We refer to such codes as full-LRCs.

Optimal-LRC is a recently proposed full-LRC [30]. In
this code, k data blocks and m global parities are divided
into groups of size r, and a local parity is added to each
group, allowing repair of any lost block by the r surviving
blocks in its group. r does not necessarily divide m+ k,
but Optimal-LRC requires that n mod (r + 1) 6= 1. Fig-
ure 3 shows a (12,6,3) Optimal-LRC. Each of the global
parities, P0, P1, and P2, can be reconstructed from the
other global parities and the local parity L2. The over-
head of this code is higher than that of the (11,6,3) Azure-
LRC in Figure 2, but its minimum distance is also higher
(d = 6).

Full-LRCs introduce a new point in the tradeoff be-
tween fault tolerance and performance, which previously
consisted only of MDS codes and data-LRCs. Gopalan
et al. [8] proved that an upper bound on the minimal dis-
tance for an (n,k,r) LRC is d ≤ n− k−

⌈ k
r

⌉
+ 2. Codes

that achieve this bound are regarded as optimal; in partic-
ular, Optimal-LRC has been shown to achieve this bound.
Specifically, the minimum distance of Optimal-LRC was
shown to be [30]:

d = n− k−
⌈

k
r

⌉
+2, if (r+1)|n

d ≥ n− k−
⌈

k
r

⌉
+1, if (r+1) 6 | n, r|(k+1).

Challenges. Azure-LRC provides an appealing trade-
off when compared to Reed-Solomon codes: a 10% in-
crease in storage overhead can halve the cost of all de-
graded reads and most block repairs. Unfortunately, the

comparison between data-LRCs and full-LRCs is not sim-
ilarly straightforward. Consider, for example, the three
codes in Figure 4. The (11,6,2) Azure-LRC has three
local parities, one more than the (10,6,3) Azure-LRC,
which reduces its r from 3 to 2, but increases its over-
head by 10%. The (12,6,3) Optimal-LRC also has three
local parities. However, rather than reducing r, the addi-
tional local parity enables local repair of the global par-
ities. Thus, r represents different locality semantics in
each of these models. In addition, each model represents
a different tradeoff between the cost of degraded read and
the cost of full node repair, and between these costs and
the overhead.

It is not entirely clear which of these codes will have
the lowest repair cost. Clearly, r alone cannot serve as a
metric for comparing data-LRCs to full-LRCs. The aver-
age repair cost (ARC) used in previous analyses [11] fails
to capture the effect the code’s overhead has on its repair
cost. In the next section, we introduce three composite
metrics that facilitate a systematic comparison of LRCs.

The task of comparing different codes is further com-
plicated by the fact that existing codes are not all defined
for the same range of parameters. Our new metrics alle-
viate this problem to some extent. To eliminate the prob-
lem completely, we adopt a somewhat ‘flexible’ interpre-
tation of Azure-LRC. We also use a new construction of
Optimal-LRC, which is optimal for parameters for which
an explicit construction has not been given before.

Finally, theoretically proven benefits are not always
achievable in real systems. The repair-cost benefit of dif-
ferent codes may be determined by factors such as stor-
age and network bandwidth, the nature and priority of
the foreground load, and the system-level implementa-
tion. Thus, we complement our theoretical analysis with
an evaluation on a distributed cluster in Amazon EC2,
where we verify our metrics and identify additional fac-
tors that should be taken into account when designing an
erasure coded storage system.

3 Methodology
Metrics. The starting point of our theoretical analysis
consists of the existing measures described above: r is
the maximal number of blocks required for the recovery
of any block or a data block, in full-LRCs and data-LRCs,
respectively. The overhead of the code is n

k , and its min-
imal distance is d. We use d to represent the code’s fault
tolerance, despite its inherent limitation—two codes with
the same d may be considered equally fault tolerant, al-
though one may prevent data loss in more combinations of
correlated failures than the other [11]. The mean time to
data loss (MTTDL) is considered a more accurate measure
for fault tolerance. However, to calculate the MTTDL of
a code, one must construct a Markov chain for every spe-
cific set of n,k,r parameters. In addition, this model does
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not always yield an analytic closed-form equation. Thus,
d is more appropriate for our large-scale analysis. For a
limited comparison of a small set of constructions, d can
be replaced with MTTDL.

The average repair cost (ARC) has been used in pre-
vious studies [11], and is based on the assumption that
the probability of repair due to failure is the same for all
blocks. It is defined as

ARC =
∑

n
i=1 cost(bi)

n
,

where bi is the ith block in the code, and cost(bi) is the
number of blocks required for the repair of bi. For ex-
ample, the ARC of the (10,6,3) Azure-LRC in Figure 4 is
(8×3)+(2×6)

10 = 3.6. Similarly, in the same figure, the ARC
of the (11,6,2) Azure-LRC is 2.73 and that of the (12,6,3)
Optimal-LRC is 3.

ARC does not take into account the higher overhead
of some of these codes, which implies that more blocks
will have to be repaired in the event of a node failure.
We address this by defining a new composite metric for
the cost of full-node repair. The normalized repair cost
(NRC) of a code is the product of its ARC and overhead:

NRC = ARC× n
k
=

∑
n
i=1 cost(bi)

k
.

NRC can also be viewed as the average cost of repair-
ing a failed data block, where the cost of repairing the
parity blocks is amortized over the k data blocks. For ex-
ample, the NRC of the (10,6,3) Azure-LRC in Figure 4
is (8×3)+(2×6)

6 = 6. Similarly, the NRC of the (11,6,2)
Azure-LRC is 5 and that of the (12,6,3) Optimal-LRC
is 6.

ARC is also inappropriate for modeling the cost of de-
graded reads. By definition, degraded reads refer to data
blocks only, while ARC averages the repair cost of all
blocks—data and parity alike. We define the average de-
graded read cost (‘degraded cost’, in short) as the average
cost of repairing data blocks only:

Degraded cost =
∑

k
i=1 cost(bi)

k
,

where blocks b1, ...,bk are the object’s data blocks. For
example, the degraded cost of the (10,6,3) Azure-LRC
and the (12,6,3) Optimal-LRC in Figure 4 is 6×3

6 = 3.
Similarly, the degraded cost of the (11,6,2) Azure-LRC
is 2. Note that in the general case, the degraded cost is
not always equal to r.

We base our analysis on three existing LRCs: Xorbas,
Azure-LRC, and Optimal-LRC. We use Reed-Solomon
codes as a baseline for some of our comparisons. Be-
low, we describe how we extended the definitions of these
codes for our analysis and evaluation.

Xorbas. Xorbas [28] is a full-LRC, in which the global
parities can be recovered from the local parities. Figure 5
shows a (16,10,5) Xorbas code. Each local parity belongs

�

Figure 5: (16,10,5) Xorbas.
⊗

marks a function computed by
the local parities, not a real block.

Figure 6: (11,6,3) Azure-LRC+1

to a group containing five data blocks. The special con-
struction of Xorbas ensures that any of the global parities
can be reconstructed by the remaining global parities and
the two local parities. Thus, r = 5 for all the blocks in
the code. This special property can be maintained if we
remove the same number of blocks from each group. For
example, a (13,8,4) Xorbas code can be obtained by re-
moving two data blocks and one global parity from the
original construction. The number of global parities can
be further reduced to achieve a lower overhead, without
reducing r. For example, a (12,8,4) Xorbas code has the
same r as the (13,8,4) code, but a smaller d.

Azure-LRC. We use Azure-LRC as the data-LRC in
our evaluation. It is explicitly defined in its original pa-
per only for (n,k,r) where r divides k, and the number
of local parities is l = k

r [11]. For the sake of analysis,
we extend this code to the general case as follows. In an
(n,k,r) Azure-LRC where r does not divide k, the num-
ber of local parities is l =

⌈ k
r

⌉
. l − 1 groups contain r

data blocks and one local parity. The remaining group
contains k mod r data blocks and one local parity. For
the code to have at least one global parity, we must only
ensure that k+ l < n. Although this extension results in
asymmetric allocation of data blocks to groups, it allows
us to consider Azure-LRC in most (n,k,r) combinations.

Azure-LRC+1. For the sake of analysis, we define a
new full-LRC which is based on Azure-LRC. An (n,k,r)
Azure-LRC+1 code is constructed by adding one local
parity to the group of global parities of an (n− 1,k,r)
Azure-LRC. This local parity is computed as the XOR of
all the global parities. Figure 6 shows an (11,6,3) Azure-
LRC+1 constructed from the (10,6,3) Azure-LRC in Fig-
ure 4. When one global parity block is missing, it can be
repaired from the remaining global parities and the addi-
tional local parity. Thus, Azure-LRC+1 will have l + 1
local parities, l =

⌈ k
r

⌉
, and can be constructed as long

as k + l + 1 < n. This naı̈ve definition implies that an
Azure-LRC+1 construction may result in a local parity
added to a ‘group’ of one global parity. Nevertheless, it
has the added value of being directly and easily applica-
ble to any system that uses Azure-LRC or Pyramid codes,
and is thus an important aspect of our analysis.

Optimal-LRC. The original Optimal-LRC construc-
tion [30] was shown to be optimal for the cases described
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in Section 2. However, extending this construction to all
admissible (n,k,r) combinations results in a code with
lower d, which is suboptimal. To address this issue, we
devised a new construction of codes in the spirit of the
original construction. The advantage of the new construc-
tion is that it applies to all parameters n,k,r such that
n mod (r + 1) 6= 1. Furthermore, it can be shown that
our new construction attains the largest possible minimum
distance even when the upper bound n−k−d k

r e+2 is not
attainable. In summary, the new construction is the first
optimal construction for all admissible parameters. The
construction and the proof of its optimality can be found
in [13].

Evaluation parameters. We computed the ARC,
NRC, degraded cost, overhead, and d for each of the
codes described above, for all (n,k,r) combinations for
which they are defined, where 9 ≤ n ≤ 19 and n

k ≤
2. These combinations include specific sets of parame-
ters that appear in the literature and in documented de-
ployments: (18,12,3) Azure-LRC [11], (16,10,5) Xorbas,
(14,10) Reed-Solomon [24], and (9,6) Reed-Solomon
[37]. Due to space constraints, and for clarity of pre-
sentation, we show only results for 12 ≤ n ≤ 18 and
n
k ≤ 1.6, which include the more common combinations.
This range of parameters suffices for demonstrating our
observations, which we verified on the complete range.

4 Theoretical Analysis
Figure 7 shows NRC and the degraded read cost of the
different codes. For the same n, k, and r, the degraded
cost is usually the same for all codes. It is different when
r does not divide k, where the codes differ in their allo-
cation of blocks to groups. As we expected, for the same
n and k, increasing r increases each code’s degraded read
cost and NRC. However, when comparing different codes,
neither r nor the degraded read cost can indicate which
code will have the lowest full-node repair cost. For ex-
ample, the NRC of (14,10,6) Azure-LRC+1 is lower than
that of (14,10,5) Azure-LRC, although its degraded cost
is higher.

Figure 8 shows the minimum distance, d, of the differ-
ent codes. Figures 7 and 8 together demonstrate a clear
tradeoff between repair costs and fault tolerance. In gen-
eral, for given n, k, and r, to increase d one must either
increase n or increase r, thus increasing both the degraded
cost and NRC. Nevertheless, different codes offer differ-
ent points in this tradeoff.

Data-LRC vs. full-LRC. For the same (n,k,r), there
is always one full-LRC with a lower NRC than that of
Azure-LRC. However, in most settings, the reduction
in NRC is coupled with a reduction in d. In the set-
tings in which it is defined, Xorbas achieves the same d
but a higher NRC than Azure-LRC+1 and Optimal-LRC.
Optimal-LRC and Azure-LRC+1 achieve the same d and

NRC in many settings. In the settings where the NRC
of Azure-LRC+1 is lower than that of Optimal-LRC, its
d is also lower (except for a few corner cases discussed
below).

In Figure 9, we compare the NRC of (n,k,r) Azure-
LRC to that of the (n+1,k,r) full-LRCs with the same d.
The full-LRCs use an additional local parity to allow fast
repair of the global parities. This addition always reduces
the repair cost, despite the increase in storage overhead.

Optimality of Optimal-LRC. Despite its optimal
properties, our analysis reveals that for a given (n,k,r),
Optimal-LRC does not always achieve the lowest NRC.
Optimal-LRC is designed to accommodate the global par-
ities with the data blocks in the same group. However,
when the number of global parities is much smaller than
r, this results in increasing the size of one of the groups,
thus increasing the NRC. For example, Figure 10 shows
a (12,8,5) Azure-LRC whose NRC is lower than that
of (12,8,5) Optimal-LRC, and a (16,10,6) Azure-LRC+1
whose NRC is lower than that of (16,10,6) Optimal-LRC.
In both cases, Optimal-LRC can achieve a lower NRC
with a smaller r, possibly at the cost of reducing d.

NRC vs. d. Our results demonstrate a subtle trade-
off between repair cost (NRC) and d. Codes with the
same (n,k,r) may or may not have the same d, and are
thus not directly comparable: one may satisfy fault tol-
erance requirements that the other does not. To facilitate
a more systematic comparison, we defined another com-
posite metric, repair-distance ratio (rd-ratio), NRC

d . This
can be viewed as a measure of the efficiency with which
a code allocates its local parities, with the conflicting ob-
jectives of maximizing d and minimizing NRC.

Figure 11 shows the rd-ratio of all LRCs. It shows that
the code with the lowest rd-ratio is different for different
(n,k,r) combinations, and is not necessarily a full-LRC.
For example, when (n,k,r) is (14,10,5), Azure-LRC has
the lowest rd-ratio. Another interesting observation is that
when fixing n and k, different codes achieve their mini-
mal rd-ratio with different values of r. For example, the
rd-ratio of (17,12,5) Optimal-LRC is lower than that of
(17,12,4) Optimal LRC. When we fix (n,k) and consider
the “best” r for each code, we observe that Optimal-LRC
achieves the lowest rd-ratio. This demonstrates that this
code is optimal in its allocation of local parity blocks—it
efficiently reduces the repair cost with minimal reduction
in d. The rd-ratio can be generalized to reflect different
weights of NRC and d, e.g., by defining it as NRC

dx .
Target fault tolerance. The required fault tolerance

in a distributed storage system is determined by many
factors, including the number of nodes, their organiza-
tion into racks and clusters, and the anticipated causes of
failure. Nevertheless, once the required level of fault tol-
erance is determined, the goal is to select a code which
will provide this level at the lowest cost. In this context,
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the code with the lowest rd-ratio may not be the optimal
choice—a different code may have a higher ratio but pro-
vide the required level of fault tolerance at a lower over-
head or repair cost.

We defined a threshold value of d, dth, and compared
the NRC of all the codes for which d ≥ dth. We consid-
ered dth ∈ {3,4,5}, corresponding to the minimum dis-
tance of commonly deployed configurations. Figure 12
shows the NRC of all the LRCs whose d ≥ 4. Many con-
structions do not provide the required fault tolerance, and
are thus absent from this figure. Different codes achieved
the lowest NRC for different k,n combinations. However,
we note that a construction of Azure-LRC and Optimal-
LRC with the required d was defined for every k,n com-

bination. This demonstrates the flexibility of both codes.
We observed similar results when setting the threshold dth
to 3 or 5, where increasing the threshold removed more
codes from the comparison, and vice versa.

Our theoretical evaluation results demonstrate the chal-
lenges in comparing different LRC codes and approaches.
Our metrics, NRC, degraded cost, and rd-ratio, provide a
framework for directly comparing all codes in all parame-
ter combinations. Our comparison demonstrates the ben-
efit of full-LRCs, the flexibility of Optimal-LRC, and the
realistic settings in which they may reduce the amount of
data read and thus the system repair cost. In the follow-
ing, we extend our notion of ‘repair cost’ to additional
performance measures.

5 System-Level Evaluation Setup
The goal of our system-level evaluation was threefold: to
validate the accuracy of NRC when predicting the amount
of data read for node reconstruction, to evaluate its abil-
ity to estimate repair time and bandwidth, and to compare
the recovery efficiency of the different LRCs in a real sys-
tem. We omitted the minimum distance, d, from this part
of our analysis, because it is not measured empirically.
We focused on four representative (n,k) combinations,
and compared Reed-Solomon codes, Azure-LRC, Azure-
LRC+1, and Optimal-LRC in these setups. We excluded
Xorbas from this part of our analysis due to design limi-
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(12,8,5) Azure-LRC

[d=4, NRC=7.25]

(12,8,5) Optimal LRC

[d=4, NRC=7.5]

(16,10,6) Azure-LRC+1

[d=6, NRC=7.4] 

(16,10,6) Optimal LRC 

[d=5, NRC=8.6]

Alt: (12,8,4) Optimal LRC

[d=3, NRC=5.25]
Alt: (16,10,5) Optimal LRC 

[d=5, NRC=7.2]

Figure 10: Examples where (n,k,r) Optimal-LRC does not achieve the lowest NRC. In both cases, an alternative (n,k,r− 1)
Optimal-LRC achieves a lower NRC, possibly at the cost of reducing d.
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Figure 11: Repair-distance ratio ( NRC
d ). For each (n,k), different codes achieve their minimal rd-ratio (marked by the small

triangle) with different values of r.

tations described below.
We performed our evaluation in Ceph—a distributed

open-source storage system [34]. Ceph’s object storage
service, RADOS [36], is responsible for object place-
ment, failure detection and failure recovery. Ceph’s nodes
are called object storage devices (OSDs). Objects in Ceph
are assigned to placement groups, which define the al-
location of blocks to OSDs. The mapping of placement
groups to OSDs is implemented by a pseudo-random
mechanism, CRUSH, to ensure load balancing [35].

The primary OSD in each placement group is respon-
sible for encoding the data and distributing the data and
parity blocks to the remaining, secondary, OSDs. When
one of the OSDs in a placement group fails, a replacement
OSD is assigned to it. The primary OSD is responsible
for reading the required data from the surviving OSDs,
reconstructing the missing block, and sending it to the re-
placement OSD for permanent storage.

Ceph’s design imposes certain limitations on our evalu-
ation. When the failed OSD and the primary OSD belong
to different locality groups, the repair data must be trans-
ferred across groups. In complex network topologies, this
might incur cross-rack or cross-zone traffic that LRCs
were designed to avoid. In addition, degraded reads are
currently implemented by reconstructing the entire object
at the primary OSD. This means that all k data blocks are

read, even if only r blocks are required to repair the miss-
ing block. As a result, for degraded reads, there is no
observable difference between MDS codes and LRCs.

We chose to use Ceph despite these limitations. As far
as we know, it is the only open-source distributed storage
system that implements LRCs as part of its main distri-
bution. Furthermore, at the time we began this research,
it was the only system to support online erasure coding,
without requiring that objects are first replicated and then
erasure-coded in the background.

LRC plugin. In Ceph, erasure codes are implemented
as plugins. We used the Jerasure Erasure Code plugin [4],
which contains an implementation of Reed-Solomon
based on the Jerasure [21] and GF-Complete [20] li-
braries. We used the Locally Repairable Erasure Code
plugin (LRC plugin) [5] to implement Azure-LRC and
Azure-LRC+11. This plugin first attempts to reconstruct
the missing blocks from the surviving blocks in its local-
ity group. If the block does not belong to any group, or if
other blocks in the group are unavailable, it will be recon-
structed from the global parities.

We made two adjustments in the LRC plugin. First,

1Ceph’s LRC plugin actually implements Pyramid codes, and not
Azure-LRC. However, the data read by these two codes in all single-
node failure scenarios is identical. The precise parity calculations and
fault tolerance of Azure-LRC are outside the scope of this study.
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Figure 12: NRC of codes with d≥ 4. Azure-LRC and Optimal-LRC are the most flexible codes, defined for all (k,n) combinations.

we prevented CRUSH from rebalancing the placement
groups after a node failure. This prevented the primary
OSD from reading data that was not strictly required for
repair. Second, we adjusted the LRC plugin to read the
minimum amount of required blocks for recovery with
global parities. The original implementation greedily
reads all the remaining blocks in the stripe, which arti-
ficially increased the repair cost.

Optimal-LRC implementation. We implemented the
encoding in Optimal-LRC as a multiplication by a k× n
generator matrix created from the polynomial described
in [13]. When creating the matrix, we transformed the k
columns corresponding to the data blocks to ensure sys-
tematic encoding in which the data blocks are not encoded
and are stored on the storage nodes in their original form.
We further optimized the generator matrix to ensure that
the decoding process of local recovery would consist only
of XOR operations, avoiding finite field operations. We
used Matlab to construct the generator matrix for each
(n,k,r) Optimal-LRC in our evaluation.2. Beyond these
initial calculations, the encoding and decoding processes
of Optimal-LRC are equivalent to those of the original
Ceph LRC implementation. The differences in encod-
ing and decoding complexities are negligible compared to
the I/O and network times of a large-scale storage system
[6, 11, 12, 15, 19]. Similarly, there is no significant differ-
ence in the overhead of their implementation and meta-
data storage and maintenance.

Amazon EC2 deployment. We deployed our Ceph
cluster on 20 instances in the Amazon Elastic Com-
pute Cloud (EC2). We used t2.medium instances,
each equipped with two Intel Xeon processors and 4GiB
RAM [2]. We allocated two storage volumes to each in-
stance, and used them to initialize two OSDs, resulting
in a cluster of 40 OSDs. An additional t2.2xlarge

2Our implementation of Optimal-LRC in Ceph and its construction
in Matlab will be made available as open-source projects.

instance hosted the monitor, metadata server, and client.
EC2 data centers belong to different regions, which

correspond to distinct geographical locations. Each re-
gion contains several availability zones, which are con-
nected by low latency links and guarantee failure toler-
ance within the region [3]. We deployed our cluster in a
single availability zone in the Frankfurt region in all ex-
periments except the multi-zone one. Unless stated other-
wise, we use General Purpose SSD as storage devices [1].

In our basic “node repair” experiment, we populated
the cluster with 200GB of data, written as 64MB ob-
jects. These objects are distributed across 512 placement
groups. Thus, each OSD stored, on average, 5GB of
data, and additional parity blocks according to the eval-
uated code. We killed one OSD daemon on one instance
and removed this OSD from the cluster. This initialized
the repair process, which was performed by the primary
OSD in each affected placement group. We recorded the
amount of data read from each device and the CPU uti-
lization of each instance, until the full recovery of the
cluster. We describe variations of this experiment with
foreground workload and with slower storage below.

6 Results
Amount of data read and transferred. Figure 13 shows
the number of blocks read by each code during repair,
normalized to the number of data blocks on the failed
OSD. We also present the ARC and NRC of each code,
for comparison. We use an (n,k) Reed-Solomon in each
configuration as our baseline. The results show the con-
siderable reduction in repair cost achieved by LRCs, and
that full-LRCs achieve a larger reduction, as shown in our
theoretical evaluation.

For a given (n,k,r) combination, both ARC and NRC
can predict which code will incur the the highest and low-
est repair costs. At the same time, they are both inaccurate
in their prediction of the actual repair cost. The reason
for this inaccuracy is different for each metric. ARC in-
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Code ARC Adjusted ARC NRC Adjusted NRC Data read Time (s)
(13,10) RS 10 10 13 13 11.71 89

(14,10,5) Azure 5.71 (0.57) 5.5 (0.55) 8 (0.62) 7.7 (0.59) 6.74 (0.58) 59 (0.66)
(14,10,6) Azure 5.85 (0.58) 5.6 (0.56) 8.2 (0.63) 7.84 (0.6) 6.86 (0.59) 57 (0.64)

(15,10,5) Azure+1 4.4 (0.44) 4.5 (0.45) 6.6 (0.51) 6.75 (0.52) 5.96 (0.51) 57 (0.64)
(15,10,6) Azure+1 4.53 (0.53) 4.59 (0.46) 6.8 (0.52) 6.88 (0.53) 6.08 (0.52) 57 (0.64)

Table 1: Adjusted ARC and NRC according to block distribution on the failed OSD. The adjusted NRC corresponds to the actual
amount of data read for recovery. The values in parenthesis show the costs normalized to Reed-Solomon with the same k and d.
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Figure 13: The number of average read blocks per data block
repaired, compared to expected ARC and NRC.

herently underestimates the absolute cost, because it does
not take into account the code’s overhead. As a result,
it is not useful for comparing codes with different stor-
age overheads. For example, the ARC of (14,10) Reed-
Solomon and (15,10) Reed-Solomon is 10 for both, but
they read 12.53 and 13.24 blocks per data block recov-
ered, respectively.

The inaccuracy of NRC is the result of our limited eval-
uation setup. Although CRUSH attempts to uniformly
distribute data and parity blocks on all OSDs, its map-
ping is deterministic, and the actual distribution with 40
OSDs is not perfectly uniform. As a result, some OSDs
store more blocks than others, and the percentage of data
and parity blocks on each OSD is different. We verified
that this is the cause of the inaccuracy - by distinguishing
between the blocks on the failed OSD according to the
number of blocks required for their repair and observing
that their percentage is different than expected. We ad-
justed the NRC and ARC in several setups according to
the observed distribution, although we still assumed 5GB
of data on each OSD3.

Table 1 shows the detailed metric and results for Reed-
Solomon, Azure-LRC, and Azure-LRC+1, when k = 10,
and d = 4. The required storage overhead is different for
each code, which makes it difficult to directly compare
their repair costs. The mapping of OSDs to placement
groups is also different for each n. The table shows the
calculated and the adjusted ARC and NRC of all codes,

3Ceph does not report the number of data blocks stored on each OSD,
and we could not distinguish between data blocks and local parity blocks
because they require the same number of blocks for repair.
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Figure 14: Recovery time of LRCs normalized to Reed-
Solomon with the same k and n.

with the repair cost of each LRC compared to that of
Reed-Solomon in parenthesis. The adjusted NRC pro-
vides a fairly accurate prediction of the amount of data
read for recovery (we discuss the recovery time below).
This confirms that in a large-scale storage system with
uniform block distribution, the NRC can accurately pre-
dict the average repair cost of an entire storage node.

The amount of data transferred between nodes was al-
most identical to the amount of data read. We verified
that the differences were caused by the role of the pri-
mary OSD in the reconstruction process: when the pri-
mary stored one of the blocks required for reconstruction,
it did not have to transfer this block to another OSD. On
the other hand, the primary always had to transfer the re-
constructed block to the replacement OSD. In light of this
simple correlation, we omit the amount of data transferred
from the rest of our discussion.

Repair time. Figure 14 shows the recovery time of
LRCs normalized to Reed-Solomon with the same k and
n (normalizing to Reed-Solomon with the same d yields
equivalent results). Our results show that the reduction in
the amount of data read for repair does not directly trans-
late to a reduction in repair time. This is the result of
additional bottlenecks in the system, such as queuing and
batching delays. We verified that the CPU utilization is
the same for all codes, ruling out encoding costs as a bot-
tleneck. However, the I/O bandwidth utilized by the codes
was slightly different. Reed-Solomon typically achieved
a higher throughput than the LRCs—it reads considerably
more data than the other codes, which allows it to saturate
the storage devices. Thus, the reduction in repair time
achieved by the LRCs was smaller than that predicted by
NRC. Overall, the full-LRCs achieved the greatest reduc-
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Code NRC SSD Opt HDD Cold HDD
Reed-Solomon 15 100 115 303

Azure-LRC 6.6 (0.44) 58 (0.58) 65 (0.56) 134 (0.44)
Azure-LRC+1 4.8 (0.32) 49 (0.49) 53 (0.46) 134 (0.44)
Optimal-LRC 6 (0.4) 54 (0.54) 57 (0.49) 143 (0.47)

Table 2: NRC of all codes and their recovery time in seconds.
n = 15 and k = 10 for all codes and r = 4 for the LRCs, with the
repair time normalized to Reed-Solomon in parentheses.
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Figure 15: Throughput of RADOS benchmark during repair
with LRC in (15,10,4) and RS(15,10).

tion in repair time.
Different storage types. LRCs reduce the amount of

data read during recovery, and thus their benefit is ex-
pected to increase with the cost of storage I/O. We re-
peated our repair experiment for one configuration, re-
placing the SSD storage volumes with two types of hard
drives, Optimized HDD and Cold HDD, with a maximum
throughput of 500 and 250 IOPS, respectively [1]. The
amount of data read from all storage types was the same.
Table 2 shows the repair time, in seconds, for all the codes
and storage types. As we expected, in the setups where
the repair time of Reed-Solomon was longer, the reduc-
tion in repair time achieved by all LRCs was higher and
closer to the reduction predicted by NRC.

Foreground workloads. Local repair is also designed
to minimize the interference with application workloads
running in the system at the time of failure. To evaluate
this interference, we repeated the repair experiment with
the (15,10,4) configuration, in which each LRC has a dif-
ferent NRC. We ran a Ceph benchmark called RADOS
Bench [32], which writes objects for a given amount of
time (220 seconds in our experiment), reads all the ob-
jects, and terminates. For this experiment, we increased
the number of outstanding recovery requests allowed per
OSD from 15 to 150. We killed one OSD 100 seconds af-
ter the benchmark started to read. The repair process took
place while the benchmark was still reading the data, but
the system recovered before the benchmark terminated.

Figure 15 shows the throughput of the benchmark’s I/O
requests during its read phase. The black circles mark
the time at which recovery was fully completed, and the
measurements continue until the benchmark terminates.

The differences between the codes were smaller than we
expected. This is the result of Ceph’s restrictions on re-
pair throughput, and of the high I/O parallelism of SSDs.
Nevertheless, the results show that the different codes
completed their repair in the order of their NRC: Azure-
LRC+1 was the fastest and Reed-Solomon the slowest.
The throughput reduction experienced by the benchmark
was greatest with Reed-Solomon and smallest with the
full-LRCs—Azure-LRC+1 and Optimal-LRC.

Multiple zones. The first LRCs were motivated by the
goal of restricting the repair cost to the locality of the
failed node. In production systems, this means that blocks
in the same group are assigned to a group of nodes on the
same rack or in the same zone of the datacenter [11]. To
evaluate the different LRCs in a similar environment, we
repeated the repair experiment when our instances were
deployed on three availability zones in the same EC2 re-
gion (N. Virginia). In this experiment, we deployed six
instances in each zone, with a total of 18 instances run-
ning 36 OSDs. To make up for the reduced I/O band-
width within in each zone, we replaced the General Pur-
pose SSDs with Provisioned IOPS SSDs, which increased
the maximum IOPS per volume from 150 to 2500.

We edited the CRUSH map, instructing CRUSH to as-
sign placement groups to OSDs such that groups are allo-
cated in the same zone [35]. We also ensured that the pri-
mary OSD resides in the same zone as the failed OSD. We
ran this experiment twice. In the first setup, both the pri-
mary OSD and the failed OSD belonged to a data group.
In the second setup, both the primary OSD and the failed
OSD belonged to a global-parity group.

For full-LRCs, both setups are equivalent: all blocks
are reconstructed from blocks in the same group. For
Reed-Solomon, all recovery scenarios follow the second
setup: recovery requires blocks from different groups.
For data-LRCs, data and local parity blocks are recov-
ered according to the first setup, and global parities are
recovered according to the second setup. We calculated
the weighted average of these two setups to obtain the ex-
pected recovery time for each code.

We used (15,8,4) as our configuration, having excluded
it from our previous analysis due to its high overhead.
Nevertheless, it has the desirable property that all the
groups in all codes have the same size (5). This en-
sures that all placement groups include the same num-
ber of OSDs in each zone. In this configuration, the full
LRCs are equivalent in their distribution of data and parity
blocks to groups. We use Azure-LRC+1 as our full-LRC
in this experiment.

For comparison, we repeated this experiment with all
OSDs in a single zone, but with the same restriction on
the allocation of OSDs to groups. This setup eliminates
the cross-zone network bottleneck, with I/O parallelism
limited as in the three-zone experiment. Our baseline is
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Code NRC Reads 1 zone 3 zones
Baseline 3 groups

Reed-Solomon 15 14.42 121 179 190
Azure-LRC 10 9.73 88 (0.73) 158 (0.88) 162 (0.85)

Azure-LRC+1 7.5 7.21 80 (0.66) 148 (0.82) 148 (0.78)

Table 3: Number of blocks read per lost data block and repair
time when running on one zone and on three zones, with the
repair time normalized to Reed-Solomon in parentheses.

the unrestricted setup we used in the rest of this section.
Table 3 shows the amount of data read and the weighted

average of the repair time in this experiment. It shows that
restricting the number of nodes that participate in the re-
pair process significantly reduces its throughput. When
all the OSDs are deployed in the same zone, this restric-
tion increases the repair time by 48% to 85%. The in-
crease is lower for Reed-Solomon because it can still uti-
lize twice as many OSDs than the LRCs. The addition
of the cross-zone network bottleneck further reduces the
repair time of Reed-Solomon (by 6%) and of Azure-LRC
(by 2.5%), but does not affect Azure-LRC+1 which does
not incur any cross-zone transfers for repair.

These results demonstrate the well-known tradeoff be-
tween I/O parallelism and locality. They confirm that
data-LRCs and full-LRCs are expected to achieve the
highest benefit in large-scale deployments, where suffi-
cient I/O parallelism can be achieved within a single zone.

7 Related Work
Efforts to reduce the repair cost can be classified into two
main lines of research: LRCs, which attempt to reduce the
repair cost by reducing the number of nodes participating
in the repair process [8, 10, 11, 17, 28], and Regenerating
Codes, which strive to attain the same goal by reducing
the network bandwidth utilized during repair [6, 24, 25].

The benefits of codes with locality were first realized
in [10] before the actual notion was isolated into a stand-
alone concept in the information-theory community [8].
The basic code construction of Pyramid codes [10] as-
sumes that a global parity relation of an MDS code is
subdivided into two (or more) local parity check equa-
tions which can be used for local repair. Importantly, this
work indicated possible savings in repair cost, thereby
propelling further research on LRC codes.

In particular, [11] developed LRC codes and observed
substantial savings in the repair cost of Microsoft Azure
storage attained by using them, and [8] developed the
coding-theoretic side of the notion of LRCs. Another rel-
evant work [37] builds on Azure-LRC to dynamically ad-
just the system’s overall storage overhead and average re-
covery speed by migrating hot and cold data to arrays with
more or fewer parity nodes, respectively. Finally, a family
of non-MDS codes called Sector Disk codes [15, 19] ad-
dresses the recovery of a failed block within an otherwise
healthy node. The codes constructed in these works add
parity blocks that allow efficient recovery of bad hard-

disk sectors or SSD blocks. The above codes were imple-
mented and evaluated independently of one another. Our
study is the first to present a comparative framework for
codes designed with different properties and overheads,
and for different sets of parameters.

Minimum storage regenerating (MSR) codes [6,25] are
a class of MDS codes designed to optimize recovery net-
work bandwidth rather than the number of accessed stor-
age devices. MSR codes and related families, such as
RotatedRS [12], Hitchhiker-XOR [23], Butterfly [7] and
Zigzag [31] codes, divide each data and parity block into
smaller chunks, such that only a subset of each block’s
chunks are required for the repair of a failed node. Pa-
per [22] constructs an MSR code that reduces the amount
of data read from some of the surviving nodes but is ap-
plicable only for clusters with n = 2× k. These codes
reduce the rebuilding ratio—the portion of the surviving
nodes’ data that must be read during recovery. All MDS
codes with the same d have the same overhead, and can
be directly compared by their rebuilding ratio. However,
this metric is also limited in its ability to predict recovery
costs in a real system: these costs depend on the gran-
ularity of the non-sequential I/O accesses incurred when
reading arbitrary chunks from each block [18].

Alternative approaches reduce recovery costs of exist-
ing codes. An approach introduced in [33] and developed
in [9] considers linear repair schemes of Reed-Solomon
codes for reducing their network repair bandwidth. Re-
pair pipelining improves the utilization of the network
bandwidth of all nodes participating in the recovery [16].
Lazy repair delays node recovery to amortize its costs
over more than one failure [29]. This reduces the fault
tolerance of the system, which is equivalent to reducing
d. LSTOR relies on attached non-volatile memory for
caching additional parity blocks [27], effectively increas-
ing the storage overhead of the system. Our comparative
framework, using NRC, can also be extended to evaluate
the above approaches.

8 Conclusions
In this study, we performed the first systematic compari-
son of full-LRCs and data-LRCs. To that end, we imple-
mented a new full-LRC, Azure-LRC+1, and extended and
implemented Optimal-LRC for a comparison covering a
wide range of system parameters. We demonstrated the
limitations of existing metrics and introduced NRC—a
new metric that successfully models full-node repair cost.
Our theoretical analysis demonstrated the non-trivial cor-
relation between NRC and the cost of degraded reads, and
the tradeoff between them and the code’s fault tolerance.
Our evaluation in a Ceph cluster on Amazon EC2 further
showed how this benefit of full-LRCs and data-LRCs de-
pends on the underlying storage devices, network topol-
ogy, and foreground application load.
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Abstract

We introduce TxFS, a novel transactional file system that
builds upon a file system’s atomic-update mechanism
such as journaling. Though prior work has explored a
number of transactional file systems, TxFS has a unique
set of properties: a simple API, portability across different
hardware, high performance, low complexity (by building
on the journal), and full ACID transactions. We port
SQLite and Git to use TxFS, and experimentally show that
TxFS provides strong crash consistency while providing
equal or better performance.

1 Introduction
Modern applications store persistent state across multiple
files [21]. Some applications split their state among em-
bedded databases, key-value stores, and file systems [27].
Such applications need to ensure that their data is not
corrupted or lost in the event of a crash. Unfortunately,
existing techniques for crash consistency, such as logging
or using atomic rename, result in complex protocols and
subtle bugs [21].

Transactions present an intuitive way to atomically
update persistent state [6]. Unfortunately, building trans-
actional systems is complex and error-prone. In this paper,
we introduce a novel approach to building a transactional
file system. We take advantage of a mature, well-tested
piece of functionality in the operating system: the file-
system journal, which is used to ensure atomic updates to
the internal state of the file system. We use the atomicity
and durability provided by journal transactions and lever-
age it to build ACID transactions available to user-space
transactions. Our approach greatly reduces the develop-
ment effort and complexity for building a transactional
file system.

We introduce TxFS, a transactional file system that
builds on the ext4 file system’s journaling mechanism.
We designed TxFS to be practical to implement and
to use. TxFS has a unique set of properties: it has a
small implementation (5,200 LOC) by building on the
journal (for example, TxFS has 25% the LOC of the
TxOS transactional operating system [22]); it provides
high performance unlike various solutions which built a
transactional file system over a user-space database [5,
16, 18, 31]; it has a simple API (just wrap code in
fs tx begin()and fs tx commit()) compared to

solutions like Valor [28] or TxF [24] which require multi-
ple system calls per transaction and can require the devel-
oper to understand implementation details like logging;
it provides all ACID guarantees unlike solutions such as
CFS [15] and AdvFS [30] which only offer some of the
guarantees; it provides transactions at the file level instead
of at the block level unlike Isotope [26], making several
optimizations easier to implement; finally, TxFS does not
depend upon specific properties of the underlying storage
unlike solutions such as MARS [3] and TxFlash [23].

The advantage to building TxFS on the file-system jour-
nal is that TxFS transactions obtain atomicity, consistency,
and durability by placing each one entirely within a single
file-system journal transaction (which is applied atomi-
cally to the file system). Using well-tested journal code
to obtain ACD reduces the implementation complexity of
TxFS, while limiting the maximum size of transactions to
the size of the journal.

The main challenge of building TxFS is providing iso-
lation. Isolation for TxFS transactions requires that in-
progress TxFS transactions are not visible to other pro-
cesses until the transaction commits. At a high level,
TxFS achieves isolation by making private copies of all
data that is read or written, and updating global data
during commit. However, the naive implementation of
this approach would be extremely inefficient: global data
structures such as bitmaps would cause conflicts for ev-
ery transaction, causing high abort rates and excessive
transaction retries. TxFS makes concurrent transactions
efficient by collecting logical updates to global structures,
and applying the updates at commit time. TxFS includes
a number of other optimizations such as eager conflict
detection that are tailored to the current implementation
of file-system data structures in ext4.

We find that the transactional framework allows us to
easily implement a number of file-system optimizations.
For example, one of the core techniques from our earlier
work, separating ordering from durability [2], is easily ac-
complished in TxFS. Similarly, we find TxFS transactions
allow us to identify and eliminate redundant application
IO where temporary files or logs are used to atomically
update a file: when the sequence is simply enclosed in a
transaction (and without any other changes), TxFS atom-
ically updates the file (maintaining functionality) while
eliminating the IO to logs or temporary files (provided
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the temporary files and logs are deleted inside the trans-
action). As a result, TxFS improves performance while
simultaneously providing better crash-consistency seman-
tics: a crash does not leave ugly temporary files or logs
that need to be cleaned up.

To demonstrate the power and ease of use of TxFS
transactions, we modify SQLite and Git to incorporate
TxFS transactions. We show that when using TxFS trans-
actions, SQLite performance on the TPC-C benchmark
improves by 1.6× and a micro-benchmark which mim-
ics Android Mail obtains 2.3× better throughput. Using
TxFS transactions greatly simplifies Git’s code while pro-
viding crash consistency without performance overhead.
Thus, TxFS transactions increase performance, reduce
complexity, and provide crash consistency.

Our paper makes the following contributions.
• We present the design and implementation of TxFS,

a transactional file system for modern applications
built by leveraging the file-system journal (§3). We
have made TxFS publicly available at https://
github.com/ut-osa/txfs.
• We show that existing file systems optimizations,

such as separating ordering from durability, can be
effectively implemented for TxFS transactions (§4).
• We show that real applications can be easily modified

to use TxFS, resulting in better crash semantics and
significantly increased performance (§5).

2 Background and motivation
We first describe the protocols used by current applica-
tions to update state in a crash-consistent manner. We then
present a study of different applications and the challenges
they face in maintaining crash consistency across persis-
tent state stored in different abstractions. We describe
the file-system optimizations enabled by transactions and
finally summarize why we think transactional file systems
should be revisited.

2.1 How applications update state today

Given that applications today do not have access to trans-
actions, how do they consistently update state to multiple
storage locations? Even if the system crashes or power
fails, applications need to maintain invariants across state
in different files (e.g., an image file should match the
thumbnail in a picture Gallery). Applications achieve
this by using ad hoc protocols that are complex and error-
prone [21].

In this section, we show how difficult it is to implement
seemingly simple protocols for consistent updates to stor-
age. There are many details that are often overlooked,
like the persistence of directory contents. These protocols
are complex, error prone, and inefficient. With current
storage technologies, these protocols must sacrifice per-
formance to be correct because there is no efficient way

open(/dir/tmp) 
write(/dir/tmp) 
fsync(/dir/tmp) 
fsync(/dir) 
rename(/dir/tmp, /dir/orig) 
fsync(/dir/)

(a) Atomic Update via Rename

open(/dir/log) 
write(/dir/log) 
fsync(/dir/log) 
fsync(/dir/) 
write(/dir/orig) 
fsync(/dir/orig) 
unlink(/dir/log) 
fsync(/dir/)

(b) Atomic Update via Logging

// Write attachment 
open(/dir/attachment) 
write(/dir/attachment) 
fsync(/dir/attachment) 
fsync(/dir/) 

// Writing SQLite Database 
open(/dir/journal)     
write(/dir/journal) 
fsync(/dir/journal) 
fsync(/dir/) 
write(/dir/db) 
fsync(/dir/db) 
unlink(/dir/journal) 
fsync(/dir/)

(c) Atomically adding a email  
message with attachments  

in Android Mail

Figure 1: Different protocols used by applications to make
consistent updates to persistent data.

to order storage updates.
Currently, applications use the fsync() system call

to order updates to storage [2]; since fsync() forces
durability of data, the latency of a fsync() call varies
from a few milliseconds to several seconds. As a result,
applications do not call fsync() at all the places in the
update protocol where it is necessary, leading to severe
data loss and corruption bugs [21].

We now describe two common techniques used by ap-
plications to consistently update stable storage. Figure 1
illustrates these protocols.

Atomic rename. Protocol (a) shows how a file can be
updated via atomic rename. The atomic rename approach
is widely used by editors, such as Emacs and Vim, and
by GNOME applications that need to atomically update
dot configuration files. The application writes new data
to a temporary file, persists it with an fsync() call,
updates the parent directory with another fsync() call,
and then renames the temporary file over the original file,
effectively causing the directory entry of the original file
to point to the temporary file instead. The old contents
of the original file are unlinked and deleted. Finally, to
ensure that the temporary file has been unlinked properly,
the application calls fsync() on the parent directory.

Logging. Protocol (b) shows another popular tech-
nique for atomic updates, logging [8] (either write-ahead-
logging or undo logging). The log file is written with new
contents, and both the log file and the parent directory
(with the new pointer to log file) are persisted. The ap-
plication then updates the original file and persists the
original file; the parent directory does not change dur-
ing this step. Finally, the log is unlinked, and the parent
directory is persisted.
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The situation becomes more complex when applica-
tions store state across multiple files. Protocol (c) il-
lustrates how the Android Mail application adds a new
email with an attachment. The attachment is stored on the
file system, while the email message (along with meta-
data) is stored in the database (which for SQLite, also
resides on the file system). Since the database has a
pointer to the attachment (i.e., a file name), the attach-
ment must be persisted first. Persisting the attachment
requires two fsync() calls (to the file and its containing
directory) [1, 21]. SQLite’s most performant mode uses
write-ahead-logging to atomically update the database. It
then follows a protocol similar to Protocol (b).

Removing fsync() calls in any of the presented pro-
tocols will lead to data loss or corruption. For instance,
in Protocol (b), if the parent directory is not persisted
with an fsync() call, the following scenario could oc-
cur: the application writes the log file, and then starts
overwriting the original file in place. The system crashes
at this point. Upon reboot, the log file does not exist,
since the directory entry pointing to the log file was not
persisted. Thus, the application file has been irreversibly
partially edited, and cannot be restored to a consistent
version. Many application developers avoid fsync()
calls due to the resulting decrease in performance, leading
to severe bugs that cause loss of data.

Safe update protocols for stable storage are com-
plex and low performance (e.g., Android Mail uses six
fsync() calls to persist a single email with an attach-
ment). System support for transactions will provide high
performance for these applications.

2.2 Application case studies

We now present four examples of applications that strug-
gle with obtaining crash consistency using primitives
available today. Several applications store data across
the file system, key-value stores, and embedded databases
such as SQLite [27]. While all of this data ultimately
resides in the file system, their APIs and performance
constraints are different and consistently updating state
across these systems is complex and error-prone.

Android mail. Android’s default mail application stores
mail messages using the SQLite embedded database [29].
Mail attachments are stored separately as a file, and the
database stores a pointer to the file. The user requires both
the file and the database to be updated atomically; SQLite
only ensures the database is updated correctly. For exam-
ple, a crash could leave the database consistent, but with
a dangling pointer to a missing attachment file. The mail
application handles this by first persisting the attachment
(via fsync()), and then persisting a database transac-
tion. Clearly, this harms performance – a transaction that
spans both the database and the file system would need to
persist data only at a single commit point.

Apple iWork and iLife. Analysis of the storage behavior
of Apple’s home-user, desktop applications [9] finds that
applications use a combination of the file system, key-
value stores, and SQLite to store data. iTunes uses SQLite
to store metadata similar to the Android Mail application.
When you download a new song via iTunes, the sound file
is transferred and the database updated with the song’s
metadata. Apple’s Pages application uses a combination
of SQLite and key-value stores for user preferences and
other metadata (two SQLite databases and 128 .plist
key-value store files). Similar to Android Mail, Apple
uses fsync() to order updates correctly.

Browsers. Mozilla Firefox stores user data in multiple
SQLite databases. For example, addons, cookies, and
download history are each stored in their separate SQLite
database. Since downloads and other files are stored on
the file system, a crash could leave a database with a
dangling pointer to a missing file.

Version control systems. Git and Mercurial are widely-
used version control systems. The git commit com-
mand requires two file-system operations to be atomic: a
file append (logs/HEAD) and a file rename (to a lock
file). Failure to achieve atomicity results in data loss and
a corrupted repository [21]. Mercurial uses a combination
of different files (journal, filelog, manifest)
to consistently update state. Mercurial’s commit com-
mand requires a long sequence of file-system operations
including file creations, appends, and renames be atomic;
if not, the repository is corrupted [21].

For these applications, transactional support would lead
directly to more understandable and more efficient idioms.
It is difficult for a user-level program to provide crash-
consistent transactional updates using the POSIX file-
system interface. A transactional file-system interface
will also enable high-performance idioms like editors
grouping updates into transactions rather than the less
efficient process they currently use of making temporary
file copies that are committed via rename.

Note that applications that use temporary files and tech-
niques like atomic rename do achieve crash consistency;
however, after a crash there may be temporary files which
need to be cleaned up. After a crash, the application runs
a recovery procedure and returns to a consistent state. Of-
ten, the “recovery procedure” forces a human user to look
for and manually delete stale files. A transactional file sys-
tem does not provide new crash-consistency guarantees
for these applications; rather, transactional file systems
remove the burden of recovery and cleanup, simplifying
the application and eliminating bugs [21].

2.3 Optimizing transactions

A transactional file-system interface enables a number of
interesting file-system optimizations. We now describe a
few of them.

USENIX Association 2018 USENIX Annual Technical Conference    881



Eliminate temporary durable files. A number of appli-
cations such as Vim, Emacs, Git, and LevelDB provide
reasonable crash semantics (i.e., the user sees either the
old version or the new version after an update) by making
a temporary copy of a file, editing it, then renaming it
atomically to the permanent name when the user updates
data. The application can simply enclose its writes inside
a transaction, avoiding the copy. For large files, the differ-
ence in performance can be significant. In addition, the
file system will not be cluttered with temporary files in
the event of a crash.

Group commit. Transactions buffer related file-system
updates in memory, which can all be sent to the storage
device at once. Batching updates is often more efficient,
enabling efficient allocation of file-system data structures
and better device-level scheduling. Without user-provided
transaction boundaries, the file system provides uniform,
best-effort persistence for all updates.

Eliminate redundant IO within transactions. Work-
loads often contain redundancy; for example, files are
often updated several times at the same offset, or a file is
created, written, read, and unlinked. Transaction bound-
aries allow the file system to eliminate some of this re-
dundant work because the entire transaction is visible
to the file system at commit time, which enables global
optimization.

Consolidate IO across transactions. Transactions often
update data written by prior transactions. When a work-
load anticipates data in its transaction will be updated by
another transaction shortly, it can prioritize throughput
over latency. Committing a transaction with a special flag
allows the system to delay a transaction commit, antici-
pating that the data will be overwritten, and then it can be
persisted once instead of twice. Note that consolidating
IO in this manner is different from eliminating redundant
IO within a transaction; this optimization operates across
multiple transactions. Optimizing multiple transactions,
especially from different applications, is best done by the
operating system, not by an individual application. This
non-work conserving strategy is similar to the anticipatory
disk scheduler [12].

Separate ordering from durability. When ending a
transaction, the programmer can specify if the transaction
should commit durably. If so, the call blocks until all
updates specified by the transaction have been written to
a persistent journal. If we commit non-durable transac-
tion A and then start non-durable transaction B, then A
is ordered before B, but neither is durable. A subsequent
transaction (e.g., C), can specify that it and all previous
transactions should be made durable. In this way we can
use transactions to gain much of the benefit of splitting
sync into ordering sync (osync), and durability sync
(dsync) [2].

In summary, we believe transactional file systems
should be revisited for two reasons. First, applications
routinely store persistent state in multiple files and across
different storage systems such as databases and key-value
stores, and maintaining crash consistency of this state
using techniques such as atomic rename results in com-
plexity and bugs. Second, using a transactional API en-
ables the file system to provide a number of optimizations
that would be significantly harder to introduce in a non-
transactional file system.

3 TxFS Design and implementation
We now present the design and implementation of TxFS.
TxFS avoids the pitfalls from earlier transactional file
systems (§6): it has a simple API; provides complete
ACID guarantees; does not depend on specific hardware;
and takes advantage of the file-system journal and how the
kernel is implemented to achieve a small implementation
(≈5,200 LOC).

3.1 API

A simple API was one of the key goals of TxFS. Thus,
TxFS provides developers with only three system calls:
fs tx begin(), which begins a transaction; fs tx -
commit(), which ends a transaction and attempts to
commit it; and fs tx abort(), which discards all file-
system updates contained in the current transaction. On
commit, all file-system updates in an application-level
transaction are persisted in an atomic fashion – after a
crash, users see all of the transaction updates, or none of
them. This API significantly simplifies application code
and provides clean crash semantics, since temporary files
or partially written logs will not need to be cleaned up
after a crash.
fs tx commit() returns a value indicating whether

the transaction was committed successfully, or if it failed,
why it failed. A transaction can fail for three reasons:
there was a conflict with another concurrent transaction,
there is no journal space for the transaction, or the file
system does not have enough resources for the transaction
to complete (no space or inodes). Depending upon the
error code, the application can choose to retry the transac-
tion. Nested TxFS transactions are flattened into a single
transaction, which succeed or fail as a unit. Flat nesting
is a common choice in transactional systems [22, 28].

A user can surround any sequence of file-system
related system calls with fs tx begin() and
fs tx commit() and the system will execute those
system calls in a single transaction. This interface is
easy for programmers to use and makes it simple to in-
crementally deploy file-system transactions into existing
applications. In contrast, some transactional file systems
(e.g., Window’s TxF [24] and Valor [28]) have far more
complex, difficult-to-use interfaces. TxF assigns a handle
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to each transaction, and requires users to explicitly call
the transactional APIs with the handle. Valor exposes
operations on the kernel log to user-level code.

TxFS isolates file-system updates only. The applica-
tion is still responsible for synchronizing access to its own
user-level data structures. A transactional file system is
not intended to be an application’s sole concurrency con-
trol mechanism; it only coordinates file-system updates
which are difficult to coordinate without transactions.

3.2 Atomicity and durability

Most modern Linux file systems have an internal mecha-
nism for atomically updating multiple blocks on storage.
These mechanisms are crucial for maintaining file-system
crash consistency, and thus have well-tested and mature
implementations. TxFS takes advantage of these mecha-
nisms to obtain three of the ACID properties: atomicity,
consistency, and durability. This is the key insight which
allows TxFS to have a small implementation.

TxFS builds upon the ext4 file system’s journal. The
journal provides the guarantee that each journal transac-
tion is applied to the file system in an atomic fashion. We
could have instead used a different mechanism such as
copy-on-write [10] which provides the same guarantee in
btrfs and F2FS. TxFS can be built upon any file system
with a mechanism for atomic updates.

For each TxFS transaction, TxFS maintains a private
jbd2 transaction, and at commit, merges the private trans-
action into the global jbd2 transaction. While the global
jbd2 transaction contains only metadata by default, TxFS
also adds data blocks to the transaction to ensure atomic
updates. If, by chance, a block added to the private jbd2
transaction is also being committed by a previous global
jbd2 transaction, TxFS creates a shadow block. Ext4 also
creates a shadow block when a block is shared between
a running and a committing transaction. TxFS employs
selective data journaling [2], only journaling data blocks
that were already allocated (i.e., data blocks that are be-
ing updated), and avoids journaling newly allocated data
blocks (because it can write them directly). Selective
data journaling provides the same guarantees as full data
journaling at a fraction of the cost.

TxFS ensures that an entire transaction can be merged
into a single journal transaction; otherwise, an error is re-
turned to the user. As long as a TxFS transaction is added
to a single journal transaction, the journal will ensure it
is applied to the file system atomically. After merging a
user’s transaction into the journal transaction, TxFS per-
sists the journal transaction, ensuring the durability of the
TxFS transaction.

3.3 Isolation and conflict detection

Although the ext4 journal provides atomicity and dura-
bility, it does not provide isolation. Adding isolation for

file-system data structures in the Linux kernel is chal-
lenging because a large number of functions all over the
kernel modify file-system data structures without using
a common interface. In TxFS, we tailor our approach to
isolation for each data structure to simplify the implemen-
tation.

To provide isolation, TxFS has to ensure that all oper-
ations performed inside a transaction are not visible to
other transactions or the rest of the system until commit
time. TxFS achieves the isolation level of repeatable
reads [7] using a combination of different techniques.

Split file-system functions. System calls such as
write() and open() execute file-system functions
which often result in allocation of file-system resources
such as data blocks and inodes. TxFS splits such functions
into two parts: one part which does file-system allocation,
and one part which operates on in-memory structures.
The part doing file-system allocation is moved to the com-
mit point. The other part is executed as part of the system
call, and the in-memory changes are kept private to the
transaction.

Transaction-private copies. TxFS makes transaction-
private copies of all kernel data structures modified during
the transaction. File-system related system calls inside
a transaction operate on these private copies, allowing
transactions to read their own writes. In case of abort,
these private copies are discarded; in case of commit,
these private copies are carefully applied to the global
state of the file system in an atomic fashion. During a
transaction, file-system operations are redirected to the
local in-memory versions of the data structures. For ex-
ample, dentries updated by the transaction are modified to
point to a local inode which maintains a local radix tree
which has locally modified pages.

Two phase commit. TxFS transactions are committed
using a two-phase commit protocol. TxFS first obtains
a lock on all relevant file-system data structures using a
total order. The following order prevents deadlock: inode
mutexes, page locks, inode buffer head locks, the global
inode hash lock, the global inode sb list lock, in-
ode locks, and dentry locks. The Linux kernel orders the
acquiring of inode mutexes based on the pointer addresses
of their inodes; we adopt this locking discipline in TxFS.
Similarly, page locks are acquired in order of the address
of the page. Acquiring the locks for directory data block
buffers and inode metadata buffers is ordered by inode
number.

After obtaining the locks, all allocation decisions are
checked to see if they would succeed; for example, if
the transaction creates inodes, TxFS checks if there are
enough free inodes. Next, TxFS checks the journal to
ensure there is enough space in the global jbd2 transac-
tion to allow the transaction to be merged. Finally, TxFS

USENIX Association 2018 USENIX Annual Technical Conference    883



dentry

inode

address_space

Page Page Page

...

... ...

radix tree

Transaction file/ 
directory table

TX-local copies
(in-memory)

...begin endrecord

①Non-durable commit
(on fs_tx_commit)

Global file 
system 
transaction

③Asynchrounous 
journal checkpoint

On-disk 
journal

record

File metadata 
and data blocks

②Durable commit
(on fsync)

fs_tx_begin();
fd = open(...);

User 
program

write(fd, ...);
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Figure 2: TxFS relies on ext4’s own journal for atomic updates and maintains local copies of in-memory data structures,
such as inodes, dentries, and pages to provide isolation guarantees. At commit time, the local operations are made
global and durable.

checks for conflicts with other transactions (as described
below). If any of these checks fail, all locks are released,
and the commit returns an error to the user. Otherwise,
the in-memory data structures are updated, all file-system
allocation is performed, and the private jbd2 transac-
tion is merged with the global jbd2 transaction. At this
point, the transaction is committed, locks are released and
the changes are persisted to storage in a crash-consistent
manner.

Conflict detection. Conflict detection is a key part of
providing isolation. Since allocation structures such as
bitmaps are not modified until commit time, they cannot
be modified by multiple transactions at the same time,
and do not give rise to conflicts; as a result, TxFS avoids
false conflicts involving global allocation structures.

Conflict detection is challenging as file-system data
structures are modified all over the Linux kernel without
a standard interface. TxFS takes advantage of how file-
system data structures are implemented to detect conflicts
efficiently.

Conflict detection for pages. The struct page data
structure holds the data for cached files. TxFS adds two
fields to this structure: write flag and reader count.
The write flag indicates if there is another transaction
that has written this page. The reader count field in-
dicates the number of other transaction that have read
this page. Non-transactional threads will never see the
in-flight un-committed data in transactions, and thus can
always safely read data. TxFS does eager conflict detec-
tion for pages since there is a single interface to read and
write pages that TxFS interposes. The following rules are
followed on a page read or write:

1. When a transaction reads a page, it increments
reader count by one. If the page has the
write flag set, the transaction aborts.

2. If a transaction attempts to write a page that
has either the write flag set or reader count

greater than zero, it aborts. Otherwise, it sets the
write flag.

3. If a non-transactional thread attempts to write to a
page with reader count or write flag set, it is
put to sleep until the transaction commits or aborts.

4. When the transaction commits or aborts,
write flag is reset and reader count is
decremented.

Aborting transactions in this manner can lead to livelock,
but we have not found it a problem with our benchmarks
and the policy can be easily changed to resolve conflicts
in favor of the oldest transaction (which does not livelock).
TxFS favors transactional throughput, but for greater fair-
ness between transactional and non-transactional threads,
TxFS could allow a non-transactional thread to proceed by
aborting all transactions conflicted by its operation [22].

Conflict detection for dentries and inodes. Apart from
pages, TxFS must detect conflicts on two other data struc-
tures: dentries (directory entries) and inodes. Unfortu-
nately, unlike pages, inodes and dentries do not have a
standard interface and are modified throughout kernel
code. Therefore, TxFS uses lazy conflict detection for
inodes and dentries, detecting conflicts at commit time.
At commit time, TxFS needs to detect if the global copy
of the data structure has changed since it was copied into
the local transaction. Doing a byte-by-byte comparison of
each modified data structure would significantly increase
commit latency; instead, TxFS takes advantage of the
inode’s i ctime field that is changed whenever the inode
is changed; TxFS simply has to check that the i ctime

has not changed for each inode that TxFS has read or
written (writes are performed to a transaction-local copy
of the inode). TxFS similarly adds a new d ctime field
to the dentry data structure to track its last modified time.
We added kernel code in a number of places to update
d ctime whenever a dentry is changed. Creating differ-
ent named entries within a directory does not create a
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conflict because the names are checked at commit time.
By taking advantage of i ctime and d ctime, TxFS
is able to perform conflict detection for these structures
without radically changing the Linux kernel.

Summary. Figure 2 shows how TxFS uses ext4’s journal
for atomically updating operations inside a transaction,
and maintaining local state to provide isolation guarantees.
File operations inside a TxFS transaction are redirected to
the transaction’s local copied data structures, hence they
do not affect the file system’s global state, while being
observable by subsequent operations in the same transac-
tion. Only after a TxFS transaction finishes its commit
(by calling fs tx commit()) will its modifications be
globally visible.

3.4 Implementation

We modified Linux version 3.18 and the ext4 file system.
The implementation requires a total of 5,200 lines of code,
with 1,300 in TxFS internal bookkeeping, 1,600 in the
VFS layer, 900 in the journal (JBD2) layer, 1,200 for ext4
and 200 for memory management (all measurements with
SLOCCount [4]). Except for the ext4 and jbd2 extensions,
all other code could be reused to port TxFS to other file
systems, such as ZFS, in the future.

3.5 Limitations

TxFS has two main limitations. First, the maximum size
of a TxFS transaction is limited to one fourth the size of
the journal (the maximum journal transaction size allowed
by ext4). We note that the journal can be configured to be
as large as required. Multi-gigabyte journals are common
today. Second, although parallel transactions can proceed
with ACID guarantees, each transaction can only contain
operations from a single process. Transactions spanning
multiple processes are future work.

4 Accelerating program idioms with TxFS

We now explore a number of programming idioms where
a transactional API can improve performance because
transactions provide the file system a sequence of oper-
ations which can be optimized as a group (§2). Whole
transaction optimization can result in dramatic perfor-
mance gains because the file system can eliminate tempo-
rary durable writes (such as the creation, use and deletion
of a log file). In some cases, we show that benefits pre-
viously obtained by new interfaces (such as osync [2])
can be obtained easily with transactions.

4.1 Eliminating file creation

When an application creates a temporary file, syncs it,
uses it, and then unlinks it (e.g., logging shown in Fig-
ure 1b), enclosing the entire sequence in a transaction
allows the file system to optimize out the file creation and

Workload FS TX
Create/unlink/sync 37.35s 0.28s (133×)
Logging 5.09s 4.23s (1.20×)
Ordering work 2.86 it/s 3.96 it/s (1.38×)

Table 1: Programming idioms sped up by TxFS trans-
actions. Performance is measured in seconds (s), and
iterations per second (it/s). Speedups for the transaction
case are reported in parentheses.

all writes while maintaining crash consistency.
The create/unlink/sync workload spawns six threads

(one per core) where each thread repeatedly creates a file,
unlinks it, and syncs the parent directory. Table 1 shows
that placing the operation within a transaction increases
performance by 133× because the transaction completely
eliminates the workload’s IO. While this test is an extreme
case, we next look at using transactions to automatically
convert a logging protocol into a more efficient update
protocol.

4.2 Eliminating logging IO

Figure 1b shows the logging idiom used by modern ap-
plications to achieve crash consistency. Enclosing the
entire protocol within a transaction allows the file system
to transparently optimize this protocol into a more effi-
cient direct modification. During a TxFS transaction, all
sync-family calls are functional nops. Because the log
file is created and deleted within the transaction, it does
not need to be made persistent on transaction commit.
Eliminating the persistence of the log file greatly reduces
the amount of user data but also file system metadata (e.g.,
block and inode bitmaps) that must be persisted.

Table 1 shows execution time for a microbenchmark
that writes and syncs a log, and a version that encloses the
entire protocol in a single TxFS transaction. Enclosing
the logging protocol within a transaction increases perfor-
mance by 20% and cuts the amount of IO performed in
half because the log file is never persisted. Rewriting the
code increases performance by 55% (3.28s, not shown in
the table). In this case getting the most performance out
of transactions requires rewriting the code to eliminate
work that transactions make redundant. But even without
a programmer rewrite, by just adding two lines of code
to wrap a protocol in a transaction achieves 47% of the
performance of doing a complete rewrite.

Optimizing SQLite logging with TxFS. Table 3 reports
results for SQLite. “Rollback with TxFS” represents
SQLite’s default logging mode encased within a TxFS
transaction. Just enclosing the logging activity with a
transaction increases performance for updates by 14%.
Modifying the code to eliminate the logging work that
transactions make redundant increases the performance
for updates to 31%, in part by reducing the number of
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Experiment TxFS benefit Speed
Single-threaded SQLite Faster IO path, Less sync 1.31×
TPC-C Faster IO path, Less sync 1.61×
Android Mail Cross abstraction 2.31×
Git Crash consistency 1×

Table 2: The table summarizes the micro- and macro-
benchmarks used to evaluate TxFS, and the speedup ob-
tained in each experiment.

system calls by 2.5×.

4.3 Separating ordering and durability

Table 1 shows throughput for a workload that creates
three 10MB files and then updates 10MB of a separate
40MB file. The user would like to create the files first,
then update the data file. This type of ordering constraint
often occurs in systems like Git that create log files and
other files that hold intermediate state.

The first version uses fsync() to order the operations,
while the second uses transactions that allow the first three
file create operations to execute in any order, but they are
all serialized behind the final data update transaction (us-
ing flags to fs tx begin()and fs tx commit()).
The transactional approach has 38% higher throughput
because the ordering constraints are decoupled from the
persistence constraints. The work that first distinguished
ordering from persistence suggests adding different flavor
sync system calls [2], but TxFS can achieve the same
result with transactions.

5 Evaluation
We evaluate the performance and durability guarantees of
TxFS on a variety of micro-benchmarks and real work-
loads. The micro-benchmarks help point out how TxFS
achieves specific design goals while the larger bench-
marks validate that transactions provide stronger crash
semantics and improved performance to a variety of large
applications with minimal porting effort.

Testbed. Our experimental testbed consists of a machine
with a 4 core Intel Xeon E3-1220 CPU and 32 GB DDR3
RAM and a machine with a 6 core Intel Xeon E5-2620
CPU and 8 GB DDR3 RAM. All experiments are per-
formed on Ubuntu 16.04 LTS (Linux kernel 3.18.22).
The kernel is installed on a Samsung 850 (512 GB) SSD
and all experiments are done on a Samsung 850 (250
GB) SSD. The experimental SSD is run at low utilization
(around 20%) to prevent confounding factors from wear
leveling firmware.

Table 2 presents a summary of the different experi-
ments used to evaluate TxFS and the speedup obtained in
each experiment. In the Git experiment, TxFS provides
strong crash-consistency guarantees without degrading
performance. Note that if not explicitly mentioned, all

our baselines run on ext4 with its default journaling mode,
the ordered journaling mode.

5.1 Crash consistency

TxFS’s ACID transactions should be recoverable after a
system crash. In order to verify this crucial correctness
property, we boot a virtual machine and run a script that
creates many types of transactions in multiple threads
with random amounts of contained work and conflict
probabilities. We crash the VM at a random time and
make sure the file system journal is recoverable and that
the file system passes all fsck checks. We have run over
100 random crashes and can recover the file system in all
cases. An alternate way to test crash consistency would
use a testing framework such as CrashMonkey [13].

5.2 Stress testing TxFS

We performed stress testing on TxFS to ensure its cor-
rectness in the face of conflicts and multi-threaded op-
erations. Our stress tests had two main workloads. Our
first workload was a micro-benchmark with six threads
starting TxFS transactions and performing file-system
operations picked at random across two files before com-
mitting. These threads generate a lot of conflicts, stressing
TxFS conflict detection and isolation mechanisms. Our
second workload uses the SQLite embedded database,
performing a number of database operations with mul-
tiple threads. We were able to run both workloads for
over 24 hours on TxFS without a kernel crash or our unit
tests failing, giving us a measure of confidence in the
correctness and stability of the codebase.

5.3 SQLite

We modified SQLite to use TxFS transactions. Data and
metadata are first written safely to the journal and then
checkpointed in-place into the file system. Note that all
metadata is written into the file system exactly once. With
SQLite in write-ahead-logging (WAL) mode, metadata
is written twice: once to SQLite’s log and once to the
actual database file. The size and frequency of metadata
updates for SQLite is significant because in order to be
recoverable, it must update the parent directory whenever
log files are created or deleted [29]. We use PRAGMA
synchronous=NORMAL (default) for all modes, and
PRAGMA wal checkpoint(FULL) for WAL mode
to guarantee all ACID properties.

When SQLite uses TxFS transactions, crashes do not
leave any residual files on storage. Currently, users often
must remove these residual files by hand which is tedious
and error-prone. TxFS transactions eliminate user-visible
log files; user-level code sees only the before and after
state of the database, not messy in-flight data.

Single-threaded SQLite. Table 3 shows that TxFS is
the best performing option for SQLite updates. Data is
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Performance (kOps/s) IO (GB) Sync/tx
Journal
mode

Insert Update Insert Update Insert Update

Rollback
(default)

53.9 28.0 1.9 3.9 4 10

Truncate 53.5
(0.99×)

28.9
(1.03×)

1.9 3.9 4 10

WAL 39.8
(0.74×)

34.6
(1.23×)

3.9 3.8 3 3

TxFS 51.4
(0.95×)

36.7
(1.31×)

1.9 3.8 1 1

Rollback
with TxFS

52.1
(0.97×)

31.9
(1.14×)

1.9 3.8 1 1

No journal
(unsafe)

54.9
(1.02×)

50.6
(1.81×)

1.9 1.9 1 1

Table 3: The table compares operations per second (larger
is better) and total amount of IO for SQLite executing
1.5M 1KB operations grouping 10K operations in a trans-
action using different journaling modes (including TxFS).
The database is pre-populated with 15M rows. All ex-
periments use SQLite’s synchronous mode (its default).

the average of five trials with standard deviations below
2.2% of the mean. For the update workload, TxFS is
31% faster than the default. We report IO totals as part
of our validation that TxFS correctly writes all data in a
crash-consistent manner. Several choices for SQLite log-
ging mode, including TxFS, result in similar levels of IO
that resemble the no-journal lower bound. Write-ahead
logging mode (WAL) writes more data for the insert work-
load, which harms its performance. Note that TxFS does
not suffer WAL’s performance shortfall on insert, and
TxFS surpasses WAL’s performance on update, making
it a better alternative. Although the file system journal
shares similarity with a WAL log, TxFS does not gener-
ate redundant IO on insert because of its selective data
journaling.

We run similar experiments with small updates (16
bytes) and find that there is little difference in perfor-
mance between SQLite’s different modes and TxFS. This
shows that small transactions do not have significant over-
head in TxFS.

TxFS’s improves performance for the update workload
is due to several factors. TxFS reduces the number of
data syncs from 10 (in Rollback and Truncate mode) or 3
(in WAL mode) to only 1, which leads to better batching
and re-ordering of writes inside a single transaction. It
performs half of its IO to the journal, which is written se-
quentially. The remaining IO is done asynchronously via
a periodic file-system checkpoint that writes the journaled
blocks to in-place files. Since TxFS uses the file-system
journal instead of an application-level journal for logging
the transaction, it avoids the journaling on journal prob-

Rollback
(default)

Truncate WAL TxFS No
journal

(unsafe)
Delivery 110.52 123.33 157.01 188 300.4

New
Order

142.38 165.15 216.8 240.34 445.14

Order
Status

1998.53 2067.29 3317.1 2489.94 3141.13

Payment 198.45 240.21 367.26 300.61 909.91
Stock levl 575.03 602.33 765.41 684.06 1079.85

Total 172.97 203.3
(1.18×)

280.01
(1.62×)

278.97
(1.61×)

600.15
(3.47×)

Syscall/tx 208.0 207.95 138.26 100.35 146.9
Sync/tx 2.76 2.75 2.76 0.92 0.92
R MB/tx 0.018 0.016 0.013 0.013 0.007
W MB/tx 0.17 0.158 0.131 0.129 0.066
T MB/tx 0.187 0.174

(0.93×)
0.144

(0.77×)
0.142

(0.76×)
0.073

(0.39×)

Table 4: Rates (in transactions per second) for the TPC-C
workload using different SQLite journaling modes. Each
workload runs continuously for a fixed amount of time.

lem [25], where the journaling of the application-level log
causes a significant slowdown. Even in realistic settings
where performance is at a premium, transactions provide
a simple, clean interface to get significantly increased
file-system performance, while maintaining crash safety.

5.4 TPC-C

We run a version of the TPC-C benchmark [17], ported
to use single-threaded SQLite1. TPC-C is a standard
online transaction processing benchmark for an order-
entry environment. R MB/tx is the amount of read IO per
transaction, W is written IO and T is total.

Table 4 shows that TxFS outperforms SQLite’s default
mode by 1.61×. The performance advantage comes from
two sources. First, TxFS writes less data and batches
its writes. TxFS writes much of its data sequentially to
the file system journal on fs tx commit()and writes
back the journal data asynchronously. SQLite’s default
mode must write data to the SQLite journal and to the
database file on fsync(). Therefore, TxFS writes only
once in the critical path (to the journal), while SQLite (as
configured in Section 5.3) must write to the journal plus
database in the critical path. Second, TxFS decreases the
number of system calls, especially sync-family calls. Ta-
ble 4 shows that TxFS reduces the number of sync-family
calls per transaction by 3×. By reducing the sync-familly
calls, TxFS can batch writes in a transaction, reducing the
amount of writes by 31.7% compared to default mode.

The performance of TxFS and WAL is similar. When
transactions contain writes, TxFS has better performance
than WAL, but it has worse performance for read-only

1https://github.com/apavlo/py-tpcc/wiki/
SQLite-Driver
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Journal mode Throughput IO(MB)
Rollback
(default)

45.73 3269

Truncate 45.48 (0.99×) 3154
WAL 53.43 (1.17×) 3539
TxFS 105.68(2.31×) 6797

TxFS Small tx 60.85 (1.33×) 4052
No journal
(unsafe)

61.88 (1.35×) 3995

Table 5: TxFS supports transactions across storage ab-
stractions. Performance is measured in iterations per
second.

transactions: WAL is 28% faster than TxFS for read-only
transactions. “Order status” and “Stock level” consist of
3 select queries and 2 select queries respectively, result-
ing in lower throughput for TxFS compared with WAL.
However, “Delivery” consists of 3 select, 3 update, and 1
delete queries, so TxFS outperforms WAL by 20%.

5.5 Abstractions built on files

Modern file systems support storage of not only files
but databases (e.g., SQLite) and key-value stores (e.g.,
LevelDB and RocksDB). These abstractions are built on
the file system and generally are a lower-performing, but
easier to set up and maintain alternative to their dedicated
counterparts.

TxFS supports transactions that span storage abstrac-
tions. Table 5 shows the throughput for a workload that
models the core activity of Android mail, storing an im-
age file and recording the path to that file in a SQLite
database along with other metadata. The database is pre-
populated with 100,000 1KB rows, image files are 1 MB.
The workload creates the database record in one transac-
tion, creates a uniquely named file where it stores the file
data, syncs the data, and then updates the database record
in a second transaction.

TxFS outperforms default SQLite by 2.31× and the
best alternative (WAL mode) by 1.98×. It is essential to
TxFS’s performance that both database transactions as
well as the file system operation are all contained in a
single transaction. When they are separate transactions
(TxFS Small tx), performance is bounded by SQLite (i.e.,
it is close to no journaling). IO is not a bottleneck for this
workload. The amount of IO performed is proportional to
the amount of work done: TxFS has higher throughput,
so it performs more IO.

5.6 Git

Git is a widely-used version control system. Git com-
mands such as git add and git commit result in
a large number of file-system operations. Git updates
files by creating a temporary file, writing the desired
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In-kernel transac-
tional FS

TXFS 3 3 3 3 H L

Valor 3 3 7 3 H L
TxF 3 3 7 3 H H

Transactional OS TxOS 3 3 3 3 H H
FS over
userspace
databases

OdeFS

R
el

yi
ng

on
da

ta
ba

se
s

7 3 L L
Inversion

DBFS
Amino

Transactional
storage

CFS 7 3 3 7 H L
MARS 3 3 7 7 H H
Isotope 3 3 3 3 H H

Failure atomicity msync 7 3 3 3 H L
AdvFS 7 3 3 3 H L

Table 6: The table compares prior work providing ACID
transactions or failure atomicity in a local file system.
Legend: 3- supported, 7- unsupported, L - Low, H - High.
Note that only TxFS provides isolation and durability with
high performance and low implementation complexity
without restrictions or hardware modifications.

data to it, and renaming it over the old file. To enable
high performance, Git does not order its operations via
fsync() [21], leaving it vulnerable to garbage files and
outright data corruption on a system crash.

In our experiment, we run Git inside a virtual machine.
We instrument the Git code to crash the VM at vulnerable
points (such as after the temp file rename, but before
the file is persistent). The workload first initializes a Git
repository, populates it with 20,000 empty files, then adds
all files at once.

After a VM restart, we find that the .git/index file
has been truncated to zero bytes, resulting in a loss of
the working tree. Running the Git recovery command
git fsck simply reports a fatal error. Recovery is not
possible unless the data has been backed up in another
location. In contrast, when we change Git to use TxFS
transactions, we find that crashes no longer produce such
catastrophic errors. Furthermore, we do not find a sig-
nificant difference in performance between the code that
use TxFS transactions, and the code that does not. Thus,
using TxFS transactions provides crash consistency for
Git without any performance overhead.

6 Related work
There have been a number of efforts over the years to pro-
vide systems support for file-system transactions. Each
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of these systems failed to gain adoption due to one of the
following reasons: they had severe restrictions on what
could be placed inside a transaction, they were compli-
cated to use, they added complexity to the kernel, or they
caused significant performance degradation. Learning
from prior systems, TxFS avoids all of these mistakes.
Table 6 summarizes related work and demonstrates that
TxFS is unique among transactional file systems.

Building file systems on top of user-space databases.
One way to provide transactional updates for applications
is to build a file system over a user-space transactional
database. OdeFS [5], Inversion [18], and DBFS [16] use
a database (such as Berkeley DB [19]) to provide ACID
transactions to applications via NFS. Amino [31] tracks
all user updates via ptrace and employs a user-level
database to provide transactional updates. Such systems
come with significant performance cost (e.g., 50-80% for
large operations in DBFS [16]).

In-kernel transactional file systems. An approach that
leads to higher performance is adding transactions to in-
kernel file systems. Valor [28] provides kernel support for
file-system transactions. However, Valor does not provide
a simple begin/end transaction interface, and it forces
programmers to use seven new system calls to manage
the transaction log.

Microsoft introduced Transactional NTFS (TxF),
Transaction Registry (TxR), and the kernel transaction
manager (KTM) in Windows Vista [24]. Using TxF re-
quires all transactional operations be explicit (i.e., instead
of using read() in a transaction, the programmer must
add an explicit transactional read). Therefore TxF had a
high barrier to entry and code that used it required sep-
arate maintenance. TxF also had significant limitations,
like no transactions on the root file system.

Transactional operating systems. A third, somewhat
heavyweight, approach is modifying the entire operat-
ing system to provide transactions. Our prior work,
TxOS [22], is an operating system that provides trans-
actions. This approach adds significant complexity to the
kernel. For example, TxOS modified tens of thousands
of lines of code and changed core OS data structures like
the inode. Maintaining such a kernel will be tricky – Win-
dows abandoned its transactional file system and kernel
transaction manager [14].

The transactional capabilities of the file system sup-
ported by TxOS is similar in approach to TxFS. It also
uses the file-system journal and modifies the virtual file
system (VFS) code to provide isolation. One could view
TxFS as specializing TxOS to the file system, achieving a
transactional file system at significantly lower cost, while
adding file-system specific optimizations like selective
journaling and eliminating redundant work within trans-
actions.

Transactional storage systems. Similar to our work,
CFS [15] provides a lightweight mechanism for atomic
updates of multiple files, building on top of transactional
flash storage. MARS [3] builds on hardware-provided
atomicity to build a transactional system. TxFlash [23]
uses the copy-on-write nature of Flash SSDs to provide
transactions at low cost. In contrast to these systems,
TxFS provides transactions without assuming any hard-
ware support (beside device cache flush and atomic sector
updates). Isotope [26] uses multi-version concurrency
control to provide isolation, significantly increasing its
complexity. Isotope builds a user-space transactional file
system using FUSE, which limits its performance for cer-
tain workloads. The higher abstraction level of TxFS
makes implementing transactional optimizations and tai-
lored isolation significantly easier than the lower level of
Isotope.

Failure atomicity. Failure-atomic msync [20] is similar
to TxFS in that it re-uses the journal for providing atom-
icity to application updates; in contrast, TxFS provides
full ACID transactions at significantly higher complexity.
AdvFS [30] is also limited in the same way, is specific to
the Tru64 file system, and is not available as open-source
(latest version available was from 2008). The principles
behind TxFS could be used in any file system that has an
internal mechanism for atomic updates.

We previewed the ideas behind TxFS at HotOS [11],
but this paper reports on the completed system with com-
prehensive evaluation.

7 Conclusion
We present TxFS, a transactional file system built with
less development effort than previous systems by lever-
aging the file-system journal. TxFS is easy to develop, it
is easy to use, and it does not have significant overhead
for transactions. We show that using TxFS transactions
increases performance significantly for a number of dif-
ferent workloads.

Transactional file systems have not been successful for
a variety of reasons. TxFS shows that it is possible to
avoid the mistakes of the past, and build a transactional
file system with low complexity. Given the power and
flexibility of file-system transactions, we believe they
should be examined again by file-system researchers and
developers. Adopting a transactional interface would
allow us to borrow decades of research on optimizations
from the database community while greatly simplifying
the development of crash-consistent applications.
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Abstract

Modern computer systems come with a large num-
ber of configurable parameters that control their behav-
ior. Tuning system parameters can provide significant
gains in performance but is challenging because of the
immense number of configurations and complex, non-
linear system behavior. In recent years, several studies
attempted to automate the tuning of system configura-
tions; but they all applied only one or few optimization
methods. In this paper, for the first time, we apply and
then perform comparative analysis of multiple black-
box optimization techniques on storage systems, which
are often the slowest components of computing systems.
Our experiments were conducted on a parameter space
consisting of nearly 25,000 unique configurations and
over 450,000 data points. We compared these meth-
ods for their ability to find near-optimal configurations,
convergence time, and instantaneous system throughput
during auto-tuning. We found that optimal configura-
tions differed by hardware, software, and workloads—
and that no one technique was superior to all others.
Based on the results and domain expertise, we begin to
explain the efficacy of these important automated black-
box optimization methods from a systems perspective.

1 Introduction
Storage is a critical element of computer systems and
key to data-intensive applications. Storage systems
come with a vast number of configurable parameters that
control system’s behavior. Ext4 alone has around 60 pa-
rameters with whopping 1037 unique combinations of
values. Default parameter settings provided by vendors
are often suboptimal for a specific user deployment; pre-
vious research showed that tuning even a small subset
of parameters can improve power and performance effi-
ciency of storage systems by as much as 9× [66].

Traditionally, system administrators pick parameter
settings based on their expertise and experience. Due to
the increased complexity of storage systems, however,
manual tuning does not scale well [87]. Recently, sev-
eral attempts were made to automate the tuning of com-
puter systems in general and storage systems in particu-
lar [71, 78]. Black-box auto-tuning is an especially pop-
ular approach thanks to its obliviousness to a system’s
internals [86]. For example, Genetic Algorithms (GA)
were applied to optimize the I/O performance of HDF5-
based applications [5] and Bayesian Optimization (BO)

was used to find a near-optimal configuration for Cloud
VMs [3]. Other methods include Evolutionary Strate-
gies [62], Smart Hill-Climbing [84], and Simulated An-
nealing [21]. The basic mechanism behind black-box
auto-tuning is to iteratively try different configurations,
measure an objective function’s value—and based on the
previously learned information—select the next config-
urations to try. For storage systems, objective functions
can be throughput, energy consumption, purchase cost,
or even a formula combining different metrics [50, 71].
Despite some appealing results, there is no deep under-
standing how exactly these methods work, their efficacy
and efficiency, and which methods are more suitable for
which problems. Moreover, previous works evaluated
only one or few algorithms at a time. In this paper, for
the first time (to the best of our knowledge), we apply
and analytically compare multiple black-box optimiza-
tion techniques on storage systems.

To demonstrate and compare these algorithms’ ability
to find (near-)optimal configurations, we started by ex-
haustively evaluating several storage systems under four
workloads on two servers with different hardware and
storage devices; the largest system consisted of 6,222
unique configurations. Over a period of 2+ years, we ex-
ecuted 450,000+ experimental runs. We stored all data
points in a relational database for query convenience, in-
cluding hardware and workload details, throughput, en-
ergy consumption, running time, etc. In this paper, we
focused on optimizing for throughput, but our method-
ology and observations are applicable to other metrics
as well. We will release our dataset publicly to facilitate
more research into auto-tuning and better understanding
of storage systems.

Next, we applied several popular techniques to the
collected dataset to find optimal configurations under
various hardware and workload settings: Simulated An-
nealing (SA), Genetic Algorithms (GA), Bayesian Op-
timization (BO), and Deep Q-Networks (DQN). We
also tried Random Search (RS) in our experiments,
which showed surprisingly good results in previous re-
search [8]. We compared these techniques from vari-
ous aspects, such as the ability to find near-optimal con-
figurations, convergence time, and instantaneous sys-
tem throughput during auto-tuning. For example, we
found that several techniques were able to converge to
good configurations given enough time, but their effi-
cacy differed a lot. GA and BO outperformed SA and
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DQN on our parameter spaces, both in terms of con-
vergence time and instantaneous throughputs. We also
showed that hyper-parameter settings of these optimiza-
tion algorithms, such as mutation rate in GA, could af-
fect the tuning results. We further compared the tech-
niques across three behavioral dimensions: (1) Explo-
ration: how much the technique searches the space ran-
domly. (2) Exploitation: how much the technique lever-
ages the “neighborhood” of the current candidate or pre-
vious search history to find even better configurations.
(3) History: how much data from previous evaluations
is kept and utilized in the overall search process. We
show that all techniques employ these three key concepts
to varying degrees and the trade-off among them plays
an important role in the effectiveness and efficiency of
the algorithms. Based on our experimental results and
domain expertise, we provide explanations of efficacy
of such black-box optimization methods from a storage
perspective. We observed that certain parameters would
have a greater effect on system performance than oth-
ers, and the set of dominant parameters depends on file
systems and workloads. This allows us to provide more
insights into the auto-tuning process.

Auto-tuning storage systems is fairly complex and
challenging. We made several necessary assumptions
and simplifications while collecting our exhaustive data,
which we detail in §3. Therefore, some of our observa-
tions might differ when applied to production systems.
However, the main purpose of this paper is not to pro-
vide a complete solution; rather, we focus on comparing
and understanding the efficacy of several popular opti-
mization techniques when applied to storage systems.
We believe this paves the way for practical auto-tuning
storage systems in real-time.

The rest of the paper is organized as follows. §2 ex-
plains the challenges of auto-tuning storage systems and
provides necessary background knowledge. §3 describes
our experimental methodology and environments. In §4
we applied multiple optimization methods and evaluated
and explained them from various aspects. §5 covers lim-
itations and future plans for our work. §6 lists related
work. We conclude and discuss future directions in §7.

2 Background
Storage systems are often a critical component of com-
puter systems, and are the foundation for many data-
intensive applications. Usually they come with a large
number of configurable options that could affect or even
determine the systems’ performance [12, 74], energy
consumption [66], and other aspects [47, 71]. Here
we define a parameter as one configurable option, and
a configuration as a combination of parameter val-
ues. For example, the parameter block size of Ext4
can take 3 values: 1K, 2K, and 4K. Based on this,

[journal mode=“data=writeback”, block size=4K, in-
ode size=4K] is one configuration with 3 specific pa-
rameters: journal mode, block size, and inode size. All
possible configurations form a parameter space.

When configuring storage systems, users often stick
with the default configurations provided by vendors be-
cause 1) it is nearly impossible to know the impact of
every parameter across multiple layers; and 2) vendors’
default configurations are trusted to be “good enough”.
However, previous studies [66] showed that tuning even
a tiny subset of parameters could improve the perfor-
mance and energy efficiency for storage systems by as
much as 9×. As technological progress slows down, it
becomes even more important to squeeze every bit of
performance out of deployed storage systems.

In the rest of this section we first discuss the chal-
lenges of system tuning (§2.1). Then, §2.2 briefly intro-
duces several promising techniques that we explore in
this paper. §2.3 explains certain methods that we deem
less promising. §2.4 provides a unified view of these
optimization methods.

2.1 Challenges
The tuning task for storage systems is difficult, due to
the following four challenges.
(1) Large parameter space. Modern storage systems
are fairly complex and easily come with hundreds or
even thousands of tunable parameters. One evaluation
for storage systems can take multiple minutes or even
hours, which makes exhaustive search impractical. Even
human experts cannot know the exact impact of every
parameter and thus have little insight into how to opti-
mize. For example, Ext4+NFS would result in a parame-
ter space consisting of more than 1022 unique configura-
tions. IBM’s General Parallel File System (GPFS) [64]
contains more than 100 tunable parameters, and hence
1040 configurations. From the hardware perspective,
SSDs [30, 53, 57, 65], shingled drives [1, 2, 32, 45], and
non-volatile memory [40, 83] are gaining popularity,
plus more layers (LVM, RAID) are added.
(2) Non-linearity. A system is non-linear when the
output is not directly proportional to the input. Many
computer systems are non-linear [16], including storage
systems [74]. For example, Figure 1 shows the aver-
age operation latency of GPFS under a typical database
server workload while changing only the value of the
parameter pagepool from 32MB to 128MB, and setting
all the others to their default. Clearly the average la-
tency is not directly proportional to the pagepool size.
In fact, through our experiments, we have seen many
more parameters with similar behavior. Worse, the pa-
rameter space for storage systems is often sparse, irreg-
ular, and contains multiple peaks. This makes automatic
optimization even more challenging, as it has to avoid
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Figure 1: Storage systems are non-linear.

getting stuck in a local optima [36].
(3) Non-reusable results. Previous studies have
shown that evaluation results of storage systems [12,66]
and databases [78] are dependent on the specific hard-
ware and workloads. One good configuration might per-
form poorly when the environment changes. Our evalu-
ation results in Section 4 show similar observations.
(4) Discrete and non-numeric parameters. Some
storage system parameters can take continuous real val-
ues, while many others are discrete and take only a lim-
ited set of values. Some parameters are not numeric
(e.g., I/O scheduler name or file system type). This adds
difficulty in applying gradient-based approaches.

Given these challenges, manual tuning of storage sys-
tems becomes nearly impossible while automatic tuning
merely difficult. In this paper we focus on automatic
tuning and treat it as an optimization problem.

2.2 Applied Methods
Several classes of algorithms have been proposed for
similar optimization tasks, including automated tuning
for hyper-parameters of machine learning systems [7, 8,
59] and optimization of physical systems [3, 78]. Ex-
amples include Genetic Algorithms (GA) [18, 34], Sim-
ulated Annealing (SA) [15, 41], Bayesian Optimization
(BO) [11,68], and Deep Q-Networks (DQN) [46,54,55].
Although these methods were proposed originally in dif-
ferent scholarly fields, they can all be characterized as
black-box optimizations. In this section we introduce
several of these techniques that we successfully applied
in auto-tuning storage systems.

Simulated Annealing (SA) is inspired by the anneal-
ing process in metallurgy, which involves the heating
and controlled cooling of a material to get to a state with
minimum thermodynamic free energy. When applied to
storage systems, a state corresponds to one configura-
tion. Neighbors of a state refer to new configurations
achieved by altering only one parameter value of the cur-
rent state. The thermodynamic free energy is analogous
to optimization objectives. SA works by maintaining the
temperature of the system, which determines the prob-
ability of accepting a certain move. Instead of always
moving towards better states as hill-climbing methods
do, SA defines an acceptance probability distribution,
which allows it to accept some bad moves in the short

Parent 1

Parent 2

Child 1

Child 2

Journal OptionBG FS

NilFS2

NilFS2

8

256

order=strict

order=relaxed

order=relaxed8NilFS2

order=strict256

NilFS2

Figure 2: Crossover in Genetic Algorithm (GA).

run, that can lead to even-better moves later on. The
system is initialized with a high temperature, and thus
has high probability of accepting worse states in the be-
ginning. The temperature is gradually reduced based on
a pre-defined cooling schedule, thus reducing the proba-
bility of accepting bad states over time.

Genetic Algorithms (GA) were inspired by the pro-
cess of natural selection [34]. It maintains a popula-
tion of chromosomes (configurations) and applies sev-
eral genetic operators to them. Crossover takes two par-
ent chromosomes and generates new ones. As Figure 2
illustrates, two parent Nilfs2 configurations are cut at
the same crossover point, and then the subparts after the
crossover point are exchanged between them to gener-
ate two new child configurations. Better chromosomes
will have a higher probability to “survive” in future se-
lection phases. Mutation randomly picks a chromosome
and mutates one or more parameter values, which pro-
duces a completely different chromosome.

Reinforcement Learning (RL) [72] is an area of ma-
chine learning inspired by behaviorist psychology. RL
explores how software agents take actions in an environ-
ment to maximize the defined cumulative rewards. Most
RL algorithms can be formulated as a model consisting
of: (1) A set of environment states; (2) A set of agent
actions; and (3) A set of scalar rewards. In case of stor-
age systems, states correspond to configurations, actions
mean changing to a different configuration, and rewards
are differences in evaluation results. The agent records
its previous experience (history), and makes it available
through a value function, which can be used to predict
the expected reward of state-action pairs. The policy de-
termines how the agent takes action, which maintains the
exploration-exploitation trade-off. The value function
can take a tabular form, but this does not scale well to
many dimensions. Function approximation is proposed
to deal with high dimensionality, which is still known
to be unstable or even divergent. With recent advances
in Deep Learning [28], deep convolutional neural net-
works, termed Deep Q-Networks (DQN), were proposed
to parameterize the value function, and have been suc-
cessfully applied in solving various problems [54, 55].
Many variants of DQN have been proposed [46].

Bayesian Optimization (BO) [11, 68] is a popular
framework to solve optimization problems. It models
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Algorithm Origin Exploration Exploitation History
Simulated Annealing

(SA)
Annealing technology

in metallurgy
Allowing moving to

worse neighbor states
Neighbor function N/A

Genetic Algorithms
(GA) Natural evolution Mutation Crossover and selection Current population

Deep Q-Networks
(DQN)

Behaviorist psychology
and neuroscience

Taking random actions
Taking actions based on
action-reward function

Deep convolutional
neural network

Bayesian
Optimization (BO)

Statistics and
experimental design

Selecting samples with
high variances

Selecting samples with
high mean values

Acquisition function &
probabilistic model

Table 1: Comparison and summaries of optimization techniques.

the objective function as a stochastic process, with the
argument corresponding to one storage configuration. In
the beginning, a set of prior points (configurations) are
given to get a fair estimate of the entire parameter space.
BO works by computing the confidence interval of the
objective function according to previous evaluation re-
sults, which is defined as the range of values that the
evaluation result is most likely to fall into (e.g., with
95% probability). The next configuration is selected
based on a pre-defined acquisition function. Both confi-
dence intervals and the acquisition function are updated
with each new evaluation. BO has been successfully ap-
plied in various areas, including hyper-parameter opti-
mization [17] and system configuration optimization [3].
BO and its variants differ mainly in their form of prob-
abilistic models and acquisition functions. In this paper
we focus mainly on Gaussian priors and an Expected
Improvement acquisition function [68].

Other promising techniques include Tabu Search [27],
Particle Swarm Optimization [39], Ant Colony Opti-
mization [20], Memetic Algorithms [52], etc. Due to
space limits, we omit comparing all of them in this pa-
per (part of our future work). In fact, as detailed in §2.4,
most of these techniques actually share similar traits.

2.3 Other Methods
Although many optimization techniques have been pro-
posed, we feel that not all of them make good choices for
auto-tuning storage systems. For example, since many
parameters of storage systems are non-numeric, most
gradient-based methods (i.e., based on linear-regression)
are less suitable to this task [29].
Control Theory (CT). CT was historically used to
manage linear system parameters [19,37,44]. CT builds
a controller for a system so its output follows a desired
reference signal [33, 43]. However, CT has been shown
to have the following three problems: 1) CT tends to be
unstable in controlling non-linear systems [48, 49]. Al-
though some variants were proposed, they do not scale
well. 2) CT cannot handle non-numeric parameters; and
3) CT requires a lot of data during the learning phase,
called identification to build a good controller.
Supervised Machine Learning (ML). Supervised
ML has been successfully applied in various domains [9,

10, 56, 81]. However, the accuracy of ML models de-
pends heavily on the quality and amount of training
data [81], which is not available or impossible to collect
for large parameter spaces such as ours.

Therefore, we feel that neither CT nor supervised ML,
in their current state, are the first choice to directly and
efficiently apply for auto-tuning storage systems. That
said, they constantly evolve and new promising results
appear in research literature [4, 67, 69, 86]; we plan to
investigate them in the future.

2.4 Unified Framework

Most optimization techniques are known to follow the
exploration-exploitation dilemma [23, 46, 68, 79]. Here
we summarize the aforementioned methods by extend-
ing the unified framework with a third factor, the history.
Our unified view thus defines three factors or dimen-
sions: � (1) Exploration defines how the technique
searches unvisited areas. This often includes a com-
bination of pure random and also guided search based
on history. � (2) Exploitation defines how the tech-
nique leverages history to find next sample. � (3) His-
tory defines how much data from previous evaluations
is kept. History information can be used to help guide
both future exploration and exploitation (e.g., avoiding
less promising regions, or selecting regions that have
never been explored before). Table 1 summarizes how
the aforementioned techniques work by maintaining the
balance among these three key factors. For example,
GA keeps the evaluation results from the last genera-
tion, which corresponds to the concept of history. GA
then exploits the stored information, applying selection
and crossover to search nearby areas and pick the next
generation. Occasionally, it also randomly mutates some
chosen parameters, which is the idea of exploration. As
shown in §4, the trade-off among exploration, exploita-
tion, and history determines the effectiveness and effi-
ciency of these optimization techniques.

3 Experimental Settings

We now describe details of the experimental environ-
ments, parameter spaces, and our implementations of
optimization algorithms.
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Param. Abbr. Values

File System FS
Ext2, Ext3, Ext4, XFS, Btrfs,

Nilfs2, Reiserfs
Block (Leaf) Size BS 1K, 2K, 4K

Inode Size,
Sector Size

IS
n/a, 128, 256, 512, 1024, 2048,

4096, 8192
Block Group BG n/a, 2, 4, 8, 16, 32, 64, 128, 256

Journal Option JO
n/a, order=strict, order=relaxed,

data=journal, data=ordered,
data=writeback

Atime Option AO relatime, noatime

Special Option SO
n/a, compress, nodatacow,

nodatasum, notail
I/O Scheduler I/O noop, cfq, deadline

Table 2: Details of parameter spaces.

Hardware. We performed experiments on two sets of
machines with different hardware categorized as low-
end (M1) and mid-range (M2). We list the hardware
details in Table 3. We also use Watts Up Pro ES power
meters to measure the energy consumption [82].

Workload. We benchmarked storage configuration
with four typical macro-workloads generated by
Filebench [25, 75]. � (1) Mailserver emulates the I/O
workload of a multi-threaded email server. � (2) File-
server emulates the I/O workload of a server that hosts
users’ home directories. � (3) Webserver emulates the
I/O workload of a typical static Web server with a high
percentage of reads. � (4) Dbserver mimics the behav-
iors of Online Transaction Processing (OLTP) databases.
Before each experiment run, we formatted and mounted
the storage devices with the targeted file system.

The working set size affects the duration of an ex-
periment [74]. Our goal in this study was to explore
a large set of parameters and values quickly (although
it still took us over two years). We therefore decided
to trade the working set size in favor of increasing the
number of configurations we could explore in a practi-
cal time period. We used the default working set sizes
in Filebench, and ran each workload for 100 seconds;
this is long enough to get stable evaluation results under
this setting. The experiments demonstrate a wide range
of performance numbers and are suitable for evaluating
different optimization methods.

Parameter Space. Since the main goal of our paper is
to compare multiple optimization techniques, we want
our storage parameter spaces to be large and complex
enough. Alas, evaluations for storage systems take a
long time. Considering experimentation on multiple
hardware settings and workloads, we decided to experi-
ment with a reasonable subset of the most relevant stor-
age system parameters. We selected parameters in close
collaboration with several storage experts that have ei-
ther contributed to storage stack designs or have spent
years tuning storage systems in the field. We experi-

Hardware M1 M2
Model Dell PE SC1425 Dell PE R710

CPU Intel Xeon single-core
2.8GHz CPU × 2

Intel Xeon quad-core
2.4GHz CPU × 2

Memory 2GB 24GB

Storage

HDD1 (73GB
Seagate

ST373207LW SCSI
drive)

HDD2 (147GB SAS),
HDD3 (500GB SAS),

HDD4 (250GB
SATA), SSD (200GB)

Table 3: Details of experiment machines.

mented with 7 Linux file systems that span a wide range
of designs and features: Ext2 [13], Ext3 [77], Ext4 [24],
XFS [73], Btrfs [61], Nilfs2 [42], and Reiserfs [60].

Our experiments were mainly conducted on two sets
of parameters, termed as Storage V1 and Storage V2.
We started with seven common file system parameters
(shown in the first 7 rows of Table 2), and refer it as Stor-
age V1. Storage V1 was tested on M1 machines. We then
extended our search space with one more parameter, the
I/O Scheduler, and refer to it as Storage V2. Storage V2
was evaluated on M2 servers. Note that certain combi-
nations of parameter values could produce invalid con-
figurations. For example, for Ext2, the journaling option
makes no sense because Ext2 does not have a journal. To
handle this, we added a value n/a to the existing range of
parameters. Any parameter with n/a value is considered
invalid. Invalid configurations will always come with
evaluation results of zero (i.e., no throughput); this en-
sures they are purged in an upcoming optimization pro-
cess. There are 2,074 valid configurations in Storage
V1 and 6,222 in Storage V2 for each workload and stor-
age device. We believe our search spaces are large and
complex enough to demonstrate the difference in effi-
ciency of various optimization algorithms. Furthermore,
many of the chosen parameters are commonly tuned and
studied by storage experts; having a basic understanding
of such parameters helped us understand auto-tuning re-
sults.
Experiments and implementations. Our experi-
ments and implementation consist of two parts. First,
we exhaustively ran all configurations for each work-
load and device on M1 and M2 machines, and stored
the results in a relational database. We collected the
throughput in terms of I/O operations per second, as re-
ported by Filebench, the running time (including setup
time), as well as power and energy consumption. To ac-
quire more accurate and stable results, we evaluated each
configuration under the same environment for at least 3
runs, resulting in more than 450,000 total experimen-
tal runs. This data collection benefited our evaluation
on auto-tuning as we can simply simulate a variety of
algorithms by just querying the database for the evalua-
tion results for different configurations, without having
to rerun slow I/O experiments. The exhaustive search
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Hardware- File Block Inode BG Journal Atime Special I/O Through-
Workload-Device System Size Size Count Options Options Options Scheduler put (IOPS)
M1-Mail-HDD1 Nilfs2 2K n/a 256 order=relaxed relatime n/a - 3,677
M2-Mail-HDD3 Ext2 4K 256 32 n/a relatime n/a noop 18,744
M2-File-HDD3 Btrfs 4K 4,096 n/a n/a relatime compress deadline 16,549
M2-Mail-SSD Ext2 4K 256 8 n/a relatime n/a noop 18,845
M2-DB-SSD Ext4 1K 128 2 data=ordered noatime n/a noop 41,948

M2-Web-SSD Ext4 4K 128 4 data=ordered noatime n/a noop 16,185
Table 4: Global optimal configurations with different settings and workloads.

also lets us know exactly what the global optimal con-
figurations are, so that we can calculate how close each
optimization method gets to the global optimum.

Second, we simulated the process of auto-tuning stor-
age systems by running the desired optimization method
and querying the database for the average evaluation re-
sults from multiple (3+) repeated runs. We focused on
optimizing for throughput in this paper. The computa-
tion cost of optimization algorithms are ignored in our
experiments. We believe our observations are applica-
ble to other optimization objectives as well. Our im-
plementations of optimization methods are mostly based
on open-source libraries. We use Pyevolve [58] for
Genetic Algorithms, Scikit-Optimize [70] for Bayesian
Optimization, and TensorFlow [76] for the DQN im-
plementation. We implemented a simple version of
Simulated Annealing, with both linear and geometric
cooling schedules. (We also fixed bugs in Pyevolve
and plan to release our patches.) Most of our imple-
mentation was done by converting storage-related con-
cepts into algorithm-specific ones. For example, for
GA, we defined each storage parameter as a gene, and
each configuration as a chromosome. For DQN we
provided storage-specific definitions for states, actions,
and rewards. The complete implementation uses around
10,000 lines of Python code.

4 Evaluations
Our evaluation mainly focuses on comparing the effec-
tiveness and speed of applying multiple optimization
techniques on auto-tuning storage systems, and provid-
ing insights into our observations. §4.1 overviews the
data sets that we collected for over two years. §4.2 com-
pares five popular optimization techniques from several
aspects. §4.3 uses GA as a case study to show that hyper-
parameters of these methods can also impact the auto-
tuning results. §4.4 takes the first step towards explain-
ing these black-box optimization methods, based on our
evaluation results and our storage expertise.

4.1 Overview of Data Sets
As per §3, our experimental methodology is to first ex-
haustively run all configurations under different work-
loads and test machines. We stored the results in a
database for future use. This data collection benefits

future experiments as we can simulate a variety of al-
gorithms by querying the database for the evaluation re-
sults of different configurations. Due to space limits, in
this section we show only 6 representative data sets out
of 18: 2 workloads on M1 and 4 devices × 4 workloads
on M2. They were picked to (1) show a wide range of
hardware and workloads’ impact on optimization results
and (2) to present more SSD results, given SSDs’ in-
creasing popularity.

Figure 3 shows the throughput CDF among all con-
figurations for each hardware setting and workload. The
Y-axis is normalized by the maximum throughput un-
der each experiment setting. The symbols on each line
mark the default Ext4 configurations. As seen, for most
settings, throughput values vary across a wide range.
The ratios of the worst throughput to the best one are
mostly between 0.2–0.4. In one extreme case, for File-
server on M2 machines and with the HDD3 device (ab-
breviated as M2-Fileserver-HDD3), the worst configu-
ration only produces 1% I/O operations per unit time,
compared with the global optimal one. This under-
lines the importance of tuning storage systems: an im-
properly configured system could be remarkably under-
utilized, and thus wasting a lot of resources. How-
ever, M2-Webserver-SSD shows a much narrower range
of throughput, with the worst-to-best ratio close to 0.9.
This is attributed mainly to the fact that Webserver
consists of mostly sequential read operations that are
processed similarly by different I/O stack configura-
tions. Figure 3 also shows that default Ext4 configu-
rations are always sub-optimal and, under most settings,
ranked lower than the top 40% configurations. For M1-
Mailserver-HDD1, the default Ext4 configuration shows
a normalized throughput of 0.39, which means that the
optimal configuration performs 2.5 times better.

Table 4 lists optimal configurations for the same six
hardware and workload settings. As we can see, optimal
configurations depend on the specific hardware as well
as the running workload. For M1-Mailserver-HDD1,
the global best is a Nilfs2 configuration. However, if
we fix the workload, change the hardware, and get M2-
Mailserver-HDD3, the optimum becomes an Ext4 con-
figuration. Similarly, fixing the hardware to M2-*-SSD
and experimenting under different workloads leads to
different optimal configurations. This proves our early
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Figure 3: Throughput CDF with different hardware and work-
loads, with symbols marking the default Ext4 configurations.

claim that performance is sensitive to the environment
(e.g., hardware, configuration, and workloads); this ac-
tually complicates the problem as results from one envi-
ronment cannot be directly applied in another.

4.2 Comparative Analysis
Many optimization techniques have been applied to var-
ious auto-tuning tasks [71, 78]. However, previous ef-
forts picked algorithms somewhat arbitrarily and eval-
uated only one algorithm at a time. Here we provide
the first comparative study of multiple black-box opti-
mization techniques on auto-tuning storage systems. As
discussed in §2.2, we focus our evaluations on a rep-
resentative set of optimization methods, and their com-
mon hyper-parameter settings, including 1) Simulated
Annealing (SA), with a linear cooling schedule; 2) Ge-
netic Algorithms (GAs) with population size of 8, mu-
tation rate of 2%; 3) Deep Q-Networks (DQN) with
experience replay [55] and ε = 0.2, where ε; repre-
sents the probability of an agent taking random actions.
4) Bayesian Optimization (BO) with Expected Improve-
ment (EI) and Gaussian prior; and 5) Random Search
(RS), which merely performs random selection without
replacement. We provide more discussion on the im-
pact of hyper-parameters in §4.3. Note that SA, DQN,
and RS experiments start with the default Ext4 configu-
ration. GA and BO require several initial configurations
(prior points), which we set to default configurations of
all seven file systems. This allows us to simulate real-
world use cases, where users often deploy their system
with the default settings (and may manually optimize
starting from the defaults). In the current experiments
we assume that changing parameter values comes at no
cost. In reality, parameters like Block Size may require
re-formatting file systems.

Figure 4 presents one simulated run of each optimiza-
tion method on M2-Mailserver-HDD3; the Y-axis shows
the throughput value of the best configuration found so
far, and the X-axis is the running time. All time-related
metrics in this paper are based on the actual running
time of evaluating each storage configuration, which is
stored in our database. This includes both setup time and
benchmarking time. We are not comparing the running
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Figure 4: Highest throughput found over time, zooming in the
Y ∈ [15 : 19] range. The blue number (15.2) on the Y-axis
shows the default, and the red one (18.7) shows the optimal.

costs (including any necessary training phases) for opti-
mization methods here, which is our future work. Fig-
ure 4 is plotted by zooming in the range of Y ∈ [15 : 19],
with the blue number (15.2) on Y-axis represents the de-
fault, while the red one (18.7) shows the global optimal.
Here we define a near-optimal configuration as one with
throughput higher than 99% of the global optimal value.
As shown in Figure 4, all five methods were able to grad-
ually find higher performing configurations, but their ef-
fectiveness and speed differed a lot. SA performed the
worst, and got stuck in a configuration with throughput
value of less than 18K IOps. DQN was able to con-
verge to a good configuration, but spent more time to
achieve that than RS. GA and BO performed best out of
these five tested optimization methods. They both suc-
cessfully identified a near-optimal configuration within
one hour. Interestingly, we observed that pure Random
Search (RS) produced better results than some other op-
timization methods; the reason is that within the search
space M2-Mailserver-HDD3, 4.5% of total configura-
tions are near-optimal. RS needs only to hit one of them
to reach good auto-tuning results.

Since exploration is one critical component of opti-
mizations (see §2.4), their evaluation results could also
exhibit some degree of randomness. To compare them
more thoroughly, we ran each optimization technique on
the same environment for 1,000 runs. Figure 5 shows
the results, which evaluate the techniques’ probability to
find near-optimal configurations, defined the same as in
Figure 4. The Y-axis shows the percentage of total runs
that found a near-optimal configuration within a certain
time (X-axis). Under M2-Mailserver-HDD3, seen in the
upper part of Figure 5, SA had the lowest probability
among 5 algorithms. Even after 5 hours, only around
80% of its runs found one near-optimal configuration,
which shows that SA sometimes gets stuck in a local op-
timum. For other optimization methods, given enough
time, over 90% of their runs converged to a near-optimal
configuration, with BO outperforming GA, and GA out-
performing DQN. RS shows the highest probability of
finding near-optimal configurations when approaching 5
hours. This is reasonable because given enough time, a
random selection will eventually hit near-optimal points.
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Figure 5: Comparing optimization methods’ efficacy in finding
near-optimal configurations. The Y-axis shows the percentage
of total runs (1,000) that found near-optimal configurations
within certain time (X-axis).

However, when conducting the same experiments under
M3-Fileserver-HDD3, it becomes more difficult to find
near-optimal configurations. GA and BO are still the
best, though only 65% of their runs were able to find
near-optimal configurations within 5 hours. SA, RS,
and DQN have a probability of lower than 40% to do
so, with DQN perform the worst. This is because the
global optimum under M2-Fileserver-HDD3 is a Btrfs
configuration (see Table 4). It is more difficult for opti-
mization algorithms to pick such configurations for the
following reasons: 1) Few Btrfs configurations reside
in the neighborhood of the default Ext4 configurations;
2) Fewer than 2% of all valid configurations are Btrfs
ones, which make them less likely to be selected through
mutation; 3) Only 0.2% of all configurations are consid-
ered near-optimal, compared with 4.5% in Mailserver-
HDD3.

The above results focused on finding near-optimal
configurations. However, another important aspect to
compare is the system’s performance during the auto-
tuning process. This is especially important if the tar-
geted system is deployed and online. Some random-
ness (exploration) is necessary when searching a com-
plex parameter space, but ideally optimization algo-
rithms should spend less time on bad configurations. To
compare this, in Figure 6 we plotted the instantaneous
throughput (Y-axis) over time (X-axis) for one run with
each method under M2-Mailserver-HDD3.

BO and GA are still the best two methods in terms
of instantaneous throughput. During the tuning process,
occasionally they pick a worse configuration than the
current one. However, they both possess the ability to
quickly discard these unpromising configurations. GA
achieves this by assigning the probability of surviving to
next generation based on the fitness values (i.e., through-
put). Configurations with low throughput values have
a lower chance to be picked as parents, and thus their
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Figure 6: Comparing optimization methods’ instantaneous
performance (Y-axis) over time (X-axis).

genes (parameter values) have a lower chance of appear-
ing in configurations of the next generation (i.e., “sur-
vival of the fittest”). The reason for stable instantaneous
throughputs with BO is that it uses an intelligent acqui-
sition function to guide the selection of the next genera-
tion, with the goal of maximizing the potential gain; this
makes BO less likely to choose a bad configuration. In
contrast, SA performs poorly possibly because it lacks a
history to guide the exploitation and exploration phases,
and only uses its neighborhood information (and current
temperature) to pick the next configuration. DQN shows
similar results with RS, which is likely caused by the fact
that DQN was originally designed as an agent interacting
with an unknown environment, and thus a lot of explo-
ration (randomness) occurs in the training phase [55,85].

In conclusion, our results demonstrated that the effi-
cacy of different optimization algorithms vary a lot while
applied in auto-tuning storage systems. The trade-off
among exploitation, exploration, and history plays an
important role in find near-optimal configurations effi-
ciently. However, a well-known problem for many op-
timization techniques is that their performance depend
heavily on hyper-parameter settings. Some of our ob-
servations may only apply to our specific settings and
search spaces. This paper’s main goal is not to provide
guidelines on which methods are more suitable for auto-
tuning storage systems; rather, we focused on comparing
multiple methods and understanding their efficacy under
different conditions.

4.3 Impact of Hyper-Parameters
Many optimization methods’ efficacy depend on the spe-
cific hyper-parameter settings, and choosing the right
hyper-parameters has caused headache to researchers for
a long time [7, 8]. In this section we use GA as a case
study, and show the impact of one hyper-parameter, the
mutation rate, on auto-tuning results. The mutation rate
controls the probability of randomly mutating one pa-
rameter to a different value, and aligns with the idea of
exploration, as per §2.4.

Figure 7 shows the results from 7 sets of GA exper-
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Figure 7: Impact of mutation rates on GA.

iments with different mutation rates (from 1% to 64%)
under M2-Mailserver-HDD3. Each experiment was re-
peated for 1,000 runs. It is similar to Figure 5, but with
the goal of finding near-optimal configurations whose
throughput values are higher than 99.5% of the global
optimal. This makes the optimization more challeng-
ing, as GA already performs quite well on easier tasks
(§4.2). As shown in the figure, when increasing the
mutation rate, GA has a higher probability to converge
to near-optimal configurations within a shorter time pe-
riod. This is because GA works by identifying promis-
ing combination of alleles (parameter values) for the
subset of dominant genes (parameters). We define dom-
inant parameters as those having a higher impact on per-
formance than all others. A higher mutation rate means a
higher chance of exploration, and thus finding combina-
tions of well-performing alleles for the dominant genes
within a shorter time. We explain this effect more in
§4.4. However, a mutation rate of 64% actually performs
worse than 32%. This is because in order to reach near-
optimal configurations, GA needs both exploration and
exploitation. Exploration lets GA identify processing
subspaces (i.e., combinations of certain parameter val-
ues) while exploitation helps GA search within promis-
ing subspaces. In this case, with a mutation rate of 64%,
GA spends too much time on exploration (too much ran-
domness), resulting in fewer chances for exploitation.

4.4 Peering into the Black Box
Despite some successful applications of black-box op-
timization on auto-tuning system parameters, few have
explained how and why some techniques work better
than others for certain problems. Here we take the first
step towards unpacking the “black box” and provide
some insights into their internals based on our evalua-
tion results and storage domain knowledge.

Our attempts for explanations stem from a somewhat
unexpected but beneficial behavior of GA in the experi-
ments. We found that as GA runs, there is often a small
set of alleles (parameter values) that dominate the cur-
rent population and are unlikely to change. We present
and explain this observation in Figure 8. The exper-
iment was conducted on a parameter space consisting
of 2,208 Ext3 configurations under M2-Fileserver-SSD.
The X-axis shows 5 genes (parameters) separated by red

Figure 8: Number of alleles in the first 8 GA generations, with
more frequent ones colored with darker colors.

gridlines, while one column represents one allele (pa-
rameter value). The parameters are denoted with their
abbreviations from Table 2. The Y-axis shows the gen-
eration number, and we plotted only the first 8 genera-
tions. Cells were colored based on the number of alleles
in each generation. More frequent alleles are colored
with darker colors. In the first generation, the gene’s
alleles (parameter values) were quite diverse. For ex-
ample, there were 3 alleles (1K, 2K, 4K) for the Block
Size gene, and 3 alleles (journal, ordered, writeback) for
the Journal Option gene. However, the diversity of al-
leles decreased in later generations, and several genes
began to dominate and even converged to a single allele.
For the Block Size gene, only the 4K allele survived and
other two became extinct. Since GA was proposed by
simulating the process of natural selection, where alleles
with better fitness are more likely to survive, this sug-
gests that GA works by identifying the combination of
good alleles (storage parameter values), and producing
offspring with these alleles. As shown in Figure 8, in
the 8th generation, all configurations have a Block Size
of 4K and Journal Option of writeback.

To confirm the above observations, in Figure 9 we
plotted all Ext3-SSD configurations, with one dot corre-
sponding to one configuration. Configurations are sep-
arated based on the Journal Option, shown as the X-
axis, and colored based on their Block Size. To clearly
see all points within each X-axis section, we ordered
configurations by their unique identification number in
our database. The Y-axis represents throughput val-
ues. This resulted in the formation of nine “clusters” on
the graph, each corresponding to a fixed 〈Journal Op-
tion, Block Size〉 pair. We can see that configurations
with data=ordered tend to produce higher throughput
than those with data=journal, and data=writeback pro-
duces the best throughput. This is somewhat expected
from a storage point of view, as Ext3’s more fault tol-
erant journal option (data=journal) may hurt through-
put by writing data as well as meta-data to the jour-
nal first. Moreover, among journal configurations with
data=writeback, those with a 4K Block Size turn out
to produce the highest throughput. This aligns with
our observation from Figure 8 that GA works by iden-
tifying a subset of genes that have a greater impact
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Figure 9: Scatter plot for all Ext3-SSD configurations, with
one dot corresponding to one configuration.

on performance—Block Size and Journal Option—and
finding the best alleles for them ([4K, data=writeback]).

Based on these observations, one interesting question
to ask is whether the conclusion that a subset of pa-
rameters have greater impact on performance than other
parameters, also holds for other file systems and work-
loads. To answer this question, we quantified the cor-
relation between each parameter and throughput values.
As most of our parameters are categorical or discrete nu-
meric, whereas the throughput is continuous, we took a
common approach to quantify the correlation between
categorical and continuous variables [14]. We illustrate
with the Block Size parameter as an example. Since it
can take 3 values, we convert this parameter to three bi-
nary variables x1, x2, and x3. If the Block Size is 1K,
we assign x1 = 1 and x2 and x3 are set to 0. Let Y
represent the throughput values. We then do a linear
regression with ordinary least squares (OLS) on Y and
x1, x2, x3. R2 is a common metric in statistics to mea-
sure how the data fits a regression line. In our approach,
R2 actually quantifies the correlation between the se-
lected parameter and throughput. We considerR2 > 0.6
as an indication that the parameter has significant impact
on performance, as is common in statistics [14]. The
same calculation is applied to all parameters for each
file system under M2-Fileserver-SSD and M2-Dbserver-
SSD. Parameters with the highest R2 values are colored
in yellow background in Table 5. If all R2 values are
below 0.6, we simply leave the entries blank, meaning
no highly correlated parameters were found. To find
the second important parameter, the same process is ap-
plied to the remaining parameters, but with the value of
the most important one fixed (to isolate its effect on the
remaining parameters’ importance). Taking Ext4 under
M2-Fileserver-SSD as an example, we calculate R2 val-
ues for all other parameters among configurations with
the same Journal Option. For one parameter, 3 Journal
Options lead to three R2 values; we then take the maxi-
mum one as the R2 value for this parameter. We color
the parameter with the highestR2 in Table 5 with a green
background.

We can see that the correlated parameters are quite
diverse, and depend a lot on file systems. For exam-
ple, under M2-Fileserver-SSD, the two most important

WL-Dev FS BS IS BG JO AO SO I/O

File-SSD Ext2 - - - - - - 0.68
Ext3 0.84 - - 0.90 - - -
Ext4 0.92 - - 0.99 - - -
XFS 0.94 - 0.82 - - - -
Btrfs - - - - - - -
Nilfs2 0.99 - - - - - 0.94

Reiserfs - - - 0.74 - - 0.99

Db-SSD Ext2 - - - - - - -
Ext3 0.72 - - 0.96 - - -
Ext4 - - - 0.96 0.68 - -
XFS - - - - - - -
Btrfs - - - - - - -
Nilfs2 0.62 - - - - - 0.80

Reiserfs - - - 0.99 - - -

Table 5: Importance of parameters (measured by R2), with the
most important one colored in yellow and second in green.

parameters for Ext3 (in descending order) are Journal
Option and Block Size; this aligns with our observation
in Figures 8 and 9. However, for Reiserfs, the top 2
changes to I/O Scheduler and Journal Option. Interest-
ingly, all parameters for Btrfs come with low R2 values,
which indicates that no parameter has significant impact
on system performance under M2-Fileserver-SSD with
Btrfs. Correlation of parameters can also depend on
the workloads. For instance, the two dominant param-
eters for XFS under M2-Fileserver-SSD are Block Size
and Allocation Group. When the workload changes to
M2-Dbserver-SSD, all parameters for XFS seem to have
minor impact on performance. In this paper we are iso-
lating the impact of each parameter, thus assuming that
their effect on throughput is independent. Note that the
above observations are made based on our collected data
sets, and might change on different workloads and hard-
ware. However, our methodology is generally applica-
ble. Moreover, this paper’s main goal is not to suggest
guidelines on what specific storage configurations to de-
ploy under certain workloads; rather, we focus on com-
paring multiple optimization methods and providing in-
sights into their operation.

The fact that parameters have varied impact on per-
formance can also help explain the auto-tuning results
in §4.2. Although our parameter space comes with 8
parameters, only a subset of them are highly correlated
with performance. As long as the optimization algo-
rithm identifies the “correct” combination of values for
these dominant parameters, it will be able to find a near-
optimal configuration. Similar behavior has been re-
ported in hyper-parameter optimization problems [7].
For the experiments shown in Figure 4, near-optimal
configurations take up 4.5% of the whole search space.
Random Search (RS) needs to hit only one of them to
achieve good auto-tuning results. GA’s efficacy comes
from assigning a higher chance of survival to configura-
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tions with a certain combination of values for the dom-
inant parameters. BO stores its previous search experi-
ence (history) in a probabilistic surrogate model that it
is building, which eventually encodes the combination
of dominant parameter values that can result in good
throughput values. SA does not work as well because
it lacks history information to identify the dominant pa-
rameters: it wastes time changing less useful parame-
ters and converges slowly. Similarly, DQN also spends
lots of its effort on exploring unpromising spaces, which
slows its ability to find near-optimal configurations.

5 Limitations and Future Work

In this paper we provided the first comparative analy-
sis of applying multiple optimization methods on auto-
tuning storage systems. However, auto-tuning is a com-
plex topic and more effort is required. We list some
limitations of this work and our future research direc-
tions below. � (1) We plan to extend the scope of
evaluation with more complex workloads and search
spaces. We will investigate more techniques, such as
experiment design [80], as will as the impact of algo-
rithm hyper-parameter settings [8]. � (2) We plan to im-
prove traditional optimization techniques with new fea-
tures, such as penalty functions to cope with costly pa-
rameter changes, stopping/restarting criteria, workload
identification, handling noisy and unstable results [12],
etc., which makes auto-tuning algorithms more robust to
environment changes and more generally applicable in
production systems.

6 Related Work

Auto-tuning computer systems. In recent years, sev-
eral attempts were made to automate the tuning of stor-
age systems. Strunk et al. [71] proposed to use util-
ity functions combining different system metrics and
applied GA to automate storage system provisioning.
Babak et al. [5] utilized GA to optimize I/O performance
of HDF5 applications. GA has also been applied for
storage recovery problems [38]. More recently, Deep Q-
Networks has been successfully applied in optimizing
performance for Lustre [85]. Auto-tuning is also a hot
topic in other computer systems: Bayesian Optimiza-
tion was applied to find near-optimal configurations for
databases [78] and Cloud VMs [3]. Other applied tech-
niques include Evolutionary Strategies [62], Simulated
Annealing [26, 35], Tabu Search [63], and more. How-
ever, previous work all focused on one or a few tech-
niques. One contribution of our work is to provide the
first comparative study of multiple, applicable optimiza-
tion methods on their efficacy in auto-tuning storage sys-
tems from various aspects. We also provide some in-
sights into the working mechanism of auto-tuning.

Hyper-parameter tuning. Evolutionary Algo-
rithms [59], Reinforcement Learning [6], and Bayesian
Optimization [22] have been applied to hyper-parameter
optimization for ML algorithms. Bergstra and Ben-
gio [8] found that randomly chosen trials are more
efficient for hyper-parameter optimization than trials on
a grid, and explained the cause as the objective function
having a low effective dimensionality. Another direction
of research focuses on eliminating all hyper-parameters
and tries to propose non-parametric versions of opti-
mization methods. Examples of this include GA [31,51]
and BO [68].

7 Conclusions
Optimizing storage systems can provide significant ben-
efits especially in improving I/O performance. Alas,
storage systems are getting more complex, contain
many parameters and an immense number of possi-
ble configurations; manual tuning is therefore imprac-
tical. Worse, many of those parameters are non-linear
or non-numeric; traditional linear-regression-based opti-
mization techniques do not work well for such problems.
Several efforts were made to apply black-box optimiza-
tion techniques to auto-tune storage systems, but they
all used only one or few techniques. In this work, we
performed the first comparative study, and offered the
following four contributions. (1) We evaluated five pop-
ular but different auto-tuning techniques, varied some of
their hyper-parameters, and applied them to storage and
file systems. (2) We show that the speed at which the
techniques can find optimal or near-optimal configura-
tions (in terms of throughput) depends on the hardware,
software, and workload; this means that no single tech-
nique can “rule them all.” (3) We explain why some
techniques appear to work better than others. (4) For
more than two years, we have collected a large data set
of over 450,000 data points; this data set was used in this
study and we plan to release it.
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Abstract
1 Finding top-k elephant flows is a critical task in network
traffic measurement, with many applications in conges-
tion control, anomaly detection and traffic engineering.
As the line rates keep increasing in today’s networks, de-
signing accurate and fast algorithms for online identifi-
cation of elephant flows becomes more and more chal-
lenging. The prior algorithms are seriously limited in
achieving accuracy under the constraints of heavy traf-
fic and small on-chip memory in use. We observe that
the basic strategies adopted by these algorithms either
require significant space overhead to measure the sizes
of all flows or incur significant inaccuracy when decid-
ing which flows to keep track of. In this paper, we adopt
a new strategy, called count-with-exponential-decay, to
achieve space-accuracy balance by actively removing
small flows through decaying, while minimizing the im-
pact on large flows, so as to achieve high precision in
finding top-k elephant flows. Moreover, the proposed al-
gorithm called HeavyKeeper incurs small, constant pro-
cessing overhead per packet and thus supports high line
rates. Experimental results show that HeavyKeeper al-
gorithm achieves 99.99% precision with a small memory
size, and reduces the error by around 3 orders of magni-
tude on average compared to the state-of-the-art.

1 Introduction
1.1 Background and Motivation
Finding the largest k flows, also referred to as the top-
k elephant flows, is a fundamental network management

1Co-primary authors: Junzhi Gong and Tong Yang. Correspond-
ing author: Tong Yang (yangtongemail@gmail.com). Junzhi Gong,
Haowei Zhang, Hao Li finished this work under the guidance of their
supervisor: Tong Yang. This work is supported by Primary Research
& Development Plan of China (2016YFB1000304), National Basic
Research Program of China (973 Program, 2014CB340405), NSFC
(61672061), the OpenProject Funding of CAS Key Lab of Network
Data Science and Technology, Institute of Computing Technology, Chi-
nese Academy of Sciences.

function, where a flow’s ID is usually defined as a com-
bination of certain packet header fields, such as source IP
address, destination IP address, source port, destination
port, and protocol type, and the size of a flow is defined
as the number of packets of the flow. Elephant flows con-
tribute a large portion of network traffic. Many manage-
ment applications can benefit from a function that can
find them efficiently, such as congestion control by dy-
namically scheduling elephant flows [1], network capac-
ity planning [2], anomaly detection [3], and caching of
forwarding table entries [4]. Such a function also has ap-
plications beyond networking in areas such as data min-
ing [5–7], information retrieval [8], databases [9], and
security [10, 11].

In real network traffic, it is well known that the dis-
tribution of flow sizes (the number of packets in a flow),
is highly skewed [12–21], i.e., the majority are mouse
flows, while the minority are elephant flows. most flows
are small while a few flows are very large. The small
flows are usually called mouse flows, while the large ones
are called elephant flows.

Finding the top-k elephant flows (or top-k flows for
short) in high-speed networks is a challenging task. [22]
Extremely high line rates of modern networks make it
practically impossible to accurately track the informa-
tion of all flows. Consequently, approximate methods
have been proposed in the literature and gained wide ac-
ceptance [14, 23–27]. In order to keep up with the line
rates, these algorithms are expected to use on-chip mem-
ory such as SRAM whose latency is around 1ns [28,29],
in contrast to a latency of around 50ns when off-chip
DRAM is used [29]. However, on-chip memory is
small. Adding to the challenge, it is highly desirable to
keep per-packet processing overhead small and constant,
which helps pipelining.

Traditional solutions to finding the top-k flows fol-
low two basic strategies: count-all and admit-all-count-
some. The count-all strategy relies on a sketch (e.g., CM
sketch [14]) to measure the sizes of all flows, while us-
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ing a min-heap to keep track of the top-k flows. For each
incoming packet, it records the packet in the sketch and
retrieves from the sketch an estimate n̂i for the size of the
flow fi that the packet belongs to. If n̂i is larger than
the smallest flow size in the min-heap, it replaces the
smallest flow in the heap by flow fi. As a large sketch is
needed to count all flows, these solutions are not memory
efficient.

The admit-all-count-some strategy is adopted by Fre-
quent [30], Lossy Counting [26], Space-Saving [24] and
CSS [23]. These algorithms are similar to each other. To
save memory, Space-Saving only maintains a data struc-
ture called Stream-Summary to counts only some flows
(m flows). Each new flow will be inserted into the sum-
mary, replacing the smallest existing flow. The initial
size of the new flow is set as n̂min + 1, where n̂min is the
size of the smallest flow in the summary. By keeping
m flows in the summary, the algorithm will report the
largest k flows among them, where m > k. It assumes
every new incoming flow is an elephant, and expels the
smallest one in the summary to make room for the new
one. But most flows are mouse flows. Such an assump-
tion causes significant error, especially under tight mem-
ory (for a limited value of m).

1.2 Our Proposed Solution
In this paper, we propose a new algorithm, Heavy-
Keeper, based on a different strategy, called count-with-
exponential-decay, which keeps all elephant flows while
drastically reducing space wasted on mouse flows. Un-
like count-all, our strategy only keeps track of a small
number of flows. Unlike admit-all-count-some, we do
not automatically admit new flows into our data structure
and the vast majority of mouse flows will be by-passed.
For a small number of mouse flows that do enter our data
structure, they will decay away to make room for true
elephants. The decay is not uniform for the flows in our
data structure. The design of exponential decay is biased
against small flows, and it has a smaller impact on larger
flows. This design works extremely well with real traffic
traces under small memory where the previous strategies
will fail.
Main experimental results: As shown in Table 1, when
compared with Space-Saving, Lossy counting, CSS, and
CM sketch, HeavyKeeper achieves 99.99% percent pre-
cision, and much smaller error than all of them.
Contributions: This paper makes the following contri-
butions.

1. We propose a new data structure, named Heavy-
Keeper, which achieves high precision for finding
top-k flows, and achieves constant and fast speed as
well as high memory efficiency.

2. We develop a mathematical analysis for Heavy-
Keeper, to theoretically prove its high precision.

Table 1: Main experimental results.
Precision is defined as the ratio between the number of
correctly reported elephant flows and the total number

of reported flows.

Algorithm Top-k
precision

Avg. relative error
of flow sizes

Space-Saving [24] 0.27 172.7222
Lossy counting [26] 0.39 54.8440

CSS [23] 0.49 18.9356
CM sketch [14] 0.93 0.2951
HeavyKeeper 0.9999 0.0011

3. We conduct extensive experiments on real network
streams and synthetic datasets, and results show that
HeavyKeeper reduces the error by around 3 orders
of magnitude on average compared to the state-of-
the-art.

4. We integrate HeavyKeeper and other related algo-
rithms with Open vSwitch (OVS) platform. We also
conduct experiments on throughput on OVS plat-
form to show the impact of the algorithms. The
results show that HeavyKeeper has little impact on
the throughput, while other algorithms decrease the
throughput significantly. We release the source code
of HeavyKeeper and related algorithms at GitHub
[31].

2 Preliminaries
2.1 Problem Statement
Simply speaking, finding top-k flows refers to finding the
largest k flows. Let P = P1,P2, · · · ,PN be a network
stream with N packets. Each packet Pl (1 6 l 6 N) be-
longs to a flow fi, where fi ∈F = { f1, f2, · · · , fM} and
F is the set of flows. Let ni be the real flow size of
flow fi in P . We order all flows ( f1, f2, · · · , fM) so that
n1 > n2 > · · ·> nM .

Given an integer k and a network stream P , the output
of top-k is a list of k flows from F with the largest flow
sizes, i.e., f1, f2, · · · , fk.

2.2 Prior Art and Limitations
The count-all strategy: As mentioned above, the count-
all strategy uses sketches (such as the CM sketch [14]
or the Count sketch [25]) to record the sizes of all flows,
and uses a min-heap to keep track of the top-k flows, in-
cluding the flow IDs and their flow sizes. Take the CM
sketch as an example. It records packets in a CM sketch,
consisting of a pool of counters. For each arrival packet,
it hashes the packet’s flow ID f to d counters and in-
creases these d counters by one. The smallest value of
the d counters is used as the estimated size of the flow.
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If this estimated flow size is larger than the smallest flow
size in the min-heap, we replace the smallest flow in the
heap by flow f .

The problem is that all flows are pseudo-randomly
mapped to the same pool of counters through hashing.
Each counter may be shared by multiple flows, and thus
record the sum of sizes of all these flows. Consequently,
the CM sketch has an over-estimation problem, which
will become severe in a tight memory space where the
number of counters is far smaller than the number of
flows, resulting in aggressive sharing. In such a case,
a small flow may be treated as an elephant flow if all its
d counters are shared with real elephant flows.
The admit-all-count-some strategy: As mentioned
above, quite a few algorithms use the admit-all-count-
some strategy, including Frequent [30], Lossy counting
[26], and Space-Saving [24], with Space-Saving being
the most widely used among them. Take Space-Saving as
an example. Recognizing that it is infeasible to count the
sizes of all flows, Space-Saving counts only the sizes of
some flows in a data structure called Stream-Summary,
which incurs O(1) overhead to search or update a flow,
or find the smallest flow. The selection of which flows
to store in the summary is rather simple: For each ar-
rival packet, if its flow ID is not in the summary, the
flow will be admitted into the summary, replacing the
smallest existing flow. The new flow’s initial size is set
to n̂min + 1, where n̂min is the smallest flow size in the
summary before replacement. Therefore, later incom-
ing mouse flows will be largely over-estimated, which is
drastically inaccurate. In the end, the largest k flows in
the summary will be reported. A recent work CSS [23]
is proposed based on Space-Saving. It inherits the above
strategy of Space-Saving, and redesigns the data struc-
ture of Stream-Summary by using TinyTable [32] to re-
duce memory usage.

The strategy of admit-all-count-some is to admit all
new flows while expelling the smallest existing ones
from the summary. To give new flows a chance to
stay in the summary, their initial flow sizes are set as
n̂min +1. Such a strategy drastically over-estimates sizes
of flows, and we show an example here. Assume n̂min =
10,000. Given an new incoming flow, its size will be
over-estimated as 10,001. Early arrived elephant flows
with flow sizes less than 10,008 will be expelled. There-
fore, massive mouse flows will cause significant over-
estimation errors.

3 The Design of HeavyKeeper

In this section, we present the data structure and algo-
rithm of our HeavyKeeper, and show how to find the top-
k flows accurately and efficiently.

3.1 Rationale
We aim to use a small hash table to store all elephant
flows. As there are a great number of flows, each bucket
of the hash table will be mapped by many flows, and we
aim to store only the largest flow with its size, which can-
not be achieved with no error when using small mem-
ory. To address this problem, we propose a probabilis-
tic method called exponential-weakening decay. Specif-
ically, when the incoming flow is different from the flow
in the hashed bucket, we decay the flow size with a decay
probability, which is exponentially smaller as the flow
size grows larger. If the flow size is decayed to 0, it re-
places the original flow with the new flow. In this way,
mouse flows can easily be decayed to 0, while elephant
flows can easily keep stable in the bucket. There are two
shortcomings: 1) With a small probability we elect the
wrong flow as the largest flow; 2) The stored flow size
is a little smaller than the true frequency because of the
decay operations. To address these problems, we use
multiple hash tables with different hash functions. An
elephant flow could be stored in multiple hash tables, we
choose the recorded largest size, minimizing the error of
flow sizes.

3.2 The HeavyKeeper Structure

… …

𝑃5

ℎ1(𝑓3)

ℎ2(𝑓3)

ℎ𝑑(𝑓3)

𝑃5 belongs to flow 𝑓3

𝑑 arrays

FP: fingerprint field C: counter field

𝑤 buckets

𝐹4 3 …𝐹1 21 𝐹2 14 𝐹5 1

𝐹1 22 …𝐹2 14 𝐹5 1 𝐹4 2

𝐹3 7 …𝐹4 3 𝐹1 22 𝐹5 1

Figure 1: The data structure of HeavyKeeper.

As shown in Figure 1, HeavyKeeper is comprised of d
arrays, and each array is comprised of w buckets. Each
bucket consists of two fields: a fingerprint field and a
counter field.2 For convenience, we use A j[t] to rep-
resent the tth bucket in the jth array, and use A j[t].FP
and A j[t].C to represent its fingerprint field and counter
field, respectively. Arrays A1...Ad are associated with
hash functions h1(.)...hd(.), respectively. These d hash
functions h1(.)...hd(.) need to be pairwise independent.
Insertion: Initially, all fingerprint fields are null, and all
counter fields are 0. For each incoming packet Pl belong-

2 The fingerprint of a flow is a hash value generated by a certain
function (for example, if we use h f (.) as the fingerprint hash function,
the fingerprint of flow f j is h f ( f j)). Although there can be hash colli-
sions among flows, the probability is quite small. For example, if we
set the fingerprint size to 16 bits, and there are 10000 buckets in the
array, the probability of fingerprint collisions is 1.52∗10−3.
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ing to flow fi, HeavyKeeper computes the d hash func-
tions, and maps fi to d buckets A j[h j( fi)] (1 6 j 6 d)
(one bucket in each array), which we call d mapped
buckets for convenience. As shown in Figure 2, for each
mapped bucket, HeavyKeeper applies different strategies
for the following three cases:

C-1

𝑓3

ℎ𝑖(𝑓3)

Case 1:    if C=0

C=C+1=1

Case 2:    if C>0 && FP=F3

C=C+1

FP Case 3:    if C>0 && FP ≠ F3

C=C-1 with  prob.=b-C

C+1F3

1F3

CFP

jk

Figure 2: The main insertion cases of HeavyKeeper.
Note: 1) F3 is the fingerprint of flow f3. 2) b > 1 and
b ≈ 1 (e.g., b = 1.08). 3) In Case 3, when C is decayed
to 0, the fingerprint field will be replaced by F3, and then
counter C is set to 1.

Case 1: When A j[h j( fi)].C = 0. It means that no flow
has been mapped to this bucket, then HeavyKeeper sets
A j[h j( fi)].FP = Fi and A j[h j( fi)].C = 1, where Fi repre-
sents the fingerprint of fi.
Case 2: When A j[h j( fi)].C > 0 and A j[h j( fi)].FP = Fi.
It means A j[h j( fi)].C is probably the estimated size of fi.
In this case, HeavyKeeper increments A j[h j( fi)].C by 1.
Case 3: When A j[h j( fi)].C > 0 and A j[h j( fi)].FP 6= Fi.
It means that A j[h j( fi)].C is not the estimated size of fi.
In here, HeavyKeeper applies the exponential-weakening
decay strategy to this bucket: it decays A j[h j( fi)].C by 1
with a probability Pdecay. After decay, if A j[h j( fi)].C =
0, HeavyKeeper replaces A j[h j( fi)].FP with Fi, and sets
A j[h j( fi)].C to 1. Therefore, as long as flows are mapped
to a bucket, its counter field will never be 0.
Query: To query the size of a flow fi, HeavyKeeper first
computes the d hash functions to get d buckets A j[h j( fi)]
(1 6 j 6 d). Among the d mapped buckets, it chooses
those buckets whose fingerprint fields are equal to Fi. It
then reports the maximum counter field of those buckets,
i.e., max16 j6d{A j[h j( fi)].C} where A j[h j( fi)].FP = Fi.

For convenience, for those d mapped buckets of fi,
if A j[h j( fi)].FP = Fi, we say that fi is held at bucket
A j[h j( fi)]. Ignoring the limited impact of fingerprint col-
lisions, we prove that the reported size for each flow is
equal to or smaller than the real flow size in Section 4.1.
If a flow is held at no mapped bucket, it reports that it
is a mouse flow. If a flow is held at multiple buckets,
HeavyKeeper reports the maximum counter field.
Decay probability: The decay probability Pdecay in the
exponential-weakening decay strategy is an important
parameter. Here, we use the following exponential func-
tion to calculate the probability:

Pdecay = b−C (b > 1)

where C is the value in the current counter field, and
where b (b > 1 and b≈ 1, e.g., b = 1.08) is a pre-defined
exponential base number. Therefore, the larger size a
flow has, the harder its size is decayed. For elephant
flows, it is held at several buckets, and the corresponding
counter fields are incremented regularly, while decayed
with a very small probability. Therefore, the error rate
for estimated sizes of elephant flows is very small.
Note: Our data structure of d arrays may show some sim-
ilarity with that of CM [14]. But similarity stops there.
CM records the sizes of all flows; we record the sizes of
a small number of flows. CM does not store flow IDs;
we do. CM stores information of each flow in d coun-
ters; we keep each flow mostly in one bucket, while d-
hashing helps find an empty bucket. CM does not have
to worry about the issue of kicking out existing flows to
make room for new ones, which is what our exponential
delay does.
Example: As shown in Figure 1, given an incoming
packet P5 belonging to flow f3, we compute the d hash
functions to obtain one bucket in each array. In the
mapped bucket of the first array, the fingerprint field is
not equal to F3 and the counter field is 21, thus we de-
cay the counter field from 21 to 20 with a probability
of 1.08−21 (assume b = 1.08). In the second mapped
bucket, the fingerprint field is not F3 yet, and with a prob-
ability of 1.08−1, we decay the counter field from 1 to 0.
If the counter field is decayed to 0, we set the finger-
print field to F3, and set the counter field to 1. In the last
mapped bucket, the fingerprint field is F3, we increment
the counter field from 7 to 8.
Analysis: HeavyKeeper uses fingerprint to identify and
keep elephant flows. If a mouse flow with a small flow
size is held at a bucket, it will be replaced by other flows
mapped to this bucket soon, because each flow mapped
to this bucket with a different fingerprint will decay the
counter field with a high probability (b−C → 1 when C
is small). If an elephant flow is held at a bucket, the
corresponding counter field can easily be incremented
to a large value since elephant flows have many incom-
ing packets. Moreover, the decay probability becomes
very small (b−C → 0 when C is large) as the counter
field increases to a large value. Therefore, mouse flows
can hardly be held in HeavyKeeper for a long time, and
thus have a large probability to be passers-by of Heavy-
Keeper. However, elephant flows can keep stable in
HeavyKeeper, and the estimated sizes of elephant flows
are accurate.

3.3 Basic Version for Finding the Top-k
Elephant Flows

To find top-k elephant flows, our basic version just uses
a HeavyKeeper and a min-heap. The min-heap is used to
store the IDs and sizes of top-k flows. For each incom-
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ing packet Pl belonging to flow fi, we first insert it into
HeavyKeeper. Suppose that HeavyKeeper reports the
size of fi as n̂i. If fi is already in the min-heap, we update
its estimated flow size with max(n̂i,min heap[ fi]), where
min heap[ fi] is the recorded size of fi in min-heap. Oth-
erwise, if n̂i is larger than the smallest flow size which is
in the root node of the min-heap, we expel the root node
from the min-heap, and insert fi with n̂i into the min-
heap. To query top-k flows, we simply report the k flows
in the min-heap with their estimated flow sizes.

3.4 Optimizations
In this section, we propose further optimization methods
to avoid accidental errors and improve speed.
Optimization I: Fingerprint Collisions Detection.
Problems: Assume that there is a bucket in Heavy-
Keeper where flow fi is held, and a mouse flow f j
mapped to the same bucket has the same fingerprint as
fi, i.e., Fi = F j due to hash collisions. Then, the mouse
flow f j is also held at this bucket, and its estimated size
is drastically over-estimated. In the worst case, if flow f j
has a fingerprint collision in all d arrays, the mouse flow
f j will probably be inserted into the min-heap. It can
hardly be expelled due to its drastically over-estimated
size. To address this problem, we propose a solution
based on the following Theorem.

Theorem 1. When there is no fingerprint collision, after
a flow fi is inserted into HeavyKeeper, if its estimated
size n̂i is larger than nmin, then we must have

n̂i = nmin +1

The proof of this Theorem is not hard to derive and we
skip it due to space limitations.
Solution: Based on Theorem 1, if fi is not in the min-
heap but n̂i > nmin+1, then fi is a mouse flow whose size
is drastically over-estimated due to fingerprint collision.
Therefore, we should not insert fi into the min-heap in
this case.
Optimization II: Selective Increment.
Problem: If a flow fi is not in the min-heap, then the
estimated flow size should be no larger than nmin. How-
ever, due to fingerprint collisions, there could be some
mapped buckets of flow fi where the fingerprint field is
Fi and the counter field is larger than nmin. In this case,
flow fi is not the flow that is held at this bucket, and thus
increasing the corresponding counter field can only incur
extra error.
Solution: In this case, instead of incrementing or decay-
ing the corresponding counter field, we make no change.
Optimization III: Speed Acceleration.
Problem: Our basic version of using the min-heap is the
most memory efficient solution. However, the processing

speed is limited, because the time complexity for updat-
ing and searching a flow in the min-heap is O(log(k))
and O(k) respectively, which are time-consuming.
Solution: The min-heap is actually used to record the
flow IDs of elephant flows and their estimated flow sizes.
In this optimization version, instead of using the min-
heap, we use a single array to record the flow IDs.
Specifically, we define a flow size threshold η (e.g.,
η = 1000). For each incoming flow, if its estimated
size is equal to η , we record the flow ID in the ar-
ray. As we record the fingerprints of elephant flows, the
flow size will increases at most by 1 for each incoming
packet when assuming there is no fingerprint collision.
Therefore, any flow whose estimated size is larger than
or equal to η is recorded in this array once in most cases.
Further, this optimization of using an array is only suit-
able for sketches that record flow IDs or fingerprints.

Algorithm 1: Insertion process for finding top-k
flows.

Input: A packet Pl belonging to flow fi
1 f lag← f alse;
2 if fi ∈ min heap then
3 f lag← true;

4 maxv← 0;
5 for j← 1 to d do
6 C← A j[h j( fi)].C;
7 if A j[h j( fi)].FP = Fi then
8 if f lag = true or C < min heap.nmin then
9 A j[h j( fi)].C++;

10 maxv← max(maxv,A j[h j( fi)].C);
11 else
12 if rand(1)< b−C then
13 A j[h j( fi)].C−−;
14 if A j[h j( fi)].C = 0 then
15 A j[h j( fi)].FP← Fi;
16 A j[h j( fi)].C← 1;
17 maxv← max(maxv,1);

18 if f lag = true then
19 min heap[ fi]← max(maxv,min heap[ fi]);
20 else
21 if min heap has empty buckets or

maxv−nmin = 1 then
22 min heap.insert( fi);

3.5 Final Version
Based on the basic version, we propose the common fi-
nal version using the first two optimization methods, and
propose the accelerated final version using the third opti-
mization methods. The insertion and query processes of
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the common final version of our algorithm are as follows
(see pseudo-code in Algorithm 1).
Insertion: All counters and fingerprints in Heavy-
Keeper and the min-heap are initialized to 0. For each
incoming packet Pl belonging to flow fi, these are the
following three steps for each insertion:
Step 1: Check whether flow fi is already monitored by
the min-heap. For convenience, we use a boolean vari-
able f lag to represent the result.
Step 2: Insert fi into HeavyKeeper. According to Op-
timization II, for each mapped bucket, if the fingerprint
field is equal to Fi, increment the counter field only when
f lag = true or C < nmin, where C is the original value in
the counter field.
Step 3: Get an estimated size n̂i of flow fi from Heavy-
Keeper. According to Optimization III, if f lag = true,
we update the estimated size of flow fi in the min-heap
with n̂i. If f lag = f alse, insert flow fi into the min-heap
with n̂i in only two cases: 1) the number of flows that are
in the min-heap is less than k; 2) n̂i = nmin +1.
Query top-k flows: It reports the k flows recorded in the
min-heap and their estimated flow sizes.
Analysis: Since HeavyKeeper achieves very small error
rate on the flow size estimation of elephant flows, it can
significantly reduce the error in finding top-k elephant
flows. Furthermore, the first two optimizations reduce
the impact of fingerprint collisions, and enhance the pre-
cision of finding top-k elephant flows and their flow size
estimation. The third optimization method has a con-
stant processing time for insertions: 1) For most incom-
ing packets, they are only inserted into HeavyKeeper,
which requires d (e.g., d = 2) memory accesses. 2) For
some packets belonging to elephant flows, they are in-
serted into both HeavyKeeper and the array. It requires
d +1 memory accesses in the worst case. Therefore, the
time complexity of insertion process is O(d). Therefore,
the processing speed of the accelerated final version is
fast on average and constant in the worst case.

3.6 Other uses of HeavyKeeper
Besides finding top-k flows in a network stream, Heavy-
Keeper can also perform other tasks in network traf-
fic measurement, such as heavy hitter detection and
change detection. Due to space limitations, here we
only briefly introduce how to perform these tasks using
HeavyKeeper.
Heavy hitter detection: Given a threshold θ , a heavy
hitter [13] is a flow whose size ni > θN, where N is the
number of packets in total. The heavy hitter detection
algorithm is very similar to that of finding top-k flows.
The only difference is that when querying heavy hitters,
it reports those flows whose estimated size is larger than
θN in min-heap.

Change detection: The network stream is divided into
fixed-size time bins. Given a flow, if the difference of
its flow sizes in two adjacent time bins is larger than
a predefined threshold, then the flow is called a heavy
change [13, 33]. We use the very flow ID as the finger-
print of each flow. For two adjacent time bins, we in-
sert their packets into two different HeavyKeepers. By
comparing buckets in the corresponding location in the
two HeavyKeepers, we obtain the estimated difference
of sizes of the flows, and report the heavy changes by
checking if the difference is larger than the threshold.

4 Mathematical Analysis

In this section, we first prove that there is no over-
estimation in HeavyKeeper, and then derive the formula
of its error bounds.

4.1 Proof of No Over-estimation Error of
HeavyKeeper

Theorem 2. Let ni(t) be the real size of flow fi at time t,
and let A j[h j( fi)](t).C be the counter field of the mapped
bucket of flow fi in the jth array at time t. If there is no
fingerprint collision, then

∀ j, t, A j[h j( fi)](t).C 6 ni(t) (1)

Proof. When t = 0, no packet maps into this bucket, so
ni(0) = 0 and A j[h j( fi)](t).C = 0. Therefore, the theo-
rem holds at time 0. Let’s now prove by induction that
the theorem holds at any time.

When t = 0, the theorem holds.
If the theorem holds when t = v, let’s prove that the

theorem also holds when t = v+1. There are three cases
when t = v+1:
Case 1: The new incoming packet is not mapped
to bucket A j[h j( fi)]. Then ni(v + 1) = ni(v) and
A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C. Therefore,
A j[h j( fi)](v+1).C 6 ni(v+1).
Case 2: The new incoming packet belongs to flow fi.
Then ni(v + 1) = ni(v) + 1 and A j[h j( fi)](v + 1).C =
A j[h j( fi)](v).C + 1. Therefore, A j[h j( fi)](v + 1).C 6
ni(v+1).
Case 3: The new incoming packet is mapped to
bucket A j[h j( fi)] but does not belong to flow fi. Then
A j[h j( fi)](v + 1).C = A j[h j( fi)](v).C or A j[h j( fi)](v +
1).C = A j[h j( fi)](v).C−1, and ni(v+1) = ni(v). There-
fore, A j[h j( fi)](v+1).C 6 ni(v+1).

Therefore, for any time t,

A j[h j( fi)](t).C 6 ni(t)
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4.2 Error Bound of HeavyKeeper
Definition 4.1. Given a small positive number ε ,
Pr{ni− n̂i > dεNe} (ni > n̂i) represents the probability
that the error of the estimated flow size ni− n̂i is larger
than εN. If Pr{ni− n̂i > dεNe} 6 δ , the algorithm is
said to achieve (ε ,δ )-counting.

(ε ,δ )-counting is a metric to evaluate the error rate of
the algorithm. Here HeavyKeeper is proved to achieve
(ε ,δ )-counting, showing that HeavyKeeper achieves a
low error rate in estimating the sizes of top-k flows.

Theorem 3. Let’s assume that there is no fingerprint col-
lision and the fingerprint of an elephant flow is held at its
mapped bucket all the time. Let’s focus on one single ar-
ray of HeavyKeeper. Given a small positive number ε ,
and an elephant flow fi whose size is ni is held at that
bucket,

Pr{ni− n̂i > dεNe}6 1
εwni(b−1)

(2)

where w is the width of each array, N the total number of
packets, and b the exponential base.

Proof. Let’s focus on the jth array. Flow fi is correctly
reported, so at the end, the fingerprint of flow fi is held in
the h j( fi)

th bucket of the jth array. Let Ii, j,i′ be a binary
random variable, defined as

Ii, j,i′ =

{
0 ( fi = fi′)∨ (h j( fi) 6= h j( fi′))

1 ( fi 6= fi′)∧ (h j( fi) = h j( fi′))
(3)

Ii, j,i′ = 1 i f f different flows fi and fi′ are held at the same
bucket in the jth array. We define random variable Xi, j as:

Xi, j =
M

∑
v=1

Ii, j,i′ni′ (4)

Xi, j represents the sum of the sizes of the flows held at
the same bucket as flow fi, except for the size of flow fi
itself. Assume that for each incoming packet, if it be-
longs to flow fi, the counter field is incremented by 1; if
not, the counter field is decayed with a certain probabil-
ity. We have

ni−Xi, j 6 A j[h j( fi)].C 6 ni (5)

Specifically, if all packets that do not belong to flow
fi decay the counter field, then A j[h j( fi)].C = ni−Xi, j.
If those packets do not decay the counter field, then
A j[h j( fi)].C = ni. Let’s define another random variable
Pi, j,l . Among the Xi, j packets defined above, Pi, j,l is de-
fined as the probability that the lth packet decays the
counter field. Therefore,

A j[h j( fi)].C = ni−
Xi, j

∑
l=1

Pi, j,l (6)

Given a small positive number ε , the following for-
mula based on the Markov inequality holds

Pr{A j[h j( fi)].C 6 ni− εN}

= Pr{ni−
Xi, j

∑
l=1

Pi, j,l 6 ni− εN}

= Pr{
Xi, j

∑
l=1

Pi, j,l > εN}6 E(∑
Xi, j
l=1 Pi, j,l)

εN

(7)

Now let’s focus on E(∑
Xi, j
l=1 Pi, j,l). Assume that all pack-

ets are uniformly distributed, we have the following for-
mula:

Pr{Pi, j,l =
1

bC }=
1

A j[h j( fi)].C
=

1

ni−E(∑
Xi, j
l=1 Pi, j,l)

(8)
where 1 6 C 6 ni − E(∑

Xi, j
l=1 Pi, j,l). Let β be ni −

E(∑
Xi, j
l=1 Pi, j,l) for convenience. As a result,

E(
Xi, j

∑
l=1

Pi, j,l) =
E(Xi, j)

∑
l=1

E(Pi, j,l)

= E(Xi, j)
β

∑
C=1

1
bC

1
β

=
E(Xi, j)

β
·

β

∑
C=1

1
bC

=
E(Xi, j)

β
·

1
b (1− ( 1

b )
β )

1− 1
b

6
E(Xi, j)

nib
· 1− ( 1

b )
ni

1− 1
b

=
E(Xi, j)(1− ( 1

b )
ni)

ni(b−1)
(9)

Furthermore, for E(Xi, j), based on Equation 4,

E(Xi, j) = E(
M

∑
v=1

Ii, j,i′ni′) 6
M

∑
i′=1

ni′E(Ii, j,v) =
N
w

(10)
Therefore, based on Equation 9,

E(
Xi, j

∑
l=1

Pi, j,l)6
N(1− ( 1

b )
ni)

wni(b−1)
6

N
wni(b−1)

(11)

then

Pr{A j[h j( fi)].C 6 ni− εN}6 E(∑
Xi, j
l=1 Pi, j,l)

εN

6
N

εNwni(b−1)
=

1
εwni(b−1)

Note that for an elephant flow fi, ni is very large, and
( 1

b )
ni ≈ 0. The estimated size of fi is the maximum value

of A j[h j( fi)].C, so we have

Pr{ni− n̂i > dεNe}6 Pr{n̂i 6 ni− εN}6 1
εwni(b−1)
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Figure 3: Theoretical
bound and empirical
probability of Heavy-
Keeper (ε = 2−16).
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Figure 4: Theoretical
bound and empirical
probability of Heavy-
Keeper (ε = 2−17).

To validate the correctness of this error bound, we
conduct experiments on the dataset mentioned in Sec-
tion 5.1. Here, we let N = 107, ε = 2−16 and 2−17,
and vary memory size from 20KB to 100KB. As shown
in Figure 3 and Figure 4, the empirical probability of
HeavyKeeper is always lower than the theoretical prob-
ability bound, confirming the correctness of Theorem 3.
Moreover, for the CSS algorithm, achieving such a (ε ,δ )-
counting requires at least O(ε−1) buckets (i.e., m =
O(ε−1)), which requires a memory size much larger than
100KB. Therefore, HeavyKeeper is much more memory
efficient than CSS.

5 Experimental Results
5.1 Experiment Setup
Platform: Our experiments are run on a server with
dual 6-core CPUs (24 threads, Intel Xeon CPU E5-2620
@2 GHz) and 62 GB total system memory. Each core
has two L1 caches with 32KB memory (one instruction
cache and one data cache) and one 256KB L2 cache. All
cores share one 15MB L3 cache.
Dataset:
1) Campus dataset: The first dataset is comprised of IP
packets captured from the network of our campus. We
rely on the usual definition of a flow, through its 5-tuple,
i.e., source IP address, destination IP address, source
port, destination port, and protocol type. There are 10M
packets in total, belonging to 1M flows. For convenience,
we use campus dataset to denote this dataset.
2) CAIDA dataset: The second dataset is a CAIDA
Anonymized Internet Trace from 2016 [34], made of
anonymized IP packets. Each flow in this dataset is iden-
tified by the source and destination IP address. We use
the first 10M packets, belonging to about 4.2M flows.
3) Synthetic datasets: We generate 10 different syn-
thetic datasets according to a Zipf [35] distribution with
different skewness (from 0.3 to 3.0). Each dataset is
comprised of 32M packets, belonging to 1 ∼ 10M flows
depending on the skewness. Each packet is 4 bytes long.

The code of the dataset generator is the one from Web
Polygraph [36].
Implementation: The implementation of Heavy-
Keeper is done in C++. We also implemented in C++ the
other related algorithms including Space-Saving (SS),
Lossy counting (LC), and CM sketch. The source code
of CSS was provided by its author [23], and is written
in Java. It is much slower than Space-Saving written in
C++. Therefore, we do not include CSS in our speed ex-
periments. For Space-Saving, Lossy counting, and CSS,
the number of buckets m is determined by the memory
size, which is usually much larger than k. When querying
top-k flows, they report the largest k flows of them. For
CM sketch, the size of the heap is k, the number of ar-
rays is 3, and the width of each array is determined by the
memory size. In our algorithm, the number of buckets m
in Stream-Summary is equal to k, and HeavyKeeper oc-
cupies the rest memory size. Here we set d = 2, and w
depends on the memory size. Both the fingerprint field
and the counter field are 16-bit long. For experiments
on throughput, we ignore operations on the min-heap for
the CM sketch, because we can only record flows whose
estimated size is larger than a pre-defined threshold.

5.2 Metrics
Precision: Precision is defined as C

k . Only C flows be-
long to the real top-k flows.
Average Relative Error (ARE): ARE is defined as

1
|Ψ | ∑ fi∈Ψ

|n̂i−ni|
ni

, where Ψ is estimated set of top-k flows,
n̂i is the estimated size of flow fi, and ni is the real size
of flow fi. ARE evaluates the error rate of the estimated
flow size reported by the algorithm.
Average Absolute Error (AAE): AAE is defined as

1
|Ψ | ∑ fi∈Ψ |n̂i−ni|, similarly to ARE.
Throughput: We perform insertions of all packets,
record the total time used, and calculate the throughput.
The throughput is defined as N

T , where N is the total num-
ber of packets, and T is the total measured time. We use
Million of insertions per second (Mps) to measure the
throughput.

5.3 Experiments on Precision
To achieve a head-to-head comparison, we use the same
memory size for each algorithm. We perform the experi-
ments for varying memory size and k on the campus and
CAIDA datasets, and varying skewness on the synthetic
datasets. For experiments of varying memory size, we set
k = 100. For experiments of varying k, we set the mem-
ory size to 100KB. For experiments of varying skewness,
we set the memory size to 100KB and set k = 1000.
Precision vs. memory size: As shown in Figure 5, for
the campus dataset, when memory size is 10KB, the pre-
cision of Space-Saving, Lossy counting, CSS, and CM
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Figure 5: Precision vs. memory size
(Campus).
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Figure 6: Precision vs. memory size
(CAIDA).
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Figure 7: Precision vs. k (Campus).
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Figure 8: Precision vs. k (CAIDA).
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Figure 9: Precision vs. skewness
(Synthetic).
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Figure 10: ARE vs. memory size
(Campus).
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Figure 11: ARE vs. memory size
(CAIDA).
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Figure 12: ARE vs. k (Campus).
...............

200 400 600 800 1000
k

−6

−4

−2

0

2

lo
g 1

0A
R

E
SS
LC

CSS
CM Sketch

HeavyKeeper

Figure 13: ARE vs. k (CAIDA).
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Figure 14: ARE vs. skewness (Syn-
thetic).
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Figure 15: AAE vs. memory size
(Campus).
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Figure 16: AAE vs. memory size
(CAIDA).
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Figure 17: AAE vs. k (Campus).
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Figure 18: AAE vs. k (CAIDA).
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sketch is respectively 10%, 11%, 19%, and 41%, while
the one of HeavyKeeper is 82%. Furthermore, we find
that the precision of HeavyKeeper reaches 100% for a
memory size of 30KB, while the corresponding preci-
sion of Space-Saving, Lossy counting, CSS, and CM
sketch is 27%, 39%, 49%, and 93%. This implies that
HeavyKeeper has indeed much better precision than the
other three algorithms. We find that Lossy counting is
more accurate than Space-Saving. However, as will be
mentioned later, Lossy counting is much slower than
the other algorithms. For the CAIDA dataset (see Fig-
ure 6), we find that the precision of HeavyKeeper reaches
99.99% when memory size is larger than 20KB, while
for Space-Saving, Lossy counting, CSS, and CM sketch,
precision is respectively 18%, 33%, 34%, and 89% when
memory size is 50KB.
Precision vs. k: As shown in Figure 7, for the cam-
pus dataset, as k becomes larger, the precision of Heavy-
Keeper stays high, while it degrades for other algorithms.
For the campus dataset, as k becomes larger, the preci-
sion of HeavyKeeper is always higher than 95.9%, while
that of Space-Saving, Lossy counting, CSS, and CM
sketch reaches 32.7%, 44.1%, 50.1%, and 77.9% respec-
tively when k = 1000. This happens for two main rea-
sons: 1) larger k requires larger memory usage to store
information about more flows; 2) as k increases, the dif-
ference of flow sizes among flows becomes smaller, so
it is easy to mistake other flows for top-k flows. For
the CAIDA dataset (Figure 8), we find that the preci-
sion of HeavyKeeper is always above 94%, while for
Space-Saving, Lossy counting, CSS, and CM sketch,
it is 26.6%, 37.1%, 44%, and 70% respectively when
k = 1000.
Precision vs. skewness: As shown in Figure 9, the
precision of HeavyKeeper reaches 99.99%. For all
considered values of skewness, the precision of Heavy-
Keeper does not go below 94.9%, while the highest pre-
cision for Space-Saving, Lossy counting, CSS, and CM
sketch is 46.8%, 41.3%, 74.5%, and 85.7%, respectively.

5.4 Experiments on AAE and ARE
In this section, we focus on the ARE and the AAE of
the estimated frequency of reported top-k flows. We also
conduct experiments with varying memory size, k, and
skewness. The parameter settings are the same as in Sec-
tion 5.3.
ARE vs. memory size: As shown in Figure 10, for the
campus dataset, we find that the ARE of HeavyKeeper is
smaller than 0.01 when memory size is larger than 20KB,
while for Space-Saving, Lossy counting, CSS, and CM
sketch, it is larger than 100. Furthermore, we find that
the ARE of HeavyKeeper is between 100158 and 648291
times smaller than the one of Space-Saving, between
8450 and 78209 times smaller than the one of Lossy

counting, between 945 and 49561 times smaller than the
one of CSS, and between 279 and 226986 times smaller
than the one of CM sketch. For the CAIDA dataset (see
Figure 11), we find that the ARE of HeavyKeeper is be-
tween 21119 and 1190365 times smaller than the one of
Space-Saving, between 2955 and 456275 times smaller
than the one of Lossy counting, between 950 and 154047
times smaller than the one of CSS, and between 238 and
656145 times smaller than the one of CM sketch.
ARE vs. k: As shown in Figure 12, for the campus
dataset, we find that the ARE of HeavyKeeper is be-
tween 25579 and 56791 times smaller than the one of
Space-Saving, between 852 and 9312 times smaller than
the one of Lossy counting, between 142 and 3132 times
smaller than the one of CSS, and between 293 and 20370
times smaller than the of of CM sketch. For the CAIDA
dataset (see Figure 13), we find that the ARE of Heavy-
Keeper is between 4506 and 121912 times smaller than
the one of Space-Saving, between 383 and 23666 times
smaller than the one of Lossy counting, between 137 and
8816 times smaller than the one of CSS, and between 66
and 27290 times smaller than the one of CM sketch.
ARE vs. skewness: As shown in Figure 14, for all
considered values of skewness, we find that the ARE of
HeavyKeeper is between 15566 and 27829 times smaller
than that of Space-Saving, between 11915 and 41575
times smaller than that of Lossy counting, between 2174
and 6099 times smaller than that of CSS, and between
3819 and 10080 times smaller than that of CM sketch.
AAE vs. memory size: As shown in Figure 15, for the
campus dataset, we find that the AAE of HeavyKeeper is
between 433 and 3013 times smaller than that of Space-
Saving, between 267 and 1221 times smaller than that of
Lossy counting, between 200 and 758 times smaller than
that of CSS, and between 155 and 428 times smaller than
that of CM sketch. When memory size is 50KB, the AAE
of HeavyKeeper is only 2.73, confirming that the esti-
mated flow sizes of almost all reported flows are accu-
rate. For the CAIDA dataset (see Figure 16), we find that
the AAE of HeavyKeeper is between 697 and 1810 times
smaller than that of Space-Saving, between 421 and 928
times smaller than that Lossy counting, between 289 and
647 times smaller than the one of CSS, and between 86
and 284 times smaller than that of CM sketch.
AAE vs. k: As shown in Figure 17, for the campus
dataset, we find that the AAE of HeavyKeeper is between
271 and 1382 times smaller than that of Space-Saving,
between 142 and 346 times smaller than that of Lossy
counting, between 93 and 196 times smaller than that of
CSS, and between 74 and 318 times smaller than that of
CM sketch. For CAIDA dataset (see Figure 18), we find
that the AAE of HeavyKeeper is between 206 and 694
times smaller than that of Space-Saving, between 118
and 329 times smaller than that of Lossy counting, be-
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tween 73 and 199 times smaller than that of CSS, and be-
tween 67 and 121 times smaller than that of CM sketch.
AAE vs. skewness: From Figure 19, we find that
the AAE of HeavyKeeper is between 137 and 209 times
smaller than that of Space-Saving, between 96 and 355
times smaller than that of Lossy counting, between 28
and 55 times smaller than that of CSS, and between 45
and 73 times smaller than that of CM sketch.
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Figure 20: Throughput vs. memory size.

5.5 Experiments on Throughput
We now turn to the throughput of the algorithms. We
only report results for the campus dataset due to space
limitations. We set k = 100, and vary memory size from
10KB to 50KB. Here we use CAIDA datasets.
Throughput vs. memory size: As shown in Fig-
ure 20, we find that the throughput of HeavyKeeper is
always higher than other algorithms. Indeed, the aver-
age throughput of HeavyKeeper is 15.52Mps, while it is
12.15Mps, 11.34Mps, and 12.72Mps for Space-Saving,
Lossy counting, and CM sketch. These results show that
HeavyKeeper not only is more accurate than previous
work, but also achieves higher throughput as well.

6 Open vSwitch Deployment
In this section, we implement our HeavyKeeper algo-
rithm on a software switch platform: Open vSwitch
(OVS). We first present details of our implementation,
and then present experimental results to show the perfor-
mance of our algorithm running on Open vSwitch.

6.1 OVS Implementation
The OVS implementation of our HeavyKeeper algorithm
consists of three components: 1) the modified OVS dat-
apath, 2) the shared memory buffering flow IDs, and 3)
the user-space program of HeavyKeeper processing flow
IDs. For each incoming packet, it will be first inserted
into the OVS datapath for forwarding. Besides, we mod-
ify the source codes of OVS datapath to parse the flow
ID of the incoming packet, and then insert its flow ID
into the shared memory (the shared memory is created
initially). Finally, the user-space program will read the
flow IDs from the shared memory, and process them as
incoming packets.

In order to improve the performance of OVS, we inte-
grate OVS with DPDK (Data Plane Development Kit).
DPDK implements the datapath entirely in the user-
space, and thus it eliminates the overhead of a con-
text switch and memory copies between user-space and
kernel-space.

6.2 OVS Evaluation
To evaluate the performance of HeavyKeeper imple-
mented in OVS, we conduct experiments to evaluate the
throughput of HeavyKeeper and other algorithms. Be-
sides, we also show the throughput of OVS without using
any algorithm to show the impact of algorithms. We set
the memory size to 50KB.
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Figure 21: Throughput on OVS platform.

As shown in Figure 21, the throughput of Heavy-
Keeper is near the original throughput of OVS. Specif-
ically, the throughput of the original OVS is 19.22Mps,
and that of HeavyKeeper is 18.03Mps. However, the
throughput of CM sketch, Space-Saving, and Lossy
Counting is 14.14Mps, 13.80Mps, and 12.64Mps, re-
spectively. The results show that our HeavyKeeper algo-
rithm has little impact to the performance of OVS, while
other algorithms decrease the throughput significantly.

7 Conclusion
Finding the top-k elephant flows is a critical task for net-
work traffic measurement. As the line rate increases, it
is more and more challenging to design an accurate al-
gorithm that achieves fast and constant speed. Existing
algorithms for finding top-k flows cannot achieve high
precision when traffic speed is high and memory us-
age is small, because they do not handle massive mouse
flows effectively. In this paper, we propose a novel data
structure, called HeavyKeeper, which achieves a much
higher precision on top-k queries and a much lower er-
ror rate on flow size estimation, compared to previous
algorithms. The key idea of HeavyKeeper is that it intel-
ligently omits mouse flows, and focuses on recording the
information of elephant flows by using the exponential-
weakening decay strategy. Our evaluation confirms that
HeavyKeeper achieves 99.99% precision for finding the
top-k elephant flows, while also achieving a reduction in
the error rate of the estimated flow size by about 3 or-
ders of magnitude compared to the state-of-the-art algo-
rithms.
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Abstract

Serverless computing has emerged as a new cloud com-
puting paradigm, where an application consists of indi-
vidual functions that can be separately managed and ex-
ecuted. However, existing serverless platforms normally
isolate and execute functions in separate containers, and
do not exploit the interactions among functions for per-
formance. These practices lead to high startup delays for
function executions and inefficient resource usage.

This paper presents SAND, a new serverless computing
system that provides lower latency, better resource effi-
ciency and more elasticity than existing serverless plat-
forms. To achieve these properties, SAND introduces two
key techniques: 1) application-level sandboxing, and 2)
a hierarchical message bus. We have implemented and
deployed a complete SAND system. Our results show
that SAND outperforms the state-of-the-art serverless plat-
forms significantly. For example, in a commonly-used
image processing application, SAND achieves a 43%
speedup compared to Apache OpenWhisk.

1 Introduction

Serverless computing is emerging as a key paradigm in
cloud computing. In serverless computing, the unit of
computation is a function. When a service request is re-
ceived, the serverless platform allocates an ephemeral
execution environment for the associated function to
handle the request. This model, also known as Function-
as-a-Service (FaaS), shifts the responsibilities of dynam-
ically managing cloud resources to the provider, allowing
the developers to focus only on their application logic. It
also creates an opportunity for the cloud providers to im-
prove the efficiency of their infrastructure resources.

The serverless computing paradigm has already cre-
ated a significant interest in industry and academia.
There have been a number of commercial serverless of-
ferings (e.g., Amazon Lambda [1], IBM Cloud Func-
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Figure 1: Total runtime and compute time of executing
an image processing pipeline with four functions on ex-
isting commercial serverless platforms. Results show the
mean values with 95% confidence interval over 10 runs,
after discarding the initial (cold) execution.

tions [5], Microsoft Azure Functions [11], and Google
Cloud Functions [15]), as well as several new proposals
(e.g., OpenLambda [24] and OpenFaaS [19]).

Although existing serverless platforms work well for
simple applications, they are not well-suited for more
complex services due to their overheads, especially when
the application logic follows an execution path span-
ning multiple functions. Consider an image processing
pipeline that executes four consecutive functions [51]:
extract image metadata, verify and transform it to a spe-
cific format, tag objects via image recognition, and pro-
duce a thumbnail. We ran this pipeline using AWS Step
Functions [10] and IBM Cloud Functions with Action
Sequences [29], both of which provide a method to con-
nect multiple functions into a single service.1 On these
platforms, we found that the total runtime is significantly
more than the actual time required for function execu-
tions (see Figure 1), indicating the overheads of execut-
ing such connected functions. As a result of these over-
heads, the use and adoption of serverless computing by a
broader range of applications is severely limited.

We observe two issues that contribute to these over-
1As of this writing, other major serverless providers, e.g., Microsoft

and Google, do not support Python, which was used for this pipeline.
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heads and diminish the benefits of serverless computing.
Our first observation is that most existing serverless plat-
forms execute each application function within a separate
container instance. This decision leads to two common
practices, each with a drawback. First, one can start a
new, ‘cold’ container to execute an associated function
every time a new request is received, and terminate the
container when the execution ends. This approach in-
evitably incurs long startup latency for each request. The
second practice is to keep a launched container ‘warm’
(i.e., running idle) for some time to handle future re-
quests. While reducing the startup latency for process-
ing, this practice comes at a cost of occupying system
resources unnecessarily for the idle period (i.e., resource
inefficiency).

Our second observation is that existing serverless plat-
forms do not appear to consider interactions among func-
tions, such as those in a sequence or workflow, to reduce
latency. These platforms often execute functions wher-
ever required resources are available. As such, external
requests (e.g., user requests calling the first function in a
workflow) are treated the same as internal requests (e.g.,
functions initiating other functions during the workflow
execution), and load is balanced over all available re-
sources. This approach causes function interactions to
pass through the full end-to-end function call path, in-
curring extra latency. For example, in Apache Open-
Whisk [5] (i.e., the base system of IBM Cloud Func-
tions [29]), even for functions that belong to the same
workflow defined by the Action Sequences, all function
calls pass through the controller. We also observe that,
for functions belonging to the same state machine de-
fined by AWS Step Functions [10], the latencies between
functions executing on the same host are similar to the
latencies between functions running on different hosts.

In this paper, we design and prototype a novel, high-
performance serverless platform, SAND. Specifically, we
propose two mechanisms to accomplish both low latency
and high resource efficiency. First, we design a fine-
grained application sandboxing mechanism for server-
less computing. The key idea is to have two levels
of isolation: 1) isolation between different applications,
and 2) isolation between functions of the same appli-
cation. This distinction enables SAND to quickly allo-
cate (and deallocate) resources, leading to low startup
latency for functions and efficient usage of cloud re-
sources. We argue that stronger mechanisms (e.g., con-
tainers) are needed only for the isolation among applica-
tions, and weaker mechanisms (e.g., processes and light-
weight contexts [37]) are well-suited for the isolation
among functions within the same application.

Second, we design a hierarchical message queuing
and storage mechanism to leverage locality for the in-
teracting functions of the same application. Specifically,

SAND orchestrates function executions of the same appli-
cation as local as possible. We develop a local message
bus on each host to create shortcuts to enable fast mes-
sage passing between interacting functions, so that func-
tions executing in a sequence can start almost instantly.
In addition, for reliability, we deploy a global message
bus that serves as a backup of locally produced and con-
sumed messages in case of failures. The same hierarchy
is also applied for our storage subsystem in case func-
tions of the same application need to share data.

With these two mechanisms, SAND achieves low func-
tion startup and interaction latencies, as well as high re-
source efficiency. Low latencies are crucial for serverless
computing and play a key role in broadening its use. Oth-
erwise, application developers would merge functions to
avoid the latency penalty, making the applications less
modular and losing the benefits of serverless computing.
In addition, the cloud industry is increasingly interested
in moving infrastructure to the network edge to further
reduce network latency to users [18, 26, 36, 50, 52]. This
move requires high resource efficiency because the edge
data centers typically have fewer resources than the core.

We implemented and deployed a complete SAND sys-
tem. Our evaluation shows that SAND outperforms state-
of-the-art serverless platforms such as Apache Open-
Whisk [5] by 8.3× in reducing the interaction latency be-
tween (empty) functions and much more between typical
functions. For example, in a commonly-used image pro-
cessing application, these latencies are reduced by 22×,
leading to a 43% speedup in total runtime. In addition,
SAND can allocate and deallocate system resources for
function executions much more efficiently than existing
serverless platforms. Our evaluation shows that SAND im-
proves resource efficiency between 3.3× and two orders
of magnitude compared to the state-of-the-art.

2 Background

In this section, we give an overview of existing serverless
platforms, their practices, and the implications of these
practices. We summarize how these platforms deploy
and invoke functions in parallel as well as in sequence.
Our observations are based on open-source projects, but
we think they still reflect many characteristics of com-
mercial platforms. For example, the open-source Apache
OpenWhisk is used in IBM Cloud Functions [29]. In ad-
dition, we augment these observations with our experi-
ences using these platforms and with publicly available
information from the commercial providers.

2.1 Function Deployment
In serverless computing, the cloud operator takes the re-
sponsibility of managing servers and system resources to
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run the functions supplied by developers. To our knowl-
edge, the majority of serverless platforms use containers
and map each function into its own container to achieve
this goal. This mapping enables the function code to be
portable, so that the operator can execute the function
wherever there are enough resources in the infrastructure
without worrying about compatibility. Containers also
provide virtually isolated environments with namespaces
separating operating system resources (e.g., processes,
filesystem, networking), and can isolate most of the
faulty or malicious code execution. Serverless platforms
that employ such a mapping include commercial plat-
forms (e.g., AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions, and IBM Cloud Functions) as
well as open-source platforms (e.g., Apache OpenWhisk,
OpenLambda [24], Greengrass [7], and OpenFaaS [19]).

Note that there are also other platforms that em-
ploy NodeJS [45] to run functions written in JavaScript
[25, 49, 54, 58]. These platforms offer alternatives for
serverless computing, but are not as widely used as the
container-based platforms. For this reason, hereafter we
describe in detail serverless platforms that employ con-
tainers and use them in our evaluation.

2.2 Function Call

The most straightforward approach to handle an incom-
ing request is to start a new container with the associ-
ated function code and then execute it. This approach,
known as ‘cold’ start, requires the initialization of the
container with the necessary libraries, which can incur
undesired startup latency to the function execution. For
example, AWS Lambda has been known to have delays
of up to a few seconds for ‘cold’ function calls [8]. Simi-
larly, Google has reported a median startup latency of 25
seconds on its internal container platform [55], 80% of
which are attributed to library installation. Lazy loading
of libraries can reduce this startup latency, but it can still
be on the order of a few seconds [23].

To improve startup latency, a common practice is to
reuse launched containers by keeping them ‘warm’ for a
period of time. The first call to a function is still ‘cold’,
but subsequent calls to this function can be served by the
‘warm’ container to avoid undesired startup latency. To
also reduce the latency of the first function call, Apache
OpenWhisk can launch containers even before a request
arrives via the ‘pre-warming’ technique [5].

The above ‘warm’ container practice, however, unnec-
essarily occupies resources with idling containers. Note
that this practice also relaxes the original isolation guar-
antee provided by the containers, because different re-
quests may be handled inside the same container albeit
sequentially (i.e., one execution at a time).

2.3 Function Concurrency
Another aspect in which various serverless platforms can
differ is how they handle concurrent requests. Apache
OpenWhisk and commercial platforms such as AWS
Lambda [1], Google Cloud Functions and Microsoft
Azure Functions allow only one execution at a time in
a container for performance isolation. As a result, con-
current requests will either be handled in their individ-
ual containers and experience undesired startup latencies
for each container, or the requests will be queued for
a ‘warm’ container to become available and experience
queuing delays. In contrast, OpenFaaS [19] and Open-
Lambda [24] allow concurrent executions of the same
function in a single container.

2.4 Function Chaining
Application logic often consists of sequences of multiple
functions. Some existing serverless platforms support
the execution of function sequences (e.g., IBM Action
Sequences [29], AWS Step Functions [10]). In a func-
tion sequence, the events that trigger function executions
can be categorized as external (e.g., a user request calling
a function sequence) and internal (e.g., a function initiat-
ing other functions during the workflow execution). Ex-
isting serverless platforms normally treat these events the
same, such that each event traverses the full end-to-end
function call path (e.g., event passing via a unified mes-
sage bus or controller), incurring undesired latencies.

3 SAND Key Ideas and Building Blocks

This section describes the key ideas and building blocks
of SAND. We first present the design of our application
sandboxing mechanism (§3.1) that enables SAND to be
resource-efficient and elastic as well as to achieve low-
latency function interactions. Then, we describe our hier-
archical message queuing mechanism (§3.2) that further
reduces the function interaction latencies.

3.1 Application Sandboxing
The key idea in our sandboxing design is that we need
two levels of fault isolation: 1) isolation between differ-
ent applications, and 2) isolation between functions of
the same application. Our reasoning is that different ap-
plications require strong isolation from each other. On
the other hand, functions of the same application may not
need such a strong isolation, allowing us to improve the
performance of the application. Note that some existing
serverless platforms reuse a ‘warm’ container to execute
calls to the same function, making a similar trade-off to
improve the performance of a single function.
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To provide a two-level fault isolation, one can choose
from a variety of technologies, such as virtual machines
(VMs), LightVMs [40], containers [21, 53], uniker-
nels [38, 39], processes, light-weight contexts [37] and
threads. This choice will impact not only performance
but also the dynamic nature of applications and functions
as well as the maintenance effort by cloud operators. We
discuss these implications in §9.

In SAND, we specifically separate applications from
each other via containers, such that each application runs
in its own container. The functions that compose an ap-
plication run in the same container but as separate pro-
cesses. Upon receiving an incoming request, SAND forks
a new process in the container to execute the associated
function, such that each request is handled in a separate
process. For example, Figure 2 shows that the two func-
tions f1 and f2 of the same application are run in the same
application sandbox on a host, but different applications
are separated.

Our application sandboxing mechanism has three sig-
nificant advantages. First, triggering a function execu-
tion by forking a process within a container incurs short
startup latency, especially compared to launching a sep-
arate container per request or function execution — up
to three orders of magnitude speedup (§6.1). Second, the
libraries shared by multiple functions of an application
need to be loaded into the container only once. Third, the
memory footprint of an application container increases
in small increments with each incoming request and de-
creases when the request has been processed, with the
resources allocated for a single function execution be-
ing released immediately (i.e., when the process termi-
nates). As a result, the cloud operator can achieve sub-
stantially better resource efficiency and has more flexi-
bility to divert resources not only among a single appli-
cation’s functions but also among different applications
(i.e., no explicit pre-allocation). This effect becomes
even more critical in emerging edge computing scenarios
where cloud infrastructure moves towards the network
edge that has only limited resources.

3.2 Hierarchical Message Queuing

Serverless platforms normally deploy a unified message
bus system to provide scalable and reliable event dis-
patching and load balancing. Such a mechanism works
well in scenarios where individual functions are triggered
via (external) user requests. However, it can cause un-
necessary latencies when multiple functions interact with
each other, such that one function’s output is the input to
another function. For example, even if two functions of
an application are to be executed in a sequence and they
reside on the same host, the trigger message between the
two functions still has to be published to the unified mes-

Figure 2: SAND’s key building blocks: application sand-
boxing and hierarchical message queuing.

sage bus, only to be delivered back to the same host.
To address this problem, we design a hierarchical

message bus for SAND. Our basic idea is to create short-
cuts for functions that interact with each other (e.g., func-
tions of the same application). We describe the hierarchi-
cal message bus and its coordination with two levels.2

In a two-level hierarchy, there is a global message bus
that is distributed across hosts and a local message bus
on every host (Figure 2). The global message bus serves
two purposes. First, it delivers event messages to func-
tions across different hosts, for example, when a single
host does not have enough resources to execute all de-
sired functions or an application benefits from executing
its functions across multiple hosts (e.g., application sand-
box 1 in Figure 2). Second, the global message bus also
serves as a backup of local message buses for reliability.

The local message bus on each host is used to de-
liver event messages from one function to another if both
functions are running on the same host. As a result, the
interacting functions (e.g., an execution path of an appli-
cation spanning multiple functions, similar to the appli-
cation sandbox 1 in Figure 2) can benefit from reduced
latency because accessing the local message bus is much
faster than accessing the global message bus (§6.2).

The local message bus is first-in-first-out, preserving
the order of messages from one function to another. For
global message bus, the order depends on the load bal-
ancing scheme: if a shared identifier of messages (e.g.,
key) is used, the message order will also be preserved.
Coordination. To ensure that an event message does not
get processed at the same time on multiple hosts, the lo-
cal and global message buses coordinate: a backup of
the locally produced event message is published to the
global message bus with a condition flag. This flag in-
dicates that the locally produced event message is being
processed on the current host and should not be deliv-
ered to another host for processing. After publishing the
backup message, the current host tracks the progress of
the forked process that is handling the event message and

2This hierarchy can be extended to more than two levels in a large
network; we omit the description due to space limit.
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updates its flag value in the global message bus accord-
ingly (i.e., ‘processing’ or ‘finished’). If the host fails
after the backup message is published to the global mes-
sage bus but before the message has been fully processed,
another host takes over the processing after a timeout.

This coordination procedure is similar to write-ahead-
logging in databases [57], whereby a locally produced
event message would be first published to the global mes-
sage bus before the local message bus. While guarantee-
ing that there are no lost event messages due to host fail-
ures, this ‘global-then-local’ publication order can add
additional latency to the start of the next (locally avail-
able) function in a sequence. In SAND, we relax this or-
der, and publish event messages to the global message
bus asynchronously with the publication to the local mes-
sage bus in parallel. In serverless computing, functions
are expected to, and usually, finish execution fast [9,12].
In case of a failure, SAND can reproduce the lost event
messages by re-executing the functions coming after the
last (backup) event message seen in the global message
bus. Note that, in SAND, the output of a function execu-
tion becomes available to other functions at the end of the
function execution (§4.1). As such, the coordination and
recovery procedures work for outputs that are contained
within SAND. SAND does not guarantee the recovery of
functions that make externally-visible side effects during
their executions, such as updates to external databases.

4 SAND System Design

This section presents the detailed design of SAND utiliz-
ing the aforementioned key ideas and building blocks.
We also illustrate how an example application runs on
SAND, and describe some additional system components.

4.1 System Components
The SAND system contains a number of hosts, which can
exchange event messages via a global message bus (Fig-
ure 3a). Figure 3b shows the system components on a
single host. Here, we describe these components.
Application, Grain, and Workflow. In SAND, a func-
tion of an application is called a grain. An application
consists of one or multiple grains, as well as the work-
flows that define the interactions among these grains.
The interaction between grains can be static where the
grains are chained (e.g., Grain2’s execution always fol-
lows Grain1’s execution), or dynamic where the execu-
tion path is determined during the execution (e.g., the
execution of Grain2 and/or Grain3 may follow Grain1’s
execution, according to Grain1’s output). The grain code
and workflows are supplied by the application developer.
A grain can be used by multiple applications by copying
it to the respective application sandboxes.

(a) SAND infrastructure.

(b) A SAND host.
(c) A SAND application
sandbox with two grains.

Figure 3: High-level architecture of SAND.

Sandbox, Grain Worker, and Grain Instance. An ap-
plication can run on multiple hosts. On a given host, the
application has its own container called sandbox. The set
of grains hosted in each sandbox can vary across hosts as
determined by the application developer3, but usually in-
cludes all grains of the application.

When a sandbox hosts a specific grain, it runs a dedi-
cated OS process called grain worker for this grain. The
grain worker loads the associated grain code and its li-
braries, subscribes to the grain’s queue in the host’s local
message bus, and waits for event messages.

Upon receiving an associated event message, the grain
worker forks itself to create a grain instance that han-
dles the event message (Figure 3c). This mechanism pro-
vides three significant advantages for SAND. First, fork-
ing grain instances from the grain worker is quite fast and
lightweight. Second, it utilizes OS mechanisms that al-
low the sharing of initialized code (e.g., loaded libraries),
thus reducing the application’s memory footprint. Third,
the OS automatically reclaims the resources assigned to
a grain instance upon its termination. Altogether, by ex-
ploiting the process forking, SAND becomes fast and ef-
ficient in allocating and deallocating resources for grain
executions. As a result, SAND can easily handle load vari-
ations and spikes to multiplex multiple applications (and
their grains) elastically even on a single host.

When a grain instance finishes handling an event mes-
sage, it produces the output that includes zero or more
event messages. Each such message is handled by the
next grain (or grains), as defined in the workflow of the
application. Specifically, if the next grain is on the same
host, the previous grain instance directly publishes the
output event message into the local message queue that is
subscribed to by the next grain worker, which then forks
a grain instance to handle this event message. In parallel,
a backup of this message is asynchronously published to
the global message bus.

3Or automatically by SAND via strategies or heuristics (e.g., a sand-
box on each host should not run more than a certain number of grains).
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Local and Global Message Buses. A local message bus
runs on each host, and serves as a shortcut for local func-
tion interactions. Specifically, in the local message bus, a
separate message queue is created for each grain running
on this host (Figure 2). The local message bus accepts,
stores and delivers event messages to the corresponding
grain worker when it polls its associated queue.

On the other hand, the global message bus is a dis-
tributed message queuing system that runs across the
cloud infrastructure. The global message bus acts as a
backup for locally produced and consumed event mes-
sages by the hosts, as well as delivers event messages to
the appropriate remote hosts if needed. Specifically, in
the global message bus, there is an individual message
queue associated with each grain hosted in the entire in-
frastructure (see Figure 2). Each such message queue is
partitioned to increase parallelism, such that each parti-
tion can be assigned to a different host running the as-
sociated grain. For example, the widely-used distributed
message bus Apache Kafka [3] follows this approach.

Each host synchronizes its progress on the consump-
tion of the event messages from their respective parti-
tions with the global message bus. In case of a failure,
the failed host’s partitions are reassigned to other hosts,
which then continue consuming the event messages from
the last synchronization point.
Host Agent. Each host in the infrastructure runs a spe-
cial program called host agent. The host agent is re-
sponsible for the coordination between local and global
message buses, as well as launching sandboxes for appli-
cations and spawning grain workers associated with the
grains running on this host. The host agent subscribes to
the message queues in the global message bus for all the
grains the host is currently running. In addition, the host
agent tracks the progress of the grain instances that are
handling event messages, and synchronizes it with the
host’s partitions in the global message bus.

4.2 Workflow Example

The SAND system can be best illustrated with a simple
workflow example demonstrating how a user request to
a SAND application is handled. Suppose the application
consists of two grains, Grain1 and Grain2. Hostx is run-
ning this application with the respective grain workers,
GW1 and GW2. The global message bus has an indi-
vidual message queue associated with each grain, GQ1
and GQ2. In addition, there is an individual partition
(from the associated message queue in the global mes-
sage bus) assigned to each of the two grain workers on
Hostx, namely GQ1,1 and GQ2,1, respectively.

Assume there is a user request for Grain1 (Step 0 in
Figure 4), and the global message bus puts this event
message into the partition GQ1,1 within the global mes-

Figure 4: Handling of a user request to a simple applica-
tion that consists of two grains in a workflow.

sage queue GQ1, according to a load balancing strategy.
As a result, the host agent on Hostx can retrieve this event
message (Step 1) and publish it into the local queue LQ1
(associated with Grain1) in Hostx’s local message bus
(Step 2). The grain worker GW1, which is responsible
for Grain1 and subscribed to LQ1, retrieves the recently
added event message (Step 3) and forks a new grain in-
stance (i.e., a process) to handle the message (Step 4).

Assume Grain1’s grain instance produces a new event
message for the next grain in the workflow, Grain2. The
grain instance publishes this event message directly to
Grain2’s associated local queue LQ2 (Step 5a), because
it knows that Grain2 is locally running. A copy of the
event message is also published to the local queue LQHA
for the host agent on Hostx (Step 5b). The host agent re-
trieves the message (Step 6a) and publishes it as a backup
to the assigned partition GQ2,1 in Grain2’s associated
global queue with a condition flag ‘processing’ (Step 6b).

Meanwhile, the grain worker GW2 for Grain2 retrieves
the event message from the local queue LQ2 in the local
message bus on Hostx (Step 6c). GW2 forks a new grain
instance, which processes the event message and termi-
nates after execution (Step 7). In our example, GW2 pro-
duces a new event message to the local queue of the host
agent LQHA (Step 8), because Grain2 is the last grain in
the application’s workflow and there are no other locally
running grains to handle it. The host agent retrieves the
new event message (Step 9) and directly publishes it to
the global message bus (Step 10a). In addition, the finish
of the grain instance of Grain2 causes the host agent to
update the condition flag of the locally produced event
message that triggered Grain2 with a value ‘finished’
to indicate that it has been successfully processed (Step
10b). The response is then sent to the user (Step 11).
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4.2.1 Handling Host Failures

In the previous description, all hosts are alive during the
course of the workflow. Suppose the processing of the
event message for Grain2 (Step 7 in Figure 4) failed due
to the failure of Hostx. When the global message bus de-
tects Hostx’s failure, it will reassign Hostx’s associated
partitions (i.e., GQ1,1 and GQ2,1). Suppose there is an-
other host Hosty taking over these two partitions. In our
example, only Grain2’s grain instances were triggered
via the locally produced event messages, meaning that
the condition flags were published to GQ2,1 (i.e., Hostx’s
partition in Grain2’s global message queue).

When Hosty starts the recovery process, it retrieves all
event messages in GQ2,1 (and also GQ1,1). For each mes-
sage, Hosty’s host agent checks its condition flag. If the
flag indicates that an event message has been processed
successfully (i.e., ‘finished’), this message is skipped be-
cause Hostx failed after processing this event message.
If the flag indicates that the processing of the event mes-
sage has just started (i.e., ‘processing’), Hosty processes
this event message following the steps in Figure 4.

It is possible that Hosty fails during the recovery pro-
cess. To avoid the loss of event messages, Hosty contin-
uously synchronizes its progress on the consumed mes-
sages from the reassigned partitions with the global mes-
sage bus. It does not retrieve any new messages from the
partitions until all messages of the failed host have been
processed successfully. As a result, each host replacing
a failed host deals with smaller reassigned partitions.

4.3 Additional System Components

Here, we briefly describe a few additional system com-
ponents that complete SAND.
Frontend Server. The frontend server is the interface
for developers to deploy their applications as well as to
manage grains and workflows. It acts as the entry point
to any application on SAND. For scalability, multiple fron-
tend servers can run behind a standard load balancer.
Local and Global Data Layers. Grains can share data
by passing a reference in an event message instead of
passing the data itself. The local data layer runs on
each host similar to the local message bus, and enables
fast access to the data that local grains want to share
among themselves via an in-memory key-value store.
The global data layer is a distributed data storage run-
ning across the cloud infrastructure similar to the global
message bus. The coordination between the local and
global data layers is similar to the coordination between
the local and global message buses (§3.2). Each applica-
tion can only access its own data in either layer.

To ensure the data produced by a grain instance per-
sists, it is backed up to the global data layer during the

(backup) publication of the locally produced event mes-
sage. This backup is facilitated with another flag value
(between ‘processing’ and ‘finished’ described in §3.2)
to indicate the start of the data transfer to the global data
layer. This value contains the data’s metadata (i.e., name,
size, hash), which is checked during the recovery pro-
cess to decide whether an event message needs to be pro-
cessed: if the metadata in the flag matches the metadata
of the actual data in the global data layer, the event mes-
sage was successfully processed but the ‘finished’ flag
could not be published by the failed host; otherwise, this
event message needs to be processed again.

5 Implementation

We implemented a complete SAND system with all com-
ponents described in §4. Our system uses Docker [17] for
application sandboxes, Apache Kafka [3] for the global
message bus, Apache Cassandra [2] for the global data
layer, and nginx [44] as the load balancer for the frontend
server instances. We use these components off-the-shelf.

In addition, we implemented the host agent (7,273
lines of Java), the Python grain worker (732 lines of
Python) and the frontend server (461 lines of Java).
The host agent coordinates the local and global message
buses and data layers, as well as manages application
sandboxes and grains, by interacting with Kafka, Cas-
sandra and Docker. The grain worker becomes dedicated
to a specific grain after loading its code and necessary
libraries, interacts with the local message bus, and forks
grain instances for each associated event message. We
use Apache Thrift [6] to automatically generate the inter-
faces for our Java implementations of the local message
bus and the local data layer. The frontend server accepts
connections handed over by the nginx load balancer, in-
teracts with Kafka to deliver user requests into SAND and
return application responses back to users. The frontend
server embeds Jetty [32] as the HTTP endpoint and em-
ploys its thread pool to handle user requests efficiently.

For easy development and testing, we also imple-
mented a SAND emulator (764 lines of Python) that sup-
ports SAND’s API and logging for debugging. Developers
can write their grains and workflows, and test them using
the emulator before the actual deployment.

6 Evaluation

We evaluate SAND and compare it to Apache OpenWhisk
[5] and AWS Greengrass [7]. We choose these two sys-
tems because we can run local installations for a fair
comparison. We first report on microbenchmarks of al-
ternative sandboxing mechanisms and SAND’s hierarchi-
cal message bus. We then evaluate function interaction

USENIX Association 2018 USENIX Annual Technical Conference    929



 0.1

 1

 10

 100

Xen M
irageO

S

D
ocker run C

D
ocker exec C

D
ocker exec Python

exec C

exec Python

exec G
o

exec N
odeJS

exec Java

fork C

fork Python

S
ta

rt
u
p

L
a
te

n
c
y
 (

m
s
)

(a) Function startup latencies.

 0

 0.5

 1

 1.5

 2

 2.5

Global Local

M
e
s
s
a
g
e
 D

e
liv

e
ry

L
a
te

n
c
y
 (

m
s
)

Java
Python

(b) Message delivery latencies.

 1

 10

 100

 1000

Apache
OpenWhisk

AWS
Greengrass

SAND

F
u
n
c
ti
o
n
 I
n
te

ra
c
ti
o
n

L
a
te

n
c
y
 (

m
s
) cold

warm

(c) Python function interaction latencies.

Figure 5: Measurements regarding function startup latencies, message delivery latencies and Python function interac-
tion latencies, with error bars showing the 95% confidence interval.

latencies and the memory footprints of function execu-
tions, as well as investigate the trade-off between allo-
cated memory and latency. Finally, we revisit the image
processing pipeline, which was discussed as a motiva-
tional example in §1. We conducted all experiments on
machines equipped with Intel Xeon E5520 with 16 cores
at 2.27GHz and 48GB RAM, unless otherwise noted.

6.1 Sandboxing and Startup Latency
There are several alternative sandboxing mechanisms to
isolate the applications and function executions (see §9).
Here, we explore the startup latency of these alternatives.
Methodology. We measured the startup time until a
function starts executing, with various sandboxing mech-
anisms including Docker (CE-17.11 with runc 1.0.0) and
unikernel (Xen 4.8.1 with MirageOS 2.9.1), as well as
spawning processes in C (gcc 4.8.5), Go (1.8.3), Python
(2.7.13), NodeJS (6.12) and Java (1.8.0.151). We used
an Intel Xeon E5-2609 host with 4 cores at 2.40GHz and
32GB RAM running CentOS 7.4 (kernel 4.9.63).
Results. Figure 5a shows the mean startup latencies with
95% confidence interval. Starting a process in a running,
warm container via the Docker client interface (Docker
exec C) is much faster than launching both the container
and the process (Docker run C). Nonetheless, Docker
adds significant overhead to function starts compared to
starts without it (exec C, exec Python). Function starts
with a unikernel (Xen MirageOS) are similar to using a
container. Not surprisingly, spawning processes with bi-
naries (exec C, exec Go) are faster than interpreted lan-
guages (exec Python, exec NodeJS) and Java, and fork-
ing processes (fork C, fork Python) is fastest among all.

6.2 Hierarchical Message Bus
Instead of a single unified message bus, SAND utilizes a
local message bus on every host for fast function interac-
tions. Here, we show the benefits of this approach.
Methodology. We created two processes on the same
host that communicate in a producer-consumer style un-

der load-free conditions. With Python and Java clients,
we measured the latency for a message delivered via the
global message bus (Kafka 0.10.1.0, 3 hosts, 3 replicas,
default settings) and via our local message bus.
Results. Figure 5b shows the mean message delivery la-
tencies with 95% confidence interval. The Python client
(used by our grain instances) can deliver an event mes-
sage to the next grain via the local message bus 2.90×
faster than via the global message bus. Similarly, the Java
client (used by our host agent) gets a 5.42× speedup.

6.3 Function Interaction Latency
Given two functions in a workflow, the function interac-
tion latency is the time between the first function’s finish
and the second function’s start.
Methodology. We created two Python functions, F1 and
F2, such that F1 produces an event message for F2 to con-
sume. We logged high-resolution timestamps at the end
of F1 and at the start of F2. We used an Action Sequence
in OpenWhisk [48], matching MQTT topic subscriptions
in Greengrass [59] and SAND’s workflow description. We
then triggered F1 with a request generator.

Recall that SAND uses a single, running container for
multiple functions of an application. For a fair compari-
son, we measure function interaction latencies in Open-
Whisk and Greengrass with warm containers. For com-
pleteness, we also report their cold call latencies, where
a function call causes a new container to be launched.
Results. Figure 5c shows that SAND incurs a significantly
shorter (Python) function interaction latency. SAND out-
performs OpenWhisk and Greengrass, both with warm
containers, by 8.32× and 3.64×, respectively. Further-
more, SAND’s speedups are 562× and 358× compared to
OpenWhisk and Greengrass with cold containers.

6.4 Memory Footprint
Concurrent calls to a function on today’s serverless com-
puting platforms are handled by concurrent execution in-
stances. These instances are served either by launching
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Table 1: Workloads and burst parameters.

Load Rate (calls/min) Duration (s) Frequency (s)
A 1,000 8 240
B 250 8 240
C 1,000 30 120
D 1,000 8 120
E 250 30 120

new containers or by assigning them to warm contain-
ers if available. Because concurrently-running contain-
ers occupy system resources, we examine the memory
footprint of such concurrent function executions.
Methodology. We made up to 50 concurrent calls to a
single Python function. We ensured that all calls were
served in parallel, and measured each platform’s memory
usage via docker stats and ps commands.
Results. We find that both OpenWhisk and Greengrass
show a linear increase in memory footprint with the num-
ber of concurrent calls.4 Each call adds to the memory
footprint about 14.61MB and 13.96MB in OpenWhisk
and Greengrass, respectively. In SAND, each call only
adds 1.1MB on top of the 16.35MB consumed by the
grain worker. This difference is because SAND forks a
new process inside the same sandbox for each function
call, whereas OpenWhisk and Greengrass use separate
containers for concurrent calls.

6.5 Idle Memory Cost vs. Latency
Many serverless platforms use warm containers to pre-
vent cold startup penalties for subsequent calls to a func-
tion. On the other hand, these platforms launch new con-
tainers when there are concurrent calls to a function but
no warm containers available (§6.4). These new contain-
ers will also be kept warm until a timeout, occupying
resources. Here, we investigate the trade-off between oc-
cupied memory and function call latency.
Methodology. We created 5 synthetic workloads each
with 2,000 function calls. In all workloads, the call ar-
rival time and the function processing time (i.e., busy
wait) follow a Poisson distribution with a mean rate of
100 calls per minute and a mean duration of 600ms. To
see how the serverless platforms behave under burst, we
varied three parameters as shown in Table 1: 1) burst
rate, 2) burst duration, and 3) burst frequency.

We explored 4 different unused-container timeouts in
OpenWhisk. Unfortunately, this timeout cannot be mod-
ified in Greengrass, so we could not use it in this ex-
periment. We computed the idle memory cost by multi-
plying the allocated but unused memory of the container
instances with the duration of their allocations (i.e., to-

4In Greengrass, this relationship continues until 25 concurrent calls,
after which calls get queued as shown in system logs.
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Figure 6: Idle memory cost vs. function call latency.

tal idle memory during the experiment). We reused the
memory footprint results from §6.4. In OpenWhisk, the
number of container instances depends on the concur-
rency, whereas SAND uses a single application sandbox.

Results. Figures 6a and 6b show the effects of container
timeouts in OpenWhisk on the idle memory cost and the
function call latency, respectively. We observe that a long
timeout is not suited for bursty traffic, with additional
containers created to handle concurrent calls in a burst
but are not needed afterwards. Even with a relatively
short timeout of 180 seconds, the high idle memory costs
suggest that containers occupy system resources with-
out using them during the majority of our experiment.
We also observe that a shorter timeout lowers the idle
memory cost but leads to much longer function call la-
tencies due to the cold start effect, affecting between
18.15%–33.35% of all calls in all workloads with a 1 sec-
ond timeout. Interestingly, the frequent cold starts cause
OpenWhisk to overestimate the number of required con-
tainers, partially offsetting the lowered idle memory cost
achieved by shorter timeouts.

In contrast, SAND reduces idle memory cost from
3.32× up to two orders of magnitude with all workloads
without sacrificing low latency (15.87–16.29 ms). SAND,
by its sandboxing mechanism, handles concurrent calls
to a function (or multiple functions) on a single host by
forking parallel processes inside a container; therefore,
SAND does not suffer from cold startup penalties. With
higher load, SAND would amortize the penalty of start-
ing a new sandbox on another host by using it both for
multiple executions of a single function and for different
functions. Our ongoing work includes intelligent moni-
toring and scheduling for additional sandboxes.
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processing pipeline. Results show the mean values with
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6.6 Image Processing Pipeline

Here, we revisit our motivational example used in §1,
i.e., the image processing pipeline. This pipeline consists
of four consecutive Python functions, and is similar to
the reference architecture used by AWS Lambda [51]. It
first extracts the metadata of an image using ImageMag-
ick [30]. A subset of this metadata is then verified
and retained by the next function in the pipeline. The
third function recognizes objects in the image using the
SqueezeNet deep learning model [28] executed on top
of the MXNet framework [4, 43]. Names of the recog-
nized objects are appended to the extracted metadata and
passed to the final function, which generates a thumbnail
of the image and stores the metadata in a separate file.
Methodology. Each function recorded timestamps at the
start and end of its execution, which we used to produce
the actual compute time. The difference between the to-
tal time and the compute time gave each platform’s over-
head. The image was always read from a temporary local
storage associated with each function call. We ran the
pipeline on AWS Step Functions, IBM Cloud Functions,
Apache OpenWhisk with Action Sequences, and SAND.
Results. Figure 7 shows the runtime breakdown of these
platforms. Compared to other platforms, we find that
SAND achieves the lowest overhead for running a series
of functions. For example, SAND reduces the overhead by
22.0× compared to OpenWhisk, even after removing the
time spent on extra functionality not supported in SAND

yet (e.g., authentication and authorization). We notice
that OpenWhisk re-launches the Python interpreter for
each function invocation, so that libraries are loaded be-
fore a request can be handled. In contrast, SAND’s grain
worker loads a function’s libraries only once, which are
then shared across forked grain instances handling the re-
quests. The difference in compute times can be explained
by the difference across infrastructures: SAND and Open-
Whisk ran in our local infrastructure and produced sim-
ilar values, whereas we had no control over AWS Step
Functions and IBM Cloud Functions.

7 Experience with SAND

During and after the implementation of SAND, we also
developed and deployed several applications on it. Here,
we briefly describe these applications to show that SAND
is general and can serve different types of applications.

The first application we developed is a simple web
server serving static content (e.g., html, javascript, im-
ages) via two grains in a workflow. The first grain parses
user requests and triggers another grain according to the
requested file type. The second grain retrieves the file
and returns it to our frontend server, which forwards it
to the user. Our SAND web server has been in use since
May 2017 to serve our lab’s website. The second SAND

application is the management service of our SAND sys-
tem. The service has 19 grains, connects with the GUI
we developed, and enables developers to create grains as
well as to deploy and test workflows.

In addition, we made SAND available to researchers in
our lab. They developed and deployed applications using
the GUI and the management service. One group proto-
typed a simple virus scanner, whereby multiple grains
executing in parallel check the presence of viruses in an
email. Another group developed a stream analytics appli-
cation for Twitter feeds, where grains in a workflow iden-
tify language, remove links and stop words, and compile
a word frequency list to track the latest news trend.

8 Related Work

Despite its recency, serverless computing has already
been used in various scenarios including Internet of
Things and edge computing [7,16], parallel data process-
ing [33, 34], data management [14], system security en-
hancement [13], and low-latency video processing [20].
Villamizar et al. [56] showed that running applications
in a serverless architecture is more cost efficient than mi-
croservices or monoliths. One can expect that serverless
computing is going to attract more attention.

Beside commercial serverless platforms [1, 11, 15,
25, 29, 31], there have also been academic proposals
for serverless computing. Hendrickson et al. [24] pro-
posed OpenLambda after identifying problems in AWS
Lambda [1], including long function startup latency and
little locality consideration. McGrath et al. [42] also
investigated latencies in existing serverless frameworks.
These problems are important for serverless application
development, where function interaction latencies are
crucial. In SAND, we address these problems via our ap-
plication sandboxing approach, as well as the hierarchi-
cal message queuing and storage mechanisms.

Other approaches also targeted the long startup latency
problem. Slacker [23] identifies packages that are critical
when launching a container. By prioritizing these pack-
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ages and lazily loading others, it can reduce the container
startup latency. This improvement would benefit server-
less computing platforms that launch functions with cold
starts. In SAND, an application sandbox is launched once
per host for multiple functions of the same application,
which amortizes a container’s startup latency over time.

Pipsqueak [46] and its follow-up work SOCK [47] cre-
ate a cache of pre-warmed Python interpreters, so that
functions can be launched with an interpreter that has
already loaded the necessary libraries. However, many
functions may need the same (or a similar) interpreter,
requiring mechanisms to pick the most appropriate one
and to manage the cache. SAND does not use any sharing
nor cache management schemes; a SAND grain worker is
a dedicated process for a single function and its libraries.

McGrath et al. [41] proposed a queuing scheme with
workers announcing their availability in warm and cold
queues, where containers can be reused and new con-
tainers can be created, respectively. Unlike SAND, this
scheme maps a single container per function execution.

9 Discussion & Limitations

Performance Isolation & Load Balancing. In this
paper, we reduce function interaction latencies via our
sandboxing mechanism as well as the hierarchical mes-
sage queuing and storage. SAND executes multiple in-
stances of an application’s functions in parallel as sep-
arate processes in the same container. This sandboxing
mechanism enables a cloud operator to run many func-
tions (and applications) even on a single host, with low
idle memory cost and high resource efficiency. However,
it is possible that grains in a sandbox compete for the
same resources and interfere with each other’s perfor-
mance. A single host may also not have the necessary
resources for multiple sandboxes. In addition, SAND’s
locality-optimized policy with the hierarchical queuing
and storage might lead to sub-optimal load balancing.
SAND currently relies on the operating system to en-

sure that the grains (and sandboxes) running in parallel
will receive their fair share of resources. As such, CPU
time (or other resource consumption) rather than the wall
clock time could be used for billing purposes. Neverthe-
less, competing grains and sandboxes may increase the
latency an application experiences.
Non-fork Runtime Support. SAND makes a trade-off to
balance performance and isolation by using process fork-
ing for function executions. The downside is that SAND
currently does not support language runtimes without na-
tive forking (e.g., Java and NodeJS).
Alternative Sandboxing Mechanisms. SAND isolates
applications with containers. Virtual machines (VMs),
HyperContainers [27], gVisor [21] and CNTR [53] are
viable alternatives. VMs provide a stronger isolation

than containers, but may increase the maintenance ef-
fort for each application’s custom VM and have long
launch times. Unikernels [38,39] can also be used to iso-
late applications with custom system software compiled
with the desired functionality. However, dynamically
adding/removing a function requires a recompilation, af-
fecting the flexibility of function assignment to a host. In
contrast, containers provide fast launch times, flexibility
to dynamically assign functions, and low maintenance
effort because the OS is shared among all application
containers on a host. Recently open-sourced gVisor [22]
provides a stronger fault isolation than vanilla containers.

For function executions, SAND uses separate processes.
Unikernels [35, 38, 39] have also been proposed to iso-
late individual functions in serverless environments. A
bare-bones unikernel-based VM (e.g., LightVM [40])
can launch faster than a container to execute a func-
tion; however, its image size depends on the libraries
loaded by each function, and thus, may impact startup
latency. Other alternatives include light-weight contexts
(LWCs) [37] and threads. Particularly, LWCs may pro-
vide the best of both worlds by being lighter than pro-
cesses, but achieving stronger isolation than threads by
giving a separate view of resources to each LWC. We
plan to extend SAND with these alternative approaches.

10 Conclusion & Future Work

This paper introduced SAND, a novel serverless com-
puting platform. We presented the design and imple-
mentation of SAND, as well as our experience in build-
ing and deploying serverless applications on it. SAND

employs a new sandboxing approach, whereby stronger
mechanisms such as containers are used to isolate dif-
ferent applications and lighter OS concepts such as pro-
cesses are used to isolate functions of the same applica-
tion. This approach enables SAND to allocate and deallo-
cate resources for function executions much faster and
more resource-efficiently than existing serverless plat-
forms. Combined with our hierarchical message bus,
where each host runs a local message bus to enable fast
triggering of functions running on the same host, SAND
reduces function interaction latencies significantly.

For future work, we plan to address the limitations dis-
cussed in §9. In particular, we plan to intelligently dis-
tribute application functions and sandboxes across many
hosts to better balance the system load without sacrific-
ing application latency.
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Abstract
Recent deep learning (DL) models are moving more
and more to dynamic neural network (NN) architectures,
where the NN structure changes for every data sample.
However, existing DL programming models are ineffi-
cient in handling dynamic network architectures because
of: (1) substantial overhead caused by repeating dataflow
graph construction and processing every example; (2)
difficulties in batched execution of multiple samples; (3)
inability to incorporate graph optimization techniques
such as those used in static graphs. In this paper, we
present “Cavs”, a runtime system that overcomes these
bottlenecks and achieves efficient training and inference
of dynamic NNs. Cavs represents a dynamic NN as a
static vertex function F and a dynamic instance-specific
graph G. It avoids the overhead of repeated graph con-
struction by only declaring and constructing F once, and
allows for the use of static graph optimization techniques
on pre-defined operations in F . Cavs performs train-
ing and inference by scheduling the execution of F fol-
lowing the dependencies in G, hence naturally exposing
batched execution opportunities over different samples.
Experiments comparing Cavs to state-of-the-art frame-
works for dynamic NNs (TensorFlow Fold, PyTorch and
DyNet) demonstrate the efficacy of our approach: Cavs
achieves a near one order of magnitude speedup on train-
ing of dynamic NN architectures, and ablations verify the
effectiveness of our proposed design and optimizations.

1 Introduction
Deep learning (DL), which refers to a class of neural net-
works (NNs) with deep architectures, is now a workhorse
powering state-of-the-art results on a wide spectrum
of tasks [53, 54, 30]. One reason for its widespread
adoption is the variety and quality of software toolkits,
such as Caffe [23], TensorFlow [1], PyTorch [36] and
DyNet [33, 34], which ease programming of DL models,
and speed computation by harnessing modern computing
hardware (e.g. GPUs), software libraries (e.g. CUDA,

cuDNN [6]), and compute clusters [56, 57, 7].
One dominant programming paradigm, adopted by DL

toolkits such as Caffe and TensorFlow, is to represent a
neural network as a static dataflow graph [32, 1], where
computation functions in the NN are associated with
nodes in the graph, and input and output of the computa-
tion map to edges. It requires DL programmers to define
the network architecture (i.e. the dataflow graph) using
symbolic expressions, once before beginning execution.
Then, for a given graph and data samples, the software
toolkits can automatically derive the correct algorithm
for training or inference, following backpropagation [21]
and auto-differentiation rules. With proper optimiza-
tion, the execution of these static dataflow graphs can be
highly efficient; as the dataflow graph is fixed for all data,
the evaluation of multiple samples through one graph
can be naturally batched, leveraging the improved par-
allelization capability of modern hardware (e.g. GPUs).
Moreover, by separating model declaration and execu-
tion, it makes it possible for the graph to be optimized
once at declaration time [1], with these optimizations
benefiting the efficiency of processing arbitrary input
data batches at execution time.

While the dataflow graph has major efficiency advan-
tages, its applicability highly relies on a key assump-
tion – the graph (i.e. NN architecture) is fixed through-
out the runtime. This assumption however breaks for
dynamic NNs, where the network architectures condi-
tionally change with every input sample, such as NNs
that compute over sequences of variable lengths [22, 43],
trees [45], and graphs [26].

Due to the growing interest in these sorts of dy-
namic models, recent years have seen an increase in
the popularity of frameworks based on dynamic declara-
tion [49, 33, 11], which declare a different dataflow graph
per sample. While dynamic declaration is convenient to
developers as it removes the restriction that computation
be completely specified before training begins, it exhibits
a few limitations. First, constructing a graph for every
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sample results in substantial overhead, which grows lin-
early with the number of input instances. In fact, we
find graph construction takes longer time than the com-
putation in some frameworks (see §5.2). It also pre-
vents the application of complex static graph optimiza-
tion techniques (see §3.4). Moreover, since each sample
owns a dataflow graph specifying its unique computa-
tional pattern, batching together similarly shaped compu-
tations across instances is non-trivial. Without batching,
the computation is inefficient due to its lack of ability
to exploit modern computational hardware. While some
progress has been made in recent research [34, 27], how
to automatically batch the computational operations from
different graphs remains a difficult problem.

To address these challenges, we present Cavs, an ef-
ficient runtime system for dynamic NNs that exploits
the recurrent and recursive nature of dynamic NNs. In-
stead of declaring a dataflow graph per sample, it decom-
poses a dynamic NN into two components: a static ver-
tex function F that is only declared (by the user) and
optimized once before execution, and an input-specific
graph G obtained via I/O at runtime. Cavs inherits the
flexibility of symbolic programming [1, 12, 33] for DL;
it requires users to define F by writing symbolic expres-
sions in the same way as in static declaration. With F
and G, the workflow of training or testing a dynamic NN
is cast as scheduling the execution of F following the
structure of the input graph G. Cavs will perform auto-
differentiation, schedule the execution following depen-
dencies in G, and guarantee efficiency and correctness.

Cavs’ design allows for highly efficient computation
in dynamic graphs for a number of reasons. First, it
allows the vertex function only to be defined and con-
structed once for any type of structured data, hence
avoiding the overhead of repeated dataflow graph con-
struction. Second, as the dataflow graph encoded by the
vertex function is static throughout the runtime, it can
benefit from various static graph optimizations [1, 5, 12,
18](§3.4), which is not the case in the scenario of dy-
namic declaration (§2.2). Moreover, it naturally exposes
opportunities for batched computation, i.e. we are able
to parallelize the execution of F over multiple vertices
from different input graphs (§3.2) with the support of our
proposed memory management strategy (§3.3).

To evaluate Cavs’ performance, we compare it to sev-
eral state-of-the-art systems supporting dynamic NNs.
We focus our experiments on GPU training, and verify
that both Fold and DyNet suffer from substantial over-
head caused by repeated graph preprocessing or con-
struction, which is bypassed by Cavs (§5.2). In a com-
parison with unbatched dynamic graphs in PyTorch and
DyNet, two widely-used dynamic NN libraries, we ver-
ify that batching is essential for efficient processing. In
a comparison with TensorFlow Fold and DyNet Auto-

batching, two libraries that allow for the use of dynamic
NNs with automatic operation batching, we find that
Cavs’ has significant performance advantages; on static
graphs it performs equivalently or slightly better, and
on dynamic NNs with difficult-to-batch workloads (e.g.
Tree-LSTM [45] and Tree-FC [27]), Cavs demonstrates
near one order of magnitude speedups across multiple
dataset and hyper-parameter settings (§5.1). We further
investigate the effectiveness of our design choices: Cavs
benefits from not only our proposed memory manage-
ment strategy, but also various optimizations on graph
execution, which were originally for static dataflow
graphs and not applicable in dynamic declaration.

To summarize, we make three primary contributions in
this paper: (1) We propose a novel representation for dy-
namic NNs, based on which we design four APIs and im-
plement the Cavs runtime system (§3.1); (2) We propose
several novel strategies in Cavs for efficient training and
inference of dynamic NNs: the batching policy (§3.2), a
memory management mechanism to guarantee the mem-
ory coalescing (§3.3), and multiple graph execution op-
timizations (§3.4); (3) We compare Cavs to state-of-the-
art systems for dynamic NNs (§5). We reveal the prob-
lems of existing systems, and report near 10x speedup
for Cavs on various experimental settings. We also ver-
ify the effectiveness of our proposed design strategies,
and quantize their contributions to the final performance.

2 Background
2.1 Dynamic Neural Networks
Successful NN models generally exhibit suitable archi-
tectures that capture the structures of the input data.
For example, convolutional neural networks [24, 53],
which apply fixed-structured operations to fixed-sized
images, are highly effective precisely because they cap-
ture the spatial invariance common in computer vision
domains [39, 44]. However, apart from images, many
forms of data are structurally complex and can not be
readily captured by fixed-structured NNs. Appropriately
reflecting these structures in the NN design has shown ef-
fective in sentiment analysis [45], semantic similarity be-
tween sentence pairs [40], and image segmentation [26].

To see this, we will take the constituency parsing prob-
lem as an example. Sentences in natural languages are
often represented by their constituency parse tree [45,
31], whose structure varies depending on the content of
the sentence itself (Fig. 1(a)). Constituency parsing is an
important problem in natural language processing that
aims to determine the corresponding grammar type of
all internal nodes given the parsing tree of a sentence.
Fig. 1(b) shows an example of a network that takes into
account this syntactic structure, generating representa-
tions for the sentence by traversing the parse tree bottom-
up and combining the representations for each sub-tree
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Figure 1: An example of a dynamic NN: (a) a constituency
parsing tree, (b) the corresponding Tree-LSTM network. We
use the following abbreviations in (a): S for sentence, N for
noun, VP for verb phrase, NP for noun phrase, D for deter-
miner, and V for verb.
using a dynamic NN called Tree Structured Long Short-
term Memory (Tree-LSTM) [45]. In particular, each
node of the tree maps to a LSTM function [22]. The
internal computations and parameters of the LSTM func-
tion is defined in Fig. 4. At each node, it takes a variable
number of inputs and returns to the parent node a vector
representing the parsing semantics up to that point, un-
til the root LSTM node returns a vector representing the
semantics of the entire sentence.

The important observation is that the NN structure
varies with the underlying parsing tree over each input
sample, but the same LSTM cell is constant in shape and
repeated at each internal node. Similar examples can be
found for graph input [25, 26] and sequences of variable
lengths [43, 2]. We refer to these NNs that exhibit dif-
ferent structures for different input samples as dynamic
neural networks, in contrast to the static networks that
have fixed network architecture for all samples.

2.2 Programming Dynamic NNs
There is a natural connection between NNs and directed
graphs: we can map the graph nodes to the computa-
tional operations or parameters in NNs, and let the edges
indicate the direction of the data being passed between
the nodes. In this case, we can represent the process of
training NNs as batches of data flowing through compu-
tational graphs, i.e. dataflow graphs [3, 1, 33].
Static declaration. As mentioned previously, static dec-
laration is one dominant programming paradigm for pro-
gramming NNs [3, 1, 5]. Fig 2(a) summarizes its work-
flow, which assumes all data samples share a fixed NN
structure declared symbolically in a dataflow graph D.
Static declaration, using a single dataflow graph D, can-
not express dynamic NNs with structures changing with
data samples. A primary remedy to this problem is to
forgo the efficiency gains of static dataflow graphs and
instead use a dynamic declaration framework.
Dynamic declaration. Fig 2(b) illustrates the workflow
of dynamic declaration. By creating a unique dataflow
graph Dp

k for each sample xp
k according to its associated

structure, dynamic declaration is able to express sample-
dependent dataflow graphs. It however causes extra over-
head on graph construction and puts constraints on run-
time optimization, which usually lead to inefficient ex-

ecution. Particularly, since a dataflow graph Dp
k needs

to be constructed per sample, the overhead is linearly
increasing with the number of samples, and sometimes
yields downgraded performance [27] (§5.2), even for
frameworks with optimized graph construction imple-
mentations [33]. Moreover, we can hardly benefit from
any well-established dataflow graph optimization (§3.4).
We will have to perform graph processing/optimization
for each dataflow graph and every single sample; but in-
corporating this optimization itself has a non-negligible
overhead. More importantly, as we are unable to batch
the computation of different structured graphs, we note
in Fig 2(b) single-instance computationDp

k (x
p
k ) would be

very inefficient in the absence of batched computation.
Dynamic batching. To address the batching problem,
some recent effort, notably TensorFlow Fold [27] and
DyNet [34], propose dynamic batching that dynami-
cally groups similarly shaped operations from different
graphs, and batch their execution whenever possible.

Fold turns dynamic dataflow graphs into a static con-
trol flow graph to enable batched execution, but intro-
duces a complicated functional programming-like inter-
face and a large graph preprocessing overhead. As we
will show in §5.2, the graph construction sometimes
slows down the computation by 4x. DyNet proposes an
auto-batching strategy that searches for batching oppor-
tunities by profiling every fine-grained operator, while
this step itself has non-negligible overhead (§5.2). It is
also not open to dataflow graph level optimizations.

In summary, there are three major challenges that pre-
vent the efficient execution of dynamic neural networks:
(1) non-negligible graph construction overhead; (2) dif-
ficulties in parallel execution; (3) unavailability to graph
execution optimization.

2.3 Motivation
Our motivation for Cavs comes from a key property of
dynamic NNs: most dynamic NNs are designed to ex-
hibit a recursive structure; Within the recursive structure,
a static computational function is being applied follow-
ing the topological order over instance-specific graphs.
For instance, if we denote the constituency parsing tree
in §2.1 as a graph G, where each node of the tree maps
to a vertex in G, we note the Tree-LSTM can be inter-
preted as follows: a computational cell function, speci-
fied in advance, is applied from leaves to the root, fol-
lowing the dependencies in G. G might change with in-
put samples, but the cell function itself is always static:
It is parametrized by a fixed set of learnable parameters
and interacts in the same way with its neighbors when
applied at different vertices of G.

These observations motivate us to decompose a dy-
namic NN into two parts: (1) a static computational ver-
tex function F that needs to be declared by the program-
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/* (a) static declaration */
// all samples must share one graph
declare a static dataflow graph D.
for p = 1→ P:
read the pth data batch {xp

k }
K
k=1.

batched computation: D({xp
k }

K
k=1).

/* (b) dynamic declaration */
for p = 1→ P:

read the pth data batch {xp
k }

K
k=1.

for k = 1→ K:
declare a dataflow graph Dp

k for xp
k .

single-instance computation: Dp
k (x

p
k ).

/* (c) our proposed vertex-centric model */
declare a symbolic vertex function F .
for p = 1→ P:
read the pth data batch {xp

k }
K
k=1.

read their associated graphs {G p
k }

K
k=1.

compute F over {G p
k }

K
k=1 with inputs {xp

k }
K
k=1.

Figure 2: The workflows of (a) static declaration, (b) dynamic declaration, (c) Cavs. Notations: D notates both the dataflow graph
itself and the computational function implied by it; p is the index of a batch while k is the index of a sample in the batch.
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Figure 3: Cavs represents a dynamic structure as a dynamic
input graph G (left) and a static vertex function F (right).

mer once before runtime; (2) a dynamic input graph G
that changes with every input sample1. With this repre-
sentation, the workflow of training a dynamic NN can
be cast as scheduling the evaluation of the symbolic con-
struct encoded by F , following the graph dependencies
of G, as illustrated in Fig 2(c). This representation ex-
ploits the property of dynamic NNs to address the afore-
mentioned issues in the following ways:
Minimize graph construction overhead. Cavs only re-
quires users to declare F using symbolic expressions,
and construct it once before execution. This bypasses re-
peated construction of multiple dataflow graphs, avoid-
ing overhead. While it is still necessary to create an
I/O function to read input graphs G for each sample, this
must be done by any method, and only once before train-
ing commences, and it can be shared across samples.
Batched execution. With the proposed representation,
Cavs transforms the problem of evaluating data samples
{xp

k}
K
k=1 (at the pth batch) on different dataflow graphs

{Dp
k }k=1 [27, 34] into a simpler form – scheduling the

execution of the vertex function F following the depen-
dencies in input graphs {Gp

k}k=1. For the latter problem,
we can easily batch the execution of F on multiple ver-
tices at runtime (§3.2), leveraging the batched computa-
tional capability of modern hardware and libraries.
Open to graph optimizations. Since the vertex function
F encodes a dataflow graph which is static throughout
runtime, it can benefit from various graph optimizations
originally developed for static declaration, such as kernel
fusion, streaming, and our proposed lazy batching, which
are not effective in dynamic declaration.

Based on this motivation, we next describe the Cavs
system. Cavs faces the following challenges in system

1In the following text, we will distinguish the term vertex from
node. We use vertex to denote a vertex in the input graph while node
to denote an operator/variable in a dataflow graph. Hence, a vertex
function can have many nodes as itself represents a dataflow graph.

design: (1) how to design minimal APIs in addition to the
symbolic programming interface to minimize user code;
(2) how to schedule the execution of F over multiple in-
put graphs to enable batched computation; (3) how to
manage memory to support the dynamic batching; (4)
how to incorporate static graph optimization in Cavs’s
execution engine to exploit more parallelism.

3 Cavs Design and Optimization
3.1 Programming Interface
Conventional dataflow graph-based programming mod-
els usually entangle the computational workflow in F
with the structure in G, and require users to express them
as a whole in a single dataflow graph. Instead, Cavs sep-
arates the static vertex function F from the input graph
G (see Fig 3). While users use the same set of symbolic
operators [1, 11] to assemble the computational work-
flow in F , Cavs proposes four additional APIs, gather,
scatter, pull, push, to specify how the messages shall
be passed between connected vertices in G:

• gather(child idx): gather accepts an index of
a child vertex, gets its output, and returns a list of
symbols that represent the output of the child.

• scatter(op): scatter reverses gather. It sets
the output of the current vertex as op. If this vertex
is gathered, the content of op will be returned.

gather and scatter are motivated by the GAS model
in graph computing [14] – both are vertex-centric APIs
that help users express the overall computational patterns
by thinking locally like a vertex: gather receives mes-
sages from dependent vertices, while scatter updates
information to parent vertices (see discussion in §6).

However, in dynamic NNs, the vertex function F usu-
ally takes input from not only the internal vertices of G
(internal data path in Fig 3), but also the external envi-
ronment, e.g. an RNN can take inputs from a CNN fea-
ture extractor or some external I/O (external data path
in Fig 3). Cavs therefore provides another two APIs to
express such semantics:

• pull(): pull grabs inputs from the external of the
current dynamic structure, e.g. another NN, or I/O.

• push(op): push reverses pull. It sets the output
of the current vertex as op. If this vertex is pulled
by others, the content of op will be returned.
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1 def F():
2 for k in range(N):
3 S = gather(k) # gather states of child vertices
4 ck, hk = split(S, 2) # get hidden states c and h
5 x = pull() # pull the first external input x
6

7 # specify the computation

8 h = ∑
N−1
k=0 hk

9 i = sigmoid(W(i)× x + U(i)× h + b(i))
10 for k in range(N):

11 fk = sigmoid(W( f )× x + U( f )× hk + b( f ))

12 o = sigmoid(W(o)× x + U(o)× h + b(o))

13 u = tanh(W(u)× x + U(u)× h + b(u))

14 c = i ⊗ u + ∑
N−1
k=0 fk ⊗ ck

15 h = o ⊗ tanh(c)
16

17 scatter(concat([c, h], 1)) # scatter c, h to parents
18 push(h) # push to external connectors

Figure 4: The vertex function of an N-ary child-sum TreeL-
STM [45] in Cavs. Within F , users declare a computational
dataflow graph using symbolic operators. The defined F will
be evaluated on each vertex of G following graph dependencies.

Once F declared, together with an input graph G,
they encode a recursive dataflow graph structure, which
maps to a subgraph of the implicit full dataflow graph
of the model that may needs to be explicitly declared in
traditional programming models. Via push and pull,
Cavs allows users to connect any external static dataflow
graph to a dynamic structure encoded by (F ,G), to ex-
press more complex model architectures, such as the
LRCN [9] (i.e. connecting a CNN to an RNN), or an
encoder-decoder LSTM network [43] (i.e. connecting
two different recursive structures). With these four APIs,
we present in Fig 4 an example user program how the N-
ary child-sum Tree-LSTM [45] can be simply expressed
by using them and other mathematical operators.
Auto-differentiation. Given a vertex function F Cavs
derives ∂F following the auto-differentiation rules: for
each math expression such as sl = op(sr) in F , Cavs
generates a corresponded backward expression ∇sr =
grad op(∇sl ,sl ,sr) in ∂F . For the four proposed opera-
tors, we note scatter is the gradient operator of gather
in the sense that if gather collects inputs from child ver-
tex written by scatter at the forward pass, a scatter

needs to be performed to write the gradients for its de-
pendent vertices to gather at the backward pass. Hence,
for an expression like sl = gather(child idx) in F ,
Cavs will generate a backward expression scatter(∇sl)
in ∂F . Similarly, the gradient operator of scatter is
gather. The same rules apply for push and pull.
Expressiveness. With these four APIs, Cavs can be seen
as a middle ground between static and dynamic decla-
ration. In the best case that the NN is fully recursive
(e.g. most recurrent or recursive NNs), it can be repre-
sented by a single vertex function and an input graph.
While in the worst case, that every sample has a unique
input graph while every vertex in the graph has a unique
way to interact with its neighboring vertices (i.e. the NN
is dynamic but non-recursive), Cavs reduces to dynamic

declaration that one has to define a vertex function for
each vertex of each input graph. Fortunately, dynamic
NNs in this scenario are usually avoided because of the
difficulties in design, programming and learning.

3.2 Scheduling
Once F is defined and G is obtained from I/O, Cavs will
perform computation by scheduling the evaluation of F
over data samples {xi}N

i=1 and their input graphs {Gi}N
i=1.

Forward pass. For a sample xi with its input graph Gi,
the scheduler starts the forward pass from the input ver-
tices of Gi, and proceeds following the direction indi-
cated by the edges in Gi: at each sub-step, the sched-
uler figures out the next activated vertex in Gi, and eval-
uates all expressions in F at this vertex. It then marks
this vertex as evaluated, and proceeds with the next ac-
tivated vertex until reaching a terminal vertex (e.g. the
loss function). A vertex of G is activated if and only if all
its dependent vertices have been evaluated.
Backward pass. The backward pass is continued right
after the forward. The scheduler first resets the status of
all vertices as not evaluated, then scans the graph in a
reverse direction, starting from the ending point of the
forward pass. It evaluates ∂F at each vertex until all
vertices have been evaluated in the backward pass.

To train a NN to convergence, the above process has to
be iterated on all samples {xi}N

i=1 and their input graphs
{Gi}N

i=1, for many epochs. We next describe our batched
execution policy to speed the computation.
Batching policy. Given a data batch {xk}K

k=1 ⊆ {xi}N
i=1

and associated graphs {Gk}K
k=1, this policy groups mul-

tiple vertices and performs batched evaluation of F in
order to reduce kernel launches and exploit parallelism.
Specifically, a forward pass over a batch {xk}K

k=1 are per-
formed in multiple steps. At each step t, Cavs analyzes
{Gk}K

k=1 at runtime and determines a set Vt that contains
all activated vertices in graphs {Gk}K

k=1. It then evalu-
ates F over these vertices by creating a batched execu-
tion task, with the task ID set to t2. The task is exe-
cuted by the Cavs execution engine (§3.4). Meanwhile,
the scheduler records this task by pushing Vt into a stack
S. To perform backward pass, the scheduler pops out an
element Vt from S at each step – the execution engine
will evaluate the derivative function ∂F over vertices in
Vt , until all vertices of {Gk}K

k=1 are evaluated.
We note the batching policy is similar to the dynamic

batching in Fold [27] and DyNet [33]. However, Cavs
determines how to batch fully dynamically during run-
time using simple breadth-first search with negligible
cost (instead of analyzing full dataflow graphs before ev-
ery iteration of the execution). Since batched computa-
tion requires the inputs to an expression over multiple

2Whenever the context is clear, we use Vt to denote both the set of
vertices to be batched together, and the batched execution task itself.
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Figure 5: The memory management at the forward pass of F (top-left) over two input trees (bottom-left). Cavs first analyzes F and
inputs – it creates four dynamic tensors {αn}3

n=0, and figures out there will be four batch tasks (dash-lined boxes). Starting from
the first task (orange vertices {0,1,2,5,6,7,8,9}), Cavs performs batched evaluation of each expression in F . For example, for the
pull expression α0 = pull(), it indexes the content of α0 on all vertices from the pull buffer using their IDs, and copies them to
α0 continuously; for scatter and push expressions, it scatters a copy of the output (α3) to the gather buffer, and pushes them to the
push buffer, respectively. Cavs then proceeds to the next batching task (blue vertices). At this task, Cavs evaluates each expression
of F once again for vertices {3,10,11}. (e.g. for a pull expression α0 = pull(), it pulls the content of α0 from pull buffer again;
for a gather expression α2 = gather(1) at vertex 3, it gathers the output of the second child of 3, which is 1); it writes results
continuously at the end of each dynamic tensor. It proceeds until all batching tasks are finished.

vertices to be placed on a continuous memory buffer, we
develop a new memory management support for it.

3.3 Memory Management
In static declaration [1, 33], a symbol in the user program
usually corresponds to a fixed-sized tensor object with a
batch size dimension. While in Cavs, each batching task
Vt is determined at runtime. For the batched computation
to be efficient, Cavs must guarantee for each batching
task, the inputs to each expression of F over a group of
runtime-determined vertices coalescing in memory.

struct DynamicTensor {
vector<int> shape;
int bs;
int offset;
void* p; };

Figure 6: Dynamic ten-
sor.

Cavs proposes a novel data
structure dynamic tensor to ad-
dress this challenge (Fig 6). A
dynamic tensor is a wrapper
of a multi-dimensional array [1,
52]. It contains four attributes:
shape, bs, a pointer p to a chunk of memory, and
offset. shape is an array of integers representing the
specific shape of the tensor excluding the batch dimen-
sion. It can be inferred from the user program and set be-
fore execution. The batch size bs is dynamically set by
the scheduler at runtime at the beginning of a batching
task. To access a dynamic tensor, one moves p forward
with the value of offset, and reads/writes number of el-
ements equal to bs ·∏i shape[i]. Therefore, bs together
with offset provide a view of the tensor, and the state of
the tensor will vary based on their values. Given a vertex
function F , Cavs creates dynamic tensors {αn}N

n=1 for
each non-parameter symbol sn(n = 1, . . . ,N) in F , and
also {∇αn}N

n=1 as their gradients, while it creates static
tensors for model parameters.

Fig 5 illustrates how the memory is assigned during
the forward pass by manipulating dynamic tensors. In
particular, in a training iteration, for a batching task
Vt , the scheduler sets bs of all {αn}N

n=1 to Mt = |Vt |
(the number of vertices in Vt ). The execution engine

then performs batched evaluation of each expression
in F . For an expression sl = op(sr)

3, Cavs first ac-
cesses αr (the dynamic tensor of the RHS symbol sr)
– it offsets αr.p by αr.offset, and reads a block of
Mt ∏i αr.shape[i] elements, and presents it as a tensor
with batch size Mt and other dimensions as αr.shape. It
then applies batched computational kernels of the oper-
ator op over this memory block, and writes the results
to αl (the dynamic tensor of the LHS symbol sl) on the
continuous block in between [αl .p+αl .offset,αl .p+
αl .offset+ Mt ∏i αl .shape[i]]. Upon the completion
of Vt , the scheduler increases offset of all {αn}N

n=1 by
Mt ∏i αn.shape[i], respectively. It then starts the next
task Vt+1. Hence, intermediate results generated in each
batching task at forward pass are stored continuously in
the dynamic tensors, and their offsets are recorded.

At the entrance of F , the vertices {vm}Mt
m=1 in Vt need

to interact with its dependent vertices in previous Vt−1 to
gather their outputs as inputs (L3 of Figure 4), or pull
inputs from the external (L5 of Figure 4). Cavs main-
tains memory buffers to enable this (Figure 5). It records
the offsets of the dynamic tensors for each vm ∈ Vt , and
therefore during the execution of gather operator, the
memory slices of specific children can be indexed. As
shown in Figure 5, gather and scatter share the same
temporary buffer for memory re-organization, but push
and pull operate on external memory buffers.

Algorithm 1 summarizes the memory management
during forward pass. The backward execution follows an
exactly reverse order of the forward pass (§3.2 ), which
we skip in the text. With this strategy, Cavs guaran-
tees memory continuity for any batched computation of
F and ∂F . Compared to dynamic batching in DyNet,
Cavs performs memory movement only at the entrance

3Note that the user-defined expressions can be arbitrary, e.g. with
more than one argument or return values
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Figure 7: The dataflow graph encoded by F of Tree-LSTM.

and exit of F , instead of for each expression (operator).
We empirically find this significantly reduces overhead
of memory operations (§5.3).

Algorithm 1 Memory management at forward pass.
1: function FORWARD({Vt}T

t=1,{αn}N
n=1,F )

2: for t = 1→ T do
3: for n = 1→ N do αn.bs←Mt end for
4: for each expression like sl = op(sr) in F do
5: if op ∈ {gather,pull} then
6: C←∏i αl .shape[i],q← αl .p+αl .offset.
7: for vm ∈Vt(m = 1→Mt) do
8: src← IndexBuffer(op,m),dest← q+(m−1)C.
9: memcpy(dest,src,C).

10: end for
11: else if op ∈ {scatter,push} then
12: C←∏i αr.shape[i],q← αr.p+αr.offset.
13: for vm ∈Vt(m = 1→Mt) do
14: dest← IndexBuffer(op,m),src← q+(m−1)C.
15: memcpy(dest,src,C).
16: end for
17: else
18: perform batched computation: αl = op kernel(αr).
19: end if
20: end for
21: for n = 1→ N do αn.offset+= Mt ∏i αn.shape[i] end for
22: end for
23: end function

3.4 Optimizing Execution Engine
Since Cavs separates out a static dataflow graph encoded
by F , we can replace the original F with an optimized
one that runs more efficiently, as long as maintaining cor-
rectness. We next described our optimization strategies.
Lazy batching and streaming4. In addition to batched
execution of F , the lazy batching and streaming explore
potential parallelism for a certain group of finer-grained
operators in F or ∂F called lazy and eager operators.
Definition. An operator inF (∂F) is a lazy operator if at
the forward (backward) pass, for ∀v ∈ G,∀G ∈ {Gk}K

k=1,
the evaluation of F (∂F) at any parent (dependent) ver-
tex of v does not rely on the evaluation of F at v. It is an
eager operator if the evaluation at v does not rely on the
evaluation of F (∂F) at any dependents (parents) of v.
Proposition. Denote DF (D∂F ) as the dataflow graph
encoded by F (∂F), and g,s ∈ DF (D∂F ) as nodes of

4Streaming is a borrowed terminology from CUDA programming
which means executing different commands concurrently with respect
to each other on different GPU streams. As Cavs’ optimizations are
agnostic to the low-level hardware, we use streaming interchangeably
with multi-threading if the underlying computing hardware is CPU.

gather and scatter operator, respectively. A node that
has g as its dependent and is not on any path from g to s
is a lazy operator. A node that has s as its ancestor and is
not on any path from g to s is an eager operator.

Fig 7 illustrates a forward dataflow graph of the vertex
function of Tree-LSTM, with eager and lazy operators
colored. A property of them is that their evaluation is
not fully subject to the dependency reflected by the in-
put graph G. For instance, the pull operator in Fig 7 is
eager and can be executed in prior – even before F has
been evaluated at the vertices that gather tries to inter-
act with; the push operator is lazy, so we can defer its
execution without impacting the evaluation of F at par-
ent vertices. Similarly, in ∂F , the gradient derivation
for model parameters are mostly lazy – their execution
can be deferred as long as the gradients of hidden states
are derived and propagated in time. Cavs leverages this
property and proposes the lazy batching strategy. It de-
fers the execution of all lazy operators in F and ∂F until
all batching tasks {Vt}T

t=1 has finished. It then performs
a batched execution of these lazy operators over all ver-
tices of {Gk}K

k=1. These operators includes, but is not
limited to, the push operator that is doing memory copy,
and operators for computing gradients of model param-
eters. Lazy batching helps exploit more parallelism and
significantly reduces kernel launches. Empirically lazy
batching brings 20% overall improvement (§5.3).

To leverage the exhibited parallelization opportunity
between eager operators and the operators on the path
from gather to scatter (Figure 7), Cavs proposes a
streaming strategy that pipelines the execution of these
two groups of operators. It allocates two streams, and
puts the eager operators on one stream, and the rest (ex-
cluding lazy operators) on the other. Hence, independent
operators in two streams run in parallel, while for those
operators that depend on an eager operator, this depen-
dency is respected by synchronization barriers (Fig 7).
Automatic kernel fusion. Given F , before execution,
Cavs will run a fusion detector [20] to scan its cor-
responded dataflow graph and report all fuse-able sub-
graphs therein, i.e. all nodes in a fuse-able subgraph
can be fused as a single operator that behaves equiva-
lently but takes less execution time (e.g. with fewer ker-
nel launches and I/O, or faster computation). Currently,
we only detect groups of directly linked elementwise op-
erators, such as +,sigmoid, as shown in Fig 7, and we
use a simple union-find algorithm to detect the largest
possible fuse-able subgraphs. Given a fuse-able sub-
graph, Cavs adopts de facto automatic code generation
techniques [37, 8, 38, 35] to generate lower-level kernel
implementations. Replacing the original fuse-able sub-
graphs with fused operators during execution is benefi-
cial in many aspects: (1) it reduces the number of kernel
launches; (2) on some devices such as GPUs, kernel fu-
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sion transform device memory access into faster device
registers access. We empirically report another 20% im-
provement with automatic kernel fusion (§5.3).

4 Implementation
Cavs is implemented as a C++ library and integrable with
existing DL frameworks to enhance their support for dy-
namic NNs. It is composed of three major layers (which
is the case for most popular frameworks [3, 1, 33]): (1)
a frontend that provides device-agnostic symbolic pro-
gramming interface; (2) an intermediate layer that im-
plements the core execution logic; (3) a backend with
device-specific kernels for all symbolic operators.
Frontend. In addition to the four APIs, Cavs pro-
vides a macro operator VertexFunction. Users in-
stantiate it by writing symbolic expressions and speci-
fying methods to read input graphs. It encapsulates scat-
ter/gather semantics, so users can continue using higher
level APIs. To construct more complex NN architectures
(e.g. encoder-decoder LSTM [43], LRCN [9])), users
employ push and pull to connect multiple vertex func-
tions, or to external structures.
Intermediate Layer. Cavs has its core runtime logic at
this layer, i.e. the batching scheduler, the memory man-
agement, and the execution engine, etc.
Backend. Following practice [1, 33, 12], we imple-
ment device-specific operator kernels at this layer. Cavs
has optimized implementations for the four proposed op-
erators (gather, scatter, pull, push). Specifically,
gather and pull index different slices of a tensor and
puts them together continuously on memory; scatter
and push by contrast splits a tensor along its batch di-
mension, and copy different slices to different places.
Cavs implements customized memcpy kernels for there
four operators, so that copying multiple slices from (or
to) different places is performed within one kernel.
Distributed Execution. While Cavs’s implementations
are focused on improving the efficiency on a single node,
they are compatible with most data-parallel distributed
systems for deep learning [56, 7, 1], and can also benefit
distributed execution on multiple nodes.

5 Evaluation
In this section, we evaluate Cavs on multiple NNs and
datasets, obtaining the following major findings: (1)
Cavs has little overhead: on static NNs, Cavs demon-
strates equal performance on training and inference with
other systems; On several NNs with notably difficult-to-
batch structures, Cavs outperforms all existing frame-
works by a large margin. (2) We confirm the graph
construction overhead is substantial in both Fold [27]
and dynamic declaration [33], while Cavs bypasses it by
loading input graphs through I/O. (3) We verify the ef-
fectiveness of our proposed design and optimization via

ablation studies, and discuss Cavs’ advantages over other
DL systems for dynamic dataflow graphs.
Environment. We perform all experiments in this paper
on a single machine with an NVIDIA Titan X (GM200)
GPU, a 16-core CPU, and CUDA v8.0 and cuDNN v6
installed. As modern DL models are mostly trained us-
ing GPUs, we focus our evaluation on GPUs, but note
Cavs’ design and implementation do not rely on a spe-
cific type of device. We mainly compare Cavs to Tensor-
Flow v1.2 [1] with XLA [18] and its variant Fold [27],
PyTorch v0.3.0 [11], and DyNet v2.0 [33] with auto-
batching [34], as they have reported better performance
than other frameworks [5, 50] on dynamic NNs. We fo-
cus on metrics for system performance, e.g. time to scan
one epoch of data. Cavs produces exactly the same nu-
merical results with other frameworks, hence the same
per-epoch convergence
Models and dataset. We experiment on the follow-
ing models with increasing difficulty to batch: (a)
Fixed-LSTM language model (LM): a static sequence
LSTM with fixed steps for language modeling [42, 43,
55]. We train it using the PTB dataset [48] that contains
over 10K different words. We set the number of steps as
64, i.e. at each iteration of training, the model takes a 64-
word sentence from the training corpus, and predicts the
next word of each word therein. Obviously, the compu-
tation can be by nature batched easily, as each sentence
has exactly the same size. (b) Var-LSTM LM: that ac-
cepts variable-length inputs. At each iteration the model
takes a batch of natural sentences with different length
from PTB, and predicts the next words; (c) Tree-FC:
the benchmarking model used in [27] with a single fully-
connected layer as its cell function. Following the same
setting in [27], we train it over synthetic samples gener-
ated by their code [47] – each sample is associated with a
complete binary tree with 256 leaves (therefore 511 ver-
tices per graph); (d) Tree-LSTM: a family of dynamic
NNs widely adopted for text analysis [26, 51]. We im-
plement the binary child-sum Tree-LSTM in [45], and
train it as a sentiment classifier using Stanford sentiment
treebank (SST) dataset [40]. The dataset contains 8544
training sentences, each associated with a human anno-
tated grammar tree, and the longest one has 54 words.

5.1 Overall Performance
We first verify the viability of our design on the easiest-
to-batch case: Fixed-LSTM language model. We com-
pare Cavs to the following three strong baselines: (1)
CuDNN [6]: a CuDNN-based fixed-step sequence LSTM,
which is highly optimized by NVIDIA using handcrafted
kernels and stands as the best performed implementation
on NVIDIA GPUs; (2) TF: the official implementation
of Fixed-LSTM LM in TensorFlow repository [46] based
on static declaration; (3) DyNet: we implement a 64-step
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Figure 8: Comparing five systems on the averaged time to finish one epoch of training on four models: Fixed-LSTM, Var-LSTM,
Tree-FC and Tree-LSTM. In (a)-(d) we fix the hidden size h and vary the batch size bs, while in (e)-(h) we fix bs and vary h.

LSTM in DyNet based on dynamic declaration – we de-
clare a dataflow graph per sample, and train with the au-
tobatching [34] enabled; (4) Cavs with batching policy,
and all input samples have a same input graph – a 64-
node chain. We train the model to converge, and report
the average time per epoch in Fig 8(a)(e), where in (a) we
fix the hidden size h of the LSTM unit as 512 and vary
the batch size bs, and in (e) we fix bs = 64 and vary h.
Empirically, CuDNN performs best in all cases, but note
it is highly inflexible. Cavs performs slightly better than
TF in various settings, verifying that our system has little
overhead handling fully static graphs, though it is spe-
cialized for dynamic ones. We also conclude from Fig 8
that batching is essential for GPU-based DL: bs = 128 is
nearly one order of magnitude faster than bs = 1 regard-
less of used frameworks. For Cavs, the batching policy
is 1.7x, 3.8x, 7.0x, 12x, 15x, 25x, 36x faster than non-
batched at bs = 2,4,8,16,32,64,128, respectively.

Next, we experiment with Var-LSTM, the most com-
monly used RNN for variable-length sequences. We
compare the following three implementations (CuDNN-
based LSTM cannot handle variable-length inputs): (1)
TF: an official TensorFlow implementation based on the
dynamic unroll approach described in §6; (2) DyNet: an
official implementation from DyNet benchmark reposi-
tory based on dynamic declaration [10]; (3) Cavs: where
each input sentence is associated with a chain graph that
has number of vertices equal to the number of words. We
vary h and bs, and report the results in Figure 8(b)(f), re-
spectively. Although all three systems perform batched
computation in different ways, Cavs is consistently 2-3
times faster than TF, and outperforms DyNet by a large
margin. Compared to TF, Cavs saves computational re-
sources. TF dynamically unrolls the LSTM unit accord-
ing to the longest sentence in the current batch, but it
cannot prevent unnecessary computation for those sen-
tences that are shorter than the longest one.

We then turn to Tree-FC, a dynamic model for bench-
marking. Since vanilla TensorFlow is unable to batch
its computation, we compare Cavs to (1) DyNet and (2)
Fold, a specialized library built upon TensorFlow for dy-

namic NNs, with a depth-based dynamic batching strat-
egy. To enable the batching, it however needs to prepro-
cess the input graphs, translate them into intermediate
representations and pass them to lower-level TensorFlow
control flow engine for execution. We report the results
in Figure 8(c)(g) with varying bs and h, respectively. For
all systems, we allocate a single CPU thread for graph
preprocessing or construction. Cavs shows at least an
order of magnitude speedups than Fold and DyNet at
h≤ 512. Because the size of the synthetic trees is large,
one major advantage of Cavs over them is the allevia-
tion of graph preprocessing/construction overhead. With
a single CPU thread, Fold takes even more time on graph
preprocessing than computation (§5.3).

Finally, we compare three frameworks on Tree-LSTM

in Figure 8(d)(h): Cavs is 8-10x faster than Fold, and
consistently outperforms DyNet. One difference in this
experiment is that we allocate as many CPU threads as
possible (32 on our machine) to accelerate graph pre-
processing for Fold, otherwise it will take much longer
time. Further, we note DyNet performs much better here
than on Tree-FC, as the size of the input graphs in SST
(maximally 54 leaves) is much smaller than the synthetic
ones (256 leaves each) in Tree-FC experiments. We
observe DyNet needs more time on graph construction
for large input graphs, and DyNet’s dynamic batching is
less effective on larger input graphs, as it has to perform
frequent memory checks to support its dynamic batch-
ing, which we will discuss in §5.3. We also compare
Cavs with PyTorch – its per-epoch time on Tree-LSTM
is 542s, 290x slower than Cavs when the batch size is
256. Compared to other systems, PyTorch cannot batch
the execution of dynamic NNs.

5.2 Graph Construction and Computation
In this section, we investigate the graph construction
overhead in Fold and DyNet. To batch computation of
different graphs, Fold analyzes the input graphs to recog-
nize batch-able dynamic operations, then translates them
into intermediate instructions, with which, TensorFlow
generates appropriate control flow graphs for evaluation
– we will treat the overhead caused in both steps as
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Fold’s graph construction overhead. DyNet, as a typ-
ical dynamic declaration framework, has to construct as
many dataflow graphs as the number of samples. Though
DyNet has optimized its graph construction to make it
lightweight, the overhead still grows with the training set
and the size of input graphs. By contrast, Cavs takes con-
stant time to construct a small dataflow graph encoded
by F , then reads input graphs through I/O. To quantify
the overhead, we separate the graph construction from
computation, and visualize in Figure 9(a) how it changes
with the average number of leaves (graph size) of input
graphs on training Tree-FC, with fixed bs = 64,h = 512.
We compare (1) Cavs (2) Fold-1 which is Fold with one
graph processing thread and (3) DyNet. We plot for one
epoch, both the (averaged) absolute time for graph con-
struction and it percentage of the overall time. Clearly
we find that all three systems take increasingly more time
when the size of the input graphs grows, but Cavs, which
loads graphs through I/O, causes the least overhead at
all settings. In terms of the relative time, Fold unfortu-
nately wastes 50% at 32 leaves, and 80% when the tree
has 1024 leaves, while DyNet and Cavs take only 10%
and 20%, respectively.

We also wonder how the overhead is related with batch
size when there is fixed computational workload. We
report in Figure 9(b) the same metrics when training
Tree-LSTM with varying bs. We add another baseline
Fold-32 with 32 threads for Fold’s graph preprocess-
ing. As Fold-1 takes much longer time than others,
we report its time at bs = 1,16,32,64,128,256 here (in-
stead of showing in Figure 9): 1.1, 7.14, 31.35, 40.1,
46.13, 48.77. Except bs = 1, all three systems (except
Fold-1) take almost constant time for graph construc-
tion in one epoch, regardless of bs, while Fold-32 and
DyNet take similar time, but Cavs takes 20x less. Nev-
ertheless, at the percentage scale, increasing bs makes
this overhead more prominent, because larger batch size
yields improved computational efficiency, therefore less
time to finish one epoch. This, from one perspective, re-
flects that the graph construction is a main obstacle that
grows with the number of training samples and prevents
the efficient training of dynamic NNs in existing frame-

#
leaves time (s) Speedup bs time (s) Speedup

32 0.6 / 3.1 / 4.1 5.4 / 7.1 1 76 / 550 / 62 7.2 / 0.8
64 1.1 / 3.9 / 8.0 3.7 / 7.5 16 9.8 / 69 / 12 7.0 / 1.2

128 2 / 6.2 / 16 3.0 / 7.9 32 6.2 / 43 / 9.9 7.0 / 1.6
256 4 / 10.6 / 33.7 2.7 / 8.7 64 4.1 / 29 / 7.4 7.2 / 1.8
512 8 / 18.5 / 70.6 2.3 / 8.9 128 2.9 / 20.5 / 5.9 7.1 / 2.0
1024 16 / 32 / 153 2.1 / 9.7 256 2.3 / 15.8 / 5.4 7.0 / 2.4

Table 1: The averaged computation time (Cavs/Fold/DyNet)
and the speedup (Cavs vs Fold/DyNet) for training one epoch
on Tree-FC with varying size of the input trees (left part), and
on Tree-LSTM with varying batch size (right part).

works, while Cavs successfully overcomes this barrier.
Apart from the graph construction we report in Ta-

ble 1 the computation-only time. Cavs shows maximally
5.4x/9.7x and 7.2x/2.4x speedups over Fold/DyNet on
Tree-FC and Tree-LSTM, respectively. The advantages
stem from two main sources: an optimized graph exe-
cution engine, and a better-suited memory management
strategy, which we investigate next.
5.3 Optimizations
Graph Execution Engine. To reveal how much each
optimization in §3.4 contributes to the final performance,
we disable lazy batching, fusion and streaming in Cavs
and set this configuration as a baseline (speedup = 1).
We then turn on one optimization at a time and record
how much speedup it brings. We train Fixed-LSTM

and Tree-LSTM, and report the averaged speedups one
computation-only time in one epoch over the baseline
configuration in Fig 10, with bs = 64 but varying h.
Lazy batching and fusion consistently deliver nontrivial
improvement – lazy batching is more beneficial with a
larger h while fusion is more effective at smaller h, which
are expected: lazy batching mainly parallelizes matrix-
wise operations (e.g. matmul) commonly with O(h2)
or higher complexity, while fusion mostly works on ele-
mentwise operations with O(h) complexity [19].

Streaming, compared to the other strategies, is less ef-
fective on Tree-LSTM than on Fixed-LSTM, as we have
found the depth of the input trees in SST exhibit high
variance, i.e. some trees are much deeper than others. In
this case, many batching tasks only have one vertex to be
evaluated. The computation is highly fragmented and the
efficiency is bounded by kernel launching latency. Lazy
batching and fusion still help as they both reduce kernel
launches (§3.4). Streaming, which tries to pipeline mul-
tiple kernels, can hardly yield obvious improvement.
Memory Management. Cavs’ performance advantage
also credits to its memory management that reduces
memory movements while guarantees continuity. Quan-
titatively, it is difficult to compare Cavs to Fold, as
Fold relies on TensorFlow where memory management
is highly coupled with other system aspects. Qualita-
tively, we find Cavs requires less memory movement
(e.g. memcpy) during dynamic batching. Built upon
the tf while operator, whenever Fold performs depth-
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Programming
Model Frameworks Expressiveness Batching Graph Construction

Overhead
Graph

Optimization
static declaration Caffe, TensorFlow ×

√
low beneficial

dynamic declaration
(eager evaluation) PyTorch, Chainer

√
× N/A unavailable

dynamic declaration
(lazy evaluation) DyNet

√ √
high limited benefits

Fold TensorFlow-Fold
√ √

high unknown
Vertex-centric Cavs

√ √
low beneficial

Table 2: A side-by-side comparison of existing programming models for dynamic NNs, and their advantages and disadvantages.
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Figure 10: Improvement of each optimization strategy on exe-
cution engine over a baseline configuration (speedup = 1).

bs
Memory operations
(s) (Cavs / DyNet)

Computation (s)
(Cavs / DyNet)

Train Inference Train Inference

16 1.14 / 1.33 0.6 / 1.33 9.8 / 12 2.9 / 8.53
32 0.67 / 0.87 0.35 / 0.87 6.1 / 9.8 1.9 / 5.35
64 0.39 / 0.6 0.21 / 0.6 4.0 / 7.4 1.3 / 3.48
128 0.25 / 0.44 0.13 / 0.44 2.9 / 5.9 0.97 / 2.52
256 0.17 / 0.44 0.09 / 0.44 2.3 / 5.4 0.77 / 2.58

Table 3: Breakdowns of average time per epoch on memory-
related operations and computation, comparing Cavs to DyNet
on training and inference of Tree-LSTM with varying bs.

based batching at depth d, it has to move all the contents
of nodes in the dataflow graphs at depth d−1 to a desired
location, as the control flow does not support cross-depth
memory indexing. This results in redundant memcpy, es-
pecially when the graphs are highly skewed. By contrast,
Cavs only copies contents that are necessary to the batch-
ing task. DyNet has a specialized memory management
strategy for dynamic NNs. Compared to Cavs, it however
suffers substantial overhead caused by repeated checks
of the memory continuity – whenever DyNet wants to
batch operators with same signatures, it checks whether
their inputs are continuous on memory [34]. The check-
ing overhead increases with bs and is more prominent on
GPUs. Thanks to the simplicity of both systems, we are
able to profile the memory-related overhead during both
training and inference, and separate it from computation.
We compare them on TreeLSTM, and report the break-
down time per epoch in Table 3 under different bs. We
observe the improvement is significant (2x - 3x) at larger
bs, especially during inference where DyNet has its con-
tinuity checks concentrated.

6 Related Work
DL programming models. In addition to §2.2, we sum-
marize in Table 2 the major programming models and
frameworks for dynamic NNs, and their pros and cons, in
contrast to Cavs. Within static frameworks, there are also
efforts on adapting static declaration to support sequence

RNNs, such as static unrolling [17], bucketing [15] and
dynamic unrolling [16]. The ideas are to pad zero at the
end of samples so that they have the same structure (i.e.
same length) for batched computation. However, they all
result in unnecessary computation and can not express
more complex structures than sequences. Asynchronous
model-parallelism [13] enables the concurrent execution
of different graphs similar to batched execution in Cavs,
it however may suffer from insufficient cache re-usage
and overhead by multiple kernel launches (on GPUs).
Execution optimization. A variety of developed tech-
niques from other areas (e.g. kernel fusion, constant
folding) have been adapted to speed the computation of
DL dataflow graphs [1, 5, 12, 18]. Cavs separates the
static vertex function from the dynamic-varying input
graph, so it benefits from most of the aforementioned
optimizations. We learn from these strategies and reflect
them in Cavs’ execution engine. We further propose lazy
batching and concurrent execution to exploit more paral-
lelism exposed by our APIs.
Graph-based systems. The vertex-centric programming
model has been extensively developed in graph comput-
ing [29, 14, 4, 41]. Cavs draws insights from the GAS
model [14], but is fundamentally different: gather and
scatter in Cavs are fully symbolic – they allow back-
propagation through them; graph computing systems
compute on large natural graphs, while Cavs addresses
problems that each sample has a unique graph and the
training is iterative on batches of samples. In terms of
system design, Cavs also faces different challenges, such
as scheduling for batched execution of different graphs,
guaranteeing the memory continuity. There are also
some graph-based ML systems, such as GraphLab [28],
but they do not handle instance-based graphs, and do not
offer batching advantages for dynamic DL workloads.

7 Conclusion
We present Cavs, an efficient system for dynamic neu-
ral networks. With a novel representation, designed
scheduling policy, memory management strategy, and
graph execution optimizations, Cavs avoids substantial
graph construction overhead, allows for batched com-
putation over different structured graphs, and can bene-
fit from well-established graph optimization techniques.
We compare Cavs to state-of-the-art systems for dynamic
NNs and report a near one order of magnitude speedup
across various dynamic NN architectures and settings.
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Abstract
Recurrent neural networks (RNNs) are an important
class of deep learning (DL) models. Existing DL frame-
works have unsatisfying performance for online serving:
many RNN models suffer from long serving latency and
high cost, preventing their deployment in production.

This work characterizes RNN performance and identi-
fies low data reuse as a root cause. We develop novel
techniques and an efficient search strategy to squeeze
more data reuse out of this intrinsically challenging
workload. We build DeepCPU, a fast serving library on
CPUs, to integrate these optimizations for efficient RNN
computation. Our evaluation on various RNN models
shows that DeepCPU improves latency and efficiency
by an order of magnitude on CPUs compared with exist-
ing DL frameworks such as TensorFlow. It also empow-
ers CPUs to beat GPUs on RNN serving. In production
services of Microsoft, DeepCPU transforms many mod-
els from non-shippable (due to latency SLA violation) to
shippable (well-fitting latency requirements) and saves
millions of dollars of infrastructure costs.

1. Introduction
Deep learning (DL) is a fast-growing field pervasively in-
fluencing many applications on image, speech, and text
processing. Traditional feed forward neural networks
assume that all inputs (and outputs) are independent of
each other. This could be a bad idea for many tasks. For
example, to predict the next word in a sentence, we had
better know which words come before that. To classify
what kind of event is happening to the next point of a
movie, we had better reason from the previous events.
Recurrent neural networks (RNNs) are an important and
popular class of DL models that address this issue by
making use of sequential information [22,35,51]. RNNs
perform the same task for every element in the sequence,
with the output being dependent on the previous compu-
tation. This is somewhat similar to the human learning,
e.g., to understand a document, we read word by word,
sentence by sentence, and carry the information along
in our memory while reading. RNNs have shown great
promise in many natural language processing tasks, e.g.,
language model [16,44], machine translation [15,21,58],
machine reading comprehension [18, 25, 39, 53], speech
∗Both authors contributed equally. Order of appearance is random.

recognition [31, 34, 66], and conversational bots [62].
Like other DL models, using RNNs requires two steps:

(1) learning model weights through training, and (2) ap-
plying the model to predict the results of new requests,
which is referred to as serving, or equivalently, infer-
encing or scoring. Training is a throughput-oriented
task: existing systems batch the computation of multiple
training inputs to obtain massive parallelism, leveraging
GPUs to obtain high throughput. Users can often tolerate
fairly long training time of hours and days because it is
offline. Serving, on the other hand, makes online predic-
tion of incoming requests, imposing different goals and
unique challenges, which is the focus of this paper.

Latency and efficiency are the two most important
metrics for serving. Interactive services often require re-
sponses to be returned within a few or tens of millisec-
onds because delayed responses could degrade user sat-
isfaction and affect revenue [27]. Moreover, large-scale
services handle massive request volumes and could re-
quire thousands of machines to serve a single model.
Many RNN models from production services such as
web search, advertisement, and conversational bots re-
quire intensive computation and could not be shipped be-
cause of serving latency violation and cost constraints.

Detailed investigation shows that popular DL frame-
works, e.g., TensorFlow and CNTK, exhibit poor perfor-
mance when serving RNNs. Consider the performance
metric of floating point operations per second (flops),
which is a standard measure for computations like DL
that are dominated by floating-point calculations. Our
test results show that on a modern Intel CPU with peak
performance of 1.69Tflops, using TensorFlow/CNTK for
RNN serving only gets less than 2% of hardware peak.
This naturally raises many questions: Why is there such
a big performance gap between hardware peak and the
existing implementations? Are we dealing with an intrin-
sically challenging workload or less optimized systems?
Would different hardware, such as GPU, help?

We carefully characterize RNN performance and an-
swer the above questions.

First, RNN serving is an intrinsically challenging
workload. Due to stringent latency SLA, online serv-
ing systems often process each request upon its arrival,
or at best, batch a few requests whenever possible. With
a batch size of 1 (or a few), the computation is dominated
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by several vector-matrix multiplications (or matrix multi-
plications), that have poor data reuse and thus are bottle-
necked on cache/memory bandwidth. Since the speed of
data transfer is far slower than the computational speed
of CPUs, this leaves cores waiting for data instead of
conducting useful computation, leading to poor perfor-
mance and latency.

Second, existing DL frameworks rely on parallel-
GEMM (GEneral Matrix to Matrix Multiplication), im-
plementations which are not targeted to optimize the type
of matrix multiplications (MMs) in RNN computations.
parallel-GEMM is designed to optimize large MMs with
high data reuse by hiding the data movement cost with
ample computation [29]. MMs in RNNs are usually
much smaller, fitting entirely in shared L3 cache, but
with minimal data reuse: data movement from shared L3
cache to private L2 cache is the main bottleneck. Due to
limited data reuse, parallel-GEMM can no longer hide
the data movement, requiring different considerations
and new techniques. Furthermore, as weights are repeat-
edly used at MMs of each step along the sequence, it
presents a potential reuse opportunity from RNN domain
knowledge, which parallel-GEMM does not exploit.

Lastly, would GPU help? RNN serving is computa-
tionally intensive but with limited parallelism. In par-
ticular, the amount of computation grows linearly with
the sequence length: the longer the sequence, the more
steps the computation carries. However, the sequential
dependencies make it hard to parallelize across steps. As
the batch size is also small in serving scenario, there is
rather limited parallelism for RNN serving. As GPUs use
a large number of relatively slow cores, they are not good
candidates because most of the cores would be idle under
limited parallelism; CPUs are a better fit with a smaller
number but faster cores.

With the challenges and opportunities in mind, we de-
velop novel techniques to optimize data reuse. We build
DeepCPU, an efficient RNN serving library on CPUs,
incorporating the optimization techniques. Our key tech-
niques include (1) private-cache-aware partitioning, that
provides a principled method to optimize the data move-
ment between the shared L3 cache to private L2 cache
with formal analysis; (2) weight-centric streamlining,
that moves computation to where weights are stored to
maximize data reuse across multiple steps of RNN exe-
cution. Both help overcome the limitation of directly ap-
plying parallel-GEMM and optimize data reuse on multi-
core systems. We also leverage existing techniques, such
as MM fusion and reuse-aware parallelism decision, in
the new context of RNN optimization.

Effectively integrating these techniques together is
non-trivial, requiring to search a large space to find op-
timized schedules. We model RNN computation using a
Directed Acyclic Graph of Matrix Multiplication nodes

(MM-DAG), supporting a rich set of optimization knobs
such as partitioning (splitting a node) and fusion (merg-
ing nodes). It is well known that the traditional DAG
scheduling problem of minimizing execution time by de-
ciding the execution order of the nodes is NP-hard even
in the absence of additional knobs [28]. The optimization
knobs further enlarge the search space exponentially, and
it is infeasible to exhaustively enumerate all schedules.
We develop an efficient search strategy that requires far
fewer calibration runs.

We compare DeepCPU with popular state-of-the-art
DL frameworks, including TensorFlow and CNTK, for
a wide range of RNN models and settings. The results
show DeepCPU consistently outperforms them on CPUs,
improving latency by an order of magnitude. DeepCPU
also empowers CPUs to beat highly optimized imple-
mentations on GPUs. We further demonstrate its impact
on three real-world applications. DeepCPU reduces their
latency by 10–20 times in comparison to TensorFlow. To
meet latency SLA, DeepCPU improves the throughput of
the text similarity model by more than 60 times, serving
the same load using less than 2% of machines needed by
the existing frameworks.

The key contributions of the work include: 1) Char-
acterizing performance limitations of the existing meth-
ods (Section 3). 2) Developing novel techniques and a
search strategy to optimize data reuse (Section 4 and 5).
3) Building DeepCPU, a fast and efficient serving library
on CPUs (Section 4 and 5). 4) Evaluating DeepCPU and
showing order of magnitude latency and efficiency im-
provement against the existing systems (Section 6).

DeepCPU has been extensively used in the production
of Microsoft to reduce serving latency and cost. It trans-
forms the status of many DL models from impossible
to ship due to violation of latency SLA to well-fitting
SLA requirements. It empowers bigger and more ad-
vanced models, improving accuracy and relevance of ap-
plications. DeepCPU also greatly improves serving ef-
ficiency, saving thousands of machines and millions of
dollars per year for our large-scale model deployments.

2. Background
An RNN models the relationships along a sequence by
tracking states between its steps. At each step t (Fig. 1a),
it takes one unit of input xt (e.g., a token in a text, or
a phoneme in a speech stream) and makes a prediction
yt based on both the current input xt and the previous
hidden (or cell) state ht−1. The hidden states {ht} form a
loop, allowing information to be passed from one step to
the next. The block of computation per step is called an
RNN cell, and the same cell computation is used for all
inputs of the sequence. An RNN (sequence) computation
can be viewed as an unrolled chain of cells (Fig. 1b).
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Figure 1: a) RNN with a recurrent structure. b) Unrolled
RNN. c) LSTM structure.

LSTM/GRU. There are many variations of RNNs, in-
heriting the recurrent structure as above but using differ-
ent cell computations. The two most popular ones are
Long Short Term Memory (LSTM) and Gated Recurrent
Unit (GRU) network, best known for effectively catching
long-term dependencies along sequences. We use LSTM
as an example and illustrate its cell computation:

it = σ(Wi · xt +Ui ·ht−1 +bi)

ft = σ(W f · xt +U f ·ht−1 +b f )

ot = σ(Wo · xt +Uo ·ht−1 +bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wc · xt +Uc ·ht−1 +bc)

ht = ot ◦ tanh(ct) .

Here σ(·) denotes the sigmoid function. Online tutori-
als [7, 12] describe good insights of the formulation on
how it facilitates learning. Here we focus on describ-
ing the main computations. We denote E as the input
dimension of the input vector xt , and H as the hidden
dimension of the hidden vector ht . LSTM includes 4 in-
put MMs, which multiply input vector xt with four input
weight matrices W{i, f ,o,c} of size E ×H each (marked
as blue in Fig. 1c). It has 4 hidden MMs, which multi-
ply hidden vector ht−1 with four hidden weight matrices
U{i, f ,o,c} of size H ×H each (red in Fig. 1c). Within
each cell, there is no dependency among the 8 MMs, and
across cells, the hidden state of step t depends on step
t−1 (as shown by Fig. 1c). LSTM also consists of a few
element-wise additions (+) and products (◦), as well as
activation functions such as σ and tanh.

Similar to the LSTM cell, GRU cell has 6 instead of 8
MMs but with additional dependencies within them [22].
Single vs. batch mode. To make real-time predictions,
online requests are often processed one by one as they
arrive, or occasionally, under a small batch. Given a

batch size of B, the batched input xt can be represented
as a matrix of size B× E, which transforms the un-
derlying computation from a vector-matrix to a matrix-
matrix multiplication, exposing more opportunities for
data reuse. However, because of tight latency require-
ments and spontaneous request arrivals, the batch size at
serving is usually much smaller (e.g., 1 to 10) than the
large mini-batch size (often hundreds) during training.

3. Performance Characterization
Existing DL frameworks such as TensorFlow/CNTK im-
plement RNNs as a loop of cell computation: as shown
in Lis. 1, 8 MMs in the LSTM cell are fused into a sin-
gle MM, executed using parallel BLAS libraries such as
Intel-MKL [3], OpenBLAS [6] or Eigen [1]. We measure
their performance in serving scenarios with small batch
size from 1 to 10. On a dual-socket Xeon E5-2650 CPU
machine, we often observe performance of < 30Gflops:
less than 2% of the machine peak of 1.69Tflops. What is
the cause of such a big gap?
Listing 1: LSTM Implementation in TensorFlow/CNTK
1 for t in input_sequence:

2 [ f ′t i′t o′t c′t ] = [xt ht−1]

[
W f Wi Wo Wc
U f Ui Uo Uc

]
3 ct = σ( f ′t ) ◦ ct−1 + σ(i′t ) ◦ tanh(c′t )
4 ht = σ(o′t ) ◦ tanh(ct )

The first step of performance analysis is to identify
the dominating computation. In RNNs, the total amount
of computation is dominated by MMs. The total ops in
MMs per RNN cell are O (B× (E +H)×H), and the to-
tal ops in element-wise operations and activations func-
tions are O (B×H). Typically the total number of ops
in MMs is two to three orders of magnitude larger than
the rest combined. As such, RNN performance primarily
depends on the MMs, which is the focus of this study.

We analyzed MMs in the RNNs, and identified three
key factors causing poor performance.
i) Poor data reuse. Data reuse at a particular level of
memory hierarchy is a measure of the number of com-
putational ops that can be executed per data load/store
at that level of memory hierarchy. Assuming a complete
overlap between computation and data movement (best
case scenario), the execution time of a computation can
be estimated as a function of the data reuse using the
roofline model [65] as

Time ≥ Max(DataMoveTime,CompTime) (1)

= Max( DataMoved
DataBandwidth ,

TotalComp
Peak )

= Max(TotalComp/Reuse
DataBandwidth , TotalComp

Peak )

Based on this execution time, note that poor data reuse
results in poor performance because on modern archi-
tectures, the computational throughput is significantly
higher than the data movement throughput. Let us look at
an example of L3 to L2 bandwidth since all RNN models
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we have seen fit in L3 cache of modern CPUs: the peak
computational performance of a Xeon E5-2650 machine
is 1.69Tflops while the observable DataBandwidth be-
tween L3 and L2 cache on it is 62.5 GigaFloats/s (250
GB/s), measured using the stream benchmark [8]. If the
reuse is low, the total execution time is dominated by the
data movement, resulting in poor performance.

This is indeed the case for RNN in serving scenario
where the batch size tends to be very small. To see this,
consider an MM:C[i, j] = ∑k A[i,k]×B[k, j]. If we as-
sume that both the inputs and the outputs reside in L3
cache at the beginning of the computation, then both the
inputs and the outputs must be read from L3 cache to L2
cache at least once, and the outputs must be stored from
L2 cache to L3 cache at least once during the MM. There-
fore, the maximum possible data reuse during this MM
from L2 cache is given by 2×I×J×K

|A|+|B|+2|C| , where I,J and K
are the size of indices i, j and k. Similarly, the fused MM
of LSTM has the shape [B,E +H]× [E +H,4H], and its
data reuse is:

MaxDataReuse = 8×B×H×(E+H)
|Input|+|Weights|+2|Out put| (2)

= 8×B×H×(E+H)
B×(E+H)+4×(E+H)×H+8×B×H (3)

When batch size B� min(H,E), the maximum data
reuse in Eqn. 2 reduces to 2B. Take B = 1 as an exam-
ple: the best achievable performance of LSTM on the
Xeon E5-2650 machine is at most 125Gflops based on
the measured L3 bandwidth of 250 GB/s. This is less
than 8% percent of the machine’s peak of 1.69Tflops.
ii) Sub-optimal MM partitioning. Parallel-GEMM li-
braries are designed to optimize performance of large
MMs that have significant data reuse (> 1000). They
exploit this reuse from L2 cache level using loop-tiling
to hide the data movement cost from both memory and
L3 cache [29]. In contrast, the amount of reuse in RNNs
is in the order of B, which is often a small value between
1 and 10 for most serving cases. This is not enough to
hide the data movement cost even though MMs in RNN
are small enough to fit in L3 cache. In the absence of
large reuse, the performance of parallel-GEMM is lim-
ited by the data movement cost between shared L3 cache
and private L2 caches. Parallel-GEMM is sub-optimal at
minimizing this data movement.

More specifically, L3 cache on a modern CPU feeds to
multiple L2 caches that are private to each core. During
RNN computations, some data might be required by mul-
tiple cores, causing multiple transfers of the same piece
of data from L3 cache. Thus, the total data movement
between L3 and L2 caches depends on the partitioning of
the MM computation space and its mapping to the cores.
For example, if we split an MM computation among two
cores, such that the first core computes the upper half of
the output matrix C, while the second core computes the

lower half, then input matrix B must be replicated on L2
cache of both cores, as the entire matrix B is required to
compute both halves of matrix C. Alternatively, if the
computation is split horizontally, then the input matrix
A must be replicated on L2 cache of both cores. Differ-
ent partitionings clearly result in different amount of data
reuse. Parallel-GEMM does not always produce a parti-
tioning that maximizes this data reuse. Libraries special-
ized for small matrices are not sufficient either, as some
focus only on sequential execution [56] while others fo-
cus on MM small enough to fit in L1 cache [43].
iii) No data reuse across the sequence. During serv-
ing, weight matrices of RNNs remain the same across the
sequence, but existing solutions do not take advantage
of that to optimize data reuse. More precisely, parallel-
GEMM used to execute the MMs is not aware of this
reuse across the sequence. During each step of the se-
quence, the weight matrix could be loaded from L3 cache
to L2 cache. However, it is possible to improve perfor-
mance of RNNs by exploiting this data reuse.

Beyond MM: Beyond limited data reuse at MMs,
existing RNN implementations in DL frameworks such
as TensorFlow have other performance limiting factors,
e.g., data transfer overheads among operators, buffer
management overheads, unoptimized activation func-
tions, which we address in DeepCPU. For example, we
develop efficient SIMD implementations of tanh and
sigmoid activation functions using continued fraction ex-
pansion, supporting any desired degree of precision by
adjusting the number of terms to terminate the expan-
sion [60]. Since these improvements mostly require good
engineering practice than novel methods, we did not dis-
cuss them in detail for the interest of space.

4. Challenges and Strategies
Challenges. Finding an optimized implementation for
RNN execution that maximizes data reuse while also
efficiently using low-level hardware resources (such as
SIMD hardware) is challenging due to the explosive
space of optimization knobs and execution schedules.
Practically infinite number of valid choices can be ob-
tained through loop permutations, loop fusions, loop un-
rolling, unroll factor selection, loop tiling, tile-size selec-
tion, MM reordering, vectorization, register tiling, regis-
ter tile size selection, parallel loop selection, paralleliza-
tion granularity selection, thread-to-core mapping etc.,
and their combinations. Furthermore, enabling those op-
timization knobs and creating a schedule generator for
all choices is a non-trivial engineering task. Addition-
ally, the optimal choice is dependent on both hardware
architecture and RNN parameters: a single solution will
not work for all cases and an optimized schedule needs
to be tuned case by case in an efficient manner. All of the
above make the problem challenging in practice.
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Figure 2: DeepCPU optimization overview.
Strategies: DeepCPU overview. To overcome these
challenges, we judiciously define the search space and
identify the most important techniques to boost data lo-
cality. This empowers efficient search within a selective
set of optimization knobs and schedules for obtaining the
best RNN performance. We build the entire optimization
pipeline into a library, which we call DeepCPU. Fig. 2
highlights its key features and workflow.

An important start of the optimization is to define a
concise search space, which we develop upon two in-
sights. (1) We identify the most performance critical
operators, MMs, and model the computation graph con-
necting them to capture the first-order impact. We can
do this by constructing a Matrix Multiplication Directed
Acyclic Graph (MM-DAG) to represent the RNN com-
putation, where each node represents an MM and edges
represent dependencies among them. This model allows
us to build schedules using MMs as the basic build-
ing blocks, capturing key computations while abstract-
ing away other low-level details. (2) Instead of examin-
ing all valid schedules for the MM-DAG, which is not
trackable, we can leverage the iterative nature and other
properties of RNNs, prune search space to deduplicate
the performance-equivalent schedules, and remove those
that cannot be optimal. These two insights are imple-
mented as 1 and 2 in Fig. 2.

We then identify and develop four techniques to ef-
fectively boost data locality for RNNs, applying them on
each schedule (shown as 3 , 4 , 5 , 6 in Fig. 2):

• MM-fusion: fuses smaller MMs into larger ones,
improving data reuse;

• Reuse-aware parallelism generator: identifies
best parallelism degree within and across MMs
through auto-tuning, jointly considering locality;

• Private-cache-aware-partitioning (PCP): opti-
mizes data movement between shared L3 cache and
private L2 cache with a novel and principled parti-

tioning method;
• Weight centric streamlining (WCS): maps the

partitions produced by PCP to cores in a way that
enables reuse of weights across the sequence.

The parallelism generator 4 iterates over different
choices on parallelism degrees. For a parallelism choice,
we use PCP 5 to obtain locality optimized parallel par-
titions. The partitions are then mapped to cores using
WCS 6 . Individual partitions are implemented using
highly optimized single-threaded BLAS library which
optimizes for low-level hardware resources such as L1
cache and SIMD instruction set. DeepCPU applies this
schedule to obtain the execution time, and loop over to
find the best parallelism choice. Once this process is
completed for all schedules generated by 2 , DeepCPU
simply chooses the schedule that is the fastest. This cal-
ibration process is often called once during model con-
struction, and then the optimized schedule is repeatedly
used for serving user requests of the model.

In the design of DeepCPU, we deliberately combine
analytical performance analysis (at search space prun-
ing and PCP) with empirical calibration (to measure the
combined impact of locality and parallelism). The for-
mer effectively reduces the search space, saving tuning
time to run many suboptimal/redundant schedules. The
latter reliably measures the actual execution time to cap-
ture complex software and hardware interaction, which
can hardly be accurately estimated. This combination
empowers both effectiveness and efficiency.

5. DeepCPU Optimizations
This section dives into DeepCPU optimizations from re-
fining search space to locality optimizations. We con-
clude it by demonstrating the performance breakdown
and impact of these optimizations.
5.1. MM-DAG Scheduling
DeepCPU models RNN computations as MM-DAGs and
optimizes the schedules to execute them. Given an MM-
DAG, a valid schedule determines an execution order-
ing of its nodes that satisfies all the dependencies. We
consider only those valid schedules that are composed
of phases: A phased schedule executes an MM-DAG
in a sequence of phases S1,S2,S3, ...,Si, ..., where each
phase Si represents a non-overlapping subset of nodes
and S = ∑i Si consists of all nodes. There is a total or-
dering between phases such that if i < j, then all nodes
in Si must be executed before S j. However, nodes within
a phase can be executed in parallel. Lst. 2 shows two ex-
amples of valid phased schedules for LSTM. In Schedule
1, all MMs at a timestep t are in Phase t.

The phases can be divided into two categories: i) If a
phase consists of an MM that has dependency across the
timesteps, we call it a time-dependent phase, e.g., those
MMs taking hidden state ht as inputs, ii) Otherwise, if
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a phase does not contain any MM that has dependency
across the sequence, we call it a time-independent phase.
For example, in Schedule 2 of Lst. 2, Phase 1 is time-
independent, and consists of all the MMs computing in-
put transformation (with weights Wi,Wf,Wc and Wo)
across all timesteps; all other phases are time-dependent,
requiring the value of ht−1 to compute ht .

Listing 2: Phased LSTM Schedule-1 and 2
1 // Phased LSTM Schedule 1
2 for t:
3 Phase t: //time - dependent
4 Wi · xt ,W f · xt ,Wc · xt ,Wo · xt
5 Ui ·ht−1,U f ·ht−1,Uc ·ht−1,Uo ·ht−1
6
7 // Phased LSTM Schedule 2
8 Phase 1: //time - independent
9 Wi · x0, ..,Wi · xt ,W f · x0, ..,W f · xt ,

10 Wc · x0, ..,Wc · xt ,Wo · x0, ..,Wo · xt
11 for t:
12 Phase (t+1): //time - dependent
13 Ui ·ht−1,U f ·ht−1,Uc ·ht−1,Uo ·ht−1

Reducing search space. We propose three rules to
prune the search space, removing sub-optimal and re-
dundant schedules: i) Time-dependent phases must have
symmetry across timesteps. As RNN computation is
identical across timesteps, the fastest schedule for exe-
cuting each timestep should also be identical. ii) If two
consecutive phases are of the same type, then there must
be a dependency between the two phases. If no depen-
dency exists then this schedule is equivalent to another
schedule where a single phase consists all MMs in both
phases. iii) We compute time-independent phases before
all dependent ones, as shown in Schedule 2 of Lst. 2.
Having phases of the same type in consecutive order in-
creases reuse of weights.
5.2. Data Locality Optimizations
DeepCPU improves data reuse within each phase and
across phases through four techniques.
5.2.1 Fusion of MMs
DeepCPU fuses all possible MMs within each phase —
Two MMs can be fused into a single MM if they share a
common input matrix.
How to fuse? Consider two MMs, MM1 : C1[i1, j1] =
∑k1 A1[i1,k1] × B1[k1, j1] and MM2 : C2[i2, j2] =

∑k2 A2[i2,k2]×B2[k2, j2]. W.l.o.g., assume A1[i1,k1] =
A2[i1,k1], as shared input matrix. The two MMs
can be fused into a single one MM12 by concate-
nating B1 and B2, and C1 and C2 along the col-
umn, i.e., C12[i1, j12] = ∑k1 A1[i1,k1]× B12[k1, j12]
where B12[k1, j1] = B1[k1, j1], B12[k2,J1 + j2] =
B2[k2, j2], and C12[i1, j1] = C1[i1, j1], C12[i2,J1 +
j2] = C2[i2, j2] (J1 is the size of index j1).
Why fuse? Fusion improves data reuse. Consider using
any GEMM implementation to execute MM1 and MM2
without fusion. While both MM1 and MM2 share a com-
mon input, GEMM is not aware of this reuse and could

not take advantage of it. However, if we fuse them, this
reuse is explicit in the MM and GEMM can exploit it to
improve both performance and scalability.
5.2.2 Reuse-aware Parallelism Generator
Parallelism boosts compute capacity but may also in-
crease data movement. This part discusses the relation
of locality and parallelism, and our parallelism strategy.
How to parallelize a single MM? Executing an MM
with the maximum available parallelism is not always
the best option for performance. As the parallelism in-
creases, either the input or output must be replicated
across multiple L2 private caches, thus increasing the to-
tal data movement. Once the level of parallelism reaches
a certain threshold, the performance is limited by the data
movement instead of the computational throughput. As
shown in Fig. 3a, the MM performance degrades after
certain parallelism. It is crucial to find the optimal level
of parallelism instead of applying the common wisdom
of using all available cores.
How to parallelize concurrent MMs? Multiple MMs
within a phase do not have any dependencies. DeepCPU
executes them as Parallel-GEMMs-in-Parallel, where
multiple MMs are executed concurrently with each MM
executing in parallel. For example, to compute two inde-
pendent MMs, M1 and M2, on P cores, we run M1 and
M2 in parallel, each using P/2 cores. This is in contrast
with Parallel-GEMMs-in-Sequence, where we run M1
first using P cores followed by M2. Parallelizing an MM
across multiple cores increases the data movement from
L3 to L2 cache. In contrast, executing multiple MMs in
parallel across multiple divided groups of cores allows
each group to work on a unique MM without requiring
data replication across them, improving data reuse while
maintaining the same parallelism level. Fig. 3b shows
empirical results. We run two independent and identi-
cal MMs with increased parallelism and report the best
performance achieved. Parallel-GEMMs-in-Parallel sig-
nificantly outperforms Parallel-GEMMs-in-Sequence.
How to optimize parallelism degree? Finding the op-
timal parallelism degree analytically is non-trivial as
it depends on many architectural parameters. How-
ever, it is also not necessary in practice. DeepCPU ap-
plies Parallel-GEMMs-in-Parallel if a phase has multiple
fused MMs. It then uses auto-tuning to identify the op-
timal parallelism for the phase quickly, as the number of
cores on a modern multi-core CPU is less than two or-
ders of magnitude and well-known RNN operators such
as LSTMs/GRUs have at most two fused MMs per phase.
5.2.3 Private-Cache-Aware Partitioning (PCP)
We develop PCP, a novel private-cache-aware partition-
ing strategy for executing MMs across multicores to op-
timize L2 reuse within and across phases. PCP provides
a principled method to optimize data movement with for-
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Figure 3: For MMs of different sizes, (a) shows performance results by increasing the parallelism degree. (b) om-
pares Parallel-GEMMs-in-Parallel vs Parallel-GEMMs-in-Sequence, plus Sequential-GEMM as baseline. C) com-
pares parallel-GEMM, PCP with and without weight-centric streamlining for running MMs.

mal analysis: For a given MM with parallelism degree P,
we show PCP produces a P-partitioning of the compu-
tation space such that the total data movement between
L3 and L2 cache is minimized. DeepCPU employs PCP
to generate a locality-optimized schedule for each paral-
lelism configuration without requiring to empirically cal-
ibrate different partitions and measure their performance.
Reuse within phases. Suppose an MM C[i, j] =

∑k A[i,k]×B[k, j] has P partitions, where Xi,X j and Xk
are the number of partitions along each of the i, j, k di-
mensions and Xi×X j×Xk = P. We first derive the total
data movement between L3 and L2 cache as a function
of the partitions. This data movement depends on the re-
lation between the size of the input and output matrices
of the MM and the sizes of the L3 and L2 caches. For
all RNNs of interest in serving scenario, we observe that
the input matrix is much smaller than L2 cache, and the
sum of all matrices fit in L3 cache. Under such condi-
tions, we prove in Lemma 5.1 and Theorem 5.2 that the
total data movement between L3 and L2 cache is equal to
X j|A|+Xi|B|+2Xk|C|. By choosing Xi, X j, and Xk that
minimizes this quantity, PCP obtains a parallel partition-
ing that maximizes data reuse from L2 cache.
Lemma 5.1. The tight bound on data movement between
a slow memory and a fast memory of size S for an MM
C[i, j]+= ∑k A[i,k]×B[k, j] is given by |A|+ |B|+2|C|,
when S ≥ min(|A|, |B|, |C|) + H + 1. Here we assume
that the inputs and output matrices initially reside in
the slow memory, and the final output must also reside
in the slow memory. H is a constant not greater than
max(I,J,K), where I, J and K are the sizes of indices i,
j and k respectively.

Proof. Lower bound: As both inputs and outputs orig-
inally reside in slow memory they must be read to fast
memory at least once to compute the MM. After com-
putation, the output must be written to slow memory at
least once. That gives |A|+ |B|+2|C| as a lower bound.

Upper bound: W.l.o.g., assume A fits in S. Lst. 3

shows a schedule where the total data movement between
slow and fast memory is given by |A|+ |B|+2|C|, when
S≥ |A|+K+1. Note H (=K) is a (small) buffer space to
hold a single column of B during the computation.

Listing 3: MM Schedule that achieves data movement of
|A|+ |B|+2|C| when S≥ |A|+K +1
1 //C[i,j] = ∑k A[i,k] × B[k,j]
2 Load A[*,*] in A_buf // MemReq = |A|
3 for j
4 Load B[*,j] in B_buf // MemReq = K
5 for i
6 Load C[i,j] in c // MemReq = 1
7 for k
8 c += A_buf[i,k] × B_buf[k]
9 Store c in C[i,j]

Theorem 5.2. Consider P cores on a CPU, and an MM
C[i, j]+ = ∑k A[i,k]×B[k, j], where |A|+ |B|+ |C| ≤
|L3Cache| and min(|A|, |B|, |C|) + H + 1 ≤ |L2Cache|.
H is a constant not greater than max(I,J,K), where I, J
and K are the sizes of indices i, j and k. For a P-way
partitioning 〈Xi,X j,Xk〉 where Xi×X j×Xk = P, a tight
bound on the data movement between L3 and L2 cache
is given by X j|A|+Xi|B|+2Xk|C|.
Proof. Each of the partitions given by 〈Xi,X j,Xk〉 is an
MM of size I

Xi
× J

X j
× K

Xk
. From Lemma. 5.1 we see that a

tight bound on the data movement between L3 cache and
L2 cache for each of these sub-MMs is given by I×K

Xi×Xk
+

K×J
Xk×X j

+ 2 I×J
Xi×X j

. Thus the total data movement for all

partitions is given by Xi × X j × Xk × ( I×K
Xi×Xk

+ K×J
Xk×X j

+

2 I×J
Xi×X j

) = X j|A|+Xi|B|+2Xk|C|.
Reuse across phases. PCP so far maximizes the data
reuse by considering each phase independently. How-
ever, identical time-dependent phases (TDPs) across a
sequence have data reuse between them. For each MM in
these phases, weight matrices stay the same. We extend
PCP to exploit the reuse in weights across phases.

For a given P-partitioning strategy 〈Xi,X j,Xk〉, the
weight matrix B is divided into blocks of size |B|

X j×Xk
. If

this block fits in L2 cache of an individual core, then it
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will not be evicted from L2 cache for the entire com-
putation sequence as long as the mapping between the
MM partitions and the compute cores does not change.
In such cases, denoting the sequence length of RNN as
seq len, the total data movement is given by

seq len× (X j|A|+2Xk|C|)+Xi|B|
as the weight matrix B needs to be read only once from
L3 cache at the first time step. In general, total data-
movement between L3 and L2 caches is calculated as{

seq len× (X j|A|+2Xk|C|)+Xi|B| if |B|
X j∗Xk

≤ |L2|
seq len× (X j|A|+Xi|B|+2Xk|C|) if |B|

X j∗Xk
> |L2|

By minimizing this piecewise function, we maximize
the data reuse across a sequence. In practice, it is not
necessary for a block of the weight matrices to fit entirely
in L2 cache. As long as the block is not much larger than
L2 cache, we can still get partial reuse.
5.2.4 Weight-Centric Streamlining (WCS)
WCS is our implementation to enable full-fledged PCP,
supporting reuse of weight matrices across TDPs. For
a given parallelism degree, PCP produces a partitioning
such that the weights required to compute the partition
fit in L2 cache of a single core (when possible), allow-
ing the weights to be reused from L2 cache across TDPs,
without being evicted. However, to ensure this reuse,
the computation must be conducted at where the weights
are, i.e., the mapping between parallel partitions and the
cores that execute them must not change across TDPs.

To this end, we use OpenMP [24] to create a parallel
region that spans the entire RNN sequence of computa-
tion. The parallelism degree is equal to the max paral-
lelism degree among all phases in the schedule. Each
thread in the parallel region is responsible for execut-
ing at most a single parallel partition during each phase.
Some threads may remain idle during phases where the
parallelism degree is less than the number of threads.
Each thread ID is mapped to a unique partition ID, and
this mapping is identical across TDPs. In essence, we
alternate the order of the sequence loop and the parallel
region such that the sequence loop is inside the parallel
region, shown as ParallelOuterRNN in Lst. 4.

Listing 4: Parallel Outer vs Parallel Inner RNN
1 ParallelOuterRNN(intput_sequence , output)
2 #pragma omp parallel
3 int id = omp_get_thread_num ()
4 for t in intput_sequence:
5 ComputeRNNOuterParallel(id, t, output)
6
7 ParallelInnerRNN(intput_sequence ,output)
8 for t in intput_sequence:
9 #pragma omp parallel

10 int id = omp_get_thread_num ()
11 ComputeRNNInnerParallel(id, t, output)

This has two major advantages over creating parallel
regions inside the sequence loop as ParallelInnerRNN, i)
it allows easy pinning of each MM parititon to a partic-

ular core across RNN steps. In OpenMP, threads in each
parallel region have their local thread IDs starting from 0.
A unique mapping between this local thread ID and the
global thread ID is not guaranteed across multiple par-
allel regions separated in time. Thread affinity settings
allow binding global thread IDs to cores or hyperthreads,
but not local thread IDs. By creating a single parallel re-
gion, we create a unique mapping between a local thread
ID and the global thread ID throughout the computation,
which ensures that an MM partition is always executed
on the same core across the entire sequence. ii) It re-
duces the overhead of creating parallel regions. Instead
of opening and closing parallel regions during each step
of the RNN sequence, we only create a parallel region
once for the entire computation.

Fig. 3c compares performance of running a sequence
of parallel-GEMM and PCP with/without WCS for var-
ied sizes of MMs. The latter two consistently outperform
the former, but the full benefit of PCP (across phases) is
realized only when used together with WCS.
5.3. Performance Impact of Optimization Techniques
We compare four implementations using different LSTM
configurations: i) Parallel-GEMM(baseline): Runs each
step of LSTM as 8 MMs in sequence, and each MM
is executed with Intel-MKL parallel-GEMM. ii) Ten-
sorFlow/CNTK Fusion: the fused MM (as Lst. 1) is
executed using Intel-MKL parallel-GEMM. iii) MM-
DAG+Fusion+PCP: All optimizations in DeepCPU ex-
cept WCS. iv) DeepCPU Kernel: All aforementioned op-
timizations.
Results. TensorFlow/CNTK Fusion has roughly the
same performance as baseline. MM-DAG+Fusion+PCP
is as good as or better than both of them. It searches
for the fused phased schedules including TensorFlow/C-
NTK fusion, as well as those that increase reuse by fus-
ing across time steps. It also applies PCP for better par-
titioning. However, it does not ensure that MMs shar-
ing same weights are mapped to the same core. In con-
trast, DeepCPU kernel is often much faster, particularly
for small batch sizes where the reuse is small within a
single phase and reuse across TDPs must be exploited
for better performance. Even for larger batch size with
the input/hidden dimension 256 and 1024, where the to-
tal size of the weight matrices is larger than the L2 cache
but individual weight blocks fit in L2 cache, DeepCPU
kernel offers good speedup by enabling reuse of weights
across TDPs.
Performance counters. We measure the amount of data
movement from L2 to L3 through L2 cache misses us-
ing L2 RQSTS.ALL DEMAND MISS counter in Intel®

VTune™ Amplifier [2]. Fig.4b shows DeepCPU signif-
icantly reduces L2 cache misses (by 8 times), verifying
its effectiveness on locality optimization.
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(a) (b)
Figure 4: (a) Performance of LSTMs (in the form of [batch size, input/hidden dimension]) with different optimization
techniques. (b) L2 cache misses for config [20, 256]. Measured at sequence length = 100 with 2000 iterations.

Search space size. DeepCPU finds the optimal execu-
tion schedule with just a few hundred calibration runs.
In the example of LSTM, we search approximately P×
Q configurations by generating P = #cores parallelism
choices, and Q phased schedules that satisfies all three
pruning criteria described in Sec. 5.1. For LSTMs,
Q < 20, which can be verified by enumerating all such
valid schedules. Per parallelism choice, PCP identi-
fies optimized partitioning analytically (e.g., integer pro-
gramming) without requiring additional empirical explo-
ration, greatly saving search space. This search/calibra-
tion process is often called once during model construc-
tion, and then the optimized schedule is repeatedly used
for serving upcoming user requests.

6. Evaluation
We compare DeepCPU with RNN implementations from
state-of-the-art DL frameworks: DeepCPU is an order
of magnitude faster than TensorFlow and CNTK for a
wide range of RNN models and configurations on CPUs.
DeepCPU also outperforms GPU implementations sig-
nificantly for most of the cases. Furthermore, we test
DeepCPU on real-world applications used in production:
it transforms these models from impossible to ship due
to latency violation to well-fitting SLA while also saving
millions of dollars in infrastructure cost.
Hardware. Our evaluation is conducted on a server with
two 2.20 GHz Intel Xeon E5-2650 V4 processors, each
of which has 12-core (24 cores in total) with 128GB
RAM, running 64-bit Linux Ubuntu 16.04. The peak
Gflops of the CPU is around 1.69Tflops. The server has
one Nvidia GeForce GTX TITAN X which is used for
measuring RNN performance on GPU.
6.1. RNN Performance Comparison
Workload. We evaluate LSTM/GRU by varying input
dimension, hidden dimension, batch size, and input se-
quence length to cover a wide range of configurations.
Comparison frameworks. There are many DL frame-
works such as TensorFlow [13], CNTK [52], Caffe2 [37],
Torch [41], Theano [17], and MXNet [19] that support
RNNs on CPUs and GPUs. We compare DeepCPU with
TensorFlow and CNTK. We choose TensorFlow because
it is adopted widely. We use TensorFlow version 1.1.0
with Accelerated Linear Algebra (XLA) compiler, opti-

mizing pointwise kernels, and with Intel Math Kernel Li-
brary (MKL) for efficient matrix operations. We let Ten-
sorFlow pick appropriate degrees for inter-op and intra-
op parallelism. We choose CNTK since a recent study
showed that it achieves good performance on RNNs [55].
CNTK also uses MKL and sets the number of threads
equal to the number of cores for MMs by default. On
GPUs, we evaluate TensorFlow, CNTK and a highly op-
timized cuDNN implementation [14, 20].
Speedup on CPUs. Table 1 presents the execution time
and speedup results of DeepCPU, in comparison to Ten-
soFlow and CNTK on CPUs, covering a wide range of
RNN model sizes. The first four columns describe the
specification of RNNs: input dimension, hidden dimen-
sion, batch size, and sequence length. Both absolute ex-
ecution time and speedup are reported. Speedup is mea-
sured as the ratio between the execution times of Ten-
sorFlow (or CNTK) versus DeepCPU, e.g., a value of 2
indicates that DeepCPU is 2 times faster. To make re-
liable measurement, we run each config 2000 times and
report the average. The results show that DeepCPU sig-
nificantly and consistently outperforms TensorFlow and
CNTK, with speedup in the range of 3.7 to 93 times, and
average speedup of 18X among all tested configurations.

Next, we conduct an in-depth performance compari-
son, showing how model parameters affect the results,
on both CPU and GPU, across 6 implementations.
Varying input/hidden dimension. Fig. 5a reports the
execution time and Gflops of LSTMs with varying in-
put/hidden dimension from 32 to 1024. This is the range
of dimension size commonly observed from RNN mod-
els in practice. Here we choose batch size of 1 to rep-
resent a common case in serving. As expected, the ex-
ecution time for all implementations increases with the
increase in dimension size. However, compared to all
implementations, DeepCPU always has the shortest ex-
ecution time and the highest Gflops on both CPUs and
GPUs for all sizes. Note that the y-axis of the execu-
tion time is in log-scale, so the actual gap is larger than
it appears. DeepCPU is more than an order of magnitude
faster than both TensorFlow and CNTK on CPUs. On
GPUs, DeepCPU has significantly higher performance
when the dimension size is small or medium (e.g., less
than 256). As the dimension size gets larger, this perfor-

USENIX Association 2018 USENIX Annual Technical Conference    959



Model parameters LSTM exec. time (ms) GRU exec. time (ms) LSTM speedup GRU speedup
input hidden batch seq. len. TF CNTK DeepCPU TF CNTK DeepCPU TF CNTK TF CNTK

64 64 1 100 7.3 25 0.31 8 25 0.7 26 81 11 36
256 64 1 100 10 27 0.29 9.6 26 0.58 34 93 17 45

1024 64 1 100 19 25 0.42 16 27 0.69 45 60 23 39
64 256 1 100 21 23 0.62 17 30 0.79 34 37 22 38
64 1024 1 100 180 30 6.5 110 37 6.4 28 4.6 17 5.8

1024 1024 1 100 460 33 11 190 40 8.4 42 3 23 4.8
256 256 1 1 0.96 1.1 0.069 0.89 1 0.053 14 16 17 19
256 256 1 10 3.4 2.9 0.16 2.9 3.4 0.14 21 18 21 24
256 256 1 100 28 21 0.74 22 25 0.9 38 28 24 28

64 64 10 100 20 47 1.1 18 43 1.1 18 43 16 39
64 64 20 100 27 74 1.5 25 88 1.5 18 49 17 59

256 256 10 100 51 62 4.4 34 66 3.7 12 14 9.2 18
256 256 20 100 58 91 6.4 51 100 5.4 9.1 14 9.4 19

1024 1024 10 100 400 180 42 280 170 36 9.5 4.3 7.8 4.7
1024 1024 20 100 540 250 68 380 230 60 7.9 3.7 6.3 3.8

Table 1: Execution times and speedups of LSTMs and GRUs, comparing DeepCPU, TensorFlow and CNTK on CPU.

mance gap decreases due to increase in parallelism that
allows for an increasing number of GPU cores to kick in.
On the other hand, the CPU Gflops plateaus after dimen-
sion size of 512.
Varying sequence length. Fig. 5b shows the perfor-
mance impact of varying input sequence lengths from 1
to 100. As the sequence length increases, the execution
time of all implementations except DeepCPU increases
almost linearly, or equivalently, their Gflops stays con-
stant. DeepCPU, however, has a sharp jump in perfor-
mance when sequence length increases from 1 to 10. It
demonstrates that DeepCPU exploits data reuse across
steps: when sequence length > 1, later steps reuse the
weights from the first step, increasing Gflops. Once the
sequence length becomes larger than 10, the increase in
reuse per flop is marginal. Thus, the Gflops curve is rel-
atively flat when sequence length grows from 20 to 100.
Varying batch size. As shown in Fig. 5c, among all
CPU implementations, DeepCPU performs and scales
the best with increasing batch size. Among GPU
implementations, cuDNN performs significantly better
than TensorFlow and CNTK. Comparing DeepCPU with
cuDNN, the best CPU versus GPU implementation,
DeepCPU is better with small and moderate batch size
(< 15) and cuDNN is better with large batch sizes. This
crossover is expected. However, as discussed earlier,
batch size is often rather small for serving scenarios due
to the stringent latency SLA.

The GPU implementation in existing framework such
as TF-GPU has worse performance than cuDNN. This is
because TF-GPU and cuDNN do not use the same un-
derlying implementation. In the case of LSTMs, Tensor-
Flow constructs the LSTM operator as a composition of
matrix multiplications and activation functions. A single
LSTM operator produces hundreds of nodes in the Ten-
sorFlow computation graph. While some of these nodes

(a) Batch size=1, sequence length=100

(b) Input/hidden dimension size = 256, batch size= 1

(c) Input/hidden dimension size = 256, sequence length= 100

Figure 5: LSTM execution time and Gflops with varying
input/hidden dimension, sequence length and batch size.

are computed on the GPUs (for example matrix multipli-
cation using cuBLAS), transferring tensors among nodes
incurs quite significant overhead. In contrast, cuDNN

960    2018 USENIX Annual Technical Conference USENIX Association



implementation is a single highly optimized kernel invo-
cation for the entire sequence of the LSTM computation.
6.2. Serving Real-World RNN-Based Models
We evaluate DeepCPU on serving three real-world mod-
els. Table 2 provides their RNN specifications.
What’s inside DeepCPU? DeepCPU focuses on RNN
families and supports LSTM/GRU cell, LSTM/GRU se-
quence, bidirectional RNN, and stacked RNN networks.
It includes fundamental building blocks such as effi-
cient matrix multiplication kernels, activation functions,
as well as common deep learning layers such as high-
way network [57], max-pooling layer [40], multilayer
perceptron [50], variety of attention layers [39, 53], and
sequence-to-sequence decoding with beam search [59].
Converting trained models into DeepCPU. DeepCPU
focuses on serving, and we take a two-step approach to
convert trained models (e.g., from TensorFlow/CNTK) to
use it. 1) Replace the RNN part(s) of the original model
using DeepCPU APIs. In this paper, we implement all
three models using DeepCPU C++ APIs. The engineer-
ing work is manageable as our library contains many
reusable and common components for building neural
networks. A more automated way is to integrate our li-
brary with an existing framework, which we consider as
future work. 2) Port the weights of the trained model to
initialize the DeepCPU model instances.
Text similarity (TS). TS measures semantic similar-
ity between texts [45]. It is widely used for grading
machine translation results, detecting paraphrase, and
ranking query document relevance. It uses bidirectional
GRUs to encode text inputs (e.g., sentences) into seman-
tic vectors and measures their relevance with cosine simi-
larity. The GRU computation dominates the performance
of the model. The first row in Fig. 6 shows that with
DeepCPU, TS runs 12X faster than TensorFlow on CPUs
and 15X faster than TensorFlow on GPUs.
Attention sum reader (ASR). ASR extracts single to-
ken answer from a given context and can be used for on-
line question and answering [39]. The model uses bidi-
rectional GRU to encode both query and context into se-
mantic vectors and performs reasoning steps to figure out
which token in the context is the answer. Fig. 6 shows
that DeepCPU reduces ASR serving latency from more
than 100ms to less than 10ms, a more than 10X speedup
over TensorFlow on CPUs and GPUs.
Bidirectional attention flow model (BiDAF). BiDAF is
a high-ranked model on SQuAD reading comprehension
competition list [11] for question and answering [53]. It
has a hierarchical structure composed of five neural net-
work layers. Among them, three are LSTM-based (Ta-
ble 3). Fig. 6 shows that DeepCPU reduces the execu-
tion time of BiDAF from more than 100ms to less than
5ms, achieving more than 20x speedup against Tensor-

Flow. Table 3 lists the execution time breakdown across
layers after the optimization: DeepCPU significantly de-
creases the execution time of LSTM-based layers.1

Correctness. We use TensorFlow for correctness veri-
fication: DeepCPU always produces prediction results
matching those generated by TensorFlow.
Hardware choice. While not reported in the paper, we
have tried DeepCPU on a few different SKUs and proces-
sor generations. We have found significant performance
improvements even on Haswell and Ivy Bridge genera-
tions. The techniques are effective as long as the model
is not significantly larger than L3 cache of the hardware.
DeepCPU also provides additional performance boost
from weight-centric streamlining when the weight ma-
trices fit in L2 caches of multiple cores.

Figure 6: Execution time of TS, ASR, and BiDAF.
Meeting latency SLA with significant cost savings.
Besides greatly reducing latency to meet SLA, Deep-
CPU significantly improves efficiency and reduces serv-
ing cost. Take TS model as an example, which is used for
ranking query and document pair at our search services.
The latency SLA is 6ms and 33 selected documents are
ranked for each query. The original TensorFlow model
takes 12ms to serve a single 〈query, document〉 pair on
one CPU machine, violating latency SLA and unable to
ship. DeepCPU not only reduces the latency to meet
SLA, but more importantly, as shown in Table 4, it only
takes 5.6ms to serve a query and all of its 33 document
on the same machine. DeepCPU achieves more than
60x throughput gain (i.e., 12× 33/5.6). Our large-scale
search service answers tens of thousands of requests per
second, and would originally require more than 10K ma-
chines for hosting this model. DeepCPU reduces it to a
couple hundred, saving millions of dollars of infrastruc-
ture cost just for this model alone.

7. Related Work
DL acceleration library. The closest work to DeepCPU
are cuDNN [14, 20] and MKL-DNN [4], which are li-
braries for accelerating DL frameworks. CuDNN is a
GPU library mainly designed for maximizing training
throughput, and its performance can be limited by in-
sufficient parallelism when the model size and batch size
are small. Other work on optimizing RNNs also target

1We also optimized embedding and attention layer to improve end-
to-end latency, where the details are beyond the scope of the paper.
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Model RNN parameters
Text similarity [45] –input 200 –hidden 512 –source length 20 –target length 20 –batch size 1
ASR [39] –input 200 –hidden 256 –question length 20 –context length 100 –context batch size 10

BiDAF [53]
Phrase embedding: –input 50 –hidden 100 –question length 15 –context length 100 –context batch size 1
Modeling layer (stackd LSTM): –input 800 –hidden 100 –context length 100 –context batch size 1
Output layer: –input 1400 –hidden 100 –context length 100 –context batch size 1

Table 2: The description of model parameters of RNNs used in real-world models. Sequence lengths refer to maximum
sequence length, and both TensorFlow and DeepCPU support variable sequence lengths.

TF on CPUs DeepCPU
Embedding + highway 0.69 0.84
Phrase embedding (LSTMs) 13 0.23
Attention layer 13 1.30
Modeling layer (LSTMs) 31 0.90
Output layer (LSTMs) 49 1.50
Total 107 4.77

Table 3: BiDAF execution time (millisecond) per layer.

T@10 T@15 T@20 T@33
Embedding 0.28 0.24 0.24 0.36
RNN 2.20 2.60 3.40 5.20
Cosine similarity 0.04 0.04 0.04 0.04
Total 2.50 2.90 3.60 5.60

Table 4: Text similarity model execution time where
T@K reports execution time of 〈query, K documents〉.
GPUs [26, 30, 64]. On CPUs, MKL-DNN is a C/C++
library from Intel to boost DL model performance on In-
tel architecture, but it only supports convolutional neural
networks and has no support for RNNs yet. Other work
on multi-core CPUs is similar, targeted more towards
CNNs, fully connected neural networks, etc [43, 49, 61].
Some DeepCPU optimizations (e.g., parallelization, fu-
sion) can be generalized to these other networks, whereas
optimizations like WCS are more specialized to RNNs.
Compiler and runtime optimizations. There has been
work on optimizing DL model performance through
compile-time and runtime strategies. Many of them
use static analysis to find pipelined operations that can
be fused together for improved performance, such as
XLA [10], Weld [47], and TensorRT [5]. The compile-
time and runtime strategies of these systems are not de-
signed for global optimization of complex structures like
RNN sequences. Halide is a domain specific language
and compiler to optimize image processing pipeline [48],
conveniently separating algorithms with schedules. It is
not specially designed for RNN type of recurrent com-
putation, and optimizations such as the weight-centric
streamlining cannot be supported easily. It is also hard
for its autotuner to search the space efficiently without
domain-specific pruning and partitioning methods.
Model deployment. TensorFlow Serving [9] and Clip-
per [23] are two serving platforms for deploying and
serving machine learning models on production systems.
Both support caching inference results and batching indi-

vidual inference requests for better performance. Clipper
selects from multiple models to balance latency with ac-
curacy. Our work and these model deployment platforms
complement each other: while they focus on the deploy-
ment process for serving requests, our library focus on
optimizing the inference time of a model itself.
Hardware accelerators. Apart from CPU and GPU, re-
searchers and practitioners are also looking into special-
ized hardware such as FPGA [42, 46, 54] and ASIC
[32, 38], which often require expert hardware designers
and long development cycles to obtain high performance.
They are not yet widely available commercially.
Model simplification and compression. Existing work
shows many model simplification techniques [33,36,63]
such as sparsifying and quantization that could reduce
computation time and space with a small accuracy trade-
off. Co-designing these model optimizations together
with system optimizations like those in DeepCPU could
present new opportunities to boost performance further.

8. Conclusion
The paper unravels the mystery of poor RNN perfor-
mance on existing DL frameworks — low data reuse —
and develops optimization schemes to reduce latency and
improve efficiency of RNN serving. Powered by the new
techniques and search strategy, DeepCPU, our serving
library on CPUs, improves performance by an order of
magnitude, compared with existing work. It transforms
many RNN models from non-shippable to shippable with
great latency and cost improvement in production.
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Abstract
Key-Value (K-V) stores are an integral building

block of modern datacenter applications. With byte-
addressable persistent memory (PM) technologies, such
as Intel/Micron’s 3D XPoint, on the horizon, there has
been an influx of new high performance K-V stores that
leverage PM for performance. However, there remains
a significant performance gap between PM optimized
K-V stores and DRAM resident ones, largely reflecting
the gap between projected PM latency relative to that of
DRAM. We address that performance gap with Bullet, a
K-V store that leverages both the byte-addressability of
PM and the lower latency of DRAM, using a technique
called cross-referencing logs (CRLs) to keep most PM
updates off the critical path. Bullet delivers performance
approaching that of DRAM resident K-V stores by main-
taining two hash tables, one in the slower (backend) PM
and the other in the faster (frontend) DRAM. CRLs are
a scalable persistent logging mechanism that keeps the
two copies mutually consistent. Bullet also incorpo-
rates several critical optimizations, such as dynamic load
balancing between frontend and backend threads, sup-
port for nonblocking Gets, and opportunistic omission
of stale updates in the backend. This combination of
implementation techniques delivers performance within
5% of that of DRAM-only key-value stores for realistic
(read-heavy) workloads. Our general approach, based on
CRLs, is “universal” in that it can be used to turn any
volatile K-V store into a persistent one (or vice-versa,
provide a fast cache for a persistent K-V store).

1 Introduction
Key-value (K-V) stores with simple Get/Put based in-
terfaces have become an integral part of modern data
center infrastructures. The list of successfully deployed
K-V stores is long – Cassandra [28], Dynamo [13], Lev-
elDB [30], Memcached [36], Redis [44], Swift [48]
– to name just a few. The research community con-
tinues to publish K-V store improvements along a va-
riety of dimensions including network stack optimiza-
tions, cache management, improved parallelism, hard-
ware extensions, etc. [5, 14, 15, 20, 27, 31, 33, 32, 34,
37, 40, 51, 53, 56]. However, many of these works
assume that the K-V store is a volatile cache for a
backend database. Most of the persistent K-V stores
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Figure 1: Throughput vs. Latency results of hash table based K-V
stores: (i) phash, hosted entirely in emulated PM (Intel’s Software Em-
ulation Platform [43, 57]), and (ii) an almost identical K-V store hosted
entirely in DRAM (volatile). The emulated PM has 300 nanosecond
load latency and bandwidth identical to that of DRAM; DRAM latency
is approximately 150 nanoseconds. 0 and 15 represent the percent of
K-V accesses that are Puts; keys are selected according to a zipfian
distribution. The points on the curves represent the number of threads
used in the tests, ranging from 2 to 16 in increments of 2.

[7, 13, 18, 28, 30, 34, 51, 44, 48] assume a slow, block-
based storage medium, and therefore, marshal updates
into blocks written to the file system.

At the same time, byte-addressable persistent mem-
ory technologies are emerging, e.g., spin-transfer torque
MRAM (STT-MRAM) [21, 23], memristors [46]), and
most notably, the Intel/Micron 3D XPoint persistent
memory [1]. These technologies provide the persis-
tence of traditional storage media (SSDs, HDDs) with
the byte addressability and performance approaching that
of DRAM (100-1000x faster than state-of-the-art NAND
flash). Byte addressability allows load/store access
to persistence (as opposed to the traditional file system
interface). As a result, these technologies can profoundly
change how we manage persistent data.

The research community has recognized this poten-
tial, producing an endless stream of new, PM-optimized
K-V stores that leverage PM’s byte addressability and
low latency, yielding systems that greatly outperform tra-
ditional block-based approaches [3, 8, 9, 12, 22, 39,
41, 54, 55, 58]. While this body of work has grown
rapidly, most of it ignores the fact that for the forsee-
able future, PM will be much slower than DRAM [47],
making PM resident K-V stores significantly slower than
their DRAM counterparts. Figure 1 illustrates the per-
formance gap between K-V stores hosted in DRAM and
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emulated PM. Their implementations differ only in their
failure semantics (section 3) and pointer representation
(section 6). The 0% writes curves in the graph mirror the
2X latency gap between DRAM and emulated PM. This
2X gap grows to 3− 4.5X in the 15%-write case, since
writes use expensive persist barriers and transactions for
failure atomic updates to the persistent data structures.

Recent PM-based K-V store proposals [41, 54, 55]
address this problem by partitioning their data struc-
tures between faster DRAM and slower PM, with the
DRAM resident structures reconstructed during recov-
ery/warmup. However, these optimizations focus exclu-
sively on B-Tree based indexing structures, not on hash
table based structures, which are predominantly used in
workloads with Get/Put point queries. Since these hash
tables are central to many popular K-V stores [30, 36,
44], leveraging both DRAM and PM in their implemen-
tations is critical to their performance.

We present Bullet, a new K-V store designed
for multi-/many-core systems equipped with persistent
memory. Bullet explicitly leverages the combination of
fast DRAM and slower, byte-addressable PM, to deliver
performance comparable to that of a DRAM resident K-
V store in realistic workloads. Bullet’s architecture is
designed to handle most, if not all, client requests in the
faster DRAM, minimizing the number of PM accesses on
the critical path. This naturally leads to an architecture
with a DRAM resident cache, similar to the approach
taken by traditional databases and K-V stores. How-
ever, Bullet deviates from traditional approaches in that
the cached frontend hash table and the persistent back-
end hash table representations are virtually identical –
differing only in their pointer representations (section 6)
and failure handling semantics. This facilitates efficient
access to backend data whenever there is a miss in the
frontend – PM’s byte addressability plays a critical role
in making this possible.

We keep the frontend and backend mutually consistent
by employing a novel, efficient, and highly concurrent
logging scheme, called cross-referencing logs (CRLs).
In an architecture using per-thread persistent logs, CRLs
track ordering dependencies between log records us-
ing simple cross-log links instead of synchronizing the
threads’ log access [29, 52]. Bullet processes Get re-
quests exclusively in the frontend, without log access.
On their critical path, Put requests access the frontend
as well, while also writing log records to CRLs. This
results in a single thread-local log append per update.

Backend threads, called log gleaners, apply persisted
log records to the backend hash table. We use an epoch
based scheme to apply log records to the backend in
batches. The epoch based scheme’s primary purpose is
to enable correct log space reclamation. The backend’s
hash table updates must be applied in a crash consis-

tent manner. We address this problem using a backend
runtime system [35] that supports failure atomic trans-
actions similar to several other persistent memory trans-
action runtimes [16, 50]. The resulting code path is com-
plex, but not on the critical path of client requests.

We apply four key optimizations in Bullet: 1) fully
decoupling frontend execution from PM performance
on Put operations, 2) nonblocking Gets, 3) dynamic
thread switching between the frontend and backend,
based on the write-load in the system, and 4) opportunis-
tic Put collapsing. Our base design, coupled with these
optimizations, make Bullet’s performance close to that
of a DRAM resident K-V store: For realistic, read-heavy
workloads, Bullet either matches or comes close to the
performance of a DRAM-resident volatile K-V store, de-
livering throughput and latency 2X better than that of a
state-of-the-art hash table based K-V store, HiKV [54],
on a system with emulated PM whose access latency is
2X of DRAM access latency. For pathological write-
heavy workloads, Bullet’s throughput is comparable to
or better than that of HiKV and its operations’ latency
is approximately 25− 50% lower. Relative to a volatile
K-V store, Bullet’s latency and throughput degrade by
approximately 50% under write-heavy workloads.

2 Bullet’s Architecture
2.1 Overview
Figure 2 depicts the high level architecture of Bullet, sep-
arated into the frontend and backend components, each
of which contains almost identical hash tables. The fron-
tend resides in the volatile domain (DRAM). It contains
a configurable number of threads that process incoming
requests, applying them to its hash table. Each frontend
thread additionally “passes on” update requests to the
backend, by appending update requests to a thread-local
persistent log. An update completes when it has been
safely written to the log. The backend resides in the per-
sistent domain (PM). The backend’s log gleaner threads
periodically read requests from their corresponding per-
sistent logs and apply them to the persistent hash table,
in a failure-atomic and correctly ordered manner. In this
“base” configuration, each persistent log maps both to a
log writer thread in the frontend and a log gleaner thread
in the backend.

While processing client requests, a frontend thread
first looks up the target key in the frontend K-V store. If
the lookup succeeds, the frontend applies the operation.
If it is an update (Put or Remove), the thread also ap-
pends the <opcode,payload> tuple to its persistent
log. If the lookup in the frontend fails, the thread issues
a lookup to the backend. A successful lookup creates a
copy of the key-value pair in the frontend, at which point
the operation proceeds as if the original frontend lookup
succeeded. If the lookup fails: (i) a Get returns a failure
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Figure 2: Bullet’s detailed architecture.

code to the client, (ii) a Put inserts the pair into the fron-
tend, including the log write, and (iii) a Remove returns
with a failure code.

The rest of this section details our solutions to a num-
ber of technical challenges: persistent and volatile hash
table implementation (subsection 2.2), the parallel log-
ging scheme (subsection 2.3), correct coordination be-
tween frontend and backend threads (subsection 2.4),
and failure atomic updates (section 3).

2.2 Hash Tables
As shown in Figure 2, Bullet’s frontend hash table is in
DRAM and therefore volatile. It supports the standard K-
V operations: Get, Put, and Remove. The hash table
is similar in structure to other key-value stores [36]: It is
closed addressed, with chaining to handle hash conflicts.
It grows via a background thread responsible for dou-
bling the number of hash table buckets when occupancy
crosses a threshold size (twice the number of buckets).
Regular operations can occur concurrently with growing
the table. Each hash table bucket has its own reader-
writer spinlock for thread synchronization – lookups ac-
quire the spinlocks for reading (shared), and updates ac-
quire the spinlocks for writing (exclusive).

The backend hash table is structurally identical to the
frontend one, with its own per-bucket chains and spin-
locks. However, unlike the frontend (volatile) hash table,
the backend hash table resides in persistent memory and
must survive failures. Bullet uses failure atomic trans-
actions for Put and Remove operations to provide this
guarantee (section 3). Gets execute identically to those
in the frontend (except a failure to find a key is always
a failure in the backend, while the frontend has to check
the backend before failing).

The per-bucket spinlocks in the persistent hash table

are used only for synchronization between concurrent
backend threads and are semantically volatile. We found
placing the spinlocks in the bucket extremely convenient,
with the added benefit of improved cache locality com-
pared to an alternative where the spinlocks are mapped
elsewhere in DRAM. Since a bucket’s spinlock resides in
persistent memory, its state can persist at arbitrary times
(e.g., due to cache line evictions). A failure could leave
a spinlock in the locked state. We leverage a generation
number technique [10] to reinitialize such locks after a
restart – Bullet increments a global persistent generation
number during every warm-up and compares that gener-
ation number to a generation number contained in every
lock. If the generation numbers do not match, Bullet
treats the lock as available and reinitializes it.

2.3 Cross-Referencing Logs
The frontend communicates updates to the backend via
a log. In a conventional, centralized log design [25, 26,
38], the log becomes a bottleneck, because concurrent
updates must all append records to the log. Thread-
local logs neatly address this contention problem, but in-
troduce a new challenge: records from a multitude of
logs must be applied to the backend in the correct or-
der – the order in which the corresponding operations
were applied in the frontend. While prior systems par-
tition the key space so that all updates to a particular
K-V pair appear in the same log file (e.g., [34]), Bul-
let does not partition the data and K-V pair updates can
happen in any thread. This way Bullet is not susceptible
to load balancing issues encountered in partitioned K-V
stores [34]. We address the ordering problem in a dif-
ferent way: We introduce cross-referencing logs (CRLs),
to provide highly scalable, concurrent logging on PM,
without relying on centralized clocks [29, 52] to enforce
a total order of update operations.

Figure 3 illustrates CRLs. Each frontend log writer
thread maintains its own persistent log. Logically, each
log record is a <opcode,payload> tuple. Opcode
allows the application to define high-level operations ex-
pressed by each log record. For example, when Bullet
manages a hash table of lists, each list append can be ex-
pressed by a single log record, where the opcode refers
to the list append operation, and the payload contains
the record identifier (a reference to the list in question)
plus the value to be appended. The order in which non-
commutative operations like this are applied is important,
hence the necessity of the CRL scheme. The logs require
no synchronization on appends, because there is only one
writer per log. The backend maintains corresponding log
gleaner threads that consume log records and apply them
to the backend persistent hash table in a failure-atomic
manner.

The logs are structured so that log gleaners can easily
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Figure 3: Cross-Referencing Log (CRL) architecture.

determine the correct order in which to apply log records.
Figure 3a shows the log record layout. The len,
klen, opcode, <key,value> fields contain the
information implied by their names. The applied field
contains a flag indicating whether the backend K-V store
accurately reflects the log record. The prev field con-
tains a persistent pointer to the prior log record, if one
exists, for the given key. We defer discussion of epoch
until subsection 2.4.

Appending Log Records: Figure 3b depicts three logs
L1, L2, and L3 containing log records for keys K1, K2,
and K3. The lentry field of the persistent key-value
pairs (shown at the bottom) contains a persistent pointer
to the most recent log record for the key-value pair.
Thus, the list formed by the lentry and prev point-
ers represents the evolution of a key-value pair in reverse
chronological order, where the log record containing a
NULL prev pointer indicates the first update to the pair
present in any of the logs. The list for a specific key can
criss-cross among multiple logs, hence the name cross-
referencing logs. For instance, log records for key K1
appear in all three logs, whereas log records for key K2
appear only in logs L1 and L2.

Before a log writer appends a log record, it acquires
the key’s hash bucket lock, to ensure that it is the only
writer for the target key-value pair. Then, the writer (i)
populates the log record at the tail end of the log, setting
the log record’s prev field to the value stored in the K-V
pair’s lentry, (ii) persists the log record, (iii) updates
and persists the log’s tail index, and finally (iv) updates
and persists the key-value pair’s lentry pointer, thus
completing the linked list insertion. In all, an append

requires 3 persist barriers.
Applying Log Records: Gleaner threads periodically
scan logs and apply log records to the backend hash table
in a failure-atomic manner. A log gleaner starts process-
ing from the beginning of the log (the head). For each
log record encountered, the gleaner looks up the corre-
sponding key-value pair in the backend persistent hash
table; a new key-value pair is created if necessary.

The gleaner retrieves the key-value pair’s lentry to
process all existing log records for that key-value pair.
At this point, we need to ensure that at most one gleaner
is processing log records for a given key-value pair. To
that end, we add another spinlock that enables only one
gleaner to apply all the log records for a key-value pair.
This spinlock is placed in the key-value pair itself. A
gleaner must acquire this spinlock before processing the
log records for the key-value pair. The gleaner then tra-
verses to the end of the list, checking the applied flag
of each log record to determine the point from which
the gleaner needs to apply log records. Upon finding the
last (chronologically the first) unapplied log record, the
gleaner applies the log records in the chronological order
determined by the linked list (i.e., in the reverse order of
the list). The gleaner sets the applied field after apply-
ing the log record to the persistent hash table. We discuss
the transaction mechanism that ensures recoverability of
these updates in section 3.

After applying all the log records for a key-value pair,
the gleaner can reset lentry to NULL. This however
races with a frontend log writer’s append for the same
key-value pair, which requires an update to the key-value
pair’s lentry. Fortunately the data race can be avoided
using a compare-and-swap instruction, by both the
appender and the gleaner, to atomically change lentry.

Consider the example in Figure 3. A gleaner for log L1
will first encounter log record labeled (1). It uses the log
record’s key, K1, to retrieve the corresponding persistent
key-value pair (at the bottom of Figure 3b). From that
key-value pair object, the gleaner begins at the end of
the log record list at L3(2), then continues to L2(1) and
finally L1(1). It then applies each of those log records in
reverse traversal order.
Handling Removes: Removes are unique, in that they
logically require removing a record at the front end, but
the same record at the persistent back end may not be re-
moved at the same time due to log delays. If a deletion
is followed by a re-insertion of the same key, the front
end and back end can grow inconsistent, due to the fact
that CRL relies on the back end record to generate cross-
references. To address this problem, we keep the front
end record alive as long as we need to by using a spe-
cial “tombstone” marker. Appending a delete log record
only sets the tombstone marker at the front end, but does
not remove the record. Future look-ups on the front end
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regarding this record now return “not found”, until a re-
insertion clears this tombstone marker. The front end
records marked with tombstones are only physically re-
moved when the corresponding records in the back end
are removed during the log gleaning phase.

Rationale: While cross-referencing logs are interest-
ing, one could argue that the criss-crossing could lead
to bad cache locality for log gleaner threads. However,
it is a trade-off – a thread may suffer poorer locality in
its log traversal, but it enjoys superior cache locality, by
repeatedly acting upon the same key-value pair. This
cache benefit is further enhanced, because log records are
concise representations of operations, but the operations
themselves tend to lead to “write amplification”, access-
ing and updating many more memory locations than a
single log entry. By continuing to operate on the same
key-value pair, we observe that those accesses are far
more likely to produce cache hits. Additionally, glean-
ers never block behind other gleaners. If a gleaner de-
tects that the key-value pair it needs to process is already
locked by another gleaner, it can safely assume that the
spinlock owner will apply the log record. As a result,
the gleaner simply skips that log record. This approach
works for the fail-stop failure model we assume – a fail-
ure terminates the entire key-value store process.

2.4 Log Space Reclamation
The cross-referencing logs that act as bridges between
Bullet’s frontend and backend do not grow indefinitely.
In fact, they are circular logs and contain persistent head
and tail indexes. To keep the system running without
interrupt, Bullet must recycle log space.

The log gleaners work in phases or epochs. Between
epochs, the gleaners wait for a signal from the epoch ad-
vancer thread, which periodically tells the gleaners to
start applying logs records. Each gleaner reads the log,
beginning at the head, and applies the log records as de-
scribed above. However, it does not advance its log’s
head index. Instead, the epoch advancer periodically ter-
minates the current epoch by telling the gleaners to stop
processing the log. At this point, the epoch advancer up-
dates each gleaners’ head index. If a log writer fills the
log more quickly than the corresponding log gleaner ap-
plies the log, the log can fill. If this happens, the writer
blocks until the gleaner frees space in the log.

3 Failure Atomic Transactions
To ensure a consistent state after system failure, the back-
end’s hash table updates must be failure atomic. We use
failure atomic persistent memory transactions. Similar
to prior work [6, 10, 16, 50], we developed a persis-
tent memory access library [35], which contains sup-
port for low level programming abstractions that greatly
simplify application development for persistent memory.
Our access library supports transactions that provide fail-

pm_txn_t *txn_begin();
txn_state_t txn_commit(txn);
void txn_read(txn, src, len, dst);
void txn_write(txn, dst, len, src);
... // other accessor functions
pm_region_t *pm_region_open(path);
void pm_region_close(region;
void *pm_get_region_root(region);
void pm_set_region_root(region,addr);
... // other region management functions
void *pm_alloc(txn, len);
void pm_free(txn, addr);

Figure 4: Base persistent transactions API.

ure atomicity guarantees for updates to persistent mem-
ory.

Figure 4 presents our transaction runtime’s API.
The interface provides txn_begin and txn_commit
functions to delineate transaction boundaries and vari-
ous txn_read and txn_write accessor functions for
transactional reads and writes of persistent data. The
interface also provides transactional variants of general
purpose libc functionality, such as memcpy, memset,
memcmp, etc. We provide “flat nesting” semantics [19].
The transaction mechanism provides only failure atom-
icity semantics; it does not transparently manage concur-
rency control, as do some software transactional memory
runtimes [10, 50]. Bullet itself performs the necessary
synchronization to avoid data races and deadlocks.

The access library also provides a persistent region ab-
straction [6, 10, 50]. The persistent region builds over the
mmap interface, mapping a persistent memory file into
the application’s address space [49]. The persistent re-
gion contains a persistent heap, modeled after the Hoard
allocator [4, 50]. Application data hosted in a persis-
tent region can be made reachable via a special, per re-
gion, root pointer. Bullet uses the region’s root pointer to
reach its persistent hash table and cross-referencing logs.
Finally, the access library uses redo logging [16, 35, 50]
to implement failure atomic writes.

4 Optimizations
4.1 Tightening the Update Critical Path
Bullet is designed to streamline critical paths of update
operations. To that end, Bullet moves the persistent hash
table’s failure-atomic updates off the critical path. How-
ever, the design presented thus far does not entirely re-
move transactions from the update critical path. On a
Put operation, if the key does not exist in either the fron-
tend or backend hash tables, Bullet allocates a new per-
sistent K-V pair object, storing a reference to it in the
log record. Furthermore, when the persistent log append
completes, we must also update the the key-value pair’s
lentry to reference that newly created log record. Ac-
cessing the persistent K-V pair itself requires a lookup in
the backend hash table, which is costly due to the rela-
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tively slower persistent memory. All these accesses and
updates contribute significant latency to the frontend up-
date operations.

We address this problem by completely decoupling
backend data accesses from the frontend update oper-
ations, by moving the lentry pointer to the frontend
hash table’s K-V pair. This gets rid of the requirement to
locate, and possibly allocate, the backend’s K-V pair for
a new key. It also eliminates the expensive persist bar-
rier required to persist the lentry, since it is no longer
persistent; it’s part of the volatile copy of the K-V pair.
This also eliminates the need for transactions in the fron-
tend, thereby considerably shortening the frontend’s up-
date critical path.

4.2 Nonblocking Gets
Bullet’s “base” version, as described in section 2, uses
reader-writer locks to synchronize access to the fron-
tend and backend buckets. While these work well with
few frontend and backend threads, they do lead to in-
creased cache contention between concurrent readers on
the lock’s readers counter – the lock implementation uses
a signed integer, where a value greater than 0 indicates
one or more readers, and a -1 indicates a writer. The re-
sulting cache contention can restrict scalability. This can
be especially pronounced in workloads where accesses
follow a power-law distribution and are skewed to a small
set of K-V pairs, as is experienced by real world K-V
stores [15, 40].

As in prior work [15], we support nonblocking Get
operations. The principal hurdle for nonblocking Gets
is memory reclamation – a Put or Remove can deallo-
cate an object being read by a concurrent Get. We need
support to lazily reclaim the removed objects. Bullet’s
epochs neatly enable this lazy memory reclamation. The
epoch advancer thread periodically increments Bullet’s
global epoch number. Each frontend thread maintains a
local epoch equal to the global epoch number at the be-
ginning of an operation.

When freeing an object, the frontend thread enqueues
the object on its local free queue. The enqueued node
contains a pointer to the object and the thread’s epoch
number. On each enqueue, the frontend thread frees the
head node of the queue if its epoch is older than the
smallest epoch of all the frontend workers. The small-
est epoch is a conservative approximation of workers’
epochs – it is computed periodically by the epoch ad-
vancer thread at the end of each epoch.

Additionally, we structure the frontend hash table’s
overflow list similar to prior nonblocking concurrent
lists [17] so that a reader does not get stuck in a cycle if
the node it is accessing is removed from the list by a con-
current writer. While reads are nonblocking, concurrent
writers do synchronize with each other on the bucket’s
spinlock.

4.3 Managing Writer and Gleaner Counts
In the base design, Bullet contains a static mapping
between frontend writers, logs, and backend gleaners.
Although this approach avoids synchronization among
writers and gleaners, it wastes CPU cycles if there is a
mismatch in the rates of log record production and con-
sumption. We need to decouple these three parts of Bul-
let to let threads dynamically perform the roles of fron-
tend and backend based on the write load.
4.3.1 Decoupling Writers from Gleaners
Maximizing Bullet’s throughput requires that we keep all
threads busy. In practice, this requires that we relax the
1:1 mapping between writers and gleaners. We permit
each writer/gleaner to append/consume entries to/from
any log. This way we achieve optimal throughput by
setting the writer/gleaner ratio according to the ratio of
the respective rates of production/consumption of log en-
tries.

Although this requires synchronization among both
writers and gleaners, we make the overhead negligible,
by coarsening switching intervals between writers and
gleaners. Writers lock their log and keep the lock as long
as the log is not full. When a log fills, the writer unlocks
it and switches to the next free log not currently in use.
The same thing happens for gleaners; they switch logs
when they have no work to do. For log sizes on the order
of megabytes, these switching events are rare enough not
to impact performance in an observable way.

4.3.2 Dynamic Adjustment of Writer/Gleaner Ratio
One drawback of the preceding approach is that, select-
ing the correct writer and gleaner counts, requires know-
ing the rates of producing and consuming log entries.
However, these rates depend heavily on the workload
(read/write ratio, key distribution), and the relative per-
formance of DRAM and persistent memory. For exam-
ple, a write-heavy workload on a machine with a slow
persistent memory generally requires more gleaners than
a read-heavy workload.

To achieve high throughput in as many scenarios as
possible, threads dynamically change their roles, writing
or gleaning depending on what is currently needed. The
advantage of this approach is twofold. First, it makes
Bullet suitable for a wide range of workloads, without
prior profiling and configuration. Second, the system
adapts to dynamically changing workload, maintaining
near optimal throughput throughout.

The key for achieving optimal throughput is prevent-
ing the logs from becoming full (writers stalling) or
empty (gleaners stalling). To this end, we periodically
check (once per epoch) the occupancy of the logs. If the
log occupancy passes a pre-defined threshold of 60%, we
switch one thread from writing to gleaning. If, upon the
next check, the occupancy is still increasing, we add yet
another gleaner. We repeat this until the log occupancy
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starts decreasing. The inverse happens when the log oc-
cupancy drops below 30%, in which case we start mov-
ing gleaners back to writing.

Making threads switch between worker and gleaner
roles is an interesting control theory problem by itself.
Our algorithm evolved over several attempts at simpler
approaches, which failed to achieve both stability (i.e.,
avoid frequent role switching) and responsiveness.

4.4 Collapsing Put Operations
Recall that multiple updates to the same key result in a
linked list of log records. Gleaners traverse the chain
and apply all the log records from oldest to newest (see
subsection 2.3).

However, it is not necessary to apply every Put op-
eration, since the most recent Put overwrites the effects
of all older Puts and Removes; same is the case with
Removes. Thus, a gleaner applies only the newest op-
eration in a chain of log records, without following back
pointers at all. To prevent a newer value being overwrit-
ten by an older one, a gleaner applies a log record only
if it contains the globally newest update for the corre-
sponding key. To determine whether a log entry is the
newest for its key, the gleaner checks the corresponding
K-V pair’s lentry pointer, as this always points to the
key’s newest log record.

Collapsing updates appears to make the criss-cross log
record links unnecessary. However, this is the case only
for idempotent updates, e.g. Put and Remove. We how-
ever plan to extend Bullet to support non-idempotent
updates similar to recent data structure stores like Re-
dis [44], where the criss-cross links will be required for
correctness.

5 Recovery and Warmup
Recovery is simple for Bullet. Since updates must com-
plete in the frontend before we apply them to the backend
and the frontend disappears on failure, Bullet never has
anything to undo. In theory, recovery entails two parts:
1) reinitializing the frontend DRAM resident state and
2) applying log records in the CRLs to the backend. Bul-
let’s architecture however permits us to eliminate all of
step 2 from recovery, and reduce step 1 drastically: Dur-
ing recovery, the CRLs’ log records can be applied to the
frontend hash table, instead of applying them to the back-
end. This has the nice side effect that there is no special
recovery code for the backend. We assume that recovery
for the backend’s persistent transactions happens before
Bullet’s recovery is triggered. Application of CRLs to
the backend is relegated to the normal gleaning process.

Note that recovery itself “warms up” the frontend hash
table with key-value pairs found in the CRLs. There-
after, misses in the frontend populate the corresponding
key-value pairs from the backend as described in subsec-
tion 2.3. Thus warmup time and recovery time are one

and the same and are proportional to the time taken to
apply the CRLs.
6 Implementation Notes
We implemented Bullet in C++ and used our PM access
library (section 3) developed in C. We used pthreads
to implement both the frontend and backend threads. The
frontend K-V store uses the jemalloc library to han-
dle memory allocations. For the backend, we rely on
the access library’s heap manager, which is based on the
scalable Hoard allocator [4, 50].

The PM access library presents to Bullet a persistent
memory hosted mmap()ped file as a persistent region.
Bullet’s persistent domain is precisely that region. The
mmap dependency means that the address of the persis-
tent domain is unpredictable. Therefore, we must repre-
sent persistent pointers in a manner amenable to reloca-
tion, so we represent persistent pointers as offsets from
the region’s base address.

Bullet’s backend contains a root structure that hosts
persistent pointers to the persistent hash table and the
cross-referencing logs. Wherever we do not use persis-
tent transactions, we carefully order stores and persists to
persistent data structures (e.g. CRL appends, initializing
a newly allocated key-value pair) for crash consistency.

All update operations in Bullet’s backend threads use
transactions to apply CRL log records to the backend
hash table. In contrast, Bullet’s frontend updates need
not be transactional; they need only append records to
the the CRLs. This indicates two different implementa-
tions for all update operations (e.g., frontend and back-
end implementations of Put, Remove, etc. operations).
This doubles the coding effort for these operations.

The access library’s transactional runtime uses Intel’s
persistence enforcement instructions [24] – cache-line
writeback (clwb) and persist barrier (sfence) instruc-
tions to correctly order transactional writes to PM. CRL
appends also use these instructions: first, we write back
the cache lines of the updated log record using clwb and
then persist them using sfence. Next, we update and
persist the log’s tail index using the same instructions.
7 Evaluation
We evaluated Bullet’s performance on Intel’s Software
Emulation Platform [43, 57]. This emulator hosts a
dual socket 16-core processor, with 512GB of DRAM,
of which 384GB is configured as “persistent mem-
ory”. Persistent memory is accessible to applications
via mmapped files hosted in the emulator’s PMFS in-
stance [43].

The aforementioned persistence instructions, clwb
and sfence, are not supported by the emulator. We
simulated clwb with a nop and the sfence with an
idle spin loop of 100 nanoseconds. We expect these to
be reasonable approximations since clwb is an asyn-
chronous cache line writeback, and an sfence ensures
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that prior writebacks make it to the memory controller
buffers, which we assume to be a part of the memory
hierarchy’s “persistence domain” [45] – 100 nanosec-
onds is the approximate latency to the memory controller
buffers on the emulator. The emulator does support con-
figurable load latency to persistent memory; we set it to
300 nanoseconds, twice the load latency of the DRAM
on the machine [57]. We configured the PM to have
the same bandwidth as that of the emulator’s DRAM.
We experimented with a lower bandwidth option (1/4
of DRAM bandwidth, which was the only other avail-
able option on the emulator), but obtained identical re-
sults, suggesting that our experiments did not saturate the
memory bandwidth available on the emulator (36 GB/s).

We conducted an 8-way evaluation to see how effec-
tively Bullet eliminates the gap between DRAM and PM
performance. The eight systems were as follows. 1) A
DRAM-only version that uses just the frontend hash ta-
ble (volatile), which places an upper bound on perfor-
mance. 2) A PM-only version that uses Bullet’s backend
hash table (phash), providing a lower bound on perfor-
mance. 3) hikv-ht, our implementation of the hash ta-
ble component of HiKV – a state-of-the-art K-V store,
whose hash table resides in PM [54]. HiKV gets a some-
what unfair advantage in our experiments, because it
does not ensure that the state of the persistent memory al-
locator persists. However, the allocator’s state can be re-
built after a restart from HiKV’s hash table, although we
have not implemented this. 4) bullet-st, the base version
of Bullet, which assigns frontend and backend threads
statically and uses transactions in the critical path of up-
date operations. 5) +lfr, the base version of Bullet with
optimized, lock-free Gets. 6) +opt, the version of Bullet
that additionally eliminates failure atomic transactions
from the critical path of update requests. 7) +dyn, the
Bullet version that, along with above optimizations, sup-
ports dynamic thread switching between the frontend and
backend. 8) bullet-full (also appears as +wrc(bullet-full)
in the graphs), the full Bullet version that additionally
contains the write collapsing optimization. Although the
frontend of Bullet can be a subset of the backend, in our
experiments the frontend is a full copy of the backend.

We evaluate various aspects of Bullet comprising scal-
ability and latency, dynamic behavior of worker threads,
and log size sensitivity in a microbenchmark setting. In
all our experiments, Get/Put requests are drawn from
a pre-created stream of inputs with a zipfian distribu-
tion of skewness 0.99, which is the same as YCSB’s
input distribution [11]. We average over five test runs
for each data point. We also use an evaluation frame-
work that uses independent clients to better understand
end-to-end performance of these systems as client load
increases. The clients are independent threads residing
in the same address space as Bullet and communicate re-
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Figure 5: Latency (99th percentile) vs. Throughput results. Each
point on the curves represents a different number of worker threads
ranging from 2 to 16 in increments of 2.

quests and responses through globally shared request/re-
sponse buffers. We do not use clients communicating
with Bullet over TCP connections, since the network
stack latency itself tends to significantly mute impor-
tant performance trade offs between the evaluated K-V
stores [14, 54].

7.1 Latency vs. Throughput
Figure 5 shows performance as a latency/throughput
tradeoff under workloads whose write percentage varies
from 0% (read-only) to 50% (write-heavy). We begin by
creating a 50-million key/value pair store with 16-byte
keys and 100-byte data values; these choices are in line
with what is observed in real-world settings [2, 54]. Each
experiment runs a specified number of of worker threads
with the requested read/write ratio, using Get/Put op-
erations (Remove performance is comparable to that of
Put). Each worker selects key-value pairs from the pre-
populated zipfian stream of keys and performs the se-
lected operation. The worker continuously repeats these
operations for 1 minute (we experimented with 5− 10
minute runs, but the results were unchanged).

For the dynamic worker role versions of Bullet (+dyn
and bullet-full), some workers switch roles to become
backend log gleaners. In such cases, the worker posts its
current unapplied operation on a globally visible queue
of requests, so that some other frontend worker will pro-
cess it (to ensure forward progress, we guarantee that
at least 1 worker remains in the frontend). We mea-
sure latency of only those operations that have a fron-
tend worker assigned to them (the requests posted in the
central queue are a rare occurrence and are processed rel-
atively immediately by frontend worker threads).

Notice the clear impact of slower PM on the 0% Put
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case in Figure 5a. The difference between phash’s and
volatile’s latency and throughput mirrors the difference
in PM and DRAM latency. hikv-ht performs notice-
ably better than phash, owing to some of its cache lo-
cality oriented optimizations. But these marginal im-
provements suggest that additional optimizations cannot
eliminate the fundamental problem of slower PM. All
of Bullet’s versions’ latencies align almost exactly with
volatile. bullet-st shows slight overhead associated with
lock-based Gets. All static worker role assignment vari-
ants of Bullet (bullet-st, +lfr, +opt) effectively end up us-
ing just half of the available workers in the frontend and
produce throughput approximating half the throughput
of volatile; the backend worker threads effectively waste
CPU cycles. Our dynamic worker assignment framework
(in +dyn, +wrc(bullet-full)) correctly assigns all workers
to the frontend, which performs comparably to volatile.

The 2% Put test is more representative of real-world
(read-dominated) workloads [40]. As Figure 5b shows,
the relative latency differences remain similar; there is a
small increase in the absolute latencies reflecting effects
of longer latency Put operations. For the same reason,
the absolute throughput numbers are smaller, but the rel-
ative difference between volatile, phash, hikv-ht, and the
static variants of Bullet remains the same. However, in
+dyn and bullet-full we begin to see the impact of log-
ging. The primary source of these overheads is the dy-
namic switching of 1 or 2 worker threads between the
frontend and backend. Note that even with 2% Puts,
our CRLs quickly cross the occupancy threshold of 60%,
which forces frontend threads to incrementally switch
to the backend log gleaner roles if the occupancy keeps
growing across epochs. A consistent rate of 2% Put traf-
fic is large enough to force at least one worker to stay a
log gleaner through the entire execution. +dyn’s perfor-
mance drops by a significant 25% compared to volatile.
However, our write collapsing optimization works ex-
ceptionally well to significantly reduce that margin to
about 5%: the zipfian distribution of requests allows for
substantial write collapsing (30− 50%), which leads to
the log gleaner applying the log more quickly, spending
the saved time in frontend request processing.

The 15% workload, shown in Figure 5c, illustrates
more clearly the impact of the different optimizations.
Compared to volatile, Bullet’s bullet-st and +lfr ver-
sions show a 40% degradation in latency. The failure
atomic transactions used for Put operations of these ver-
sions are primarily responsible for this degradation. This
degradation is mitigated by half with our critical path op-
timization present in Bullet’s +opt, +dyn, and bullet-full
versions. Latency of the PM-only K-V stores, phash and
hikv-ht, is approximately 3X and 2.5X higher than that of
volatile. Notice the throughput of Bullet’s dynamic ver-
sions drops significantly. With 15% Puts, we observed
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Figure 6: Get, Put Cumulative Latency distributions on 16-thread
test runs with 2% Puts.x

a larger fraction (4−6) of worker threads getting forced
to operate as log gleaners in the backend for the entire
duration of the test. That leads to a significant reduction
in overall throughput, since threads migrated from the
frontend to the backend do not process new requests.

With the even higher 50% Put rate of Figure 5d, we
observe additional interesting behavior. The variants that
use transactions in their Put critical paths exhibit signif-
icantly increased latency, approaching that of hikv-ht’s
latency. The rest of Bullet’s variants (+opt, +dyn, and
bullet-full) exhibit lower latency, which starts to grow
only as the set of worker threads grows. We attribute this
performance degradation to cache contention between
frontend and backend threads. Notice that the work-
ing sets of the frontend and backend threads are largely
different – a frontend log writer accesses the frontend
hash table and a log, whereas the colocated (on the same
socket) backend log gleaner accesses the backend hash
table and possibly a different log. The more threads there
are, the greater the cache contention, and the worse the
performance. Overall, the results suggest that workloads
with very high write rates are not a good fit for Bullet.

7.2 Latency Distribution of Gets and Puts
Figure 6’s segregated cumulative latency distribution
graphs for Gets and Puts provide deeper insight into
the behaviour of the K-V stores. Figure 6a shows la-
tency of Gets. The phash and hikv-ht latencies av-
erage to about 450 and 380 nanoseconds respectively,
whereas volatile and all of Bullet’s versions average to
220 nanoseconds. Average latencies of Puts are more
scattered: volatile is the fastest with 750 nanoseconds,
followed by Bullet’s versions that do not contain trans-
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switches every 30 seconds. The left Y-axis shows throughput for ev-
ery second, and the right Y-axis shows the number of log gleaners at
the end of each second.

actions in the critical path (at 1 microsecond), followed
by Bullet’s versions that contain transactions in the crit-
ical path (at 2.5 miroseconds). HiKV’s latency matches
that of Bullet’s versions with transactions on the critical
path. phash is the slowest with latency averaging to 5 mi-
croseconds; this is an 8X slowdown compared to volatile.
Note that the backend Put operations in all of Bullet’s
versions apply the same Put operation used in phash.
This largely explains the significantly higher cost associ-
ated with applying log records to the backend, and why
as little as 2% Puts can force worker threads to play the
log gleaner role for much longer durations that amplify
to a minimum of 10% slowdown in throughput compared
to volatile in Figure 5b.
7.3 Dynamic Behavior of Workers
Figure 7 shows bullet-full’s dynamic worker role frame-
work in action. It reports the throughput as well as the
gleaner count at the end of every second, over a duration
of 210 seconds. Every 30 seconds, we change the load of
Puts on bullet-full. After a warmup phase of 30 seconds
of 2% Put rate, we vary the Put rate between 2-15-
2-0-2-50-2%, in that order. As is clear from the graph,
our dynamic worker role adaptation strategy works well
in adapting to the changing load of Puts. At times, as
observed in the 15% and 50% Put phases, our adapta-
tion algorithm fluctuates around the optimal mix of fron-
tend and backend workers before converging to a stable
mix that matches frontend producers of log records with
backend gleaners that consume these log records.

Throughout the execution, for 2% Puts, the through-
put hovers around 16 Mops, and the number of log glean-
ers ranges from 1− 2. This helps explain the reduction
in observed throughput of bullet-full compared to the
throughput of volatile in Figure 5b. After a switch to
a 15% Put rate, the throughput switches immediately,
reflecting the corresponding uptick in the gleaner count.
For the 0% Put case, our algorithm quickly and cor-
rectly converges to a gleaner count of 0, thus explain-
ing the throughput reported in Figure 5a that matches the
throughput of volatile. For the 15% and 50% Put cases,
the number of gleaners needed settles down to 6 and 8
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respectively. Note that in our 100% Put experiments
(not reported here in detail), we observed the number of
gleaners vary between 13−15.

7.4 Log Size Sensitivity
Bullet’s CRLs act as speed matching buffers between the
frontend and backend worker threads. As long as there is
enough available space in CRLs, frontend workers keep
appending log records as quickly as they can. When
CRL occupancy gets too high, workers are incremen-
tally switched to the backend to match the frontend load
of CRL population. If the CRLs are too small in size,
Bullet can easily enter a mode where threads bounce be-
tween frontend and backend at a high frequency, which
in turn could lead to significant disruption in overall per-
formance. The question then to consider is – how big
should these logs be to avoid performance degradation
due to workers switching frontend and backend roles?

To that end, Figure 8 shows the results of our experi-
ment where we vary the per-thread log size from 64 MBs
(the size we used for all experiments described above),
down to 1 MB. In addition, the CRL infrastructure main-
tains 32 logs in-all; when a frontend worker exhausts its
log, it can switch to another log that is not in use by an-
other frontend worker. As a result, per-thread log sizes of
1, 4, 16, and 64 MBs result in total CRL footprint of 32,
128, 512, and 2048 MBs respectively. Even the largest
2048 MB CRL footprint may be acceptable in a future
PM-equipped system that hosts multi-terabytes of PM.

The overall results were quite surprising to us: We
expected log size to have a big impact on performance
across the board. However, for write-intensive work-
loads, the log size does not matter to throughput. The
Put load is high enough that the system converges to a
stable mix of frontend and backend threads. The interest-
ing case is 2% Puts. We observe a modest 3% drop in
throughput when we transition from 64 MB logs to 4 or
16 MB logs, whereas a further reduction in log size (to
1 MB) results in a significant 20% drop in throughput.
The problem with 1 MB logs is that the Put load gener-
ates enough log traffic to populate CRLs quickly enough
that worker threads switch to the backend more aggres-
sively than is necessary. Subsequently, a high number of
of backend workers drains the log quickly after which a
larger than necessary fraction of backend workers switch
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Figure 9: Latency (99th percentile) vs. Throughput results for test
runs with independent client threads (1,2,4,6,8). The number of work-
ers is kept to a constant 8. The graphs show the effect of increasing
client load on Bullet.

to the frontend role. This over-aggressive switching
of worker roles results in the performance degradation.
However, 4 MB log size is big enough to absorb the log
population rate more gracefully. Note that the size of
each log record (including its header) is 193 bytes.

7.5 End-to-End Performance
To understand the end-to-end performance observed by
independent clients, we conducted an experiment where
clients generated back-to-back requests based on the zip-
fian distribution mentioned earlier. The clients were
hosted as independent threads in Bullet’s address space,
eliminating the overheads related to network latencies.

Each client generates a request in its local buffer that
is visible to all of Bullet’s workers (but not other clients),
waits for a response from Bullet, and repeats. The work-
ers synchronize amongst each other, using a per buffer
lock, to get and process client requests. We reduce con-
tention on these locks by ensuring that workers serve a
multitude of requests (1,000 in our experiments) before
releasing an acquired lock and switching over to another
buffer. To minimize interference between workers and
client threads, we host the workers on one socket of the
emulator and the client threads reside on the other socket.
We effectively end up getting a maximum of 8 worker
threads for each test run in this experiment.

Figure 9 shows performance of the various K-V stores
with growing number of client threads. First, notice the
5X increase in latency of operations over all the K-V
stores compared to earlier experiments (Figure 5). This
slowdown was a big surprise. However, additional ex-
perimentation revealed cross-socket cache access laten-
cies to be the biggest contributor to the overheads: when

we pinned communicating workers and client threads on
the same socket the latency increase reduced to approx-
imately 10%. We did not pursue such an intermingled
topological layout for clients and workers since workers
tend to dynamically switch between clients when some
workers are busy performing gleaning operations, which
led to unpredictable performance.

Other than the unexpected NUMA effects on perfor-
mance, the observed relative degradation in latencies of
Bullet’s flavors bullet-st, +lfr, and +opt appears to be
much greater than our prior experiments (Figure 5). This
degradation can be squarely attributed to the fact that
these flavors of Bullet are effectively left with 4 frontend
workers, and a greater number of clients (up to 8) results
in overload leading to higher latencies at client counts
greater than 4. Similar relative latency degradation can
be observed in the 15% and 50% write loads for Bullet
flavors +dyn and +wrc(bullet-full) : Some worker threads
are forced to play the backend gleaner role, which in-
creases the load on the frontend workers since the num-
ber of clients is now greater than the frontend workers.

In general, since writes are expensive, an increasing
percentage of writes tends to reduce the performance
gains we get from the two-tiered architecture of Bullet.
We conclude that Bullet does not really close the perfor-
mance gap between volatile and persistent K-V stores for
write-heavy workloads. However, it significantly closes
this performance gap in read-dominated workloads.

8 Conclusion
While emerging byte-addressable persistent memory
technologies, such as Intel/Micron’s 3D XPoint, will ap-
proach the performace of DRAM, we expect to see a non-
trivial performance gap (within an order of magnitude)
between them. We showed that this performance gap can
have significant implications on the performance of per-
sistent memory optimized K-V stores. In particular, we
conclude that DRAM does have a critical performance
role to play in the new world dominated by persistent
memory. We presented our new K-V store, called Bul-
let, that is architected to exploit this exact observation.

We introduced cross-referencing logs (CRLs), a gen-
eral purpose scalable logging framework that can be
used to build a two-tiered architecture for a persistent
K-V store that leverages capabilities of emerging byte-
addressable persistent memory technologies, and the
much faster DRAM, to deliver performance approach-
ing that of a DRAM-only K-V store for read-dominated
workloads. Our performance evaluation shows the effec-
tiveness of Bullet’s architectural features that bring its
performance close to that of a DRAM-only K-V store for
read-heavy workloads. Write-heavy workloads’ perfor-
mance is severely limited by the high latency of failure-
atomic writes, and further research is warranted to reduce
these overheads.
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Abstract
Tuning configurations is essential for operating modern
cloud systems, but the difficulty arises from the cloud
system’s diverse workloads, large system scale, and vast
parameter space. Building on previous space exploration
efforts of searching for the optimal system configura-
tion, we argue that cloud systems introduce challenges
to the robustness of auto-tuning. First, performance
metrics such as tail latencies can be sensitive to non-
trivial noises. Second, while treating target systems as a
black box promotes applicability, it complicates the goal
of balancing exploitation and exploration. To this end,
Metis is an auto-tuning service used by several Microsoft
services, and it implements customized Bayesian opti-
mization to robustly improve auto-tuning: (1) diagnostic
models to find potential data outliers for re-sampling, and
(2) a mixture of acquisition functions to balance exploita-
tion, exploration and re-sampling. This paper uses Bing
Ads key-value store clusters as the running example –
compared to weeks of manual tuning by human experts,
production results show that Metis reduces the overall
tuning time by 98.41%, while reducing the 99-percentile
latency by another 3.43%.

1 Introduction

For many web-scale cloud systems, main evaluation met-
ric is tail latencies (e.g., 99 and 99.9-percentile laten-
cies) of serving a request [9]. While tail latencies seem
rare, the probability of a user request experiencing the
tail latency in an end-to-end system can be high, espe-
cially that most web-scale applications employ a multi-
stage architecture. Imagine a web-scale application with

Chieh-Jan Mike Liang is the corresponding author. This work was
done when Zhao Lucis Li and Wenjia He were interns at Microsoft
Research.

a five-stage processing pipeline, the probability of a re-
quest encountering 99-percentile latency at least is∼5%.
Furthermore, tail latencies can be more than 10 times
higher, as compared to the average latency [9].

Recently, advances in machine learning have spawned
strong interests in automating system customizations,
where auto-tuning system configuration of parameters is
a popular scenario [2, 3, 20]. Notably, cloud systems
exhibit two motivating characteristics for auto-tuning.
First, the overhead of operating cloud systems is in-
creasingly larger, due to the increasingly more dynamic
and variable system workloads, and the scale of mod-
ern cloud systems. In many read-intensive web applica-
tions such as news sites and advertisement networks, data
queries are tied to end-user personal interests and current
contexts, which can exhibit temporal dynamics. Further-
more, even within one cloud system, there can be sev-
eral components that individually impose different data
requirement and handle different types of meta data and
user data. Second, as cloud systems become more com-
plicated, both design space and parameter space grow
significantly. The optimal system configuration is be-
yond what human operators can efficiently and effec-
tively reason about, and the cost to naı̈vely benchmark
all possible system configurations is exorbitant.

Bayesian optimization (BO) with Gaussian process
(GP) has emerged as a powerful black-box optimization
framework for system customizations [2, 3, 19]. Math-
ematically, we model the configuration-vs-performance
space by regressing over data points already collected,
i.e., system configurations benchmarked. And, this re-
gression model allows us to estimate the global optimum,
or the best-performing system configuration. While col-
lecting more data points can improve the regression
model, benchmarking one system configuration of pa-
rameters can be time-consuming due to system warm-up
and stabilization. Fortunately, BO offers a way to iter-
atively build up the training data by suggesting system
configurations to benchmark, with the goal to maximally
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improve the regression model accuracy.

1.1 Contributions

In this paper, we report the design, implementation, and
deployment of Metis, an auto-tuning service used by sev-
eral Microsoft services for robust system tuning. While
Metis is inspired by previous efforts to leverage BO to
train the GP regression model, we address the following
factors to improve the robustness of optimizing system
customizations.

First, since the GP regression model is trained
with data points from benchmarking some system con-
figurations, how well these data points capture the
configuration-vs-performance space’s global optimum
determines the auto-tuning effectiveness. At the same
time, we should avoid unnecessarily over-sampling the
space, as system benchmarking can be resource-intensive
and time-consuming. To this end, at each iteration,
BO’s strategy for picking the next system configuration
to benchmark should balance exploitation (i.e., regions
with high probability of containing optimum) and explo-
ration (i.e., regions with high uncertainty of containing
optimum). Specifically, inadequate exploration reduces
the chance of moving away from a local optimum, and
inadequate exploitation impacts the efficiency of identi-
fying the global optimum. In contrast to related efforts
that rely on simple-to-implement strategies [2, 3], Metis
strongly decouples exploitation and exploration, so that
it can independently evaluate each action’s expected im-
provement and anticipated regret.

Second, the theory behind BO and GP mostly assumes
the data collection is reasonably noise-free, or suscepti-
ble to only the Gaussian noise. Unfortunately, many sys-
tem performance metrics (e.g., tail latencies) are sensi-
tive to non-Gaussian or unstructured noise sources in the
wild, e.g., CPU scheduling and OS updates. In contrast
to related efforts [2, 3], not only does Metis consider ex-
ploitation and exploration, but it also weighs the benefit
of re-sampling existing data points. Key enabler is the
diagnostic model that Metis creates to identify potential
outliers.

To demonstrate the usefulness of Metis for real-world
system black-box optimizations, this paper showcases
one of our production deployments as the running ex-
ample – optimizing tail latencies of Microsoft Bing Ads
key-value (KV) stores. We present measurements and
experiences from two KV clusters that handle ∼4.14 bil-
lion and∼3.18 billion key-value queries per day, respec-
tively. Compared to weeks of manual tuning by human
experts, production results show that Metis reduces the
overall tuning time by 98.41%, while reducing the 99-
percentile latency by another 3.43%.

2 Background and Motivation

As a black-box optimization service, Metis tunes the
configuration of several Microsoft services and network-
ing infrastructure. This section describes one deploy-
ment as the running example in this paper – Microsoft
Bing Ads key-value (KV) store cluster, BingKV. Then,
we motivate optimally customizing cloud systems.

2.1 Running Example: BingKV

Individual stages of the ads query processing pipeline,
e.g., selection and ranking, host separate KV store clus-
ters. Within the cluster, each KV server is responsible for
one non-overlapping dataset partition. Therefore, each
server can experience different workload, as defined by
the frequency distribution and the size distribution of top
queried key-value objects. Manually tuning each server
is difficult as a cluster can have thousands of servers.

The configuration space consists of parameters of the
local caching mechanism, which decides what KV ob-
jects should be cached in the in-memory cache or served
from the persistent data store. Main evaluation metric is
tail latencies of serving key queries after the in-memory
cache is full. We describe these parameters and their typ-
ical value ranges next.

First, both the recency and frequency distribution are
well-known foundation for cache eviction. BingKV sup-
ports NumCacheLevels (1 - 10) levels of LRU (Least
Recently Used) or LFU (Least Frequently Used) based
caches – a cached object can move up a level if it has
been queried CachePromotionThreshold (1 - 1,000)
times. Since cached objects at higher levels have been
queried more than those at lower levels, locality principle
implies that they should not be easily evicted. Therefore,
we allow NumInevictableLevels (0 - 9) levels to be
specified as being inevictable.

Second, many cache designs incorporate a shadow
buffer that stores the key only, instead of the entire key-
value object. BingKV implements a shadow buffer with
a capacity of ShadowCapacity (1 - 10) MB, to hold keys
with an object size larger than AdmissionThreshold

(1 - 1,000) bytes. Then, keys in the shadow buffer are
moved to the cache only if they have been queried more
than ShadowPromotionFreq (1 - 1,000) times.

Finally, CacheCapacity (1 - 10,000) specifies the
cache capacity (excluding the shadow buffer) in MB,
and the dataset partition on each server is divided into
NumShards (1 - 64) shards.

2.2 Impacts of Suboptimal Configurations
To illustrate impacts of suboptimal configurations, we
empirically measure BingKV’s 99-percentile latency un-
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Figure 1: Motivating example – suboptimal configu-
rations can impact the system performance. We use
BingKV as the running example, and compare the tail
latency increase with respect to the optimal system con-
figuration.

der different parameter configurations, and quantify the
tail latency increase with respect to the best-performing
system configuration. Experiments use two 12-day
pre-recorded production workload traces of BingKV,
Prod Trace1 and Prod Trace2, and replay these work-
load traces to benchmark system configurations.

Suboptimal configurations can happen when system
tuning does not consider machine-specific setup. To il-
lustrate, we vary the cache capacity between 32 MB
and 512 MB – we find the best-performing configuration
(e.g., AdmissionThreshold ranging from 1 to 1,000)
for each capacity, and then we compare the latency of the
best-performing configuration to 100 configurations uni-
formly sampled from the parameter space. Results show
that the average 99-percentile latency increase can range
from 15.34% (for 256-MB cache) to 22.74% (for 512-
MB cache), with more than 34.14% increase in the worst
case. For Prod Trace2, the average 99-percentile latency
increase can range from 10.21% (for 32-MB cache) to
13.89% (for 64-MB cache), with more than 13% increase
in the worst case.

Suboptimal configurations can also happen when
system tuning does not consider temporal dynamics.
For each day of Prod Trace1, we compare the best-
performing configuration to that of the other 11 days.
Figure 1 shows that the average 99-percentile latency in-
crease can be as high as more than 5.58% (day 5).

2.3 Strawman Solutions
Manual tuning. Manual tuning can leverage adminis-
trators’ knowledge and prior experience about the tar-
get system. Unfortunately, as modern systems get larger
and more complicated, reasoning the system behavior
in a high-dimensional configuration space becomes in-
creasingly difficult. Furthermore, real-world workload
can have dynamics across machines and time, and man-
ual tuning does not scale. To illustrate this argument,
our experience shows that manually tuning a subset of
BingKV can take weeks. And, in some cases, it is not

Figure 2: Architecture of Metis service.

certain whether the manual tuned configuration is indeed
the best-performing one.

Naı̈ve Bayesian optimization. OtterTune [2] and Cher-
ryPick [3] demonstrated the potential of Bayesian opti-
mization in adaptively finding the best-performing con-
figuration for databases and data analytics systems, re-
spectively. Both approaches adopt common BO selection
strategies such as Expected-Improvement (EI). While
these strategies are easy-to-implement, they do not con-
sider factors impacting the robustness of tuning system
customizations: the balance of exploitation and explo-
ration [14], and data outliers.

3 Our Approach

Given a workload of a system, Metis has the objec-
tive of predicting the best-performing configuration by
selectively exploring the configuration-vs-performance
space. Through system benchmarking, Metis can col-
lect data points that describe system inputs (e.g., sys-
tem workload and parameter values) and outputs (e.g.,
performance metrics of interests) for training its model.
When Metis does not change its prediction of the best-
performing configuration with additional data points, we
say the model has converged. Maximizing the prediction
accuracy and minimizing the model convergence time
are two evaluation metrics for Metis. The former relates
to the auto-tuning correctness, and the latter relates to the
service scalability.

This section first outlines the usage flow of Metis.
Then, we formulate auto-tuning as an optimization prob-
lem, and highlight practical challenges to motivate cus-
tomizations proposed in subsequent sections.

3.1 Architectural Overview

Figure 2 shows the architecture of Metis containing com-
ponents for model training and system tuning.

Model training. The Progressive Sampling Engine
solves the optimization problem of robustly construct-
ing the predictive regression model, which models the
configuration-vs-performance space. Each model corre-
sponds to one performance metric, and the model dimen-
sionality depends on the number of parameters.
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Users start by providing the Progressive Sampling En-
gine their requirements (e.g., parameters and metric of
interest) and workload traces (e.g., production or synthe-
sized traces). The engine bootstraps BO by picking a set
of system configurations as bootstrapping trials, for the
Trial Manager to benchmark. Benchmarking can happen
in simulators or real machines. Then, using performance
metrics collected as the training data points, the engine
picks subsequent system configuration of parameters to
benchmark. Ideally, each iteration should improve the
regression model’s estimation of the space’s global opti-
mum. We formulate this iterative process as an optimiza-
tion problem in the next subsection (c.f. §3.2).

When a stopping criterion is met, the Progressive Sam-
pling Engine stops collecting more data points, and it
outputs the GP regression model trained so far. Stopping
criteria can include training time budget and so on. As
we show in §6, the system benchmarking time dominates
training, rather than the model computation time.

System tuning. The Tuning Manager periodically re-
ceives status reports from individual servers of the tar-
get system. These status reports contain current work-
load characterizations and logged performance metrics.
If performance degradation is detected (e.g., a significant
increase in the tail latency), the Tuning Manager uses the
workload characterization to select the nearest regression
model. We use DNNs to classify workloads, which mini-
mizes the burden of weighing workload features for clas-
sification.

3.2 Optimization Problem Formulation
Formally, for a workload w, we want to find the k-
dimensional configuration c∗ (representing k system pa-
rameters), which has the highest probability of being the
best-performing configuration, cw. The overall problem
objective is as follows:

c∗ = argmax
c ∈ con f igs

P(c = cw | w)

Given the k-dimensional parameter space can be too
large for exhaustive searches, Metis opts the regression
model to predict with limited amount of data points col-
lected. While more training data will help reducing the
regression uncertainty, the training objective should also
consider the training overhead:

minimize ∑
w ∈ workloads

(con f idence interval(cw))

subject to ∑T (c) ≤ Tbudget

T (c) denotes the time necessary to sample a configura-
tion c, and Tbudget denotes the maximum amount of time
cost allocated for model training.

Predictive regression model formulation. Regression
allows Metis to model the expected configuration-vs-
performance space, with data points already collected
from benchmarking some configurations. The regression
model captures the conditional distribution of a target
performance metric given a system configuration. We
pick Gaussian process (GP) [13] as the model, which ex-
tends multivariate Gaussian distributions to infinite di-
mensionality, such that observations for an unsampled
data point are assumed to follow a multivariate Gaussian
distribution. In other words, assuming a stochastic func-
tion f where every input x has an output f (x), each f (x)
is defined as a mean µ and a standard deviation σ of a
Gaussian distribution.

GP exhibits a number of desirable properties. First,
it does not assume a certain mathematical relationship
between model inputs and outputs, e.g., the linear rela-
tionship. Second, for any x, GP can return the expected
value of f (x) and uncertainty (i.e., standard deviation).

Optimization framework. A proven approach to train
the GP model is Bayesian optimization (BO) [17]. At
each iteration, based on the current GP model, BO se-
lects a system configuration to benchmark next to fur-
ther train the GP model. The selected configuration is
expected to maximally improve the accuracy predicting
the global optimum of the configuration-vs-performance
space. The logic behind selecting the next trial is im-
plemented by BO’s acquisition function, and its de-
sign traditionally aims to balance exploitation (i.e., sam-
pling regions with high probability of containing op-
timum) and exploration (i.e., sampling regions with
high uncertainty). The model converges when BO be-
lieves that the GP model has sufficiently captured the
configuration-vs-performance space global optimum, or
the best-performing system configuration in our case.

BO conceptually realizes a form of progressive sam-
pling, and it is suitable for scenarios where collecting
system performance metrics of a single trial is resource-
intensive or time-consuming (e.g., waiting for a system
to warm up and stabilize).

3.3 Practical Challenges of Robustness

Running BO with GP requires the following practical
considerations for robust system tuning.

Sampling configuration-vs-performance space with-
out strong assumptions on the target system behav-
ior. Given that system behavior can be difficult to be
properly reasoned, Metis tries to learn the configuration-
vs-performance space from selective sampling. In other
words, based on system configurations already bench-
marked, Metis selects the next system configuration to
benchmark, which is expected to maximally improve the
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regression accuracy. To this end, we believe that existing
efforts leave the following two gaps to fill.

First, balancing exploitation and exploration is still a
non-trivial problem. Many proposed acquisition func-
tions evaluate the potential improvement of a trial [19],
and the community has shown their limitations in bal-
ancing exploitation and exploration [4, 17]. Expected
Improvement (EI) is a widely popular choice of acqui-
sition functions. It improves upon Maximum Probability
of Improvement, by estimating the best-case improve-
ment with both the mean and the uncertainty around a
sampling point. However, Ryzhov et al. [14] showed that
EI allocates only O(log n) samples to regions that are ex-
pected to be suboptimal, where n is the total number of
trials. In other words, n needs to be significantly large
for EI to balance exploitation and exploration.

Second, bootstrapping trials refer to the set of sam-
pling points to initialize BO. Since BO decides the next
trial with the GP model trained with past trial data points,
prior data samples can influence how BO expects the
posterior expectation to be. The main requirement for se-
lecting bootstrapping trials should be exploration. Ran-
dom sampling is a simple approach to pick bootstrap-
ping trials, but it requires a large amount of sampling
points to ensure coverage [12]. This is not ideal for time-
consuming trials, where some systems need time to sta-
bilize (e.g., system cache warm-up).

Handling non-Gaussian data noise. Most theoretical
work on BO with GP assumes the trial data collected
are noise-free (i.e., perfectly reproducible experiments),
or susceptible to only the Gaussian noise [17]. Un-
fortunately, many system metrics such as tail latencies
are sensitive to a wide range of noise sources in the
real world, ranging from background daemons, local re-
source sharing, networking variability, etc. This is dif-
ferent from reproducible metrics such as classification
accuracy. Since real-world data noise sources can be het-
erogeneous and non-trivial to model, the auto-tuning ser-
vice should consider the benefits of removing potential
outliers.

4 Improving Auto-Tuning Robustness

Given the challenges discussed in §3.3, we now discuss
our customizations to Bayesian optimization to improve
tuning robustness.

4.1 Bootstrapping Trials

To select sampling points to bootstrap Bayesian opti-
mization for a given workload, Metis exercises Latin Hy-
percube Sampling (LHS) [12]. LHS is a type of stratified
sampling. According to some assumed probability dis-

tribution, LHS divides the range of each of M parame-
ters into I equally probable intervals, and randomly se-
lects only one single data point from each interval. Since
each interval of each parameter is selected only once, the
number of bootstrapping trials chosen by LHS is exactly
I, regardless of M. Furthermore, the maximum number
of possible combinations for bootstrapping trials is only
(∏I−1

i=0 I− i)M−1 = (I!)M−1.
LHS offers several desirable properties for bootstrap-

ping Bayesian optimization. First, it has been shown that,
compared to random sampling, stratified sampling can
reduce the sample size required to achieve the same con-
clusion [12]. Second, compared to another well-known
stratified sampling technique, Monte Carlo, LHS allows
one to obtain a stable output with less samples [7]. And,
while quasi-Monte Carlo can be an alternative approach,
its output is a low discrepancy sequence which is not
random, but uniformly deterministic [6]. Third, as LHS
does not control the sampling of combinations of dimen-
sions, the number of samples picked LHS is agnostic to
the dimensionality of the parameter space.

A well-known concern of LHS is that it may exhibit
a higher memory consumption, in order to keep track
of parameter intervals that have already been sampled.
However, we note that only a few sampling points are
necessary to bootstrap Metis, and our current running
system sets I to be 5.

4.2 Customized Acquisition Function

After obtaining bootstrapping sampling trials with LHS,
Metis then runs Bayesian optimization to iteratively train
the Gaussian process model. At each iteration, BO out-
puts the system configuration that is expected to offer
the most improvement to the GP model, in terms of pre-
dicting the best-performing system configuration. This
output represents the system configuration that Metis
should sample in the next iteration of training. To pro-
duce this output, Metis customizes the acquisition func-
tion to balance three goals: exploitation, exploration, and
re-sampling.

Our customized acquisition function works as a mix-
ture of three separate sub-acquisition functions (c.f.
§4.2.1) corresponding to each goal. At each iteration
of BO, based on the GP model constructed so far, in-
dividual sub-acquisition functions compute the next sys-
tem configuration to sample to maximize their own goal.
Then, the acquisition function evaluates these candi-
dates in terms of the improvement of the expected best-
performing system configuration, and selects the candi-
date with the highest gain to sample next (c.f. §4.2.2).

Compared to related efforts, our acquisition func-
tion exhibits two differences. First, by introducing re-
sampling as a possible action, we allow Metis to re-
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sample a trial whose previous results might be suscep-
tible to non-Gaussian noise. Second, Metis decouples all
three actions and runs separate acquisition functions for
each action. This decoupling allows Metis to indepen-
dently evaluate the potential information gain and regret
aversion from taking each action in the next iteration.

4.2.1 Sub-acquisition functions

Metis decouples exploitation, exploration, and re-
sampling into three separate sub-acquisition functions.
Given past trials, each sub-acquisition function outputs
a system configuration to maximize its own goal. These
system configurations become candidates for the acqui-
sition function.

Exploration. This sub-acquisition function looks for the
sampling point whose expected observation would have
with the highest uncertainty. Formally, in the GP regres-
sion model, this sampling point would exhibit the largest
confidence interval.

Exploitation. This sub-acquisition function looks for the
sampling point whose expected observation would most
likely be the system optimum. While one simple ap-
proach is to consider the absolute observation of a sam-
pling point as expected by the GP regression model, its
accuracy can be impacted by GP’s uncertainty of that
sampling point. Therefore, Metis takes an approach in-
spired by TPE [5], and tries to estimate the probability of
a sampling point giving near-optimum observation.

The exploitation sub-acquisition function works as
follows. It first separates the past trials into two groups:
the first group has best observations, and the second
group has the rest. Then, we construct two Gaussian
mixture models (GMM) to describe each group. With
these two GMMs, we can evaluate the likelihood of a
system configuration, c, being in either group, i.e., P1(c)
and P2(c). The ratio of these two likelihood, or P1(c)

P2(c)
,

would give us a score of how likely a sampling point is
in the first group, instead of second group.

Re-sampling. This sub-acquisition function looks for
outliers in past trials, and suggest trials that should be
re-sampled (i.e., system configurations that should be re-
benchmarked).

The re-sampling sub-acquisition function works by
creating the diagnostic model. To examine a data point,
the diagnostic model quantifies the difference between
the measured value and the expected value. To do so, the
diagnostic model is a GP regression model trained with-
out the examined data point. Then, the diagnostic model
can calculate the expected value and 95% confidence in-
terval. If the measured value falls outside the confidence
interval, it is probable that the examined data point could
be an outlier. The sub-acquisition function repeats the

Figure 3: Components of Metis service implementation.

evaluation for all past trials, and it selects the trial that is
farthest from the expected confidence interval.

4.2.2 Evaluation of Candidates

Taking sub-acquisition function outputs as candidate
configurations, our acquisition function computes their
information gain with respect to how the prediction of
optimal configuration changes. Conceptually, for each
candidate, the GP model bounds the expected observa-
tion with a confidence interval. And, the upper and lower
bound of this interval can help us estimate the potential
information gain (if we were to actually select the corre-
sponding candidate for benchmark).

The acquisition function starts by predicting the cur-
rently best-performing system configuration, ccur best ,
and this step searches for the sampling point with the
lowest expected observation in the GP regression model.
Then, to evaluate a candidate, ccandidate, we add its
lower-bound confidence interval (i.e., best-case) to the
GP regression model, and predict the would-be best-
performing system configuration, cnew best . The different
between the expected observation of ccur best and cnew best
is the improvement, and 0 if the improvement is negative.
Then, we repeat the process for upper-bound confidence
interval (i.e., worst-case).

Finally, the acquisition function outputs the ccandidate
with the highest sum of improvement calculated with the
lower-bound and the upper-bound confidence interval.

5 Implementation

Figure 3 illustrates the Metis system components imple-
mented. Our current implementation is in Python, and
this language choice allows us to use the popular Scikit-
learn library for Gaussian process regression [16]. We
choose the summation of Matern (3/2) and white noise
as the covariance kernel [19].

Separation of logic and execution. Metis consists of a
centralized web service and client stubs that sit on servers
hosting the target system. Network communications hap-
pen over TCP, and the message format is JSON. Con-
ceptually, the client stub hooks up to the target system,

986    2018 USENIX Annual Technical Conference USENIX Association



and it abstracts away system-specific interfaces and ex-
ecution from the web services. While an alternative im-
plementation is to place both the logic and execution in
a local service on each server, the separation provides
several benefits. First, the computation-intensive logic
of Metis does not contend for resources on production
servers. Second, being centralized, Metis has the global
view of all status reports from all servers. This allows
Metis to continuously improve the predictive model with
new data points.

Metis web service. The web service trains one pre-
dictive regression model for each workload trace. And,
these traces can be recorded in the production environ-
ment, or synthesized with tools such as YCSB [8]. Trial
Manager replays each workload trace in simulators or
real servers, and each replay represents one trial bench-
marking one selected system configuration. Then, the
training dataset consists of system configurations and
corresponding performance benchmarks. In the case of
BingKV, we built a simulator wrapping the production
KV code binaries, to run trials.

From status reports uploaded by client stubs, if Tuning
Manager detects that a server is experiencing a perfor-
mance degradation above some user-specified thresholds
(e.g., tail latencies have increased by more than 10% in
the last six hours), it computes a new configuration and
sends a command to the server’s client stub.

Metis client stubs. The client stub deals with system-
specific interfaces, (1) to periodically upload recent sys-
tem performance measurements and workload character-
ization, and (2) to execute configuration change com-
mands from the web service.

Most web-scale cloud systems already have an ex-
tensive logging mechanism for continuous performance
monitoring, and Metis client stubs periodically retrieve
relevant performance measurements from the same log-
ging mechanism. While different systems have different
workload characterization features, these features are ei-
ther already available in the logging mechanism, or re-
quire additional code instrumentation. In the case of
BingKV, our workload features are the size and query
frequency of the top queried KV objects, and the incom-
ing query traffic rate.

Upon receiving a configuration change command,
Metis does not try to aggressively re-configure servers.
Instead, it employs a guard time following a re-
configuration to allow the target system to warm up and
stabilize. Other than time durations, this guard time can
also be values of system states, e.g., cache occupancy.

Selection of Configs Modeling DO
Random Random No
iTuned [10] LHS + EI BO w/ GP No
CherryPick [3] Random + EI BO w/ GP No
TPE [5] Random + EI GMM No
Metis LHS + Customized BO w/ GP Yes

Table 1: This table highlights differences among com-
parison baselines and Metis. The ”DO” column shows
whether data outlier removal is considered.

6 Evaluation

Our major results include – (1) compared to baselines,
Metis picks better configurations 84.67% of times in the
presence of low data noises. (2) In the presence of data
outliers, Metis has 56.77% more chance of picking better
configuration. (3) Metis has a faster convergence time in
searching for the best-performing configuration.

6.1 Methodology

We use the Bing Ads KV store (c.f. §2) as the target
system. Our testbed machines have two 2.1 GHz CPUs
(with 16 cores), 16 GB RAM, and a 256 GB SSD. These
machines host the target system binaries, and simulate
configurable key-value query arrival rates (or queries per
second) for the given workload trace. We log perfor-
mance metrics with asynchronous I/Os to minimize any
artifact introduced by logging.

Datasets and workload traces. We obtained two 12-day
key-value query traces, Prod Trace1 and Prod Trace2,
from two Bing Ads KV store clusters, BingKV 1 and
BingKV 2. These two real-world traces exhibit following
characteristics – the average size of top 500 frequently
queried KV objects can have a difference up to 9.49%
from one week to another, and that of Prod Trace1 is
approximately two-times larger than Prod Trace2.

For more controlled experiments, we also synthesized
three workload traces containing ∼0.5 million query re-
quests. Our workload generation tool is based on the Ya-
hoo! Cloud Serving Benchmark (YCSB) [8]. However,
while YCSB considers the key-value frequency distri-
bution, it does not consider the key-value size distribu-
tion. To fill this gap, given a list of unique keys from
YCSB (sorted in descending order of frequency), we as-
sign key-value sizes according to some distributions. For
Synth Trace1, Synth Trace2 and Synth Trace3, we fix
their size distribution to be Zipf, and we generate keys
following the frequency distribution of Zipf, normal, and
linear. Doing so allows us to examine different size dis-
tributions.

Comparison baselines. In addition to random search,
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Figure 4: Chance that each approach picks the best con-
figuration. Each experiment allows each approach to run
25 trials, and we repeat the experiment 30 times.

we take state-of-the-art BO-driven approaches including
iTuned [10], CherryPick [3], and TPE [5]. We config-
ure these comparison baselines with the recommended
setting, e.g., the Matern(5/2) kernel for CherryPick. At
each iteration, these approaches output the configuration
they expect to have lowest tail latency. Table 1 lists their
differences. For the ground truth, we brute-force all pos-
sible configurations for Prod Trace1.

6.2 Effectiveness of Metis

This section quantifies the likelihood that the system
configuration selected by Metis outperforms those of
other approaches. This relates to the auto-tuning correct-
ness. We also discuss factors including time budgets (i.e.,
number of trials allowed) and data outliers.

Metis has a higher chance in picking system config-
urations that outperforms those of other approaches.
Assuming a fixed time budget, we allow each approach
to run 25 trials. We then rank approaches by the 99-
percentile latency of their expectedly best-performing
system configurations. We clean-install the machine to
ensure minimal noise in measurements, and evaluate the
case of data outliers later in this section. Experiments are
repeated 30 times, to compensate for the randomness in
some approaches. For random search, we take the best
of all 25 trials for evaluation. We note that TPE requires
at least 20 bootstrapping trials (from random sampling),
and we allocate five bootstrapping trials to CherryPick,
iTuned and Metis.

Figure 4 summarizes results when system bench-
marks, or training data, are relatively noise-free. It shows
that Metis has a higher chance of picking the winning
configuration, i.e., the system configuration that out-
performs those selected by comparison baselines. De-
pending on the synthesized workload trace, Metis can
outperform 48.97% (for Synth Trace2) to 84.67% (for
Prod Trace2) of times.

Furthermore, taking a closer look into cases where
Metis failed to win, we note that Metis 99-percentile la-
tency is within 1% of the winner. In addition, Metis ob-
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Figure 5: Chance that each approach picks the best con-
figuration for Prod Trace1, while changing the number
of sampling points allowed.

serves the lowest difference of 99-percentile latency to
the optimal, on average. This difference is 0.44% for
Metis, which is 67.16% lower than CherryPick.

Metis has a faster convergence time than other ap-
proaches. Regardless of the parameter tuning approach,
the effectiveness in finding the optimal configuration
should ideally increase with the number of data points
already sampled, or configurations benchmarked. One
natural question is how Metis converges to the optimal
system configuration, as compared to other approaches.
To this end, we try to answer two questions: (1) at each
iteration, what is the likelihood that Metis selects the
system configuration that outperforms those of other ap-
proaches? (2) how fast does Metis converge to the opti-
mal system configuration?

Figure 5 shows that the chance for Metis to pick the
winning configurations is high at all iteration. We repeat
this experiment 30 times, due to the randomness in some
approaches. This result is desirable for auto-tuning under
limited time budget, as system benchmarks can consume
a long time. In addition, the figure shows that, as the
number of sampled data points increase, Metis is able
to better model the configuration-vs-performance space,
which increases the likelihood of picking the winning
configuration. Furthermore, looking at configurations
that CherryPick and iTuned pick, we observe that they
lean towards exploitation. On the other hand, Metis inde-
pendently evaluates the potential information gain from
exploitation and exploration.

Following Figure 5, Figure 6 illustrates how each
approach converges to the global optimum of the
configuration-vs-performance space. The figure calcu-
lates the average 99-percentile latency of selected con-
figurations from 30 repeated experiments. Compared to
other approaches, Metis has a faster convergence time,
as it is able to benchmark system configurations that
would iteratively improve modeling the configuration-
vs-performance space. We note that the effectiveness
of TPE significantly improves after 20 iterations, as its
Gaussian Mixture Models require many training data. Fi-
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Figure 6: The search path visualizes the tail latency of
system configurations that BO-driven approaches select
at each iteration.
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Figure 7: Chance that each approach picks the winning
configuration for Prod Trace1. The test machine has in-
termittent background activities that result in data out-
liers. The red line marks when Metis has sufficient data
points for re-sampling.

nally, we also note that Figure 6 suggests that iTuned and
CherryPick have a higher chance of exploiting local op-
timum, and thus their acquisition function would require
more iterations to find the global optimum.

Metis maintains high chance of picking the winning
configuration in the presence of data outliers. Build-
ing on the discussion so far, we now demonstrate the ro-
bustness of Metis to data outliers. We repeat the previous
experiment where we allow each approach to iteratively
select 25 trials to benchmark. The machine is a pro-
duction Bing Ads server, which runs intermittent back-
ground activities for software updates, monitoring, and
periodic database updates. Resulting noises in the mea-
surement can not reasonably modeled by normal distri-
bution. Unlike comparison baselines, Metis proactively
looks for potential data outliers after a sufficient amount
of data points is collected, or 10 in our case.

Figure 7 illustrates that Metis has a higher chance of
picking the optimal configuration in the presence of data
outliers. The red line shows when Metis stops marking
all sampled data points as potential data outliers (due to
insufficient data collected). The effectiveness of Metis
improves after the red line. The figure also shows the ef-
fectiveness of Metis without re-sampling, and removing
outliers improves Metis’s winning rate by 33.33%.
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Figure 8: Impact of training data size on the training time
of GP models.

6.3 Overhead of Metis

It is known that benchmarking configurations can be
time-consuming due to system warm-up and stabiliza-
tion. Another potential source of overhead is the predic-
tive regression model – both in training and configuration
selection. To quantify this overhead, we randomly gener-
ate the training data for individual experiment runs, and
repeat each experiment 50 times.

Model training time. This is the time for Metis to fit
a Gaussian process model over all sampled data points.
We note that the community has shown that training
the Gaussian process model can exhibit a complexity
of O(N3 +N2D) [21], where N and D are the number
and the dimensionality of training data points, respec-
tively. This suggests that the number of training data
points largely determines the training time. Our goal is
to understand whether the training complexity will limit
Metis’s practicality in the real-world. Figure 8 shows that
the training time increases with the number of sampled
data points (for a training data set with a dimension of 20,
and parameter values range between 1 and 1,000). When
the number of sampled data points increases to 500, the
training time reaches 12.33 seconds. However, this train-
ing time is still practical in real-world deployments.

Configuration selection time. This is the time for Metis
to predict a sampling point that is expected to maximize
the given acquisition function. It has been shown that the
time complexity for prediction with the Gaussian pro-
cess model is O(N2 +ND) [21], where N and D are the
number and the dimensionality of training data points,
respectively. When the training data size increases to
500, predicting the observation of an unsampled point
takes ∼10.25 msec. This time suggests that the predic-
tive model is feasible for real-world usages.

7 Case Study: BingKV

With a year of Metis operational experience, there are
observations and lessons learned from adopting auto-
tuning in Microsoft services. This section presents
measurements and experiences from our running ex-
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Figure 9: Performance comparison between the previ-
ous LRU-based data store and the Metis-tuned BingKV,
based on 14-day hourly performance logs.

ample, Bing Ads KV store clusters (c.f. §2.1). The
KV store evolved from LRU, expert-tuned BingKV, to
Metis-tuned BingKV. We study measurements from two
KV store clusters – BingKV 1 (∼700 servers handling
∼4.14 billion key queries per day) and BingKV 2 (∼1,700
servers handling ∼3.18 billion key queries per day).
Each server of clusters has an in-memory cache capac-
ity of 512 MB, and an SSD as the persistent data store.

Metis-tuned BingKV reduces the 99-percentile query
lookup latency by an average of 20.4%, as compared
to LRU. We start by comparing Metis-based KV store
with the previously LRU-based KV store, under Bing
Ads BingKV 1 production workload. The comparison is
based on 14-day hourly logs of the 99-percentile query
lookup latency and the cache hit rate (CHR). Figure 9
presents results for BingKV 1 – Figure 9a shows that
Metis helps to reduce the 99-percentile latency by 20.4%
on average (with a standard deviation of 8.4), and Fig-
ure 9b shows a CHR improvement of 60.6% (with a stan-
dard deviation of 11.7). This translates to a 22.76% re-
duction in disk I/O reads.

Metis-tuned BingKV reports a 3.43% lower 99-
percentile latency, as compared to expert-tuned
BingKV. Our human expert is one of the lead program-
mers for Bing Ads key-value store, with years of expe-
rience operating the system. As it is infeasible for the
human expert to continuously tune the KV store, this
subsection focuses on picking a single best-performing
configuration. We note that the human expert did not
have any time budget limitations, and manual tuning took
about four weeks in a testing environment. The next sub-
section delves into the system tuning time comparison.

Perf metrics Differences
BingKV 1 BingKV 2

99-percentile latency -2.99% -3.43%
Cache hit rate 2.43% 0.49%

Table 2: Performance comparison of expert-tuned and
Metis-tuned BingKV-based data store, under 14-day
Bing Ads workloads. Metis-tuned configurations out-
perform expert-tuned configurations, while reducing the
tuning time from weeks to hours.
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Figure 10: On average, Metis reduces the configuration
tuning time by 98.41% for BingKV. For illustration, this
figure shows a one-dimensional case of sampling points
selected by Metis, as compared to brute-force.

Table 2 shows that Metis-tuning outperforms human-
tuning under two weeks of production traffic: (1) the
Metis-tuned configuration reports a 2.99% and 3.43%
lower 99-percentile latency for BingKV 1 and BingKV 2,
respectively. (2) Metis-tuned configuration reports
a 2.43% and 0.49% higher CHR for BingKV 1 and
BingKV 2, respectively.

Metis reduces the overall tuning time by 98.41%, as
compared to manual tuning by human experts. While
humans are typically guided by intuition based on their
knowledge of the system, much of the manual tuning
process mostly resembles the random search. In fact,
the problem exacerbates as the dimensionality of the pa-
rameter space increases, especially in the case where pa-
rameters have dependencies. For reference, in one sce-
nario deployment, manual-tuning took about 3 weeks,
while Metis-tuning took about 8 hours (including sam-
pling, modeling and prediction).

To illustrate how predictive modeling reduces the tun-
ing time, Figure 10 shows that Gaussian process regres-
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sion for a one-dimensional case. GP regression is able to
estimate the impact of ShadowAdmissionSize without
sampling the entire parameter space. We note that dot-
ted lines in Figure 10b mark the 95% confidence interval
for each point, which can guide both the space explo-
ration and the stopping criteria. Finally, we note that GP
regression operations are negligible as compared to sys-
tem benchmarking – training typically takes ∼1.02 sec,
and predicting the expected value of an unsampled data
points takes ∼0.53 msec.

8 Related Work

Black-box parameter tuning services. Google
Vizier [11] is an ongoing research project, and it sup-
plies core capabilities to optimize hyper-parameters of
machine learning models across Google. Similar to
Google Vizier, SigOpt [18] is a startup that tunes hyper-
parameters of ML models, but little technical details
have been disclosed. Google Slicer [1] is a sharding
service that dynamically generates the optimal resource
assignment, but its goals are not parameter space ex-
ploration and sampling. Like Metis, BestConfig [23]
uses stratified sampling. However, it heavily leans to-
wards exploitation, as it assumes a high probability of
finding better-performing configurations around the cur-
rently best-performing one.

In contrast, Metis focuses on providing a robust auto-
tuning algorithm for cloud systems, and addresses chal-
lenges that systems introduce to the optimization prob-
lem. Metis has been used to tune parameters of Microsoft
services and networking infrastructure.

Parameter tuning with Bayesian optimization. Metis
builds on previous efforts that demonstrate the poten-
tial of applying Bayesian optimization and Gaussian pro-
cess to auto-tuning. iTuned [10] uses Latin Hypercube
Sampling (LHS) to sample the parameter space, and
model the parameter space with Gaussian process mod-
els. OtterTune [2] uses a combination of supervised
and unsupervised machine learning methods to reduce
the parameter dimension, characterize observed work-
loads, and recommend configurations. CherryPick [3]
follows a similar approach to BO and GP in selecting the
best-performing cloud configuration for a given machine
learning workload.

TPE [5] uses Bayesian optimization with Gaussian
mixture model, instead of Gaussian process. It is suitable
for cases where there are some dependencies among pa-
rameters. However, since TPE trains with a subset of the
training data, it needs a larger amount of data to be col-
lected for training effectively. Smart Hill-Climbing [22]
improves Latin Hypercube Sampling, but the GP-based
approach has been shown to outperform [10].

Metis introduces customizations to the framework of
BO with GP. These include the diagnostic model to find
potential data outliers for re-sampling, and a mixture of
acquisition functions to balance exploitation, exploration
and re-sampling.

9 Discussion

We now discuss limitations concerning the applicability
of Metis to systems in general.

Support of different system parameter types. Some
types of system parameters can be non-trivial to model
with regression models – First, categorical parameters
take on one of a fixed number of non-integer values such
as boolean. Since categorical parameters are not continu-
ous in nature, it can be difficult to model the relationship
among possible values. While categorical parameters are
out of scope for this paper, our current implementation
conceptually treats each categorical value as a new target
system. Second, some systems have multi-step parame-
ters, where one single configuration requires the system
to go through a specific sequence of value changes for
one or more parameters. Metis does not currently sup-
port multi-step parameters.

Costs of changing system configurations. Applying
configuration changes can incur costs for some systems.
First, server reboots might be necessary after a configu-
ration change, thus service interruptions. To handle this
case, system administrators can decide to push a config-
uration change only if the new configuration is predicted
to offer a certain level of performance improvement (e.g.,
10% latency reduction). Administrators can also bound
the cost of reconfiguration, e.g., by performing recon-
figurations gradually over time, or by bounding the pa-
rameter space exploration by the distance from the cur-
rent running configuration. Second, mis-predictions can
result in system performance degradation. Fortunately,
Gaussian Process offers two ways to gain insights regard-
ing uncertainties – GP offers a confidence interval for
each prediction, and a log-marginal likelihood score [15]
to quantify the model fitness with respect to the training
dataset.

10 Conclusion

This paper reports the design, implementation, and de-
ployment of Metis, an auto-tuning service used by sev-
eral Microsoft services for robust system tuning. We
demonstrate the effectiveness of Metis with controlled
experiments and real-world system workloads. Further-
more, real-world deployments show that Metis can sig-
nificantly reduce the system tuning time.
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Abstract
We present NoveLSM, a persistent LSM-based key-
value storage system designed to exploit non-volatile
memories and deliver low latency and high throughput
to applications. We utilize three key techniques – a byte-
addressable skip list, direct mutability of persistent state,
and opportunistic read parallelism – to deliver high per-
formance across a range of workload scenarios. Our
analysis with popular benchmarks and real-world work-
load reveal up to a 3.8x and 2x reduction in write and
read access latency compared to LevelDB. Storing all
the data in a persistent skip list and avoiding block I/O
provides more than 5x and 1.9x higher write throughput
over LevelDB and RocksDB. Recovery time improves
substantially with NoveLSM’s persistent skip list.

1 Introduction
Persistent key-value stores based on log-structured

merged trees (LSM), such as BigTable [13], Lev-
elDB [4], HBase [2], Cassandra [1], and RocksDB [3],
play a crucial role in modern systems for applications
ranging from web-indexing, e-commerce, social net-
works, down to mobile applications. LSMs achieve
high throughput by providing in-memory data accesses,
buffering and batching writes to disk, and enforcing se-
quential disk access. These techniques improve LSM’s
I/O throughput but are accompanied with additional stor-
age and software-level overheads related to logging and
compaction costs. While logging updates to disk before
writing them to memory is necessary to recover from ap-
plication or power failure, compaction is required to re-
strict LSM’s DRAM buffer size and importantly commit
non-persistent in-memory buffer to storage. Both log-
ging and compaction add software overheads in the crit-
ical path and contribute to LSM’s read and write latency.
Recent proposals have mostly focused on redesigning
LSMs for SSD to improve throughput [23, 30, 40].

Adding byte-addressable, persistent, and fast non-
volatile memory (NVM) technologies such as PCM
in the storage stack creates opportunities to improve
latency, throughput, and reduce failure-recovery cost.
NVMs are expected to have near-DRAM read latency,

50x-100x faster writes, and 5x higher bandwidth com-
pared to SSDs. These device technology improvements
shift performance bottlenecks from the hardware to the
software stack, making it critical to reduce and eliminate
software overheads from the critical path of device ac-
cesses. When contrasting NVMs to current storage tech-
nologies, such as flash memory and hard-disks, NVMs
exhibit the following properties which are not leveraged
in current LSM designs: (1) random access to persistent
storage can deliver high performance; (2) in-place update
is low cost; and (3) the combination of low-latency and
high bandwidth leads to new opportunities for improving
application-level parallelism.

Given the characteristics of these new technologies,
one might consider designing a new data structure from
scratch to optimally exploit the device characteristics.
However, we believe it worthwhile to explore how to re-
design LSMs to work well with NVM for the following
reasons. First, NVMs are expected to co-exist with large-
capacity SSDs for the next few years [27] similar to the
co-existence of SSDs and hard disks. Hence, it is impor-
tant to redesign LSMs for heterogeneous storage in ways
that can exploit the benefits of NVMs without losing SSD
and hard disk optimizations. Second, redesigning LSMs
provides backward compatibility to thousands of appli-
cations. Third, maintaining the benefits of batched, se-
quential writes is important even for NVMs, given the
5x-10x higher-than-DRAM write latency. Hence in this
paper, we redesign existing LSM implementations.

Our redesign of LSM technology for NVM focuses
on the following three critical problems. First, exist-
ing LSMs maintain different in-memory and persistent
storage form of the data. As a result, moving data
across storage and memory incurs significant serializa-
tion and deserialization cost, limiting the benefits of low
latency NVM. Second, LSMs and other modern appli-
cations [1–4, 13] only allow changes to in-memory data
structures and make the data in persistent storage im-
mutable. However, memory buffers are limited in their
capacity and must be frequently compacted, which in-
creases stall time. Buffering data in memory can result
in loss of data after a system failure, and hence updates
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must be logged; this increases latency, and leads to I/O
read and write amplification. Finally, adding NVM to the
LSM hierarchy increases the number of levels in the stor-
age hierarchy which can increase read-access latency.

To address these limitations, we design NoveLSM,
a persistent LSM-based key-value store that exploits the
byte-addressability of NVMs to reduce read and write
latency and consequently achieve higher throughput.
NoveLSM achieves these performance gains through
three key innovations. First, NoveLSM introduces a per-
sistent NVM-based memtable, significantly reducing the
serialization and deserialization costs which plague stan-
dard LSM designs. Second, NoveLSM makes the persis-
tent NVM memtables mutable, thus allowing direct up-
dates; this significantly reduces application stalls due to
compaction. Further, direct updates to NVM memtable
are committed in-place, avoiding the need to log up-
dates; as a result, recovery after a failure only involves
mapping back the persistent NVM memtable, making it
three orders of magnitude faster than LevelDB. Third,
NoveLSM introduces optimistic parallel reads to simul-
taneously access multiple levels of the LSM that can ex-
ist in NVM or SSD, thus reducing the latency of read
requests and improving the throughput of the system.

We build NoveLSM by redesigning LevelDB, a
widely-used LSM-based key-value store [4]. Nov-
eLSM’s design principles can be easily extended to other
LSM implementations [1–3]. Our analysis reveals that
NoveLSM significantly outperforms traditional LSMs
when running on an emulated NVM device. Evalua-
tion of NoveLSM with the popular DBbench [3,4] shows
up to 3.8x improvement in write and up to 2x improve-
ment in read latency compared to a vanilla LevelDB
running on an NVM. Against state-of-the-art RocksDB,
NoveLSM reduces write latency by up to 36%. When
storing all the data in a persistent skip list and avoid-
ing block I/O to SSTable, NoveLSM provides more
than 5x and 1.9x gains over LevelDB and RocksDB. For
the real-world YCSB workload, NoveLSM shows a max-
imum of 54% throughput gain for scan workload and an
average of 15.6% across all workloads over RocksDB.
Finally, the recovery time after a failure reduces signifi-
cantly.

2 Background
We next provide background on LSM trees and on

the design of popular LSM stores, LevelDB [4] and
RocksDB [3], used extensively in this work. We also
present a background on persistent memory and our
method of emulating it.

2.1 Log Structured Merge Trees
An LSM-tree proposed by O’Neil et al. [32] is a per-

sistent structure that provides efficient indexing for a
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Figure 1: Naive LevelDB design with NVM. Figure shows
a simple method to add NVM to the LSM hierarchy. NVM is
used only as a replacement to disk for storing SSTables. Shaded
blocks show immutable storage, grey and red arrows show steps
for read operation search and the background compaction.

key-value store. LSMs achieve higher write throughput
by first staging data in memory and then across mul-
tiple levels on disk to avoid random disk writes. In
LSMs, the levels have an increasing size; for example, in
LevelDB, each level is at least ten times larger than the
previous level. During an insert operation, the keys are
first inserted into an in-memory level, and as this level
fills up, the data slowly trickles down to disk-friendly
block structures of the lower levels, where data is always
sorted. Before every insert operation into the memory
level, the data (key-value pairs) is logged in the per-
sistent storage for recovery after a failure; the logs are
garbage collected after data is safely flushed and per-
sisted to on-disk structures. Next, the search and read
operations proceed from the top memory level to the disk
levels and their latency increases with increasing num-
ber of levels. In general, LSMs are update-friendly data
structures and read operations are comparatively slower
to other NoSQL designs.

2.2 Popular LSM Stores

LevelDB is a popular LSM-based key-value store de-
rived from Google’s BigTable implementation and is
widely-used from browsers to datacenter applications.
Figure 1 shows LevelDB’s design with NVM added
to the storage hierarchy. During an insert operation,
LevelDB buffers updates in a memory-based skip list ta-
ble (referred to as memtable hereafter) and stores data on
multiple levels of on-disk block structures know as sorted
string tables (SSTable). After the memtable is full, it is
made immutable and a background compaction thread
moves the immutable memtable data to on-disk SSTable
by serializing the data to disk-based blocks. Only two
levels of memory tables (mutable and immutable) ex-
ist. With an exception to memtables, all lower levels are
mutually exclusive and do not maintain redundant data.
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The SSTables are traditional files with a sequence of I/O
blocks that provide a persistent and ordered immutable
mapping from keys to values, as well as interfaces for
sequential, random, and range lookup operations. The
SSTable file also has a block index for locating a block
in O(1) time. A key lookup can be performed with a sin-
gle disk seek to read the block and binary search inside
the block. In LevelDB, for read operations, the files with
SSTables are memory-mapped to reduce the POSIX file
system block-access overheads.
RocksDB is an LSM implementation that extends
LevelDB to exploit SSD’s high bandwidth and multicore
parallelism. RocksDB achieves this by supporting multi-
threaded background compaction which can simultane-
ously compact data across multiple levels of LSM hier-
archy and extracts parallelism with multi-channel SSDs.
RocksDB is highly configurable, with additional fea-
tures such as compaction filters, transaction logs, and
incremental replication. The most important feature of
RocksDB that can be beneficial for NVM is the use of
a Cuckoo hashing-based SST table format optimized for
random lookup instead of the traditional I/O block-based
format with high random-access overheads.

In this work, we develop NoveLSM by extending
LevelDB. We choose LevelDB due to its simplicity as
well as its broad usage in commercial deployments. The
optimizations in RocksDB over LevelDB are comple-
mentary to the proposed NoveLSM design principles.

2.3 Byte-addressable NVMs
NVM technologies such as PCM are byte-addressable

persistent devices expected to provide 100x lower read
and write latency and up to 5x-10x higher bandwidth
compared to SSDs [7, 12, 17, 22]. Further, NVMs can
scale to 2x-4x higher density than DRAM [5]. These
attributes make NVM a suitable candidate for replacing
SSDs. Additionally, NVMs are expected to be placed
in parallel with DRAM connected via the memory bus,
thereby providing memory-like load/store access inter-
face that can avoid POSIX-based block access supported
in current storage devices. Further, the read (load) la-
tency of NVMs is comparable to DRAM, but the write
latency is expected be to 5x slower.

2.4 NVM Emulation
Since byte-addressable NVMs are not available com-

mercially, we emulate NVMs similarly to prior re-
search [12, 17, 22, 26] and our emulation methodol-
ogy uses a 2.8 GHz, 32-core Intel Nehalem platform
with 25 MB LLC, dual NUMA socket with each socket
containing 16 GB DDR3 memory, and an Intel-510 Se-
ries SSD. We use Linux 4.13 kernel running DAX-
enabled Ext4 [6] file system designed for persistent
memory. We use one of the NUMA sockets as NVM

node, and to emulate lower NVM bandwidth compared
to DRAM, we thermal throttle the NUMA socket [25].
To emulate higher write latency, we use a modified ver-
sion of NVM emulator [37] and inject delay by estimat-
ing the number of processor store cache misses [12, 17,
22]. For our experiments, we emulate 5x higher NVM
write latency compared to DRAM access latency and
keep the NVM read latency same as the DRAM latency.
We vary NVM bandwidth from 2 GB/s to 8 GB/s; the
8 GB/s bandwidth is same as DRAM’s per-channel band-
width and is considered an ideal case.

3 Motivation
NVMs are expected to provide an order of magnitude

lower latency and up to 8x higher bandwidth compared
to SSDs; but can the current LSM software stack fully
exploit the hardware performance benefits of NVM? To
understand the impact of using NVM in current LSM
designs, we analyze LevelDB’s performance by using
NVM for its persistent storage. We use the widely-
used DBbench [4, 30, 35] benchmark with the total key-
value database size set to 16 GB, and the value size set
to 4 KB. Figure 2 compares the latency of sequential and
random LSM write and read operations. We configure
the maximum size of each SSTable file to 64 MB, a fea-
ture recently added to LevelDB to improve read perfor-
mance [4].

As shown in Figure 2, although NVM hardware pro-
vides 100x faster read and write compared to SSD,
LevelDB’s sequential and random insert latency (for
5 GB/sec bandwidth) reduce by just 7x and 4x, respec-
tively; the sequential and random read (fetch) latency re-
duces by less than 50%. The results show that current
LSMs do not fully exploit the hardware benefits of NVM
and suffer from significant software overheads. We next
decipher the sources of these overheads.
Insert latency. A key-value pair insert (or update) op-
eration to LSM is first buffered in the memory – mu-
table memtable (skip list in LevelDB) – before writ-
ing the key-value pair to the storage layer (SSTables).
However, a power failure or a system crash can lead
to data loss (buffered in memory). To avoid data loss,
the key-value pairs and their checksum are first added to
a sequential log in the persistent storage before insert-
ing them to the memtable. When the memtable is full,
it is made immutable, and a new mutable memtable is
created to which new inserts continue. A background
thread compacts the immutable memtable to storage;
however, if the new mutable memtable also fills up be-
fore the completion of background compaction, all new
inserts to LSM are stalled. Current LSM designs suf-
fer from high compaction cost because compaction in-
volves iterating the immutable memtable skip list, se-
rializing data to disk-compatible (SSTable) format, and
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finally committing them to the storage. Besides, the stor-
age layer (SSTable) comprises of multiple levels, and the
memtable compaction can trigger a chain of compaction
across these levels, stalling all foreground updates.

Figure 3 shows the cost breakup for insert operations
with 4 KB, 8 KB, and 16 KB values. As shown in the
figure, data compaction dominates the cost, increasing
latency by up to 83%, whereas log writes and check-
sum calculations add up to 17% of the total insert la-
tency. Increasing the in-memory buffer (memtable) can
reduce compaction frequency; however, this introduces
several drawbacks. First, DRAM usage increases by
two times: memory must be increased for both muta-
ble and immutable memtables. Second, only after the
immutable memtable is compacted, log updates can be
cleaned, leading to a larger log size. Third, LSMs such
as LevelDB and RocksDB do not enforce commits (sync)
when writing to a log; as a result, an application crash or
power-failure could lead to data loss. Fourth, a larger log
also increases recovery time after a failure. Finally, the
cost of checksumming and logging also increases.

Read operation latency. A read operation involves
hierarchically searching the smaller in-memory mutable
and immutable memtables, followed by searching mul-
tiple SSTable levels. Searching a memtable involves
traversing the skip list without the need to deserialize
data. However, searching a SSTable is complicated for
the following reason: the SSTable contains multiple lev-
els that store key-value pairs sorted by their key hash,
and each level is searched using a binary search. Af-
ter locating the blocks containing a key-value pair, the
blocks are copied into a memory buffer and then dese-
rialized from disk to an in-memory format. The search
cost increases moving top-down across SSTable levels
because each SSTable level is at least 10x larger than the
previous level. To reduce SSTable search cost, LSMs
such as LevelDB and RocksDB maintain an index table
at each level which uses a Bloom filter to cache recently
searched keys, which is useful only for workloads with
high re-access rates (e.g., Zipfian distribution). Figure 4
breaks down the cost of a read operation for 4 KB, 8
KB, and 16 KB values. For small values, searching the

SSTable dominates the cost, followed by copying disk
blocks to memory and deserializing block contents to
in-memory key-value pairs; the deserialization cost in-
creases with increasing value size (e.g., 16 KB). Reduc-
ing data copy, search, and deserialization cost can signif-
icantly reduce read latencies.
Summary. To summarize, existing LSMs suffer from
high software overheads for both insert and read opera-
tions and fail to exploit NVM’s byte-addressability, low
latency, and high storage bandwidth. The insert oper-
ations suffer mainly from high compaction and log up-
date overheads, and the read operations suffer from se-
quential search and deserialization overheads. Reducing
these software overheads is critical for fully exploiting
the hardware benefits of NVMs.

4 Design
Based on the analyses presented earlier, we first for-

mulate NoveLSM’s design principles and then discuss
the details on how these principles are incorporated to
NoveLSM’s design.

4.1 NoveLSM Design Principles
NoveLSM exploits NVMs byte addressability, persis-

tence, and large capacity to reduce serialization and de-
serialization overheads, high compaction cost, and log-
ging overheads. Further, NoveLSM utilizes NVM’s low
latency and high bandwidth to parallelize search opera-
tions and reduce response time.
Principle 1: Exploit byte-addressability to reduce se-
rialization and deserialization cost. NVMs pro-
vide byte-addressable persistence; therefore, in-memory
structures can be stored in NVM as-is without the need
to serialize them to disk-compatible format or deserial-
ize them to memory format during retrieval. To exploit
this, NoveLSM provides a persistent NVM memtable
by designing a persistent skip list. During compaction,
the DRAM memtable data can be directly moved to the
NVM memtable without requiring serialization or dese-
rialization.
Principle 2: Enable mutability of persistent state and
leverage large capacity of NVM to reduce compaction
cost. Traditionally, software designs treat data in the
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storage as immutable due to high storage access latency;
as a result, to update data in the storage, data must be read
into a memory buffer before making changes and writing
them back (mostly in batches). However, NVM byte-
addressability provides an opportunity to directly update
data on the storage without the need to read them to a
memory buffer or write them in batches. To exploit mu-
tability of persistent state, NoveLSM designs a large mu-
table persistent memtable to which applications can di-
rectly add or update new key-value pairs. The persistent
memtable allows NoveLSM to alternate between small
DRAM and large NVM memtable without stalling for
background compaction to complete. As a result com-
paction cost significantly reduces.
Principle 3: Reduce logging overheads and recovery
cost with in-place durability. Current LSM designs
must first write updates to a log, compute the check-
sum and append them, before inserting them into the
memtable. Most LSMs compromise crash consistency
for performance by not committing the log updates. Fur-
ther, recovery after an application failure or system crash
is expensive; each log entry must be deserialized before
adding it to the memtable. In contrast, NoveLSM avoids
logging by immediately committing updates to the per-
sistent memtable in-place. Recovery is fast and only re-
quires memory mapping the entire NVM memtable with-
out deserialization.
Principle 4: Exploit the low latency and high band-
width of NVM to parallelize data read operations.
LSM stores data in a hierarchy with top in-memory levels
containing new updates, and older updates in the lower
SSTables levels. With an increase in the number of key-
value pairs in a database, the number of storage levels
(i.e., SSTables) increases. Adding NVM memtables fur-
ther increases the number of LSM levels. LSMs must
be sequentially searched from top to bottom, which can
add significant search costs. NoveLSM exploits NVMs’
low latency and high bandwidth by parallelizing search
across the memory and storage levels, without affecting
the correctness of read operations.

4.2 Addressing (De)serialization Cost
To reduce serialization and deserialization cost in

LSMs, we first introduce an immutable persistent
memtable. During compaction, each key-value pair
from the DRAM memtable is moved (via memcpy()) to
the NVM memtable without serialization. The NVM
memtable skip list nodes (that store key-value pairs) are
linked by their relative offsets in a memory-mapped re-
gion instead of virtual address pointers and are commit-
ted in-place; as a result, the persistent NVM skip list
can be safely recovered and rebuilt after a system fail-
ure. Figure 5.a shows the high-level design of an LSM
with NVM memtable placed behind DRAM memtable.

Immutable NVM skip list-based memtable. We de-
sign a persistent memtable by extending LevelDB’s skip
list and adding persistence support. A skip list is a multi-
dimensional linked-list that provides fast probabilistic in-
sert and search operation avoiding the need to visit all
elements of a linked list [33]. Popular LSM implementa-
tions, such as LevelDB and RocksDB, use a skip list be-
cause they perform consistently well across sequential,
random, and scan workloads. We extend the skip list for
persistence because it enables us to reuse LevelDB’s skip
list-specific optimizations such as aligned memory allo-
cation and faster range queries.

In a persistent skip list, the nodes are allocated from
a large contiguous memory-mapped region in the NVM.
As shown in Figure 5.d, each skip list node points to a
next node using physical offset relative to the starting ad-
dress of the root node, instead of a virtual address. Iterat-
ing the persistent skip list requires root node’s offset from
starting address of the memory-mapped region. After a
restart or during failure recovery, the persistent region is
remapped, and the root offset is recovered from a log file;
using the root node, all skip list nodes are recovered.

To implement a persistent skip list, we modify
LevelDB’s memtable with a custom persistent memory
NVM allocator that internally uses the Hoard alloca-
tor [10]. Our allocator internally maps a large region of
NVM pages on a DAX filesystem [6] and manages the
pages using persistent metadata similar to Intel’s NVML
library [24]. Each skip list node maintains a physical off-
set pointer and a virtual address pointer to the next node,
which are updated inside a transaction during an insert
or update operation, as shown in Figure 5.d. A power
or application failure in the middle of a key-value pair
insertion or the offset update can compromise durability.
To address this, we provide ordered persistent updates by
using hardware memory barriers and cacheline flush in-
structions [15, 16, 22, 38]. Note that NoveLSM extends
existing LSMs for NVMs rather than completely re-
designing their data structures; this is complementary to
prior work that focuses on optimizing LSMs’ in-memory
data structures [9, 34].

4.3 Reducing Compaction Cost
Although the immutable NVM design can reduce se-

rialization cost and read latency, it suffers from several
limitations. First, the NVM memtable is just a replica of
the DRAM memtable. Hence, the compaction frequency
is dependent on how fast the DRAM memtables fill. For
applications with high insert rates, compaction cost dom-
inates the performance.
Mutability for persistent memtable. To address the
issue of compaction stalls, NoveLSM makes the NVM
memtable mutable, thereby allowing direct updates to
the NVM memtable (Figure 5.(b)); when the in-memory
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memtable is full, application threads can alternate to
using the NVM memtable without stalling for the in-
memory memtable compaction to complete.

The working of the mutable NVM design can be sum-
marized as follows. During initialization, NoveLSM cre-
ates a volatile DRAM memtable and a mutable persis-
tent NVM memtable. Current LSM implementations use
a smaller memtable size to reduce DRAM consumption
and avoid data loss after a failure. In contrast, NoveLSM
uses a large NVM memtable; this is because NVMs
can scale up to 4x larger than DRAM and also main-
tain persistence. To insert a key-value pair, first, the
DRAM memtable is made active; the key-value pairs
and their checksum are written to a log and then in-
serted into the DRAM memtable. When the DRAM
memtable is full, it is made immutable, and the back-
ground compaction thread is notified to move data to
the SSTable. Instead of stalling for compaction to com-
plete, NoveLSM makes NVM memtable active (mutable)
and keys are directly added to mutable NVM memtable.
The large capacity of NVM memtable provides sufficient
time for background compaction of DRAM and NVM
immutable memtables without stalling foreground oper-
ations; as a result, NoveLSM’s mutable memtable design
significantly reduces compaction cost leading to lower
insert/update latency. For read operations, the most re-
cent value for a key is fetched by first searching the cur-
rent active memtable, followed by immutable memtables
and SSTables.

4.4 Reducing Logging Cost
NoveLSM eliminates logging for inserts added to mu-

table NVM memtable by persisting updates in-place. As
a result, NoveLSM reduces the number of writes for each
key-value pair and also reduces recovery time. We next
discuss the details.
Logging. In current LSM implementations, each key-
value pair and its 32-bit CRC checksum is first ap-
pended to a persistent log, then inserted into the DRAM
memtable, and finally compacted to an SSTable, leading

to high write amplification. Further, popular implemen-
tations such as LevelDB and RocksDB only append but
do not commit (fsync()) data to the log; as a result, they
compromise durability for better performance.

In contrast, for NoveLSM, when inserting into the mu-
table persistent memtable in NVM, all updates are writ-
ten and committed in-place without requiring a separate
log; as a result, NoveLSM can reduce write amplifica-
tion. Log writes are avoided only for updates to NVM
memtable, whereas, all inserts to the DRAM memtable
are logged. Our evaluations show that using a large
NVM memtable with direct mutability reduces logging
to a small fraction of the overall writes, thereby signif-
icantly reducing logging cost and recovery time. Ad-
ditionally, because all NVM updates are committed in-
place, NoveLSM can provide stronger durability guaran-
tees compared to existing implementations. Figure 5.d
shows the pseudocode for NVM memtable insert. First,
a new transaction is initiated and persistent memory for a
key-value pair is allocated. The key-value pair is copied
persistently by ordering the writes using memory store
barrier and cache line flush of the destination addresses,
followed by a memory store barrier [24, 38, 41]. As an
additional optimization, small updates to NVM (8-byte)
are committed with atomic store instruction not requir-
ing a barrier. Finally, for overwrites, the old nodes are
marked for lazy garbage collection.
Recovery. Recovering from a persistent NVM mem-
table requires first mapping the NVM memtable (a file)
and identifying the root pointer of the skip list. There-
fore, the NVM memtable root pointer offset and 20-bytes
of skip list-related metadata are stored in a separate file.
With a volatile DRAM and persistent NVM memtable, a
failure can occur while a key with version Vi in the persis-
tent NVM memtable is getting overwritten in the DRAM
memtable to version Vi+1. A failure can also occur while
a key with version Vi in the DRAM memtable, not yet
compacted to storage, is getting overwritten to version
Vi+1 in the NVM. To maintain correctness, NoveLSM
must always recover from the greatest committed version
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of the key. To achieve version correctness, NoveLSM
performs the following steps: (1) a new log file is created
every time a new DRAM memtable is allocated and all
updates to DRAM memtable are logged and made per-
sistent; (2) when the NVM memtable (which is a persis-
tent skip list on a memory-mapped file) is made active,
inserts are not logged, and the NVM memtable is treated
as a log file; (3) the NVM log files are also named with an
incremental version number similar to any other log file.
During LSM restart or failure recovery, NoveLSM starts
recovering from the active versions of log files in ascend-
ing order. A key present in a log file logi+1, which could
be either a DRAM log or NVM memtable, is considered
as the latest version of the key. Note that recovering data
from NVM memtable only involves memory-mapping
the NVM region (a file) and locating the skip list root
pointer. Therefore, recovering from even a large NVM
memtable is fast with almost negligible cost of mapping
pages to the page tables.

4.5 Supporting Read Parallelism
NoveLSM leverages NVM low latency and high band-

width to reduce the latency of each read operation by
parallelizing search across memtables and SSTables. In
this pursuit, NoveLSM does not compromise the correct-
ness of read operation. In current LSMs, read operations
progress top-down from memtable to SSTables. A read
miss at each level increases read latency. Other factors
such as deserializing data from the SSTable also add to
read overheads.
Reducing read latency. To reduce read latency,
NoveLSM takes inspiration from the processor design,
which parallelizes cache and TLB lookup to reduce
memory access latency for cache misses; NoveLSM par-
allelizes search across multiple levels of LSM: DRAM
and NVM mutable memtables, DRAM and NVM im-
mutable tables, and SSTables. Our design manages a
pool of worker threads that search memtables or the
SSTable. Importantly, NoveLSM uses only one worker
thread for searching across the mutable DRAM and
NVM memtable because of the relatively smaller DRAM
memtable size compared to the NVM memtable.

With this design, the read latency is reduced
from Tread ≈ TmemDRAM + TmemNV M + Timm + TSST to
Tread parallel ≈max(TmemDRAM +TmemNV M ,Timm,TSST )+C.
TmemDRAM , TmemNV M , Timm, and TSST represent the read
time to search across the DRAM and NVM mutable
memtable, the immutable memtable, and the SSTable,
and C represents a constant corresponding to the time to
stop other worker threads once a key has been found.
Guaranteeing version correctness for reads. Multi-
ple versions of a key can exist across different LSM
levels, with a newer version (Vi+1) of the key at the
top LSM level (DRAM or NVM mutable memtable)

and older versions (Vi,Vi−1, ...) in the lower immutable
memtable and SSTables. In traditional designs, search
operations sequentially move from the top memtable to
lower SSTables, and therefore, always return the most re-
cent version of a key. In NoveLSM, search operations are
parallelized across different levels and a thread searching
the lower level can return with an older version of the
key; this impacts the correctness of read operation. To
guarantee version correctness, NoveLSM always consid-
ers the value of a key returned by a thread accessing the
highest level of LSM as the correct version. To satisfy
this constraint, a worker thread Ti accessing Li is made
to wait for other worker threads accessing higher levels
L0 to Li−1 to finish searching, and only if higher levels do
not contain the key, the value fetched by Ti is returned.
Additionally, stalling higher-level threads to wait for the
lower-level threads to complete can defeat the benefits of
parallelizing read operation. To overcome this problem,
in NoveLSM, once a thread succeeds in locating a key,
all lower-level threads are immediately suspended.
Optimistic parallelism and management. Introduc-
ing parallelism for each read operation is only beneficial
when the overheads related to thread management cost
are significantly lower than the actual cost to search and
read a key-value pair. NoveLSM uses an optimistic par-
allelism technique to reduce read latency.
Thread management cost. In NoveLSM, the main LSM
thread adds a client’s read request to a job pool, no-
tifies all worker threads to service the request, and fi-
nally, returns the value for a key. NoveLSM always co-
locates the master and the worker threads to the same
CPU socket to avoid the lock variable bouncing across
processor caches on different sockets. Further, threads
dedicated to parallelize read operation are bound to sepa-
rate CPUs from threads performing backing compaction.
These simple techniques are highly effective in reducing
thread management cost.
Optimistic parallelism. While the thread pool optimiza-
tions reduce overheads, using multiple threads for keys
that are present in DRAM or NVM memtable only adds
more overheads. To avoid these overheads, we imple-
ment a Bloom filter for NVM and DRAM memtable. The
Bloom filter predicts likeliness of a key in the memtable,
and read parallelism is enabled only when a key is pre-
dicted to miss the DRAM or NVM memtable; false pos-
itives (keys that are predicted to be in memtable but are
not present) only make the read operations sequential
without compromising correctness.

5 Evaluation
Our evaluation of NoveLSM aims to demonstrate the

design insights in reducing write and read latency and
increasing throughput when using NVMs. We answer
the following important questions.
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0%
20%
40%
60%
80%

100%

1KB 4KB 16KB 64KB

DRAM memtable NVM memtable SSTable

0%
20%
40%
60%
80%

100%

1KB 4KB 16KB 64KB
Small NVM memtable Large NVM memtable

Figure 7: NoveLSM immutable memtable hits. Figure shows
percentage split of keys read from different LSM levels when
using the immutable memtable design.

1. What are the benefits of introducing a persistent im-
mutable NVM memtable for different access patterns?
2. Does enabling mutability for NVM memtable reduce
compaction cost and improve performance?
3. How effective is NoveLSM’s optimistic parallelism in
reducing read latency?
4. What is the impact of splitting NoveLSM across NVM
and SSD compared to state-of-the-art approaches?
5. Is NoveLSM effective in exploiting NVMs byte-
addressability to make failure recovery faster?

We first describe our evaluation methodology, and
then evaluate NoveLSM with benchmarks and realistic
workloads.

5.1 Methodology and Workloads
For our evaluation, we use the same platform de-

scribed earlier § 2.4. NoveLSM reserves and uses 16 GB
(a memory socket) to emulate NVM with 5 GB/sec NVM
bandwidth and the read and write latency set to 100ns
and 500ns respectively, similarly to [12, 17, 22], using
methodology described earlier. We evaluate NoveLSM
using DBbench [3, 4, 30] and the YCSB cloud bench-
mark [18]. The total LSM database size is restricted to
16 GB to fit in the NUMA socket that emulates NVM.
The key size (for all key-values) is set to 16 bytes and
only the value size is varied. We turn off database com-
pression to avoid any undue impact on the results, as
done previously [30].

5.2 Impact of NVM-immutable Memtable
We begin by evaluating the benefits and implications

of adding a persistent NVM immutable to the LSM hier-
archy. We study two versions of NoveLSM: NoveLSM

with a small (2 GB) immutable NVM memtable
(NoveLSM+immut-small), and NoveLSM with a large
(4 GB) immutable NVM memtable (NoveLSM+immut-
large). The remaining NVM space is used for stor-
ing SSTables. For comparison, we use a vanilla
LevelDB that stores all its non-persistent data in a
DRAM memtable and persistent SSTables in the NVM
(LevelDB-NVM). Figures 6.a and 6.b show the average
random write and read latency as a function of the value
sizes in X-axis.
Random write latency. Figure 6.a compares the ran-
dom write latency. For the naive LevelDB-NVM, when
the in-memory (DRAM) immutable memtable is full, a
compaction thread first serializes data to SSTable. In
contrast, NoveLSM uses a persistent NVM immutable
memtable (a level below the 64 MB DRAM immutable
memtable). When the DRAM immutable memtable is
full, first data is inserted and flushed to NVM memtable
skip list without requiring any serialization. When
NVM memtable is also full, its contents are serialized
and flushed to SSTable by a background thread. Us-
ing a larger NVM memtable (NoveLSM+immut-large)
as a buffer reduces the memory to disk format com-
paction cost but without compromising crash consis-
tency. Therefore, the NVM immutable design achieves
up to 24% reduction in latency for 64 KB value com-
pared to LevelDB-NVM. However, due to lack of direct
NVM memtable mutability, the compaction frequency is
dependent on the DRAM memtable capacity, which im-
pacts immutable NVM designs performance.
Random read latency. Figure 6.b shows the read
latency results. In case of LevelDB-NVM, reading a
key-value pair from SSTable requires first locating the
SSTable level, searching for the key within a level, read-
ing the corresponding I/O blocks, and finally deserial-
izing disk blocks to in-memory data. NoveLSM’s im-
mutable memtable skip list also incurs search cost; how-
ever, it avoids indexing, disk block read, and deserializa-
tion cost. Figure 7 shows the NVM immutable table hit
rate for different value sizes when using small and large
NVM tables. For 4 KB value size, the memtable hit rate
(DRAM or NVM) for small NVM memtable is less than
17% and the additional search in the NVM memtable in-
creases latency. However, for NoveLSM+immut-large,
the hit rate is around 29% and the read latency reduces
by 33% compared to LevelDB-NVM. Because we keep
the database size constant and vary the value size, for
larger value sizes (e.g., 64 KB), the number of key-values
in the database is less, increasing hit rate by up to 38%
and reducing latency by up to 53%. For single-threaded
DBbench, the throughput gains are same as latency re-
duction gains; hence, we do not show throughput results.

Summary. NoveLSM’s immutable memtable re-
duces write latency by 24% and read latency by up
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Figure 8: NVM mutability impact. Figure shows (a) write latency, (b) read latency. LevelDB-NVM and RocksDB-NVM use NVM
for SSTable. LevelDB-NVM [1GB-DRAM] uses a large DRAM memtable; [mutable + para] shows read parallelism. [mutable +
para + noflush] shows NoveLSM without persistent flush, [mutable + para + NoSST] shows using only NVM memtable without
SSTable. Figure (c) and (d) show NoveLSM Write and Read operation latency cost splitup for 4 KB values.

to 53%. Lack of direct NVM memtable mutability and
frequent compaction impacts write performance.

5.3 NVM Memtable Mutability
To understand the effectiveness of NoveLSM’s mu-

table memtable in reducing compaction cost, we be-
gin with NoveLSM+immut-large discussed in the pre-
vious result, and analyze four other NoveLSM tech-
niques: NoveLSM+mutable uses a large (4 GB) NVM
memtable which is placed in parallel with the DRAM
memtable and allows direct transactional updates (with-
out logging) supported by persistent processor cache
flushes; NoveLSM+mutable+para enables read paral-
lelism; NoveLSMmutable+para+noflush shows the la-
tency without persistent processor cache flushes; and
finally, NoveLSM+mutable+NoSST uses only persis-
tent NVM memtable for the entire database without
SSTables. For comparison, in addition to LevelDB-
NVM, we also compare the impact of increasing the
vanilla LevelDB-NVM DRAM memtable size to 1GB
(LevelDB-NVM+1GB-DRAM) and RocksDB-NVM [3]
by placing all its SSTable in NVM. RocksDB-NVM
is configured with default configuration values used in
other prior work [9,30]. For our experimentation, we set
the DRAM memtable to 64 MB for all configuration ex-
cept LevelDB-NVM+1GB-DRAM. Figure 8.c and Fig-
ure 8.d show the cost split up for a 4 KB random write
and read operation.
Write performance. Figure 8.a shows the average
write latency as a function of value size. When the
mutable NVM memtable is active, its large capacity
provides background threads sufficient time to finish
compaction, consequently reducing foreground stalls.
For 4 KB values, NoveLSM+mutable reduces latency
by more than 3.8x compared to LevelDB-NVM and
NoveLSM+immut-large, due to reduction of both com-
paction and log write cost as shown in Figure 8.c.
For 64 KB value size, write latency reduces by 2.7x com-
pared to LevelDB-NVM. While increasing the vanilla
LevelDB-NVM’s DRAM memtable size (1GB-DRAM)

improves performance, however, (1) DRAM consump-
tion increases by twice (DRAM memtable and im-
mutable table), (2) increases log size and recovery time
(discussed shortly), and importantly, (3) compromises
crash consistency because both LevelDB and RocksDB
do not commit log updates to storage by default.

For smaller value sizes, RocksDB-NVM marginally
reduces write latency compared to mutable NoveLSM
(NoveLSM+mutable) design that provides in-place com-
mits (with processor cache flushes). RocksDB bene-
fits come from using a Cuckoo hash-based SST [11]
that improves random lookups (but severely impacts
scan operations), parallel compaction to exploit SSD
parallelism, and not flushing log updates to stor-
age. While incorporating complementary optimiza-
tions, such as Cuckoo hash-based SST and parallel
compaction, can reduce latency, even avoiding persis-
tent cache flush (NoveLSM+mutable+para+noflush) re-
duces latency compared to RocksDB. For larger val-
ues, NoveLSM reduces latency by 36% compared to
RocksDB-NVM providing the same durability guaran-
tees. Finally, NoveLSM+mutable+NoSST, by using
large NVM memtable and adding the entire database to
the skip list, eliminates compaction cost reducing the
write latency by 5x compared to LevelDB-NVM and
more than 1.9x compared to RocksDB-NVM.
Read parallelism. Figure 8.b shows the read
latency for all configurations. First, compared to
LevelDB-NVM, NoveLSM+mutable reduces read la-
tency for 4 KB value size by 30%. RocksDB-NVM with
a random-access friendly Cuckoo-hash SSTable signif-
icantly reduces memtable miss latency cost, providing
better performance for smaller values. For smaller values
(1 KB, 4 KB), NoveLSM’s optimistic parallelism shows
no gains compared to RocksDB because the cost of
thread management suppresses benefits of parallel read.
However, for larger value sizes, NoveLSM’s parallelism
combined with the reduction in deserialization cost re-
duces NoveLSM’s read latency by 2x and 24% com-
pared to LevelDB-NVM and RocksDB respectively. In-
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Figure 9: Failure recovery performance. The figure shows
recovery time as a function of memtable size in X-axis. For
LevelDB and RocksDB, DRAM memtable size is increased,
whereas for NoveLSM, NVM memtable increased, and DRAM
memtable size is kept constant at 64 MB.

corporating RocksDB’s optimized SSTable can further
improve NoveLSM’s read performance. As a proof, the
NoveLSM-NoSST case reduces the read latency by 45%
compared to RocksDB.
Splitting LSMs across NVM and SSDs. NoveLSM
can support large LSMs that spill over to SSD when
NVM capacity is full. To understand the performance
impact, we set the LSM database size to 16 GB. We
compare two approaches: (1) LevelDB-NVM-SSD that
splits SSTable across NVM (8 GB) and SSD (8 GB), (2)
NoveLSM-mutable-SSD that uses a half-and-half config-
uration with 4 GB NVM for mutable memtable, 4 GB
NVM for higher levels of SSTable, and 8 GB SSTable
on SSD. We do not consider RocksDB because of the
complexity involved in supporting multiple storage de-
vices for a complex compaction mechanism, which is
beyond the scope of this work. When evaluating the
two configurations, we determine that LevelDB-NVM-
SSD suffers from high compaction cost. For larger value
sizes, memtables fill-up quickly, triggering a chain of
compaction across both NVM and SSD SSTables. In
contrast, NoveLSM’s mutable NVM memtable reduces
compaction frequency allowing background threads with
sufficient time to compact, thus reducing stalls; conse-
quently, NoveLSM reduces latency by more than 45%
for 64 KB values compared to LevelDB-NVM-SSD.

Summary. The results highlight the benefits of using
a mutable memtable for write operations and supporting
parallelism for read operations in both NVM-only and
NVM+SSD configurations. Incorporating RocksDB’s
SSTable optimizations can further improve NoveLSM’s
performance.

5.4 Failure Recovery
NoveLSM’s mutable persistence provides in-place

commits to NVM memtable and avoids log updates. In
Figure 9, we analyze the impact of memtable size on
recovery time after a failure. To emulate failure, we
crash DBbench’s random write workload after insert-
ing half the keys. On the X-axis, for LevelDB-NVM
and RocksDB-NVM, we increase DRAM memtable size,
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(a) Latency (b) Throughput

0
10
20
30
40
50

a b c d e fLa
nt

en
cy

 (
m

ic
ro

s/
op

)

Workloads

0
2
4
6
8

10
12
14

a b c d e f

10
0K

 (
O

ps
/s

ec
)

Workloads

Figure 10: YCSB (a) latency and (b) throughput. Results
only shown for run-phase after warm-up. NoveLSM’s mutable
memtable size set to 4 GB. Workload A has 50-50% update-
read ratio, B is read-intensive with 95% reads and 5% up-
dates (overwrites); C is read-only, D is also read-only, with the
most recently inserted records being most popular, E is scan-
intensive (95% scan, and 5% insert), and F has 50% reads and
50% write-modify-reads.

whereas, for NoveLSM-mutable, the DRAM memtable
size is kept constant at 64 MB and only the NVM muta-
ble memtable size is varied.

For LevelDB-NVM and RocksDB-NVM, all updates
to DRAM memtable are also logged; hence, increasing
the DRAM memtable size also increases the log size that
must be read during recovery, thereby increasing the re-
covery time. Recovery involves iterating the log, verify-
ing checksums, serializing logged key-value pairs to an
SSTable disk block, and inserting them to the top level
of the SSTable which is merged with lower levels. As
a result, for a 1 GB DRAM memtable size, LevelDB-
NVM’s recovery is as high as 4 seconds; RocksDB-
NVM recovers faster than LevelDB due to its specialized
SST format. For NoveLSM, recovery involves identify-
ing a correct version of the persistent memtable before
the crash, memory-mapping the NVM memtable’s per-
sistent skip list, and modifying the root pointer to the
current virtual address of the application. As a result,
restart performance for NoveLSM is more than three or-
ders faster. Importantly, NoveLSM logs only the updates
to DRAM memtable, thereby reducing logging writes by
up to 99%.

5.5 Impact on YCSB
To understand the benefits and implication for cloud

workloads, we run the widely-used YCSB [18] bench-
mark and compare LevelDB-NVM, RocksDB-NVM,
and NoveLSM-mutable-para approaches. We use the
six workloads from the YCSB cloud suite with dif-
ferent access patterns. YCSB has a warm-up (write-
only) and a run phase, and we show the run phase re-
sults when using 4-client threads. Figure 10 shows the
95th percentile latency and throughput (in 100K op-
erations per second). We use 4 KB value size and
16 GB database. The SSTables are placed in NVM for
all cases, and NoveLSM’s mutable memtable is set to
4 GB. First, for workload A, with the highest write ratio
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(50%), NoveLSM’s direct mutability improves through-
put by 6% over RocksDB and 81% over LevelDB-NVM,
even for small 4 KB value sizes. Both workload B
and workload C are read-intensive, with high random
reads. NoveLSM’s read parallelism is effective in si-
multaneously accessing data across multiple LSM lev-
els for four client threads. For workload D, most ac-
cesses are recently inserted values, resulting in high mu-
table and immutable memtable hits even for RocksDB.
NoveLSM checks the bloom filter for each access for
enabling read parallelism (parallelism is not required
as keys are present in memtable), and this check adds
around 1µs overhead per key resulting in a slightly lower
throughput compared to RocksDB. Next, for the scan-
intensive workload E, LevelDB and NoveLSM’s SSTable
are highly scan-friendly; in contrast, RocksDB’s SSTable
optimized for random-access performs poorly for scan
operations. As a result, NoveLSM shows 54% higher
throughput compared to RocksDB-NVM. Finally, work-
load F with 50% updates (overwrites) adds significant
logging and compaction-related serialization overhead.
NoveLSM’s direct mutability reduces these cost improv-
ing throughput by 17% compared to RocksDB and more
than 2x over LevelDB-NVM.

Summary. NoveLSM’s direct mutability and read
parallelism provide high-performance for both random
and sequential workloads.

6 Related Work
Key-value store and storage. Prior works such as
SILT [29], FlashStore [20], SkimpyStash [21] design
key-value stores specifically targeting SSDs. FlashStore
and SkimpyStas treat flash as an intermediate cache and
place append-only logs to benefit from the high sequen-
tial write performance of SSD. SILT reduces DRAM us-
age by splitting in-memory log across the DRAM and
SSD and maintaining a sorted log index in the memory.
In summary, prior works enforce sequentiality by batch-
ing and adding software layers for improving throughput.
In contrast, we design NoveLSM to reduce I/O access la-
tency with heap-based persistent structures.
Application redesign for persistent memory. Byte
addressability, low latency, and high bandwidth make
NVMs a popular target for redesigning data structures
and applications originally designed for block storage.
Venkatraman et al. [36] were one of the first to explore
the benefits of persistence-friendly B-trees for NVMs.
Since then, several others have redesigned databases [8],
key-value stores [31], B-trees [14], and hashtables [19].
LSM and redesign for storage. Several prior works
have redesigned LSMs for SSD. Wang et al [39] expose
SSD’s I/O channel information to LevelDB to exploit the
parallel bandwidth usage. WiscKey [30] redesigns LSMs
for reducing the read and write amplification and exploit-

ing SSD bandwidth. VT-tree [35] design proposes a file
system and a user-level key-value store for workload-
independent storage. In NoveLSM, we reduce the write
latency with a mutable persistent skip list and the read
latency by parallelizing reads across the LSM levels.
LSM redesign for NVM. NoveLSM is focused on ex-
tending existing LSMs for NVMs rather than completely
redesigning their data structures; this is complemen-
tary to projects such as FloDB and PebblesDB [9, 34].
We were recently made aware of a concurrently devel-
oped effort with similar goals as NoveLSM. NVM-
Rocks [28] shares similar ideas on using a persistent mu-
table memtable to reduce access latencies and recovery
costs. To improve read latencies, it introduces a hier-
archy of read caches. NoveLSM retains the in-DRAM
memtable of the original LSM design, benefiting laten-
cies for both cached reads and writes, and introduces par-
allelism within read operations to reduce read latency.
We look forward to gaining access to NVMrocks and an-
alyzing the tradeoffs that each technique contributes to
the overall LSM performance.

7 Conclusion
We present NoveLSM, an LSM-based persistent key-

value store that exploits NVM byte-addressability, per-
sistence, and large capacity by designing a heap-based
persistent immutable NVM skip list. The immutable
NVM skip list facilitates DRAM memtable compaction
without incurring memory to I/O data serialization cost
and also accelerates reads. To reduce the compaction
cost further, we introduce direct mutability of NVM
memtables, which allow applications can to directly
commit data to NVM memtable with stronger durabil-
ity and avoid logging. Reducing compaction and log-
ging overheads reduces random write latency by up
to 3.8x compared to LevelDB running on NVM. To re-
duce read latency, we design opportunistic parallelism,
which reduces read latency by up to 2x. Finally, the per-
sistent memtable makes the restarts three orders of mag-
nitude faster. As storage moves closer to memory, and
storage bottlenecks shifts towards software, increased ef-
fort to optimize such software will undoubtedly be re-
quired to realize further performance gains.
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Abstract

Persistent key-value (KV) stores mostly build on the

Log-Structured Merge (LSM) tree for high write perfor-

mance, yet the LSM-tree suffers from the inherently high

I/O amplification. KV separation mitigates I/O amplifi-

cation by storing only keys in the LSM-tree and values

in separate storage. However, the current KV separation

design remains inefficient under update-intensive work-

loads due to its high garbage collection (GC) overhead in

value storage. We propose HashKV, which aims for high

update performance atop KV separation under update-

intensive workloads. HashKV uses hash-based data

grouping, which deterministically maps values to storage

space so as to make both updates and GC efficient.

We further relax the restriction of such deterministic

mappings via simple but useful design extensions. We

compare HashKV with state-of-the-art KV stores via

extensive testbed experiments, and show that HashKV

achieves 4.6× throughput and 53.4% less write traffic

compared to the current KV separation design.

1 Introduction

Persistent key-value (KV) stores are an integral part

of modern large-scale storage infrastructures for storing

massive structured data (e.g., [4, 6, 10, 18]). While real-

world KV storage workloads are mainly read-intensive

(e.g., the Get/Update ratio can reach 30:1 in Facebook’s

Memcached workloads [3]), update-intensive workloads

are also dominant in many storage scenarios, including

online transaction processing [37] and enterprise servers

[17]. For example, Yahoo! reports that its low-latency

workloads increasingly move from reads to writes [33].

Modern KV stores optimize the performance of writes

(including inserts and updates) using the Log-Structured

Merge (LSM) tree [29]. Its idea is to maintain sequential-

ity of random writes through a log-structured (append-

only) design [31], while supporting efficient queries

including individual key lookups and range scans. In

a nutshell, the LSM-tree buffers written KV pairs and

flushes them into a multi-level tree, in which each node

is a fixed-size file containing sorted KV pairs and their

metadata. The recently written KV pairs are stored at

higher tree levels, and are merged with lower tree levels

via compaction. The LSM-tree design not only improves

write performance by avoiding small random updates

(which are also harmful to the endurance of solid-state

drives (SSDs) [2, 27]), but also improves range scan

performance by holding sorted KV pairs in each node.

However, the LSM-tree incurs high I/O amplification

in both writes and reads. As the LSM-tree receives more

writes of KV pairs, it will trigger frequent compaction

operations, leading to tremendous extra I/Os due to

rewrites across levels. Such write amplification can reach

a factor of at least 50× [23, 39], which is detrimental

to both write performance and the endurance of SSDs

[2, 27]. Also, as the LSM-tree grows in size, reading the

KV pairs at lower levels incurs many disk accesses. Such

read amplification can reach a factor of over 300× [23],

leading to low read performance.

In order to mitigate the compaction overhead, many

research efforts focus on optimizing LSM-tree indexing

(see §5). One approach is KV separation from WiscKey

[23], in which keys and metadata are still stored in

the LSM-tree, while values are separately stored in an

append-only circular log. The main idea of KV sepa-

ration is to reduce the LSM-tree size, while preserving

the indexing feature of the LSM-tree for efficient in-

serts/updates, individual key lookups, and range scans.

In this work, we argue that KV separation itself still

cannot fully achieve high performance under update-

intensive workloads. The root cause is that the circular

log for value storage needs frequent garbage collection

(GC) to reclaim the space from the KV pairs that are

deleted or superseded by new updates. However, the GC

overhead is actually expensive due to two constraints of

the circular log. First, the circular log maintains a strict

GC order, as it always performs GC at the beginning

of the log where the least recently written KV pairs are

located. This can incur a large amount of unnecessary

data relocation (e.g., when the least recently written KV

pairs remain valid). Second, the GC operation needs to

query the LSM-tree to check the validity of each KV pair.

These queries have high latencies, especially when the

LSM-tree becomes sizable under large workloads.

We propose HashKV, a high-performance KV store

tailored for update-intensive workloads. HashKV builds

on KV separation and uses a novel hash-based data

grouping design for value storage. Its idea is to divide

value storage into fixed-size partitions and deterministi-

cally map the value of each written KV pair to a partition

by hashing its key. Hash-based data grouping supports

lightweight updates due to deterministic mapping. More

importantly, it significantly mitigates GC overhead, since
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each GC operation not only has the flexibility to select a

partition to reclaim space, but also eliminates the queries

to the LSM-tree for checking the validity of KV pairs.

On the other hand, the deterministic nature of hash-

based data grouping restricts where KV pairs are stored.

Thus, we propose three novel design extensions to relax

the restriction of hash-based data grouping: (i) dynamic

reserved space allocation, which dynamically allocates

reserved space for extra writes if their original hash parti-

tions are full given the size limit; (ii) hotness awareness,

which separates the storage of hot and cold KV pairs

to improve GC efficiency as inspired by existing SSD

designs [19,27]; and (iii) selective KV separation, which

keeps small-size KV pairs in entirety in the LSM-tree to

simplify lookups.

We implement our HashKV prototype atop LevelDB

[15], and show via testbed experiments that HashKV

achieves 4.6× throughput and 53.4% less write traffic

compared to the circular log design in WiscKey under

update-intensive workloads. Also, HashKV generally

achieves higher throughput and significantly less write

traffic compared to modern KV stores, such as LevelDB

and RocksDB [12], in various cases.

Our work makes a case of augmenting KV separation

with a new value management design. While the key and

metadata management of HashKV now builds on Lev-

elDB, it can also adopt other KV stores with new LSM

tree designs (e.g., [30, 33, 35, 39, 41, 42]). How HashKV

affects the performance of various LSM-tree-based KV

stores under KV separation is posed as future work. The

source code of HashKV is available for download at:

http://adslab.cse.cuhk.edu.hk/software/hashkv.

2 Motivation

We use LevelDB [15] as a representative example to

explain the write and read amplification problems of

LSM-tree-based KV stores. We show how KV separation

[23] mitigates both write and read amplifications, yet it

still cannot fully achieve efficient updates.

2.1 LevelDB

LevelDB organizes KV pairs based on the LSM-tree

[29], which transforms small random writes into sequen-

tial writes and hence maintains high write performance.

Figure 1 illustrates the data organization in LevelDB. It

divides the storage space into k levels (where k > 1)

denoted by L0, L1, · · ·, Lk−1. It configures the capacity

of each level Li to be a multiple (e.g., 10×) of that of its

upper level Li−1 (where 1 ≤ i ≤ k − 1).

For inserts or updates of KV pairs, LevelDB first stores

the new KV pairs in a fixed-size in-memory buffer called

MemTable, which uses a skip-list to keep all buffered

KV pairs sorted by keys. When the MemTable is full,

LevelDB makes it immutable and flushes it to disk at

Figure 1: Data organization in LevelDB.

level L0 as a file called SSTable. Each SSTable has a size

of around 2 MiB and is also immutable. It stores indexing

metadata, a Bloom filter (for quickly checking if a KV

pair exists in the SSTable), and all sorted KV pairs.

If L0 is full, LevelDB flushes and merges its KV

pairs into L1 via compaction; similarly, if L1 is full, its

KV pairs are flushed and merged into L2, and so on.

The compaction process comprises three steps. First, it

reads out KV pairs in both Li and Li+1 into memory

(where i ≥ 0). Second, it sorts the valid KV pairs (i.e.,

newly inserted or updated) by keys and reorganizes them

into SSTables. It also discards all invalid KV pairs (i.e.,

deleted or superseded by new updates). Finally, it writes

back all SSTables with valid KV pairs to Li+1. Note

that all KV pairs in each level, except L0, are sorted by

keys. In L0, LevelDB only keeps KV pairs sorted within

each SSTable, but not across SSTables. This improves

performance of flushing from the MemTable to disk.

To perform a key lookup, LevelDB searches from L0

to Lk−1 and returns the first associated value found. In

L0, LevelDB searches all SSTables. In each level be-

tween L1 and Lk−1, LevelDB first identifies a candidate

SSTable and checks the Bloom filter in the candidate

SSTable to determine if the KV pair exists. If so, Lev-

elDB reads the SSTable file and searches for the KV pair;

otherwise, it directly searches the lower levels.

Limitations: LevelDB achieves high random write per-

formance via the LSM-tree-based design, but suffers

from both write and read amplifications. First, the com-

paction process inevitably incurs extra reads and writes.

In the worst case, to merge one SSTable from Li−1 to

Li, it reads and sorts 10 SSTables, and writes back all

SSTables. Prior studies show that LevelDB can have an

overall write amplification of at least 50× [23, 39], since

it may trigger more than one compaction to move a KV

pair down multiple levels under large workloads.

In addition, a lookup operation may search multiple

levels for a KV pair and incur multiple disk accesses.

The reason is that the search in each level needs to

read the indexing metadata and the Bloom filter in the

associated SSTable. Although the Bloom filter is used,

it may introduce false positives. In this case, an SSTable

is still unnecessarily read from disk even though the KV

pair actually does not exist. Thus, each lookup typically
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incurs multiple disk accesses. Such read amplification

further aggravates under large workloads, as the LSM-

tree builds up in levels. Measurements show that the read

amplification reaches over 300× in the worst case [23].

2.2 KV Separation

KV separation, proposed by WiscKey [23], decouples the

management of keys and values to mitigate both write

and read amplifications. The rationale is that storing val-

ues in the LSM-tree is unnecessary for indexing. Thus,

WiscKey stores only keys and metadata (e.g., key/value

sizes, value locations, etc.) in the LSM-tree, while stor-

ing values in a separate append-only, circular log called

vLog. KV separation effectively mitigates write and read

amplifications of LevelDB as it significantly reduces the

size of the LSM-tree, and hence both compaction and

lookup overheads.

Since vLog follows the log-structured design [31],

it is critical for KV separation to achieve lightweight

garbage collection (GC) in vLog, i.e., to reclaim the

free space from invalid values with limited overhead.

Specifically, WiscKey tracks the vLog head and the vLog

tail, which correspond to the end and the beginning of

vLog, respectively. It always inserts new values to the

vLog head. When it performs a GC operation, it reads a

chunk of KV pairs from the vLog tail. It first queries the

LSM-tree to see if each KV pair is valid. It then discards

the values of invalid KV pairs, and writes back the valid

values to the vLog head. It finally updates the LSM-tree

for the latest locations of the valid values. To support

efficient LSM-tree queries during GC, WiscKey also

stores the associated key and metadata together with the

value in vLog. Note that vLog is often over-provisioned

with extra reserved space to mitigate GC overhead.

Limitations: While KV separation reduces compaction

and lookup overheads, we argue that it suffers from the

substantial GC overhead in vLog. Also, the GC overhead

becomes more severe if the reserved space is limited. The

reasons are two-fold.

First, vLog can only reclaim space from its vLog tail

due to its circular log design. This constraint may incur

unnecessary data movements. In particular, real-world

KV storage often exhibits strong locality [3], in which

a small portion of hot KV pairs are frequently updated,

while the remaining cold KV pairs receive only few or

even no updates. Maintaining a strict sequential order in

vLog inevitably relocates cold KV pairs many times and

increases GC overhead.

Also, each GC operation queries the LSM-tree to

check the validity of each KV pair in the chunk at

the vLog tail. Since the keys of the KV pairs may be

scattered across the entire LSM-tree, the query overhead

is high and increases the latency of the GC operation.

Even though KV separation has already reduced the size
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Figure 2: Write amplifications of LevelDB, RocksDB,

and vLog in the Load and Update phases.

of the LSM-tree, the LSM-tree is still sizable under large

workloads, and this aggravates the query cost.

To validate the limitations of KV separation, we im-

plement a KV store prototype based on vLog (see §3.8)

and evaluate its write amplification. We consider two

phases: Load and Update. In the Load phase, we insert

40 GiB of 1-KiB KV pairs into vLog that is initially

empty; in the Update phase, we issue 40 GiB of updates

to the existing KV pairs based on a Zipf distribution with

a Zipfian constant of 0.99. We provision 40 GiB of space

for vLog, and an additional 30% (12 GiB) of reserved

space. We also disable the write cache in our prototype

(see §3.2). Figure 2 shows the write amplification results

of vLog in the Load and Update phases, in terms of

the ratio of the total device write size to the actual

write size due to inserts or updates. For comparison, we

also consider two modern KV stores, LevelDB [15] and

RocksDB [12], based on their default parameters. In the

Load phase, vLog has sufficient space to hold all KV

pairs and does not trigger GC, so its write amplification is

only 1.6× due to KV separation. However, in the Update

phase, the updates fill up the reserved space and start to

trigger GC. We see that vLog has a write amplification

of 19.7×, which is close to LevelDB (19.1×) and higher

than RocksDB (7.9×).

To mitigate GC overhead in vLog, one approach is

to partition vLog into segments and choose the best

candidate segments that minimize GC overhead based

on the cost-benefit policy or its variants [26, 31, 32].

However, the hot and cold KV pairs can still be mixed

together in vLog, so the chosen segments for GC may

still contain cold KV pairs that are unnecessarily moved.

To address the mixture of hot and cold data, a better

approach is to perform hot-cold data grouping as in

SSD designs [19, 27], in which we separate the storage

of hot and cold KV pairs into two regions and apply

GC to each region individually (more GC operations are

expected to be applied to the storage region for hot KV

pairs). However, the direct implementation of hot-cold

data grouping inevitably increases the update latency in

KV separation. As a KV pair may be stored in either

hot or cold regions, each update needs to first query the

LSM-tree for the exact storage location of the KV pair.

Thus, a key motivation of our work is to enable hotness

awareness without LSM-tree lookups.
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3 HashKV Design

HashKV is a persistent KV store that specifically targets

update-intensive workloads. It improves the management

of value storage atop KV separation to achieve high

update performance. It supports standard KV operations:

PUT (i.e., writing a KV pair), GET (i.e., retrieving the

value of a key), DELETE (i.e., deleting a KV pair), and

SCAN (i.e., retrieving the values of a range of keys).

3.1 Main Idea

HashKV follows KV separation [23] by storing only

keys and metadata in the LSM-tree for indexing KV

pairs, while storing values in a separate area called the

value store. Atop KV separation, HashKV introduces

several core design elements to achieve efficient value

storage management.

• Hash-based data grouping: Recall that vLog incurs

substantial GC overhead in value storage. Instead,

HashKV maps values into fixed-size partitions in the

value store by hashing the associated keys. This design

achieves: (i) partition isolation, in which all versions

of value updates associated with the same key must

be written to the same partition, and (ii) deterministic

grouping, in which the partition where a value should

be stored is determined by hashing. We leverage this

design to achieve flexible and lightweight GC.

• Dynamic reserved space allocation: Since we map

values into fixed-size partitions, one challenge is that

a partition may receive more updates than it can hold.

HashKV allows a partition to grow dynamically be-

yond its size limit by allocating fractions of reserved

space in the value store.

• Hotness awareness: Due to deterministic grouping, a

partition may be filled with the values from a mix of

hot and cold KV pairs, in which case a GC operation

unnecessarily reads and writes back the values of

cold KV pairs. HashKV uses a tagging approach to

relocate the values of cold KV pairs to a different

storage area and separate the hot and cold KV pairs,

so that we can apply GC to hot KV pairs only and

avoid re-copying cold KV pairs.

• Selective KV separation: HashKV differentiates KV

pairs by their value sizes, such that the small-size KV

pairs can be directly stored in the LSM-tree without

KV separation. This saves the overhead of accessing

both the LSM-tree and the value store for small-size

KV pairs, while the compaction overhead of storing

the small-size KV pairs in the LSM-tree is limited.

Remarks: HashKV maintains a single LSM-tree for

indexing (instead of hash-partitioning the LSM-tree as in

the value store) to preserve the ordering of keys and the

range scan performance. Since hash-based data grouping

spreads KV pairs across the value store, it incurs random

writes; in contrast, vLog maintains sequential writes with

Figure 3: HashKV architecture.

a log-structured storage layout. Our HashKV prototype

(see §3.8) exploits both multi-threading and batch writes

to limit random write overhead.

3.2 Storage Management

Figure 3 depicts the architecture of HashKV. It divides

the logical address space of the value store into fixed-

size units called main segments. Also, it over-provisions

a fixed portion of reserved space, which is again divided

into fixed-size units called log segments. Note that the

sizes of main segments and log segments may differ; by

default, we set them as 64 MiB and 1 MiB, respectively.

For each insert or update of a KV pair, HashKV

hashes its key into one of the main segments. If the main

segment is not full, HashKV stores the value in a log-

structured manner by appending the value to the end of

the main segment; on the other hand, if the main segment

is full, HashKV dynamically allocates a free log segment

to store the extra values in a log-structured manner.

Again, it further allocates additional free log segments

if the current log segment is full. We collectively call a

main segment and all its associated log segments a seg-

ment group. Also, HashKV updates the LSM-tree for the

latest value location. To keep track of the storage status

of the segment groups and segments, HashKV uses a

global in-memory segment table to store the current end

position of each segment group for subsequent inserts or

updates, as well as the list of log segments associated

with each segment group. Our design ensures that each

insert or update can be directly mapped to the correct

write position without issuing LSM-tree lookups on the

write path, thereby achieving high write performance.

Also, the updates of the values associated with the same

key must go to the same segment group, and this sim-

plifies GC. For fault tolerance, HashKV checkpoints the

segment table to persistent storage.

To facilitate GC, HashKV also stores the key and

metadata (e.g., key/value sizes) together with the value

for each KV pair in the value store as in WiscKey [23]

(see Figure 3). This enables a GC operation to quickly

identify the key associated with a value when it scans the

value store. However, our GC design inherently differs

from vLog used by WiscKey (see §3.3).
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To improve write performance, HashKV holds an in-

memory write cache to store the recently written KV

pairs, at the expense of degrading reliability. If the key of

a new KV pair to be written is found in the write cache,

HashKV directly updates the value of the cached key

in-place without issuing the writes to the LSM-tree and

the value store. It can also return the KV pairs from the

write cache for reads. If the write cache is full, HashKV

flushes all the cached KV pairs to the LSM-tree and

the value store. Note that the write cache is an optional

component and can be disabled for reliability concerns.

HashKV supports hotness awareness by keeping cold

values in a separate cold data log (see §3.4). It also

addresses crash consistency by tracking the updates in

both write journal and GC journal (see §3.7).

3.3 Garbage Collection (GC)

HashKV necessitates GC to reclaim the space occupied

by invalid values in the value store. In HashKV, GC

operates in units of segment groups, and is triggered

when the free log segments in the reserved space are

running out. At a high level, a GC operation first selects a

candidate segment group and identifies all valid KV pairs

(i.e., the KV pairs of the latest version) in the group. It

then writes back all valid KV pairs to the main segment,

or additional log segments if needed, in a log-structured

manner. It also releases any unused log segments that

can be later used by other segment groups. Finally, it

updates the latest value locations in the LSM-tree. Here,

the GC operation needs to address two issues: (i) which

segment group should be selected for GC; and (ii) how

the GC operation quickly identifies the valid KV pairs in

the selected segment group.

Unlike vLog, which requires the GC operation to

follow a strict sequential order, HashKV can flexibly

choose which segment group to perform GC. It currently

adopts a greedy approach and selects the segment group

with the largest amount of writes. Our rationale is that

the selected segment group typically holds the hot KV

pairs that have many updates and hence has a large

amount of writes. Thus, selecting this segment group for

GC likely reclaims the most free space. To realize the

greedy approach, HashKV tracks the amount of writes

for each segment group in the in-memory segment table

(see §3.2), and uses a heap to quickly identify which

segment group receives the largest amount of writes.

To check the validity of KV pairs in the selected

segment group, HashKV sequentially scans the KV pairs

in the segment group without querying the LSM-tree

(note that it also checks the write cache for any latest

KV pairs in the segment group). Since the KV pairs are

written to the segment group in a log-structured manner,

the KV pairs must be sequentially placed according to

their order of being updated. For a KV pair that has

multiple versions of updates, the version that is nearest

to the end of the segment group must be the latest one

and correspond to the valid KV pair, while other versions

are invalid. Thus, the running time for each GC operation

only depends on the size of the segment group that needs

to be scanned. In contrast, the GC operation in vLog

reads a chunk of KV pairs from the vLog tail (see §2.2).

It queries the LSM-tree (based on the keys stored along

with the values) for the latest storage location of each KV

pair in order to check if the KV pair is valid [23]. The

overhead of querying the LSM-tree becomes substantial

under large workloads.

During a GC operation on a segment group, HashKV

constructs a temporary in-memory hash table (indexed

by keys) to buffer the addresses of the valid KV pairs

being found in the segment group. As the key and address

sizes are generally small and the number of KV pairs in a

segment group is limited, the hash table has limited size

and can be entirely stored in memory.

3.4 Hotness Awareness

Hot-cold data separation improves GC performance in

log-structured storage (e.g., SSDs [19, 27]). In fact, the

current hash-based data grouping design realizes some

form of hot-cold data separation, since the updates of the

hot KV pairs must be hashed to the same segment group

and our current GC policy always chooses the segment

group that is likely to store the hot KV pairs (see §3.3).

However, it is inevitable that some cold KV pairs are

hashed to the segment group selected for GC, leading to

unnecessary data rewrites. Thus, a challenge is to fully

realize hot-cold data separation to further improve GC

performance.

HashKV relaxes the restriction of hash-based data

grouping via a tagging approach (see Figure 4). Specif-

ically, when HashKV performs a GC operation on a

segment group, it classifies each KV pair in the segment

group as hot or cold. Currently, we treat the KV pairs

that are updated at least once since their last inserts

as hot, or cold otherwise (more accurate hot-cold data

identification approaches [16] can be used). For the hot

KV pairs, HashKV still writes back their latest versions

to the same segment group via hashing. However, for the

cold KV pairs, it now writes their values to a separate

storage area, and keeps their metadata only (i.e., without

values) in the segment group. In addition, it adds a tag

in the metadata of each cold KV pair to indicate its

presence in the segment group. Thus, if a cold KV pair

is later updated, we know directly from the tag (without

querying the LSM-tree) that the cold KV pair has already

been stored, so that we can treat it as hot based on

our classification policy; the tagged KV pair will also

become invalid. Finally, at the end of the GC operation,

HashKV updates the latest value locations in the LSM-
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Figure 4: Tagging in HashKV.

tree, such that the locations of the cold KV pairs point to

the separate area.

With tagging, HashKV avoids storing the values of

cold KV pairs in the segment group and rewriting them

during GC. Also, tagging is only triggered during GC,

and does not add extra overhead to the write path. Cur-

rently, we implement the separate storage area for cold

KV pairs as an append-only log (called the cold data log)

in the value store, and perform GC on the cold data log as

in vLog. The cold data log can also be put in secondary

storage with a larger capacity (e.g., hard disks) if the cold

KV pairs are rarely accessed.

3.5 Selective KV Separation

HashKV supports workloads with general value sizes.

Our rationale is that KV separation reduces compaction

overhead especially for large-size KV pairs, yet its ben-

efits for small-size KV pairs are limited, and it incurs

extra overhead of accessing both the LSM-tree and the

value store. Thus, we propose selective KV separation,

in which we still apply KV separation to KV pairs with

large value sizes, while storing KV pairs with small value

sizes in entirety in the LSM-tree. A key challenge of

selective KV separation is to choose the KV pair size

threshold of differentiating between small-size and large-

size KV pairs (assuming that the key size remains fixed).

We argue that the choice depends on the deployment

environment. In practice, we can conduct performance

tests for different value sizes to see when the throughput

gain of selective KV separation becomes significant.

3.6 Range Scans

One critical reason of using the LSM-tree for indexing

is its efficient support of range scans. Since the LSM-

tree stores and sorts KV pairs by keys, it can return the

values of a range of keys via sequential reads. However,

KV separation now stores values in separate storage

space, so it incurs extra reads of values. In HashKV,

the values are scattered across different segment groups,

so range scans will trigger many random reads that

degrade performance. HashKV currently leverages the

read-ahead mechanism to speed up range scans by

prefetching values into the page cache. For each scan

request, HashKV iterates over the range of sorted keys

in the LSM-tree, and issues a read-ahead request to each

value (via posix fadvise). It then reads all values and

returns the sorted KV pairs.

3.7 Crash Consistency

Crashes can occur while HashKV issues writes to persis-

tent storage. HashKV addresses crash consistency based

on metadata journaling and focuses on two aspects: (i)

flushing the write cache and (ii) GC operations.

Flushing the write cache involves writing the KV pairs

to the value store and updating metadata in the LSM-tree.

HashKV maintains a write journal to track each flushing

operation. It performs the following steps when flushing

the write cache: (i) flushing the cached KV pairs to the

value store; (ii) appending metadata updates to the write

journal; (iii) writing a commit record to the journal end;

(iv) updating keys and metadata in the LSM-tree; and

(v) marking the flush operation free in the journal (the

freed journaling records can be recycled later). If a crash

occurs after step (iii) completes, HashKV replays the

updates in the write journal and ensures that the LSM-

tree and the value store are consistent.

Handling crash consistency in GC operations is differ-

ent, as they may overwrite existing valid KV pairs. Thus,

we also need to protect existing valid KV pairs against

crashes during GC. HashKV maintains a GC journal

to track each GC operation. It performs the following

steps after identifying all valid KV pairs during a GC

operation: (i) appending the valid KV pairs that are over-

written as well as metadata updates to the GC journal; (ii)

writing all valid KV pairs back to the segment group; (iii)

updating the metadata in the LSM-tree; and (iv) marking

the GC operation free in the journal.

3.8 Implementation Details

We prototype HashKV in C++ on Linux. We use Lev-

elDB v1.20 [15] for the LSM-tree. Our prototype con-

tains around 6.7K lines of code (without LevelDB).

Storage organization: We currently deploy HashKV

on a RAID array with multiple SSDs for high I/O per-

formance. We create a software RAID volume using

mdadm [22], and mount the RAID volume as an Ext4

file system, on which we run both LevelDB and the

value store. In particular, HashKV manages the value

store as a large file. It partitions the value store file into

two regions, one for main segments and another for log

segments, according to the pre-configured segment sizes.

All segments are aligned in the value store file, such

that the start offset of each main (resp. log) segment is a

multiple of the main (resp. log) segment size. If hotness

awareness is enabled (see §3.4), HashKV adds a separate

region in the value store file for the cold data log. Also,

to address crash consistency (see §3.7), HashKV uses

separate files to store both write and GC journals.
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Multi-threading: HashKV implements multi-threading

via threadpool [36] to boost I/O performance when

flushing KV pairs in the write cache to different segments

(see §3.2) and retrieving segments from segment groups

in parallel during GC (see §3.3).

To mitigate random write overhead due to determin-

istic grouping (see §3.1), HashKV implements batch

writes. When HashKV flushes KV pairs in the write

cache, it first identifies and buffers a number of KV

pairs that are hashed to the same segment group in a

batch, and then issues a sequential write (via a thread) to

flush the batch. A larger batch size reduces random write

overhead, yet it also degrades parallelism. Currently, we

configure a batch write threshold, such that after adding a

KV pair into a batch, if the batch size reaches or exceeds

the batch size threshold, the batch will be flushed; in

other words, HashKV directly flushes a KV pair if its

size is larger than the batch write threshold.

4 Evaluation

We compare via testbed experiments HashKV with sev-

eral state-of-the-art KV stores: LevelDB (v1.20) [15],

RocksDB (v5.8) [12], HyperLevelDB [11], PebblesDB

[30], and our own vLog implementation for KV sepa-

ration based on WiscKey [23]. For fair comparison, we

build a unified framework to integrate such systems and

HashKV. Specifically, all written KV pairs are buffered

in the write cache and flushed when the write cache

is full. For LevelDB, RocksDB, HyperLevelDB, and

PebblesDB, we flush all KV pairs in entirety to them;

for vLog and HashKV, we flush keys and metadata to

LevelDB, and values (together with keys and metadata)

to the value store. We address the following questions:

• How is the update performance of HashKV compared

to other KV stores under update-intensive workloads?

(Experiment 1)

• How do the reserved space size and RAID config-

urations affect the update performance of HashKV?

(Experiments 2 and 3)

• What is the performance of HashKV under different

workloads (e.g., varying KV pair sizes and range

scans)? (Experiments 4 and 5)

• What are the performance gains of hotness awareness

and selective KV separation? (Experiments 6 and 7)

• How does the crash consistency mechanism affect the

update performance of HashKV? (Experiment 8)

• How do parameter configurations (e.g., main segment

size, log segment size, and write cache size) affect the

update performance of HashKV? (Experiment 9)

In our technical report [5], we present results of ad-

ditional experiments on the storage space usage, update

performance, and range scan performance of HashKV

and state-of-the-art KV stores.

4.1 Setup

Testbed: We conduct our experiments on a machine

running Ubuntu 14.04 LTS with Linux kernel 3.13.0. The

machine is equipped with a quad-core Xeon E3-1240v2,

16 GiB RAM, and seven Plextor M5 Pro 128 GiB SSDs.

We attach one SSD to the motherboard as the OS drive,

and attach six SSDs to the LSI SAS 9201-16i host bus

adapter to form a RAID volume (with a chunk size of

4 KiB) for the KV stores (see §3.8).

Default setup: For LevelDB, RocksDB, HyperLevelDB,

and PebblesDB, we use their default parameters. We

allow them to use all available capacity in our SSD RAID

volume, so that their major overheads come from read

and write amplifications in the LSM-tree management.

For vLog, we configure it to read 64 MiB from the

vLog tail (see §2.2) in each GC operation. For HashKV,

we set the main segment size as 64 MiB and the log seg-

ment size as 1 MiB. Both vLog and HashKV are config-

ured with 40 GiB of storage space and over-provisioned

with 30% (or 12 GiB) of reserved space, while their key

and metadata storage in LevelDB can use all available

storage space. Here, we provision the storage space of

vLog and HashKV to be close to the actual KV store

sizes of LevelDB and RocksDB based on our evaluation

(see Experiment 1).

We mount the SSD RAID volume under RAID-0 (no

fault tolerance) by default to maximize performance. All

KV stores run in asynchronous mode and are equipped

with a write cache of size 64 MiB. For HashKV, we set

the batch write threshold (see §3.8) to 4 KiB, and config-

ure 32 and 8 threads for write cache flushing and segment

retrieval in GC, respectively. We disable selective KV

separation, hotness awareness, and crash consistency in

HashKV by default, except when we evaluate them.

4.2 Performance Comparison

We compare the performance of different KV stores

under update-intensive workloads. Specifically, we gen-

erate workloads using YCSB [7], and fix the size of each

KV pair as 1 KiB, which consists of the 8-B metadata

(including the key/value size fields and reserved infor-

mation), 24-B key, and 992-B value. We assume that

each KV store is initially empty. We first load 40 GiB

of KV pairs (or 42 M inserts) into each KV store (call it

Phase P0). We then repeatedly issue 40 GiB of updates

over the existing 40 GiB of KV pairs three times (call

them Phases P1, P2, and P3), accounting for 120 GiB or

126 M updates in total. Updates in each phase follow a

heavy-tailed Zipf distribution with a Zipfian constant of

0.99. We issue the requests to each KV store as fast as

possible to stress-test its performance.

Note that vLog and HashKV do not trigger GC in P0.

In P1, when the reserved space becomes full after 12 GiB

of updates, both systems start to trigger GC; in both P2
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Figure 5: Experiment 1: Performance comparison of KV

stores under update-intensive workloads.

and P3, updates are issued to the fully filled value store

and will trigger GC frequently. We include both P2 and

P3 to ensure that the update performance is stable.

Experiment 1 (Load and update performance):

We evaluate LevelDB (LDB), RocksDB (RDB), Hy-

perLevelDB (HDB), PebblesDB (PDB), vLog, and

HashKV (HKV), under update-intensive workloads. We

first compare LevelDB, RocksDB, vLog, and HashKV;

later, we also include HyperLevelDB and PebblesDB

into our comparison.

Figure 5(a) shows the performance of each phase. For

vLog and HashKV, the throughput in the load phase is

higher than those in the update phases, as the latter is

dominated by the GC overhead. In the load phase, the

throughput of HashKV is 17.1× and 3.0× over LevelDB

and RocksDB, respectively. HashKV’s throughput is

7.9% slower than vLog, due to random writes introduced

to distribute KV pairs via hashing. In the update phases,

the throughput of HashKV is 6.3-7.9×, 1.3-1.4×, and

3.7-4.6× over LevelDB, RocksDB, and vLog, respec-

tively. LevelDB has the lowest throughput among all

KV stores due to significant compaction overhead, while

vLog also suffers from high GC overhead.

Figures 5(b) and 5(c) show the total write sizes and the

KV store sizes of different KV stores after all load and

update requests are issued. HashKV reduces the total

write sizes of LevelDB, RocksDB and vLog by 71.5%,

66.7%, and 49.6%, respectively. Also, they have very

similar KV store sizes.

For HyperLevelDB and PebblesDB, both of them

have high load and update throughput due to their low

compaction overhead. For example, PebblesDB appends

 0

 25

 50

 75

 100

 125

 150

 10  30  50  70  90

T
h

p
t 

(K
O

P
S

)

Reserved space size (%)

vLog HashKV

 0

 0.4

 0.8

 1.2

 1.6

 2

 10  30  50  70  90

W
ri

te
 s

iz
e 

(T
iB

)

Reserved space size (%)

vLog HashKV

(a) Throughput (b) Total write size

 0
 20
 40
 60
 80

 100

VH VH VH VH VH VH VH VH VH

L
at

en
cy

 (
%

)

Reserved space size (%)

Cache

Flush

Meta-Flush

GC-RW

GC-Lookup

Meta-GC

90%80%70%60%50%40%30%20%10%

(c) Latency breakdown (‘V’= vLog; ‘H’= HashKV)

Figure 6: Experiment 2: Impact of reserved space size.

fragmented SSTables from the higher level to the lower

level, without rewriting SSTables at the lower level [30].

Both HyperLevelDB and PebblesDB achieve at least

twice throughput of HashKV, while incurring lower

write sizes than HashKV. On the other hand, they incur

significant storage overhead, and their final KV store

sizes are 2.2× and 1.7× over HashKV, respectively. The

main reason is that both HyperLevelDB and PebblesDB

compact only selected ranges of keys to reduce write am-

plification, such that there may still remain many invalid

KV pairs after compaction. They also trigger compaction

operations less frequently than LevelDB. Both factors

lead to high storage overhead. We provide more detailed

analysis on the high storage costs of HyperLevelDB

and PebblesDB in [5]. In the following experiments, we

focus on LevelDB, RocksDB, vLog, and HashKV, as

they have comparable storage overhead.

Experiment 2 (Impact of reserved space): We study

the impact of reserved space size on the update per-

formance of vLog and HashKV. We vary the reserved

space size from 10% to 90% (of 40 GiB). Figure 6

shows the performance in Phase P3, including the update

throughput, the total write size, and the latency break-

down. Both vLog and HashKV benefit from the increase

in reserved space. Nevertheless, HashKV achieves 3.1-

4.7× throughput of vLog and reduces the write size

of vLog by 30.1-57.3% across different reserved space

sizes. As shown in Figure 6(c), the queries to the LSM-

tree during GC incur substantial performance overhead

to vLog. We observe that HashKV spends less time on

updating metadata during GC (“Meta-GC”) in the LSM-

tree with the increasing reserved space size due to less

frequent GC operations.
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Figure 7: Experiment 3: Different RAID configurations.

Experiment 3 (Impact of parity-based RAID): We

evaluate the impact of the fault tolerance configuration of

RAID on the update performance of LevelDB, RocksDB,

vLog, and HashKV. We configure the RAID volume to

run two parity-based RAID schemes, RAID-5 (single-

device fault tolerance) and RAID-6 (double-device fault

tolerance). We include the results under RAID-0 for

comparison. Figure 7 shows the throughput in Phase

P3 and the total write size. RocksDB and HashKV are

more sensitive to RAID configurations (larger drops in

throughput), since their performance is write-dominated.

Nevertheless, the throughput of HashKV is higher than

other KV stores under parity-based RAID schemes, e.g.,

4.8×, 3.2×, and 2.7× over LevelDB, RocksDB, and

vLog, respectively, under RAID-6. The write sizes of KV

stores under RAID-5 and RAID-6 increase by around

20% and 50%, respectively, compared to RAID-0, which

match the amount of redundancy of the corresponding

parity-based RAID schemes.

4.3 Performance under Different Workloads

We now study the update and range scan performance of

HashKV for different KV pair sizes.

Experiment 4 (Impact of KV pair size): We study the

impact of KV pair sizes on the update performance of

KV stores. We vary the KV pair size from 256 B to

64 KiB. Specifically, we increase the KV pair size by

increasing the value size and keeping the key size fixed

at 24 B. We also reduce the number of KV pairs loaded

or updated, such that the total size of KV pairs is fixed at

40 GiB. Figure 8 shows the update performance of KV

stores in Phase P3 versus the KV pair size. The through-

put of LevelDB and RocksDB remains similar across

most KV pair sizes, while the throughput of vLog and

HashKV increases as the KV pair size increases. Both

vLog and HashKV have lower throughput than LevelDB

and RocksDB when the KV pair size is 256 B, since

the overhead of writing small values to the value store

is more significant. Nevertheless, HashKV can benefit

from selective KV separation (see Experiment 7). As

the KV pair size increases, HashKV also sees increas-

ing throughput. For example, HashKV achieves 15.5×

and 2.8× throughput over LevelDB and RocksDB, re-
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Figure 8: Experiment 4: Performance of KV stores under

different KV pair sizes.
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Figure 9: Experiment 5: Range scan performance of

different KV stores.

spectively, for 4-KiB KV pairs. HashKV achieves 2.2-

5.1× throughput over vLog for KV pair sizes between

256 B and 4 KiB. The performance gap between vLog

and HashKV narrows as the KV pair size increases,

since the size of the LSM-tree decreases with fewer KV

pairs. Thus, the queries to the LSM-tree of vLog are less

expensive. For 64-KiB KV pairs, HashKV has 10.7%

less throughput than vLog.

When the KV pair size increases, the total write sizes

of LevelDB and RocksDB increase due to the increasing

compaction overhead, while those of HashKV and vLog

decrease due to fewer KV pairs in the LSM-tree. Over-

all, HashKV reduces the total write sizes of LevelDB,

RocksDB, and vLog by 43.2-78.8%, 33.8-73.5%, and

3.5-70.6%, respectively.

Experiment 5 (Range scans): We compare the range

scan performance of KV stores for different KV pair

sizes. Specifically, we first load 40 GiB of fixed-size

KV pairs, and then issue scan requests whose start keys

follow a Zipf distribution with a Zipfian constant of 0.99.

Each scan request reads 1 MiB of KV pairs, and the total

scan size is 4 GiB. Figure 9 shows the results. HashKV

has similar scan performance to vLog across KV pair

sizes. However, HashKV has 70.0% and 36.3% lower

scan throughput than LevelDB for 256-B and 1-KiB KV

pairs, respectively, mainly because HashKV needs to

issue reads to both the LSM-tree and the value store and

there is also high overhead of retrieving small values

from the value store via random reads. Nevertheless,

for KV pairs of 4 KiB or larger, HashKV outperforms

LevelDB, e.g., by 94.2% for 4-KiB KV pairs. The lower
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Figure 10: Experiment 6: Hotness awareness.

scan performance for small KV pairs is also consistent

with that of WiscKey (see Figure 12 in [23]). Note that

the read-ahead mechanism (see §3.6) is critical to en-

abling HashKV to achieve high range scan performance.

For example, the range scan throughput of HashKV

increases by 81.0% for 256-B KV pairs compared to

without read-ahead. We also evaluate the range scan

performance of HashKV after we issue update-intensive

workloads in [5].

4.4 HashKV Features

We study the two optimizations of HashKV, hotness

awareness and selective KV separation, and the crash

consistency mechanism of HashKV. We report the

throughput in Phase P3 and the total write size. We con-

sider 20% of reserved space to show that the optimized

performance of smaller reserved space can match the

unoptimized performance of larger reserved space.

Experiment 6 (Hotness awareness): We evaluate the

impact of hotness awareness on the update performance

of HashKV. We consider two Zipfian constants, 0.9

and 0.99, to capture different skewness in workloads.

Figure 10 shows the results when hotness awareness

is disabled and enabled. When hotness awareness is

enabled, the update throughput increases by 113.1% and

121.3%, while the write size reduces by 42.8% and

42.5%, for Zipfian constants 0.9 and 0.99, respectively.

Experiment 7 (Selective KV separation): We evaluate

the impact of selective KV separation on the update

performance of HashKV. We consider three ratios of

small-to-large KV pairs, including 1:2, 1:1, and 2:1. We

set the small KV pair size as 40 B, and the large KV

pair size as 1 KiB or 4 KiB. Figure 11 shows the results

when selective KV separation is disabled or enabled.

When selective KV separation is enabled, the through-

put increases by 23.2-118.0% and 19.2-52.1% when the

large KV pair size is 1 KiB and 4 KiB, respectively. We

observe higher performance gain for workloads with a

higher ratio of small KV pairs, due to the high update

overhead of small KV pairs stored under KV separation.

Also, selective KV separation reduces the total write size

by 14.1-39.6% and 4.1-10.7% when the large KV pair

size is 1 KiB and 4 KiB, respectively.

 0

 50

 100

 150

1:2 1:1 2:1 1:2 1:1 2:1

T
h
p
t 

(K
O

P
S

)

Ratio [KV pair sizes]

Disabled Enabled

[40,4096][40,1024]

 0

 100

 200

 300

 400

1:2 1:1 2:1 1:2 1:1 2:1

W
ri

te
 s

iz
e 

(G
iB

)

Ratio [KV pair sizes]

Disabled Enabled

[40,4096][40,1024]

(a) Throughput (b) Total write size

Figure 11: Experiment 7: Selective KV separation.

Disabled Enabled

Throughput (KOPS) 58.0 54.3

Total write size (GiB) 454.6 473.7

Table 1: Experiment 8: Performance of HashKV with

crash consistency disabled and enabled.

Experiment 8 (Crash consistency): We study the im-

pact of the crash consistency mechanism on the perfor-

mance of HashKV. Table 1 shows the results. When

the crash consistency mechanism is enabled, the update

throughput of HashKV in Phase P3 reduces by 6.5%

and the total write size increases by 4.2%, which shows

that the impact of crash consistency mechanism remains

limited. Note that we verify the correctness of the crash

consistency mechanism by crashing HashKV via code

injection and unexpected terminations during runtime.

4.5 Parameter Choices

We further study the impact of parameters, including

the main segment size, the log segment size, and the

write cache size on the update performance of HashKV.

We vary one parameter in each test, and use the de-

fault values for other parameters. We report the update

throughput in Phase P3 and the total write size. Here, we

focus on 20% and 50% of reserved space.

Experiment 9 (Impact of main segment size, log seg-

ment size, and write cache size): We first consider the

main segment size. Figures 12(a) and 12(d) show the

results versus the main segment size. When the main

segment size increases, the throughput of HashKV in-

creases, while the total write size decreases. The reason

is that there are fewer segment groups for larger main

segments, so each segment group receives more updates

in general. Each GC operation can now reclaim more

space from more updates, so the performance improves.

We see that the update performance of HashKV is more

sensitive to the main segment size under limited reserved

space. For example, the throughput increases by 52.5%

under 20% of reserved space, but 28.3% under 50% of

reserved space, when the main segment size increases

from 16 MiB to 256 MiB.

We next consider the log segment size. Figures 12(b)
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Figure 12: Experiment 9: Throughput and total write size

of HashKV versus the main segment size ((a) and (d)),

the log segment size ((b) and (e)), and the write cache

size ((c) and (f)).

and 12(e) show the results versus the log segment size.

We see that when the log segment size increases from

256 KiB to 4 MiB, the throughput of HashKV drops

by 16.1%, while the write size increases by 10.4%

under 20% of reserved space. The reason is that the

utilization of log segments decreases as the log segment

size increases. Thus, each GC operation reclaims less

free space, and the performance drops. However, when

the reserved space size increases to 50%, we do not

see significant performance differences, and both the

throughput and the write size remain almost unchanged

across different log segment sizes.

We finally consider the write cache size. Figures 12(c)

and 12(f) show the results versus the write cache size. As

expected, the throughput of HashKV increases and the

total write size drops as the write cache size increases,

since a larger write cache can absorb more updates. For

example, under 20% of reserved space, the throughput

of HashKV increases by 29.1% and the total write size

reduces by 16.3% when the write cache size increases

from 4 MiB to 64 MiB.

5 Related Work

General KV stores: Many KV store designs are pro-

posed for different types of storage backends, such as

DRAM [1, 13, 14, 21], commodity flash-based SSDs

[8,9,20,23], open-channel SSDs [34], and emerging non-

volatile memories [25, 40]. The above KV stores and

HashKV are designed for a single server. They can serve

as building blocks of a distributed KV store (e.g., [28]).

LSM-tree-based KV stores: Many studies modify the

LSM-tree design for improved compaction performance.

bLSM [33] proposes a new merge scheduler to pre-

vent compaction from blocking writes, and uses Bloom

filters for efficient indexing. VT-Tree [35] stitches al-

ready sorted blocks of SSTables to allow lightweight

compaction overhead, at the expense of incurring frag-

mentation. LSM-trie [39] maintains a trie structure and

organizes KV pairs by hash-based buckets within each

SSTable. It also organizes large Bloom filters in clustered

disk blocks for efficient I/O access. LWC-store [41]

decouples data and metadata management in compaction

by merging and sorting only the metadata in SSTables.

SkipStore [42] pushes KV pairs across non-adjacent

levels to reduce the number of levels traversed during

compaction. PebblesDB [30] relaxes the restriction of

keeping disjoint key ranges in each level, and pushes par-

tial SSTables across levels to limit compaction overhead.

KV separation: WiscKey [23] employs KV separation

to remove value compaction in the LSM-tree (see §2.2).

Atlas [18] also applies KV separation in cloud storage,

in which keys and metadata are stored in an LSM-tree

that is replicated, while values are separately stored and

erasure-coded for low-redundancy fault tolerance. Cocy-

tus [43] is an in-memory KV store that separates keys

and values for replication and erasure coding, respec-

tively. HashKV also builds on KV separation, and takes

one step further to address efficient value management.

Hash-based data organization: Distributed storage sys-

tems (e.g., [10, 24, 38]) use hash-based data placement

to avoid centralized metadata lookups. NVMKV [25]

also uses hashing to map KV pairs in physical address

space. However, it assumes sparse address space to limit

the overhead of resolving hash collisions, and incurs

internal fragmentation for small-sized KV pairs. In con-

trast, HashKV does not cause internal fragmentation as

it packs KV pairs in each main/log segment in a log-

structured manner. It also supports dynamic reserved

space allocation when the main segments become full.

6 Conclusion

This paper presents HashKV, which enables efficient

updates in KV stores under update-intensive workloads.

Its novelty lies in leveraging hash-based data grouping

for deterministic data organization so as to mitigate GC

overhead. We further enhance HashKV with several

extensions including dynamic reserved space allocation,

hotness awareness, and selective KV separation. Testbed

experiments show that HashKV achieves high update

throughput and reduces the total write size.
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