

conference

proceedings

2017 USENIX
Annual Technical Conference

Santa Clara, CA, USA
July 12–14, 2017

Proceedings of the 2017 U
SEN

IX A
nnual Technical Conference

Santa Clara, CA
, USA

July 12–14, 2017

Sponsored by

ISBN 978-1-931971-38-6

Thanks to Our USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp

USENIX Benefactor
VMware

USENIX Partners
Booking.com Can Stock Photo Cisco Meraki FotoSearch

Open Access Publishing Partner
PeerJ

© 2017 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-38-6

Thanks to Our USENIX ATC ’17 Sponsors

Media Sponsors and Industry Partners
ACM Queue

ADMIN

Blacks In Technology

Distributed Management
Task Force (DMTF)

FreeBSD Foundation

Linux Pro Magazine

No Starch Press

O’Reilly Media

Gold Sponsor

Silver Sponsors

General Sponsor

USENIX Association

July 12–14, 2017
Santa Clara, CA, USA

Proceedings of USENIX ATC ’17
2017 USENIX Annual Technical Conference

Conference Organizers

Program Co-Chairs
Dilma Da Silva, Texas A&M University
Bryan Ford, École Polytechnique Fédérale de Lausanne

(EPFL)

Program Committee
Rachit Agarwal, Cornell University
Nadav Amit, VMware Research Group
Mona Attariyan, Google
Sorav Bansal, Indian Institute of Technology Delhi
Adam Bates, University of Illinois at Urbana-

Champaign
Justin Cappos, New York University Tandon School of

Engineering
Rong Chen, Shanghai Jiao Tong University
Mihai Christodorescu, Qualcomm Research
Charlie Curtsinger, Grinnell College
Christina Delimitrou, Cornell University
Fred Douglis, Dell EMC
Eric Eide, University of Utah
Ittay Eyal, Cornell University
Ada Gavrilovska, Georgia Institute of Technology
Vishakha Gupta, Intel Labs

Michio Honda, NEC Laboratories Europe
Yu Hua, Huazhong University of Science and

Technology
Peng (Ryan) Huang, Microsoft Research and Johns

Hopkins University
Taesoo Kim, Georgia Institute of Technology
Eddie Kohler, Harvard University
Jean-Pierre Lozi, Université Nice Sophia Antipolis
Gilles Muller, Inria
Donald E. Porter, University of North Carolina at

Chapel Hill
Christopher J. Rossbach, The University of Texas at

Austin and VMware Research Group
Ji-Yong Shin, Yale University
Liuba Shrira, Brandeis University
Nisha Talagala, Parallel Machines
Chunqiang Tang, Facebook
Theodore Ts’o, Google
Dan Tsafrir, Technion—Israel Institute of Technology
Dan Williams, IBM T.J. Watson Research Center
David Wolinsky, Facebook
Timothy Wood, George Washington University

External Reviewers
Amogh Akshintala
Ghada Almashaqbeh
Brian Burg
Aleksandar Dragojevic
Sindhu Ghanta
Kartik Gopalan
Haryadi Gunawi
Istvan Haller
Sungpack Hong
Amir Hormati
Jian Huang
Michael Isard
Xin Jin
Guoliang Jin
David M. Johnson

Xiaoen Ju
Hye-Chung Kum
Patrick P. C. Lee
Cheng Li
Richard Li
Yiwen Li
Paul McKenney
Mike Mesnier
Parya Moinzadeh
Preston Moore
Michael Papamichael
Andrew Quinn
Moin Qureshi
Bharath Ramsundar
Drew Roselli

Semih Salihoglu
Igor Smolyar
LinHai Song
Christina Strong
Sing-hoi Sze
Santiago Torres-Arias
Chia-Che Tsai
Rajat Verma
Sam Weber
Gary Wong
Idan Yaniv
Yang Zhan
Tao Zhang
Yibo Zhu
Aviad Zuck

Message from the
USENIX ATC ’17 Program Co-Chairs

Welcome to the 2017 USENIX Annual Technical Conference

We are awed by the effort devoted by so many in our community to making ATC ’17 a success. Along the process of
creating this year’s program, we were exposed to high doses of technical expertise, experience in research, passion
for building systems, fairness, competence, and kindness.

The incredible dedication by this year’s program committee resulted in a program of 60 refereed papers and two
invited talks. These papers and talks present novel research contributions and practical insights that advance the
state-of-art in systems from a wide range of perspectives, demonstrating new capabilities or improvements for a
variety of platforms and application scenarios. Given the spectrum of topics covered in the program, you are likely
to find interesting ideas addressing your favorite areas and challenges.

For the traditional refereed papers track, we received a record number of paper registrations and submissions this
year. Authors registered 305 papers, of which 283 were complete submissions. The program co-chairs rejected six
papers up front due to serious format violations. Of the submitted papers, 29 were short papers, which had to be at
most five pages long (plus references), and the other 254 were full-length papers, which had to be at most 11 pages
long plus references. We were very pleased with the high number of submissions and with the program committee’s
positive attitude under such heavy reviewing load.

The program committee had 35 members, including the two co-chairs. Thirteen of them had affiliations with in-
dustrial organizations, and 22 with academic organizations. The committee represented three continents and seven
countries. Program committee members were allowed to submit papers. The co-chairs did not have any submissions.
We followed standard rules for handling conflicts of interest: conflicted members (or co-chairs) left the room during
discussion of conflicted papers. There was one paper with which both co-chairs were conflicted, and Fred Douglis
(a PC member) managed its review process.

Reviewing was single-blind, done by the program committee in two rounds, with a few external reviews. In the first
round, each of the 283 submitted papers received at least two reviews. Two classes of papers moved to the second
round: (a) papers receiving at least one “weak accept” or better (i.e., “accept” or “strong accept”) review and (b)
papers where none of the reviewers rated their expertise level as “knowledgeable” or “expert.” In total, 176 papers
(62% of submissions) moved on. In the second round, each paper received at least two more reviews.

Altogether, we had more than 920 reviews.

After two phases of review, an online discussion was conducted among reviewers, during which the program com-
mittee decided to accept 21 highly-ranked papers, tentatively reject 85 more papers, and to further discuss 70 papers
during the in-person program committee meeting.

The PC meeting was held on April 20-21 at the VMware campus in Palo Alto, CA; 31 PC members attended the meet-
ing in person, two called in, and two could not participate. During the meeting 39 papers were accepted, resulting in
the 21 papers accepted earlier in a total of 60 accepted papers. Among these 60 acceptances, three were short papers.

We added to the program two invited talks, chosen from recommendations made by members of the USENIX
community. We also continued the tradition of inviting best-of-the-rest talks from the best papers at other
USENIX-sponsored conferences. We have invited talks from FAST, OSDI, and USENIX Security.

We are very grateful to all who contributed to ATC’17. In addition to the authors that submitted their work for
 consideration, the program committee, and the external reviewers, we would like to thank the USENIX staff for
their outstanding conference management. By taking care of all organizational details, they enabled us to focus on
building a strong program. We would also like to thank VMware for their generosity in hosting the PC meeting.

We hope that you enjoy the conference. Thank you for participating in the USENIX ATC community!

USENIX ATC ’17 Program Co-Chairs
Dilma Da Silva, Texas A&M University
Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)

USENIX ATC ’17:
2017 USENIX Annual Technical Conference

Contents
Kernel
Lock-in-Pop: Securing Privileged Operating System Kernels by Keeping on the Beaten Path1
Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos, New York University

Fast and Precise Retrieval of Forward and Back Porting Information for Linux Device Drivers15
Julia Lawall, Derek Palinski, Lukas Gnirke, and Gilles Muller, Sorbonne Universités/UPMC/Inria/LIP6

Optimizing the TLB Shootdown Algorithm with Page Access Tracking .27
Nadav Amit, VMware Research

Falcon: Scaling IO Performance in Multi-SSD Volumes .41
Pradeep Kumar and H. Howie Huang, The George Washington University

Datacenters
deTector: a Topology-aware Monitoring System for Data Center Networks .55
Yanghua Peng, The University of Hong Kong; Ji Yang, Xi’an Jiaotong University; Chuan Wu, The University
of Hong Kong; Chuanxiong Guo, Microsoft Research; Chengchen Hu, Xi’an Jiaotong University; Zongpeng Li,
University of Calgary

Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee .69
Jian Guo, Fangming Liu, and Tao Wang, Key Laboratory of Services Computing Technology and System,
Ministry of Education, School of Computer Science and Technology, Huazhong University of Science and
Technology; John C.S. Lui, The Chinese University of Hong Kong

Unobtrusive Deferred Update Stabilization for Efficient Geo-Replication .83
Chathuri Gunawardhana, Manuel Bravo, and Luis Rodrigues, University of Lisbon

Don’t cry over spilled records: Memory elasticity of data-parallel applications and its application
to cluster scheduling .97
Călin Iorgulescu and Florin Dinu, EPFL; Aunn Raza, NUST Pakistan; Wajih Ul Hassan, UIUC;
Willy Zwaenepoel, EPFL

Pursuing Efficiency
Popularity Prediction of Facebook Videos for Higher Quality Streaming .111
Linpeng Tang, Princeton University; Qi Huang and Amit Puntambekar, Facebook; Ymir Vigfusson,
Emory University & Reykjavik University; Wyatt Lloyd, University of Southern California & Facebook;
Kai Li, Princeton University

Squeezing out All the Value of Loaded Data: An Out-of-core Graph Processing System
with Reduced Disk I/O .125
Zhiyuan Ai, Mingxing Zhang, and Yongwei Wu, Department of Computer Science and Technology, Tsinghua
National Laboratory for Information Science and Technology (TNLIST), Tsinghua University and Research
Institute of Tsinghua; Xuehai Qian, University of Southern California; Kang Chen and Weimin Zheng,
Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and
Technology (TNLIST), Tsinghua University, and Research Institute of Tsinghua

Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi .139
Toke Høiland-Jørgensen, Karlstad University; Michał Kazior, Tieto Poland; Dave Täht, TekLibre;
Per Hurtig and Anna Brunstrom, Karlstad University

Persona: A High-Performance Bioinformatics Framework .153
Stuart Byma and Sam Whitlock, EPFL; Laura Flueratoru, University Politehnica of Bucharest;
Ethan Tseng, CMU; Christos Kozyrakis, Stanford University; Edouard Bugnion and James Larus, EPFL

Let’s Talk about GPUs
SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between SSDs and GPUs 167
Shai Bergman and Tanya Brokhman, Technion; Tzachi Cohen, unaffiliated; Mark Silberstein, Technion

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters181
Hao Zhang, Carnegie Mellon University; Zeyu Zheng, Petuum Inc.; Shizhen Xu and Wei Dai, Carnegie Mellon
University; Qirong Ho, Petuum Inc.; Xiaodan Liang, Zhiting Hu, Jinliang Wei, and Pengtao Xie, Carnegie Mellon
University; Eric P. Xing, Petuum Inc.

Garaph: Efficient GPU-accelerated Graph Processing on a Single Machine with Balanced Replication195
Lingxiao Ma, Zhi Yang, and Han Chen, Computer Science Department, Peking University, Beijing, China;
Jilong Xue, Microsoft Research, Beijing, China; Yafei Dai, Institute of Big Data Technologies Shenzhen Key Lab
for Cloud Computing Technology & Applications, School of Electronics and Computer Engineering (SECE),
Peking University, Shenzhen, China

GPU Taint Tracking .209
Ari B. Hayes, Rutgers University; Lingda Li, Brookhaven National Laboratory; Mohammad Hedayati,
University of Rochester; Jiahuan He and Eddy Z. Zhang, Rutgers University; Kai Shen, Google

Virtualization
Optimizing the Design and Implementation of the Linux ARM Hypervisor .221
Christoffer Dall, Shih-Wei Li, and Jason Nieh, Columbia University

Multi-Hypervisor Virtual Machines: Enabling an Ecosystem of Hypervisor-level Services235
Kartik Gopalan, Rohit Kugve, Hardik Bagdi, and Yaohui Hu, Binghamton University; Daniel Williams and
Nilton Bila, IBM T.J. Watson Research Center

Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization .251
Wei Chen, University of Colorado, Colorado Springs; Jia Rao, University of Texas at Arlington; Xiaobo Zhou,
University of Colorado, Colorado Springs

The RCU-Reader Preemption Problem in VMs .265
Aravinda Prasad and K Gopinath, Indian Institute of Science, Bangalore; Paul E. McKenney, IBM Linux
Technology Center, Beaverton

Security and Privacy I
Bunshin: Compositing Security Mechanisms through Diversification .271
Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee, Georgia Institute of Technology

Glamdring: Automatic Application Partitioning for Intel SGX .285
Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin, and Florian Kelbert,
Imperial College London; Tobias Reiher, TU Dresden; David Goltzsche, TU Braunschweig; David Eyers,
University of Otago; Rudiger Kapitza, TU Braunschweig; Christof Fetzer, TU Dresden; Peter Pietzuch,
Imperial College London

High-Resolution Side Channels for Untrusted Operating Systems .299
Marcus Hähnel, TU Dresden, Operating Systems Group; Weidong Cui and Marcus Peinado, Microsoft Research

Understanding Security Implications of Using Containers in the Cloud .313
Byungchul Tak, Kyungpook National University; Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda,
and James Doran, IBM TJ Watson Research Center

(continued on next page)

Key-Value Stores and Databases
Memshare: a Dynamic Multi-tenant Key-value Cache .321
Asaf Cidon, Stanford University; Daniel Rushton, University of Utah; Stephen M. Rumble, Google Inc.;
Ryan Stutsman, University of Utah

Replication-driven Live Reconfiguration for Fast Distributed Transaction Processing335
Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University

HiKV: A Hybrid Index Key-Value Store for DRAM-NVM Memory Systems .349
Fei Xia, Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy
of Sciences; Dejun Jiang, Jin Xiong, and Ninghui Sun, Institute of Computing Technology, Chinese Academy
of Sciences

TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores363
Oana Balmau, Diego Didona, Rachid Guerraoui, and Willy Zwaenepoel, EPFL; Huapeng Yuan, Aashray Arora,
Karan Gupta, and Pavan Konka, Nutanix

Help Me Debug
Engineering Record And Replay For Deployability .377
Robert O’Callahan and Chris Jones, unaffiliated; Nathan Froyd, Mozilla Corporation; Kyle Huey, unaffiliated;
Albert Noll, Swisscom AG; Nimrod Partush, Technion

Proactive error prediction to improve storage system reliability. .391
Farzaneh Mahdisoltani, University of Toronto; Ioan Stefanovici, Microsoft Research; Bianca Schroeder,
University of Toronto

Towards Production-Run Heisenbugs Reproduction on Commercial Hardware .403
Shiyou Huang, Bowen Cai, and Jeff Huang, Texas A&M University

A DSL Approach to Reconcile Equivalent Divergent Program Executions .417
Luís Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian Cadar, Imperial College London

Networking
Titan: Fair Packet Scheduling for Commodity Multiqueue NICs .431
Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael Swift, UW-Madison

MopEye: Opportunistic Monitoring of Per-app Mobile Network Performance .445
Daoyuan Wu, Singapore Management University; Rocky K. C. Chang, Weichao Li, and Eric K. T. Cheng,
The Hong Kong Polytechnic University; Debin Gao, Singapore Management University

Emu: Rapid Prototyping of Networking Services .459
Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, and Jonny Shipton, University of Cambridge;
Richard Clegg, Queen Mary University of London; Luo Mai, Imperial College London; Pietro Bressana and
Robert Soule, Università della Svizzera italiana; Richard Mortier, University of Cambridge; Paolo Costa,
Microsoft Research; Peter Pietzuch, Imperial College London; Jon Crowcroft, Andrew W Moore, and
Noa Zilberman, University of Cambridge

Protego: Cloud-Scale Multitenant IPsec Gateway .473
Jeongseok Son, KAIST, Microsoft Research; Yongqiang Xiong, Microsoft Research; Kun Tan, Huawei;
Paul Wang and Ze Gan, Microsoft Research; Sue Moon, KAIST

Caching along the Way
Cache Modeling and Optimization using Miniature Simulations .487
Carl Waldspurger, Trausti Saemundson, and Irfan Ahmad, CachePhysics, Inc.; Nohhyun Park, Datos IO, Inc.

Hyperbolic Caching: Flexible Caching for Web Applications .499
Aaron Blankstein, Princeton University; Siddhartha Sen, Microsoft Research; Michael J. Freedman,
Princeton University

Execution Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics 513
Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis, Stanford University

cHash: Detection of Redundant Compilations via AST Hashing .527
Christian Dietrich and Valentin Rothberg, Leibniz Universität Hannover; Ludwig Füracker and Andreas Ziegler,
Friedrich-Alexander Universität Erlangen-Nürnberg; Daniel Lohmann, Leibniz Universität Hannover

Storage
Giza: Erasure Coding Objects across Global Data Centers . .539
Yu Lin Chen, NYU & Microsoft Corporation; Shuai Mu and Jinyang Li, NYU; Cheng Huang, Jin Li,
Aaron Ogus, and Douglas Phillips, Microsoft Corporation

SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage Systems 553
Yuanyuan Sun and Yu Hua, Huazhong University of Science and Technology; Song Jiang, University of Texas,
Arlington; Qiuyu Li, Shunde Cao, and Pengfei Zuo, Huazhong University of Science and Technology

Repair Pipelining for Erasure-Coded Storage .567
Runhui Li, Xiaolu Li, Patrick P . C . Lee, and Qun Huang, The Chinese University of Hong Kong

PARIX: Speculative Partial Writes in Erasure-Coded Systems .581
Huiba Li, mos.meituan.com; Yiming Zhang, NUDT; Zhiming Zhang, mos.meituan.com; Shengyun Liu,
Dongsheng Li, Xiaohui Liu, and Yuxing Peng, NUDT

Multicore
E-Team: Practical Energy Accounting for Multi-Core Systems .589
Till Smejkal and Marcus Hähnel, TU Dresden; Thomas Ilsche, Center for Information Services and High
Performance Computing (ZIH) Technische Universität Dresden; Michael Roitzsch, TU Dresden; Wolfgang
E . Nagel, Center for Information Services and High Performance Computing (ZIH) Technische Universität
Dresden; Hermann Härtig, TU Dresden

Scalable NUMA-aware Blocking Synchronization Primitives .603
Sanidhya Kashyap, Changwoo Min, and Taesoo Kim, Georgia Institute of Technology

StreamBox: Modern Stream Processing on a Multicore Machine . 617
Hongyu Miao and Heejin Park, Purdue ECE; Myeongjae Jeon and Gennady Pekhimenko, Microsoft Research;
Kathryn S . McKinley, Google; Felix Xiaozhu Lin, Purdue ECE

Everything you always wanted to know about multicore graph processing but were afraid to ask 631
Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel, EPFL

Security and Privacy II
Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX .645
Chia-Che Tsai, Stony Brook University; Donald E . Porter, University of North Carolina at Chapel Hill and
Fortanix; Mona Vij, Intel Corporation

PrivApprox: Privacy-Preserving Stream Analytics .659
Do Le Quoc and Martin Beck, TU Dresden; Pramod Bhatotia, University of Edinburgh; Ruichuan Chen,
Nokia Bell Labs; Christof Fetzer and Thorsten Strufe, TU Dresden

Mercury: Bandwidth-Effective Prevention of Rollback Attacks Against Community
Repositories .673
Trishank Karthik Kuppusamy, Vladimir Diaz, and Justin Cappos, New York University

(continued on next page)

CAB-Fuzz: Practical Concolic Testing Techniques for COTS Operating Systems .689
Su Yong Kim, The Affiliated Institute of ETRI; Sangho Lee, Insu Yun, and Wen Xu, Georgia Tech;
Byoungyoung Lee, Purdue University; Youngtae Yun, The Affiliated Institute of ETRI; Taesoo Kim,
Georgia Tech

Don’t Forget the Memory
Log-Structured Non-Volatile Main Memory .703
Qingda Hu, Tsinghua University; Jinglei Ren and Anirudh Badam, Microsoft Research; Jiwu Shu,
Tsinghua University; Thomas Moscibroda, Microsoft Research

Soft Updates Made Simple and Fast on Non-volatile Memory .719
Mingkai Dong and Haibo Chen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

SmartMD: A High Performance Deduplication Engine with Mixed Pages .733
Fan Guo, University of Science and Technology of China; Yongkun Li, University of Science and Technology
of China; Collaborative Innovation Center of High Performance Computing, NUDT; Yinlong Xu, University
of Science and Technology of China; Anhui Province Key Laboratory of High Performance Computing, USTC;
Song Jiang, University of Texas, Arlington; John C. S. Lui, The Chinese University of Hong Kong

Elastic Memory Management for Cloud Data Analytics .745
Jingjing Wang and Magdalena Balazinska, University of Washington

File Systems
Improving File System Performance of Mobile Storage Systems Using a Decoupled
Defragmenter .759
Sangwook Shane Hahn, Seoul National University; Sungjin Lee, Daegu Gyeongbuk Institute of Science and
Technology; Cheng Ji, City University of Hong Kong; Li-Pin Chang, National Chiao-Tung University;
Inhyuk Yee, Seoul National University; Liang Shi, Chongqing University; Chun Jason Xue, City University of
Hong Kong; Jihong Kim, Seoul National University

Octopus: an RDMA-enabled Distributed Persistent Memory File System .773
Youyou Lu, Jiwu Shu, and Youmin Chen, Tsinghua University; Tao Li, University of Florida

iJournaling: Fine-Grained Journaling for Improving the Latency of Fsync System Call 787
Daejun Park and Dongkun Shin, Sungkyunkwan University, Korea

Scaling Distributed File Systems in Resource-Harvesting Datacenters .799
Pulkit A. Misra, Duke University; Íñigo Goiri, Jason Kace, and Ricardo Bianchini, Microsoft Research

Lock-in-Pop: Securing Privileged Operating System Kernels by Keeping on
the Beaten Path

Yiwen Li Brendan Dolan-Gavitt Sam Weber Justin Cappos
New York University

Abstract
Virtual machines (VMs) that try to isolate untrusted

code are widely used in practice. However, it is often
possible to trigger zero-day flaws in the host Operating
System (OS) from inside of such virtualized systems. In
this paper, we propose a new security metric showing
strong correlation between “popular paths” and kernel
vulnerabilities. We verify that the OS kernel paths ac-
cessed by popular applications in everyday use contain
significantly fewer security bugs than less-used paths.
We then demonstrate that this observation is useful in
practice by building a prototype system which locks an
application into using only popular OS kernel paths. By
doing so, we demonstrate that we can prevent the trig-
gering of zero-day kernel bugs significantly better than
three other competing approaches, and argue that this is
a practical approach to secure system design.

1 Introduction
The number of attacks involving the exploitation of

zero-day vulnerabilities more than doubled from 2014 to
2015 [52]. Skilled hackers can find a security flaw in a
system and use it to hold the system’s users hostage, e.g.,
by gaining root access and compromising the host [25].
Similarly, zero-day vulnerabilities can be exploited [17]
or their presence not be acknowledged [30] by govern-
ment agencies, thus rendering millions of devices vul-
nerable.

In theory, running a program in an operating-system-
level virtual machine (OSVM) like Docker [15] or LXC
[28] should prevent bugs in the host OS kernel from trig-
gering. However, the isolation provided by such systems
is not the whole answer and faces some significant draw-
backs. To be effective, the OSVM’s software must not
contain any bugs that could allow the program to escape
the machine’s containment and interact directly with the
host OS. Unfortunately, these issues are very common
in OSVMs, with 14 CVE vulnerabilities confirmed for
Docker [14] since 2014. The large amount of complex

code needed to run such a system increases the odds that
flaws will be present, and, in turn, that tens of millions
of user machines could be at risk [25]. Furthermore, iso-
lation will not work if a malicious program can access
even a small portion of the host OS’s kernel that contains
a zero-day flaw [12]. Both of these drawbacks reveal the
key underlying weakness in designing OSVM systems –
a lack of information as to which parts of the host kernel
can be safely exported to user programs.

Several attempts have been made to find a reliable met-
ric to pinpoint where bugs are most likely to be in kernel
code. A number of previous studies have suggested that
older code may be less vulnerable than new code [32] or
that certain parts (such as device drivers) of the kernel
[10] may be more bug-prone than others. To these hy-
potheses, we add a new security metric idea, called “pop-
ular paths.” Positing that bugs in the popular paths, as-
sociated with frequently-used programs, are more likely
to be found in software testing because of the numerous
times they are executed by diverse pieces of software, we
propose that kernel code found in these paths would have
less chance of containing bugs than code in less-used
parts of the kernel. We perform a quantitative analysis
of resilience to flaws in two versions of the Linux kernel
(version 3.13.0 and version 3.14.1), and find that only
about 3% of the bugs are present in popular code paths,
despite these paths accounting for about one-third of the
total reachable kernel code. When we test our “popular
paths” metric against the two aforementioned “code age”
and “device drivers” metrics, we find our “popular paths”
metric is much more effective (Section 3.2).

This key information inspired the idea that if we could
design virtual machines that use only “popular kernel
paths,” a strategy we have dubbed Lock-in-Pop, it would
greatly increase resilience to zero-day bugs in the host
OS kernel. Yet using such a design scheme creates a few
challenges that would need to be overcome. These in-
clude:

USENIX Association 2017 USENIX Annual Technical Conference 1

• It might not be possible in real-life codebases to com-
pletely avoid “unpopular paths.” If other applications,
or future versions of applications we tested, frequently
require the use of “unpopular paths,” would this make
our metric untenable? (Section 4.2)

• The exploits that adversaries use change over time.
Could our observation that “popular paths” are safer
be only an artifact of when we did our measurements,
and not be predictive of future exploits? (Section 3.2)

• Lastly, can developers make use of this observation in
a practical setting? That is, is it feasible for devel-
opers to actively try to avoid unpopular code paths?
(Section 4.3)

While we address some of these challenges in devel-
oping the Lock-in-Pop design, we want to test how well a
system could function if it forced applications to use only
popular kernel paths. To conduct these tests, we built a
prototype system, called Lind. For Lind, we pick two
key components – Google’s Native Client (NaCl) [51]
and Seattle’s Repy [8]. NaCl serves as a computational
module that isolates binaries, providing memory safety
for legacy programs running in our OSVM. It also passes
system calls invoked by the program to the operating sys-
tem interface, called SafePOSIX. SafePOSIX re-creates
the broader POSIX functionalities needed by applica-
tions, while being contained within the Repy sandbox.
An API in the sandbox only allows access to popular ker-
nel paths, while the small (8K LOC) sandbox kernel of
Repy isolates flaws in SafePOSIX to prevent them from
directly accessing the host OS kernel.

To test the effectiveness of Lind and our “popular
paths” metric, we replicated 35 kernel bugs discov-
ered in Linux kernel version 3.14.1. We attempted to
trigger those bugs in Lind and three other virtualized
environments, including Docker [15], LXC [28], and
Graphene [43]. In this study, our evaluation was fo-
cused on comparing operating-system-level virtualiza-
tion containers, such as Docker and LXC, and library
OSes, such as Graphene. We excluded bare-metal hy-
pervisors [4, 46], hardware-based virtualization [3, 22]
and full virtualization virtual machines, such as Virtual-
Box [45], VMWare Workstation [47], and QEMU [37].
While our “popular paths” metric may potentially ap-
ply to those systems, a direct comparison is not possi-
ble since they have different ways of accessing hardware
resources, and would require different measurement ap-
proaches.

Our results show that applications in Lind are substan-
tially less likely to trigger kernel bugs. By doing so, we
demonstrate that forcing an application to use only pop-
ular OS paths can be an effective and practical method
to improve system security. Armed with this knowledge,

the Lock-in-Pop principle can be adapted to incorporate
other OSVM design configurations.

In summary, the main contributions of this paper are
as follows:

• We propose a quantitative metric that evaluates secu-
rity at the line-of-code level, and verify our hypothesis
that “popular paths” have significantly fewer security
bugs than other paths.

• Based on the “popular paths” metric, we develop a
new design scheme called Lock-in-Pop that accesses
only popular code paths through a very small trusted
computing base. The need for complex functionality
is addressed by re-creating riskier system calls in a
memory-safe programming language within a secure
sandbox.

• To demonstrate the practicality of the “popular paths”
metric, we build a prototype virtual machine, Lind, us-
ing the Lock-in-Pop design, and test its effectiveness
against three other virtual machines. We find that Lind
exposes 8-12x fewer zero-day kernel bugs.

2 Goals and Threat Model
In this section, we define the scope of our efforts. We

also briefly note why this study does not evaluate a few
existing design schemes.
Goals. Ultimately, our goal is to help designers cre-
ate systems that allow untrusted programs to run on un-
patched and vulnerable host OSes without triggering vul-
nerabilities that attackers could exploit. Developing ef-
fective defenses for the host OS kernel is essential as ker-
nel code can expose privileged access to attackers that
could lead to a system takeover.

Our hypothesis is that OS kernel code paths that are
frequently used receive more attention and therefore are
less likely to contain security vulnerabilities. Our ap-
proach will be to test this hypothesis and explore the fea-
sibility of building more secure virtualization systems,
such as guest OSVMs, system call interposition mod-
ules, and library OSes, by forcing untrusted applications
to stay on popular kernel code paths.
Threat model. When an attack attempt is staged on a
host OS in a virtualization system, the exploit can be
done either directly or indirectly. In a direct exploit,
the attacker accesses a vulnerable portion of the host
OS’s kernel using crafted attack code. In an indirect ex-
ploit, the attacker first takes advantage of a vulnerability
in the virtualization system itself (for example, a buffer
overflow vulnerability) to escape the VM’s containment.
Once past the containment, the attacker can run arbitrary
code in the host OS. The secure virtualization system de-
sign we propose in Section 4 can prevent both types of
attacks effectively.

2 2017 USENIX Annual Technical Conference USENIX Association

Based on the goals mentioned above, we make the fol-
lowing assumptions about the potential threats our sys-
tem could face:

• The attacker possesses knowledge of one or more un-
patched vulnerabilities in the host OS.

• The attacker can execute any code in the secure virtu-
alization system.

• If the attack program can trigger a vulnerability in any
privileged code, whether in the host OS or the secure
virtualization system, the attacker is then considered
successful in compromising the system.

3 Developing a Quantitative Metric for
Evaluating Kernel Security

If we knew which lines of code in the kernel are likely
to contain zero-day bugs, we could try to avoid using
them in an OSVM. In this section, we formulate and test
a quantitative evaluation metric that can indicate which
lines of code are likely to contain bugs. This metric is
based on the idea that kernel paths executed by popular
applications during everyday use are less likely to con-
tain security flaws. The rationale is that these code paths
are well-tested due to their constant use, and thus fewer
bugs can go undetected. Our initial tests yielded promis-
ing results. Additionally, when tested against two earlier
strategies for predicting bug locations in the OS kernel,
our metric compared favorably.
3.1 Experimental Setup

We used two different versions of the Linux kernel in
our study. Since our findings for these versions are quan-
titatively and qualitatively similar, we report the results
for 3.13.0 in this section and use 3.14.1 in Section 5. To
trace the kernel, we used gcov [19], a standard program
profiling tool in the GCC suite. The tool indicates which
lines of kernel code are executed when an application
runs.
Popular kernel paths. To capture the popular kernel
paths, we used two strategies concurrently. First, we at-
tempted to capture the normal usage behavior of popu-
lar applications. To do this, two students used applica-
tions from the 50 most popular packages in Debian 7.0
(omitting libraries, which are automatically included by
packages that depend on them) according to the Debian
Popularity Contest [1], which tracks the usage of Debian
packages on an opt-in basis. Each student used 25 ap-
plications for their tasks (e.g., writing, spell checking,
printing in a text editor, or using an image processing
program). These tests were completed over 20 hours of
total use over 5 calendar days.

The second strategy was to capture the total range of
applications an individual computer user might regularly

Figure 1: Percentage of different kernel areas that were
reached during LTP and Trinity system call fuzzing experi-
ments, with the zero-day kernel bugs identified in each area.

access. The students used the workstation as their desk-
top machine for a one-week period. They did their home-
work, developed software, communicated with friends
and family, and so on, using this system. Software was
installed as needed. From these two strategies, we ob-
tained a profile of the lines of kernel code that defined
our popular kernel paths. We make these traces publicly
available to other researchers [24], so they may analyze
or replicate our results.
Reachable kernel paths. There are certain paths in the
kernel, such as unloaded drivers, that are unreachable
and unused. To determine which paths are unreachable,
we used two techniques. First, we performed system call
fuzzing with the Trinity system call fuzz tester [42]. Sec-
ond, we used the Linux Test Project (LTP) [26], a test
suite written with detailed kernel knowledge.
Locating bugs. Having identified the kernel paths used
in popular applications, we then investigated how bugs
are distributed among these paths. We collected a list
of severe kernel bugs from the National Vulnerability
Database [31]. For each bug, we found the patch that
fixed the problem and identified which lines of kernel
code were modified to remove it. For the purpose of this
study, a user program that can execute a line of kernel
code changed by such a patch is considered to have the
potential to exploit that flaw. Note that it is possible that,
in some situations, this will over-estimate the exploita-
tion potential because reaching the lines of kernel code
where a bug exists does not necessarily imply a reliable,
repeatable capability to exploit the bug.
3.2 Results and Analysis
Bug distribution. The experimental results from Sec-
tion 3.1 show that only one of the 40 kernel bugs tested
for was found among the popular paths, even though
these paths make up 12.4% of the kernel (Figure 1).

To test the significance of these results, we performed
a power analysis. We assume that kernel bugs appear at

USENIX Association 2017 USENIX Annual Technical Conference 3

Figure 2: Bug density comparison among three metrics.

an average rate proportional to the number of lines of ker-
nel code. Therefore, consistent with prior research [29],
the rate of defect occurrence per LOC follows a Poisson
distribution [35]. The premise we tested is that bugs oc-
cur at different rates in different parts of the kernel, i.e.,
that the less popular kernel portion has more bugs.

We first divided the kernel into two sets, A and B,
where bugs occur at rates λA and λB, and λA 6= λB. In this
test, A represents the popular paths in the kernel, while
B addresses the less commonly-used paths. Given the
null hypothesis that the rate of defect occurrences is the
same in set A and B (or bugs in A and B are drawn from
the same Poisson distribution), we used the Uniformly
Most Powerful Unbiased (UMPU) test [39] to compare
unequal-sized code blocks. At a significance level of
α = 0.01, the test was significant at p= 0.0015, rejecting
the null hypothesis. The test also reported a 95% confi-
dence that λA/λB ∈ [0.002,0.525]. This indicates that the
ratio between the bug rates is well below 1. Since B has a
bug rate much larger than that of A, this result shows that
popular paths have a much lower bug rate than unpopular
ones.
Comparison with other security metrics. Ozment, et
al. [32] demonstrated that older code in the Berkeley
Software Distribution (BSD) [7] kernel tended to have
fewer bugs (metric 1). To test Ozment’s metric using our
Linux bug dataset, we separated the code into five differ-
ent age groups. Our results (Figure 2) showed a substan-
tial number of bugs located in each group, and not just
in the newer code. Therefore, buggy code in the Linux
kernel cannot be identified simply by this age-based met-
ric. In addition, this metric would seem to have limited
use for designing a secure virtualization system, as no
system could run very long exclusively on old code.

Another metric, reported by Chou, et al. [10], showed
that certain parts of the kernel, particularly device
drivers, were more vulnerable than others (metric 2). Ap-
plying this metric on our dataset, we found that the driver
code in our version of the Linux kernel accounted for
only 8.9% of the total codebase, and contained just 4 out
of the 40 bugs (Figure 2). One reason for this is that
after Chou’s study was published system designers fo-
cused efforts on improving driver code. Palix [33] found

that drivers now has a lower fault rate than other direc-
tories, such as arch and fs.

Additionally, there are other security metrics that oper-
ate at a coarser granularity, e.g., the file level. However,
when our kernel tests were run at a file granularity, we
found that even popular programs used parts of 32 files
that contained flaws. Yet, only one bug was triggered by
those programs. In addition, common programs tested
at this level also executed 36 functions that were later
patched to fix security flaws, indicating the need to lo-
calize bugs at a finer granularity.

To summarize, our results demonstrate that previously
proposed security metrics show only weak correlation
between the occurrence of bugs and the type of code
they target. In contrast, our metric (metric 3) provides
an effective and statistically significant means for pre-
dicting where in the kernel exploitable flaws will likely
be found. For the remainder of the paper, we will focus
on using our “popular paths” metric to design and build
secure virtualization systems.

4 A New Design for Secure Virtualization
Systems

In the previous section we have shown that “popular
paths” correlate in a statistically significant manner with
security. Next, we want to demonstrate that our “popular
paths” metric is useful in practice for designing secure
virtualization systems. We first briefly discuss the lim-
itations faced by existing methods, due to the lack of a
good security metric. We then discuss our new design
scheme named Lock-in-Pop, which follows our metric by
accessing only popular code paths.
4.1 Previous Attempts and Their Limitations
System call interposition (SCI). SCI systems [20, 48]
filter system calls to mediate requests from untrusted user
code instead of allowing them to go directly to the kernel.
The filter checks a predefined security policy to decide
which system calls are allowed to pass to the underlying
kernel, and which ones must be stopped.

This design is limited by its overly complicated ap-
proach to policy decisions and implementation. To make
a policy decision, the system needs to obtain and inter-
pret the OS state (e.g., permissions, user groups, register
flags) associated with the programs it is monitoring. The
complexity of OS states makes this process difficult and
can lead to inaccurate policy decisions.
Functionality re-creation. Systems such as Drawbridge
[36], Bascule [5], and Graphene [43] can provide richer
functionality and run more complex programs than most
systems built with SCI alone because they have their own
interfaces and libraries. We label such a design as “func-
tionality re-creation.”

The key to this design is to not fully rely on the under-
lying kernel for system functions, but to re-create its own

4 2017 USENIX Annual Technical Conference USENIX Association

Figure 3: Lock-in-Pop design ensures safe execution of un-
trusted user code despite existing potential zero-day bugs in the
OS kernel.

system functionality. When it has to access resources,
like memory, CPU, and disk storage, the system accesses
the kernel directly with its underlying TCB code.

Functionality re-creation provides a more realistic so-
lution to building virtualization systems than earlier ef-
forts. However, functionality re-creation has two pitfalls:
first, if the re-created functionality resides in the TCB
of the virtualization system, then vulnerabilities there
can expose the host OS to attack as well. For example,
hundreds of vulnerabilities have been reported in exist-
ing virtualization systems, such as QEMU and VMWare,
over the past ten years [31].

Second, functionality re-creation may assume that the
underlying host kernel is correct. As we have seen, this
assumption is often incorrect: host kernels may have
bugs in their implementation that leave them vulnerable
to attack. Thus, to provide the greatest assurance that the
host kernel will not be exposed to malicious user pro-
grams, a secure functionality re-creation design should
try to deliberately avoid kernel paths that are likely to
contain flaws. We discuss this approach in detail next.
4.2 Lock-in-Pop: Staying on the Beaten Path

Recall that we want to show that the “popular paths”
metric can be used in practice. We do so by devising
a design in which all code, including the complex part
of the operating system interface, accesses only popular
kernel paths through a small TCB. As it “locks” all func-
tionality requests into only the “popular paths,” we call
this design Lock-in-Pop.

At the lowest level of the design (interfacing with the
host OS) is the sandbox kernel (¬ in Figure 3). The
sandbox kernel’s main role is to ensure that only pop-

ular paths (in Figure 3) of the host OS’s kernel can be
accessed. The sandbox kernel could thus function as a
very granular system call filter, or as the core of a pro-
gramming language sandbox. Note that the functionality
provided by the sandbox kernel is (intentionally) much
less than what an application needs. For example, an
application may store files in directories and set permis-
sions on those files. The sandbox kernel may provide a
much simpler abstraction (e.g., a block storage abstrac-
tion), so long as the strictly needed functionality (e.g.,
persistent storage) is provided.

Constructing the sandbox kernel is not dependent
on any specific technique or programming language.
Instead, the sandbox kernel follows a central design
principle to include only simple and necessary sys-
tem calls with basic flags, which can be checked
to verify that only “popular paths” are used. The
sandbox kernel should start with building-block func-
tions to first form a minimum set of system calls.
To give one example, for network programs, open-
ing a TCP connection would be considered an essen-
tial function. We can verify that the lines of ker-
nel code that correspond to opening TCP sockets, such
as lines in void tcp init sock(struct sock *sk),
are included in the “popular paths” for that system,
and so decide to include the open tcp connection()

function in the sandbox kernel. Examples of other
necessary functions are file.open, file.close,
file.read, and file.write for filesystem functions,
and create thread, create lock, lock.acquire,
and lock.release for threading functions.

In order to make security our priority, the designed
sandbox kernel should only use a subset of the “popu-
lar paths.” For systems where security is not as critical,
trade-offs can certainly be made to include some “unpop-
ular paths” to accommodate applications. Further discus-
sion of this trade-off is beyond the scope of this paper,
though we acknowledge it is an issue that should be ad-
dressed as Lock-in-Pop is deployed. While restricting the
system call interface is a big hammer for limiting access
to “popular paths” in the kernel, we believe that this is
the best choice available, given that we do not want to
require modification to the kernel, and would like to al-
low users to easily run their applications without much
extra effort.

The application is provided more complex functional-
ity via the SafePOSIX re-creation (® in Figure 3). Safe-
POSIX has the needed complexity to build more conve-
nient higher-level abstractions using the basic function-
ality provided by the sandbox kernel. The SafePOSIX
re-creation is itself isolated within a library OS sandbox,
which forces all system calls to go through the sand-
box kernel. So long as this is performed, all calls from
the SafePOSIX re-creation will only touch the permitted

USENIX Association 2017 USENIX Annual Technical Conference 5

(popular) kernel paths in the underlying host OS.
Similarly, untrusted user code (¯ in Figure 3) also

must be restricted in the way in which it performs sys-
tem calls. System calls must go through the SafePOSIX
re-creation, into the sandbox kernel, and then to the host
OS. This is done because if user code could directly make
system calls, it could access any desired path in the host
OS’s kernel, and thus exploit bugs within it.

Note that it is expected that bugs will occur in many
components, including both the non-popular (risky) ker-
nel paths (° in Figure 3), and in the SafePOSIX re-
creation. Even the user program will be buggy or perhaps
explicitly malicious (created by attackers). Since the re-
maining components (¬ and in Figure 3) are small
and can be thoroughly tested, this leads to a lower risk of
compromise.
4.3 Implementation of Lock-in-Pop

To test the practicality of the “popular paths” metric
and our Lock-in-Pop design, we implement a prototype
virtual machine called Lind.1 The purpose of building
the Lind prototype is to demonstrate that our “popular
paths” metric is practical, and that developers can build
secure systems using it. Lind is divided into a com-
putational module that enforces software fault isolation
(SFI) and a SafePOSIX module that safely re-creates the
OS functionality needed by user applications. We use a
slightly modified version of Native Client (NaCl) [51] for
the computational module; SafePOSIX is implemented
using Restricted Python (Repy) [8] and supports com-
plex user applications without exposing potentially risky
kernel paths.

In this section we provide a brief description of these
components and how they were integrated into Lind, fol-
lowed by an example of how the system works.
4.3.1 Primary Components
Native Client. We use NaCl to isolate the computation
of the user application from the kernel. NaCl allows Lind
to work on most types of legacy code. It compiles the
programs to produce a binary with software fault isola-
tion. This prevents applications from performing system
calls or executing arbitrary instructions. Instead, the ap-
plication will call into a small, privileged part of NaCl
that forwards system calls. In NaCl’s original implemen-
tation, these calls would usually be forwarded to the host
OS kernel. In Lind, we modified NaCl to instead forward
these calls to our SafePOSIX re-creation (described in
detail below).

Repy Sandbox. To build an API that can access the
safe parts of the underlying kernel while still support-
ing existing applications, we need two things. First, we
need a restricted sandbox kernel that only allows access

1Lind is an old English word for a lightweight, but still strong shield con-
structed from two layers of linden wood.

to popular kernel paths. We used Seattle’s Repy [8] sand-
box to perform this task. Second, we have to provide
complex system functions to user programs. For this task
we created SafePOSIX, which implements the widely ac-
cepted standard POSIX interface on top of Repy.

Because the sandbox kernel is the only code that will
be in direct contact with host system calls, it should be
small (to make it easy to audit), while providing primi-
tives that can be used to build more complex functional-
ity. We used Seattle’s Repy system API due to its tiny
(around 8K LOC) sandbox kernel and its minimal set of
system call APIs needed to build general computational
functionality. Repy allows access only to the popular
portions of the OS kernel through 33 basic API func-
tions, including 13 network functions, 6 file functions, 6
threading functions, and 8 miscellaneous functions (Ta-
ble 1) [8, 38].

Repy is only one possible implementation of the sand-
box kernel built for our Lock-in-Pop design. It was cho-
sen because it starts with basic building-block functions
and tries to be conservative in what underlying kernel
functionality it uses. Repy was designed and imple-
mented before our “popular paths” study, and so it was
not a perfect match, but it we experimentally verified that
it uses a subset of the “popular paths.” As reported in our
evaluation (Section 5.3), Repy accessed a subset (around
70% to 80%) of the “popular paths.”

Our current implementation does not end up using all
of the “popular paths.” It is certainly safe to use fewer
paths than are available, but it is possible that we are
missing out on some performance or compatibility gains.
As we extend our prototype, the “popular path” metric
will allow us to check whether new APIs we add expose
potentially unsafe kernel code to applications in the sand-
box.
4.3.2 Enhanced Safety in Call Handling with Safe-

POSIX Re-creation
The full kernel interface is extremely rich and hard

to protect. The Lock-in-Pop design used to build Lind
provides enhances safety protection through both isola-
tion and a POSIX interface (SafePOSIX). The latter re-
creates risky system calls to provide full-featured API for
legacy applications, with minimal impact on the kernel.

In Lind, a system call issued from user code is received
by NaCl, and then redirected to SafePOSIX. To service a
system call in NaCl, a server routine in Lind marshals its
arguments into a text string, and sends the call and the ar-
guments to SafePOSIX. The SafePOSIX re-creation ser-
vices the system call request, marshals the result, and
returns it back to NaCl. Eventually, the result is returned
as the appropriate native type to the calling program.

SafePOSIX is safe because of two design principles.
First, its re-creation only relies on a small set of ba-
sic Repy functions (Table 1). Therefore, the interac-

6 2017 USENIX Annual Technical Conference USENIX Association

Repy Function Available System Calls
Networking gethostbyname, openconnec-

tion, getmyip, socket.send,
socket.receive, socket.close,
listenforconnection, tcpserver-
socket.getconnection,
tcpserversocket.close, sendmes-
sage, listenformessage,
udpserversocket.getmessage,
and udpserversocket.close.

File System I/O
Operations

openfile(filename, create),
file.close(), file.readat(size
limit, offset), file.writeat(data,
offset), listfiles(), and remove-
file(filename).

Threading createlock, sleep, lock.acquire,
lock.release, createthread, and
getthreadname.

Miscellaneous
Functions

getruntime, randombytes, log,
exitall, createvirtualnamespace,
virtualnamespace.evaluate, ge-
tresources, and getlasterror.

Table 1: Repy sandbox kernel functions that support
Lind’s SafePOSIX re-creation.

tion with the host OS kernel is strictly controlled. Sec-
ond, the SafePOSIX re-creation is run within the Repy
programming language sandbox, which properly isolates
any bugs inside SafePOSIX itself.

5 Evaluation
To demonstrate that our “popular paths” metric is use-

ful and practical, we used our Lind prototype as a testing
tool. We compared Lind against three existing virtualiza-
tion systems – Docker, LXC, and Graphene. We chose
these three systems because they currently represent the
most widely-used VM design models for securing the OS
kernel. LXC is a well-known container designed specif-
ically for the Linux kernel. Docker is a widely-used
container that wraps an application in a self-contained
filesystem, while Graphene is an open source library OS
designed to run an application in a virtual machine en-
vironment. Lastly, we also tested Native Linux to serve
as a baseline for comparison. Our tests were designed to
answer four fundamental questions:

How does Lind compare to other virtualization sys-
tems in protecting against zero-day Linux kernel bugs?
(Section 5.1)

How much of the underlying kernel code is exposed,
and is thus vulnerable in different virtualization systems?
(Section 5.2)

If Lind’s SafePOSIX construction has bugs, how se-
vere an impact would this vulnerability have? (Sec-

tion 5.3)
In the Lind prototype, what would be the expected per-

formance overhead in real-world applications? Can de-
velopers make use of the “popular paths” metric to de-
velop practical systems? (Section 5.4)
5.1 Linux Kernel Bug Test and Evaluation
Setup. To evaluate how well each virtualization system
protects the Linux kernel against reported zero-day bugs,
we examined a list of 69 historical bugs that had been
identified and patched in versions 3.13.0 and 3.14.1 of
the Linux kernel [13]. By consulting the National Vul-
nerability Database (NVD) [31], we obtained a list of all
CVEs [11] that were known to exist in these Linux ker-
nel versions as of September 2015; we found 69 such
vulnerabilities. By analyzing security patches for those
bugs, we were able to identify the lines of code in the
kernel that correspond to each one.

In the following evaluation, we assume that a bug
is potentially triggerable if the lines of code that were
changed in the patch are reached (i.e., the same metric
described in Section 3). This measure may overestimate
potential danger posed by a system since simply reach-
ing the buggy code does not mean that guest code ac-
tually has enough control to exploit the bug. However,
this overestimate should apply equally to all of the sys-
tems we tested, which means it is still a useful method of
comparison.

Next, we sought out proof-of-concept code that could
trigger each bug. We were able to obtain or create code
to trigger nine out of the 69 bugs [16]. For the rest, we
used the Trinity system call fuzzer [42] on Linux 3.14.1
(referred to as “Native” Linux in Table 2). By comparing
the code reached during fuzzing with the lines of code
affected by security patches, we were able to identify an
additional 26 bugs that could be triggered. All together,
we identified a total of 35 bugs that we were able to trig-
ger from user space, and these formed our final dataset
for the evaluation.

We then evaluated the protection afforded by four vir-
tualization systems (including Lind) by attempting to
trigger the 35 bugs from inside each one. The host sys-
tem for each test ran a version of Linux 3.14.1 with gcov
instrumentation enabled. For the nine bugs that we could
trigger directly, we ran the proof-of-concept exploit in-
side the guest. For the other 26, we ran the Trinity fuzzer
inside the guest, exercising each system call 1,000,000
times with random inputs. Finally, we checked whether
the lines of code containing each bug were reached in the
host kernel, indicating that the guest could have triggered
the bug.
Results. We found that a substantial number of bugs
could be triggered in existing virtualization systems, as
shown in Table 2. All (100%) bugs were triggered in
Native Linux, while the other programs had lower rates:

USENIX Association 2017 USENIX Annual Technical Conference 7

8/35 (22.9%) in Docker, 12/35 (34.3%) in LXC, and 8/35
(22.9%) bugs in Graphene. Only 1 out of 35 bugs (2.9%)
was triggered in Lind.

When we take a closer look at the results, we can see
that these outcomes have a lot to do with the design prin-
ciples of the virtualization systems and the way in which
they handle system call requests. Graphene [43] is a li-
brary OS that relies heavily on the Linux kernel to han-
dle system calls. Graphene’s Linux library implements
the Linux system calls using a variant of the Drawbridge
[36] ABI, which has 43 functions. Those ABI functions
are provided by the Platform Adaptation Layer (PAL),
implemented using 50 calls to the kernel. It turns out
that 8 vulnerabilities in our test were triggered by PAL’s
50 system calls. By contrast, Lind only relies on 33 sys-
tem calls, which significantly reduces risk and avoids 7
out of the 8 bugs.

Graphene supports many complex and risky system
calls, such as execve, msgsnd, and futex, that reached
the risky (unpopular) portion of the kernel and even-
tually led to kernel bugs. In addition, for many basic
and frequently-used system calls like open and read,
Graphene allows rarely-used flags and arguments to be
passed down to the kernel, which triggered bugs in the
unpopular paths. In Lind, all system calls only allow
a restricted set of simple and frequently-used flags and
arguments. One example from our test result is that
Graphene allows O TMPFILE flag to be passed to the
path openat() system call. This reached risky lines
of code inside fs/namei.c in the kernel, and eventually
triggered bug CVE-2015-5706. The same bug was trig-
gered in the same way inside Docker and LXC, but was
successfully prevented by Lind, due to its strict control
of flags and arguments. In fact, the design of Graphene
requires extensive interaction with the host kernel and,
hence, has many risks. The developers of Graphene man-
ually conducted an analysis of 291 Linux vulnerabilities
from 2011 to 2013, and found out that Graphene’s design
can not prevent 144 of those vulnerabilities.

LXC [28] is an operating-system-level virtualization
container that uses Linux kernel features to achieve con-
tainment. Docker [15] is a Linux container that runs on
top of LXC. The two containers have very similar de-
sign features that both rely directly on the Linux kernel
to handle system call requests. Since system calls in-
side Docker are passed down to LXC and then into the
kernel, we found out that all 8 kernel vulnerabilities trig-
gered inside Docker were also triggered with LXC. In
addition, LXC interacts with the kernel via its liblxc

library component, which triggered the extra 4 bugs.
It should be noted that although the design of Lind

only accesses popular paths in the kernel and implements
SafePOSIX inside of a sandbox, there are a few fun-
damental building blocks for which Lind must rely on

the kernel. For example, mmap and threads cannot be
recreated inside SafePOSIX without interaction with the
kernel, since there have to be some basic operations to
access the hardware. Therefore, Lind passes mmap and
threads directly to the kernel, and any vulnerabilities
related to them are unavoidable. CVE-2014-4171 is a
bug triggered by mmap inside Lind. It was also triggered
inside Docker, LXC, and Graphene, indicating that those
systems rely on the kernel to perform mmap operations as
well.

Our initial results suggest that bugs are usually trig-
gered by extensive interaction with the unpopular paths
in the kernel through complex system calls, or basic sys-
tem calls with complicated or rarely used flags. The
Lock-in-Pop design, and thus Lind, provides strictly con-
trolled access to the kernel, and so poses the least risk.

Vulnerability Native
Linux Docker LXC Graphene Lind

CVE-2015-5706 3 3 3 3 7
CVE-2015-0239 3 7 3 7 7
CVE-2014-9584 3 7 7 7 7
CVE-2014-9529 3 7 3 7 7
CVE-2014-9322 3 3 3 3 7
CVE-2014-9090 3 7 7 7 7
CVE-2014-8989 3 3 3 3 7
CVE-2014-8559 3 7 7 7 7
CVE-2014-8369 3 7 7 7 7
CVE-2014-8160 3 7 3 7 7
CVE-2014-8134 3 7 3 3 7
CVE-2014-8133 3 7 7 7 7
CVE-2014-8086 3 3 3 7 7
CVE-2014-7975 3 7 7 7 7
CVE-2014-7970 3 7 7 7 7
CVE-2014-7842 3 7 7 7 7
CVE-2014-7826 3 7 7 3 7
CVE-2014-7825 3 7 7 3 7
CVE-2014-7283 3 7 7 7 7
CVE-2014-5207 3 7 7 7 7
CVE-2014-5206 3 3 3 7 7
CVE-2014-5045 3 7 7 7 7
CVE-2014-4943 3 7 7 7 7
CVE-2014-4667 3 7 7 3 7
CVE-2014-4508 3 7 7 7 7
CVE-2014-4171 3 3 3 3 3
CVE-2014-4157 3 7 7 7 7
CVE-2014-4014 3 3 3 7 7
CVE-2014-3940 3 3 3 7 7
CVE-2014-3917 3 7 7 7 7
CVE-2014-3153 3 7 7 7 7
CVE-2014-3144 3 7 7 7 7
CVE-2014-3122 3 7 7 7 7
CVE-2014-2851 3 7 7 7 7
CVE-2014-0206 3 7 7 7 7
Vulnerabilities
Triggered

35/35
(100%)

8/35
(22.9%)

12/35
(34.3%)

8/35
(22.9%)

1/35
(2.9%)

Table 2: Linux kernel bugs, and vulnerabilities in different vir-
tualization systems (3: vulnerability triggered; 7: vulnerability
not triggered).

5.2 Comparison of Kernel Code Exposure in Differ-
ent Virtualization Systems

Setup. To determine how much of the underlying ker-
nel can be executed and exposed in each system, we
conducted system call fuzzing with Trinity (similar to
our approach in Section 3) to obtain kernel traces. This
helps us understand the potential risks a virtualization

8 2017 USENIX Annual Technical Conference USENIX Association

Virtualization
system

of
Bugs

Kernel trace (LOC)
Total
coverage

In popular
paths

In risky
paths

LXC 12 127.3K 70.9K 56.4K
Docker 8 119.0K 69.5K 49.5K
Graphene 8 95.5K 62.2K 33.3K
Lind 1 70.3K 70.3K 0

Table 3: Reachable kernel trace analysis for different virtual-
ization systems.

system may pose based upon how much access it allows
to the kernel code. All experiments were conducted un-
der Linux kernel 3.14.1.
Results. We obtained the total reachable kernel trace
for each tested system, and further analyzed the com-
ponents of those traces. These results, shown in Table
3, affirm that Lind accessed the least amount of code in
the OS kernel. More importantly, all the kernel code it
did access was in the popular kernel paths, which con-
tain fewer bugs (Section 3.2). A large portion of the ker-
nel paths accessed by Lind lie in fs/ and perform file
system operations. To restrict file system calls to pop-
ular paths, Lind allows only basic calls, like open(),
close(), read(), write(), mkdir(), and rmdir(),
and permits only commonly-used flags like O CREAT,
O EXCL, O APPEND, O TRUNC, O RDONLY, O WRONLY, and
O RDWR for open().

The other virtualization systems all accessed a sub-
stantial number of code paths in the kernel, and they all
accessed a larger section from the unpopular paths. This
is because they rely on the underlying host kernel to im-
plement complex functionality. Therefore, they are more
dependent on complex system calls, and allow extensive
use of complicated flags. For example, Graphene’s sys-
tem call API supports multiple processes via fork() and
signals, and therefore accesses many risky lines of code.
For basic and frequently-used system calls like open,
Graphene allows rarely-used flags, such as O TMPFILE

and O NONBLOCK to pass down to the kernel, thus reach-
ing risky lines in the kernel that could lead to bugs. By
default, Docker and LXC do not wrap or filter system
calls made by applications running in a container. Thus,
programs have access to basically all the system calls,
and rarely used flags, such as O TMPFILE, O NONBLOCK,
and O DSYNC. Again, this means they can reach risky
lines of code in the kernel.

To summarize, our analysis suggests that Lind triggers
the fewest kernel bugs because it has better control over
the portions of the OS kernel accessed by applications.
5.3 Impact of Potential Vulnerabilities in Lind’s

SafePOSIX Re-creation
Setup. To understand the potential security risks if
Lind’s SafePOSIX re-creation has vulnerabilities, we
conducted system call fuzzing with Trinity to obtain the
reachable kernel trace in Linux kernel 3.14.1. The goal is

Virtualization
system

of
Bugs

Kernel trace (LOC)
Total
coverage

In popular
paths

In risky
paths

Lind 1 70.3K 70.3K 0
Repy 1 74.4K 74.4K 0

Table 4: Reachable kernel trace analysis for Repy.

to see how much of the kernel is exposed to SafePOSIX.
Since our SafePOSIX runs inside the Repy sandbox ker-
nel, fuzzing it suffices to determine the portion of the
kernel reachable from inside the sandbox.
Results. The results are shown in Table 4. The trace
of Repy is slightly larger (5.8%) than that of Lind. This
larger design does not allow attackers or bugs to access
the risky paths in the OS kernel, and it leaves open only
a small number of additional popular paths. These are
added because some functions in Repy have more ca-
pabilities for message sending and network connection
than Lind’s system call interface. For example, in Repy,
the sendmessage() and openconnection() functions
could reach more lines of code when fuzzed. However,
the kernel trace of Repy still lies completely within the
popular paths that contain fewer kernel bugs. Thus, the
Repy sandbox kernel has only a very slim chance of trig-
gering OS kernel bugs.

Since it is the direct point of contact with the OS ker-
nel, in theory, the Repy sandbox kernel could be a weak-
ness in the overall security coverage provided by Lind.
Nevertheless, the results above show that, even if it has
a bug or failure, the Repy kernel should not substantially
increase the risk of triggering bugs.

5.4 Practicality Evaluation
The purpose of our practicality evaluation is to show

that the “popular paths” metric is practical in building
real-world systems. Overhead is expected. We have not
optimized our Lind prototype to try to improve perfor-
mance, since that is not our main purpose for building
the prototype.
Setup. We ran a few programs of different types to un-
derstand Lind’s performance impact. All applications
ran unaltered and correctly in Lind. To run the applica-
tions, it was sufficient to just recompile the unmodified
source code using NaCl’s compiler and Lind’s glibc to
call into SafePOSIX.

To measure Lind’s runtime performance overhead
compared to Native Linux when running real-world ap-
plications, we first compiled and ran six widely-used
legacy applications: a prime number calculator Primes
1.0, GNU Grep 2.9, GNU Wget 1.13, GNU Coreutils 8.9,
GNU Netcat 0.7.1, and K&R Cat. We also ran more ex-
tensive benchmarks on two large legacy applications, Tor
0.2.3 and Apache 2.0.64, in Lind. We used Tor’s built-in
benchmark program and Apache’s benchmarking tool ab
to perform basic testing operations and record the execu-

USENIX Association 2017 USENIX Annual Technical Conference 9

Application Native Code Lind Impact
Primes 10000 ms 10600 ms 1.06x

GNU Grep 65 ms 260 ms 4.00x
GNU Wget 25 ms 96 ms 3.84x

GNU Coreutils 275 ms 920 ms 3.35x
GNU Netcat 780 ms 2180 ms 2.79x

K&R Cat 20 ms 125 ms 6.25x

Table 5: Execution time performance results for six real-world
applications: Native Linux vs. Lind.

Benchmark Native Code Lind Impact
Digest Tests:

Set 54.80 nsec/element 176.86 nsec/element 3.22x
Get 42.30 nsec/element 134.38 nsec/element 3.17x

Add 11.69 nsec/element 53.91 nsec/element 4.61x
IsIn 8.24 nsec/element 39.82 nsec/element 4.83x

AES Tests:
1 Byte 14.83 nsec/B 36.93 nsec/B 2.49x

16 Byte 7.45 nsec/B 16.95 nsec/B 2.28x
1024 Byte 6.91 nsec/B 15.42 nsec/B 2.23x
4096 Byte 6.96 nsec/B 15.35 nsec/B 2.21x
8192 Byte 6.94 nsec/B 15.47 nsec/B 2.23x
Cell Sized 6.81 nsec/B 14.71 nsec/B 2.16x

Cell Processing:
Inbound 3378.18 nsec/cell 8418.03 nsec/cell 2.49x

(per Byte) 6.64 nsec/B 16.54 nsec/B -
Outbound 3384.01 nsec/cell 8127.42 nsec/cell 2.40x
(per Byte) 6.65 nsec/B 15.97 nsec/B -

Table 6: Performance results on Tor’s built-in benchmark pro-
gram: Native Linux vs. Lind.

tion time.
Results. Table 5 shows the runtime performance for the
six real-world applications mentioned above. The Primes
application run in Lind has a 6% performance overhead.
The small amount of overhead is generated by NaCl’s in-
struction alignment at build time. We expect other CPU
bound processes to behave similarly.

The other five applications require repeated calls into
SafePOSIX, and this additional computation produced
the extra overhead.

A summary of the results for Tor is shown in Table
6. The benchmarks focus on cryptographic operations,
which are CPU intensive, but they also make system calls
like getpid and reads to /dev/urandom. The digest
operations time the access of a map of message digests.
The AES operations time includes encryptions of several
sizes and the creation of message digests. Cell process-
ing executes full packet encryption and decryption. In
our test, Lind slowed down these operations by 2.5x to
5x. We believe these slowdowns are due to the increased
code size produced by NaCl, and the increased overhead
from Lind’s SafePOSIX system call interface.

Results for the Apache benchmarking tool ab are pre-
sented in Table 7. In the set of experiments, Lind pro-
duced performance slowdowns around 2.7x. Most of the
overhead was incurred due to system call operations in-
side the SafePOSIX re-creation.

Performance overhead in Lind is reasonable, consid-
ering that we did not specifically optimize any part of
the code to improve speed. It should also be noted that

of Requests Native Code Lind Impact
10 900 ms 2400 ms 2.67x
20 1700 ms 4700 ms 2.76x
50 4600 ms 13000 ms 2.83x

100 10000 ms 27000 ms 2.70x

Table 7: Performance results on Apache benchmarking tool
ab: Native Linux vs. Lind.

performance slowdown is common in virtualization sys-
tems. For example, Graphene [43] also shows an over-
head ranging from 1.4x to 2x when running applications
such as the Apache web server and the Unixbench suite
[44]. In many cases, Lind shares the same magnitude of
slowdown with Graphene. Lind’s ability to run a variety
of programs demonstrates the practicality of our “popu-
lar paths” metric.

6 Limitations
One of our challenges in conducting this study was de-

ciding where to place the limits of its scope. To explore
any one strategy in depth, we felt it was necessary to in-
tentionally exclude consideration of a few other valid ap-
proaches. These choices may have placed some limita-
tions on our results.

One limitation is that there are some types of bugs that
are difficult to evaluate using our metric. For example,
bugs caused by a race condition, or that involve defects
in internal kernel data structures, or that require complex
triggering conditions across multiple kernel paths, may
not be immediately identified using our metric. As we
continue to refine our metric, we will also look to evolve
our evaluation criteria to find and protect against more
complex types of bugs.

Another limitation is that our current metric concludes
that certain lines of code in the kernel were reached or
not. Though this is an important factor in exploiting a
bug, it may not be fully sufficient for all bugs. While
a stronger conclusion about bug exploitation conditions
would be ideal, it would be hard to do so using a quan-
titative metric. Instead, it would require a more compli-
cated manual process, which was outside the scope of
this study.

7 Related Work
This section summarizes a number of earlier initiatives

to ensure the safety of privileged code. The literature ref-
erenced in this section includes past efforts to design and
build virtualized systems, as well as background infor-
mation on technologies incorporated into Lind.

Lind incorporates a number of existing virtualization
techniques, which are described below.

System Call Interposition (SCI) tracks all the system
calls of processes such that each call can be modified or
denied. Goldberg, et al. developed Janus [20, 48], which
adopted a user-level “monitor” to filter system call re-
quests based on user-specified policies. Garfinkel, et al.

10 2017 USENIX Annual Technical Conference USENIX Association

proposed a delegating architecture for secure system call
interposition called Ostia [18]. Their system introduced
emulation libraries in the user space to mediate sensitive
system calls issued by the sandboxed process. SCI is
similar to the Lind isolation mechanism. However, SCI-
based tools can easily be circumvented if the implemen-
tation is not careful [41].

Software Fault Isolation (SFI) transforms a given pro-
gram so that it can be guaranteed to satisfy a security
policy. Wahbe, et al. [49] presented a software ap-
proach to implementing fault isolation within a single
address space. Yee, et al. from Google developed Na-
tive Client (NaCl) [51], an SFI system for the Chrome
browser that allows native executable code to run directly
in a browser. As discussed in Section 5, Lind adopts
NaCl as a key component to ensure secure execution of
binary code.

Language-based virtualization. Programming lan-
guages like Java, JavaScript, Lua [27], and Sil-
verlight [40] can provide safety in virtual systems by
“translating” application commands into a native lan-
guage. Though many sandboxes implement the bulk of
standard libraries in memory-safe languages like Java or
C#, flaws in this code can still pose a threat [21, 34].
Any bug or failure in a programming language virtual
machine is usually fatal. In contrast, the main compo-
nent of Lind is built using Repy, which is a programming
language with a very small TCB, minimizing the chance
of contact with kernel flaws.

OS virtualization techniques include bare-metal hard-
ware virtualization, such as VMware ESX Server,
Xen [4], and Hyper-V, container systems such as
LXC [28], BSD’s jail, and Solaris zones, and hosted
hypervisor virtualization, such as VMware Workstation,
VMware Server, VirtualPC and VirtualBox. Security
by isolation [2, 9, 23, 50] uses containment to provide
safe executing environments for multiple user-level vir-
tual environments sharing the same hardware. However,
this approach is limited due to the large attack surface
exposed by most hypervisors.

Library OSes allow applications to efficiently gain the
benefits of virtual machines by refactoring a traditional
OS kernel into an application library. Porter, et al. de-
veloped Drawbridge [36], a library OS that presents a
Windows persona for Windows applications. Similar to
Lind, it restricts access from usermode to the host OS
through operations that pass through the security mon-
itor. Baumann, et al. presented Bascule [5], an archi-
tecture for library OS extensions based on Drawbridge
that allows application behavior to be customized by ex-
tensions loaded at runtime. The same team also devel-
oped Haven [6], which uses a library OS to implement
shielded execution of unmodified server applications in
an untrusted cloud host. Tsai, et al. developed Graphene

[43], a library OS that executes both single and multi-
process applications with low performance overhead.

The key distinction between Lind and other existing
library OSes is that Lind leverages our “popular paths”
metric to verify that it only accesses the safer part of the
kernel. Existing library OSes trust the underlying host
kernel to perform many functions, and filter only cer-
tain system calls. Our work and previous library OSes
are orthogonal, but we provide useful insights with our
“popular paths” metric.

8 Conclusion
In this paper, we proposed a new security metric based

on quantitative measures of kernel code execution when
running user applications. Our metric evaluates if the
lines of kernel code executed have the potential to trig-
ger zero-day bugs. Our key discovery is that popular
kernel paths contain significantly fewer bugs than other
paths. Based on this insight, we devise a new design
for a secure virtual machine called Lock-in-Pop. As
the name implies, the design scheme locks away access
to all kernel code except that found in paths frequently
used by popular programs. We test the Lock-in-Pop
idea by implementing a prototype virtual machine called
Lind, which features a minimized TCB and prevents di-
rect access to application calls from less-used, riskier
paths. Instead, Lind supports complex system calls by
securely re-creating essential OS functionality inside a
sandbox. In tests against Docker, LXC, and Graphene,
Lind emerged as the most effective system in preventing
zero-day Linux kernel bugs.

So that other researchers may replicate our results, we
make all of the kernel trace data, benchmark data, and
source code for this paper available [24].

Acknowledgements
We thank our shepherd, Dan Williams, and the anony-

mous reviewers for their valuable comments. We would
also like to thank Lois Anne DeLong for her efforts
on this paper, as well as Chris Matthews, Shengqian
Ji, Qishen Li, Ali Gholami, Wenzheng Xu, and Yanyan
Zhuang for their contributions to this project. Our work
on Lock-in-Pop was supported by U.S. National Science
Foundation Award 1223588.

References
[1] Debian Popularity Contest. http://popcon.debian.org/main/in

dex.html. Accessed December 2014.

[2] Qubes OS. http://www.qubes-os.org. Accessed November 2015.

[3] Intel Virtualization Technology Specification for the Intel Itanium
Architecture (VT-i), April 2005.

[4] BARHAM, P., DRAGOVICH, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceed-
ings of the SOSP’03 (2003), pp. 164–177.

USENIX Association 2017 USENIX Annual Technical Conference 11

[5] BAUMANN, A., LEE, D., FONSECA, P., GLENDENNING, L.,
LORCH, J. R., BOND, B., OLINSKY, R., AND HUNT, G. C.
Composing os extensions safely and efficiently with bascule. In
Proceedings of the Eurosys’13 (2013).

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with haven. In Proceedings of
the OSDI’14 (2014).

[7] Berkeley software distribution. http://www.bsd.org. Accessed
September 2016.

[8] CAPPOS, J., DADGAR, A., RASLEY, J., SAMUEL, J.,
BESCHASTNIKH, I., BARSAN, C., KRISHNAMURTHY, A., AND
ANDERSON, T. Retaining sandbox containment despite bugs
in privileged memory-safe code. In Proceedings of the CCS’10
(2010).

[9] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND
PORTS, D. R. Overshadow: A virtualization-based approach
to retrofitting protection in commodity operating systems. SIG-
PLAN Not. 43, 3 (Mar. 2008), 2–13.

[10] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER,
D. An empirical study of operating systems errors, vol. 35. ACM,
2001.

[11] Common Vulnerabilities and Exposures. https://cve.mitre.org.

[12] CVE-2016-5195. Dirty COW - (CVE-2016-5195) - Docker
Container Escape. https://web.nvd.nist.gov/view/

vuln/detail?vulnId=CVE-2016-5195, 2016.

[13] CVE Details Datasource. http://www.cvedetails.com/vulnerabilit
y-list/vendor id-33/product id-47/version id-163187/Linux-
Linux-Kernel-3.14.1.html. Accessed October 2014.

[14] CVE DETAILS. 14 CVE Docker Vulnerabilities Re-
ported. http://www.cvedetails.com/product/28125/Docker-
Docker.html?vendor id=13534, 2017.

[15] Docker. https://www.docker.com. Accessed September 2016.

[16] Exploit Database. https://www.exploit-db.com. Accessed Octo-
ber 2014.

[17] FBI Tweaks Stance On Encryption BackDoors, Admits To Using
0-Day Exploits. http://www.darkreading.com/endpoint/fbi-
tweaks-stance-on-encryption-backdoors-admits-to-using-0-day-
exploits/d/d-id/1323526.

[18] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A
delegating architecture for secure system call interposition. In
Proceedings of the NDSS’04 (2004).

[19] gcov(1) - Linux man page. http://linux.die.net/man/1/gcov. Ac-
cessed October 2014.

[20] GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER,
E. A secure environment for untrusted helper applications (con-
fining the wily hacker). In Proceedings of the USENIX UNIX
Security Symposium’96 (1996).

[21] Learn about java technology. http://www.java.com/en/about/.

[22] KELLER, E., SZEFER, J., REXFORD, J., AND LEE, R. B. No-
hype: virtualized cloud infrastructure without the virtualization.
In ACM SIGARCH Computer Architecture News (2010), vol. 38,
ACM, pp. 350–361.

[23] LI, C., RAGHUNATHAN, A., AND JHA, N. Secure virtual ma-
chine execution under an untrusted management os. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference
on (July 2010), pp. 172–179.

[24] Lind, a new generation of secure virtualization.
https://lind.poly.edu/.

[25] Linux kernel zero-day flaw puts ’tens of millions’ of PCs,
servers and Android devices at risk. http://www.v3.co.uk/v3-
uk/news/2442582/linux-kernal-zero-day-flaw-puts-tens-of-
millions-of-pcs-servers-and-android-devices-at-risk.

[26] Linux Test Project. https://linux-test-project.github.io/. Accessed
February 2015.

[27] The programming language Lua. www.lua.org. Accessed Octo-
ber 2015.

[28] Linux Container (LXC). https://linuxcontainers.org. Accessed
September 2016.

[29] MAYER, A., AND SYKES, A. A probability model for analysing
complexity metrics data. Software Engineering Journal 4, 5
(1989), 254–258.

[30] NSA Discloses 91 Percent Of Vulns It Finds, But How Quickly?
http://www.darkreading.com/vulnerabilities—threats/nsa-
discloses-91-percent-of-vulns-it-finds-but-how-quickly/d/d-
id/1323077.

[31] National Vulnerability Database. https://nvd.nist.gov/. Accessed
September 2015.

[32] OZMENT, A., AND SCHECHTER, S. E. Milk or wine: does soft-
ware security improve with age? In Usenix Security (2006).

[33] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., LAWALL,
J., AND MULLER, G. Faults in linux: ten years later. In ACM
SIGARCH Computer Architecture News (2011), vol. 39, ACM,
pp. 305–318.

[34] PAUL, N., AND EVANS., D. Comparing java and .net security:
Lessons learned and missed. In Computers and Security (2006),
pp. 338–350.

[35] Poisson Distribution. https://en.wikipedia.org/wiki/Poisson distri
bution.

[36] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY,
R., AND HUNT, G. C. Rethinking the library os from the top
down. In Proceedings of the ASPLOS’11 (Newport Beach, Cali-
fornia, USA, 2011), pp. 291–304.

[37] Qemu. http://wiki.qemu.org/Main Page. Accessed September
2016.

[38] Seattle’s Repy V2 Library. https://seattle.poly.edu/wiki/RepyV2A
PI. Accessed September 2014.

[39] SHIUE, W.-K., AND BAIN, L. J. Experiment size and power
comparisons for two-sample poisson tests. Applied Statistics
(1982), 130–134.

[40] Microsoft Silverlight. http://www.microsoft.com/silverlight/.
Accessed October 2015.

[41] TAL GARFINKEL. Traps and Pitfalls: Practical Problems in Sys-
tem Call Interposition Based Security Tools.

[42] Trinity, a Linux System call fuzz tester.
http://codemonkey.org.uk/projects/trinity/. Accessed November
2014.

[43] TSAI, C. C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN,
W., JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA,
D., AND PORTER, D. E. Cooperation and security isolation of
library oses for multi-process applications. In Proceedings of the
EuroSys’14 (Amsterdam, Netherlands, 2014).

[44] Unixbench. https://github.com/kdlucas/byte-unixbench. Ac-
cessed September 2016.

[45] Virtualbox. https://www.virtualbox.org. Accessed September
2016.

[46] Vmware server. https://my.vmware.com/web/vmware/info?
slug=infrastructure operations management/vmware server/2 0.

12 2017 USENIX Annual Technical Conference USENIX Association

[47] Vmware workstation. https://www.vmware.com/products/workst
ation. Accessed September 2016.

[48] WAGNER, D. A. Janus: An approach for confinement of un-
trusted applications. In Tech. Rep. CSD-99-1056, University of
California, Berkeley (1999).

[49] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In SIGOPS Oper.
Syst. Rev. 27, 5 (1993), pp. 203–216.

[50] YANG, J., AND SHIN, K. G. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proceedings
of the Fourth ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (New York, NY, USA, 2008),
VEE ’08, ACM, pp. 71–80.

[51] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native client: A sandbox for portable, untrusted x86 native
code. In Proceedings of the IEEE Symposium on Security and
Privacy (Berkeley, CA, USA, 2009), pp. 79–93.

[52] 0-day exploits more than double as attackers prevail in security
arms race. http://arstechnica.com/security/2016/04/0-day-
exploits-more-than-double-as-attackers-prevail-in-security-

arms-race/. Accessed September 2016.

USENIX Association 2017 USENIX Annual Technical Conference 13

Fast and Precise Retrieval of Forward and Back Porting Information for
Linux Device Drivers

Julia Lawall, Derek Palinski, Lukas Gnirke, Gilles Muller
Sorbonne Universités/UPMC/Inria/LIP6

Abstract

Porting Linux device drivers to target more recent and
older Linux kernel versions to compensate for the ever-
changing kernel interface is a continual problem for
Linux device driver developers. Acquiring information
about interface changes is a necessary, but tedious and
error prone, part of this task. In this paper, we propose
two tools, Prequel and gcc-reduce, to help the developer
collect the needed information. Prequel provides lan-
guage support for querying git commit histories, while
gcc-reduce translates error messages produced by com-
piling a driver with a target kernel into appropriate Pre-
quel queries. We have used our approach in porting 33
device driver files over up to 3 years of Linux kernel his-
tory, amounting to hundreds of thousands of commits.
In these experiments, for 3/4 of the porting issues, our
approach highlighted commits that enabled solving the
porting task. For many porting issues, our approach re-
trieves relevant commits in 30 seconds or less.

1 Introduction

The Linux kernel evolves rapidly, with around 70,000
non-merge commits accepted per year since 2013. Com-
mits may fix bugs and add new functionalities, but may
also change the interfaces between the kernel core and
services that run at the kernel level. For example, be-
tween Linux 3.8 (February 2013) and Linux 4.9 (De-
cember 2016), 2,439 of the 19,473 functions exported to
kernel modules were dropped and 10,056 new exported
functions were introduced. This rate of interface changes
allows the Linux kernel to rapidly address new needs and
resolve performance and security bugs.

While the fast rate of change of Linux kernel inter-
faces has benefits, it poses challenges for developers of
services, such as device drivers, that rely on the kernel
interface. Such a developer has to target a particular ver-
sion of the Linux kernel, but any version chosen will be

quickly out of date. Furthermore, potential users of the
device may rely on earlier kernel versions, due to e.g.,
local customizations or stability requirements. The tight
dependence of device drivers on fast-changing kernel in-
terfaces means that there is a continual need for forward
porting driver code to the interfaces supported by more
recent kernel versions, and back porting driver code to
the interfaces supported by older kernel versions. This
requires a lot of effort for device manufacturers who want
to support the needs of a range of clients and for device
users who rely on specific kernels.

A major challenge in forward or back porting a de-
vice driver is to find out where changes are needed and
what changes should be performed. Many drivers inter-
act with the kernel interface in similar ways, and thus
change examples are likely to be available in the code
history. Still, finding these examples effectively requires
knowing what to look for. One approach is to compile
the driver with the target kernel and take the resulting
error and warning messages as a starting point for iden-
tifying porting issues. These messages, however, may be
redundant, if one error causes the compiler to misinter-
pret other code, and may be too concise to sufficiently
characterize a porting problem. Even when it is possi-
ble to pinpoint the porting issues, an even greater chal-
lenge is to find relevant examples among the hundreds
of commits per day to the Linux kernel. Git,1 used for
change management in the Linux kernel, supports search
for a single regular expression within individual changed
lines, via the commands git log -G and git log -S.
But particular terms may appear within changed lines for
many reasons, not all of which relate to porting issues,
and thus git often returns many irrelevant commits.

The difficulty of obtaining relevant information on
how to port a driver thus calls for tool support. In this pa-
per, we propose an approach to ease driver porting based
on two tools: Prequel and gcc-reduce. Prequel searches

1https://git-scm.com/

USENIX Association 2017 USENIX Annual Technical Conference 15

in a git commit history for commits matching a query.
Queries can include constraints on both changed and un-
changed lines, allowing Prequel to obtain more precise
results than git. Prequel furthermore ranks the result-
ing commits according to the degree of success of the
match, rather than chronologically as done by git, giv-
ing the driver maintainer easy access to the most relevant
results. Gcc-reduce complements Prequel by creating a
bridge from the compiler. Given a set of compiler errors
and warnings, gcc-reduce reduces them to those that are
relevant to porting, and collects complementary informa-
tion from the source code. Gcc-reduce then generates
Prequel queries based on the collected information. Al-
though the possibility remains to write Prequel queries
by hand, gcc-reduce is able to generate most queries rel-
evant to driver porting automatically. Overall, our ap-
proach permits the developer to save time and effort, by
obtaining change examples that are relevant to the port-
ing problem.

The contributions of this paper are as follows:

• Via a case study, we identify two key challenges in
driver porting: determining 1) where changes are
needed and 2) what changes should be performed.

• We propose the tools Prequel and gcc-reduce that
automatically collect information to address these
challenges.

• We evaluate Prequel and gcc-reduce by porting 33
device driver files introduced into the Linux ker-
nel in 2013 or 2015 to or from Linux 4.6, released
in May 2016. Our approach provides information
from the git commit history that enables us to carry
out the port for 3/4 of the issues encountered.

• We show that our approach is suitable for use on a
standard laptop, with many patch queries complet-
ing in 30 seconds or less.

• We compare our approach to the use of git to query
the commit history and the use of Google to find
relevant change suggestions. For queries such as
field type changes, we find that git returns many ir-
relevant commits. For only 33% of the issues does
Google return possibly relevant results among the
top 6 entries in the query summary page. In con-
trast, for our ported 33 driver files, the top ranked
commit returned by our approach is helpful for 86%
of the porting issues.

2 Motivating Example

To understand the challenges in obtaining adequate infor-
mation on how to carry out a driver port, we consider the
lms501kf03 TFT LCD panel driver, introduced into the

Linux kernel in February 2013 in the commit 1be9ca2,
and first released in Linux 3.9. The driver consists of a
single .c file, drivers/video/backlight/lms501kf03.c. We
forward port this code over 16 Linux kernel releases, to
Linux 4.6, released in May 2016.

The experiment. Compiling the original driver with
the Linux 4.6 kernel2 produces the errors and warnings
shown in Figure 1. There are two errors (lines 1 and 8),
about the suspend and resume fields being unknown,
and six warnings. The warnings appear to be triggered
by the same cause as the errors, and thus we focus on the
latter. Specifically, we need to find examples of how to
remove suspend and resume fields, and then see what
we can infer from those examples for porting our driver.

Focusing on suspend, we can try the following git
command, considering commits between the kernel ver-
sion originally targeted by the driver and the version that
is the target of the port:
git log -p -G "\<suspend\>" --diff-filter=M 1be9ca2..v4.6

-p prints the changed lines, -G "\<suspend\>" re-
stricts the results to commits that contain the word
suspend on a changed line, and --diff-filter=M re-
stricts the results to commits that perform modifications,
as opposed to adding or removing files.

Despite the relative sophistication of this git com-
mand, many of the results are completely irrelevant.
For example, the first result, commit ba41e1b, removes
a reference to a suspend field and adds another such
reference on the same structure. Such a commit does
not help fix a reference to a field that no longer exists.
Rather, we need commits in which suspend appears on
removed lines, but not added ones, which is not express-
ible with git log -G. Subsequent commits give similar
results. Indeed, these commits are modifying suspend

fields in structures having types different from the one,
spi driver, used in our driver.

Ideally, we could extend the git log -G to include
the name of the structure type, but this type name is not
likely to be on the same line as the field reference. Never-
theless, we can use the search command of the git viewer
to find occurrences of spi driver in the context lines of
the emitted patch code. This process might not succeed,
because the type name can be arbitrarily distant from the
changed lines. In our case, though, it is successful, but
the user has to analyze and scroll over 7 occurrences of
spi driver within 569 commits before reaching a rele-
vant commit 9d9f780, from January 2015.

Figure 2 shows extracts of the commit 9d9f780. This
commit removes initializations of the suspend and
resume fields, on lines 37-38, but also does many other

2make drivers/video/backlight/lms501kf03.o, with gcc
(Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4.

16 2017 USENIX Annual Technical Conference USENIX Association

1 drivers/video/backlight/lms501kf03.c:433:2: error: unknown field ‘suspend’ specified in initializer
2 .suspend = lms501kf03_suspend,
3 ^
4 drivers/video/backlight/lms501kf03.c:433:2: warning: missing braces around initializer [-Wmissing-braces]
5 drivers/video/backlight/lms501kf03.c:433:2: warning: (near initialization for ‘lms501kf03_driver.driver’) [-Wmissing-braces]
6 drivers/video/backlight/lms501kf03.c:433:2: warning: initialization from incompatible pointer type [enabled by default]
7 drivers/video/backlight/lms501kf03.c:433:2: warning: (near initialization for ‘lms501kf03_driver.driver.name’) [enabled by

default]
8 drivers/video/backlight/lms501kf03.c:434:2: error: unknown field ‘resume’ specified in initializer
9 .resume = lms501kf03_resume,

10 ^
11 drivers/video/backlight/lms501kf03.c:434:2: warning: excess elements in struct initializer [enabled by default]
12 drivers/video/backlight/lms501kf03.c:434:2: warning: (near initialization for ‘lms501kf03_driver’) [enabled by default]

Figure 1: Messages resulting from compiling the original Linux lms501kf03 TFT LCD panel driver with Linux 4.6

things. We thus next have to determine whether these
other changes are relevant to our driver and whether
other examples are needed. We focus on the changes
in the definitions of the functions as3935 suspend and
as3935 resume that are stored in the suspend and
resume fields, respectively. The parameter lists of these
functions are modified to change the type of the first pa-
rameter, and, in the case of the suspend function, to drop
the second parameter. In the body of each function, a
call to spi get drvdata on the original first parameter
is replaced by a call to dev get drvdata on the new
first parameter (lines 10-11 and 16-17). No change is
made to compensate for dropping the second parameter
of the suspend function, as it is unused.

We next compare the observed set of changes to the
code found in the TFT LCD panel driver that we want
to port. Figure 3 shows the relevant code fragments.
Some code fragments are analogous to the ones modi-
fied in commit 9d9f780. For example, our driver also
initializes spi driver suspend and resume fields to
locally defined functions, lms501kf03 suspend and
lms501kf03 resume, respectively. These functions
have the same list of parameters as found in commit
9d9f780, and the function stored in the suspend field
again has the property that the second parameter is not
used. The associated changes found in the sample com-
mit can thus be applied directly.

The set of changes illustrated in commit 9d9f780 are,
however, insufficient for determining how to update the
function bodies. While the suspend and resume functions
affected by commit 9d9f780 use their first parameter
only in calls to spi get drvdata, the suspend and re-
sume functions in our driver call dev get drvdata and
dev dbg on values derived from this parameter. Thus,
we need more examples. Searching further through the
commits, we find commit 01f9326 from March 2013
that is similar to the commit shown in Figure 2 but con-
tains the following change in the functions stored in the
suspend and resume fields:
- struct snd_card *card = dev_get_drvdata(&spi->dev);
+ struct snd_card *card = dev_get_drvdata(dev);

1 diff --git a/drivers/iio/proximity/as3935.c ...
2 index 466aa43..bc0d68e 100644
3 --- a/drivers/iio/proximity/as3935.c
4 +++ b/drivers/iio/proximity/as3935.c
5 @@ -273,9 +273,9 @@ static void calibrate_as3935(...)
6 #ifdef CONFIG_PM_SLEEP
7 -static int as3935_suspend(struct spi_device *spi,

pm_message_t msg)
8 +static int as3935_suspend(struct device *dev)
9 {

10 - struct iio_dev *indio_dev = spi_get_drvdata(spi);
11 + struct iio_dev *indio_dev = dev_get_drvdata(dev);
12 @@ -293,9 +293,9 @@ err_suspend:
13 -static int as3935_resume(struct spi_device *spi)
14 +static int as3935_resume(struct device *dev)
15 {
16 - struct iio_dev *indio_dev = spi_get_drvdata(spi);
17 + struct iio_dev *indio_dev = dev_get_drvdata(dev);
18 @@ -311,9 +311,12 @@ err_resume:
19 +
20 +static SIMPLE_DEV_PM_OPS(as3935_pm_ops, as3935_suspend,

as3935_resume);
21 +#define AS3935_PM_OPS (&as3935_pm_ops)
22 +
23 #else
24 -#define as3935_suspend NULL
25 -#define as3935_resume NULL
26 +#define AS3935_PM_OPS NULL
27 #endif
28 @@ -441,12 +444,11 @@ static struct spi_driver as3935_driver
29 .driver = {
30 .name = "as3935",
31 .owner = THIS_MODULE,
32 + .pm = AS3935_PM_OPS,
33 },
34 .probe = as3935_probe,
35 .remove = as3935_remove,
36 .id_table = as3935_id,
37 - .suspend = as3935_suspend,
38 - .resume = as3935_resume,
39 };

Figure 2: Example update on suspend and resume. Some
context lines are omitted for readability.

Commit eba3bfb from April 2013 illustrates the case of
a dev dbg call:

- dev_dbg(&spi->dev, "lcd->power = %d\n", lcd->power);
+ dev_dbg(dev, "lcd->power = %d\n", lcd->power);

All these changes, from these different commits, provide
a model for the porting of the TFT LCD panel driver.

USENIX Association 2017 USENIX Annual Technical Conference 17

1 #if defined(CONFIG_PM)
2 static int lms501kf03_suspend(struct spi_device *spi,

pm_message_t mesg)
3 {
4 struct lms501kf03 *lcd = dev_get_drvdata(&spi->dev);
5 dev_dbg(&spi->dev, "lcd->power = %d\n", lcd->power);
6 return lms501kf03_power(lcd, FB_BLANK_POWERDOWN);
7 }
8 static int lms501kf03_resume(struct spi_device *spi)
9 {

10 struct lms501kf03 *lcd = dev_get_drvdata(&spi->dev);
11 lcd->power = FB_BLANK_POWERDOWN;
12 return lms501kf03_power(lcd, FB_BLANK_UNBLANK);
13 }
14 #else
15 #define lms501kf03_suspend NULL
16 #define lms501kf03_resume NULL
17 #endif
18

19 static struct spi_driver lms501kf03_driver = {
20 .driver = {
21 .name = "lms501kf03",
22 .owner = THIS_MODULE,
23 },
24 .probe = lms501kf03_probe,
25 .remove = lms501kf03_remove,
26 .shutdown = lms501kf03_shutdown,
27 .suspend = lms501kf03_suspend,
28 .resume = lms501kf03_resume,
29 };

Figure 3: lms501kf03 TFT LCD panel driver extract

Assessment. Our example illustrates clearly that com-
piler error messages are helpful, but there can be a sig-
nificant difference between the set of the errors raised by
the compiler and the set of changes required. In Figure 1,
we see that the compiler may report errors and warnings
that are actually side-effects of other issues, and do not
help to identify the set of changes required. Furthermore,
many changes, such as the changes in the definitions of
lms501kf03 suspend and lms501kf03 resume, are
required but were not reported by the compiler, and thus
adequate examples of changes on similar drivers are nec-
essary to determine what changes are needed and how to
carry them out. Then, finding even one commit that il-
lustrates a specific problem is a major challenge. As no
one commit may illustrate all of the issues relevant to a
particular driver, repeating this process to find multiple
commits may be necessary.

3 Prequel

The core of our approach is the process of searching for
commits that illustrate how to perform a particular kind
of change. Such a search must be able to take into ac-
count properties of both changed lines and the context in
which the changed lines occur. For example, we would
like to retrieve only commits that remove initializations
of suspend and resume fields that are in spi driver

structures. To retrieve such commits, we propose a patch
query language, PQL, that permits describing properties

1 @bad depends on after@
2 identifier i;
3 expression e;
4 @@
5 struct spi_driver i = {
6 .suspend
7 = e,
8 };

9 @rem depends on !bad@
10 identifier i;
11 expression e;
12 @@
13 struct spi_driver i = {
14 - .suspend
15 = e,
16 };

Figure 4: Patch query detecting removals of the suspend
field from the initialization of a spi driver structure

of both changed lines and their context and a tool Pre-
quel that applies PQL queries to a git commit history.
We first briefly present the syntax and semantics of PQL.
More details are available in a technical report [5]. We
then describe optimizations that allow using Prequel on
a standard laptop.

3.1 PQL syntax and semantics
To describe changes and their context in systems code,
we take inspiration from the program transformation tool
Coccinelle [2, 8]. Coccinelle and its Semantic Patch Lan-
guage (SmPL) offer a transformation language based on
the familiar patch syntax. Coccinelle is widely used in
Linux kernel development, and its notation is familiar to
kernel developers. Our key insight is that a specification
of which lines to add and remove can also be viewed as
a description of the lines that have been added and re-
moved, after the transformation has been performed. We
thus propose a SmPL-like notation for PQL, providing a
description, which we refer to as a patch query, of the
effect of a previous transformation process. Prequel then
applies a patch query to a series of commits.

Figure 4 shows a patch query that detects commits
that remove an initialization of a suspend field in a
spi driver structure. The patch query consists of two
rules, the rule bad on lines 1-8 followed by the rule rem
on lines 9-16. We first focus on the latter. A patch query
rule consists of a fragment of code that combines con-
crete terms, such as the type name spi driver, with
metavariables, declared at the top of the rule. rem uses
metavariables for the name of the driver structure, i (line
13), which is declared to match any identifier (line 10),
and the initial value of the suspend field e (line 15),
which is declared to match any expression (line 11).
Within the code fragment, - and + indicate tokens that
must be removed or added by a matching commit, re-
spectively. rem indicates that the token suspend must
be removed (line 14).

The output of gcc indicates that we want to find com-
mits that remove the suspend field, but does not indicate
what other changes may be needed. For example, one
way to remove a field is to rename it, in which case the
initial value expression e may remain unchanged, while

18 2017 USENIX Annual Technical Conference USENIX Association

another possibility is to remove both the field name and
the initial value expression entirely. Prequel is designed
based on the hypothesis that a user searches for a change
to complete his understanding of that change, and thus
Prequel provides approximate matching. Specifically, to-
kens that are annotated with - or + must be removed or
added, respectively, but other tokens may be removed
or added as well. To distinguish between more or less
precise matches, Prequel returns the matching commits,
ranked by the percentage of changed lines or hunks that
contain an exact match of the specification.

The rule rem also does not guard against the possibil-
ity that the suspend field is simply moved around in the
spi driver structure, i.e., removed but added back, or
that one instance of a suspend field is removed but oth-
ers remain. As gcc reports that suspend is unknown, we
need to find example commits that remove the suspend
field from the spi driver completely. The rule bad

(lines 1-8) extends the patch query to ensure this prop-
erty. This rule matches a commit for which the state of
the code after the commit, as indicated by depends on

after on line 1, contains an initialization of a suspend
field. Such commits are ones that we do not want to see.
The rule rem then depends on the failure of the rule bad.
Prequel returns only commits that match rules on which
no other rules depend, and thus the only results are those
that completely remove the suspend field (rule rem).

3.2 Optimizations

We want to support driver porting on a standard laptop,
as would be most easily accessible to a kernel developer.
The matching performed by Prequel, however, may be
very expensive. Because a patch query may describe
not only changed code, but also context code that occurs
elsewhere in the same file, e.g., the type spi driver in
our case, Prequel matches a patch query against complete
files as they exist before and after a commit, and not just
against the changed lines. Matching a query against all
the files affected by hundreds of thousands of commits,
as are found in several years of history of the Linux ker-
nel, however, would be very time consuming. In practice,
due to the diversity of the Linux kernel, for any given set
of keywords, only a small percentage of the commits are
likely to be relevant. Thus, performing such thorough
matching is often unnecessary.

To reduce the set of commits considered in detail, Pre-
quel first analyzes a patch query to identify keywords that
must be present in or near the changes made by any com-
mit that the patch query can match. For example, in the
patch query of Figure 4, Prequel would select suspend
as a keyword that must be present in the lines removed
by a commit to allow a match. Prequel then searches for
these keywords in the patch associated with each commit

and ignores commits where they are not found, exploit-
ing the fact that a patch is typically much smaller than
the affected source files. Alternatively, for better perfor-
mance, the user can prepare indices in advance, using
the GNU utility ID Utils.3 These indices map tokens to
1) the commits for which they occur on removed lines
2) the commits for which they occur on added lines, and
3) the commits for which they occur on changed lines
or within 3 lines of context code (the default when using
the diff command). Prequel uses the first two indices
to identify commits that contain tokens annotated in the
patch query with - or +, respectively, while it uses the
third index to identify commits that contain unannotated
tokens. Using an index is a choice left up to the user, be-
cause it trades flexibility in the range of considered com-
mits for performance. Currently, the Prequel distribution
includes indices for Linux versions 3.0 through 4.6, the
range considered in our evaluation.

Limiting the set of commits considered based on key-
words found in patches is only effective when the rel-
evant keywords are found within or near the changed
lines. Some relevant keywords, however, may appear
far from any change. For example, in our case, if the
suspend field was not dropped, but rather had its type
changed, then the patch could be on the definition of the
function stored in the suspend field, which could be far
from any mention of suspend. When important key-
words are expected to be far from changed lines, Prequel
collects all of the files that contain the keywords in a ref-
erence version of the Linux kernel chosen by the user,
e.g., the source or target version of the port, and then
considers only the commits that affect these files. It is
also possible to provide an index mapping tokens to the
reference version files in which they occur, to further im-
prove performance.

The above strategies may incur false negatives: a key-
word may appear as required in the code before or af-
ter the commit, but not close enough to changed lines,
or a keyword may not appear anywhere in the reference
version. To select commits, Prequel first tries keywords
annotated with - or +, which must be within the changed
lines, and only relies on unannotated keywords if consid-
eration of the annotated keywords does not sufficiently
reduce the number of commits to analyze in detail.

4 Gcc-reduce

Extracting the relevant information from compiler errors
and from the source code to create Prequel patch queries
is tedious and error prone. Our tool gcc-reduce provides
a front end to Prequel for driver porting that automates
this task. Because the kinds of error messages that the

3https://www.gnu.org/software/idutils/

USENIX Association 2017 USENIX Annual Technical Conference 19

compiler generates are limited, gcc-reduce can also au-
tomate the construction of patch queries, in most cases.

Gcc-reduce collects information required for the
search for change examples from the errors and warn-
ings4 produced by compiling the driver with the target
version and from the driver source code. Gcc-reduce ex-
pects the use of gcc for compilation; LLVM is known
to give better error messages, but the support for com-
piling the kernel with LLVM is incomplete, and appears
to be not well maintained.5 Gcc-reduce then 1) reduces
the resulting compiler errors to those that indicate port-
ing issues, and 2) generates PQL patch queries from the
information collected from the compiler error messages,
as described below.

4.1 Error message reduction

As illustrated in Figure 1, gcc often gives multiple er-
ror messages that actually derive from the same problem.
Three issues arise: 1) a problem recurs, 2) dataflow re-
lationships imply that a problem in one part of the code
makes another part of the code invalid, 3) the same as
the second case, but triggered by structural relationships
rather than dataflow.

To characterize the compiler errors, we have created
a number of error categories, such as “unknown field
error”, illustrated by lines 1-3 of Figure 1. First, to de-
tect recurring errors, for each error, gcc-reduce selects
the corresponding error category and collects keywords
that uniquely identify the problem. The keywords can
come from the error message itself or from the source
code. For example, for the error on lines 1-3 of Figure 1,
the keywords are suspend, obtained from the error mes-
sage and representing the affected field, and the name of
the type of the enclosing structure, spi driver, which
is obtained from the source code. gcc-reduce discards
subsequent errors of the same error category with the
same keywords.

Second, analogous to the notion of gen and kill
sets in dataflow analysis [1], gcc-reduce collects for
each error an input set, containing keywords that, if
they have been associated with a previous error, im-
ply that the current error is redundant, and an im-
pact set, containing keywords that, if they are asso-
ciated with a future error, imply that the future er-
ror is redundant. In our example, the input set is
{struct spi driver.suspend,struct spi driver}; if
some other error has been reported related to the
suspend field of a spi driver structure, then re-
solving that error is likely to also resolve the one

4Subsequently, we refer to compiler errors and warnings collec-
tively as errors.

5http://llvm.linuxfoundation.org/index.php/Main Page; The section
“Current patch statistics” is dated 2015-01-28.

in our example, and the error in our example is not
needed. Furthermore, if the entire spi driver struc-
ture has been found to be invalid, then there is no need
for an error about one of its fields. The impact set
then is {struct spi driver.suspend}, indicating that
a problem has been found with the suspend field of a
spi driver structure, and thus no other messages, of
any kind, that derive from use of this field, i.e., that con-
tain this field in their input set, are needed.

Finally, various kinds of problems can trigger errors
that relate to the code structure. An example is the er-
ror about missing braces in line 4 of Figure 1. Our hy-
pothesis is that the driver to port compiles correctly with
its original Linux version, and thus such structural errors
should be side effects of other errors. For certain kinds
of messages, all other errors of certain kinds found in the
same block or function are discarded.

In our example, gcc-reduce retains only the error on
lines 1-3 and the one on lines 8-10 for further processing.

4.2 Patch query generation

After reducing the error messages, gcc-reduce creates a
patch query for each of the remaining errors. The various
kinds of errors are limited, as are the kinds of information
found in their keywords. Accordingly, the patch queries
can be generated by instantiating a small set of templates.
17 templates, incorporating PQL best practices, are avail-
able in our current prototype. Templates are typically
parameterized by type names, e.g., spi driver in our
example, and global function and field names, i.e., terms
that are common to the kernel rather than specific to the
driver. gcc-reduce also generates a makefile and a doc-
ument that the maintainer can use to track the changes
required. A few error types are not supported by our cur-
rent set of templates. In these cases, the driver maintainer
can study the provided templates and produce a patch
query by analogy.

5 Evaluation

The goals for our evaluation are to assess the degree to
which our approach satisfies the following properties:

• Our approach is efficient enough for interactive use
on a standard laptop.

• gcc-reduce eliminates redundant compiler error
messages, but keeps the errors needed to motivate
a complete forward or back port of a driver.

• The commits selected by Prequel help solve forward
and back porting problems.

20 2017 USENIX Annual Technical Conference USENIX Association

• Our approach gives more relevant results than exist-
ing approaches, such as commit history search us-
ing git or Internet search using Google.

Our evaluation focuses on drivers introduced in 2013
and 2015 and targets Linux 4.6, released on May 15,
2016, to illustrate the behavior of our approach over a
longer and shorter time period. From January 1, 2013
to May 15, 2016 there were 219,879 commits to the
Linux kernel and from January 1, 2015 to May 15, 2016
there were 85,812 commits to the Linux kernel. We first
present our dataset and then address the above properties.

5.1 Dataset

We consider an introduced driver to be a collection of
C and header files that are added into the kernel in the
drivers directory in a single commit, accompanied by
changes in a Makefile and other files related to the build
infrastructure. We ignore drivers/staging code, as
such drivers are considered to be immature and thus may
contain idiosyncratic coding strategies for which exam-
ple changes may not be available. We check also that the
driver compiles without errors or warnings at the point
where it is committed and that all of the files added or
modified by the commit exist in our target version, Linux
4.6. Finally, for our forward porting experiments, for
each selected commit, we overwrite the corresponding C
and header files in a clean Linux 4.6 and force the com-
pilation of each C file. We include in our data set drivers
for which this compilation produces at least one warn-
ing or error. Likewise, for our back porting experiments,
we take the Linux 4.6 versions of the driver files intro-
duced in 2013 or 2015 and copy them back to the kernel
version just following the commit in which the files were
introduced, keeping for further analysis the files in which
compilation with the older version produces errors.

Table 1 shows the number of drivers and driver .c files
that raise porting issues. Table 2 shows the distribution
of these drivers over the various driver types. The differ-
ence in the number of drivers and driver files considered
in the forward and back porting cases is due to the latency
of interface deprecation in the Linux kernel. An outdated
and a modern interface may coexist in a newer or older
kernel, in which case forward porting or back porting,
respectively, is not necessary. Our approach only aims
to produce a driver that is compatible with the target ker-
nel version, and does not aim to ensure that the resulting
driver uses the most recent interfaces, if the interfaces
from the source kernel version remain available.

We use the complete set of drivers in our dataset for the
evaluations that are fully automatic. For our porting ex-
periments, we use only a subset, due to time constraints.

Table 1: Drivers and driver files that raise porting issues
forward port back port

drivers driver files drivers driver files
2013 108 135 130 149
2015 97 119 114 125

Table 2: Distribution of considered driver files (f = for-
ward ports, b = back ports)

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

acpi 0 0 1 0 fmc 1 1 0 0 mailbox 0 0 0 2 powercap 1 0 0 0
ata 1 1 0 1 gpio 5 5 5 7 md 3 2 2 2 pwm 1 1 0 0
base 0 0 0 1 gpu 6 1 6 8 media 6 6 5 2 regulator 5 4 0 0
block 5 3 0 0 hid 0 0 1 1 mfd 2 4 0 4 reset 0 0 0 4
char 3 4 0 1 hwmon 0 3 1 1 misc 1 1 0 0 rtc 2 10 0 0
clk 6 6 10 15 hwtracing 0 0 2 3 mmc 1 2 2 2 scsi 3 2 3 1
clocksrc. 3 4 2 3 i2c 2 4 0 1 mtd 0 0 5 3 soc 0 0 2 1
cpufreq 1 1 0 0 iio 22 32 2 2 net 14 8 18 14 spi 3 1 0 0
crypto 0 0 1 2 infiniband 6 0 0 0 nfc 2 3 4 5 thermal 5 6 6 6
devfreq 0 0 1 1 input 3 5 1 1 phy 4 2 2 2 usb 1 2 1 1
dma 0 1 0 3 irqchip 0 0 1 1 pinctrl 2 1 3 6 video 1 4 0 0
edac 0 1 0 0 leds 0 1 3 2 platform 4 3 2 2 virtio 0 0 0 1
extcon 0 0 3 2 lightnvm 0 0 3 3 power 6 8 8 4 watchdog 0 2 2 5

5.2 Methodology

For a chosen driver, we apply our approach to collect
relevant commits. From these commits, we manually in-
fer the required changes and update the original driver
accordingly. We consider an experiment to be a suc-
cess if the changes we have made in the driver are also
found in the target version of the driver and the resulting
driver compiles in the target version. We do not aspire to
produce code identical to the target version, because the
driver may also undergo changes that are specific to its
behavior, which go beyond the porting task.

We prepare indices for Prequel covering all commits
that modify at least one file between Linux 3.0, re-
leased in July 2011, and Linux 4.6, amounting to 306,242
commits. The largest index is the third (Section 3.2),
at 160MB. Using indices starting with 2011 is overkill
when porting drivers from 2013 at the earliest. We envi-
sion, however, that developers will generate new indices
only occasionally, and thus may have available a larger
index than the minimal one needed for a given task. We
also prepare an index of our reference version (see Sec-
tion 3.2), Linux 4.6. This index is used when a keyword
is needed to reduce the set of commits to which a Pre-
quel query should be applied, but there is no keyword
in a patch query that is expected to occur in or near a
changed line.

5.3 Performance

Figure 5 shows the execution times of the most time-
consuming parts of Prequel: commit selection and ap-
plication of the patch query to the selected commits. Ex-
periments are carried out on a single core of an Intel i5-

USENIX Association 2017 USENIX Annual Technical Conference 21

0 100 200 300 400 500

101

102

103

issue

se
co

nd
s

Total
Commit selection

Figure 5: Execution time of Prequel on 2013 forward
port issues (Total = patch query application time + com-
mit selection time)

6200U 2.30GHz CPU. The machine has 12G memory.
The Linux kernel and all temporary files are placed in an
in-memory file system to avoid disk access costs. Each
point in the graph represents a single porting issue. Is-
sues are ordered from shortest execution time to largest.
At each x-axis coordinate, the height of the blue (lower)
point represents the commit selection time, and the dif-
ference between the red (upper) point and the blue point
represents the patch query application time.

For 73% of the issues, the total of commit selection
time and patch query application time is 30 seconds or
less. Beyond that point, the commit selection time is oc-
casionally high, up to 111 seconds, typically when the
reference version is used as a last resort to reduce the
number of possible commits. The average commit se-
lection time is under 7 seconds. Patch query application
time rises with the number of files in the selected com-
mits and the file size. The maximum patch query time
per commit is under 14 seconds. Further performance
improvements require finding low cost ways of discard-
ing more commits, before applying the patch query.

The overall running time of the approach for a par-
ticular driver depends on the number of issues involved.
This is managed by gcc-reduce. Figure 6 shows in the
red (top) line the number of errors and warnings indi-
cated by gcc for all of the considered porting problems
(2013 and 2015 drivers, forward and backward porting)
and in the blue (bottom) line the number resulting from
the reduction process. Each point represents a driver, and
the drivers are ordered from the smallest to the largest
number of gcc messages. 36% of the ports involve only
one issue. 76% involve fewer than 5. For a driver with 4
issues, each taking 30 seconds or less, we thus obtain a
typical patch query time of 2 minutes or less.

Finally, Table 3 shows the distribution of error types,
for driver subdirectories with more than 30 errors in at
least one porting experiment, as well as the average com-
mit selection and patch query application time (Avg PQ)
for each error type, as observed on the 2013 forward port-
ing experiments (Figure 5).

0 100 200 300 400 500
100

101

102

103

porting instance

er
ro

rs
&

w
ar

ns Original
Reduced

Figure 6: Reduction in the number of errors and warn-
ings achieved by gcc-reduce

Table 3: Distribution of error types

U
nk

no
w

n

U
nk

no
w

n
fu

nc
tio

n

U
nk

no
w

n
va

ri
ab

le

U
nk

no
w

n
ty

pe

U
nk

no
w

n
fie

ld

A
rg

er
ro

r

E
xp

re
ss

io
n

ty
pe

ch
an

ge

Fi
el

d
ty

pe
ch

an
ge

char 1 22 43 4 8 4 0 0
clk 104 47 65 2 12 3 0 5
gpio 1 36 15 1 30 3 4 0
gpu 1 18 7 20 16 19 0 8
iio 13 64 31 24 35 21 3 25
infiniband 1 2 4 11 17 2 0 3
lightnvm 2 7 7 1 26 10 0 2
misc 10 16 6 1 2 4 0 0
net 6 55 49 20 55 15 1 21
platform 2 20 17 31 11 4 0 0
power 6 12 3 16 60 24 0 0
Avg PQ (sec) N/A 25 7 9 57 197 14 267

5.4 Precision

We have used our approach in the porting of 33 driver
files: 13 from their original versions in 2013 to Linux
4.6, 10 from Linux 4.6 back to their commit of introduc-
tion in 2013, and 10 from their original versions in 2015
to Linux 4.6. Gcc-reduce reduced the compiler errors
and warnings associated with these drivers to 107.

For 80 of the identified issues, we were able to repli-
cate the change as found in the Linux kernel code. For
24 issues, we encountered some kind of failure. In 6
cases, gcc-reduce misclassified an issue. For example,
for two issues related to forward porting the 2013 Xen
TPM frontend driver, introduced in commit e268395,
gcc-reduce expects a change in the field in the case of an
incompatible field initialization, while the actual issue is
a change in declaration of the initial value. Gcc-reduce
could create patch queries that consider more possibili-
ties at the cost of a higher patch query time. In the same
driver, there is also the only instance of a failure of Pre-
quel: the issue is related to a macro whose uses Prequel
is unable to parse, implying that no results are returned.

In 5 cases, there is more than one change to a partic-
ular code fragment between the original version of the
code and the target of the porting task. For example, the
changes to the Sharp GP2AP020A00F Proximity/ALS
sensor driver between its original version in 2013 (com-
mit bf29fbe) and Linux 4.6, in part involve first append-

22 2017 USENIX Annual Technical Conference USENIX Association

ing new to a set of structure fields, to allow old and new
versions of the fields to co-exist, and then removing the
new in a later commit, once all relevant drivers have

been updated. Prequel only finds the commit that adds
the new suffix, thus giving only a partial view of the re-
quired changes. In the remaining failure cases, the com-
mits available are not sufficient to decide how to trans-
form a particular piece of code. For example, back port-
ing the Nuvoton NAU7802 ADC driver from its Linux
4.6 version to the Linux kernel as of commit 8b20be8
involves removing calls to reinit completion. Many
examples are available, but they involve different trans-
formations, and indeed the commit log message indicates
that many of them are bug fixes. Using a bug fix as a
model for backporting would amount to introducing a
bug. Thus, it is not clear from the examples which strat-
egy is appropriate for the given driver.

Overall, we were able to address 3/4 of the issues suc-
cessfully, without having any specific prior knowledge of
the drivers concerned. Furthermore, doing so typically
required looking at very few commits. For 86% of the
successfully addressed issues, it was sufficient to look at
only the first reported commit. We consulted at most 7
commits for a single issue.

We have also found back porting to be harder than for-
ward porting. We have already noted the case where
many examples are bug fixes. Furthermore, over time,
the Linux kernel developers also tend to replace local,
special-purpose coding strategies by generic APIs, when
some operations or data are common to multiple drivers.
We have often found it easier to introduce generic code
from specific implementations, as required for forward
porting, but harder to replace API calls by specialized
local definitions or data structure representations where
the design strategy may be specific to each developer.

5.5 Comparison with git

Git is at the foundation of many Linux kernel developers’
development practices. We thus compare the information
obtained by Prequel with the information that can be ob-
tained using git log -G or git log -S.6 We consider
only the driver files for which we have carried out the full
forward porting process (Section 5.4) and only the issues
that we resolved successfully. In each case, we collect
the commits that reference a keyword that is expected to
be changed by the port; for example if the issue is an
unknown suspend field, then we expect suspend to ap-
pear in the changed lines. We consider a range starting
with the commit that we found most helpful and ending

6git log -G finds patterns in changed lines, while git log -S

additionally requires that the number of instances of those patterns
changes. We choose an appropriate command given the error type.

20 25 30 35 40
100

102

104

issue

co
m

m
its

20 25 30 35 40
101

103

105

issue

lin
es

Figure 7: Commits (top) and commit lines (bottom) ob-
tained with git log -G or git log -S

with Linux 4.6, to see how many commits git provides to
the user before reaching the helpful one.

Each git command took around 90 seconds. Figure 7
shows the number of commits returned (top) and the
number of lines in these commits (bottom), including
both log messages and code changes. Issues are ordered
by increasing number of commits, in both cases. For half
of the issues (1-20 on the x-axis) there are no results,
and thus these points are omitted. No results is typical
of issues such as an unknown function; once the func-
tion has been removed, no more commits will mention
it. Git thus succeeds in immediately returning a com-
mit relevant to the porting problem. Other kinds of is-
sues such as a change in the number of arguments of a
function or the type of a structure field, however, do not
cause the keyword to disappear, and thus it can occur in
later, irrelevant commits. Furthermore, as noted in Sec-
tion 2, some names, typically those of structure fields, are
reused across the kernel, and thus commits are found af-
fecting unrelated instances. For example, the rightmost
point in each graph of Figure 7 derives from a search
for dev, which is very common both as a field name for
many types of structures and as the name of a local vari-
able. Prequel on the other hand has access to type infor-
mation and other relevant context information, and can
select commits more precisely. In many cases, Prequel is
even more efficient than git, due to the use of indexing.

Finally, 8 issues concern the incorrect type of the ini-
tial value of a structure field. In these cases, the change
is typically in the definition if the initial value, which
is often driver-specific, and there is no keyword whose
changes git can be used to search for.

USENIX Association 2017 USENIX Annual Technical Conference 23

5.6 Comparison with search engines

Our approach to driver porting relies on searching
through the commit history for information on how to re-
solve compiler errors resulting from out of date code. In
many other software development contexts, developers
and users turn to search engines such as Google for hints
on how to address error messages. To assess the poten-
tial benefits of using an existing general-purpose search
engine to address Linux driver porting issues, we have
done a small experiment using Google.

Setup. It is impossible to anticipate every Google
query that a developer might make. We take the straight-
forward solution of using the compiler error message it-
self (see Figure 1) as a query. In this, we drop the posi-
tion information (file, etc.), which is likely too restrictive,
unless someone has already ported the same driver.

Some error descriptions, however, are generic, such
as the message “initialization from incompatible pointer
type”, found in the middle of Figure 1, that does not con-
tain any information specific to the error context. As il-
lustrated in Figure 1, gcc error messages either contain a
code snippet, or implicitly inherit the code snippet of a
previous message. Thus, we additionally consider con-
catenating the error description and the code snippet to
form another possible query, providing more information
but incurring the risk of overspecification to the targeted
driver. We consider only the subset of error messages
generated by our error message reduction process (Sec-
tion 4.1), as the user could manually filter out the impor-
tant messages, as done by our tool.

In order to assess the information provided by Google
on a large scale, we use the curl library [3] to script re-
quests. We then parse each resulting search result sum-
mary page to extract the entries, consisting of a title, the
link as shown to the user, and the description, found on
the first page of results. These tests involve our complete
dataset (Section 5.1).

To assess the results, we use the measure query recall
rate at N, meaning the percentage of cases for which the
top N Google results contain at least one result that is
relevant to the porting problem. A result is considered
relevant if it contains all of the keywords identified by
gcc-reduce for the issue. As shown in Figure 8, based on
this criterion, the first result appears to be relevant only
12% of the time in the no code case, where we include
only the error message. The rate of at least one relevant
result rises to only 33% in the no code case if one con-
siders the top 6 results. Even a 33% success rate is not
very useful in practice, and even if the information on the
summary page suggests success, there is no guarantee
that the information on the linked page will actually turn
out to be useful. In contrast, for the ports we have carried

1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4
0.5

N (Results)

Q
ue

ry
R

ec
al

lR
at

e
at

N
(O

ut
of

A
ll

Q
ue

ri
es

)

No code
Code

Figure 8: Rate of existence of a relevant result in the top
N returns returned by Google

out, in 86% of the cases, we resolved an issue by looking
only at Prequel’s top ranked commit. Furthermore, there
is contradictory feedback about whether it is desirable
to include the code snippet; when looking at the top 1-
3 results, doing so slightly increases the rate of success,
but when considering a larger set of results, including
the code snippet is a disadvantage. So the driver main-
tainer may have to launch several queries to see which is
the best one. Overall, general-purpose search engines do
not appear to be a promising tool for finding information
about Linux kernel interface changes.

6 Limitations

Our approach is based on several hypotheses. First, we
assume that the driver to port works correctly with re-
spect to the Linux kernel version for which it has been
developed. Thus, the goal of porting is to preserve its
behavior. Second, we make a similar assumption about
the commits we encounter; their changes preserve cor-
rectness. Third, only one change is required per issue to
reach code compatible with the target version. Fourth,
all relevant issues are highlighted by gcc.

We have encountered violations of the last three hy-
potheses in practice. A violation of the second hypoth-
esis is illustrated by the reinit completion case in
Section 5.4; commits may fix bugs rather than preserve
correctness. Several other failures among our 33 ported
driver files arose from a violation of the third hypoth-
esis: the complete change was broken up into several
steps, and Prequel only returned commits reflecting one
step in the series, thus not giving enough information to
achieve compatability with the target version. A solution
could be to iterate our approach. Finally, our motivat-
ing example in Section 2 violates the fourth hypothesis.
In addition to the changes in the suspend and resume

fields, the configuration variable CONFIG PM is renamed
to CONFIG PM SLEEP. Although the commit shown in
Figure 2 does contain the new configuration variable, the
driver maintainer has to be self-motivated to look at it;

24 2017 USENIX Annual Technical Conference USENIX Association

gcc does not raise warnings about configuration variables
that no longer exist. Tools, such as Undertaker [11], that
check for configurability errors could be used in place of
gcc within our approach to address this issue.

Our approach provides guidance on how to evolve
a driver in concert with other similar drivers, but does
not directly address the case where a new kernel feature
could better support a unique feature of the device. Our
hypothesis, however, is that new features are added to the
kernel to support drivers that are already in the kernel,
and that the developer adding such a specialized kernel
feature will update some of the relevant drivers, if only
to validate that the new feature works as expected. The
commit logs and change examples identified by Prequel
should then still provide guidance on how to apply a new
kernel feature in another specialized situation.

7 Related work

The traditional strategy for back porting device drivers
involves inserting #ifdefs in the driver code to imple-
ment different behaviors for different kernel versions.
The Linux kernel backports project, initiated in 2007, in-
troduced the use of a compatibility library that abstracts
over the variations in different kernels. Rodriguez and
Lawall [9] explored the use of Coccinelle to automate
the changes needed in a driver to target this compati-
bility library, and this approach is now actively used by
the Linux kernel backports project. These approaches
require the developer to manually identify the changes
needed for each kernel version, either to modify the
driver code directly or to create the compatibility library.

Thung et al. [12] also target automating the backport-
ing of Linux device drivers. Their approach identifies the
commit between the source and target versions at which
the driver ceases to successfully compile, and then infers
transformation rules from the set of changes performed
by that commit. While their approach goes further than
ours, by inferring transformation rules, it is limited to the
information available in the commit that breaks compila-
tion, it has only been evaluated on pairs of successive
Linux kernel releases, and it is further limited to drivers
in which the compiler signals only one error line. These
constraints are not satisfied by many porting issues. For
example, for our motivating example in Section 2, there
are multiple compiler errors, it was necessary to consult
multiple commits, and the commit that breaks compi-
lation does not contain any relevant change examples.
Our approach does, however, also assume that only one
change is needed for each issue to get from the source
version to the target version.

Several recent approaches automate the identification
of API evolutions based on analysis of changes in call-
graph dependencies [7, 14]. These approaches are well-

suited for porting issues that involve only the names of
called functions, but not the other types of changes (field
type change, etc.) that we have encountered.

Martinez et al. [6] propose a patch query language
with the goal of collecting statistics on the frequency of
various kinds of code changes to guide automated soft-
ware repair [13]. Their approach builds on the infor-
mation about occurrences of a fixed set of change types
collected by ChangeDistiller [4]. Change types refer to
various syntactic categories, such as removal of an if

statement, but do not contain information about concrete
terms such as function names or structure fields, as we
require to limit the results to the commits relevant to a
given porting problem. The approach furthermore fo-
cuses solely on changes, and thus does not allow queries
on context code, as we have also found essential. Stevens
et al. [10] propose a query language for changes identi-
fied by ChangeDistiller, relying on a logic-programming-
based notation. They use their approach for studying in-
stances of refactorings, rather than porting problems.

8 Conclusion

Porting device drivers is an ever-present problem in the
context of the Linux kernel. A major challenge in the
porting process is to obtain adequate information as to
how the port should be carried out. Indeed, the Linux
kernel interface is huge, and many relevant details about
an interface change are only known to the specific main-
tainer who has carried it out.

In this paper we have proposed an approach to ex-
tract information from compiler output and a git com-
mit history about where changes are needed and how to
carry those changes out. On 33 driver files, exhibiting
107 porting issues, our approach enabled us to address
3/4 of the issues, with no specific knowledge about the
drivers concerned. Our approach is also reasonably effi-
cient, producing complete results for a driver in at most
a few minutes for many cases.

Future work will involve improving performance and
addressing the identified limitations, such as the require-
ment of only one change per issue between the source
and target versions. Inferring changes automatically
from examples would then be the next major step.

Acknowledgments. We thank the anonymous reviewers
and our shepherd Daniel Williams for their feedback on
the paper. This work is supported in part by OSADL and
by ANR ITrans.

Availability. Our tools and the 33 driver file experiments
are available at http://prequel-pql.gforge.inria.fr/

USENIX Association 2017 USENIX Annual Technical Conference 25

References
[1] APPEL, A. W. Modern Compiler Implementation in ML. Cam-

bridge University Press, 1998.
[2] BRUNEL, J., DOLIGEZ, D., HANSEN, R. R., LAWALL, J. L.,

AND MULLER, G. A foundation for flow-based program match-
ing: using temporal logic and model checking. In POPL (2009),
pp. 114–126.

[3] Curl. https://curl.haxx.se/.
[4] FLURI, B., AND GALL, H. C. Classifying change types for qual-

ifying change couplings. In 14th IEEE International Conference
on Program Comprehension (2006), pp. 35–45.

[5] LAWALL, J., LAMBERT, Q., AND MULLER, G. Prequel: A
patch-like query language for commit history search. Research
Report RR-8918, Inria Paris, June 2016.

[6] MARTINEZ, M., DUCHIEN, L., AND MONPERRUS, M. Auto-
matically extracting instances of code change patterns with AST
analysis. In ICSM (2013), pp. 388–391.

[7] MENG, S., WANG, X., ZHANG, L., AND MEI, H. A history-
based matching approach to identification of framework evolu-
tion. In ICSE (2012), pp. 353–363.

[8] PADIOLEAU, Y., LAWALL, J. L., HANSEN, R. R., AND
MULLER, G. Documenting and automating collateral evolutions
in Linux device drivers. In EuroSys (2008), pp. 247–260.

[9] RODRIGUEZ, L. R., AND LAWALL, J. Increasing automation
in the backporting of Linux drivers using Coccinelle. In 11th
European Dependable Computing Conference - Dependability in
Practice (EDCC) (2015), pp. 132–143.

[10] STEVENS, R., AND ROOVER, C. D. Extracting executable trans-
formations from distilled code changes. In Software Analysis,
Evolution, and Reengineering (SANER) (2017), pp. 171–181.

[11] TARTLER, R., LOHMANN, D., SINCERO, J., AND SCHRÖDER-
PREIKSCHAT, W. Feature consistency in compile-time-
configurable system software: facing the Linux 10,000 feature
problem. In EuroSys (2011), pp. 47–60.

[12] THUNG, F., BACH, L. D. X., LO, D., AND LAWALL, J. Recom-
mending code changes for automatic backporting of Linux device
drivers. In ICSME (2016), pp. 222–232.

[13] WEIMER, W., NGUYEN, T., LE GOUES, C., AND FORREST,
S. Automatically finding patches using genetic programming. In
ICSE (2009), pp. 364–374.

[14] WU, W., GUÉHÉNEUC, Y.-G., ANTONIOL, G., AND KIM, M.
AURA: a hybrid approach to identify framework evolution. In
ICSE-Volume 1 (2010), pp. 325–334.

26 2017 USENIX Annual Technical Conference USENIX Association

Optimizing the TLB Shootdown
Algorithm with Page Access Tracking

Nadav Amit
VMware Research

Abstract
The operating system is tasked with maintaining the
coherency of per-core TLBs, necessitating costly syn-
chronization operations, notably to invalidate stale
mappings. As core-counts increase, the overhead of
TLB synchronization likewise increases and hinders
scalability, whereas existing software optimizations
that attempt to alleviate the problem (like batching)
are lacking.

We address this problem by revising the TLB
synchronization subsystem. We introduce several
techniques that detect cases whereby soon-to-be
invalidated mappings are cached by only one TLB
or not cached at all, allowing us to entirely avoid
the cost of synchronization. In contrast to existing
optimizations, our approach leverages hardware
page access tracking. We implement our techniques
in Linux and find that they reduce the number of
TLB invalidations by up to 98% on average and thus
improve performance by up to 78%. Evaluations
show that while our techniques may introduce
overheads of up to 9% when memory mappings
are never removed, these overheads can be avoided
by simple hardware enhancements.

1. Introduction
Translation lookaside buffers (TLBs) are perhaps the
most frequently accessed caches whose coherency
is not maintained by modern CPUs. The TLB is
tasked with caching virtual-to-physical translations
(“mappings”) of memory addresses, and so it is
accessed upon every memory read or write operation.
Maintaining TLB coherency in hardware hampers
performance [33], so CPU vendors require OSes to
maintain coherency in software. But it is difficult for
OSes to efficiently achieve this goal [27, 38, 39, 41, 48].

To maintain TLB coherency, OSes employ the
TLB shootdown protocol [8]. If a mapping m that
possibly resides in the TLB becomes stale (due to
memory mapping changes) the OS flushes m from
the local TLB to restore coherency. Concurrently,
the OS directs remote cores that might house m in
their TLB to do the same, by sending them an inter-
processor interrupt (IPI). The remote cores flush

their TLBs according to the information supplied by
the initiator core, and they report back when they
are done. TLB shootdown can take microseconds,
causing a notable slowdown [48]. Performing TLB
shootdown in hardware, as certain CPUs do, is faster
but still incurs considerable overheads [22].

In addition to reducing performance, shootdown
overheads can negatively affect the way applications
are constructed. Notably, to avoid shootdown la-
tency, programmers are advised against using mem-
ory mappings, against unmapping them, and even
against building multithreaded applications [28, 42].
But memory mappings are the efficient way to use
persistent memory [18, 47], and avoiding unmap-
pings might cause corruption of persistent data [12].

OSes try to cope with shootdown overheads by
batching them [21, 43], avoiding them on idle cores,
or, when possible, performing them faster [5]. But
the potential of these existing solutions is inherently
limited to certain specific scenarios. To have a gener-
ally applicable, efficient solution, OSes need do know
which mappings are cached by which cores. Such in-
formation can in principle be obtained by replicating
the translation data structures for each core [11], but
this approach might result in significantly degraded
performance and wasted memory.

We propose to avoid unwarranted TLB shoot-
downs in a different manner: by monitoring access
bits. While TLB coherency is not maintained by the
CPU, CPU architectures can maintain the consis-
tency of access bits, which are set when a mapping
is cached. We contend that these bits can therefore
be used to reveal which mappings are cached by
which cores. To our knowledge, we are the first to
use access bits in this way.

In the x86 architecture, which we study in this
paper, access bit consistency is maintained by the
memory subsystem. Exploiting it, we propose tech-
niques to identify two types of common mappings
whose shootdown can be avoided: (1) short-lived
private mappings, which are only cached by a single
core; and (2) long-lived idle mappings, which are
reclaimed after the corresponding pages have not
been used for a while and are not cached at all. Using

USENIX Association 2017 USENIX Annual Technical Conference 27

these techniques, we implement a fully functional
prototype in Linux 4.5. Our evaluation shows that
our proposal can eliminate more than 90% of TLB
shootdowns and improve the performance of mem-
ory migration by 78%, of copy-on-write events by
18–25%, and of multithreaded applications (Apache
and parallel bzip2) by up to 12%.

Our system introduces a worst case slowdown
of up to 9% when mappings are only set and never
removed or changed, which means no shootdown
activity is conducted. This slowdown is caused,
according to our measurements, due to the overhead
of our TLB manipulation software techniques. To
eliminate it, we propose a CPU extension that would
allow OSes to write entries directly into the TLB, and
resembles the functionality provided by CPUs that
employ software-TLB.

2. Background and Motivation
2.1 Memory Management Hardware

Virtual memory is supported by most modern CPUs
and used by all the major OSes [9, 32]. Using vir-
tual memory allows the OS to utilize the physical
memory more efficiently and to isolate the address
space of each process. The CPU translates the virtual
addresses to physical addresses before memory ac-
cesses are performed. The OS sets the virtual address
translations (also called “mappings”) according to
its policies and considerations.

The memory mappings of each address space are
kept in a memory-resident data structure, which is
defined by the CPU architecture. The most common
data structure, used by the x86 architecture, is a radix-
tree, which is also known as a page-table hierarchy.
The leaves of the tree, called the page-table entries
(PTEs), hold the translations of fixed-sized virtual
memory pages to physical frames. To translate a
virtual address into a physical address, the CPU
incorporates a memory management unit (MMU),
which performs a “page table walk” on the page
table hierarchy, checking access permissions at every
level. During a page-walk, the MMU updates the
status bits in each PTE, indicating whether the page
was read from and/or written to (dirtied).

To avoid frequent page-table walks and their as-
sociated latency, the MMU caches translations of
recently used pages in a translation lookaside buffer
(TLB). In the x86 architecture, these caches are main-
tained by the hardware, bringing translations into
the cache after page walks and evicting them accord-
ing to an implementation-specific cache replacement
policy. Each x86 core holds a logically private TLB.

Unlike memory caches, TLBs of different CPUs are
not maintained coherent by hardware. Specifically,

x86 CPUs do not maintain coherence between the
TLB and the page-tables, nor among the TLBs of
different cores. As a result, page-table changes may
leave stale entries in the TLBs until coherence is
restored by the OS. The instruction set enables the
OS to do so by flushing (“invalidating”) individual
PTEs or the entire TLB. Global and individual TLB
flushes can only be performed locally, on the TLB of
the core that executes the flush instruction.

Although the TLB is essential to attain reasonable
translation latency, some workloads experience fre-
quent TLB cache-misses [4]. Recently, new features
were introduced into the x86 architecture to reduce
the number and latency of TLB misses. A new instruc-
tion set extension allows each page-table hierarchy to
be associated with an address-space ID (ASID) and
avoid TLB flushes during address-space switching,
thus reducing the number of TLB misses. Micro-
architectural enhancements introduced page-walk
caches that enable the hardware to cache internal
nodes in the page-table hierarchy, thereby reducing
TLB-miss latencies [3].

2.2 TLB Software Challenges

The x86 architecture leaves maintaining TLB co-
herency to the OSes, which often requires frequent
TLB invalidations after PTE changes. OS kernels
can make such PTE changes independently of the
running processes, upon memory migration across
NUMA nodes [2], memory deduplications [49], mem-
ory reclamation, and memory compaction for accom-
modating huge pages [14]. Processes can also trigger
PTE changes by using system calls, for example
mprotect, which changes protection on a memory
range, or by writing to copy-on-write pages (COW).

These PTE changes can require a TLB flush to
avoid caching of stale PTEs in the TLB. We distin-
guish between two types of flushes: local and remote,
in accordance with the core that initiated the PTE
change. Remote TLB flushes are significantly more
expensive, since most CPUs cannot flush remote
TLBs directly. OSes therefore perform a TLB shoot-
down: The initiating core sends an inter-processor
interrupt (IPI) to the remote cores and waits for
their interrupt handlers to invalidate their TLBs and
acknowledge that they are done.

TLB shootdowns introduce a variety of overheads.
IPI delivery can take several hundreds of cycles [5].
Then, the IPI may be kept pending if the remote core
has interrupts disabled, for instance while running
a device driver [13]. The x86 architecture does
not allow OSes to flush multiple PTEs efficiently,
requiring the OS to either incur the overhead of
multiple flushes or flush the entire TLB and increase
the TLB miss rate. In addition, TLB flushes may

28 2017 USENIX Annual Technical Conference USENIX Association

indirectly cause lock contention since they are often
performed while the OS holds a lock [11, 15]. It is
noteworthy that while some CPU architectures (e.g.,
ARM) enable to perform remote TLB shootdowns
without IPIs, remote shootdowns still incur higher
performance overhead than local ones [22].

2.3 OS Solutions and Shortcomings

To reduce TLB related overheads, OSes employ
several techniques to avoid unnecessary shootdowns,
reduce their time, and avoid TLB misses.

A TLB shootdown can be avoided if the OS can
ensure that the modified PTE is either not cached in
remote TLBs or can be flushed at a later time, but
before it can be used for an address translation. In
practice, OSes can only avoid remote shootdowns in
certain cases. In Linux, for example, each userspace
PTE is only set in a single address space page-table
hierarchy, allowing the OS to track which address
space is active on each core and flush only the TLBs
of cores that currently use this address space. The
TLB can be flushed during context switch, before any
stale entry would be used.

A common method to reduce shootdown time is
to batch TLB invalidations if they can be deferred [21,
47]. Batching, however, cannot be used in many
cases, for example when a multithreaded application
changes the access permissions of a single page.
Another way to reduce shootdown overhead is
to acknowledge its IPI immediately, even before
invalidation is performed [5, 43].

Flush time can be reduced by lowering the number
of TLB flushes. Flushing multiple individual PTEs is
expensive, and therefore OSes can prefer to flush the
entire TLB if the number of PTEs exceeds a certain
threshold. This is a delicate trade-off, as such a flush
increases the number of TLB misses [23].

Linux tries to balance between the overheads of
TLB flushes and TLB misses when a core becomes
idle, using a lazy TLB invalidation scheme. Since the
process that ran before the core became idle may be
scheduled to run again, the OS does not switch its
address space, in order to avoid potential future TLB
misses. However, when the first TLB shootdown is
delivered to the idle core, the OS performs a full TLB
invalidation and indicates to the other cores not to
send it further shootdown IPIs while it is idle.

Despite all of these techniques, shootdowns can
induce high overheads in real systems. Arguably, this
overhead is one of the reasons people refrain from
using multithreading, in which mapping changes
need to propagate to all threads. Moreover, applica-
tion writers often prefer copying data over memory
remapping, which requires TLB shootdown [42].

2.4 Per-Core Page Tables

Currently, the state-of-the-art software solution for
TLB shootdowns is setting per-core page tables, and
according to the experienced page-faults track which
cores used each PTE [11,19]. When a PTE invalidation
is needed, a shootdown is sent only to cores whose
page tables hold the invalidated PTE.

Maintaining per-core page tables, however, can
introduce substantial overheads when some PTEs
are accessed by multiple cores. In such a case, OS
memory management operations become more ex-
pensive, as mapping modifications require changes
the of PTEs in multiple page-tables. The overhead of
PTE changes is not negligible, as some require atomic
operations. RadixVM [11] reduces this overhead by
changing PTEs in parallel: sending IPIs to cores that
hold the PTE and changing them locally. This scheme
is efficient when shootdowns are needed, as one IPI
triggers both the PTE change and its invalidation.
Yet, if a shootdown is not needed, for example when
the other cores run a different process, this solution
may increase the overhead due to the additional IPIs.

Holding per-core page tables can also introduce
high memory overheads if memory is accessed by
multiple cores. For example, in recent 288 core
CPUs [24], if half of the memory is accessed by
all cores, the page tables will consume 18% of the
memory or more if memory is overcommitted or
mappings are sparse.

While studies showed substantial performance
gains when per-core page tables are used, the limi-
tations of this approach may have not been studied
well enough. For example, in an experiment we con-
ducted memory migration between NUMA nodes
was 5 times slower when memory was mapped in
48 page-table hierarchies (of 48 Linux running pro-
cesses in our experiment) instead of one. Previous
studies may have not shown these overheads as
they considered a teaching OS, which lacks basic
memory management features [11]. In addition, pre-
vious studies experienced shootdown latencies of
over 500k cycles, which is over 24x of the latency
that we measured. Presumably, the high overhead
of shootdowns could overshadow other overheads.

3. The Idea
The challenge in reducing TLB shootdown overhead
is determining which cores, if at all, might be caching
a given PTE. Although architectural paging struc-
tures do not generally provide this information, we
contend that the OS can nevertheless deduce it by
carefully tracking and manipulating PTE access-bits.
The proclaimed goal of access bits is to indicate if
memory pages have been accessed. This functional-

USENIX Association 2017 USENIX Annual Technical Conference 29

ity is declared by architectural manuals and is used
by OSes to make informed swapping decisions. Our
insight is that access bits can be additionally used
for a different purpose: to indicate if PTEs are cached
in TLBs, as explained next.

Let us assume: that (1) a PTE e might be cached
by a set of cores S at time t0; that (2) e’s access bit is
clear at t0 (because it was never set, or because the
OS explicitly cleared it); and that (3) this bit is still
clear at some later time t1. Since access bits are set
by hardware whenever it caches the corresponding
translations in the TLB [25], we can safely conclude
that e is not cached by any core c < S at t1.

We note that our reasoning rests on the fact that
last-level TLBs are private per core [6, 27, 29] and so
translations are not transferred between them. Linux,
for example, relies on this fact when shooting down
a PTE of some address space α while avoiding the
shootdown at remote cores whose current address
spaces are different than α (§2.3). This optimization
would have been erroneous if TLBs were shared,
because Linux permits the said remote cores to
freely load αwhile the shootdown takes place, which
would have allowed them to cache stale mappings
from a shared last-level TLB, thereby creating an
inconsistency bug.

We identify two types of mappings that can help
us optimize TLB shootdown by leveraging access-bit
information. The first is short-lived private mappings of
pages that are accessed exclusively by a single thread
and then removed shortly after; this access pattern
may be exhibited, for example, by multithreaded
applications that use memory-mapped files to read
data. The second type is long-lived idle mappings of
pages that are reclaimed by the OS after they have
not been accessed for a while; this pattern is typical
for pages that cease to be part of the working set of
a process, prompting the OS to unmap them, flush
their PTEs, and reuse their frames elsewhere.

4. The System
Using the above reasoning (§3), we next describe
the Linux enhancements we deploy on an x86
Intel machine to optimize TLB shootdown of short-
lived private mappings (§4.1) and long-lived idle
mappings (§4.2). We then describe “software-PTEs”,
the data structures we use when implementing our
mechanisms (§4.3). To distinguish our enhancements
from the baseline OS, we collectively denote them
as ABIS—access-based invalidation system.

4.1 Private PTE Detection

To avoid TLB shootdown due to a private mapping,
we must (1) identify the core that initially uses this

mapping and (2) make sure that other cores have not
used it too at a later time. As previously shown [27],
the first item is achievable via demand paging,
the standard memory management technique that
OSes employ, which traps upon the first access to a
memory page and only then sets a valid mapping [9].
The second item, however, is more challenging,
as existing approaches to detect PTE sharing can
introduce overheads that are much higher than those
we set out to eliminate (§6).

Direct TLB Insertion Our goal is therefore to find
a low-overhead way to detect PTE sharing. As a
first step, we note that this goal would have been
easily achievable if it was possible to conduct direct
TLB insertion—inserting a mapping m directly into
a TLB of a core c without setting the access bit of
the corresponding PTE e. Given such a capability, as
long as m resides in the TLB, subsequent uses of m
by c would not set the access-bit of e, as no page table
walks are needed. In contrast, if some other core c̄
ends up using m as well, the hardware will walk the
page table when inserting m to the TLB of c̄, and it
will therefore set e’s access bit, thereby indicating
that m is not private.

Direct TLB insertion would have thus allowed
us to use turned-off access bits as identifiers of
private mappings. We remark that this method is best-
effort and might lead to false-positive indications
of sharing in cases where m is evicted from the
TLB and reinserted later. This issue does not affect
correctness, however. It simply implies that some
useless shootdown activity is possible. The approach
is thus more suitable for short-lived PTEs.

Alas, current x86 processors do not support di-
rect TLB insertion. One objective of this study is
to motivate such support. When proposing a new
hardware feature, architects typically resort to simu-
lation since it is unrealistic to fabricate chips to test
research features. We do not employ simulation for
two reasons. First, because we suspect that it might
yield questionable results, as the OS memory man-
agement subsystems that are involved are complex
to realistically simulate. Second, since TLB insertion
is possible on existing hardware even without hard-
ware support, and can benefit workloads that are
sensitive to shootdown overheads, shortening run-
times by 0.56x (= 1

1.78 ; see Figure 5) at best. Although
runtimes might be 1.09x longer in the worst case,
our results indicate that real hardware support will
eliminate this overhead (§5.1).

Note that although direct TLB insertion is not
supported in the x86 architecture, it is supported
in CPUs that employ software-managed TLBs. For
example, Power CPUs support the tlbwe instruction

30 2017 USENIX Annual Technical Conference USENIX Association

that can insert PTE directly into the TLB. We there-
fore consider this enhancement achievable with a
reasonable effort.

Approximation Let us first rule out the naive ap-
proach to approximate direct TLB insertion by: (1) set-
ting a PTE e; (2) accessing the page and thus prompt-
ing hardware to load the corresponding mapping
m into the TLB and to set e’s access bit; and then
(3) having the OS clear e’s access bit. This approach is
buggy due to the time window between the second
and third items, which allows other cores to cache
m in their TLBs before the bit is cleared, resulting in
a false sharing indications that the page is private.
Shootdown will then be erroneously skipped.

We resolve this problem and avoid the above race
by using Intel’s address space IDs, which is known
as process-context identifiers (PCIDs) [25]. PCIDs
enable TLBs to hold mappings of multiple address
spaces by associating every cached PTE with a PCID
of its address space. The PCID of the current address
space is stored in the same register as the pointer to
the root of the page table hierarchy (CR3), and TLB
entries are associated with this PCID when they are
cached. The CPU uses for address translation only
PTEs whose PCID matches the current one. This
feature is intended to allow OSes to avoid global
TLB invalidations during context switch and reduce
the number of TLB misses.

PCID is not currently used by Linux due to the
limited number of supported address spaces and
questionable performance gains from TLB miss re-
duction. We indeed exploit this feature in a different
manner. Nevertheless, our use does not prevent or
limit future PCID support in the OS.

The technique ABIS employs to provide direct TLB
insertion is depicted in Figure 1. Upon initialization,
ABIS preallocates for each core a “secondary” page-
table hierarchy, which consists of four pages, one
for each level of the hierarchy. The uppermost level
of the page-table (PGD) is then set to point to the
kernel mappings (like all other address spaces). The
other three pages are not connected at this stage to
the hierarchy, but wired dynamically later according
to the address of the PTE that is inserted to the TLB.

While executing, the currently running thread T
occasionally experiences page faults, notably due
to demand paging. When a page fault fires, the OS
handler is invoked and locks the PT that holds the
faulting PTE—no other core will simultaneously
handle the same fault.

At this point, ABIS loads the secondary space to
CR3 along with a PCID equal to that of T (Step 1 in
Figure 1). After, ABIS wires the virtual-to-physical
mapping of the target page in both primary and

…

…

page

C
R

3 0s adrs0 pcid0

…

…

…

…

…

…

P
G

D
s

P
U

D
s

P
M

D
s

P
TE

s

0s adrs1 pcid0

…

…

…

(1) change CR3 to secondary hierarchy
[same PCID, different address]

(2) wire both hierarchies
[primary bit is 0]

(4) change CR3 back
to primary hierarchy

(3) read page
[translation loaded to TLB from

secondary CR3, primary bit remains 0]
access bit

(5) zero
secondary

PTE

phys. address
CR3 change

primary secondary

PTE

Figure 1: Direct TLB insertion using a secondary hierarchy.

secondary spaces, leaving the corresponding access
bit in the primary hierarchy clear (Step 2).

Then, ABIS reads from the page. Because the asso-
ciated mapping is currently missing from the TLB (a
page fault fired), and because CR3 currently points
to the secondary space, reading the page prompts
the hardware to walk the secondary hierarchy and
to insert the appropriate translation to the TLB, leav-
ing the primary bit clear (Step 3). Importantly, the
inserted translation is valid and usable within the
primary space, because both spaces have the same
PCID and point to the same physical page using the
same virtual address. This approach eliminates he
aforementioned race: no other core is able to access
the secondary space, as it is private to the core.

After reading the page, ABIS loads the primary
hierarchy back to CR3, to allow the thread to continue
as usual (Step 4). It then clears the PTE from the
secondary space, thereby preventing further use of
translation data from the secondary hierarchy that
may have been cached in the hardware page-walk
cache (PWC). If the secondary tables are used by the
CPU for translation, no valid PTE will be found and
the CPU will restart a page-walk from the root entry.

Finally, using our “software-PTE” (SPTE) data
structure (§4.3), ABIS associates the faulting PTE e
with the current core c that has just resolved e. When
the time comes to flush e, if ABIS determines that e
is still private to c, it will invalidate e on c only, thus
avoiding the shootdown overhead.

Coexisting with Linux Linux reads and clears ar-
chitectural access bits (hwA-s) via a small API, allow-
ing us to easily mask these bits while making sure

USENIX Association 2017 USENIX Annual Technical Conference 31

that both Linux and ABIS simultaneously operate
correctly. Notably, when Linux attempts to clear an
hwA, ABIS (1) checks whether the bit is turned on,
in which case it (2) clears the bit and (3) records
in the SPTE the fact that the associated PTE is not
private (using the value ALL_CPUS discussed further
below). Note, however, that Linux and ABIS can
use the access bit in a conflicting manner. For ex-
ample, after a page fault, Linux could expect to see
the access bit turned on, whereas ABIS’s direct TLB
insertion makes sure that the opposite happens. To
avoid any such conflicts, we maintain in the SPTE a
new per-PTE “software access bit” (swA) for Linux,
which reflects Linux’s expectations. The swA bits are
governed by the following rules: upon a page fault,
we set the swA; when Linux clears the bit, we clear
the swA; and when Linux queries the bit, we return
an OR’d value of swA and hwA. These rules ensure
that Linux always observes the values it would have
observed in an ABIS-less system.

ABIS attempts to reduce false indications of PTE
sharing when possible. We find that Linux performs
excessive full flushes to reduce the number of IPIs
sent to idle cores as part of the shootdown procedure
(§2.3). In Linux, this behavior is beneficial as it
reduces the number of TLB shootdowns at the cost
of more TLB misses, whose impact is relatively small.
In our system, however, this behavior can result in
more shootdowns, as it increases the number of false
indications. ABIS therefore relaxes this behavior,
allowing idle cores to service a few individual PTE
flushes before resorting to a full TLB flush.

Overhead Overall, the overhead of direct TLB in-
sertions in our system is≈550 cycles per PTE (respon-
sible for the worst-case 9% slowdown mentioned
earlier). This overhead is amortized when multi-
ple PTEs are mapped together, for example, via one
mmap system-call invocation, or when Linux serves
a page-fault on a file-backed page and maps adjacent
PTEs to avoid future page-faults [36].

4.2 TLB Version Tracking

Based on our observations from §3, we build a TLB
version tracking mechanism to avoid flushes of long-
lived idle mappings. Let us assume that a PTE e
might be cached by a set of cores S at time t0, and
that each core c ∈ S performed a full TLB flush during
the time period (t0, t1). If at time t1 the access bit of
e remains clear (i.e., was not cleared by software),
then we know for a fact e is not cached by any
TLB. If the OS obtained the latter information by
atomically reading and zeroing e, then all TLB flushes
associated with e (local and remote) can be avoided.
To detect such cases, we first need to maintain a “full-

uncached
ver=uncached

private
CPU=[current]
ver=[AS].ver

potentially	
shared
CPU=all

ver=[AS].ver

PTE	change	when
access-bit is	set

faulted-in

PTE	flush

PTE	flush

PTE	change	when
access-bit	is	set

Figure 2: A finite state machine that describes the various states
of a PTE. In each state, the assignment of the caching core and
version are denoted. On each transition the access-bit is cleared.

flush version number” for S, such that the version is
incremented whenever all cores c ∈ S perform a full
TLB flush. Recording this version for each e at the
time e is updated would then allow us to employ the
optimization.

TLB version tracking The most accurate way to
track full flushes is by maintaining a version for
each core, advancing it after each local full flush,
and storing a vector of the versions for every PTE.
Then, if a certain core’s version differs from the
corresponding vector coordinate (and the access-
bit is clear), a flush on that core is not required.
Despite its accuracy, this scheme is impractical, as it
consumes excessive memory and requires multiple
memory accesses to update version vectors. We
therefore trade off accuracy in order to reduce the
memory consumption of versions and the overheads
of updating them.

ABIS therefore tracks versions for each address
space (AS, corresponds to the above S) and not for
each core. To this end, for every AS, we save a version
number and a bitmask that marks which cores have
not performed a full TLB flush in the current version.
The last core to perform a full TLB flush in a certain
version advances the version. At the same time, it
marks in the bitmask which cores currently use this
AS and can therefore cache PTEs in the next version.
To mitigate cache line bouncing, the core that initiates
a TLB shootdown updates the version on behalf the
target cores.

Avoiding flushes After a PTE access-bit is cleared,
ABIS stores the current AS version as the PTE version.
Determining later whether a shootdown is needed
requires some attention, as even if the PTE and the AS
versions differ, a flush may be necessary. Consider

32 2017 USENIX Annual Technical Conference USENIX Association

No	flush

PTE.A	=	1

Flush	all
CPUs

SPTE.ver =
uncached

SPTE.ver <	
AS.ver-1

SPTE.CPU	=
all

Flush	
SPTE.CPU

Flush	PTE

True

False

False

False

True

True

True

False

Figure 3: Flush type decision algorithm.

a situation in which the access-bit is cleared, and
the PTE version is updated to hold the AS version.
At this time, some of the cores may have already
flushed their TLB for the current AS version, and
their respective bit in the bitmask is clear. The AS
version may therefore advance before these cores
flush their TLB again, and these cores can hold stale
PTEs even when the versions differ. Thus, our system
avoids shootdown only if there is a gap of at least
one version between the AS and the PTE versions,
which indicates a flush was performed on all cores.

Since flushes cannot be avoided when the access-
bit is set, this bit should be cleared and the PTE
version updated as frequently as possible, assuming
it introduces negligible overheads. In practice, ABIS
clears the bit and updates the version whenever the
OS already accesses a PTE for other purposes, for
example during an mprotect system-call or when
the OS considers a page for reclamation.

Uncached PTEs The version tracking mechanism
can also prevent unwarranted multiple flushes of
the same PTE. Such flushes may occur, for example,
when a user first calls an msync system call, which
performs writeback of a memory mapped file, and
then unmaps the file. Both operations require flush-
ing the TLB since the first clears PTEs’ dirty-bit and
the second sets a non-present PTE. However, if the
PTE was not accessed after the first flush, the second
flush is unnecessary, regardless of whether a full TLB
flush happened in between. To avoid this scenario,
we set a special version value, UNCACHED, as the PTE
version when it is flushed. This value indicates the
PTE is not cached in any TLB if the access-bit is
cleared, regardless of the current AS version.

Coexisting with Private PTE Detection Version
tracking coexists with private PTE detection. The
interaction between the two can be described in a

generation swA caching	core

15															9								8								7 0

software	page	table	(SPT)

page	table	(PT)

frame	meta-data
(struct page)

PT	spin-lock

SPT	pointer

PFN stat/protection

63																		 11 0

Figure 4: Software PTE (SPTE) and its association to the page
table through the meta-data of the page-table frame.

state machine,as shown in Figure 2. In the “uncached”
state a TLB flush is unnecessary; in the “private”
state at most one CPU needs to perform a TLB flush;
and in the “potentially shared” state all the CPUs
perform TLB flush.1 In the latter two states, a TLB
flush may still be avoided if the access-bit is clear
and the current address space version is at least two
versions ahead of the PTE version. Figure 3 shows
ABIS flush decision algorithm.

4.3 Software PTEs

As we noted before, for our system to perform in-
formed TLB invalidation decisions, additional infor-
mation must be saved for each PTE: the PTE ver-
sion, the CPU which caches the PTE, and a software
access-bit. Although we are capable of squeezing
this information into two bytes, the architectural PTE
only accommodates three bits for software use. We
therefore allocate a separate “software page-table”
(SPT) for each PT, which holds the corresponding
“software-PTEs” (SPTEs). The SPTE is not used by
the CPU during page-walks and therefore causes
little cache pollution and overhead.

An SPTE is depicted in Figure 4. We use 7 bits
for the version, 1 bit for the software access-bit, and
another byte to track the core that caches the PTE
if the access-bit is cleared. We want to define the
SPTE in a manner that ensures a zeroed SPTE would
behave in the legacy manner, allowing us to make
fewer code changes. To do so, we reserve the zero
value of the “caching core” field to indicate that
the PTE may be cached by all CPUs (ALL_CPUS) and
instead store the core number plus one.

When the OS wishes to access the SPTE of a certain
PTE, it should be able to easily access it. Yet the PTE
cannot accommodate a pointer to its SPTE. A possible
solution is to allocate two page-frames for each page-

1 A TLB flush is not required on CPUs that currently use a different
page-table hierarchy as explained in §2

USENIX Association 2017 USENIX Annual Technical Conference 33

 0

 0.2

 0.4

 0.6

 0.8

 1

m
ig

ra
te

c
o
w

-s
e
q
-m

t

c
o
w

-r
a
n
d

-m
t

m
m

a
p

-r
e
a
d

m
s
y
n

c
-m

t

a
n
o
n

-r
-s

e
q

 0

 0.2

 0.4

 0.6

 0.8

 1
n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

n
o
rm

a
liz

e
d
 T

L
B

 s
h
o
o

td
o
w

n
s

853

6
13

368 25

112

 0

 0.2

 0.4

 0.6

 0.8

 1

m
ig

ra
te

c
o
w

-s
e
q
-m

t

c
o
w

-r
a
n
d

-m
t

m
m

a
p

-r
e
a
d

m
s
y
n

c
-m

t

a
n
o
n

-r
-s

e
q

 0

 0.2

 0.4

 0.6

 0.8

 1
n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

n
o
rm

a
liz

e
d
 T

L
B

 s
h
o
o

td
o
w

n
s

297

632 305 149 160

0

runtime
shootdowns

Figure 5: Normalized runtime and number of TLB shootdowns in
ABIS when running vm-scalability benchmarks. The numbers
above the bars indicate the baseline (left) runtime in seconds and
(right) rate of TLB shootdowns in thousands/second.

table, one holding the CPU architectural PTEs and
the second holding the corresponding SPTEs, each
in a fixed offset from its PTE. While this scheme is
simple, it wastes memory as it requires the SPTE to
be the same size as a PTE (8B), when in fact SPTE
only occupies two bytes.

We therefore allocate an SPT separately during the
PT construction, and set a pointer to the SPT in the
PT page-frame meta-data (page struct). Linux can
quickly retrieve this meta-data, allowing us to access
the SPTE of a certain PTE with small overhead. The
SPTE pointer does not increase the page-frame meta-
data, as it is set in an unused PT meta-data field
(second quadword). The SPT therefore increases
page table memory consumption by 25%. ABIS
prevents races during SPT changes by protecting it
with the same lock that is used to protect PT changes.
It is noteworthy that although SPT management
introduces a overhead, it is negligible relatively to
other overheads in the workloads we evaluated.

5. Evaluation
We implemented a fully-functional prototype of
the system, ABIS, which is based on Linux 4.5.
As a baseline system for comparison we use the
same version of Linux, which includes recent TLB
shootdown optimizations. We run each test 5 times
and report the average result. Our testbed consists
of a two-socket Dell PowerEdge R630 with Intel 24-
cores Haswell EP CPUs. We enable x2APIC cluster-
mode, which speeds up IPI delivery.

In our system we disable transparent huge pages
(THP), which may cause frequent full TLB flushes, in-
crease the TLB miss-rate [4] and introduce additional
overheads [26]. In practice, when THP is enabled,
ABIS still shows benefit when small pages are used

(e.g., in the Apache benchmark shown later) and no
impact when huge pages are used (e.g., PBZIP2).

As a fast block device for our experiments we
use ZRAM, a compressed RAM block device, which
is used by Google Chrome OS and Ubuntu. This
device latency is similar to that of emerging non-
volatile memory modules. In our test, we disable
memory deduplication and deep sleep states which
may increase the variance of the results.

5.1 VM-Scalability

We use the vm-scalability test suite [34], which is
used by Linux kernel developers to exercise the
kernel memory management mechanisms, test their
correctness and measure their performance.

We measure ABIS performance by running bench-
marks that experience high number of TLB shoot-
downs.2 To run the benchmarks in a reasonable time,
we limit the amount of memory each test consumes
to 32GB. Figure 5 presents the measured speedup,
the runtime, the relative number of sent TLB shoot-
downs and their rate. We now discuss these results.

Migrate. This benchmark reads a memory mapped
file and waits while the OS is instructed to migrate
the process memory between NUMA nodes. During
migration, we set the benchmark to perform a busy-
wait loop to practice TLB flushes. We present the
time that a 1TB memory migration would take. ABIS
reduces runtime by 44% and shootdowns by 92%.

Multithreaded copy-on-write (cow-mt). Multiple
threads read and write a private memory mapped
file. Each write causes the kernel to copy the original
page, update the PTE to point to the copy, and flush
the TLB. ABIS prevents over 97% of the shootdowns,
reducing runtime by 20% for sequential memory
accesses and 15% for random by avoiding over 97%.

Memory mapped reads (mmap-read). Multiple
processes read a big sparse memory mapped file. As
a result, memory pressure builds up, and memory
is reclaimed. While almost all the shootdowns are
eliminated, the runtime is not affected, as apparently
there are more significant overheads, specifically
those of the page frame reclamation algorithm.

Multithreaded msync (msync-mt). Multiple threads
access a memory mapped file and call the msync
system-call to flush the memory changes to the file.
msync can cause an overwhelming number of flushes,
as the OS clears the dirty-bit. ABIS eliminates 98%
of the shootdowns but does not reduce the runtime,
as file system overhead appears to be the main
performance bottleneck.

2 We find that due to some benchmarks practice unrealistic
scenarios. Our revised tests are released with ABIS code.

34 2017 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35 40
 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

re
q
u

e
s
ts

/s
e

c
 [
th

o
u
s
a
n

d
s
]

s
p
e

e
d
u

p

cores [#]

baseline
ABIS
speedup

(a) Throughput

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40
 0

 100

 200

 300

 400

 500

 600

 700

s
e

n
t
s
h

o
o
td

o
w

n
s
 [
th

o
u

s
a
n
d
s
/s

e
c
]

re
c
e
iv

e
d
 s

h
o
o
td

o
w

n
s
 [
th

o
u

s
a
n
d

s
/s

e
c
]

cores [#]

baseline - send
ABIS - send
baseline - receive
ABIS - receive

(b) TLB shootdowns
Figure 6: Execution of an Apache web server which serves the Wrk workload generator.

Anonymous memory read (anon-r-seq). To evalu-
ate ABIS overheads we run a benchmark that per-
forms sequential anonymous memory reads and
does not cause TLB shootdowns. This benchmark’s
runtime is 9% longer using ABIS. Profiling the bench-
mark shows that the software TLB manipulations
consume 9% of the runtime, suggesting that hard-
ware enhancements to manipulate the TLB can elim-
inate most of the overheads.

5.2 Apache Web Server

Apache is the most widely used web server soft-
ware. In our tests, we use Apache v2.4.18 and enable
buffered server logging for more efficient disk ac-
cesses. We use the multithreaded Wrk workload
generator to create web requests [50], and set it to
repeatedly request the default Apache web page for
30 seconds, using 400 connections and 6 threads.
We use the same server for both the generator and
Apache, and isolate each one on a set of cores. We
ensure that the generator is unaffected by ABIS.

Apache provides several multi-processing mod-
ules. We use the default “mpm_event” module,
which spawns multiple processes, each of which
runs multiple threads. Apache serves each request
by creating a memory mapping of the requested
file, sending its content and unmapping it. This be-
havior effectively causes frequent invalidations of
short-lived mappings. In the baseline system, the in-
validation also requires expensive TLB shootdowns
to the cores that run other threads of the Apache
process. Effectively, when Apache serves concurrent
requests using multiple threads, it triggers a TLB
shootdown for each request that it serves.

Figure 6a depicts the number of requests per sec-
ond that are served when the server runs on different
number of cores. ABIS improves performance by 12%

when all cores are used. Executing the benchmark
reveals that the effect of ABIS on performance is
inconsistent when the number of cores is low, as
ABIS causes slowdown of up to 8% and speedups
of to 42%. Figure 6b presents the number of TLB
shootdown that are sent and received in the baseline
system and ABIS. As shown, in the baseline sys-
tem, as more cores are used, the amount of sent TLB
shootdowns becomes almost identical to the number
of requests that Apache serves. ABIS reduces the
number of both sent and received shootdowns by
up to 90% as it identifies that PTEs are private and
that local invalidation would suffice.

5.3 PBZIP2

Parallel bzip2 (PBZIP2) is a multithreaded imple-
mentation of the bzip2 file compressor [20]. In this
benchmark we evaluate the effect of reclamation
due to memory pressure on PBZIP2, which in itself
does not cause many TLB flushes. We use PBZIP2 to
compress the Linux 4.4 tar file. We configured the
benchmark to read the input file into RAM and split
it between processors using 500k block size. We run
PBZIP2 in a container and limit its memory to 300MB
to induce swap activity. This activity causes the in-
validation of long-lived idle mappings as inactive
memory is reclaimed.

The time of compression is shown in Figure 7a.
ABIS outperforms Linux by up to 12%, and the
speedup grows with the number of cores. Figure 7b
presents the number of TLB shootdowns per second
when this benchmark runs. The baseline Linux
system sends nearly 200k shootdowns regardless of
the number of threads, and the different shootdown
send rate is merely due to the shorter runtime
when the number of cores is higher. The number
of received shootdowns in the baseline system is

USENIX Association 2017 USENIX Annual Technical Conference 35

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35 40 45
 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

ru
n
ti
m

e
 [
s
e
c
o
n

d
s
]

s
p
e

e
d
u

p

threads [#]

baseline
ABIS

speedup

(a) Runtime

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45
 0

 100

 200

 300

 400

 500

 600

s
e

n
t
s
h

o
o
td

o
w

n
s
 [
th

o
u

s
a
n
d
s
/s

e
c
]

re
c
e
iv

e
d
 s

h
o
o
td

o
w

n
s
 [
th

o
u

s
a
n
d

s
/s

e
c
]

threads [#]

baseline - send
ABIS - send
baseline - receive
ABIS - receive

(b) Remote shootdowns.
Figure 7: Execution of PBZIP2 when compressing the Linux kernel. The process memory is limited to 300MB to practice page
reclamation.

proportional to the number of cores, as the OS
cannot determine which TLBs cache the entry, and
broadcasts the shootdown messages to all the cores
that run the process threads. In contrast, ABIS can
usually determine that a single TLB needs to be
flushed. When 48 threads are spawned, a shootdown
is sent on average to 10 remote cores in ABIS, and to
18 cores using baseline Linux.

5.4 PARSEC Benchmark Suite

We run the PARSEC 3.0 benchmark suite [7], which
is composed of multithreaded applications that are
intended to represent emerging shared-memory
programs. We set up the benchmark suite to use the
native dataset and spawn 32 threads. The measured
speedup, the runtime, the normalized number of TLB
shootdowns and their rate in the baseline system
are presented in Figure 8. As shown, ABIS can
improve performance by over 3% but can also induce
overheads of up to 2.5%. ABIS reduces the number
of TLB shootdowns by 96% on average.

The benefit of ABIS appears to be limited by the
overhead of the software technique it uses to insert
PTEs into the TLB. As this overhead is incurred after
each page fault, workloads which trigger consider-
ably more page faults than TLB shootdowns experi-
ence slowdown. For example, “canneal” benchmark
causes 1.5k TLB shootdowns per second in the base-
line system, and ABIS prevents 91% of them. How-
ever, since the benchmark triggers over 55k page-
faults per second, ABIS reduces performance by 2.5%.
In contrast, “dedup” triggers 33k shootdowns and
370k page faults per second correspondingly. ABIS
saves 39% of the shootdowns and improves perfor-
mance by 3%. Hardware enhancements or selective
enabling of ABIS could prevent the overheads.

5.5 Limitations

ABIS is not free of limitations. The additional opera-
tions and data introduce performance and memory
overheads, specifically the insertions of PTEs into
the TLB without setting the access-bit. However, rel-
atively simple hardware enhancements could have
eliminated most of the overhead (§7). In addition,
the CPU incurs overhead of roughly 600 cycles when
it sets the access-bit of shared PTEs [37].

To detect short-lived private mappings, our sys-
tem requires that the TLB be able to accommodate
them during their lifetime. New CPUs include rather
large TLBs of up to 1536 entries, which may map
6MB of memory. However, non-contiguous or very
large working sets may cause TLB pressure, induce
evictions, and cause false indications that PTEs are
shared. In addition, frequent full TLB flushes, for in-
stance during address-space switching or when the
OS sets the CPU to enter deep sleep-state have simi-
lar implications. Process migration between cores is
also damaging as it causes PTEs to be shared between
cores and requires shootdowns. These limitations
are often irrelevant to a well-tuned system [30, 31].

Finally, our system relies on micro-architectural
behavior of the TLBs. We assume the MMU does not
perform involuntary flushes and that the same PTE
is not marked as “accessed” multiple times when it
is already cached. Experimentally, this is not always
the case. We further discuss these limitations in §7.

6. Related Work
Hardware Solutions. The easiest solution from a
software point of view is to maintain TLB coherency
in hardware. DiDi uses a shared second-level TLB
directory that tracks which PTEs are cached by which

36 2017 USENIX Annual Technical Conference USENIX Association

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

b
la

c
k
s
c
h
o

le
s

b
o
d
y
tr

a
c
k

c
a

n
n
e

a
l

d
e
d

u
p

fe
rr

e
t

fl
u

id
a

n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
c
e

s
tr

e
a
m

c
lu

s
te

r

s
w

a
p

ti
o
n
s

v
ip

s

 0

 0.2

 0.4

 0.6

 0.8

 1
n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

n
o
rm

a
liz

e
d
 T

L
B

 s
h
o
o

td
o
w

n
s

37
14

37

6

15
29

32

65

49

16

10

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

b
la

c
k
s
c
h
o

le
s

b
o
d
y
tr

a
c
k

c
a

n
n
e

a
l

d
e
d

u
p

fe
rr

e
t

fl
u

id
a

n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
c
e

s
tr

e
a
m

c
lu

s
te

r

s
w

a
p

ti
o
n
s

v
ip

s

 0

 0.2

 0.4

 0.6

 0.8

 1
n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

n
o
rm

a
liz

e
d
 T

L
B

 s
h
o
o

td
o
w

n
s

1

0

1

33

1 7
2 1

1

7

runtime
shootdowns

Figure 8: Normalized runtime and number of TLB shootdowns
in ABIS when running PARSEC benchmarks. The numbers
above the bars indicate the baseline (left) runtime in seconds and
(right) rate of TLB shootdowns in thousands/second.

core and performs TLB flushes accordingly [48].
Teller et al. proposed that OSes save a version count
for each PTE, to be used by hardware to perform TLB
invalidations only when memory is addressed via a
stale TLB entry [39]. Li et al. eliminate unwarranted
shootdowns of PTEs that are only used by a single
core by extending PTEs to accommodate the core
that first accessed a page, enhancing the CPU to track
whether a PTE is private and avoiding shootdowns
accordingly [27].

These studies present compelling evaluation
results; however, they require intrusive micro-
architecture changes, which CPU vendors are appar-
ently reluctant to introduce, presumably due to a
history of TLB bugs [1, 16, 17, 35, 46].

Software Solutions. To avoid unnecessary recur-
ring TLB flushes of invalidated PTEs, Uhlig tracks
TLB versions and avoids shootdowns when the re-
mote cores already performed full TLB flushes after
the PTE changed [43, 44]. However, the potential of
this approach is limited since even when TLB invali-
dations are batched, the TLB is flushed shortly after
the last PTE is modified.

An alternative approach for reducing TLB flushes
is to require applications to inform the OS how mem-
ory is used or to control TLB flushes explicitly. Corey
OS avoids TLB shootdowns of private PTEs by re-
quiring that user applications define which memory
ranges are private and which are shared [10]. C4 uses
an enhanced Linux version that allows applications
to control TLB invalidations [40]. These systems,
however, place an additional burden on application
writers. Finally, we should note that reducing the
number of memory mapping changes, for example
by improving the memory reclamation policy, can

reduce the number of TLB flushes. However, these
solutions are often workload dependent [45].

7. Hardware Support
Although our system saves most of the TLB shoot-
downs, it does introduce some overheads. Hardware
support that would allow privileged OSes to insert
PTEs directly to the TLB without setting the access-
bit would eliminate most of ABIS’s overhead. Such
an enhancement should be easy to implement as we
achieve an equivalent behavior in software.

ABIS would able to save even more TLB flushes if
CPUs avoid setting the PTE access-bit after the PTE
is cached in the TLBs. We encountered, however,
in situations where such events occur. It appears
that when Intel CPUs set the PTE dirty-bit due to
write access, they also set the access-bit, even if the
PTE is already cached in the TLB. Similarly, before a
CPU triggers a page-fault, it performs a page-walk
to retrieve the updated PTE from memory and may
set the access-bit even if the PTE disallows access.
Since x86 CPUs invalidate the PTE immediately after,
before invoking the page-fault exception handler,
setting the access-bit is unnecessary.

CPUs should not invalidate the TLB unnecessarily,
as such invalidations hurt performance regardless of
ABIS. ABIS is further affected, as these invalidations
cause the the access-bit to be set again when the
CPU re-caches the PTE. We found that Intel CPUs
(unlike AMD CPUs) may perform full TLB flushes
when virtual machines invalidate huge pages that
are backed by small host pages.

8. Conclusion
We have presented two new software techniques
that prevent TLB shootdowns in common cases,
without replicating the mapping structures and
without incurring more page-faults. We have shown
its benefits in a variety of workloads. While our
system introduces overheads in certain cases, these
can be reduced by minor CPU enhancements. Our
study suggests that providing OSes better control
over TLBs may be an efficient and simple way to
reduce TLB coherency overheads.

Availability
The source code is publicly available at:
http://nadav.amit.to/publications/tlb.

Acknowledgment
This work could not have been done without the
continued support of Dan Tsafrir and Assaf Schuster.
I also thank the paper reviewers and the shepherd
Jean-Pierre Lozi.

USENIX Association 2017 USENIX Annual Technical Conference 37

http://nadav.amit.to/publications/tlb

References
[1] Lukasz Anaczkowski. Linux VM workaround for

Knights Landing A/D leak. Linux Kernel Mailing
List, lkml.org/lkml/2016/6/14/505, 2016.

[2] Manu Awasthi, David W Nellans, Kshitij Sudan, Ra-
jeev Balasubramonian, and Al Davis. Handling the
problems and opportunities posed by multiple on-
chip memory controllers. In ACM/IEEE International
Conference on Parallel Architecture & Compilation Tech-
niques (PACT), pages 319–330, 2010.

[3] Thomas W Barr, Alan L Cox, and Scott Rixner. Trans-
lation caching: skip, don’t walk (the page table). In
ACM/IEEE International Symposium on Computer Ar-
chitecture (ISCA), pages 48–59, 2010.

[4] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D Hill, and Michael M Swift. Efficient virtual
memory for big memory servers. In ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA),
pages 237–248, 2013.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The multikernel: a new OS architecture for
scalable multicore systems. In ACM Symposium on Op-
erating Systems Principles (SOSP), pages 29–44, 2009.

[6] Abhishek Bhattacharjee, Daniel Lustig, and Margaret
Martonosi. Shared last-level TLBs for chip multi-
processors. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 62–
63, 2011.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: Character-
ization and architectural implications. In ACM/IEEE
International Conference on Parallel Architecture & Com-
pilation Techniques (PACT), pages 72–81, 2008.

[8] David L Black, Richard F Rashid, David B Golub,
Charles R Hill, and Robert V Baron. Translation
lookaside buffer consistency: a software approach. In
ACM Architectural Support for Programming Languages
& Operating Systems (ASPLOS), pages 113–122, 1989.

[9] Daniel Bovet and Marco Cesati. Understanding the
Linux Kernel, Third Edition. O’Reilly & Associates, Inc.,
2005.

[10] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yan-
dong Mao, M Frans Kaashoek, Robert Morris, Alek-
sey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, et al.
Corey: An operating system for many cores. In
USENIX Symposium on Operating Systems Design &
Implementation (OSDI), pages 43–57, 2008.

[11] Austin T Clements, M Frans Kaashoek, and Nickolai
Zeldovich. RadixVM: Scalable address spaces for
multithreaded applications. In ACM SIGOPS Euro-
pean Conference on Computer Systems (EuroSys), pages
211–224, 2013.

[12] Joel Coburn, Adrian M Caulfield, Ameen Akel,

Laura M Grupp, Rajesh K Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: making persistent ob-
jects fast and safe with next-generation, non-volatile
memories. In ACM Architectural Support for Program-
ming Languages & Operating Systems (ASPLOS), pages
105–118, 2011.

[13] Jonathan Corbet. Realtime and interrupt la-
tency. LWN.net, https://lwn.net/Articles/
139784/, 2005.

[14] Jonathan Corbet. Memory compaction. LWN.net,
https://lwn.net/Articles/368869/, 2010.

[15] Jonathan Corbet. Memory management locking.
LWN.net, https://lwn.net/Articles/591978/,
2014.

[16] Christopher Covington. arm64: Work around Falkor
erratum 1003. Linux Kernel Mailing List, https://
lkml.org/lkml/2016/12/29/267, 2016.

[17] Linux Kernel Driver DataBase. CON-
FIG_ARM_ERRATA_720789. http://cateee.net/
lkddb/web-lkddb/ARM_ERRATA_720789.html, 2012.

[18] Jake Edge. Persistent memory. LWN.net, https://
lwn.net/Articles/591779/, 2014.

[19] Balazs Gerofi, Akira Shimada, Atsushi Hori, and Yozo
Ishikawa. Partially separated page tables for effi-
cient operating system assisted hierarchical mem-
ory management on heterogeneous architectures. In
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 360–368, 2013.

[20] Jeff Gilchrist. Parallel data compression with bzip2.
In IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (ICPDCS), volume 16,
pages 559–564, 2004.

[21] Mel Gorman. TLB flush multiple pages per IPI v4.
Linux Kernel Mailing List, https://lkml.org/lkml/
2015/4/25/125, 2015.

[22] Julien Grall. Force broadcast of TLB and instruction
cache maintenance instructions. Xen development
mailing list https://patchwork.kernel.org/patc
h/8955801/, 2016.

[23] Dave Hansen. Patch: x86: set TLB flush tunable
to sane value. https://patchwork.kernel.org/
patch/4460841/, 2014.

[24] Xeon phi processor. http://www.intel.com/
content/www/us/en/processors/xeon/xeon-phi-
detail.html.

[25] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual. Reference number:
325462-057US, 2015. https://software.intel.c
om/en-us/articles/intel-sdm.

[26] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J Rossbach, and Emmett Witchel. Coordinated
and efficient huge page management with Ingens. In
USENIX Symposium on Operating Systems Design &
Implementation (OSDI), pages 705–721, 2016.

38 2017 USENIX Annual Technical Conference USENIX Association

lkml.org/lkml/2016/6/14/505
https://lwn.net/Articles/139784/
https://lwn.net/Articles/139784/
https://lwn.net/Articles/368869/
https://lwn.net/Articles/591978/
https://lkml.org/lkml/2016/12/29/267
https://lkml.org/lkml/2016/12/29/267
http://cateee.net/lkddb/web-lkddb/ARM_ERRATA_720789.html
http://cateee.net/lkddb/web-lkddb/ARM_ERRATA_720789.html
https://lwn.net/Articles/591779/
https://lwn.net/Articles/591779/
https://lkml.org/lkml/2015/4/25/125
https://lkml.org/lkml/2015/4/25/125
https://patchwork.kernel.org/patch/8955801/
https://patchwork.kernel.org/patch/8955801/
https://patchwork.kernel.org/patch/4460841/
https://patchwork.kernel.org/patch/4460841/
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

[27] Yong Li, Rami Melhem, and Alex K Jones. PS-
TLB: Leveraging page classification information
for fast, scalable and efficient translation for future
CMPs. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):28, 2013.

[28] Likai Liu. Parallel computing and the cost of TLB
shoot-down. http://lifecs.likai.org/2010/
06/parallel-computing-and-cost-of-tlb.html,
2010.

[29] Daniel Lustig, Abhishek Bhattacharjee, and Margaret
Martonosi. TLB improvements for chip multiproces-
sors: Inter-core cooperative prefetchers and shared
last-level TLBs. ACM Transactions on Architecture and
Code Optimization (TACO), 10(1), 2013.

[30] Ophir Maor. What is CPU affinity? https://
community.mellanox.com/docs/DOC-1924, 2014.

[31] Ophir Maor. Mellanox BIOS performance tuning ex-
ample. https://community.mellanox.com/docs/
DOC-2297, 2015.

[32] Marshall Kirk McKusick, George V Neville-Neil, and
Robert NM Watson. The design and implementation
of the FreeBSD operating system. Pearson Education,
2014.

[33] Jinzhan Peng,Guei-Yuan Lueh,Gansha Wu,Xiaogang
Gou, and Ryan Rakvic. A comprehensive study
of hardware/software approaches to improve TLB
performance for Java applications on embedded
systems. In ACM Workshop on Memory System
Performance and Correctness (MSPC), pages 102–111,
2006.

[34] Aristeu Rozanski. VM-scalability benchmark
suite. https://github.com/aristeu/vm-scalabil
ity, 2010.

[35] Anand Lal Shimpi. AMD’s B3 stepping Phenom
previewed, TLB hardware fix tested. AnandTech
http://www.anandtech.com/show/2477/2, 2008.

[36] Kirill A. Shutemov. mm: map few pages around
fault address if they are in page cache. Linux
Kernel Mailing List, https://lwn.net/Articles/
588802, 2014.

[37] Kirill A. Shutemov. unixbench.score -6.3%
regression. Linux Kernel Mailing List,
http://lkml.kernel.org/r/20160613125248.
GA30109@black.fi.intel.com, 2016.

[38] Patricia J Teller. Translation-lookaside buffer consis-
tency. IEEE Computer, 23(6):26–36, June 1990.

[39] Patricia J Teller, Richard Kenner, and Marc Snir. TLB

consistency on highly-parallel shared-memory multipro-
cessors. Courant Inst. of Math. Sci, 1987.

[40] Gil Tene, Balaji Iyengar, and Michael Wolf. C4:
The continuously concurrent compacting collector.
ACM International Symposium on Memory Management
(ISMM), pages 79–88, 2011.

[41] Michael Y Thompson, JM Barton, TA Jermoluk, and
JC Wagner. Translation lookaside buffer synchroniza-
tion in a multiprocessor system. In USENIX Winter,
pages 297–302, 1988.

[42] Linus Torvalds. Splice: fix race with page inval-
idation. http://yarchive.net/comp/linux/zero-
copy.html, 2008.

[43] Volkmar Uhlig. Scalability of microkernel-based
systems. PhD thesis, TH Karlsruhe, 2005.
https://os.itec.kit.edu/downloads/publ_
2005_uhlig_scalability_phd-thesis.pdf.

[44] Volkmar Uhlig. The mechanics of in-kernel synchro-
nization for a scalable microkernel. ACM SIGOPS
Operating Systems Review (OSR), 41(4):49–58, 2007.

[45] Ahsen J Uppal and Mitesh R Meswani. Towards
workload-aware page cache replacement policies
for hybrid memories. In International Symposium
on Memory Systems (MEMSYS), pages 206–219, 2015.

[46] Theo Valich. Intel explains the Core 2 CPU
errata. The Inquirer http://www.theinquirer.net/
inquirer/news/1031406/intel-explains-core-
cpu-errata, 2007.

[47] Brian Van Essen, Henry Hsieh, Sasha Ames, and Maya
Gokhale. DI-MMAP: A high performance memory-
map runtime for data-intensive applications. In
IEEE International Workshop on Data-Intensive Scalable
Computing Systems (SCC), pages 731–735, 2012.

[48] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova,
Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho
Navarro, Adrian Cristal, and Osman S Unsal. DiDi:
Mitigating the performance impact of TLB shoot-
downs using a shared TLB directory. In ACM/IEEE
International Conference on Parallel Architecture & Com-
pilation Techniques (PACT), pages 340–349, 2011.

[49] Carl A. Waldspurger. Memory resource management
in VMware ESX server. In USENIX Symposium on
Operating Systems Design & Implementation (OSDI),
volume 36, pages 181–194, 2002.

[50] wrk. HTTP benchmarking tool. https://github.c
om/wg/wrk, 2015.

USENIX Association 2017 USENIX Annual Technical Conference 39

http://lifecs.likai.org/2010/06/parallel-computing-and-cost-of-tlb.html
http://lifecs.likai.org/2010/06/parallel-computing-and-cost-of-tlb.html
https://community.mellanox.com/docs/DOC-1924
https://community.mellanox.com/docs/DOC-1924
https://community.mellanox.com/docs/DOC-2297
https://community.mellanox.com/docs/DOC-2297
https://github.com/aristeu/vm-scalability
https://github.com/aristeu/vm-scalability
http://www.anandtech.com/show/2477/2
https://lwn.net/Articles/588802
https://lwn.net/Articles/588802
http://lkml.kernel.org/r/20160613125248.GA30109@black.fi.intel.com
http://lkml.kernel.org/r/20160613125248.GA30109@black.fi.intel.com
http://yarchive.net/comp/linux/zero-copy.html
http://yarchive.net/comp/linux/zero-copy.html
https://os.itec.kit.edu/downloads/publ_2005_uhlig_scalability_phd-thesis.pdf
https://os.itec.kit.edu/downloads/publ_2005_uhlig_scalability_phd-thesis.pdf
http://www.theinquirer.net/inquirer/news/1031406/intel-explains-core-cpu-errata
http://www.theinquirer.net/inquirer/news/1031406/intel-explains-core-cpu-errata
http://www.theinquirer.net/inquirer/news/1031406/intel-explains-core-cpu-errata
https://github.com/wg/wrk
https://github.com/wg/wrk

Falcon: Scaling IO Performance in Multi-SSD Volumes

Pradeep Kumar H. Howie Huang
The George Washington University

Abstract

With the high throughput offered by solid-state drives
(SSDs), multi-SSD volumes have become an attractive
storage solution for big data applications. Unfortu-
nately, the IO stack in current operating systems im-
poses a number of volume-level limitations, such as per-
volume based IO processing in the block layer, single
flush thread per volume for buffer cache management,
locks for parallel IOs on a file, all of which lower the
performance that could otherwise be achieved on multi-
SSD volumes. To address this problem, we propose a
new design of per-drive IO processing that separates two
key functionalities of IO batching and IO serving in the
IO stack. Specifically, we design and develop Falcon1

that consists of two major components: Falcon IO Man-
agement Layer that batches the incoming IOs at the vol-
ume level, and Falcon Block Layer that parallelizes IO
serving on the SSD level in a new block layer. Com-
pared to the current practice, Falcon significantly speeds
up direct random file read and write on an 8-SSD vol-
ume by 1.77× and 1.59× respectively, and also shows
strong scalability across different numbers of drives and
various storage controllers. In addition, Falcon improves
the performance of a variety of applications by 1.69×.

1 Introduction

The demand of high-performance storage systems is
propelled by big data applications that need high IO
throughput for processing massive data volumes. Flash-
based solid-state drives (SSDs) provide an attractive op-
tion compared to hard disk drives for such applications,
due to their high random and sequential performance.
As a common practice, multiple SSDs are increasingly
deployed to support a wide variety of applications such
as graph analytics [23, 50, 20, 51, 31, 26], machine-
learning [21, 30], and key-value stores [11, 25]. In this
work, we especially use a number of graph analytics sys-
tems as motivating examples to illustrate the drawbacks
of existing approaches.

1This system is named after the Millennium Falcon in the Star Wars,
“the fastest ship in the galaxy”.

IO Performance
HighLow

Pr
og

ra
m

m
in

g
Co

m
pl

ex
ity

Low

High

Kernel-managed IO
(1 application IO thread)

Application-managed IO
(1 application IO thread per-SSD)

Falcon
(1 application IO thread)

Kernel-managed IO
(many application IO threads)

Figure 1: Falcon aims to achieve both ease of programing and
high IO performance.

To take advantage of high performance of SSDs,
throughput-sensitive applications either utilize an
application-managed or kernel-managed IO approach as
illustrated in Figure 1. In the first case of application-
managed IO, prior projects such as SAFS [49],
FlashGraph [50], and Graphene [23] require the appli-
cation developer to explicitly distribute the data among
multiple files, each hosted in independent SSDs. In
this case, there is no abstraction of a volume, and one
application IO thread is dedicated to each SSD. Clearly,
such a framework is very complex as applications need
to be aware of data partitioning, and determine which
application IO thread should perform the IO at any
particular instance.

On the other hand, for kernel-managed IO, applica-
tions can enjoy the benefits of both volumes and batched
IO interfaces provided by the operating system, e.g.,
Linux AIO (asynchronous IO), Solaris KAIO and Win-
dows Overlapped IO. Such interface allows the appli-
cations to submit multiple IOs within a single system
call, which provides a clear advantage of ease of pro-
gramming. However, because IO functionality is lim-
ited to just one application IO thread, the combination of
kernel-managed IO and a volume, be it created by Linux
(e.g., md, lvm), FreeBSD (e.g., geom) or hardware RAID,
would fail to saturate the aggregate bandwidth of multi-
ple SSDs.

To mitigate this problem, the applications can spawn a
number of dedicated application IO threads to serve the
requests in parallel. Several existing projects adapt this

USENIX Association 2017 USENIX Annual Technical Conference 41

User space
Kernel Space

Application
IO Threads

(c) Falcon

…

…

FML

FBL FBL

Falcon
IO Stack

Computing
Threads

Userspace
IO Buffer

(a) Application-managed

…

…

IO Stack

Volume
…

IO Stack

(b) Kernel-managed
Volume

… … … …

Falcon
Threads

1 application IO
thread per-SSD

1 or more application
IO thread per-volume

1 application IO
thread per-volume

Figure 2: (a) Applications explicitly manage data and IOs on
each SSD. There is no volume; (b) Applications relies on the
kernel to manage the data on the volume; (c) Falcon main-
tains the abstraction of volumes and utilizes specialized kernel
threads, called Falcon threads, to parallelize per-drive process-
ing for high throughput.

approach, including GridGraph [51] and G-Store [20].
Unfortunately, managing multiple application IO threads
using a thread pool is again complicated. And in many
cases, this approach does not achieve the expected goal
due to the limitations in IO subsystems [28]. For exam-
ple, many file systems (e.g., ext4 [10]) apply a per-file
inode lock, which prevents scalable random read or write
from a single file, irrespective of how many application
IO threads are employed. So is the case for buffered write
where a single kernel thread per volume is responsible
for flushing the dirty buffer cache to the volume, limiting
the write throughput that could potentially be achieved.

In this work, we strive to achieve the combined ben-
efits of both approaches, that is, delivering high perfor-
mance IO on a multi-SSD volume while providing ease
of programming to the application developers. To this
end, we design and develop Falcon whose workflow, as
shown in Figure 2, presents a new design of per-drive IO
processing on multi-SSD volumes. The key insight is the
separation of the two functionalities of IO batching and
IO serving in the IO stack. The former batches and clas-
sifies the incoming IOs at the volume level, and is per-
formed in Falcon IO Management Layer (FML). Mean-
while, the latter serves the IOs in parallel to the SSDs,
and is performed in Falcon Block Layer (FBL) using a
specialized kernel thread, called Falcon thread.

In particular, FBL provides two new techniques: (1)
per-drive IO sort and neighbor merge, which limits the
scope of sort operations to each SSD and merge to neigh-
boring requests. In contrast, the Linux IO merge algo-
rithm unnecessarily traverses every IO request for all the
member SSDs. And (2) dynamic tag allocation, which
assigns request tags, a limited hardware resource, at run-
time. This helps to reduce the unpredictable blocking in
the IO stack, and provide a better mechanism to control
the number of active IOs in the pipeline, which is appli-
cable across different storage technologies and vendors.

As a result, Falcon allows a dedicated application IO
thread to saturate the multi-SSD volume. Thus devel-
opers can concentrate more on algorithmic optimiza-
tions, without worrying about the complexity of manag-
ing multiple application IO threads and SSDs. In con-
trast, Linux follows per-volume approach of mixing IO
batching and IO serving tasks in the block layer, where
the sequential IO processing and round-robin dispatch
lead to many inefficiencies on multi-SSD volumes, and
limit the parallelism that could otherwise be achieved.

We have evaluated Falcon with a number of micro-
benchmarks, real applications, and server traces. Fal-
con shows strong scalability across different numbers
of SSDs, and several different storage controllers. On
an 8-SSD volume, Falcon significantly speeds up direct
random read and write throughput on an ext4 file by
1.77× and 1.59× respectively, buffered random write
by 1.59×, and shows consistent performance for vari-
ous stripe size configurations. In addition, Falcon speeds
up graph processing, utility applications, filebench and
trace replay by 1.69×. Lastly, it is important to note
that with the new block layer, Falcon is able to saturate
a non-volatile-memory-express (NVMe) SSD, delivering
1.13× speedup over the native Linux.

The remainder of the paper is organized as follows.
Section 2 presents background on volume management
and its interaction with the block layer, as well as how
an IO request traverses through various layers. Section 3
quantifies the challenges arising due to per-volume phi-
losophy of Linux IO stack, and presents an overview of
Falcon architecture. Section 4 and 5 present the design
and implementation of Falcon components. We evaluate
the performance of our techniques in Section 6, discuss
related works in Section 7, and conclude in Section 8.

2 Background

In this work, while we mostly use Linux to describe the
background on the volume management and the block
layer; it is worth noting that this IO workflow is generic
in nature and many operating systems implement a sim-
ilar mechanism. Nevertheless, our design and imple-
mentation have been influenced by Linux-specific tech-
niques.

In particular, we compare to the Blk-mq [1] block
layer which has shown better scaling than the single-
queue block layer. Also, most of our discussions pertain
to single application IO thread using batched IO inter-
faces such as Linux AIO. Many kernel daemons such as
pdflush and kjournald submit IO internally in a way sim-
ilar to batched IO interface. Specifically, pdflush daemon
manages the page cache, and has only one dedicated ker-
nel thread per volume to write the dirty pages to storage.
There is no pdflush thread to manage the read, and it hap-

42 2017 USENIX Annual Technical Conference USENIX Association

SCSI Layer and Drivers

SSD1 SSDm
…

Block Layer
Instance

(SSD1)

Block Layer
Instance

(SSDm)
…

Applications

bio1 biom

Volume Manager Instance

bio

VFSDirect
IO

Page
Cache

bio

IO Phases: Plug, Unplug, Dispatch, Completion
IO States: start, split, merge, wait, ready, insert, dispatch, complete

start1

Process Next
Request

enqueue to
software-queue

Unplug
Phasesort

no

enqueue to plug-list

no

yes

yes

yes

no

0

dispatch IO
to driver

Plug
Phase

Dispatch
Phase

tag
available?

merge ?

unplug?

no

IRQ event
completion

Complete IOFree
tag

bio

Completion
Phase

classify

complete8

merge3

ready4

wait5

insert6

dispatch7

split2

start1

split2

Figure 3: Left: Linux IO stack and the interaction between the
volume manager and the block layer. Right: the block layer
instance and the detailed IO flow. IO processing happens se-
quentially, while dispatch happens in a round-robin fashion.

pens directly in the context of the IO issuing thread. Fig-
ure 3 shows the inner working of a multi-SSD volume.
Volume Management and Block Layer. An instance
of the block layer is associated to a block device, which
is associated to a single drive such as an SSD. The vol-
ume management layer is used to map several physical
block devices into a single virtual block device (e.g., md
or lvm). In this layer, IO requests are represented as an
object of block IO (bio for short) structure. The job of
the volume manager instance is to break the incoming
bio object into multiple (smaller) bio objects destined for
member drives, depending on the IO size and the stripe
size of the volume, as discussed next. The original IO is
completed only when all the split IOs to different drives
are completed.
IO Flow and States. Figure 3 also shows the flow of
an IO request from submission to completion within the
block layer. For simplicity, we group the process to
four phases: plug, unplug, dispatch, and completion.
IO batching, merge, and tag allocation are performed in
the plug phase. IO batching provides an opportunity to
merge incoming IOs to take advantage of higher sequen-
tial throughput. Also, SSDs provide higher throughput
for batched IOs due to parallelism at the hardware level,
where more than one IO can be fetched in parallel. Next,
sort and classify operations are performed in the unplug
phase, IO requests are dispatched to SSDs in the dispatch
phase, and IO completion is performed in the the com-
pletion phase where various resources are freed.

In each phase, the IO request advances across vari-
ous states as different tasks are performed on it. As we
will show later, one may use the states to track the IO,
and find out the time spent by an IO request in different
phases for performance profiling.

As soon as an IO request enters the kernel, it is con-
verted to a struct bio object and assumes the ¶start state.
In the case of a multi-SSD volume, the volume manager
splits the bio object into multiple smaller objects and
moves them to the ·split state. For example, for a multi-
SSD volume of 4KB stripes, an incoming IO request of
64KB would be divided into 16 bio objects, each contain-
ing 4KB IO destined to a specific SSD. Next, a number of
block layer instances (one per SSD) handle the incoming
IOs as if it were an IO to this particular SSD. For exam-
ple, in Figure 3, bio1 proceeds to the block layer instance
of SSD1, bio2 to SSD2, and so forth.

These split bio objects enter their block layer instances
in a sequential fashion, and the plug phase begins. The
operation starts with the bio object being checked against
existing IO entries of the per-core plug-list for merge
candidates. As illustrated in Figure 4(a), the plug-list is a
private queue to each IO thread, and is used for batching
and merging the incoming IO requests. In other words,
the plug-list is shared among multiple block layer in-
stances, and used by all member SSDs of the multi-SSD
volume. In this case, a thread does sequential processing
of all previously split bio objects, and presents several
drawbacks, as we will discuss shortly.

If the bio object is merged, then it moves to the
¸merge state, and the processing of the next object starts.
Otherwise, a request tag will be requested. If a tag is
available then the bio object is put inside a unique struct
request container indexed by the allocated tag, which in
turn is queued to the plug-list. This state is called the
¹ready state as IO requests are dispatched in this form
to the physical drivers later. However, if a request tag
were not available, the IO moves to the ºwait state, and
the thread blocks waiting for a free tag.

When the number of IO requests in the plug-list
reaches a threshold, an unplug event happens, and the
unplug phase starts. In this phase, all the IOs present in
the plug-list of this thread are sorted based on the des-
tination drive and block address information. Next, the
sorted IOs move to the per-core, per-drive software queue
of the member drives, and acquire the »insert state.

In the dispatch phase, the IO requests are dispatched
in a round-robin fashion from the software queues to the
drives in the same thread context, and moves the IOs to
the ¼dispatch state. If some IOs can not be dispatched,
they will be kept in the per-drive dispatch-queue (not
shown in the Figure 3) for later processing. Lastly in
the completion phase, when a drive completes an IO, it
raises an IRQ event. The IRQ handler will free the re-
sources and move the IO request to the ½complete state,
where any waiting thread is woken up.
Request Tag. The request tag is a limited, vendor and
technology specific hardware resource [9]. The avail-
able tags are either per storage controller or per-drive.

USENIX Association 2017 USENIX Annual Technical Conference 43

(a) Linux block layer execution View
(Per-volume Processing)

Classification Phase (classify)

bio1 bio2 biom

Batching Phase (batch)

…

…

Thread-specific
plug-list

(b) Falcon execution View
(Per-drive Processing)

Unplug Phase (sort, classify)

…

bio1 bio2 biom

Thread-specific
plug-list

Plug Phase
(batch, merge, tag allocation)

Dispatch Phase (dispatch)

To SCSI Layer and Drivers To SCSI Layer and Drivers

FML

…

Software queues

Process Phase
merge, tag

allocation, dispatch

Sort Phase (sort)

FBL…

software queues

Process Phase
merge, tag

allocation, dispatch

Sort Phase (sort)

FBL…

Software queues…

Software queues

Figure 4: (a) IO issuing thread batches the IOs destined to dif-
ferent member drive to same plug-list. The merge, tag alloca-
tion, and sort operation being performed in the plug-list is the
major cause of inefficiency. (b) Falcon’s idea of per-drive phi-
losophy is to postpone the IO serving tasks of the block layer to
the drive-specific software-queue. Completion phase is omitted
for simplicity.

For example, the Intel SCU technology has 250 avail-
able tags [39], but they are shared among four ports of
the controller. That is, every connected SSDs will com-
pete for the same tag space. Similarly, the LSI 9300-8i
SAS HBA adapter has 10,140 tags, and is shared by all
the connected drives. On the other hand, the Intel AHCI
SATA controller has only 32 tags per SATA port, which
is not shared. In this case, the tag count matches with
the drive’s internal queue size. For the Samsung 950
pro 512GB NVMe SSD that we use in this work, the tag
counts are 1024 per hardware-queue. This specific drive
has 8 hardware queues [38], while SATA SSDs have only
one hardware queue.

3 Falcon Architecture

In this section, we first describe the insufficiencies of
current per-volume processing of Linux IO stack, and
present the overall architecture of Falcon.

3.1 Challenges of Per-Volume Processing
Current multi-SSD volumes follow the per-volume pro-
cessing, that is, IO serving is tied to the plug-list, and
is forced to be performed in a sequential manner within
a volume. In other words, as shown in Figure 4(a), the
plug-list mixes IO requests that actually belong to vari-
ous member drives within a multi-SSD volume. More-
over, the block layer mingles two unrelated tasks: batch-
ing, and merge/tag allocation in its plug phase, and sort
and classify in the unplug phase.

To illustrate the problems, we run a revised FIO
benchmark [12] on various configurations of multi-SSD
volumes. The detailed setup will be presented in Section

0
100
200
300
400
500

sda sdb sdc sdd sde sdf sdg sdh 8-SSD
(avg)

1-SSD

St
ac

k
La

te
nc

y
(in

 u
se

c)

|________8-SSD Volume Member Drives __________|

Figure 5: Stack latency of eight SSDs, and average latency

6. In particular, we measure two metrics: the stack la-
tency is the time between the start and insert states, while
the device latency is the time between the dispatch and
completion states. We use the former to gauge the soft-
ware performance, and the latter for device performance.
Insufficiency #1: Lack of Parallelism. As several IO
serving tasks are forced to be performed in a single plug-
list, the opportunities in parallelizing those tasks are lim-
ited. Under the Linux architecture shown in Figure 4(a),
merge, tag allocation, and sort tasks lack parallelism,
while dispatch happens in a round-robin way.

Figure 5 quantifies this impact on the stack latency of
SSDs within a volume. Out of 8 SSDs, the slowest drive
(sdh) spends at least 55% more time on IO processing
(i.e., the stack latency) as compared to the fastest drive
(sda). Interestingly, the latency increases in the same or-
der of the drives. This is due to the round-robin dispatch
where the first drive always gets the highest priority to
dispatch followed by the second drive onwards. As a
result of this procedure, later drives have to wait even
though the requests are ready to be dispatched.
Insufficiency #2: Inefficient Merge and Sort. The cur-
rent merge algorithm traverses the plug-list of the thread
to find the merge candidate for a bio object. It searches
all IO requests including those that belong to different
drives. But clearly, they should not be considered as can-
didates at all. Also, in the unplug phase, sorting happens
on the same thread-specific plug-list, which again means
wasteful processing on irrelevant requests.

0%
20%
40%
60%
80%

100%

1-SSD 8-SSD Volume
0

100
200
300
400
500

1-SSD 8-SSD Volume

La
te

nc
y

(u
se

c)

Stack Latency Device Latency

(a) Absolute latency (b) Percent distribution

Figure 6: Distribution of the stack latency and device latency,
showing absolute and percentage distribution. For 8-SSD vol-
ume, stack latency is more than the device latency.

Making matters worse, the IO count in the plug-list is
significantly higher for a multi-SSD volume. The plug
phase ends only when the merge task finds more than
16 IOs (the per-drive threshold) in the plug-list destined
to the same drive. Assuming an uniform distribution of
the IOs among all the drives, the total number of the IOs
in the plug-list would need to reach 128 for an 8-SSD
volume to end the plug phase, as opposed to 16 for 1-

44 2017 USENIX Annual Technical Conference USENIX Association

SCSI Layer and Drivers

SSD1 SSDm…

FBL Instance
(SSD1)

FBL Instance
(SSDm)…

bio1 biom

Volume Manager Instance…
Falcon IO Management Layer

Applications

VFSDirect IO Page Cache

bio bio

split

start

split

start

Figure 7: Falcon IO stack highlighting differences with Linux
IO stack. A new abstraction in the form of Falcon IO Man-
agement Layer (FML) is introduced which performs purely IO
batching work, while the Falcon Block Layer (FBL) performs
IO serving tasks in parallel to FML and to each other.

SSD. As a result, the average processing time spent by an
IO thread for the 8-SSD volume is significantly higher,
over 3.5× more than 1-SSD (Figure 6(a)), and forces the
IO thread to spend 60% time inside the IO stack, pointing
to the IO stack as the bottleneck (Figure 6(b)).
Insufficiency #3: Unpredictable Blocking. In between
the merge and sort tasks, the tag allocation is forced to
be performed in a sequential manner as well. So, when
a tag allocation fails for any drive member, the executing
thread blocks the whole IO stack waiting for a free tag
from that drive. Thus the active IO count present in the
Linux IO stack is controlled by the tag count because the
blocked IO thread wakes up only when the tag becomes
available, i.e. only when an existing IO completes. This
blocking is unpredictable, as the tag count varies and can
either be storage controller or drive specific.

3.2 Per-Drive Processing in Falcon

Falcon proposes a new approach of the per-drive philos-
ophy, which separates the two operations of IO batching
and IO serving by regrouping the tasks by their function-
alities in new phases, as shown in Figure 4(b). Specifi-
cally, only IO batching and classify tasks are performed
in the plug-list. And merge, tag allocation, and dispatch
tasks move to a new process phase and are performed in
per-drive software queues, and can easily be parallelized.
This reduces the amount of work being done in the plug-
list, and hence removes the major bottlenecks.

Figure 7 presents the major components of Falcon. In
particular, the new batching and classification phases are
performed in the Falcon IO Management Layer (FML
for short), while the sort phase along with the process
and completion phases are performed in the Falcon Block
Layer (FBL). Moreover, the FML also spawns Falcon
threads for parallel IO serving across FBL instances.

Block Layer Linux Linux Falcon
Features 1-SSD Multi-SSD Volume
Parallel processing NA 7 3

Per-drive sort 3 7 3

Neighbor merge 7 7 3

Dynamic tag management 7 7 3

Table 1: Falcon’s per-drive processing

We summarize the differences between Falcon and
Linux IO stack in Table 1. For example, the Linux Blk-
mq architecture allows per-drive sort for 1-SSD system,
but it fails to provide the same functionality to multi-SSD
volumes. In contrast, the separation of functionalities al-
lows the Falcon to keep the per-drive philosophy intact
in its FBL block layer, as the IO serving operations are
performed in the per-drive software queue. In addition,
dynamic tag allocation in FBL removes the tag allocation
from the plug phase and moves it to just before dispatch.
This provides a more uniform and predictable criterion
to control the outstanding IOs in the IO stack pipeline.

4 Falcon IO Management Layer

Falcon IO Management Layer (FML) is the new abstrac-
tion between the volume manager and the block layer. It
performs IO batching, and creates a Falcon thread for
each FBL instance to parallelize per-drive processing.
Figure 8 presents the IO flow in the management layer.

4.1 IO Batching
IO batching is performed in two phases: batching and
classification. FML starts its batching phase as soon as
a new (split) bio arrives, and pushes the object into the
plug-list of the thread. Next, the volume manager sends
the next bio object of the original IO request. If there are
no more objects, the volume manager processes the next
request from the batched IO interface. This bio object is
again enqueued to the same plug-list by the FML layer.

As this process progresses, an unplug event will occur.
At this point, the current batching phase stops, and the
classification phase begins, thereby, all the bio entries in
the plug-list are classified based on destination drives.

Batching and classification tasks are performed using
bio objects in Falcon, as opposed to request containers
in Linux, hence we add prev and next pointers to the bio
structure, so that the bio objects can be chained in the
doubly linked-list plug-list.

Additionally, at the end of the classification phase, all
the IOs have to be enqueued to the per-core per-drive
software queue. However, software queues are protected
by spin locks, and acquiring them becomes mandatory
each time an IO need to be enqueued. To this end, we
collect the requests in temporary per-drive queues during
the classify operation. At the end, all bio objects from the

USENIX Association 2017 USENIX Annual Technical Conference 45

Move per-drive queues to software queues

insert

Classification
PhaseClassify plug-list to temporary per-drive queues

no

enqueue to plug-list

Process Next
Request

yes
Batching
Phase

unplug?

bio
(from Volume manager Layer)

To FBL layer

Spawn Falcon threads, if needed

Figure 8: IO flow in Falcon IO Management Layer. The plug-
list is used only for batching operations. Merge, sort, and tag
operations are no longer performed in here.

temporary queues move to respective software queues,
thus acquiring the spin lock only once.

4.2 Enabling Parallel Processing
At the end of the classification phase, all the IOs reside
in the per-drive software queue, and hence the FBL in-
stances can perform IO serving tasks in parallel, which is
not possible in Linux. To this end, FML spawns one ker-
nel thread per participating FBL instance for this group
of batched IOs. We call each thread a Falcon thread, and
is responsible for IO serving tasks.

In our implementation, the Falcon threads are spawned
using Linux’s kblockd workqueue object. However, the
CPU affinity of a kworker is decided by the thread that
requests a kworker. Should all the Falcon threads share
the same core as the IO issuing thread, it would defeat the
purpose of parallel IO serving. To address this problem,
we modify the workqueue API invocations so that we can
use the CPU affinity of each Falcon thread to pin them to
different cores. Ideally it should be NUMA-aware, that
is, on a core of the socket that hosts the corresponding
storage controller adapter. We manage this information
inside hardware context object of each drive.

The completion phase is also executed in the same
core to which the Falcon thread is pinned. As the CPU
core information is now available, the IRQ handler can
send an inter-processor interrupt (IPI) to this core to per-
form the completion phase, or execute directly if the IRQ
is received on the same core as that of the Falcon thread.

The job of completion phase is three-fold: freeing up
bio objects, request tag and other resources; waking up
any thread that is waiting for IO completion; and request-
ing a Falcon thread to resume processing if the inter-
nal queue of the drive becomes full at the last dispatch.
In performing those tasks, a completion thread accesses
those data structures that are set by the Falcon thread.
Hence by running the completion on the same core, Fal-
con avoids the cache migration of those objects, making
completion a cache friendly phase.

0
100
200
300
400
500

device
latency

stack
latency

sda sdb sdc sdd sde sdf sdg sdh

La
te

nc
y

(u
se

c)

|_______8-SSD volume member drives's stack latency_______|

Linux Falcon

Figure 9: Drive and stack latency comparison of 8-SSD vol-
ume. Falcon is able to make the stack latency uniform as well
as smaller than the device latency.

4.3 Unplug Criteria

One implication of separating the merge task from the
batching task is removal of the unplug criteria from the
plug phase. The unplug event is raised when the number
of requests evaluated for merging goes beyond a thresh-
old in the plug phase. As we have mentioned earlier, the
criteria varies depending on the IO distribution to each
drive, and the maximum value of the threshold is 128
for 8-SSD volume in a uniform distribution. To achieve
more predictable unplug events, Falcon utilizes two new
thresholds (low watermark and high watermark). Sim-
ply put, we maintain the IO requests in the plug-list and
finish the batching phase when the count reaches beyond
a threshold.

Increasing the watermark by too much would increase
the stack latency, and as a result the device would remain
idle because more IO requests are still being processed.
On the other hand, lowering the watermark may poten-
tially reduce the benefit of batching. An equilibrium is
desired so that the drives are kept busy as long as there
are sufficient number of IO requests. Given a typical in-
ternal queue size of 32 for an SSD, we choose the product
of device count and this queue size as the high watermark
value, e.g., 256 for an 8-SSD volume.

Figure 9 plots the stack latency for Falcon using the
high watermark. Since the ordering of IO state has
changed, here we measure the new stack latency as the
time between the start to ready phase. One can see that
Falcon is able to achieve similar stack latency for dif-
ferent drives, compared to a large variance in Linux.
Specifically, Falcon achieves around 320 microseconds,
smaller than 404.7 microseconds device latency from the
SSDs. As such, the stack and drive latency are nicely
balanced.

It should be noted that the device latency is a function
of the queue depth, i.e. a busy SSD will have higher de-
vice latency than one that is lightly loaded. In Linux’s
case, the device is operating at lower queue depth, as the
application IO thread is not able to dispatch enough re-
quests. In contrast, thanks to parallelism, Falcon threads
in Falcon are able to dispatch more IOs to SSDs, and
keep them busy all the time. As a result, the stack la-
tency is smaller than the device latency. So, even with
higher stack latency than Linux, Falcon is able to get
higher throughput as we will show in Section 6.

46 2017 USENIX Annual Technical Conference USENIX Association

0
30
60
90

120
150

1-SSD 2-SSD 4-SSD 8-SSD

La
te

nc
y

(u
se

c)

Linux Falcon

Figure 10: IO latency study of various multi-SSD volume

Latency. Falcon uses the low watermark to facilitate
latency-sensitive applications, where only fewer IOs are
submitted. The idea is to avoid an extra context switch
when the IO demand is low. Here we take current value
of 16 requests per drive as the basis, and set the low wa-
termark as the product of this value and the drive count,
e.g., 128 IOs for 8-SSD volume. It should be noted that
if fewer IOs are submitted in a batched IO interface or
just one IO using POSIX IO interface, the batching phase
does not wait for more incoming IOs, and an unplug
event occurs at the end of the submission. For 1-SSD
system, Falcon always performs synchronous IO serv-
ing. Note that it is also possible to let the users choose
both high and low watermarks depending on their need.

For such applications, IO serving will happen in the
context of the IO issuing thread as the plug-list would
not cross the low watermark. Figure 10 shows that Fal-
con improves the IO latency (from the application per-
spective) by nominal 3% for various multi-SSD volumes
(RAID0, 4KB stripe size) when just one IO of size 4KB
(POSIX IO) is active in the whole IO pipeline.

5 Falcon Block Layer

Falcon Block Layer (FBL) is the new block layer that
performs the IO serving tasks. FBL instances receive
unsorted bio objects in their per-core, per-drive software
queues. Compared to the existing approach where most
of the operations happen in the per-thread plug-list, our
approach enables per-drive processing, which can be di-
vided into three phases (sort, process, and completion) as
shown in Figure 11.

5.1 Per-Drive Sort and Neighbor Merge
Mechanism. The software queue is a per-core queue, so
a single drive has many associated software queues, one
for each CPU core. Hence the sort phase first aggregates
the bio objects from all of the software queues of the
drive in a private queue (a doubly linked-list), and then
performs sorting on it. This results in all neighboring IOs
being adjacent to each other in the private queue, thus
only a neighbor merge is required in the process phase,
which happens as follows.

A Falcon thread removes the first bio object from the
private queue, allocates a tag, and puts it inside a request
container object indexed by the tag. Then, the merge task
checks the next bio entry in the private queue to see if it

0

0

Dispatch IO to driver

dispatch

ready

Process
Phase

Sort software-queue

Allocate tag

Neighbor merge

Sort
Phase

merge

IRQ event completion

Complete IO
complete

bio
(from FML layer)

To SCSI layer and Drivers

Completion
Phase

Figure 11: Falcon Block Layer IO flow, and states

can merge with the current container. If it succeeds, the
next entry in the queue will be tried for merge. Other-
wise, the container object will be dispatched. The pro-
cess goes on till either all entries are dispatched or the
internal queue of the drive becomes full.

The internal queue of an SSD may become full due to
its limited size. In this case, all the requests need to be
preserved to be dispatched later. The last request con-
tainer is kept in the dispatch-queue. We introduce a new
per-drive queue, called bio-queue. Its role is similar to
dispatch-queue, but keeps the remaining bio entries of
the private queue. Later, when triggered, IOs are first
dispatched from the dispatch-queue followed by the bio-
queue. The separation of IOs in different queues are re-
quired as the IOs are in different states. The order main-
tains the prior behavior of request dispatch.

The sort task requires multiple pass over IOs in the
private queue which collects bio objects from software
queues. It is possible that the sort task might dominate
the overall processing in the IO stack. We leave the in-
vestigation of a new data-structure for queues as future
work.
Advantages. The new merge technique is very simple
and presents several benefits. First, sorting runs effi-
ciently with less CPU usage due to smaller per-drive sort
space. Second, the merge algorithm needs to evaluate its
neighbor requests only as they are already sorted, which
reduces the CPU utilization further. Third, since merge
happens on the private queue containing IOs from soft-
ware queues of the different cores, one can automatically
achieve merging across multiple IO issuing threads.

It is worth noting that efficient sort and neighbor
merge are generic improvements to Linux IO stack. For
example, single application IO thread is not able to satu-
rate an NVMe SSD (Samsung 950 pro 512GB NVMe) in
Linux [18]. However, as shown in Figure 12, Falcon can
saturate it (1375 MB/s) for random read workload using
FIO benchmark. In this case, Falcon does synchronous
IO serving by default.

Linux Blk-mq layer treats NVMe SSDs differently
from SATA SSDs. Only two incoming IOs are consid-

USENIX Association 2017 USENIX Annual Technical Conference 47

0

500

1000

1500

Linux Falcon

Th
ro
ug

hp
ut

(M
B/

se
c)

Figure 12: Impact on NVMe SSD for random read

ered for merging for NVMe SSDs, and if that fails, the
older IO is dispatched and the most recent is kept in the
plug-list. In contrast, Falcon does not differentiate be-
tween NVMe and SATA SSDs. In this case, per-drive
sort and neighbor merge makes the batching efficient,
without any sacrifice on latency.

5.2 Tag Management
Problems. Controlling the active IO count in the IO
pipeline based on a vendor and technology specific tag
count often leads to unpredictable results for random
IOs in multi-SSD volumes. Random IOs are inherently
skewed towards some drives within any small time du-
ration. This leads to unfairness in the tag allocation for
member drives, resulting in compromised performance
for Intel C602 AHCI SATA III connected volume as
shown in Figure 13(a).

The reason is that after allocating 32 tags for a SATA
SSD, the IO thread would block for an additional tag for
the SSD, even if other SSDs might have available tags. In
a skewed IO distribution case, 2-SSD SATA volume can
only maintain less than 40 active IOs in the IO pipeline
against the available tag of 64 as shown in Figure 13(b),
resulting in the throughput drop. When there are suffi-
cient number of tags such as LSI HBA which has over
10,000 tags, the volume does scale on multiple SSDs on
both Linux and Falcon.
Dynamic Tag Allocation. To provide a predictable be-
havior, a uniform count of active IOs must be maintained
in the IO pipeline, regardless of the storage technology
or vendor. Therefore, Falcon performs the tag alloca-
tion dynamically, i.e. only if a dispatch is required in the
process phase, as shown in Figure 11. The main ben-
efit is improved queue utilization because more IOs are
allowed to reside in the IO pipeline without acquiring a
tag. This offsets the skewness of random IO distribution.

Figure 13(a) compares the throughput scaling of Linux
and Falcon for a 2-SSD volume connected using Intel
C602 AHCI SATA III. The throughput improvement is
due to improved tag utilization of both the member drives
as shown in Figure 13(b). The drop in tag usage between
5–19 seconds is due to highly skewed workload distribu-
tion (random read in FIO benchmark), where only one
drive’s internal queue is fully utilized. However, Falcon
can still get close to 2× IO performance improvement
over 1-SSD volume. The technique results in 52% and
23% improvement in random read and write respectively,
saturating the volume completely.

(a) IO Throughput Scaling

0
10
20
30
40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Q
ue

ue
 D

ep
th

Time (sec)

sda-Linux sdb-Linux
sda-Falcon sdb-Falcon

(b) Tag usage in 2-SSD SATA volume

0

1

2

3

Linux Falcon

N
or

m
al

iz
ed

Th

ro
ug

hp
ut

1-SSD 2-SSD

Figure 13: Impact of dynamic tag allocation on 2-SSD SATA
volume connected using the Intel C602 controller

Back Pressure. Tag allocation serves as a back pressure
point in the Linux IO stack. That is, if the number of
in-flight IOs were to increase beyond the available tags,
the IO issuing thread would go to sleep and stop submit-
ting new IOs. Moving the tag allocation from the plug
phase also removes the back pressure point in Falcon,
and hence the IO issuing thread could potentially keep
submitting as many requests as it can, and consume a lot
of system resources such as memory.

To address this problem, Falcon proposes a per-drive
limit. When the number of IOs increases beyond a high-
pressure point, the thread stops IO submission in FML
and sleeps. The thread will become active again when
the number of requests drops below a low-pressure point
in the whole IO stack, thus controlling the in-flight IO
count in the whole IO pipeline. The number of requests
in the bio-queue is used to determine the pressure point.
For a multi-drive volume, the pressure point is equal to
the product of per-drive pressure point and drive count.

The pressure point is a different threshold than the wa-
termark. The former is about when to block IO process-
ing thread, while the latter is used to decide when to do
synchronous or parallel dispatch.

6 Experiments
The machine used for the experiments has dual-socket
of Intel Xeon CPU E5-2620 2GHz with six cores each,
thus total 24 threads due to hyper-threading, and 32GB
DRAM. We use eight Samsung EVO 850 500GB SSDs
connected using LSI SAS9300-8i HBA which supports
SATA III SSDs. The system also has a Samsung 950
pro 512GB NVMe SSD with PCI 3.0 interface, two Intel
AHCI SATA III ports, four SATA II ports, and four SCU
ports which supports SATA II SSDs. We use four Intel
520 120GB SSDs for testing SCU ports.

We run the tests on Linux kernel version 4.4.0 with
the Blk-mq block layer [1] (which performs better than
the single-queue block layer). The blk-mq architecture
has been completely integrated with SCSI layer and other
drivers (called scsi-mq) in this kernel. Currently, blk-mq
does not have any configurable IO scheduling policy.

We have implemented a prototype of Falcon in about
600 lines of C code with the aforementioned Linux ker-
nel. We use the md software as the volume manager with

48 2017 USENIX Annual Technical Conference USENIX Association

default stripe size of 4KB in a RAID-0 configuration. By
default we use raw volumes, and also evaluate ext4 and
XFS file system in a number of cases.

6.1 Microbenchmarks
We use a modified FIO in these tests. FIO [12] provides
a number of IO engines such as AIO and synchronous
POSIX IO and outputs a number of parameters including
throughput, IOPS, and latency. However, FIO spends a
lot of time in userspace (more than 35%), thus can not
submit IOs as fast as a single application thread can oth-
erwise. To address this problem, we modify FIO to in-
stead simply replay the traces as fast as possible.
Ext4 File Throughput. The per-inode lock on ext4 File
System does not allow Linux to saturate the 8-SSD vol-
ume even using multiple application IO threads. How-
ever, Falcon can saturate the volume using just one ap-
plication IO thread, as shown in Figure 14. The im-
provement is due to parallelism at block layer tasks
(sort, merge, tag allocation and dispatch). Overall, Fal-
con achieves 1.77× and 1.59× random read and write
throughput compared to Linux on an ext4 file in 8-SSD
volume.

(a) Single file read throughput (b) Single file write throughput

0
500

1000
1500
2000

1 2 4 8

Th
ro

ug
hp

ut
(M

B/
se

c)

IO thread count

Linux Falcon

0

500

1000

1500

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

IO thread count

Linux Falcon

Figure 14: Random IO on an Ext4 file in 8-SSD volume

Buffered Write Throughput. Figure 15 shows im-
provement in buffered write throughput when 8 appli-
cation IO threads are doing random write on multi-SSD
volumes. Again, Linux is not able to achieve beyond
800 MB/s throughput on 8-SSD system because Linux
buffer cache management allows only one pdflush thread
to write the dirty buffer to the volume. In contrast, Fal-
con achieves 1.38× and 1.59× improvement compared
to Linux in raw 4-SSD and 8-SSD volumes.

0
400
800

1200
1600

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

SSD count

Linux Falcon

Figure 15: Buffered random write throughput scaling

Varying SSD Count. Figure 16 shows that Falcon deliv-
ers performance improvement by 1.92×, 3.65× 6.02×
for random read, and 1.86×, 3.34× and 6.29× for ran-
dom write in 2-SSD, 4-SSD and 8-SSD volumes over
one SSD respectively. This clearly indicates that Falcon
is scalable when more SSDs are added to the volume.

0
500

1000
1500
2000

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

SSD count

Linux Falcon

0
500

1000
1500
2000

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

SSD count

Linux Falcon

0
1000
2000
3000
4000
5000

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

SSD count

Linux Falcon

0
1000
2000
3000
4000

1 2 4 8

Th
ro

ug
hp

ut

(M
B/

se
c)

SSD count

Linux Falcon

(a) Random Read (b) Random Write

(c) Sequential Read (d) Sequential Write

Figure 16: IO Scalability by varying the number of SSDs

For the 8-SSD volume (LSI HBA), Falcon achieves
1.83×, 1.66×, 3.42× and 2.73× speedup for random
read, random write, sequential read and sequential write,
respectively. When using the SCU controller for 4-
SSD volume, Falcon can also achieve 1.25×, 1.08×,
1.59× and 1.85× respectively, again saturating the vol-
ume completely.
Varying Stripe Size. Figure 17 shows the random and
sequential IO throughput on an 8-SSD volume for a va-
riety of stripe size configurations. Random IO (4KB IO
size) is highly susceptible to stripe size configuration as a
better IO distribution to all the member drives will maxi-
mize the IO, while a skewed distribution would not. Fig-
ure 17 shows that 4KB stripe size is the best, while 32KB
stripe is the worst for the random IO pattern generated
by the FIO. In the best case, Falcon provides 1.83× and
1.66× random read and write throughput respectively.

(a) Random read (b) Random write

(c) Sequential read (d) Sequential write

0
1000
2000
3000
4000
5000

4 8 16 32 64 128

Th
ro

gu
hp

ut

(M
B/

se
c)

Stripe size (KB)

Linux Falcon

0
500

1000
1500
2000

4 8 16 32 64 128

Th
ro

ug
hp

ut

(M
B/

se
c)

Stripe size (KB)

Linux Falcon

0
1000
2000
3000
4000

4 8 16 32 64 128

Th
ro

ug
hp

ut

(M
B/

se
c)

Stripe size (KB)

Linux Falcon

0
500

1000
1500
2000

4 8 16 32 64 128

Th
ro

ug
hp

ut

(M
B/

se
c)

Stripe size (KB)

Linux Falcon

Figure 17: Throughput for various stripe sizes in 8-SSD volume

Sequential IO (64KB IO size) generates uniform IO
load to each member drive of the volume. For 4KB
stripes, Falcon provides 3.42× and 2.73× sequential
read and write throughput respectively compared to
Linux. Falcon saturates the 8-SSD volume irrespective
of stripe size, while Linux can saturate the volume only
when the IO size is smaller than or equal to the stripe
size. This is because the Linux block layer is written
with the assumption of a single drive. In other words, the

USENIX Association 2017 USENIX Annual Technical Conference 49

Linux block layer assumes that split has been performed
for the IOs larger than 1 MB (maximum IO size in the
block layer), and wrongly determines that further merg-
ing would no longer be needed on split IOs. In contrast,
FBL enables the merge in case of IO split, and enjoys the
performance benefit from the full sequential IOs.
Advantage and Scalability. There are two important
observations when running Falcon on an 8-SSD volume.
First, Falcon saturates the sequential read/write com-
pletely (Figure 16). Second, for random read and write
tests, Falcon achieves 97.6% and 98.9% throughput of
an ideal system, where one application IO thread is ded-
icated to submit batched IOs to each SSD independently,
so that IO skewness is not the concern.

0

500

1000

1500

2000

Random Read Random Write

Th
ro

ug
hp

ut

(M
B/

se
c)

Linux Falcon Ideal System

Figure 18: Random read comparsion of Linux and Falcon with
an ideal system on an 8-SSD volume.

To understand the maximum random throughput
achievable by an application IO thread, we run the same
experiment in a null block device. The device is a stan-
dard Linux driver without any backup storage, and ac-
knowledges the IOs as soon as received. Falcon can pro-
vide up to 3.7GB per second random read, which would
be roughly equivalent to the aggregate throughput of 16
SSDs. However, it should be noted that null block device
avoids many operations which otherwise were needed for
a real volume. We expect that spawning more than one
application IO thread will saturate 16 or more SSDs.

6.2 Application Performance

All the tests in this section are performed in XFS File
System. For Linux, XFS tends to outperform ext4 for
parallel reads as it does not acquire an inode lock. Since
Falcon always deploys a single application IO thread, the
choice of file system would not matter.
Utility Applications. We choose copy and tar to show
the effectiveness of Falcon. Copy represents parallel data
copying between the volume and a 24GB RAM disk.
Specifically, CopyTo copies the 24GB file from the RAM
disk to the volume. CopyFrom does the reverse. On the
other hand, Tar and Untar use pbzip2, a parallel imple-
mentation of bzip2. As shown in Figure 19(a), Falcon
speeds up CopyFrom, CopyTo, Tar and Untar by 1.63×,
2.81×, 1.29× and 1.09× respectively. The benefits are
lower for Tar and Untar as they are more CPU intensive.
Filebench. We also run Fileserver (2:1 read/write ra-
tio), Webserver (mostly read with random appends) and
Webproxy (read only) personality in Filebench suite of

(a) Utility Applications (b) Filebench Applications

0

1

2

3

Fileserver Webserver Webproxy

Sp
ee

du
p

Linux Falcon

0

1

2

3

CopyFrom CopyTo Tar Untar

Sp
ee

du
p

Linux Falcon

Figure 19: Application performance on 8-SSD volume

benchmarks. Figure 19(b) shows that Falcon performs
1.39×, 1.60× and 2× better than Linux when the bench-
marks ran on around 64GB of data.
Graph Processing. We choose G-Store [20], a semi-
external graph processing system as a representative use-
case for high throughput application to demonstrate the
effect of Falcon. In particular, we evaluate four dif-
ferent graph algorithms including breadth-first search
(BFS) [7, 14], kCore [33, 29], connected component
(CC) [35] and page rank (PR) [2] algorithms. BFS and
kCore generate very high random IOs on graph data,
while CC and PR require mostly sequential IOs. The ex-
periments are on a undirected kronecker graph of scale
28 and edge factor 16 [14].

0
1
2
3
4
5
6

BFS kCore CC PR

Sp
ee

du
p

Linux 1 IO Thread Linux 8 IO Threads Falcon

Figure 20: Graph Processing Performance

Figure 20 shows that Falcon significantly speeds up
the graph processing by 4.12× and 1.78× compared to
using one and eight IO threads in Linux. In particular,
Falcon achieves more than 5× speedup for BFS and k-
Core compared to using one IO thread in Linux, and 2×
improvement over 8 IO threads. In the case of CC and
PageRank, Falcon also provides 2 to 3× improvement
over using a single IO thread.

6.3 Server IO Traces
We run application traces collected at University of Mas-
sachusetts Amherst [41] and Florida International Uni-
versity [19]. Table 2 provides the information on these
traces. UM-Financial1 and UM-Financial2 represent
the OLTP type applications, while UM-Websearch1 and
UM-Websearch2 are websearch traces. On the other
hand, FIU-Home, FIU-Mail, FIU-Webuser and FIU-
Web-vm represent the traces from home directory, mail,
web user, and webmail proxy and online course manage-
ment system. The traces contain the lower-level IOs, i.e.,
at the logical block address. Almost all the write opera-
tions are caused by kjournald or pdflush daemons which
run in the kernel space. These daemons behave more like
a batched Linux AIO interface.

We replay the traces by submitting IOs as fast as
the system allows. Figure 21 shows Falcon can extract

50 2017 USENIX Annual Technical Conference USENIX Association

Trace Name Read (%) IO size range Size (GB)
UM-Financial1 23.16 512B - 16715KB 17.22
UM-Financial2 82.34 512B - 256.5KB 8.44
UM-Websearch1 99.98 512B - 1111KB 15.24
UM-Websearch2 99.98 8KB - 32KB 65.82
FIU-Home 1.00 512B - 512KB 34.58
FIU-Mail 8.58 4KB - 4KB 86.64
FIU-Webuser 10.33 4KB - 128KB 30.94
FIU-Web-vm 21.8 4KB - 4KB 54.52

Table 2: IO traces summary

0
500

1000
1500
2000
2500
3000

Th
ro

ug
hp

ut

(M
B/

se
c)

Linux Falcon

Figure 21: Trace replay throughput on 8-SSD volume

more throughput for all IO traces. Overall Falcon per-
forms 1.67× better over Linux. UM-Financial1, UM-
Financial2 has small throughput as they do many 512
byte random IOs. FIU-Home traces are almost write-
only and random IO. Others are mix of random and se-
quential IOs.

7 Related Work

Prior works [4, 5, 46, 37, 43, 45, 48, 17, 36, 47] mostly
aim to improve the IO stack for one drive by proposing
changes in the IO stack and/or hardware, leaving behind
a number of issues pertaining to multi-SSD volumes.
Different from these approaches, we focus on multi-SSD
volumes and aim to achieve both the IO scalability and
the ease of programming.

Application-managed IO approach [49, 50, 23] parti-
tions a file in different SSDs and proposes a userspace
abstraction to aggregate the file content. As a result, it in-
troduces a lot of complexity in the application, and lacks
support of POSIX file system [49]. Also, there are appli-
cation level restrictions, such as only integer number of
processing cores for each SSD (e.g., one compute thread
for each SSD in Graphene [23]).

Various works [40, 27, 22, 34] have identified the im-
portance of IO stack optimization, and have proposed
various changes including the block layer to accelerate
application performance. A nice description of the time
spent on different layers of the IO platform has been an-
alyzed in [13]. Problems with sub-page buffered write
is identified [3] and techniques have been proposed to
improve the performance. Wang et al. [44] propose fair-
ness and efficiency in tiered storage system. Our work
is in-tune with these efforts and especially identifies im-
provements in the IO stack for multi-SSD volumes.

Linux kernel developers have made many improve-

ment in various locking semantics [15, 16, 24], however,
locking in parallel IO from the same file still remains
an issue as observed by Min et al. [28] in a many-core
system. An enhanced storage layer has been proposed
in [8] that exports information to file systems to bridge
the information gap. Our system utilizes such informa-
tion within a new layer (FML) to improve the perfor-
mance in multi-SSD volumes.

Storage area network (SAN) solutions provide aggre-
gated SSDs as block device services, and scale in terms
of multiple clients. However, the local file system at
client side will still have all the constraints that we have
discussed. Chen et al. [6] have developed new batched
IO interface, and integrated it with NFS compound pro-
cedure using a userspace NFS client. In such cases, Fal-
con will become a natural choice of IO stack to provide a
better client-side IO stack to take advantage of the faster
SAN/NFS storage.

Big data applications such as WiscKey (a key-value
store) [25] deploy a complex mechanism of a thread pool
to serve IOs in one SSD. To scale to multiple SSDs, they
need to fine-tune the number of threads. Falcon will en-
able such applications to move towards just one thread,
and can saturate more SSDs if AIO interfaces are used,
thereby providing simplicity and scalability both.

Lastly, many graph applications [21, 32] bypass the
random IO problem in multi-SSD volumes by fetching
the whole data in each iteration. However, Vora et al. [42]
show that the performance of many graph algorithms can
be improved by doing selective random IO. We believe
that Falcon will become a platform of choice for many
IO-intensive applications including graph analytics.

8 Conclusion

In this work, we have identified that the separation of two
IO processing tasks, i.e., IO batching and IO serving in
the block layer, holds the key to improve the throughput
in multi-SSD volumes. To achieve this goal, Falcon pro-
poses a new IO stack to enforce per-drive processing that
improves the IO stack performance and parallelizes the
IO serving tasks. Compared to current practice, Falcon
significantly accelerates a variety of applications from
utility applications to graph processing, and also shows
strong scalability across different numbers of drives, and
various storage controllers.

9 Acknowledgments

The authors thank the USENIX ATC’17 reviewers and
our shepherd Sorav Bansal for their suggestions. This
work was supported in part by National Science Founda-
tion CAREER award 1350766 and grant 1618706.

USENIX Association 2017 USENIX Annual Technical Conference 51

References
[1] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux Block

IO: Introducing Multi-queue SSD Access on Multi-core Systems.
In Proceedings of the 6th International Systems and Storage Con-
ference, SYSTOR ’13, pages 22:1–22:10, New York, NY, USA,
2013. ACM.

[2] S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual
Web Search Engine. In Proceedings of the Seventh International
Conference on World Wide Web 7, Amsterdam, The Netherlands,
1998.

[3] D. Campello, H. Lopez, R. Koller, R. Rangaswami, and
L. Useche. Non-blocking Writes to Files. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15), pages 151–
165, Santa Clara, CA, Feb. 2015. USENIX Association.

[4] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,
and S. Swanson. Moneta: A High-Performance Storage Array
Architecture for Next-Generation, Non-volatile Memories. In
Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, pages 385–395,
Washington, DC, USA, 2010. IEEE Computer Society.

[5] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson. Providing Safe, User Space Access to Fast, Solid
State Disks. In Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 387–400, New
York, NY, USA, 2012. ACM.

[6] M. Chen, D. Hildebrand, H. Nelson, J. Saluja, A. S. H. Subra-
mony, and E. Zadok. vNFS: Maximizing NFS Performance with
Compounds and Vectorized I/O. In 15th USENIX Conference on
File and Storage Technologies (FAST 17), pages 301–314, Santa
Clara, CA, 2017. USENIX Association.

[7] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Differen-
tiated Graph Computation and Partitioning on Skewed Graphs.
In Proceedings of the Tenth European Conference on Computer
Systems.

[8] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Bridging the Information Gap in Storage Protocol Stacks. In
Proceedings of the General Track of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’02, pages 177–
190, Berkeley, CA, USA, 2002. USENIX Association.

[9] Disk Controller Queue-Depth. http:

//www.yellow-bricks.com/2014/04/17/

disk-controller-features-and-queue-depth/, 2016.
[10] EXT4 File System. https://ext4.wiki.kernel.org/

index.php/Main_Page, 2016.
[11] Facebook RocksDB. http://rocksdb.org/, 2016.
[12] Flexible I/O Tester. https://github.com/axboe/fio, 2016.
[13] A. P. Foong, B. Veal, and F. T. Hady. Towards SSD-Ready Enter-

prise Platforms. In VLDB, 2010.
[14] Graph500. http://www.graph500.org/.
[15] C. Jonathan. JLS: Increasing VFS Scalability. https://lwn.

net/Articles/360199/. 2009.
[16] C. Jonathan. Dcache scalability and RCU-walk. https://lwn.

net/Articles/419811/. 2010.
[17] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai.

SpanFS: A Scalable File System on Fast Storage Devices. In
2015 USENIX Annual Technical Conference (USENIX ATC 15),
pages 249–261, Santa Clara, CA, 2015. USENIX Association.

[18] H.-J. Kim, Y.-S. Lee, and J.-S. Kim. NVMeDirect: A User-space
I/O Framework for Application-specific Optimization on NVMe
SSDs. In 8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), Denver, CO, June 2016. USENIX
Association.

[19] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing Con-
tent Similarity to Improve I/O Performance. In 8th USENIX Con-
ference on File and Storage Technologies (FAST 10). USENIX
Association, Feb. 2010.

[20] P. Kumar and H. H. Huang. G-Store: High-Performance Graph
Store for Trillion-Edge Processing. In Proceedings of the Inter-
national Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2016.

[21] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-Scale
Graph Computation on Just a PC. In OSDI, 2012.

[22] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan, T. Zhang, and
M. Zhao. CacheDedup: In-line Deduplication for Flash Caching.
In 14th USENIX Conference on File and Storage Technologies
(FAST 16), pages 301–314, Santa Clara, CA, Feb. 2016. USENIX
Association.

[23] H. Liu and H. H. Huang. Graphene: Fine-Grained IO Manage-
ment for Graph Computing. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST), 2017.

[24] W. Long. [PATCH] dcache: Translating dentry into pathname
without taking rename lock. https://lkml.org/lkml/2013/
9/4/471. 2013.

[25] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in SSD-
conscious Storage. In 14th USENIX Conference on File and Stor-
age Technologies (FAST 16), pages 133–148, Santa Clara, CA,
Feb. 2016. USENIX Association.

[26] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim.
Mosaic: Processing a Trillion-Edge Graph on a Single Machine.
In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, 2017.

[27] S. Mandal, G. Kuenning, D. Ok, V. Shastry, P. Shilane, S. Zhen,
V. Tarasov, and E. Zadok. Using Hints to Improve Inline Block-
layer Deduplication. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 315–322, Santa Clara,
CA, Feb. 2016. USENIX Association.

[28] C. Min, S. Kashyap, S. Maass, and T. Kim. Understanding Many-
core Scalability of File Systems. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), pages 71–85, Denver, CO,
2016. USENIX Association.

[29] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed
k-Core Decomposition. IEEE Transactions on Parallel and Dis-
tributed Systems, 2013.

[30] J. Oh, W.-S. Han, H. Yu, and X. Jiang. Fast and Robust Paral-
lel SGD Matrix Factorization. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 865–874. ACM, 2015.

[31] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel.
Chaos: Scale-out Graph Processing from Secondary Storage. In
Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP), 2015.

[32] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-
centric Graph Processing using Streaming Partitions. In Pro-
ceedings of the ACM Symposium on Operating Systems Princi-
ples (SOSP), 2013.

[33] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek. Streaming algorithms for k-core decomposition. Pro-
ceedings of the VLDB Endowment, 6(6):433–444, 2013.

[34] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High Performance
Solid State Storage Under Linux. In 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), pages 1–12,
May 2010.

52 2017 USENIX Annual Technical Conference USENIX Association

[35] Y. Shiloach and U. Vishkin. An O(log n) Parallel Connectivity
Algorithm. Journal of Algorithms, 1982.

[36] D. I. Shin, Y. J. Yu, H. S. Kim, J. W. Choi, D. Y. Jung, and H. Y.
Yeom. Dynamic Interval Polling and Pipelined Post I/O Process-
ing for Low-Latency Storage Class Memory. In Presented as part
of the 5th USENIX Workshop on Hot Topics in Storage and File
Systems, San Jose, CA, 2013. USENIX.

[37] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom. OS I/O
Path Optimizations for Flash Solid-state Drives. In Proceedings
of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 483–488, Berkeley, CA,
USA, 2014. USENIX Association.

[38] SNIA. http://nvmexpress.org/wp-content/uploads/

2013/04/NVM_whitepaper.pdf,.

[39] Specification for Supermicro Product(X9DRG-HF).
http://www.supermicro.com/products/motherboard/

Xeon/C600/X9DRG-HF.cfm, 2016.

[40] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska. sRoute:
Treating the Storage Stack Like a Network. In Proceedings of
the 14th Usenix Conference on File and Storage Technologies,
FAST’16, pages 197–212, Berkeley, CA, USA, 2016. USENIX
Association.

[41] UMass Trace Repository. http://traces.cs.umass.edu/

index.php/Storage/Storage, 2012.

[42] K. Vora, G. Xu, and R. Gupta. Load the Edges You Need: A
Generic I/O Optimization for Disk-based Graph Processing. In
2016 USENIX Annual Technical Conference (USENIX ATC 16),
pages 507–522, Denver, CO, 2016. USENIX Association.

[43] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević,
L. Franca-Neto, D. L. Moal, T. Bunker, J. Xu, S. Swanson, and
Z. Bandić. DC Express: Shortest Latency Protocol for Read-
ing Phase Change Memory over PCI Express. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies
(FAST 14), pages 309–315, Santa Clara, CA, 2014. USENIX.

[44] H. Wang and P. Varman. Balancing Fairness and Efficiency in
Tiered Storage Systems with Bottleneck-Aware Allocation. In
Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14), pages 229–242, Santa Clara, CA, 2014.
USENIX.

[45] J. Yang, D. B. Minturn, and F. Hady. When Poll is Better Than
Interrupt. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST’12, pages 3–3, Berkeley, CA,
USA, 2012. USENIX Association.

[46] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim,
H. Eom, and H. Y. Yeom. Optimizing the Block I/O Subsystem
for Fast Storage Devices. ACM Transaction on Computer System
(TOCS), 32(2):6:1–6:48, June 2014.

[47] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, H. Eom, and H. Y.
Yeom. Exploiting Peak Device Throughput from Random Access
Workload. In Proceedings of the 4th USENIX Conference on Hot
Topics in Storage and File Systems, HotStorage’12, pages 7–7,
Berkeley, CA, USA, 2012. USENIX Association.

[48] J. Zhang, J. Shu, and Y. Lu. ParaFS: A Log-Structured File Sys-
tem to Exploit the Internal Parallelism of Flash Devices. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages
87–100, Denver, CO, 2016. USENIX Association.

[49] D. Zheng, R. Burns, and A. S. Szalay. Toward Millions of File
System IOPS on Low-cost, Commodity Hardware. In Proceed-
ings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’13, pages 69:1–
69:12, New York, NY, USA, 2013. ACM.

[50] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe,
and A. S. Szalay. FlashGraph: Processing Billion-Node Graphs
on an Array of Commodity SSDs. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST),
2015.

[51] X. Zhu, W. Han, and W. Chen. GridGraph: Large-scale Graph
Processing on a Single Machine Using 2-level Hierarchical Par-
titioning. In Proceedings of the USENIX Conference on Usenix
Annual Technical Conference, 2015.

USENIX Association 2017 USENIX Annual Technical Conference 53

deTector: a Topology-aware Monitoring System for Data Center Networks

Yanghua Peng
The University of Hong Kong

Ji Yang
Xi’an Jiaotong University

Chuan Wu
The University of Hong Kong

Chuanxiong Guo
Microsoft Research

Chengchen Hu
Xi’an Jiaotong University

Zongpeng Li
University of Calgary

Abstract

Troubleshooting network performance issues is a chal-

lenging task especially in large-scale data center net-

works. This paper presents deTector, a network mon-

itoring system that is able to detect and localize net-

work failures (manifested mainly by packet losses) ac-

curately in near real time while minimizing the moni-

toring overhead. deTector achieves this goal by tightly

coupling detection and localization and carefully select-

ing probe paths so that packet losses can be localized

only according to end-to-end observations without the

help of additional tools (e.g., tracert). In particular, we

quantify the desirable properties of the matrix of probe

paths, i.e., coverage and identifiability, and leverage an

efficient greedy algorithm with a good approximation ra-

tio and fast speed to select probe paths. We also propose

a loss localization method according to loss patterns in

a data center network. Our algorithm analysis, experi-

mental evaluation on a Fattree testbed and supplementary

large-scale simulation validate the scalability, feasibility

and effectiveness of deTector.

1 Introduction

A variety of services are hosted in large-scale data cen-

ters today, e.g., search engines, social networks and file

sharing. To support these services with high quality, data

center networks (DCNs) are carefully designed to effi-

ciently connect thousands of network devices together,

e.g., a 64-ary Fattree [9] DCN has more than 60,000

servers and 5,000 switches. However, due to the large

network scale, frequent upgrades and management com-

plexity, failures in DCNs are the norm rather than the

exception [21], such as routing misconfigurations, link

flaps, etc. Among these failures, those leading to user-

perceived performance issues (e.g., packet losses, latency

spikes) are among the first priority to be detected and

eliminated promptly [27, 26, 21], in order to maintain

high quality of service (QoS) for users (e.g., no more

than a few minutes of downtime per month [21]) and to

increase revenue for operators.

Rapid failure recovery is not possible without a good

network monitoring system. There have been a number

of systems proposed in the past few years [36, 26, 37,

48]. Several limitations still exist in these systems that

prohibit fast failure detection and localization.

First, existing monitoring systems may fail to detect

one type of failures or another. Traditional passive mon-

itoring approaches, such as querying the device counter

via SNMP or retrieving information via device CLI when

users have perceived some issues, can detect clean fail-

ures such as link down, line card malfunctions. How-

ever, gray failures may occur, i.e., faults not detected or

ignored by the device, or malfunctioning not properly re-

ported by the device due to some bugs [37]. Active mon-

itoring systems (e.g., Pingmesh [26], NetNORAD [37])

can detect such failures by sending end-to-end probes,

but they may fail to capture failures that cause low rate

losses, due to ECMP in data center (§2).

Second, probe systems such as Pingmesh and NetNO-

RAD inject probes between each pair of servers with-

out selection, which may introduce too much bandwidth

overhead. In addition, they typically treat the whole

DCN as a black box, and hence require many probes to

cover all parallel paths between any server pair with high

probability.

Third, failures in the network can be reported in these

active monitoring systems, but the exact failure locations

cannot be pinpointed automatically. The network opera-

tor typically learns a suspected source-destination server

pair once packet loss happens. Then she/he needs to re-

sort to additional tools such as tracert to verify the issue

and locate the faulty spot. However, it may be difficult

to play back the issues due to transient failures. Hence

this diagnosis approach (i.e., separation of detection and

localization) may take several hours or even days to pin-

point the fault spot [21], yet ideally the failures should

USENIX Association 2017 USENIX Annual Technical Conference 55

be repaired as fast as possible before users complain.

A desirable monitoring system in a DCN should meet

three objectives: exhaustive failure detection (i.e., detect-

ing as many types of losses as possible), low overhead

and real-time failure localization. In this paper, we seek

to investigate the following question: if we are aware of

the network topology of a DCN, can we design a much

better network monitoring system that achieves all these

goals? Our answer is deTector, a topology-aware net-

work monitoring system that we design, implement and

evaluate following the three design objectives. The secret

weapon of deTector is a carefully designed probe matrix

(§4), which achieves good link coverage, identifiability

and evenness. deTector is designed to detect and localize

network failures manifested by user-perceptible perfor-

mance problems such as packet losses and latency spikes

in large-scale data centers. We mainly focus on packet

loss in this paper, but deTector can also handle latency

issues by treating a round trip time (RTT) larger than a

threshold as a packet loss. Throughout the paper, we use

“failure localization”, “fault localization” and “loss lo-

calization” interchangeably. Specifically, we make the

following contributions in developing deTector.

� As compared to the existing active monitoring sys-

tems adopting end-to-end probes (e.g., Pingmesh [26],

NetNORAD [37]), we treat each switch instead of the

whole network as a blackbox, i.e., our system requires

the knowledge of the network topology and routing pro-

tocols in a DCN (i.e., topology-aware) and we use source

routing to control the probing path. In order to achieve

real-time failure localization, we couple detection and lo-

calization closely and only rely on end-to-end measure-

ments to localize failures without the help of other tools

(e.g., fbtracert [3]). To make it possible, we quantify

several desirable properties of probe matrix (e.g., iden-

tifiability) and propose a greedy algorithm to minimize

probe cost. To address the scalability issue in DCNs, we

apply several optimization heuristics and exploit charac-

teristics of the DCN topology to accelerate path compu-

tation (§4).

� We modify a failure localization algorithm based

on packet loss characteristics in large-scale data centers.

Compared to the existing algorithms, our algorithm runs

within seconds and achieves higher accuracy and lower

false positive rate (§5).

� We implement and evaluate our system on a 4-

ary Fattree testbed built with 20 switches. The experi-

ments show that deTector is practically deployable and

can accurately localize failures in near real time with

less probe overhead, e.g., for 98% accuracy, deTector re-

quires 3.9x and 1.9x times fewer probes than Pingmesh

and NetNORAD while localizing failures 30 seconds in

advance without the use of other loss localization tools.

Our supplementary simulation further shows that deTec-

tor achieves greater than 98% accuracy in failure local-

ization with a less than 1% false positive ratio for most

failures in large-scale DCNs (§6). We have open sourced

deTector [6].

2 Motivation

DCNs are usually multi-stage Clos networks with multi-

ple paths between commodity servers for load balancing

and fault tolerance [9, 22, 26, 45]. Each DCN has its

favorable routing protocols for path selection. For exam-

ple, in a Fattree topology [9] and a VL2 topology [22],

the shortest paths between any two ToRs are typically

used in practice [30]. We describe how existing mon-

itoring systems fall short in achieving the three design

objectives. Table 1 shows detailed comparison among

deTector and the existing systems.

The passive approach stores packet statistics on switch

counters, which are polled from SNMP or CLI periodi-

cally. In Fig. 1, if link AB is down, the switch counters

will show a lot of packet losses. However, if the fail-

ure is a gray failure rather than link down, it may go

undetected. For example, when silent packet drops oc-

cur, the switch do not show any packet drop hints (e.g.,
syslog errors) due to various reasons (e.g., ASIC deficit),

and hence SNMP data may not be fully trustworthy [26].

Furthermore, switches counters can be noisy, such that

problems identified by this approach may or may not lead

to end-to-end delay or loss perceived by users.

Pingmesh and NetNORAD adopt an end-to-end prob-

ing approach to measure network latency and packet loss.

Pingmesh selects probe paths by constructing two com-

plete graphs within a DCN: one includes all servers under

the same ToR switch (i.e., the switch in the edge layer in

Fig. 1) and the other spans all ToR switches. NetNORAD

is similar to Pingmesh but places pingers in a few pods

instead of all servers. Their approaches simplify the de-

sign but bring quite significant overhead (§6). Although

gray failures can be captured, it is difficult to detect fail-

ures causing low rate losses (e.g., 1%) of a link, when

ECMP is adopted in the DCN: there are many paths be-

Figure 1: A 4-radix Fattree topology: failure on link AB
can be detected by sending probes from s1 to s3.

56 2017 USENIX Annual Technical Conference USENIX Association

Table 1: Comparison among deTector and existing representative monitoring systems

Gray failures Low rate loss Failure localization Transient failures Timeliness Overhead

SNMP/CLI No No Yes Yes minutes switch resources

Pingmesh [26] Yes No No, need Netbouncer No minutes many probes

NetNORAD[3] Yes No No, need fbtracert No minutes many probes, switch CPU

deTector Yes Yes Yes Yes near real-time minimal probes

tween a pair of servers, low-rate losses on a particular

link may not affect much the overall end-to-end loss rate

between the two servers.

The exact location of losses cannot be pinpointed us-

ing Pingmesh or NetNORAD, since they do not know

which paths the probes take (e.g., due to ECMP). There-

fore, other tools such as Netbouncer [4] and fbtracert [3]

are needed, which send additional probes to play back the

losses. These post-alarm tools may fail to pinpoint tran-

sient failures, those caused by transient bit errors, non-

atomic rule updates or network upgrade (e.g., a transient

inconsistency between the link configuration and rout-

ing information [21]). To pinpoint such failures, close

coupling of detection and localization is required, so that

losses are localized only according to detection data, in-

stead of additional probes after detection alarms. Such

coupling further enables near real-time fault localization.

3 System Design

3.1 Architecture
deTector includes four loosely coupled components: a

controller, a diagnoser, pingers and responders, as de-

picted in Fig. 2.

Figure 2: System architecture

Controller. The logical controller periodically con-

structs the probe matrix indicating the paths for sending

probes (see §4 for details). We mainly focus on failure lo-

calization on links inter-connecting switches, as the fault

on a link connecting a server with a ToR switch can be

easily identified as discussed in the next paragraph. The

probe matrix indicates paths between ToRs. Since we do

not rely on ToRs with ping capability, probes are sent by

2–4 selected servers (pingers) under each ToR.

Pinger. Each pinger receives the pinglist from the con-

troller, which contains server targets, probe format and

ping configuration (§6.1). The probe paths from a ToR

switch to different destinations are distributed among

pinglists of pingers under the ToR switch, with each path

distributed to at least 2 pingers for fault tolerance. In

this way, in case that one pinger is down, other pingers

in the same rack can still probe the paths, avoiding any

large drop in link coverage. To detect failure on links

connecting servers and the respective ToRs, pingers are

also responsible for probing other servers under the same

ToR. The number of probe paths for each pinger is no

more than a hundred even for a large DCN (§4.4). The

probe packets are sent over UDP. Though TCP is used to

carry most traffic in a DCN, the DCN does not differenti-

ate TCP and UDP traffic (e.g., the forwarding behavior)

in the vast majority of cases [37, 26], and hence UDP

probes can also manifest network performance. When a

pinger detects a probe loss, it confirms the loss pattern

by sending two probe packets of the same content addi-

tionally.

Responder. The responder is a lightweight module

running on all servers. Upon receiving a probe packet,

the responder echoes it back. A responder does not retain

any states and all probing results are logged by pingers.

Diagnoser. Each pinger records packet loss informa-

tion and sends it to the diagnoser for loss localization.

These logs are saved into a database for real-time anal-

ysis and later queries. The diagnoser runs the PLL al-

gorithm (§5) to pinpoint packet losses and estimates the

loss rates of suspected links.

For the controller and the diagnoser to be fault-tolerant

and scalable, we can use existing solutions (e.g., Soft-

ware Load-Balancer [41, 26]).

3.2 Workflow Overview
deTector works in three steps in cycles: path computa-

tion, network probing and loss localization.

Path computation. At the beginning of each cycle,

the controller reads the data center topology and server

health from data center management service (e.g., [31]),

and selects the minimal number of probe paths (§4). The

controller then selects pingers in each ToR, constructs

and dispatches the pinglists to them.

Network probing. Next, probe packets are sent along

the specified paths across the DCN. Since data center

usually adopts ECMP for load balancing, we have to

use source routing to control the path traveled by each

probe packet, which can be implemented using various

USENIX Association 2017 USENIX Annual Technical Conference 57

methods.1 A general and feasible solution is to employ

packet encapsulation and decapsulation to create end-to-

end tunnels, though it may cause encapsulating packets

twice in virtualized networks created by VXLAN [1] or

NVGRE [2]. Take the Fattree network in Fig. 1 as an

example: fixing a core switch, there is only one path be-

tween two inter-pod servers; we can use IP-in-IP encap-

sulation to wrap the probe on a server; after the packet ar-

rives at the core switch, the outer header is removed and

the packet is routed to the real destination. Such a source

routing mechanism incurs little overhead on servers and

core switches.

Loss localization. The probe loss measurements are

aggregated and analyzed by our loss localization algo-

rithm (§5) on the diagnoser. We pinpoint the faulty links,

estimate the loss rates, and send alerts to the network op-

erator for further action (e.g., examining switch logs).

4 Probe Matrix Design

The main limitation of existing monitoring systems is

that the probe path selection is far from optimum, such

that not enough useful information can be collected and

additional probes are needed to reproduce losses for lo-

calization. In this section, we elaborate how we carefully

select probe paths to overcome such a limitation.

4.1 Problem

Consider a data center network graph G = (V,E), where

V is the set of switches and E is the set of links. R is the

m×n routing matrix defined by

Ri, j =

{
1 if link j is on path i
0 otherwise

where m is the number of paths and n = |E| is the num-

ber of links. The possible paths and the routing matrix

are decided by the routing protocols employed in the data

center, e.g., ECMP is typically used to exploit k2/4 paral-

lel paths between any two ToRs in a k-ary Fattree. Fig. 3

gives a routing matrix R with 3 paths and 3 links. Note

that each link in a DCN is typically bi-directional. Once

we select a path from server s1 to server s2 and send a

probe, the reverse path from s2 to s1 is automatically se-

lected, since the response packet can probe faults along

the reverse direction. When we identify that link AB has

failed, it implies that the failure may lie in either direc-

tion of the link, switch A, or switch B.

1Source routing protocols have been designed in some DCNs like

BCube [24] and DCell [25]; [30, 32] introduce other solutions for ex-

plicit path control.

R =

⎛
⎝

l1 l2 l3
p1 1 1 0

p2 1 0 1

p3 0 0 1

⎞
⎠ → R’ =

⎛
⎝

l1 l2 l3 l12 l13 l23

1 1 0 1 1 1

1 0 1 1 1 1

0 0 1 0 1 1

⎞
⎠

Figure 3: Extend routing matrix with virtual links

Problem 1 Given a DCN routing matrix R, select a set
of paths to construct a probe matrix P, such that P si-
multaneously (1) minimizes the number of paths, and
achieves (2) α-coverage and (3) β -identifiability.

Minimizing the number of probe paths is desirable for

minimizing network bandwidth consumption and anal-

ysis overhead, such that we may finish probing and di-

agnosing the entire DCN in merely a few minutes. Un-

der the same probing bandwidth budget, it allows each

pinger to probe the same set of paths more frequently.

α-coverage requires that each link is covered by at

least α paths in the probe matrix. Covering a link multi-

ple times brings higher statistical accuracy for loss detec-

tion, as well as better resilience to pinger failures (since a

link is more likely to be covered by probes from multiple

pingers).

β -identifiability states that the simultaneous failures of

any (no more than) β links in the DCN can be localized

correctly. For the routing matrix in Fig. 3, suppose we

select p1 and p2 to constitute the probe matrix, i.e., the

probe matrix contains the first two rows of R. If 2 or

more links fail simultaneously, the faulty links cannot be

correctly identified, as the observation from the end is

the same, i.e., packet losses are observed on both paths.

On the other hand, if only one link is faulty, the bad link

can be identified effectively: losses are observed on both

paths, p1, or p2 if link 1, 2, or 3 is faulty, respectively.

Therefore, the probe matrix achieves 1-identifiability, but

not 2 or higher identifiability. Better identifiability con-

tributes to higher accuracy of loss localization.

We find that Problem 1 is NP-hard for general DCNs

as the Minimum Set Cover Problem is a special case of

the problem. We hence resort to an approximation algo-

rithm to compute the probing path, which is at the heart

of deTector.

4.2 PMC Algorithm
We extend a well-known greedy algorithm [13] for con-

structing a probe matrix achieving 1-identifiability to one

achieving β -identifiability, as well as α-coverage using

a minimal number of probe paths.

In a probe matrix, a link belongs to a set of paths. To

achieve 1-identifiability, the path sets of different links

should all be different, so that losses can be observed on

a particular set of paths to identify the faulty link. Recall

that the set of links in our DCN is E. Once we select

a path from the set of all feasible paths decided by the

58 2017 USENIX Annual Technical Conference USENIX Association

routing matrix based on some criterion, it splits E into

two subsets E1 and E2, containing links on the selected

path and the other links, respectively. If we do not ob-

serve any packet loss on this path, it implies that all links

in E1 are good; otherwise, there must be at least one bad

link in E1. Similarly, we select another path to further

split E1 and E2 into smaller subsets, and repeat this pro-

cedure. Eventually if we can obtain subsets each con-

taining only one link, then the probe matrix constructed

using the selected paths achieves 1-identifiability (since

the set of paths traversing each link is unique); other-

wise, there does not exist a 1-identifiable probe matrix in

the DCN. Throughout the process, if we always select a

path whose links are present in the largest number of link

sets to further split the link sets as much as possible, we

will end up with the minimal number of paths needed.

To achieve β -identifiability, we expand the DCN

graph G with “virtual links”. A virtual link is a com-

bination of multiple physical links, and the set of paths a

virtual link belongs to can be computed by “OR”-ing to-

gether the paths including the individual links [13]. For

the example in Fig. 3, the original routing matrix R is

extended to R’ with three additional virtual links l12, l13

and l23 added; the column corresponding to the virtual

link l12 can be computed by “OR”-ing the two columns

corresponding to links l1 and l2. For β -identifiability,

∑
2≤i≤β

C(|E|, i) virtual links should be added in the DCN

graph (routing matrix), corresponding to all combina-

tions of 2 to β links in the original graph. Then we can

run the above algorithm for constructing 1-identifiable

matrix based on the new routing matrix, and the result-

ing probe matrix achieves β -identifiability.

The probe matrix does not achieve even path coverage

among the links yet. For example, for a 1-identifiable

probe matrix constructed on a 64-ary Fattree, the gap

between the maximal and minimal numbers of probing

paths passing through any two links can be as large as

188. To achieve better evenness (i.e., spreading paths and

thus probe overhead evenly among the physical links),

we introduce a link weight w[link], denoting the num-

ber of paths that the link resides on, and ensure that it is

no smaller than α for any physical link. We also define

a score for each (extended) path, i.e., the path includes

virtual links from the extended routing matrix R’:

score(path) = ∑
link∈path

w[link]−# of link sets on path

(1)

Here the link sets are the split link sets produced by the

procedure above. We say that a link set is on a path if the

link set contains at least one (physical or virtual) link of

the path. Thus, a lower score indicates that the links on

the path are not covered much by paths already selected

and/or more link sets can be split if the path is selected

Algorithm 1 Probe Matrix Construction (PMC) Algo-

rithm

Require: R, α , β
1: Initialize w, score to 0, setnum to 1, sel paths to /0

2: R’← LINKOR(R,β)
3: paths← all paths in R’, physlinks← E
4: while (setnum �= |E| ‖ physlinks �= /0) && paths �= /0

do
5: for path ∈ paths do
6: update score[path] according to (1)

7: path← argminpath′∈paths score[path′]
8: sel paths← sel paths∪{path}
9: paths← paths/{path}

10: for physlink on path do
11: w[physlink]← w[physlink]+1

12: if w[physlink]> α then
13: physlinks← physlinks/{physlink}
14: update setnum as the total number of link sets

after split by path
15: return probe matrix constructed by paths in sel paths

(retaining only physical links on the paths)

in the above procedure. We strive to achieve better even-

ness among the links while guaranteeing α-coverage, by

always selecting a path with the lowest score.

Our Probe Matrix Construction algorithm, PMC, is

summarized in Alg. 1. We first reduce the problem of

constructing a β -identifiable matrix to one constructing

1-identifiable matrix, by adding virtual links to the orig-

inal routing matrix of the DCN graph (line 2, where

LINKOR denotes the method for extending routing ma-

trix discussed above). Then in each iteration we update

the score of each (extended) path (lines 5-6) and select

a path which has the minimal score among all candi-

date paths (lines 7-8). We remove the selected path from

the candidate path set (line 9), and update the weight of

physical links (w[physlink]) on the selected path (lines

10-11) and the total number of link sets that the already

selected paths can split into (line 14, which corresponds

to the procedure discussed in the second paragraph of

this subsection). If the number of paths that cover one

(physical) link exceeds α , we remove the link from the

set of all links (line 12-13). The loop stops when the

probe matrix achieves α-coverage (i.e., the set physlinks
is empty) and β -identifiability (i.e., the number of link

sets split equals the number of links), or there are no

more candidate paths (i.e., the set paths is empty).

Theorem 1 The PMC algorithm achieves (1− 1
e) ap-

proximation of the optimum in terms of the total number
of probe paths selected, where e is natural logarithm.

We can prove Theorem 1 by showing that the score

of a path set is monotone, submodular and non-negative.

USENIX Association 2017 USENIX Annual Technical Conference 59

The detailed proof is in the technical report [7]. In prac-

tice, the PMC algorithm performs much better than the

(1− 1
e) ≈ 0.63 approximation ratio (§4.4). The issue of

this algorithm, however, is the computation time. The

time complexity of the algorithm is O(m2), where m is

the number of paths, since in the worst case we may up-

date the scores of all paths in each iteration and end up

with selecting all paths. In a 64-radix Fattree, there are

about 4.3×109 desirable paths among ToRs. As we will

see in §4.4, the algorithm is still too slow for any data

center at a reasonable scale, and we adopt a number of

optimizations to further speed it up.

4.3 Algorithm Speedup
To speed up the PMC algorithm, we apply several opti-

mizations based on the following three observations.

Observation 1 Problem 1 can be divided into a series of
subproblems.

We can construct a bipartite graph according to the rout-

ing matrix: one partition corresponds to paths and the

other consists of links; an edge exists between a path

node and a link node if the link is on the path. We observe

that if the routing matrix can be partitioned into sets of

paths with no links in common, then the problem can be

divided into independent subproblems. For example, in

Fig. 1, paths traversing the red link have no link overlap-

ping with paths traversing the blue link. Therefore, the

bipartite graph can typically be divided into connected

subgraphs and each subgraph represents a smaller rout-

ing matrix and hence a subproblem. Finding connected

subgraphs can be done in linear time by traversing the

bipartite graph once. Then the PMC algorithm can be

applied to the subproblems in parallel.

Observation 2 The score of each path is non-decreasing
over all iterations.

It can be proved that the score of a path is non-decreasing

(Appendix A in [7]). Inspired by the CELF algorithm for

outbreak detection in networks [38], we adopt a strategy

called lazy update which defers the update of a path score

as much as possible even though we know the score is

outdated. Specifically, we maintain a min-heap for all

paths with scores as the keys and only update the score

of a path when the path is at the top of the heap. After

score update, if the path still stays at the top of the heap,

i.e., the path has the minimal score among all available

paths, we will select the path as a probe path, even though

some path scores have yet to be updated. The correctness

of this heuristic is guaranteed by submodularity of the

score of a path set: the marginal gain provided by a path

selected in the current iteration can not be larger than that

provided by the path in the previous iteration.

Observation 3 The DCN topology is typically symmet-
ric.

Due to symmetry, when a path is selected, all its topo-

logically isomorphic paths can be selected. For example

in Fig. 1, if the dashed green path spanning Pod 1 and

Pod 2 is selected, then the dashed purple path spanning

Pod 3 and Pod 4 may be a good choice too. This helps us

reduce the scale of the problem since the routing matrix

R can be reduced to a smaller matrix by excluding paths

that are topologically isomorphic to other paths. For ex-

ample, if the green path is in the matrix, we do not need

to include the purple path. For this purpose, we first need

to compute the symmetric components in a DCN graph.

There are many fast algorithms available for symmetry

discovery [17, 15], e.g., O2 [15] can finish computation

within 5 seconds for a Fattree(100) DCN, and we only

need to precompute it once for a DCN.

4.4 Performance

We run our PMC algorithm on a Dell PowerEdge R430

rack server with 10 Intel Xeon E5-2650 CPUs and 48GB

memory, to test its running time and number of paths se-

lected. We compare results on three well-known DCNs,

Fattree [9], VL2 [22] and BCube [24].2

Running time. Table 2 shows the algorithm run-

ning time for constructing a probe matrix achieving 2-

coverage and 1-identifiability. The strawman approach is

our PMC algorithm without any optimizations. The last

three columns contain results when the respective opti-

mization is in place (in addition to the previous one(s)).

The results show that PMC can efficiently select probe

paths for very large DCNs. Specifically, without algo-

rithm speedup, the computation time of PMC can be

larger than 24 hours; after each optimization, the time de-

creases significantly and we can compute the probe ma-

trix for Fattree(72), VL2(140,120,100) and BCube(8,4)

within 18 seconds, 86 seconds and 70 seconds, respec-

tively. We note that the running time in case of problem

decomposition for VL2 and BCube is a bit longer than

that of strawman. This is because decomposition does

not apply to the two DCN topologies, but we need extra

time to decide whether the matrix is decomposable.

Path number. Table 3 shows the number of selected

paths with different α and β in different DCNs. Com-

pared with the number of original paths in DCNs, PMC

only selects a small percentage of paths. We can prove

that the least number of paths for achieving 1-coverage

and 1-identifiability is k3/5 for any k-ary Fattree (Ap-

pendix B in [7]). Thus, a Fattree(64) DCN needs at least

52428 paths and our algorithm selects slightly more, i.e.,

2BCube is a server centric architecture and we treat servers as

switches to run our algorithm.

60 2017 USENIX Annual Technical Conference USENIX Association

Table 2: Algorithm running time (seconds) with α = 2,β = 1 in different DCNs

DCNs # of nodes # of links # of original paths Strawman Decomposition Lazy update Symmetry reduction

Fattree(12) 612 1296 184,032 231.458 5.216 0.506 0.126

Fattree(24) 4,176 10,368 11,902,464 > 24h 1381.226 23.254 0.280

Fattree(72) 99,792 279,936 8,703,770,112 > 24h > 24h > 24h 17.054

VL2(20, 12, 20) 1,282 1,440 70,800 22.030 23.126 0.77 0.253

VL2(40, 24, 40) 9,884 10,560 4,588,800 7387.412 7470.476 39.028 1.404

VL2(140,120,100) 424,390 436,800 4,938,024,000 > 24h >24h >24h 85.567

BCube(4, 2) 112 192 12,096 4.871 4.936 0.227 0.117

BCube(8, 2) 704 1,536 784,896 4050.776 4390.168 9.854 0.220

BCube(8, 4) 53,248 163,840 5,368,545,280 > 24h > 24h > 24h 69.778

Table 3: Number of selected paths with different (α ,β)

DCNs Original paths
Selected paths with (α,β)
(1, 0) (1, 1) (3, 2)

Fattree(32) 66,977,792 4,096 7,680 12,288

Fattree(64) 4,292,870,144 32,768 61,440 98,304

VL2(72,48,40) 107,371,008 864 1,440 2,640

VL2(128,96,80) 2,415,132,672 3,072 5,760 9,216

BCube (8,2) 784,896 1,712 2,016 2,832

BCube (8,4) 5,368,545,280 49,152 70,572 119,556

61440 paths. This implies that pingers under each se-

lected ToR in the Fattree are only responsible for probing

about 60 paths, much fewer than that of Pingmesh (about

2000-5000 paths). We also find that VL2 requires much

fewer paths than Fattree and BCube. This is because VL2

has a much smaller number of links between switches

(12288 links in VL2(128, 96,80)), as compared to Fat-

tree (131072 links in Fattree(64)) and BCube (163840

links in BCube(8,4)).

Note that the number of selected path may change

when the third optimization, based on topology symme-
try, is in place. Our evaluation shows that the number of

selected paths with symmetry reduction is very similar to

that without symmetry reduction. This is consistent with

the result in [30], and we hence omit the analysis.

Results for β ≥ 3. The probe matrices we constructed

above achieve at most 2-identifiability. For β ≥ 3, the

computation of PMC is not efficient in large DCNs. For

the example of a 48-ary Fattree, computing a probe ma-

trix achieving 3-identifiability requires at least 24 hours,

even when we apply all speedup optimizations in §4.3.

The fundamental reason is that the routing matrix R be-

comes much larger when the number of column increases

from n to ∑
1≤i≤β

C(n, i), by adding virtual links. However,

surprisingly, we find that 2-identifiability is enough for

loss localization in DCNs, as we will see in §6.4.

5 Loss Localization

5.1 Data Pre-processing

After collecting the probe data, the first step is to pre-

process the data, removing outliers and normal cases.

Severe packet losses could be caused by bad pingers and

responders (e.g., the server is down or was rebooting dur-

ing probing, thus causing many false alarms [37]). Such

outliers can be identified by keeping track of the status

of servers using a watchdog service. In addition, a link

normally has a regular low loss rate, e.g., 10−4–10−5,

due to transient congestion, bit errors, which should not

be considered as failures [26]. To exclude such nor-

mal cases, we filter out paths with extremely low packet

loss rates by setting a threshold on the number of packet

losses in a period of time or on packet loss ratio (e.g.,
10−3 [26, 21]).3 After pre-processing, the loss data that

remain (in the form of (path, number o f losses)) are

likely manifest of network failures rather than noises.

5.2 Problem
Our fault localization problem is: given end-to-end

packet loss observations, find the smallest set of faulty

links that best explains the observations. This problem is

NP-hard as it can be reduced to the NP-complete Min-

imum Hitting Set Problem [18]. Besides, we face two

challenges not existed in previous work:

Much larger problem scale. Our study focuses

on large-scale DCN networks, different from smaller

networks investigated in the existing loss localization

work [10, 18, 42]. At our problem scale, the existing

algorithms are not fast enough (taking tens of seconds or

even minutes) for real-time loss localization.

Different loss patterns. Network failures are mainly

exhibited as two kinds of packet losses: full packet loss

and partial packet loss, meaning that all or part of the

packets traversing a link are dropped. Existing tomog-

raphy techniques assume that if all links on a path are

good, then the path is good [19]. This is not true in case

of partial packet loss in data centers, e.g., packet black-

hole may lead to losses on a link only for a subset of

paths using that link.

5.3 PLL Algorithm
Based on the Tomo algorithm in [18], we design an effi-

cient Packet Loss Localization algorithm, PLL, to local-

3To avoid inaccuracy of the threshold approach, we can use statis-

tical hypothesis testing to look at loss rates over time for noisy data

filtering [27].

USENIX Association 2017 USENIX Annual Technical Conference 61

ize packet losses in DCNs (see [7] for more details). The

basic idea of PLL is as follows.

Step 1: Divide the problem into a series of subprob-

lems, by decomposing the probe matrix following the

same steps discussed for decomposing the routing matrix

in §4.3. For each subproblem, run the following steps.

Step 2: If all probe paths traversing a link experience

no packet loss, we exclude the link. For the remaining

links, we calculate a hit ratio for each link, i.e., the ratio

of the number of observed lossy paths through the link

over the number of all probe paths using the link [34].

Step 3: We compute a score for each link as the num-

ber of lost packets that the link can explain, i.e., if a link

lies in the packet path, we say the link can explain the

packet loss.

Step 4: Among those links whose hit ratios are larger

than a preset threshold, we greedily select the link with

the maximal score and remove those losses this link can

explain.

Step 5: Repeat Step 3 and Step 4 until no loss remains

unexplained.

PLL differs from Tomo mainly in handling partial

packet losses, i.e., we use a hit ratio threshold to filter

suspected links. Setting the threshold requires network

operator’s experience and, if possible, by learning from

real loss data. The analysis on setting this threshold is

presented in [7] due to space constraint and we set it to

0.6 by default in our experiments.

We have compared performance of PLL and other ex-

isting loss localization methods (e.g., Tomo, SCORE [34]

and OMP [42]), and present the results in [7]. The results

show that given the same probe matrix, PLL achieves 2%

higher accuracy (defined as true positive ratio, i.e., the

percentage of bad links correctly identified as bad over

all truly bad links), 2% lower false positive ratio (i.e.,
the percentage of good links incorrectly identified as bad

over all correctly and incorrectly identified links), and

is an order of magnitude faster (e.g., localizing failures

within 1 second in a large DCN with 82944 links) than

the other algorithms.

6 Implementation and Evaluation

6.1 Implementation
We run the controller on one Dell server (or it can run in

a distributed fashion over multiple servers for large-scale

networks). A watchdog service also runs on the server

for monitoring the health of other servers and removing

bad ones. The controller runs the PMC algorithm to re-

compute the probe matrix every 10 minutes, based on the

current network topology from the watchdog service.4

4Once a link or a switch has failed, we remove related link(s) from

the routing matrix to avoid selecting bad paths for probing. Note that

The computed probe matrix is divided into XML pinglist

files for dispatching to pingers. A pinglist file contains

file version, the pinger’s IP address, IP addresses of re-

sponders, transport port numbers, the packet-sending in-

terval and IP addresses of core switches. Our measure-

ment shows that the controller can handle 4473 pinglist

requests per second on average with maximal bandwidth

consumption 688.56Mb/s using one core. Since pingers

are deployed on a small number of servers (about 10%

among all servers), the controller can support more than

100,000 pingers by slightly randomizing the time when

pingers request for pinglists in each cycle.

Each pinger implements a communication module and

a probing module. The communication module is re-

sponsible for connections with the controller and the di-

agnoser. It fetches the pinglist file from the controller

by an HTTP GET request in every cycle (i.e., 10 min-

utes). The probing module generates probe packets ac-

cording to the pinglist and encapsulates them by IP-in-IP

(§3.1). In our experiments, a pinger loops over a range

of ports for each path, and emits several packets for ev-

ery port. Each probe packet has an average size of 850

Bytes, carrying a specified DSCP value in the IP header

to test different QoS classes [12]. If there is no response

for a probe within 100ms, we mark it as a loss. A pinger

repeatedly sends packets by looping through the paths in

the pinglist for multiple times (for statistical accuracy),

at the rate of 10 packets per second. Every 30 seconds,

the pinger aggregates the probing results (i.e., the number

of packet losses and the number of packets sent on each

probe path) into an XML file and sends it to the diagnoser

by an HTTP POST request. The responder module runs

in the userspace of all servers, which listens to a particu-

lar port, and upon packet arrival, it adds a timestamp and

sends the packet back. The pinger and responder incur

little overhead on servers, as we will see in §6.3.

The diagnoser is a Web server module running on the

same server where the controller is in our experiments. It

runs the PLL algorithm for fault localization once every

half a minute, using collected probe results in the past

30 seconds. Given the limited number of servers in our

testbed, we run a virtual machine to emulate a server.

6.2 Experiment Setup
We build a 4-ary Fattree testbed with 20 ONetSwitch [5,

29, 28], each equipped with FPGA-based hardware re-

configurable dataplane, four 1GbE ports and one ded-

icated management port. Though we do not require

programmable switches in deTector, employing SDN

switches facilitates our emulation of various failure cases

that may happen in a real-world DCN. Specifically, we

categorize all losses into three types:

it does not affect symmetry computation which only pre-runs once on

the original DCN topology.

62 2017 USENIX Annual Technical Conference USENIX Association

Full packet loss. We install OpenFlow rules with high

priority to drop all packets coming from a particular port,

to emulate a faulty link with full packet loss. To emulate

a switch down case, we install rules to drop all packets at

the switch.

Deterministic partial loss. Packets with certain fea-

tures (e.g., specific IPs, port numbers) may be dropped

on a link deterministically, e.g., in case of packet black-

hole or misconfigured routing rules. To emulate such

failures, we install rules on the switches to match and

drop packets with certain headers.

Random partial loss. Sometimes packets on a link

are dropped randomly, as caused by bit flips, CRC er-

rors, buffer overflow, etc. SDN switches do not support

random packet dropping. To emulate such losses, we in-

stall rules on the switches to redirect all packets on an

emulated bad link to the SDN controller, and the SDN

controller drops the received packets with certain proba-

bility, following the pattern extracted from [12].

Due to no access to loss data in real-world data centers,

we produce the above loss types according to the failure

measurements in [20] and traffic measurements in [12].

Specifically, we set parameters such as link vs. switch

failure percentage, link loss rates (ranging from 10−4 to

1), failure probabilities for switches in different tiers, all

based on the above measurements. The loss distribu-

tion for links in different tiers is extracted from Fig. 3

in [12]. Aside from deTector, we also implement the

probing modules of Pingmesh and NetNORAD on our

testbed for performance comparison, as well as their fail-

ure localization tools, Netbouncer and fbtracert. Since

we do not know some of their implementation details

(e.g., how data pre-processing is done), we implement

those details in the same way across all three systems.

6.3 Performance

We first investigate how probing itself affects the whole

DCN. We use realistic packet traces (including informa-

tion such as packet header, timestamp) from a univer-

sity data center [11] (mostly HTTP flows) to generate

workload traffic in our testbed, where each server con-

tinuously replays flows based on the packet traces and

sends them to a random receiver. We evaluate how our

probing frequency (i.e., the number of probes a pinger

sends per second) affects the performance of the PLL al-

gorithm, the overhead on the pinger, and RTT and jitter

experienced by the workload traffic. In each minute of

our experiment, we emulate a failure randomly picked

among the three types of failures, with the failed switches

or links randomly picked in the DCN. We run our exper-

iment for 2000 minutes and obtain the average results.

Fig. 4 shows that a higher probe sending frequency

leads to a higher accuracy and a lower false positive ra-

(a) Performance of PLL (b) CPU, memory and band-

width overhead on pingers

(c) RTT of workload traffic (d) Jitter of workload traffic

Figure 4: Sensitivity test of sending frequency

tio (Fig. 4(a)), but causes higher CPU utilization and

bandwidth consumption on pingers (Fig. 4(b)) as well

as slightly larger fluctuation of the RTT (Fig. 4(c)) and

jitter (Fig. 4(d)) experienced by the workload. We find

that 10–15 probes per second is good enough since we

can still achieve higher than 95% accuracy and a lower

than 3% false positive ratio, while only consuming about

100Kbps bandwidth, 0.4% CPU and 13MB memory on

each pinger. Besides, it does not introduce apparent de-

lay and jitter variations for workload traffic. Note that the

overhead of a responder is much smaller than a pinger

because it resumes fewer tasks (e.g., no communication

with the controller and the diagnoser), and hence the re-

sults are omitted.5 In all our experiments, the pinger

sends 10 packets per second by default (i.e., the red

square in Fig. 4).

We then compare the accuracy, false positive ratio and

overhead among deTector, Pingmesh and NetNORAD.

Since Pingmesh can not localize failures by itself, once it

detects a suspected source-destination server pair, we use

Netbouncer [4] to go through all possible paths between

this server pair for loss localization. As for NetNORAD,

similarly, we use fbtracert [3] to probe all possible paths

between the suspected server pair. The interval of loss

data collection is 30 seconds for three systems.

Fig. 5 shows the comparison when one failure is emu-

lated in the testbed (the failure is randomly picked as in

the previous experiment). The number of (ping and re-

ply) probes in the figure includes probes sent for detec-

tion and probes for localization (if any) in each minute

of the experiment. More probes indicate not only more

5Even when we place the pinger and responder on the same server,

the overhead is negligible.

USENIX Association 2017 USENIX Annual Technical Conference 63

Figure 5: Accuracy and false positives of three monitor-

ing systems with different number of probes per minute

Figure 6: Results comparison with multiple failures

bandwidth consumption, but also higher CPU and mem-

ory usage. For deTector, we use a probe matrix with 1-

identifiability and 3-coverage (since it is impossible to

achieve 2-identifiability in a 4-ary Fattree). As we can

see, deTector achieves high accuracy and a low false pos-

itive ratio with a much smaller number of probes, be-

cause deTector covers more types of losses (e.g., low rate

loss) and takes carefully planned paths. For instance, to

achieve 98% accuracy and 1% false positives, deTector,

NetNORAD and Pingmesh need to send 7200, 20700

and 35100 probes per minute, respectively. When the

probe overhead is same (same number of probes sent per

minute), the accuracy and false positive ratio achieved

by deTector is better than those of NetNROAD; as com-

pared to Pingmesh, the accuracy of deTector is much bet-

ter, while the false positive ratio of Pingmesh is slightly

smaller sometimes, since it possibly probes all paths.

Fig. 6 further shows the accuracy and false positive

ratio with multiple failures, when the probe overhead is

fixed to be the same, i.e., 5850 probes per minute. de-
Tector always achieves much better performance than

Pingmesh and NetNORAD. Note that deTector also de-

tects and localizes failures much faster than NetNORAD

and Pingmesh (30 seconds in advance in our experi-

ments), because deTector does not need any other diag-

nosis tools to send an additional round of probes for loss

localization, while others do.

6.4 Simulation
We supplement our experimental evaluation with simula-

tions, to investigate how identifiability of the probe ma-

Table 4: Accuracy in a 18-radix Fattree, with probe ma-

trices of different levels of coverage and identifiability

(α,β) # of paths
Accuracy (%) with # of failed links

1 5 10 20 50

(1,0) 729 30.56 30.87 30.30 30.26 29.19

(2,0) 1485 58.43 57.43 57.08 56.81 57.11

(3,0) 2187 68.22 70.61 69.89 70.40 70.14

(1,1) 1269 94.74 93.37 94.21 93.43 90.29

(1,2) 1512 99.26 99.06 99.02 98.77 95.92

(1,3) 2349 99.63 99.63 99.67 99.62 98.07

trix influences the accuracy of our failure localization,

when running deTector in larger Fattree networks.

We first vary α and β for probe matrix construction

in an 18-radix Fattree. Table 4 shows that higher cov-

erage and higher identifiability lead to higher accuracy,

while the overhead (i.e., the number of selected paths)

does not increase much. Also, we find that identifiability

is more effective and desirable than coverage for failure

localization, since a 1-identifiability matrix increases the

accuracy a lot (from one with 0-identifiability guarantee),

with much less overhead than a 3-coverage probe matrix.

Note that further increasing the level of identifiability

for β > 1 does not increase the accuracy much, and probe

matrices achieving 1-identifiability can already lead to

higher than 90% accuracy. According to the measure-

ments in [12], less than 10% failure events (failures oc-

curring concurrently) contain more than four failures and

less than 1% failure events contain more than 20 failures.

This implies that a probe matrix with 1-identifiability

can guarantee higher than 93% accuracy for 90% fail-

ure events and 2-identifiability provides a 98% accuracy

for 99% failure events.

The result is surprising but reasonable: Since we use

a number of optimizations (§4.3) to reduce the size of

the routing matrix, the PMC algorithm in fact achieves

β ′-identifiability (where β ′ is larger than β used in

the algorithm) for the whole probe matrix, rather than

β -identifiability computed for each small probe matrix

(corresponding to a small network topology). Therefore,

deTector may fail to localize all failures only if more

than β failures appear in a small topology, which occurs

with relatively low probability. This shows that using a

probe matrix with a low level of identifiability guaran-

tee is good enough to identify a much larger number of

concurrent failures.

In addition, by examining the failure events that deTec-
tor fails to localize with a low identifiability probe ma-

trix but can identify using a high identifiability matrix,

we find that higher identifiability achieves better results

only when the number of simultaneously failed links is

very large. Such a failure event with many concurrent

link failures is usually triggered by a common bug in

practice (e.g., 180 links fail simultaneously due to sched-

uled maintenance to multiple aggregation switches [20]),

64 2017 USENIX Annual Technical Conference USENIX Association

Table 5: Fault localization performance with probe ma-

trix of 2-identifiability in a 48-ary Fattree

of failed links 1 5 10 20 50

Accuracy (%) 98.95 98.99 98.98 98.93 98.87

False positive (%) 0.01 0.02 0.02 0.02 0.02

False negative (%) 1.05 1.01 1.02 1.07 1.13

and thus those faulty links are spatially clustered. In such

cases, operators can locate the failure spot effectively ac-

cording to the positions of most failed links.

We further examine the fault localization accuracy,

false positive and false negative (bad links incorrectly

identified as good) ratios achieved using a probe matrix

of 2-identifiability in a 48-ary Fattree. Table 5 shows that

the false positive and false negative ratios remain in a

very low level. In particular, the false positive rate is ex-

tremely low (< 1%), which is desirable in practice [18].

The false negatives are mainly caused by losses of ex-

tremely low loss rate and intermittent losses which may

happen at longer intervals (than 1 minute) [23]. Since it

takes longer time to expose these losses, we can further

reduce false negatives by examining loss measurements

in larger time windows, e.g., 10 minutes.

7 Discussions

Packet entropy. deTector tries to increase packet en-

tropy (i.e., different packet patterns) by varying IP ad-

dresses, port numbers and DSCP values, to cover as

many failures as possible. However, our implementa-

tion uses IP-in-IP encapsulation for source routing, and

hence the range of destination IP addresses is somewhat

limited. In addition, since we use UDP for network

probing, deTector may not be able to detect failures re-

lated to other protocols, e.g., misconfigured TCP param-

eters [26]. Adopting other source routing solutions and

adding more protocols to increase packet entropy are part

of our future work.

Loss diagnosis. While deTector can localize where

packet drops occur, it does not know what causes the

drops, e.g., software bugs, misconfigured rules or bursty

traffic. This is a common deficiency of existing monitor-

ing systems, since network diagnosis is rather complex.

However, it is possible to distinguish full losses, deter-

ministic partial losses, random partial losses and losses

due to congestion, to narrow down the diagnosis scope

(e.g., using machine learning approaches), since they ex-

hibit different loss characteristics. We consider this as a

promising future direction to explore.

Beyond deTector. As opposed to probe-based solutions

like deTector, there are some recent efforts on embedding

metadata in the packet header to trace packet path for net-

work debugging (e.g., CherryPick [46], PathDump [47]).

Our technique can be applied to reduce the overhead in-

volved in these approaches, i.e., only packets travers-

ing those paths computed by the PMC algorithm need

to carry routing information in the packet headers.

8 Related Work

Probe design. Many existing work (e.g., [14, 18, 43, 33,

27]) exploit logs on switches, or utilize multicast or net-

work coding for network probing. Instead, we treat each

switch as a blackbox, and adopt a topology-aware end-

to-end probing approach. Some studies [16, 40, 23] es-

timate loss rates of all links, while we aim at identifying

bad links (i.e., failure spots). Zeng et al. [48] and Nico-

las et al. [23] propose monitoring solutions for backbone

networks that do not apply in DCNs due to scalability,

and the main difference lies in probe matrix design.

Fault localization. Our goal of accurately identify-

ing faulty links falls squarely in the area of binary net-

work tomography. Tomography algorithms such as Sher-

lock [10], Tomo [18], GREEDY [35], SCORE [34] and

OMP [42] do not work well for DCNs due to their prob-

lem scales and loss characteristics. Our PLL algorithm is

built on these work and conquers their limitations.

DCN monitoring. Our work mainly differs from ex-

isting monitoring systems such as Pingmesh [26] and

NetNORAD [37] in the design of probe matrix. We

argue that loss detection and localization must be cou-

pled together to localize more failures (e.g., transient fail-

ures) in real time with low overhead. Carefully designed

probe matrix is the key to achieve them. LossRadar [39]

is a switch-based solution but it requires programmable

switches. Dapper [44] and Zipkin [8] are distributed trac-

ing systems to gather timing data for root-cause analysis.

9 Conclusion

deTector is a real-time, low-overhead and high-accuracy

monitoring system for large-scale data center networks.

At its core is a carefully designed probe matrix, con-

structed by a scalable greedy path selection algorithm

with minimized probe overhead. We also design an ef-

ficient failure localization algorithm according to differ-

ent patterns of packet losses. Our analysis, testbed ex-

periments and large-scale simulations show that deTec-
tor is highly scalable, practically deployable with low

overhead, and can localize failures with high accuracy

in near real time.

Acknowledgments We thank Xiaowei Wu for his help

with algorithm design. This work was supported by Na-

tional Key Research and Development Program of China

2016YFB0800101, NSFC 61672425, NSFC 61628209,

and Hong Kong RGC grants HKU 718513, 17204715,

17225516, C7036-15G (CRF).

USENIX Association 2017 USENIX Annual Technical Conference 65

References

[1] VXLAN. https://tools.ietf.org/html/

rfc7348, 2014.

[2] NVGRE. https://tools.ietf.org/html/

rfc7637, 2015.

[3] Fbtracert. https://github.com/facebook/

fbtracert, 2016.

[4] Microsoft Netbouncer. https://www.youtube.

com/watch?v=nfEOEKlInK8, 2016.

[5] ONetSwitch. http://www.onetswitch.org/

index, 2016.

[6] deTector project. https://github.com/

yhpeng-git/deTector, 2017.

[7] deTector technical report. https://github.

com/yhpeng-git/deTector/blob/master/

documentation/technical_report.pdf,

2017.

[8] Zipkin. http://zipkin.io, 2017.

[9] AL-FARES, M., LOUKISSAS, A., AND VAHDAT,

A. A scalable, commodity data center network ar-

chitecture. In Proc. of ACM SIGCOMM (2008).

[10] BAHL, P., CHANDRA, R., GREENBERG, A.,

KANDULA, S., MALTZ, D. A., AND ZHANG,

M. Towards highly reliable enterprise network ser-

vices via inference of multi-level dependencies. In

Proc. of ACM SIGCOMM (2007).

[11] BENSON, T. Data set for IMC 2010 data cen-

ter measurement. http://pages.cs.wisc.edu/

~tbenson/IMC10_Data.html, 2010.

[12] BENSON, T., ANAND, A., AKELLA, A., AND

ZHANG, M. Understanding data center traffic char-

acteristics. In Proc. of ACM SIGCOMM (2010).

[13] BRODIE, M., RISH, I., AND MA, S. Optimizing

probe selection for fault localization. In Proc. of
the 12th International Workshop on Distributed
Systems: Operations and Management (DSOM)
(2001).

[14] CASTRO, R., COATES, M., LIANG, G., NOWAK,

R., AND YU, B. Network tomography: recent de-

velopments. Statistical Science 19, 3 (2004), 499–

517.

[15] CHEN, K., GUO, C., WU, H., YUAN, J., FENG,

Z., CHEN, Y., LU, S., AND WU, W. Generic and

automatic address configuration for data center net-

works. In Proc. of ACM SIGCOMM (2010).

[16] CHEN, Y., BINDEL, D., SONG, H., AND KATZ,

R. H. An algebraic approach to practical and scal-

able overlay network monitoring. In Proc. of ACM
SIGCOMM (2004).

[17] DARGA, P. T., SAKALLAH, K. A., AND

MARKOV, I. L. Faster symmetry discovery using

sparsity of symmetries. In Proc. of the 45th Annual
Design Automation Conference (DAC) (2008).

[18] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C.,

AND DIOT, C. Netdiagnoser: Troubleshooting net-

work unreachabilities using end-to-end probes and

routing data. In Proc. of the 3rd ACM International
Conference on emerging Networking EXperiments
and Technologies (CoNEXT) (2007).

[19] DUFFIELD, N. Network tomography of binary

network performance characteristics. IEEE Trans-
actions on Information Theory 52, 12 (November

2006), 5373–5388.

[20] GILL, P., JAIN, N., AND NAGAPPAN, N. Under-

standing network failures in data centers: measure-

ment, analysis, and implications. In Proc. of ACM
SIGCOMM (2011).

[21] GOVINDAN, R., MINEI, I., KALLAHALLA, M.,

KOLEY, B., AND VAHDAT, A. Evolve or die:

High-availability design principles drawn from

Google’s network infrastructure. In Proc. of ACM
SIGCOMM (2016).

[22] GREENBERG, A., HAMILTON, J. R., JAIN, N.,

KANDULA, S., KIM, C., LAHIRI, P., MALTZ,

D. A., PATEL, P., AND SENGUPTA, S. VL2:

a scalable and flexible data center network. In

Proc. of ACM SIGCOMM (2009).

[23] GUILBAUD, N., AND CARTLIDGE, R. Localizing

packet loss in a large complex network. https:

//www.nanog.org/meetings/nanog57/

presentations/Tuesday/tues.general.

GuilbaudCartlidge.Topology.7.pdf, 2013.

[24] GUO, C., LU, G., LI, D., WU, H., ZHANG,

X., SHI, Y., TIAN, C., ZHANG, Y., AND LU, S.

BCube: a high performance, server-centric network

architecture for modular data centers. In Proc. of
ACM SIGCOMM (2009).

[25] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y.,

AND LU, S. DCell: a scalable and fault-tolerant

network structure for data centers. In Proc. of ACM
SIGCOMM (2008).

66 2017 USENIX Annual Technical Conference USENIX Association

[26] GUO, C., YUAN, L., XIANG, D., DANG, Y.,

HUANG, R., MALTZ, D., LIU, Z., WANG, V.,

PANG, B., CHEN, H., ET AL. Pingmesh: A

large-scale system for data center network latency

measurement and analysis. In Proc. of ACM SIG-
COMM, 2015.

[27] HERODOTOU, H., DING, B., BALAKRISHNAN,

S., OUTHRED, G., AND FITTER, P. Scalable near

real-time failure localization of data center net-

works. In Proc. of the 20th ACM International Con-
ference on Knowledge Discovery and Data Mining
(SIGKDD) (2014).

[28] HU, C., YANG, J., GONG, Z., DENG, S., AND

ZHAO, H. DesktopDC: setting all programmable

data center networking testbed on desk. ACM SIG-
COMM Computer Communication Review 44, 4

(2015), 593–594.

[29] HU, C., YANG, J., ZHAO, H., AND LU, J. De-

sign of all programmable innovation platform for

software defined networking. In In Proc. of the 4th
Open Networking Summit (ONS) (2014).

[30] HU, S., CHEN, K., WU, H., BAI, W., LAN, C.,

WANG, H., ZHAO, H., AND GUO, C. Explicit path

control in commodity data centers: Design and ap-

plications. In Proc. of the 12th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI) (2015).

[31] ISARD, M. Autopilot: automatic data center man-

agement. ACM SIGOPS Operating Systems Review
41, 2 (April 2007), 60–67.

[32] JYOTHI, S. A., DONG, M., AND GODFREY, P.

Towards a flexible data center fabric with source

routing. In Proc. of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research
(SOSR) (2015).

[33] KANDULA, S., MAHAJAN, R., VERKAIK, P.,

AGARWAL, S., PADHYE, J., AND BAHL, P. De-

tailed diagnosis in enterprise networks. In Proc. of
ACM SIGCOMM (2009).

[34] KOMPELLA, R. R., YATES, J., GREENBERG, A.,

AND SNOEREN, A. C. IP fault localization via risk

modeling. In Proc. of the 2nd USENIX Symposium
on Networked Systems Design and Implementation
(NSDI) (2005).

[35] KOMPELLA, R. R., YATES, J., GREENBERG, A.,

AND SNOEREN, A. C. Detection and localization

of network black holes. In Proc. of IEEE INFO-
COM (2007).

[36] LAPUKHOV, P. Configuring IPSLA.

http://www.cisco.com/c/en/us/td/docs/

switches/lan/catalyst4500/12-2/44sg/

configuration/guide/Wrapper-44SG/

swipsla.html.

[37] LAPUKHOV, P. Network debugging at scale.

https://www.nanog.org/sites/default/

files/Lapukhov_Move_Fast_Unbreak.pdf,

2016.

[38] LESKOVEC, J., KRAUSE, A., GUESTRIN,

C., FALOUTSOS, C., VANBRIESEN, J., AND

GLANCE, N. Cost-effective outbreak detection in

networks. In Proc. of the 13th ACM International
Conference on Knowledge Discovery and Data
Mining (SIGKDD) (2007).

[39] LIÚ, Y., MIAO, R., KIM, C., AND YUÚ, M. Loss-

Radar: Fast detection of lost packets in data center

networks. In Proc. of the 12th ACM International
Conference on emerging Networking EXperiments
and Technologies (CoNEXT) (2016).

[40] MA, L., HE, T., LEUNG, K. K., TOWSLEY, D.,

AND SWAMI, A. Efficient identification of additive

link metrics via network tomography. In Proc. of
the 33rd IEEE International Conference on Dis-
tributed Computing Systems (ICDCS) (2013).

[41] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A.,

GREENBERG, A., MALTZ, D. A., KERN, R., KU-

MAR, H., ZIKOS, M., WU, H., ET AL. Ananta:

cloud scale load balancing. In Proc. of ACM SIG-
COMM (2013).

[42] PATI, Y. C., REZAIIFAR, R., AND KRISH-

NAPRASAD, P. Orthogonal matching pursuit: Re-

cursive function approximation with applications to

wavelet decomposition. In Proc. of the 27th Asilo-
mar Conference on Signals, Systems and Comput-
ers (ACSSC) (1993).

[43] SHARMA, G., JAGGI, S., AND DEY, B. Net-

work tomography via network coding. In Proc. of
the 3rd Information Theory and Applications Work-
shop (ITA) (2008).

[44] SIGELMAN, B. H., BARROSO, L. A., BURROWS,

M., STEPHENSON, P., PLAKAL, M., BEAVER,

D., JASPAN, S., AND SHANBHAG, C. Dapper,

a large-scale distributed systems tracing infrastruc-

ture. Tech. rep., Google, Inc., 2010.

[45] SINGH, A., ONG, J., AGARWAL, A., ANDERSON,

G., ARMISTEAD, A., BANNON, R., BOVING,

S., DESAI, G., FELDERMAN, B., GERMANO, P.,

USENIX Association 2017 USENIX Annual Technical Conference 67

ET AL. Jupiter rising: A decade of Clos topolo-

gies and centralized control in Google’s datacenter

network. In Proc. of ACM SIGCOMM (2015).

[46] TAMMANA, P., AGARWAL, R., AND LEE, M.

Cherrypick: Tracing packet trajectory in software-

defined datacenter networks. In Proc. of the 1st
ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR) (2015).

[47] TAMMANA, P., AGARWAL, R., AND LEE, M.

Simplifying datacenter network debugging with

pathdump. In Proc. of the 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2016).

[48] ZENG, H., MAHAJAN, R., MCKEOWN, N.,

VARGHESE, G., YUAN, L., AND ZHANG, M.

Measuring and troubleshooting large operational

multipath networks with gray box testing, msr-tr-

2015-55. Tech. rep., 2015.

68 2017 USENIX Annual Technical Conference USENIX Association

Pricing Intra-Datacenter Networks with Over-Committed
Bandwidth Guarantee

Jian Guo1, Fangming Liu1∗, Tao Wang1, John C.S. Lui2

1Key Laboratory of Services Computing Technology and System, Ministry of Education,
School of Computer Science and Technology, Huazhong University of Science and Technology

2The Chinese University of Hong Kong

Abstract
Current IaaS clouds provide performance guarantee on

CPU and memory but no quantitative network perfor-

mance for VM instances. Our measurements from three

production IaaS clouds show that for the VMs with same

CPU and memory, or similar pricing, the difference in

bandwidth performance can be as much as 16×, which

reveals a severe price-performance anomaly due to a lack

of pricing for bandwidth guarantee. Considering the low

network utilization in cloud-scale datacenters, we ad-

dress this by presenting SoftBW, a system that enables

pricing bandwidth with over commitment on bandwidth

guarantee. SoftBW leverages usage-based charging to

guarantee price-performance consistency among tenants,

and implements a fulfillment based scheduling to pro-

vide bandwidth/fairness guarantee under bandwidth over

commitment. Both testbed experiments and large-scale

simulation results validate SoftBW’s ability of providing

efficient bandwidth guarantee, and show that by using

bandwidth over commitment, SoftBW increases 3.9×
network utilization while incurring less than 5% guar-

antee failure.

1 Introduction

Cloud computing enables enterprises and individuals to

access computing resources based on their demands with

a simple pay-as-you-go model. Large numbers of cloud

tenants are multiplexed in the same datacenter (DC)

infrastructure, where they can also get isolated com-

puting resources via virtual machines (VMs). In cur-

rent IaaS clouds, CPU performance (represented by vC-

This work was supported in part by the National 973 Basic Re-

search Program under Grant 2014CB347800, and in part by NSFC un-

der Grant 61520106005. The work of John C.S. Lui is supported in

part by the GRF 14205114. (∗Corresponding author: Fangming Liu)

PUs) and memory performance (represented by GB) are

both quantifiable metrics. However, datacenter network

bandwidth, which can severely impact the job comple-

tion time of network-intensive applications, has not been

standardized as one of the VM performance metrics.

To reveal the network performance in IaaS clouds, we

measured the intra-datacenter bandwidth of VMs from

three popular cloud platforms, i.e., Google Compute En-

gine (GCE), Amazon EC2 and Aliyun ECS. The mea-

surement indicates a severe price-performance anomaly
in current clouds: 1) for VMs from different clouds,

whose CPU/memory and prices are the same, the differ-

ence in network performance can be as much as 16 times;

2) for VMs in the same cloud, the average bandwidth of

a cheaper VM can surpass the bandwidth of an expensive

one; 3) for a single VM, the network performance at dif-

ferent time is varying and highly unpredictable. Hence,

due to a lack of bandwidth performance guarantee and

a corresponding pricing strategy, tenants deploying net-

work intensive applications can hardly obtain the perfor-

mance in agreement with which they pay for.

To price network bandwidth with a performance guar-

antee, a practical solution should not only satisfy the

bandwidth requirements of tenants, but should also

achieve efficient resource utilization to benefit providers’

profit. Given that current cloud-scale datacenters have

a low network utilization (99% links are less than <
10% loaded [1]), we propose to allow over commitment

for bandwidth guarantee as well as provide usage-based

pricing for tenants. For example, a provider can co-locate

VM1 with 8 Gbps bandwidth and VM2 with 4 Gbps

bandwidth on a server with 10 Gbps bandwidth. When

both VMs are transmitting traffic continuously, VM1 and

VM2 get 6.7 Gbps and 3.3 Gbps bandwidth, respectively.

For a given billing cycle, they both get a discount in pro-

portional to the fulfillment ratio, i.e., 5/6. To validate the

feasibility of bandwidth over commitment, we model the

failure rate of bandwidth guarantee based on the datacen-

ter traffic traces in [2, 3], and show that we can control

USENIX Association 2017 USENIX Annual Technical Conference 69

the expected failure rate within an acceptable level by

using proper over commitment ratio (§2).

However, pricing bandwidth guarantee under over

commitment condition is a challenging task. Existing

work on bandwidth guarantee, which focuses on guaran-

teeing tenants’ bandwidth requirements under sufficient

bandwidth condition, can hardly achieve the target:

• They do not provide a usage-based pricing for the

corresponding bandwidth allocation techniques to

achieve price-performance consistency.

• The state-of-the-art bandwidth allocation solution us-

ing either static or dynamic rate limit cannot provide

performance guarantee under bandwidth over com-

mitment.

• Existing solution verifies bandwidth guarantee by us-

ing long-lived flows, but ignores the performance

degradation of short flows when using periodically

rate limit.

To address the challenges, we propose SoftBW,

a solution that enables pricing datacenter networks

via software-defined bandwidth allocation, aiming to

achieve: price-performance consistency, over commit-

ment tolerance and short flow friendly (§4). SoftBW re-

alizes a usage-based charging by monitoring a guarantee

fulfillment, which is a ratio of the achieved bandwidth to

the committed bandwidth guarantee, on each billing cy-

cle. The pricing strategy, when combined with our band-

width allocation, ensures that tenants paying higher unit

price can achieve higher network performance.

SoftBW implements a fulfillment-based scheduling

(§5) to simultaneously provide minimum bandwidth

guarantee under sufficient physical bandwidth condi-

tion, and guarantee VM-level fairness when the physi-

cal bandwidth is constrained. By applying a dynamic

guarantee for long-lived traffic, SoftBW can utilize the

idle bandwidth to reduce the total bandwidth guarantee,

which further reduces the guarantee failures under band-

width over commitment. SoftBW’s implementation uses

a software virtual switch at each server, and introduces

only 5.1% CPU overhead and less than 1.9 μs latency

for 10 Gbps data transmission. Testbed experiments val-

idate SoftBW’s ability to efficiently provide bandwidth

guarantee, as well as having 2.8× to 4.5× improvement

on the completion time of short flows, as compared with

existing rate-limit based approaches. In large scale sim-

ulation, we find that using bandwidth over commitment

can increase ∼ 3.9× network utilization, while maintain

the average failure of bandwidth guarantee under 5%. In

summary, the contributions of this paper consist of:

• By measuring the intra-DC bandwidth of VMs from

three cloud platforms, we reveal the severe price-

performance anomaly among different clouds, due to

a lack of pricing for quantitative bandwidth perfor-

mance.

• We validate the feasibility of pricing bandwidth guar-

antees with over commitment in current multi-tenant

datacenters by proposing a usage-based charging

model and a fulfillment-based scheduling algorithm.

• We develop SoftBW, a system that implements

the proposed pricing and scheduling, and show

that SoftBW can provide efficient bandwidth/fairness

guarantee for both long-lived traffic and short flows

under bandwidth over commitment in testbed experi-

ments.

2 Background and Motivation

2.1 VM Bandwidth in Public Cloud
We measure the intra-DC bandwidth among different in-

stance types1 from four selected datacenters: N. Virginia

in US East (Amazon), N. California in US West (Ama-

zon), Asia East (Google), Beijing in China (Alibaba).

Each throughput is collected 12 times a day, lasting 5

minutes on every 2 hours. The maximum and aver-

age throughput of different instances is shown in Table

1. During the measurement, the CPU utilizations of all

VMs are less than 100% of a single core, which indicates

that the bottleneck is on the network bandwidth. The

instance types with the same network performance are

merged into one group. We find that while VM rate-limit

is commonly used, the limited bandwidth and direction
of rate-limit for VMs are quite different among different

providers.

Rate-limit upperbound. Alibaba ECS simply pro-

vides the same rate-limit for all VMs at 520 Mbps. For

Amazon EC2, the sharing strategy of the two datacenters

sees no obvious distinctions. As expected, the perfor-

mance corresponds to the description of VM instances

(excluding the ones with 10 Gbps dedicated bandwidth)

in EC2, which falls into three levels, i.e., low to mod-

erate, moderate (300 Mbps) and high (1 Gbps). The

throughput of “low to moderate” is fairly unstable and

can be as large as about 3 Gbps. Although Google

does not claim the network performance of VMs, most

of them outperform the VMs in EC2 in both average

and maximum throughput, which has three levels, i.e.,

1 Gbps, 2 Gbps and 4 Gbps. For VMs with 4 or more

vCPUs, we do not find any obvious rate-limit. The sta-

ble throughput varies from 1 Gbps up to 5 Gbps.

Rate-limit direction. There are two rate-limit strate-

gies in these clouds: source based rate-limit for egress

traffic (Google and Alibaba), and rate-limit for both

1The measurement covers all shared-core and standard instances

in GCE (cloud.google.com), all general purpose instances in EC2

(aws.amazon.com), and all #vCPUs in Alibaba ECS.

70 2017 USENIX Annual Technical Conference USENIX Association

EC2 Low to Moderate Moderate High

Low to Moderate 0.84/3.00 0.29/0.30 0.79/1.01

Moderate 0.29/0.30 0.29/0.29 0.29/0.29

High 0.55/1.01 0.29/0.30 0.97/1.16

GCE Low Moderate High Highest

Low 0.59/1.01 0.66/1.01 0.64/1.01 0.64/1.00

Moderate 0.76/2.00 1.97/2.00 1.99/2.00 1.98/2.00

High 0.65/3.36 2.78/3.24 2.73/3.20 3.03/4.00

Highest 0.86/4.93 3.32/4.05 3.56/3.95 4.36/5.09

Table 1: The average/max throughput of VM-to-VM traffic

(Gbps) in Amazon EC2 and Google Compute Engine (GCE)

datacenters. The left column and head row are source and des-

tination VM, respectively. 1

ingress and egress traffic (Amazon). In Figure 1, we vali-

date this by showing the receiving rates of VMs with dif-

ferent number of sending VMs. The instance types we

studied in three clouds are guaranteed to have the near-

est performance in CPU and memory: 1 vCPU, 3.75 GB

memory for GCE, 1 vCPU, 3.75 GB memory for EC2,

and 1 vCPU, 4 GB memory for ECS. The receiving rates

of VMs in EC2 do not increase with more sending VMs,

which indicates that the ingress bandwidth of VM is lim-

ited. GCE and ECS have no rate-limit for ingress traffic

of VMs unless they are congested by physical bandwidth.

Hence, the maximal rates can reach at about 5 Gbps and

2 Gbps with 4 sending VMs, respectively.

Price-performance anomaly. For VMs in different

clouds, which have the same allocated resource (i.e., vC-

PUs and memory) and pricing, the bandwidth perfor-

mance is significantly different. For example, the VMs

in Figure 1 have 1 vCPU and 3.75 GB memory, but the

gap in network performance is as much as 6 to 16 times.

As a result, some cloud providers may miss a golden op-

portunity to achieve higher competitiveness in the mar-

ket due to a lack of quantitative bandwidth performance.

In fact, as indicated by the missing of bandwidth perfor-

mance for VMs, currently the maximal throughput is not

guaranteed by the provider since we observe significant

variation in throughput during one day.

2.2 Why Over Commitment is Rational?
To validate the feasibility of over selling network band-

width in clouds, we start with modeling the datacenter

traffic based on existing measurement work [2, 3]. The

ratio of over commitment of a server is defined as the

ratio of the sum of guaranteed bandwidth CB to the phys-

ical bandwidth C at this server, denoted by δ = CB/C.

When over commitment is involved, the risk of guaran-

1There is no description for VM network performance in GCE. The

measured performance can be divided into 4 groups: low (f1-micro,

g1-small), moderate (n1-standard-1), high (n1-standard-2), and highest

(n1-standard-4/8/16)). The inter-VM throughput of Alibaba is omitted

as the strategy is similar to GCE.

Number of source VMs
1 2 4

T
hr

ou
gh

pu
t (

G
bp

s)

0

2

4

6
Amazon
Google
Alibaba

Figure 1: Comparing the average, max, min receiving rate of

VM with different numbers of sending VMs.

tee failure caused by resource over commitment should

be considered.

Suppose the server hosts n homogeneous VMs with

the same bandwidth guarantee, whose traffic is indepen-

dent identically distributed. As indicated by [2], the traf-

fic demand on an edge port approximates an exponen-

tial distribution with the probability density satisfying

f (x) = αe−αx, where x is the traffic demand and 1/α
is the average traffic demand. Note that 1/α can be ob-

tained by tracking the average network utilization of a

VM. In a δ over committed server, where the bandwidth

guarantees of VMs exceed the physical bandwidth, the

guarantee fails when the total traffic demands exceed the

physical bandwidth C, namely, ∑xi >C , where xi repre-

sents the demand of VM i, i ∈ [1,n].
Let Θ denote the domain that subjects to ∑xi >C(xi >

0) for those n VMs. Then the probability of failure Pn
follows the joint probability distribution that every xi lo-

cates in Θ, which is an n-dimensional integral

Pn =
∫

. . .
∫

Θ
∏αe−αxi dx1 . . .dxn. (1)

Solving above equation, Pn can be expressed as

Pn = e−αC
n

∑
i=1

(αC)i−1

(i−1)!
. (2)

Let ρ be the average network utilization of a host

server without over commitment, then α = n/ρCB. Fig-

ure 2 shows the impact of over commitment on the fail-

ure rate with 16 VMs. We maintain the server network

utilization as 10% and 15% (the value can be adjusted

according to the network utilization by providers). As

we can see, the failure rate is less than 5% if using 6.9×
OC for 10% average network utilization, or using 4.6×
OC for 15% average network utilization.

The simple analysis shows that when the access band-

width is over committed, the expected failure rate can

be controlled within an acceptable level by using proper

ratio of over commitment according to the average uti-

lization. Although in practical situation, a VM’s traffic

may not follow an ideal exponential distribution, the over

commitment is still worth deployment in a large scale,

USENIX Association 2017 USENIX Annual Technical Conference 71

Ratio of over commitment
0 2 4 6 8 10

F
ai

lu
re

 r
at

e

0

0.2

0.4

0.6

0.8

1
15% Utilization
10% Utilization

Figure 2: The impact of bandwidth over commitment on the

failure rate of bandwidth guarantee.

and the VMs still get a minimum guarantee of CB/δ in

the worst case.

2.3 Why not Existing Solutions?

Achieving bandwidth guarantee for VMs in datacenters

needs to address three key tasks [4] as shown in Fig-

ure 3: a performance model that specifies the tenants’

bandwidth requirements, a VM placement mechanism

that allocates VMs to the servers with sufficient phys-

ical bandwidth, and a rate control algorithm that dy-

namically controls the rates of VMs to improve band-

width utilization. Current rate-limit (RL) based solution

can meet the basic requirements of bandwidth guaran-

tee [5, 6], i.e., minimum guarantee, proportional sharing,

and work-conserving. However, they do not provide a

pricing strategy and can hardly address the challenges on

bandwidth over commitment in datacenters.

First, the rate-limit based solution does not pro-

vide guaranteed performance metrics for bandwidth over

commitment. They work like TCP for aggregated VM-

to-VM traffic, i.e., keep increasing and multiplicatively

decrease when congested, so as to provide VM-level fair-

ness. To achieve bandwidth guarantee for a VM, the rate

limitation needs to stay above the minimum guarantee,

thus the limitation of traffic from other VMs will reduce,

and their traffic that exceeds the guaranteed bandwidth

can be restricted [5]. This policy assumes that the ac-

cess links at end-hosts are not over-subscribed. When

the total bandwidth guarantee exceeds the physical band-

width on a server, for example, three VMs each with

500 Mbps minimum bandwidth guarantee are co-located

on a server with 1 Gbps bandwidth, the minimum rate-

limit of each VM (500 Mbps) is held upon a fair share

(333 Mbps), thus becoming unavailable. To avoid this,

one should tell whether the total traffic demand will ex-

ceed the physical bandwidth in the next update of rate

limitations, and decide whether the limitations need to

be lower-bounded. However, predicting traffic demands

at ∼ 50 ms granularity is extremely hard for datacen-

ter traffic. An efficient rate enforcement mechanism is

needed to guarantee fairness when the physical band-

Bandwidth Allocation

Performance Model VM Placement Rate Enforcement
Hose model, VOC, Pipe

model, TAG model
E.g., Oktpus,

Proteus , CloudMirror

Reservation Dynamic RLWork-conserving
guaranteeE.g., Oktpus, none

work-conserving
E.g., Seawall, no

minimum guarantee

E.g., ElasticSwtich, inefficient for short flows,
unavailable under over commitment

Dynamic RL with lower bound Packet Scheduling
SoftBW, pricing and guarantee
for bandwidth over commitment

+ +

Figure 3: Technical position of SoftBW in bandwidth alloca-

tion: rate enforcement with packet scheduling.

width is over committed while providing minimum band-

width under sufficient bandwidth condition.

Second, periodically rate limit degrades the perfor-

mance of VM-to-VM traffic when the traffic is an ag-

gregation of massive short flows. To achieve work-

conserving [7], the unused bandwidth of idle VMs is al-

located to other VMs rather than be statically reserved.

Hence, the rate limitations of VMs need to be updated

at an interval of tens of milliseconds [5], which is longer

than the completion times of most of short flows. Dur-

ing this period, if the traffic of a VM has fully utilized

the allocated bandwidth, the newly arrived short flows

will compete with existing traffic and cause a short-

term congestion. It not only delays the transmission of

short flows, but also degrades the performance of exist-

ing flows. One may address this by using more fine-

grained rate control. However, frequent changes of rate

limitation, especially sudden decrease in rate limitation,

can cause significant fluctuations to the underlying TCP

flows. For a tenant, it is unacceptable that the use of idle

bandwidth is at the cost of degrading the performance of

short flows. Hence, a packet-level solution that can “take

back” the paid bandwidth quickly is more suitable for

bandwidth pricing.

3 Fulfillment Abstraction

3.1 Access Bandwidth vs. Congested Links
Our bandwidth allocation focuses on end-based rate en-

forcement, as shown in Figure 3. The choice comes from

the fact that today’s production datacenters see rapid ad-

vances in achieving full bisection bandwidth [8, 9], and

the providers have a growing concern about the over

committed access bandwidth on each server rather than

the aggregation and core level. By leveraging the soft-

ware virtual switch at each server, the cost of implemen-

tation can be reduced and the scale of rate control is lim-

ited to the number of VMs on each server. Our design as-

72 2017 USENIX Annual Technical Conference USENIX Association

sumes the datacenter fabric to be a non-blocking switch

[10, 11, 7], and our main focus is to schedule the traffic

at the virtual ports connected to VMs.

3.2 Guarantee Fulfillment
Our work aims at enforcing the bandwidth at the VM-

level, and providing pricing schemes for bandwidth guar-

antee. This requires an abstraction that not only provides

a performance metric for bandwidth sharing under band-

width over commitment, but also serves as a quota for

charging. To this end, we propose the concept of guar-
antee fulfillment to express tenants’ bandwidth perfor-

mance. The fulfillment is defined as the ratio of VM x’s

rate rx to its promised bandwidth guarantee Bx:

Fx =
rx

Bx
. (3)

As the fulfillment takes a bandwidth guarantee as a base-

line, it is complementary to existing network model for

expressing tenants’ bandwidth requirements. For exam-

ple, Bx can be the VM bandwidth in a Virtual Cluster [10]

model. We define the bandwidth guarantee for each VM

since it can be better adapted to current per-VM based

charging in cloud. Note that the abstraction can also be

extended to the VM-to-VM bandwidth in a Tenant Appli-

cation Graph model, if we setup a virtual queue for each

VM-to-VM pair at both source and destination servers.

Fulfillment for scheduling. The performance guaran-

tee for the tenants relies on maintaining fairness among

VMs’ fulfillments. When bandwidth is sufficient, the

fairness of fulfillments means that for any VM x,y, Fx =
Fy > 1, and the VMs have minimum bandwidth guaran-

tee since rx >Bx. If the bandwidth is over committed, the

VMs may have Fx < 1 when the total traffic demand ex-

ceeds the physical bandwidth. By maintaining the same

fulfillment, network proportionality can be achieved, i.e.,

rx : ry = Bx : By for any VM x,y. Thus the worst case per-

formance under δ over commitment will be no less than

Bx/δ and By/δ .

Fulfillment for pricing. As a charging quota for

providers, the fulfillment indicates how much of the paid

bandwidth is actually obtained by a tenant. The band-

width is charged according to the fulfillment of VMs

measured on a billing cycle (e.g., per second), where a

discount is applied based on the actual usage. The billing

cycle is similar to the minimum period for charging in

current clouds, e.g., GCE use per-minute billing for VM

instances. To price the bandwidth under over commit-

ment, two tasks should be done: First, a model to esti-

mate the failure of guarantee as a service commitment

for the failure rate in the SLA (similar to the monthly

uptime percentage in EC2 SLA [12]) (§2.2). Second, a

fulfillment-based pricing function that guarantees tenants

paying higher prices can achieve higher performance.

4 SoftBW Design

SoftBW enables pricing intra-DC bandwidth under over

commitment by scheduling packets to satisfy VMs’

bandwidth requirements and charging based on the ac-

tual bandwidth used by VMs. Specifically, our design

targets at the following goals:

• Price-performance consistency. Tenants paying

higher price should achieve proportionally higher

bandwidth performance. Tenants can not achieve

higher performance by lying about their bandwidth

requirements.

• Over commitment tolerance. The system should si-

multaneously provide minimum bandwidth guarantee

when physical bandwidth is sufficient, and guarantee

fairness when their minimum guarantees exceed the

physical bandwidth.

• Short flow friendly. The performance of short flows

with bandwidth guarantee should not be degraded

when the physical bandwidth is occupied by other

traffic.

4.1 Architectural Overview
SoftBW uses a Software-Defined Networking architec-

ture where each host server deploys a virtual switch that

can be controlled by centralized controllers. As Figure 4

shows, SoftBW leverages a centralized master to manage

the business in the control plane, and enforces bandwidth

allocation using distributed agents in the data plane. The

system consists of two functions: (i) pricing the band-

width based on the measured fulfillment from the traf-

fic monitor (§4.3), and (ii) enforcing the requirements

of bandwidth guarantee by using packet scheduling in

the virtual switch (§5). The two functions both have de-

coupled modules in SoftBW master and SoftBW agent

nodes.

SoftBW master maintains the requirements (band-

width paid by tenants) and fulfillments of VMs at a log-

ically centralized server. The information is used by

cloud providers to define their charging models. SoftBW

agent leverages the virtual SDN switch at each server to

schedule packets from per-VM queues by obtaining the

requirements from the controller. The scheduling algo-

rithm works in a round robin manner where the VMs

with less fulfillment can be preferentially scheduled. The

overhead of virtual SDN switch, which is determined by

the number of VMs on each server, does not increase as

we scale up the number of servers in datacenters.

SoftBW works as follows. When a VM is launched

and connects to a port of the virtual switch, the data plane

generates an asynchronous message to the control plane,

which notifies the connection of a node. SoftBW mas-

ter can capture the port connected to the VM, and sends

USENIX Association 2017 USENIX Annual Technical Conference 73

...

Control Plane

Host Server

…...

Traffic
Monitor

VM VM

Servers

Pricing on
Fulfillment

Packet
Scheduling

vSwitch

Data Plane

Fulfillment
Estimation

Enforcing
Requirements

SoftBW Master

VMVM

Centralized
Controller

SoftBW Agent

Figure 4: System overview: the data plane schedules packets

to satisfy the VMs’ bandwidth requirements, and the control

plane manages pricing using measured fulfillments.

out the corresponding bandwidth guarantee to the agent.

Afterwards, the agent creates a queue for this VM and

adds a flow table entry to match and enqueue the packets

of the VM. In the lifetime of the VM, the traffic mon-

itor in agent monitors the rates of VMs, and feeds the

rates back periodically to compute the price and update

the guarantee values of VMs which require the dynamic

bandwidth guarantee. Note that the fulfillment for pric-

ing, which is measured at a billing cycle, is isolated from

the fulfillment for scheduling at the packet level.

4.2 Performance Metrics
SoftBW allows the provider to take advantage of low

network utilization in datacenters to oversell the physi-

cal network bandwidth. One important note is that dif-

ferent applications need different kinds of guarantees.

For example, delay-tolerant applications like background

backup, whose completion times are only related to the

total throughput during the period of backup. There-

fore, a cloud provider does not need to provide a strict

rate guarantee for the entire duration of the backup job.

Instead, the bandwidth can be allocated to other VMs

which are running real-time jobs, and then compensate

the backup jobs when more bandwidth is available. As

a result, applications which require strict rate guarantee

and applications which require deadline guarantee can

both be satisfied.

Differentiated performance metrics. We now pro-

pose three different network performances, which allow

the bandwidth guarantee can be dynamically allocated,

thus to reduce the risk of guarantee failure as well as

increase the network utilization under over commitment

situation.

• Strict guarantee provides the real-time minimum

bandwidth guarantee for a VM, which is denoted by a

dedicated rate B.

• Dynamic guarantee ensures the total deliverable traf-

fic of a VM during a specific time period (e.g., time

to deadline). The dynamic guarantee is denoted by a

tuple (S,T), where S is the total traffic size and T is

the desired transmission time.

• Fairness guarantee offers fair VM-level fairness for

sharing the residual bandwidth, which is left by VMs

with strict or dynamic guarantees, among all VMs.

Note that dynamic guarantee can be satisfied by an

average rate of b′ = S/T Mbps. However, instead of

guaranteeing this average rate for the whole duration T ,

we vary the bandwidth guarantee according to the traffic

loads in datacenters. We first assign an initial minimum

guarantee S/T for the VM. After a period of t0 seconds,

there might be s′ Mb remaining data on that VM, which

should be transmitted in t ′ = T−t0 seconds. Then we

update the guarantee b′ as s′/t ′ Mbps (which is called

the expected guarantee), and periodically repeat this up-

date. As a result, the guarantee is dynamically adjusted

according to the available bandwidth. If there is residual

bandwidth on the server, the VM can utilize it and re-

duce the guarantee in the next update. As a result, the

total bandwidth guarantee on a server is reduced, and

the probability of guarantee failure also decreases. If the

bandwidth is not guaranteed for some periods, the VM

can increase the guarantee and still finish the transmis-

sion within the expected time.

However, if a VM with dynamic guarantee does not

send traffic at the beginning of transmission, the time to

finish transmission t ′ decreases and the traffic size s′ re-

mains the same. For this case, the expected guarantee

b′ = s′/t ′ will increase and even exceed the initial guar-

antee. Hence, we need to maintain the dynamic guar-

antee under the initial guarantee S/T , and only provide

fairness guarantee after T .

4.3 Pricing Model
Usage-based charging. With bandwidth over commit-

ment, the throughput of VMs may not achieve the guar-

anteed bandwidth (i.e., guarantee failure). To address

this, SoftBW charges bandwidth according to the actual

bandwidth usage. Suppose the unit price of strict band-

width guarantee Bi is Ps. The VM with Bi bandwidth

guarantee is charged Ps ·Bi ·Ft at billing period t, where

Ft is the fulfillment measured at period t. Traffic that

exceeds Bi will be charged the same as the pricing of

fairness guarantee (Pf), since it only gets a fair sharing.

For example, in a billing cycle, if the throughput of a

VM with 100 Mbps strict guarantee is 150 Mbps, the

price will be 100Ps + 50Pf . For dynamic guarantee, the

unit price of bandwidth guarantee Pd relies on the aver-

age bandwidth guarantee B j = S/T . The cost at period

t is Pd · B j · Ft . As dynamic guarantee may reduce the

74 2017 USENIX Annual Technical Conference USENIX Association

Guarantee Performance Price
Strict Bandwidth B rt · (1+B/C)P0

Dynamic Data size S, time T rt · (1+S/TC)βP0

Fairness VM-level fairness rt · rt/C ·βP0

Best effort No bandwidth guarantee Free

Table 2: The price for bandwidth guarantee at a billing cycle:

rt is the measured rate of a VM.

failure rate in bandwidth guarantee under low network

utilization situation, we set Pd = βPs (β < 1) to encour-

age tenants to use dynamic guarantee for massive delay-

tolerant data transmission.

Performance-price consistency. However, for usage-

based pricing, the tenants can declare higher bandwidth

than their requirements to achieve higher performance

under the same price, since the transmission time of the

same size of data is proportionally reduced. For exam-

ple, when transmitting 1 Gb data, using 100 Mbps band-

width will cost 10 seconds, while using 200 Mbps band-

width only costs 5 seconds. Both situations cost 1000P,

where P denotes the price of using 1 Mbps for 1 sec-

onds. Hence, to keep performance-price consistency, the

unit price of higher bandwidth guarantee should also be

higher.

We use a non-decreasing pricing function for band-

width guarantee, where Ps = P0(1 + B/C), Pd = (1 +
S/TC)βP0 (C represents the physical bandwidth, and P0

is a constant price). Fairness guarantee has the lowest

unit price Pf = rt/C ·βP0, which is always less than Pd .

This way, tenants using strict guarantee will buy the low-

est possible bandwidth according their requirements, and

avoid unnecessary data transmission. For tenants using

dynamic guarantee, the bandwidth guarantee becomes

zero when finishing transmission of the declared data S.

Thus, under-declaring the data size will not benefit the

performance. In fact, they will transmit data as fast as

possible, because their transmission costs will be cheaper

if exceeding the expected bandwidth B j. This also ben-

efits the provider: the idle bandwidth is utilized and the

dynamic guarantee decreases, thus more bandwidth can

be used for other guaranteed traffic.

5 Fulfillment-based Scheduling

SoftBW applies a packet level scheduling in the agent to

share bandwidth under over commitment based on the

fulfillment abstraction in §3. SoftBW agent leverages

the generalized processor sharing model [13] to serve

the queue in a weighted round robin manner [14]. Thus,

each queue gets a share of the bandwidth, and the fair-

ness among VMs can be obtained even when bandwidth

is constrained. For bandwidth guarantee, instead of us-

ing periodical rate measurement, the agent measures the

transmission time of each packet, and only estimates

whether the bandwidth guarantee of the VM is satisfied.

Our scheduling, the estimation of fulfillment and the

scheduling of packets. In a round robin scheduling, the

key task is to decide whether the packets at the head of

queues should be transmitted at each round. We set up

a timer to record the time-to-send (tts) for the packet at

the head of the queue, which indicates the expected time

point to transmit this packet if we want to meet the band-

width guarantee. Then the scheduler decides whether the

packet should be transmitted by comparing tts against

the current time. Since the fulfillment of a queue de-

creases when it is waiting to be scheduled, the goal of

fulfillment estimation is to update the time-to-send for

the queues after each transmission.

5.1 Estimation of Fulfillment

For a queue, each time a packet (pn) is transmitted, we

calculate the inter-departure time between this packet

and the last transmitted packet (pn−1), denoted as τ . Let

psize denote the size of the packet (pn). If the bandwidth

guarantee for this queue is B, then the fulfillment can be

expressed as F = psize/τ
B . Thus, for a VM whose band-

width guarantee is not satisfied (F < 1), we can derive

the following equation

Δτ = τ− psize

B
> 0, (4)

where Δτ is the difference between the inter-departure

time and the expected time of transmitting a packet with

B. Since this difference in transmitting time means that

the VM’s rate is either larger (Δτ < 0) or less (Δτ > 0)

than the guaranteed bandwidth, the inter-departure time

should be accumulated in every update, so as to reduce

the rate that is above the guaranteed bandwidth, as well

as increasing the rate that is under the guaranteed band-

width. Thus, Δτ ← Δτ + Δτ. We maintain Δτ in the

interval [−τmax,τmax] so that Δτ will not infinitely de-

crease when bandwidth exceeds the guarantee, nor in-

crease when bandwidth can not satisfy the guarantee.

Each time when Δτ of a queue is re-calculated, we

update the tts for this queue:

• If Δτ ≥ 0, the bandwidth guarantee of the VM is not

satisfied. Thus, we set tts to 0, to allow the scheduler

to dequeue a packet from the queue.

• If Δτ < 0, the rate of the VM exceeds B. Then, the

variable tts of the VMs is set to psize/B ahead of cur-

rent time:

tts = tcurrent +
psize

B
, (5)

which notifies the scheduler if a packet is transmitted

before this time tts, the VM will exceeds the band-

width guarantee (B).

USENIX Association 2017 USENIX Annual Technical Conference 75

• If Δτ of a queue changes from positive to negative, it

implies that the sending rate of the corresponding VM

just exceeds its bandwidth guarantee, then we set

tts = tcurrent +
psize

B
−Δτ. (6)

Δτ is a compensation for the rate, since the VM’s rate

in previous round is less than the bandwidth guaran-

tee.

5.2 Scheduling of Packets
Before scheduling a packet, the scheduler first compares

the current time tcurrent against the tts of a queue. There

are three conditions to consider:

• If tts = 0, then the rate of the VM is below the

bandwidth guarantee and the scheduler dequeues the

packet at the head of the queue.

• If 0 < tts ≤ tcurrent , the scheduler has just missed the

expected transmission time. If the packet is transmit-

ted at the current time, the VM’s rate will not exceed

the guaranteed bandwidth. Hence, the scheduler can

transmit a packet from this queue.

• If tts > tcurrent , then the VM will exceed the band-

width guarantee after we send a packet. For this case,

the scheduler will check the status of the physical

bandwidth and only sends a packet if there is any

residual bandwidth on this server.

Work-conserving. Similar to queues of VMs, the sta-

tus of the physical bandwidth is maintained by calculat-

ing the difference (Δτc) between the inter-departure time

and the expected time of transmitting a packet with the

maximal physical rate, after transmitting a packet from

any queue. When Δτc > 0, which indicates the physical

bandwidth is not fully utilized, scheduler can still trans-

mit packets from queues that have exceeded the band-

width guarantee. This way, the residual bandwidth of the

host server can be allocated if there is unsatisfied traffic

demand, thus the bandwidth sharing is work-conserving.

Performance guarantee. The round robin scheduler

can preferentially transmit the packets from VMs whose

bandwidth guarantee is not satisfied. As a result, the rates

of these VMs can quickly increase even when the phys-

ical bandwidth are taken by other traffic. For example,

when a VM with a bandwidth guarantee starts to send

traffic on a fully utilized access link, the newly arrived

packets can be transmitted at each round as the VM’s

fulfillment is less than 1 and tts is 0. Note that this also

benefits the performance of the short flows, since they

can transmit packets without waiting for other VMs to

decrease their rates. For fairness guarantee, we need to

set a small bandwidth guarantee for the queues, so that

their traffic will not be blocked when the bandwidth is

fully utilized by guaranteed traffic.

6 Evaluation

In this section, we evaluate the performance of SoftBW

from the following aspects:

• Performance guarantee: We validate that SoftBW can

achieve stable bandwidth guarantee and at the same

time, maintain fairness among VMs even when band-

width is over committed.

• Fast allocation: We validate that SoftBW has the

property of small convergence time (∼ 10 ms) in the

presence of highly bursty traffic, and 2.8× ∼ 4.5×
improvement on the completion time for short flows

as compared with the rate-limit approach.

• Overhead: We analyze the overhead of SoftBW and

find that SoftBW adds less than 1.9 μs transmission

delay to the TCP’s RTT, and maintains less than 5.1%

CPU overhead under 10 Gbps transmission.

• Over commitment: We examine the impact of band-

width over commitment on resources sharing and

show that the provider can possibly increase average

3.9× network utilization while maintaining the aver-

age failure rate within 5% in our simulation.

6.1 Evaluation Setup
We first perform testbed experiments to evaluate

SoftBW’s performance on bandwidth guarantee (§6.2)

and the overhead of scheduling (§6.3). We then use sim-

ulation to study the impact of over commitment on large

scale (§6.4).

Testbed. The testbed consists of 14 servers. Each

server has an Intel Xeon E5-2670 2.6 Ghz CPU (8 phys-

ical cores with hyper-threading) and an Intel 82580 Gi-

gabit NIC connected to a 1 GbE switch port. The servers

run Linux 2.6.32 kernel, among which one acts as the

controller with OpenDaylight and the others host servers

with KVM and Open vSwitch (OVS). Each VM has

a virtio NIC with vhost-net enabled, connecting to

a tap device attached to an OVS bridge. We compare

SoftBW with an existing rate-limit based bandwidth al-

location [5], represented as ES (ElasticSwitch).

Simulator. We simulate a 2,000-server datacenter

with full bisection bandwidth. Each server connects to

the switch with a 1 Gbps link. The strict guarantee and

the initial expected guarantee for dynamic guarantee are

both 250 Mbps. Thus without over commitment, each

server can deploy 4 VMs. As we focus on network-

intensive applications, the simulator only considers net-

work bandwidth, and allocates bandwidth at 1s interval.

Workload. In the simulation, we use two different

traffic loads: 1) For strict guarantee, the traffic demand of

a VM follows a exponential distribution around a mean

of 250ρ Mbps on each time slot. 2) For dynamic guar-

antee, the data size in a VM follows a exponential dis-

76 2017 USENIX Annual Technical Conference USENIX Association

Number of flows in Y
0 1 16 32

T
hr

ou
gh

pu
t (

M
bp

s)

0
200
400
600
800

1000 Best-effort SoftBW ES

Throughput of Y

Figure 5: Throughput of X with in-

creasing number of flows in Y . Both

VMs have 450 Mbps guarantees.

0 50 100 150 200 250
Time (ms)

0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
UDP

Figure 6: The convergence process of

X when Y sends a bursty UDP flow on

the same congested link.

Flow size and arrival interval
8KB,10ms 8KB,100ms 32KB,10ms32KB,100ms

A
ve

ra
ge

 F
C

T
 (

m
s)

0

10

20

30

40

50

60

SoftBW
Best-effort
ES

Figure 7: Guarantee for short flows:

SoftBW improves the average flow com-

pletion time (FCT).

tribution with a mean of 250ρ ·Tmax Mbits, and the start

time follows a Poisson process with Nd/Tmax arrival rate.

(Tmax: simulation time, Nd : #VMs with dynamic guaran-

tee.) The source and destination of traffic on each VM

are chosen uniformly at random. Thus the expected net-

work utilization without over commitment will be ρ .

Parameters. The evaluation chooses 1 second as the

time interval of updating the dynamic bandwidth guar-

antee. Note that it is a suitable setting when compared

with VM lifetime. As TCP flows can achieve at most

940 Mbps in our testbed, the maximum guarantee with-

out over commitment is set as 90% of 1 Gbps physical

bandwidth on each server.

6.2 Bandwidth Guarantee and Efficiency

Bandwidth guarantee. We co-locate two sender VMs

on one server: VM X connects to a receiver with one

TCP flow, and VM Y connects to N receivers, each with

one flow. Both VM X and Y have 450 Mbps strict band-

width guarantee. We vary N, the number of receivers of

Y , and show the throughput of VM X in Figure 5. The

left bar in each group represents the throughput without

guarantee, and X suffers unfairness when Y has more

flows. With SoftBW’s scheduling, X is guaranteed with

a rate of ∼ 450 Mbps when Y has multiple flows, and

utilizes the entire link when Y has no traffic. This ver-

ifies SoftBW’s work-conserving property and the abil-

ity of enforcing bandwidth guarantee under aggressive

bandwidth competitions.

Convergence process. We show SoftBW’s adaption

to sudden traffic changes by quantifying the convergence

process of long flows. When VM X (with 600 Mbps

guarantee) sends traffic with a long-lived flow to a re-

mote receiver and becomes stable, VM Y (with 300 Mbps

guarantee) starts to generate bursty UDP traffic to an-

other receiver with 800 Mbps sending rate. Figure 6

shows the throughput of X and Y measured at the re-

ceiving end. When the traffic in Y arrives, it consumes

the bandwidth in around 10 ms, which demonstrates

SoftBW’s fast convergence on re-allocating the utilized

bandwidth. Due to TCP’s rate control, we observe fluc-

tuations at around 10 ms timescale, however, the average

throughput measured by every 100 ms is stable , which is

sufficient for usage-based charging.

Short flows. Since short flows’ durations are too short

to fully utilize the guaranteed bandwidth, we quantify

SoftBW’s guarantee for short flows by examining the

completion time of these flows when competing with ex-

isting long flows. Figure 7 illustrates the scenario where

VM Y (450 Mbps bandwidth guarantee) is continuously

sending traffic, and VM X (450 Mbps bandwidth guar-

antee) generates short flows on the same congested link.

The short flows are of 8 KB/32 KB in size, and the flow

inter-arrival times are 10 ms/100 ms. Without schedul-

ing, the increase of flow rate relies on creating a conges-

tion on the link which notifies the existing flows to ad-

just their rates (best-effort), or rate-limits those flows to

decrease their sending rate (ES). These adjustment may

take a long time for a short flow to acquire the necessary

bandwidth resource. When enabling SoftBW, the pack-

ets from short flows can quickly obtain the bandwidth,

since X’s fulfillment is less than Y and so X’s packets

will be scheduled without delay at each round. As a re-

sult, the flows in X are guaranteed to have a higher aver-

age rate, thus the completion time is 2.8×∼4.5× shorter

than that of rate-limiting or best effort packet scheduling.

Over commitment. We set up an over committed sce-

nario where three VMs each with 450 Mbps strict guar-

antee are sharing a 1 Gbps link. In the worst case, when

all VMs are send traffic continuously, the total traffic de-

mand exceeds 1 Gbps and their bandwidth can not be

guaranteed. Figure 8 shows the rates of VMs when the

ratio of the number of flows in each VM is 1 : 1 : 2. Since

SoftBW uses per-VM queue, each VM obtains about

300 Mbps bandwidth, and the fairness among VMs is

guaranteed irrespective of the flows in VMs. However,

since the rate-limit based guarantee policy relies on lim-

iting the rate beyond the minimum guarantee, it can not

maintain fairness under this condition where the rate of

each VM is less than the bandwidth guarantee, thus VM

with more flows receives more bandwidth.

USENIX Association 2017 USENIX Annual Technical Conference 77

Best effort ES SoftBW

T
hr

ou
gh

pu
t (

M
bp

s)

0

100

200

300

400

500

600
VM1
VM2
VM3

Figure 8: SoftBW provides fairness

among VMs’ throughput under band-

width over commitment, where each VM

has 450 Mbps guarantee.

1 2 4 8 16
Number of VMs

0.2

0.4

0.6

0.8

1

R
T

T
 (

m
s) 50% 90%,SoftBW

50% 90%,Best-effort

Figure 9: SoftBW does not add latency

to RTT under 50% and 90% UDP traffic

loads as compared to best-effort manner.

0

5

10

C
P

U
 o

ve
rh

ea
d

(%
)

1 2 4 8 16
Number of VMs

1.0

1.5

2.0

P
ro

ce
ss

in
g

tim
e

(u
s)

10Gbps, us
1Gbps, us
10Gbps, %
1Gbps, %

Figure 10: SoftBW’s CPU overhead

and processing time of each packet

with different numbers of VMs on each

server.

100 200 300 400 500 600
0

20

40

60

80

Time (s)

U
til

iz
at

io
n

(%
)

6× OC 4× OC 1× OC

Figure 11: The network wide utiliza-

tion in 600 s simulation under 1×, 4×
and 6× OC.

0 1 2 3 4
Relative completion time

0

0.25

0.5

0.75

1
F

ra
ct

io
n

4X OC
6X OC

Failure rate: 1.55%

Failure rate: 21.8%

Deadline

Figure 12: The relative completion

time of data transmission using dynamic

guarantee under 4× and 6× OC.

0 10 20 30 40
Failure time (in seconds)

0

0.25

0.5

0.75

1

F
ra

ct
io

n

4X OC
6X OC

Failure rate: 59.5%

Failure rate: 8.3%

Figure 13: The failure time (in seconds)

of VMs using strict guarantee under 4×
and 6× OC.

6.3 Overhead Analysis

We evaluate SoftBW’s latency overhead in comparison

to the best effort manner without any scheduling. As we

focus on network intensive applications, the packets from

traffic generator have a size of MTU (1500 Bytes), which

can achieve 10 Gbps throughput with only one CPU core.

Hence, network is the only bottleneck in the experiments.

For TCP delay, we leave a 10% gap between the maxi-

mum workloads and the physical bandwidth to reduce

the impact of link congestion on RTT. The number of

VMs is capped by the vCPUs on each server, i.e., 16.

Latency. Figure 9 shows the RTTs between two VMs

on different servers, with 50% and 90% UDP traffic

loads. As the traffic load and the number of VMs in-

crease, we see no obvious increase of latency in RTT

(with traffic less than 1 Gbps). The fluctuation of RTT is

also small enough to maintain the stability of TCP flows.

We attribute this to the high efficiency of OVS’s software

tunneling supported by today’s powerful processors. At

the same time, SoftBW’s scheduling, which only adds

at most five steps of floating point computation for each

packet, will not be a bottleneck for packet transmission

as compared to the VM-to-VM latency (∼ 350 μs in the

same availability zone of EC2).

CPU overhead. Figure 10 shows the CPU over-

head and processing time of each packet with SoftBW.

We conduct traffic by sending data from VMs to their

host server, where the total throughput is rate limited un-

der 10 Gbps by TC. As expected, the CPU overhead in-

creases as we increase the total throughput and the num-

ber of VMs on each server. The maximum throughput

reaches ∼ 9 Gbps and the overhead with 16 VMs is only

5.1%. Considering that the access bandwidth in current

data center are often 10 Gbps, this overhead is accept-

able for providers. The processing time of each packet

in the scheduling is about 1.5 μs. Due to the contention

of CPU, the processing time increases as the number of

VMs increases. This latency in scheduling is much less

than TCP RTT, hence will not degrade the performance

of underlying TCP flows.

6.4 Bandwidth Over Commitment
When bandwidth is over committed, the guarantee fail-

ure happens under two conditions: First, for a VM with

strict guarantee, traffic demand is not satisfied when it is

less than the bandwidth guarantee. Second, for dynamic

guarantee, the traffic is not finished before the deadline.

The simulator runs 600 s with ρ = 15%, where we record

the rate and transmission time of each VM.

Network utilization. Figure 11 shows the network

wide utilization under different over commitment. The

average utilization without over commitment is about

9.5%. When bandwidth is 4× OC, there is a remarkable

improvement on the average utilization by 3.9×, from

9.5% to 37.4%. Using more aggressive OC (6×) can fur-

ther increase the network utilization, however, as we will

78 2017 USENIX Annual Technical Conference USENIX Association

show, also brings significant failures to the bandwidth or

deadline guarantee.

Guarantee failures. Figure 12 shows the relative

completion times (in percentile of guaranteed completion

time) of data transmission with dynamic guarantee. Fig-

ure 13 shows the failure time of VMs with strict guaran-

tee. With 4× OC, 98.4% VMs finish transmission before

their deadlines under dynamic guarantee. Only 1.6%

VMs fails, and the worst performance is 2.0× longer

than the deadline. For VMs with strict guarantee, only

8.4% of them experience guarantee failure. The total

failure duration of each VM is also very low, among

which the longest one is 10 s during 600 s simulation. As

a result, when the average network utilization is around

10%, it is feasible for providers to use 4× OC for band-

width guarantee at a large scale, because there is lit-

tle chance to encounter insufficient bandwidth, and the

worst performance with guarantee failure is also accept-

able. Thus the provider can consider to compensate the

tenants for the guarantee failures at a low cost. When

the over commitment increases to 6×, we can observe

obvious guarantee failure for both strict guarantee and

dynamic guarantee, whose failure rate are 59.5% and

21.8%, respectively. Hence, it is not suitable for this

traffic load. The simulation validates the feasibility of

bandwidth over commitment in multi-tenant clouds, and

provides a solution to estimate the proper over commit-

ment ratio by tracking the network utilization.

7 Related Work

Bandwidth allocation. The first piece of work focuses

on bandwidth reservation in datacenters [10, 15, 16, 4].

By proposing performance models and VM allocation

mechanisms, they allocate the VMs to servers which can

meet the performance requirements. Another policy is to

slice the physical bandwidth according to the traffic de-

mand of VMs using rate-control [7, 17, 18]. The two so-

lutions are complementary to each other, since the band-

width of VMs can be re-shaped after allocation.

Faircloud [7] presents the bandwidth requirements of

bandwidth allocation problem and develops traffic slic-

ing strategies for proportional sharing. NetShare [19]

achieves proportional bandwidth sharing among differ-

ent tenants by using weighted fair queues in switches.

SoftBW uses virtual switches in the hypervisor, hence,

the traffic with bandwidth guarantee will not be limited

by the number of hardware queues in the switches.

Seawall [20] leverages end-based rate limit to achieve

VM-level weighted max-min fairness. This policy can be

extended for bandwidth guarantee with a lower-bounded

rate-limit for VMs [5, 21]. ElasticSwitch [5] partitions

the bandwidth guarantees of VMs to VM-pairs, and

achieves minimum guarantee using a TCP-Cubic based

rate control for VM-to-VM traffic. EyeQ [11] measures

rate every 200 μs at the receivers, and uses this informa-

tion to enforces the rate of senders to achieve minimum

guarantee. eBA [22, 23] uses the feedback of link uti-

lization from switches to control the rate of senders. The

rate-limiting based solution assumes that the total band-

width guarantee is less than the physical bandwidth, and

is not suitable for the cloud providers to over commit

their bandwidth.

Bandwidth pricing. Usage-based pricing model is

widely used in current IaaS clouds [24]. Recent pro-

posals have studied the economical impact of cloud re-

source pricing on system design and providers’ revenue

[25, 26, 27]. We target at providing price-performance

consistency, and improving providers’ revenue is in-

cluded in our future work. [28] answers the ques-

tion of how users should bid for cloud spot instances,

which aims at saving costs for users. [29] discusses

dynamic pricing for inter-datacenter traffic, rather than

intra-datacenter network bandwidth. The solutions are

not suitable for our situation, since their pricing for band-

width does not involve over commitment on bandwidth

guarantee.

Scheduling/congestion control. SoftBW’s schedul-

ing framework is based on previous round robin schedul-

ing such as, CBQ [30], Fair queueing [13], and adds

mechanisms to enforce fairness of fulfillments. There

are also a number of works , which use scheduling

(e.g., [31, 32, 33]) or new congestion control (e.g.,

[34, 35, 36])) to improve the performance of flows and

reduce the latency in datacenters. Virtual congestion

control [37, 38] can help to deploy new congestion con-

trol in the hypervisors without changing VM network

stack. Our work is complementary to these works, which

focus on the performance at flow level, while we provide

bandwidth guarantee and pricing for VMs.

8 Conclusion

In this paper, we presented SoftBW, a solution that en-

ables pricing bandwidth for VMs in IaaS datacenters,

by providing efficient bandwidth/fairness guarantee with

bandwidth over commitment. SoftBW’s over commit-

ment on bandwidth is rational, since the failure rate of

bandwidth guarantee can be controlled to a low level

by conservatively choosing the over commitment ratio

based on the network utilization. SoftBW’s design is

easy to be implemented, since it uses software virtual

switches at each server to schedule VMs’ traffic and can

be centrally controlled. SoftBW applies a usage-based

charging, which is deployable for current charging model

in multi-tenant clouds, thus giving a feasible solution for

providers to realize quantified bandwidth performance

and pricing for cloud VM instances.

USENIX Association 2017 USENIX Annual Technical Conference 79

References

[1] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,

AND SNOEREN, A. C. Inside the social net-

work’s (datacenter) network. In ACM SIGCOMM
Computer Communication Review (2015), vol. 45,

ACM, pp. 123–137.

[2] BENSON, T., AKELLA, A., AND MALTZ, D. A.

Network traffic characteristics of data centers in the

wild. In ACM IMC (2010).

[3] KANDULA, S., SENGUPTA, S., GREENBERG, A.,

PATEL, P., AND CHAIKEN, R. The nature of data

center traffic: measurements & analysis. In ACM
IMC (2009).

[4] LEE, J., TURNER, Y., LEE, M., POPA, L.,

BANERJEE, S., KANG, J.-M., AND SHARMA, P.

Application-driven bandwidth guarantees in data-

centers. In ACM SIGCOMM (2014).

[5] POPA, L., YALAGANDULA, P., BANERJEE, S.,

MOGUL, J. C., TURNER, Y., AND SANTOS,

J. R. Elasticswitch: Practical work-conserving

bandwidth guarantees for cloud computing. In

ACM SIGCOMM (2013).

[6] GUO, J., LIU, F., ZENG, D., LUI, J. C., AND JIN,

H. A cooperative game based allocation for sharing

data center networks. In IEEE INFOCOM (2013).

[7] POPA, L., KUMAR, G., CHOWDHURY, M., KR-

ISHNAMURTHY, A., RATNASAMY, S., AND STO-

ICA, I. Faircloud: Sharing the network in cloud

computing. In ACM SIGCOMM (2012).

[8] GREENBERG, A., HAMILTON, J., JAIN, N., KAN-

DULA, S., KIM, C., LAHIRI, P., MALTZ, D., PA-

TEL, P., AND SENGUPTA, S. Vl2: a scalable and

flexible data center network. In ACM SIGCOMM
(2009).

[9] AL-FARES, M., LOUKISSAS, A., AND VAHDAT,

A. A scalable, commodity data center network ar-

chitecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication (New

York, NY, USA, 2008), SIGCOMM ’08, ACM,

pp. 63–74.

[10] BALLANI, H., COSTA, P., KARAGIANNIS, T.,

AND ROWSTRON, A. Towards predictable data-

center networks. In ACM SIGCOMM (2011).

[11] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES,

D., PRABHAKAR, B., KIM, C., AND GREEN-

BERG, A. Eyeq: practical network performance

isolation at the edge. In USENIX NSDI (2013).

[12] Amazon ec2 service level agreement.

http://aws.amazon.com/ec2/sla/.

[13] SHREEDHAR, M., AND VARGHESE, G. Effi-

cient fair queueing using deficit round robin. In

ACM SIGCOMM Computer Communication Re-
view (1995).

[14] SHREEDHAR, M., AND VARGHESE, G. Efficient

fair queueing using deficit round robin. SIGCOMM
Comput. Commun. Rev. 25, 4 (Oct. 1995), 231–242.

[15] GUO, C., LU, G., WANG, H., YANG, S., KONG,

C., SUN, P., WU, W., AND ZHANG, Y. Second-

net: A data center network virtualization architec-

ture with bandwidth guarantees. In ACM CoNEXT
(2010).

[16] XIE, D., DING, N., HU, Y., AND KOMPELLA, R.

The only constant is change: incorporating time-

varying network reservations in data centers. In

ACM SIGCOMM (2012).

[17] GUO, J., LIU, F., LUI, J. C. S., AND JIN, H.

Fair network bandwidth allocation in iaas datacen-

ters via a cooperative game approach. IEEE/ACM
Trans. Networking 24, 2 (Apr. 2016), 873–886.

[18] GUO, J., LIU, F., TANG, H., LIAN, Y., JIN, H.,

AND LUI, J. C. Falloc: Fair network bandwidth

allocation in iaas datacenters via a bargaining game

approach. In IEEE ICNP (2013).

[19] LAM, T., AND VARGHESE, G. Netshare: Vir-

tualizing bandwidth within the cloud. Tech. rep.,

UCSD, 2009.

[20] SHIEH, A., KANDULA, S., GREENBERG, A.,

KIM, C., AND SAHA, B. Sharing the data center

network. In USENIX NSDI (2011).

[21] RODRIGUES, H., SANTOS, J., TURNER, Y.,

SOARES, P., AND GUEDES, D. Gatekeeper: Sup-

porting bandwidth guarantees for multi-tenant dat-

acenter networks. In USENIX Workshop on I/O Vir-
tualization (2011).

[22] GUO, J., LIU, F., HUANG, X., LUI, J. C., HU,

M., GAO, Q., AND JIN, H. On efficient bandwidth

allocation for traffic variability in datacenters. In

IEEE INFOCOM (2014).

[23] LIU, F., GUO, J., HUANG, X., AND LUI, J. C. S.

eba: Efficient bandwidth guarantee under traffic

variability in datacenters. IEEE/ACM Trans. Netw.
25, 1 (Feb. 2017), 506–519.

80 2017 USENIX Annual Technical Conference USENIX Association

[24] ARMBRUST, M., FOX, A., GRIFFITH, R.,

JOSEPH, A. D., KATZ, R., KONWINSKI, A., LEE,

G., PATTERSON, D., RABKIN, A., STOICA, I.,

AND ZAHARIA, M. A view of cloud computing.

Commun. ACM 53, 4 (Apr. 2010), 50–58.

[25] NIU, D., FENG, C., AND LI, B. Pricing cloud

bandwidth reservations under demand uncertainty.

In ACM SIGMETRICS Performance Evaluation
Review (2012).

[26] WANG, H., JING, Q., CHEN, R., HE, B., QIAN,

Z., AND ZHOU, L. Distributed systems meet eco-

nomics: pricing in the cloud. In USENIX HotCloud
(2010).

[27] XU, H., AND LI, B. A study of pricing for cloud

resources. ACM SIGMETRICS Performance Eval-
uation Review (2013).

[28] ZHENG, L., JOE-WONG, C., TAN, C. W., CHI-

ANG, M., AND WANG, X. How to bid the cloud. In

Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication (New

York, NY, USA, 2015), SIGCOMM ’15, ACM,

pp. 71–84.

[29] JALAPARTI, V., BLIZNETS, I., KANDULA, S.,

LUCIER, B., AND MENACHE, I. Dynamic pricing

and traffic engineering for timely inter-datacenter

transfers. In Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference (New York,

NY, USA, 2016), SIGCOMM ’16, ACM, pp. 73–

86.

[30] FLOYD, S., AND JACOBSON, V. Link-sharing and

resource management models for packet networks.

IEEE/ACM TON (1995).

[31] AL-FARES, M., RADHAKRISHNAN, S., RAGHA-

VAN, B., HUANG, N., AND VAHDAT, A. Hedera:

Dynamic flow scheduling for data center networks.

In NSDI (2010).

[32] ALIZADEH, M., YANG, S., SHARIF, M., KATTI,

S., MCKEOWN, N., PRABHAKAR, B., AND

SHENKER, S. pfabric: Minimal near-optimal data-

center transport. ACM SIGCOMM (2013).

[33] CHOWDHURY, M., ZHONG, Y., AND STOICA, I.

Efficient coflow scheduling with varys. In Pro-
ceedings of the 2014 ACM Conference on SIG-
COMM (New York, NY, USA, 2014), SIGCOMM

’14, ACM, pp. 443–454.

[34] ALIZADEH, M., GREENBERG, A., MALTZ,

D. A., PADHYE, J., PATEL, P., PRABHAKAR, B.,

SENGUPTA, S., AND SRIDHARAN, M. Data cen-

ter tcp (dctcp). In Proceedings of the ACM SIG-
COMM 2010 Conference (New York, NY, USA,

2010), SIGCOMM ’10, ACM, pp. 63–74.

[35] JANG, K., SHERRY, J., BALLANI, H., AND MON-

CASTER, T. Silo: Predictable message latency in

the cloud. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Commu-
nication (New York, NY, USA, 2015), SIGCOMM

’15, ACM, pp. 435–448.

[36] NAGARAJ, K., BHARADIA, D., MAO, H., CHIN-

CHALI, S., ALIZADEH, M., AND KATTI, S. Num-

fabric: Fast and flexible bandwidth allocation in

datacenters. In Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference (New York,

NY, USA, 2016), SIGCOMM ’16, ACM, pp. 188–

201.

[37] CRONKITE-RATCLIFF, B., BERGMAN, A., VAR-

GAFTIK, S., RAVI, M., MCKEOWN, N., ABRA-

HAM, I., AND KESLASSY, I. Virtualized conges-

tion control. In Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference (New York,

NY, USA, 2016), SIGCOMM ’16, ACM, pp. 230–

243.

[38] HE, K., ROZNER, E., AGARWAL, K., GU, Y. J.,

FELTER, W., CARTER, J., AND AKELLA, A.

Ac/dc tcp: Virtual congestion control enforcement

for datacenter networks. In Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Con-
ference (New York, NY, USA, 2016), SIGCOMM

’16, ACM, pp. 244–257.

USENIX Association 2017 USENIX Annual Technical Conference 81

Unobtrusive Deferred Update Stabilization for Efficient Geo-Replication

Chathuri Gunawardhana1, Manuel Bravo1,2 and Luı́s Rodrigues1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 2Université Catholique de Louvain, Belgium

Abstract
In this paper, we propose a novel approach to manage

the throughput vs visibility latency tradeoff that emerges
when enforcing causal consistency in geo-replicated sys-
tems. Our approach consists in allowing full concurrency
when processing local updates and using a deferred local
serialisation procedure before shipping updates to remote
datacenters. This strategy allows to implement inexpen-
sive mechanisms to ensure system consistency require-
ments while avoiding intrusive effects on update oper-
ations, a major performance limitation of previous sys-
tems. We have implemented our approach as a variant
of Riak KV. Our evaluation shows that we outperform
sequencer-based approaches by almost an order of mag-
nitude in the maximum achievable throughput. Further-
more, unlike previous sequencer-free solutions, our ap-
proach reaches nearly optimal remote update visibility
latencies without limiting throughput.

1 Introduction

Geo-replication is a requirement for modern internet-
based services in order to improve user-perceived la-
tency. Unfortunately, due to the long network delays
among sites, synchronous replication is prohibitively
slow for most practical purposes. Therefore, many sys-
tems resort to weaker consistency semantics that permit
some form of asynchronous replication strategy.

Among the many consistency guarantees that allow for
asynchronous replication [15], causal consistency [9] has
been identified as the strongest consistency model that
an always-available system can implement [14, 37], be-
coming of practical relevance in geo-replicated settings.
In fact, causal consistency is key in many geo-replicated
storage systems offering from weak [38, 35, 12, 44] to
strong consistency guarantees [41, 34, 17].

Unfortunately, implementing causal consistency is
costly due to the computation, communication, and stor-
age overhead caused by metadata management [19, 27,

16]. A common solution to reduce this cost consists
in compressing metadata by serializing sources of con-
currency, which unavoidably creates false dependencies
among concurrent events, increasing visibility latencies
(time interval between the instant in which an update is
installed in its origin datacenter and when it becomes vis-
ible in remote datacenters).

To safely compress metadata, designers of causally
consistent systems rely either on: (i) centralized se-
quencers (commonly one per datacenter) [44, 12]; or (ii)
global stabilization procedures [24, 10] (executed across
datacenters). The former has the advantage of mak-
ing trivial—and therefore inexpensive—the dependency
checking procedures at the cost of severely limiting con-
currency, as sequencers operate in the critical path of
clients. On the contrary, the latter avoids centralized syn-
chronization points at the cost of periodically running a
global stabilization procedure in the background. The
cost of this procedure has pushed some systems to over-
compress metadata to avoid impairing throughput, with
a significant penalty on the visibility latencies [24].

In this paper, we propose, implement, and evaluate a
novel approach to address the metadata size versus vis-
ibility latency tradeoff. Our approach has some simi-
larities with systems that rely on global stabilization but
also significant differences. As with [24, 10], we let lo-
cal updates proceed without any a priori synchronization.
However, unlike previous systems, we totally order all
updates, in a manner consistent with causality, before
shipping them to remote datacenters. As a result, expen-
sive global stabilization is avoided, as it is trivial for a
datacenter to check whether all updates subsumed in the
timestamps piggybacked by remote updates have been
locally applied (similarly to sequencer-based solutions).

We have implemented our approach as a variant of the
open source version of Riak [6]. We have augmented
Riak with Eunomia1, a service that totally orders all lo-

1Greek goddess of law, her name can be translated as ”good order”.

USENIX Association 2017 USENIX Annual Technical Conference 83

cal updates, before shipping them. Our results show that
Riak+Eunomia outperforms sequencer-based systems by
almost an order of magnitude while serving significantly
better quality-of-service to clients compared with sys-
tems based on global stabilization procedures.

In summary, the contributions of this paper are: i)
The introduction of Eunomia, a new service for unobtru-
sively ordering updates (§3); ii) A fault tolerant version
of Eunomia (§3.3); iii) An experimental comparison of
the maximum load that traditional sequencers and Eu-
nomia can handle, and their potential bottlenecks (§7.1);
iv) The Integration of Eunomia into an always-available
geo-replicated data store (§4) and its performance com-
parison to state-of-the-art solutions (§7.2).

2 Motivation and Goals

We start by motivating our work with a simple experi-
ment, showing that: (i) the major throughput impairment
of sequencer-based solutions is the fact that they operate
in the critical path of clients; and (ii) global stabilization
procedures are expensive in practice, forcing designers
to favour either throughput or visibility latencies.

Figure 1 plots the throughput penalty and visibility
latency overhead introduced by state-of-the-art causally
consistent solutions. Results are normalized against an
eventually consistent system, which adds no overhead
due to consistency management. We vary from 1ms
to 100ms the interval between global stabilization com-
putations to better understand the cost and the conse-
quences of such mechanism. Our deployment consists of
3 datacenters. The round-trip-times across datacenters
are 80ms between datacenter 1 (dc1) and both dc2 and
dc3; and 160ms between dc2 and dc3. In the figure (left
plot), latencies refer to the (90th percentile) delays in-
curred by each system at dc2 for updates originating at
dc1. We compare the performance of 4 systems, namely
S-Seq, A-Seq, GentleRain and Cure. For each solution,
we deploy as many clients as possible (not necessarily
the same amount for each experiment) without saturat-
ing the system.

S-Seq is a system that relies on a sequencer per data-
center to compress metadata; it uses a vector with an en-
try per datacenter to track causality, as in [12, 44]. A-
Seq is an asynchronous (bogus) variant of S-Seq, that
contacts the sequencer in parallel with applying the up-
date. A-Seq does the same total amount of work as S-
Seq and, although it fails to capture causality, it serves
to reason about the potential benefits of removing se-
quencers from client’s critical operational path. Gen-
tleRain [24] and Cure [10] are well known solutions that
rely on global stabilization. The former favours through-
put, over-compressing metadata into a single scalar; the
latter favours visibility latencies, compressing metadata

 0

 30

 60

 90

 120

 150

0 10 20 50 100

V
is

ib
ili

ty
 l
a

te
n

c
ie

s
 (

m
s
)

GentleRain Cure

-50

-40

-30

-20

-10

 0

0 10 20 50 100

T
h

p
u

t
(%

)

Clock computation interval (ms)

S-Seq A-Seq

Figure 1: Update visibility latency vs throughput tradeoff.

into a vector with an entry per datacenter.
The results confirm that the costs inherent to global

stabilization force designers to choose between optimiz-
ing throughput and visibility latencies. As Figure 1
shows, Cure offers lower visibility latencies than Gen-
tleRain (as causality is more precisely tracked) at the
cost of penalizing throughput. GentleRain does the op-
posite tradeoff favouring throughput. Cure can tune this
tradeoff by choosing longer intervals among global sta-
bilization occurrences. Nevertheless, even with long in-
tervals (100ms), Cure still significantly degrades system
throughput by 11.6%. Interestingly, results also show
that by removing the sequencer from client’s critical op-
erational path, sequencer-based approaches could poten-
tially pick a better spot in the tradeoff space, by pro-
viding throughput and visibility latencies comparable to
GentleRain and Cure respectively, with almost no perfor-
mance overhead when compared to the baseline. Note
that in the above experiment, sequencers are not satu-
rated; therefore, the throughout penalty (14.8%) is ex-
clusively caused by the synchronous communication be-
tween the sequencer and the partitions at every client up-
date operation. Later, in §7.1, we experimentally mea-
sure the maximum load that sequencers can handle be-
fore getting saturated.

From these results, it is possible to get the following
insight: in order to alleviate the tension between through-
put and visibility latencies, one has to (i) avoid global
stabilization, and (ii) rely on an abstraction similar to se-
quencers that allows for trivial—therefore inexpensive—
dependency checking procedures, while removing its op-
eration from the client’s critical path. Our goal was then
to design Eunomia, a system with such characteristics.

3 Eunomia: Unobtrusive Ordering

In this section, we present the design and rationale
underlying Eunomia, a new service conceived to re-
place sequencers as building blocks in weakly consistent
geo-replicated storage systems. Unlike traditional se-
quencers, Eunomia lets local client operations to execute
without synchronous coordination, an essential charac-
teristic to avoid limiting concurrency and increasing op-
eration latencies. Then, in the background, Eunomia es-
tablishes a serialization of all updates occurring in the lo-
cal datacenter in an order consistent with causality, based

84 2017 USENIX Annual Technical Conference USENIX Association

N Number of partitions
Clockc Client c clock

pn Partition n
Clockn Current physical time at pn

Ops Set of unstable operations at Eunomia
PartitionTime Vector with an entry per partition at Eunomia

u j.ts Timestamp assigned to update u j

Table 1: Notation used in the protocol description.

Algorithm 1 Operations at client c
1: function READ(Key)
2: send READ(Key) to RESPONSIBLE(Key)
3: receive 〈Value, Ts〉 from RESPONSIBLE(Key)
4: Clockc← MAX(Clockc, Ts)
5: return Value

6: function UPDATE(Key, Value)
7: send UPDATE(Key, Value, Clockc) to RESPONSIBLE(Key)
8: receive Ts from RESPONSIBLE(Key)
9: Clockc← Ts

10: return ok

on timestamps generated locally by the individual servers
that compose the datacenter. We refer to this process as
site stabilization procedure. Thus, Eunomia is capable
of abstracting the internal complexity of a multi-server
datacenter without limiting the concurrency. Eunomia
can be used to improve any existing sequencer-based so-
lution to enforce causal consistency across geo-locations
[38, 44, 12], as shown in §4.

3.1 Eunomia Into Play
In order to convey how Eunomia works, we start by pre-
senting the protocol used to support the interaction be-
tween Eunomia and the machines that constitute a data-
center. In the exposition, we assume that the object-
space is divided into N partitions distributed among data-
center machines. Updates to objects belonging to the
same partition are serialized by the native update pro-
tocol. To simplify the presentation, our pseudocode as-
sumes FIFO links among partitions and Eunomia. Later,
in §3.3, we eliminate this assumption, making its imple-
mentation explicit. Table 1 provides a summary of the
notation used in the protocols.

Eunomia assumes that each individual partition can
assign a timestamp to each update without engaging in
synchronous coordination with other partitions, or with
Eunomia. We will explain below how this can be easily
achieved. These timestamps must satisfy two properties.
Property 1. If an update u j causally depends on a sec-
ond update ui, then the timestamp assigned to u j (u j.ts)
is strictly greater than ui.ts.
Property 2. For two updates ui and u j received by Eu-
nomia from partition pn, if ui is received before u j then
u j.ts is strictly greater than ui.ts.

These two properties imply that updates are causally
ordered across all partitions and that once Eunomia re-

Algorithm 2 Operations at partition pn

1: function READ(Key)
2: 〈Value, Ts〉 ← KV GET(Key)
3: return 〈Value, Ts〉

4: function UPDATE(Key, Value, Clockc)
5: MaxTsn← MAX(Clockn, Clockc +1, MaxTsn +1)
6: KV PUT(Key, 〈Value, MaxTsn〉)
7: u j ← 〈Key, Value, MaxTsn, pn〉
8: send ADD OP(u j) to Eunomia
9: return MaxTsn

10: function HEARTBEAT . Every ∆ time
11: if Clockn ≥MaxTsn +∆ then
12: send HEARTBEAT(pn, Clockn) to Eunomia

ceives an update coming from a partition pn, no update
with smaller timestamp will be ever received from pn. In
order to ensure these properties, clients play a fundamen-
tal role. A client c maintains a local variable, Clockc, that
stores the largest timestamp seen during its session. This
clock value captures the client’s causal dependencies and
it is included in every update request. As described be-
low, partitions compute update timestamps taking into
account the value of client clocks.

The protocol assumes that each partition pn is
equipped with a physical clock. Clocks are loosely syn-
chronized by a time synchronization protocol such as
NTP [5]. The correctness of the protocol does not depend
on the clock synchronization precision and can tolerate
clock drifts. However, as discussed later, large clock
drifts could have a negative impact on the protocol per-
formance (in particular, on how fast the datacenter can
ship updates to remote datacenters). To avoid this limi-
tation, our protocol uses hybrid clocks [30], which have
been shown to overcome some of the limitations of sim-
ply using physical time.

We now describe how events are handled by clients,
partitions and Eunomia (Algs. 1, 2, and 3 respectively).

Read. A client c sends a read request on item Key to
the responsible partition pn (Alg. 1, line 2). When pn
receives the request, it fetches the Value and the times-
tamp Ts that is locally stored for Key and returns both
to the client. Ts is the timestamp assigned by pn to the
update operation that generated the current version. Af-
ter receiving the pair 〈Value, Ts〉, the client computes the
maximum between Clockc and Ts (Alg. 1, line 4) to in-
clude the read operation in its causal history.

Update. A client c sends an update request operation
to the responsible partition pn of the object being up-
dated. Apart from the Key and Value, the request in-
cludes the client’s clock Clockc (Alg. 1, line 7). When
pn receives the request, it first computes the timestamp
of the new update (Alg. 2, line 5). This is computed by
taking the maximum between Clockn (physical time), the
maximum timestamp ever used by pn (MaxTsn) plus one
and Clockc (client’s clock) plus one. This ensures that

USENIX Association 2017 USENIX Annual Technical Conference 85

Algorithm 3 Operations at Eunomia
1: function ADD OP(u j)
2: Ops← Ops ∪ u j
3: 〈Key, Value, Ts, pn〉 ← u j
4: PartitionTime[pn]← Ts

5: function HEARTBEAT(pn, Ts)
6: PartitionTime[pn]← Ts

7: function PROCESS STABLE . Every θ time
8: StableTime← MIN(PartitionTime)
9: StableOps← FIND STABLE(Ops, StableTime)

10: PROCESS(StableOps)
11: Ops← Ops \ StableOps

the timestamp is greater than both Clockc and any other
update timestamped by pn. Then, pn stores the Value and
the recently computed timestamp in the local key-value
store and asynchronously sends the operation to the Eu-
nomia service. Finally, pn returns update’s timestamp to
the client who updates Clockc with it, since it is guaran-
teed to be greater than its current one.

Timestamp Stability. When Eunomia receives an op-
eration from a given partition, it adds it to the set of
non-stable operations Ops and updates the pn entry in the
PartitionTime vector with operation’s timestamp (Alg. 3,
lines 2–4). A timestamp Ts is stable at Eunomia when
one is sure that no update with lower timestamp will be
received from any partition (i.e., when Eunomia is aware
of all updates with timestamp Ts or smaller). Periodi-
cally, Eunomia computes the value of the maximum sta-
ble timestamp (StableTime), which is computed as the
minimum of the PartitionTime vector (Alg. 3, line 8).
Property 2 implies that no partition will ever timestamp
an update with an equal or smaller timestamp than Sta-
bleTime. Thus, Eunomia can confidently serialize all op-
erations tagged with a timestamp smaller than or equal
to StableTime (Alg. 3, line 9). Eunomia can serialize
them in timestamp order, which is consistent to causality
(Property 1), and then send them to other geo-locations
(Alg. 3, line 10). Note that non-causally related updates
coming from different partitions may have been times-
tamped with the same value. In this case, operations are
concurrent and Eunomia can process them in any order.

Heartbeats. If a partition pn does not receive an update
for a fixed period of time, it will send a heartbeat includ-
ing its current time to Eunomia (Alg. 2, lines 10–12).
Thus, even if a partition pn receives updates at a slower
pace than others, it will not slow down the processing of
other partitions updates at Eunomia. When Eunomia re-
ceives a heartbeat from pn, it simply updates its entry in
the PartitionTime vector (Alg. 3, line 6).

Hybrid Clocks. Our protocol combines logical and
physical time. Although Eunomia could simply use log-
ical clocks and still be correct, the rate at which clocks
from different partitions progress would depend on the
rate in which partitions receive update requests. This

may cause Eunomia to process local updates in a slower
pace and thus increase remote visibility latencies, as
the stable time is set to the smallest timestamp received
among all partitions. Differently, physical clocks natu-
rally progress at similar rates independently of the work-
load characterization. This fact—previously exploited
by [24, 10]—makes stabilization procedures resilient to
skewed load distribution. Unfortunately, physical clocks
do not progress exactly at the same rate, forcing proto-
cols to wait for clocks to catch up in some situations in
order to ensure correctness [23, 24, 10, 25]. The logi-
cal part of the hybrid clock makes the protocol resilient
to clock skew by avoiding artificial delays due to clock
synchronization uncertainties [30]. Briefly, if a partition
pn receives an update request with Clockc > Clockn, in-
stead of waiting until Clockn > Clockc to ensure correct-
ness, the logical part of the hybrid clock (MaxTsn) is
moved forward. Then, when a partition pn receives an
update from any client, if the physical part Clockn is still
behind the logical (MaxTsn), the update is tagged with
MaxTsn + 1 in order to ensure clock monotonicity and
thus guarantee Property 2. The interested reader can find
the correctness proof of the algorithm in [29].

3.2 Resilience to Stragglers

A straggler is a partition that, due to a transient lack of
network or processing resources, experiences delays in
contacting other system components. Naturally, strag-
glers do not affect only Eunomia, but affect any system
that attempts to provide the same guaranties. Here, we
discuss how Eunomia differs from other solutions when
coping with stragglers (later in §7.2.3, we report on ex-
periments with stragglers). We distinguish delays that
affect the communication between distinct datacenters
(inter-dc stragglers) and delays that affect the interac-
tion of components inside the same datacenter (intra-dc
stragglers). We expect the former to be more frequent
than the latter [11, 26].

Inter-dc stragglers have a similar impact on every sys-
tem, no matter it is sequencer-based or stabilization-
based (Eunomia, GentleRain [24], Cure [10]). The rea-
son is that inter-dc disturbances affect the transmission
of the data and, therefore, delays the visibility of updates
in a way that is orthogonal to the metadata scheme used.

Intra-dc stragglers are more interesting, because they
affect different approaches in different ways. In a
sequencer-based approach, the straggler experiences de-
lays when contacting the sequencer, which happens be-
fore the update takes place. Therefore, intra-dc strag-
glers affect local clients (because sequencer operation
is in client’s critical path) but have no effect on the re-
mote visibility of updates from healthy partitions. Con-
versely, in stabilization-based approaches, local clients

86 2017 USENIX Annual Technical Conference USENIX Association

are shielded from the instability (because stabilization is
performed in the background) but the remote visibility
of updates from healthy partitions of the straggler’s data-
center is affected (because only stable updates are prop-
agated/applied and the contribution of all partitions is re-
quired to achieve stability). Although there is a trade-
off, given that there is evidence that an increase in the
user-perceived latency may translate into concrete rev-
enue loss [40], we argue that stragglers may affect more
sequencer-based approaches.

3.3 Fault-Tolerance

In the description above, for simplicity, we have de-
scribed the Eunomia service as if implemented by a sin-
gle non-replicated server. Naturally, as any other service
in a datacenter, Eunomia must be made fault-tolerant.
In fact, if Eunomia fails, the site stabilization procedure
stops, and thus, local updates can no longer be propa-
gated to other geo-locations. In order to avoid such limi-
tation, we now propose a fault-tolerant version of Euno-
mia. Note that we disregard failures in datacenters, as the
problem of making data services fault-tolerant has been
widely studied and is orthogonal to our work.

In this new version, Eunomia is composed by a set of
Replicas. Algorithm 4 shows the behaviour of a replica
e f of the fault-tolerant Eunomia service. We assume
the initial set of Eunomia replicas is common knowl-
edge: every replica knows every other replica and ev-
ery partition knows the full set of replicas. Partitions
send operations and heartbeats (Alg. 2, lines 8 and 12
respectively) to the whole set of Eunomia replicas. The
correctness of the algorithm requires the communication
between partitions and Eunomia replicas to satisfy the
prefix-property [38]: an Eunomia replica r f that holds an
update u j originating at pn also holds any other update
ui originating at pn such that ui.ts < u j.ts. This prop-
erty can be ensured with inexpensive protocols that of-
fer only at-least-once delivery. Stronger properties, such
as inter-partition order or exactly-once delivery are not
required to enforce the prefix-property. Our implemen-
tation achieves the prefix-property by having each parti-
tion to keep track of the latest timestamp acknowledged
by each of the Eunomia replicas in a vector denoted as
Ackn. Thus, to each Eunomia replica e f , a partition pn
sends not only the lastest update but the set of updates
including all updates u j such that u j.ts >Ackn[f]. Upon
receiving a new batch of updates Batch (Alg. 4, lines 1–
5), e f process it—in timestamp order—filtering out those
updates already seen, and updating both Ops f and Parti-
tionTime f accordingly with the timestamps of the unseen
updates. After processing Batch, e f acknowledges pn
including the greatest timestamp observed from updates
originating at pn (PartitionTime f [pn]). This algorithm is

Algorithm 4 Operations at Eunomia replica e f

1: function NEW BATCH(Batch, pn)
2: for all u j ∈ Batch,PartitionTime f [pn]< u j.ts do
3: PartitionTime f [pn]← u j.ts
4: Ops f ← Ops f ∪ u j

5: send ACK(PartitionTime f [pn]) to pn

6: function PROCESS STABLE . Every θ time
7: if Leader f == e f then
8: StableTime← MIN(PartitionTime f)
9: StableOps← FIND STABLE(Ops f , StableTime)

10: PROCESS(StableOps)
11: Ops f ← Ops f \ StableOps
12: send STABLE(StableTime) to Replicas f \{e f }

13: function STABLE(StableTime)
14: StableOps← FIND STABLE(Ops f , StableTime)
15: Ops f ← Ops f \ StableOps
16: for all pn ∈ PartitionTime f do
17: PartitionTime f [pn]←MAX(PartitionTime f [pn],StableTime)

18: function NEW LEADER(eg)
19: Leader f ← eg

resilient to message lost and unordered delivery. Never-
theless, it adds redundancy, as replicas may receive the
same update multiple times. §5 proposes a set of opti-
mizations that aim to reduce this overhead.

In addition, to avoid unnecessary redundancy when
exchanging metadata among datacenters, a leader replica
is elected to propagate this information. The existence of
a unique leader is not required for the correctness of the
algorithm; it is simply a mechanism to save network re-
sources. Thus, any leader election protocol designed for
asynchronous systems (such as Ω [20]) can be plugged
into our implementation. A change in the leadership is
notified to a replica e f through the NEW LEADER func-
tion (Alg. 4, line 19). The notion of a leader is used to op-
timize the service’s operation as follows. When the PRO-
CESS STABLE event is triggered, only the leader replica
computes the new stable time and processes stable oper-
ations (Alg. 4, lines 7–10). Then, after operations have
been processed, the leader sends the recently computed
StableTime to the remaining replicas (Alg. 4, line 12).
When replica e f receives the new stable time, it removes
the operations already known to be stable from its pend-
ing set of operations, since it is certain that those opera-
tions have been already processed (Alg. 4, lines 14–15).

4 Supporting Geo-replication

In our previous protocol, we have shown how to un-
obtrusively timestamp local updates in a partial order
consistent with causality. In this section, we complete
the protocol with the necessary mechanisms to ensure
that remote updates—coming from other datacenters—
are made visible locally without violating causality.
Our solution resembles protocols implemented by other
causally consistent geo-replicated storage systems [12,

USENIX Association 2017 USENIX Annual Technical Conference 87

M Number of datacenters
VClockc Client c vector (M entries)

pm
n Partition n at datacenter m

rm Receiver at datacenter m
SiteTimem Applied updates vector at rm

Queuem Queues of pending updates at rm
u j.vts Update u j timestamp vector (M entries)

Table 2: Notation used in the geo-replicated protocol extension.

44]. We assume a total of M datacenters, each of them
replicating the full set of objects. Each datacenter uses
the Eunomia service and thus propagates local updates
in a total order consistent to causal consistency.

Apart from the Eunomia service, each datacenter is ex-
tended with a receiver. This component coordinates the
execution of remote updates. Thus, it receives remote up-
dates coming from remote Eunomia services (as a result
of PROCESS STABLE), and forwards them to the local
datacenter partitions when its causal dependencies are
satisfied. Standard replication techniques [43, 33, 13, 39]
can be employed to make receivers robust to failures, as
otherwise they represent a single point of failure.

In order to simplify the presentation, our pseudocode
assumes FIFO links between each Eunomia service and
the receivers. Nevertheless, this assumption can be easily
dropped if the Eunomia service includes on every mes-
sage send to a receiver, no only the latest update but all
previous updates that have not been acknowledge (by the
receiver) yet. This mechanism, which is similar to the
one described in §3.3, preserves the prefix-property, and
therefore tolerates message lost and unordered delivery.

We now explain how the metadata is enriched and the
changes we need to apply to our previous algorithms. Ta-
ble 2 summarizes the notation used in this section.

Updates are now tagged with a vector with an en-
try per datacenter, capturing inter-datacenter dependen-
cies. The client clock is consequently also extended to
a vector (VClockc). We could easily adapt our protocols
to use a single scalar, as in [24]. Nevertheless, vector
clocks make a more efficient tracking of causal depen-
dencies introducing no false dependencies across data-
centers, which reduces the update visibility latency, at
the cost of slightly increasing the storage and computa-
tion overhead. This overhead, unlike in [10], is negligible
in our protocol as Eunomia allows for trivial dependency
checking procedures. Note that the lower-bound update
visibility latency for a system relying on vector clocks
is the latency between the originator of the update and
the remote datacenter, while with a single scalar it is the
latency to the farthest datacenter.
Update. When a client c issues an update operation, it
piggybacks its VClockc summarizing both local and re-
mote dependencies. A partition pn computes u j vector
timestamp (u j.vts) as follows. First, the local entry of the
vector u j.vts[m] is computed as the maximum between
Clockn, MaxTsn +1 and VClockc[m]+1, similarly to Al-

Algorithm 5 Operations at rm

1: function NEW UPDATE(u j , k)
2: Queuem[k]← [Queuem[k]|u j] . add to tail

3: function CHECK PENDING . Every ρ time
4: 〈Queuem, SiteTimem〉 ← FLUSH(1, Queuem, SiteTimem)

5: function FLUSH(k, Queuem, SiteTimem)
6: if k > M then
7: return 〈Queuem, SiteTimem〉
8: else if k = m then
9: FLUSH(k+1, Queuem, SiteTimem)

10: else
11: u j ←HEAD(Queuem[k])
12: if ∀d ∈M \{m,k},SiteTimem[d]≥ u j.vts[d] then
13: pm

n ← RESPONSIBLE(u j.key)
14: send APPLY(u j) to pm

n
15: receive ok from pm

n
16: SiteTimem[k]← u j.vts[k]
17: POP(Queuem[k])
18: FLUSH(1, Queuem, SiteTimem)
19: else
20: FLUSH(k+1, Queuem, SiteTimem)

gorithm 2, line 5. This permits Eunomia to still be able
to causally order local updates based on u j.vts[m]. Sec-
ond, the remaining entries (remote datacenter entries) are
assigned to their sibling entries in VClockc. When the op-
eration is completed, pn returns u j.vts to the client who
can directly substitutes its VClockc since u j.vts is known
to be strictly greater than VClockc.

Read. Read operations execute as in Algorithms 1 and 2.
The only difference is that the returned timestamp is
a vector instead of a scalar. Thus, in order to update
VClockc, a client c applies the MAX operation per entry.

Update Propagation. The site stabilization procedure
proceeds as before, totally ordering local updates based
on the local entry of their vector timestamp (u.vts[m]).
Eunomia propagates local updates to remote datacenters
in u.vts[m] order. Each update piggybacks its u.vts.

Remote Update Visibility. Algorithm 5 details re-
ceivers’ operation. A receiver rm maintains two impor-
tant pieces of state: a queue of pending updates per re-
mote datacenter (Queuem[k]), and a vector with an en-
try per remote datacenter (SiteTimem) indicating the lat-
est update operation locally applied from each of the
remote datacenters. When rm receives a remote up-
date u j coming from datacenter k, it simply adds it to
its corresponding queue. Periodically, rm triggers the
CHECK PENDING function (Algorithm 5 lines 4 and 18).
This function ensures, by means of the tail recursive
FLUSH function, that no pending operation is left unexe-
cuted. Two conditions have to be satisfied before sending
an update u j to the local partitions: (i) all previously re-
ceived updates coming from k have already been applied
locally; and (ii) u j dependencies, which are subsumed
in u j.vts, are visible locally. Both conditions are triv-
ially checked by relying on the information subsumed
in Queuem and SiteTimem. When a pending operation

88 2017 USENIX Annual Technical Conference USENIX Association

u j originating at k is applied, both Queuem[k] and Site-
Timem[k] are updated consequently.

5 Optimizations

We propose a set of optimizations that aim at enabling
Eunomia to handle even heavier loads.

Communication Patterns. Eunomia constantly receives
operations and heartbeats from partitions. This is an
all-to-one communication schema and, if the number of
partitions is large, it may not scale in practice. In or-
der to overcome this problem and efficiently manage a
large number of partitions, two simple techniques have
been used: (i) build a propagation tree among partition
servers; and (ii) batch operations at partitions, and propa-
gate them to Eunomia only periodically. Both techniques
are able to reduce the number of messages received by
Eunomia per unit of time at the cost of a slight increase
in the stabilization time.

Separation of Data and Metadata. In the protocols de-
scribed before, partitions send updates (including the up-
date value) to the Eunomia service, which is responsible
for eventually propagating them to remote datacenters.
This can limit the maximum load that Eunomia can han-
dle and become a bottleneck due to the potentially large
amount of data that has to be handled. In order to over-
come this limitation, we decouple data from metadata.

In our prototype, for each update operation, partitions
generate a unique update identifier (u.id), composed of
the local entry of the update vector timestamp (u.vts[m])
and the object identifier (Key). We avoid sending the
value of the update to Eunomia. Instead, partitions only
send the unique identifier u.id together with the parti-
tion id (pm

n). Eunomia is then only responsible for han-
dling and propagating these lightweight identifiers, while
the partitions itself are responsible for propagating (with
no order delivery constraints) the update values together
with u.id to its sibling partitions in other datacenters. A
receiver rm proceeds as before, but a partition pm

n can
only install the remote operation once it has received
both the data and the metadata. This technique slightly
increases the computation overhead at partitions, but it
allows Eunomia to handle a significantly heavier load in-
dependently of update payloads.

6 Implementation

The Eunomia service is approximately 200 lines of C++
code2. We integrated it with a version of Riak KV [6],
a very popular [3] weakly consistent datastore used by

2Available at https://github.com/chathurilanchana/

C-Stabilizer/tree/master/src

many companies offering cloud-based services includ-
ing Uber [2], bet365 [2] and Rovio [7]. Its integration
consisted of 100 lines of Erlang code. We expect that in-
tegrating Eunomia into other popular NoSQL datastores
such as Cassandra [32] would require a comparable ef-
fort as these datastores are architecturally very similar.

Since Riak KV is implemented in Erlang, we first
attempted to build Eunomia using the Erlang/OTP
framework, but unfortunately we reached a bottleneck in
our early experiments. Note that for Eunomia to work,
we need to store a potentially large number of updates,
coming from all logical partitions composing a data-
center, and periodically traverse them in timestamp or-
der when a new stable time is computed. Inserting and
traversing this (ordered) set of updates was limiting the
maximum load that Eunomia could handle, as accessing
an item in a list using the built-in Erlang data type re-
quires linear time with the number of elements in the list.
The C++ version does not suffer from these limitations.

At its core, Eunomia is uses a red-black tree [28], a
self-balancing binary search tree optimized for insertions
and deletions, which guarantees logarithmic search, in-
sert and delete cost, and linear in-order traversal cost,
a critical operation for Eunomia. In our case, the red-
black tree turned out to be more efficient than other self-
balancing binary search trees such as AVL trees [8].

Furthermore, in order to fully explore the capaci-
ties of Eunomia, we have integrated Eunomia with a
causally consistent geo-replicated datastore implement-
ing the protocol presented in §3 and §4. Our proto-
type, namely EunomiaKV3, is built as a variant of Riak
KV [6], and includes the optimizations discussed in §5.
Since the open source version of Riak KV does not sup-
port replication across Riak KV clusters, we have also
augmented it with geo-replication support.

7 Evaluation

Our main goal with the evaluation is to show that Euno-
mia does not suffer from the limitations of the competing
approaches. Therefore, we compare Eunomia both with
approaches based on sequencers and based on global sta-
bilization. We recall that the main disadvantage of se-
quencers is to throttle throughput, because they operate
in the critical path of local clients. Therefore, we aim
at showing that Eunomia does not compromise the intra-
datacenter concurrency and can reach higher throughput
that sequencer-based approaches. Conversely, the ex-
pensiveness of the global stabilization approach forces
designers to favour either throughput or remote update
visibility latencies. Thus, we also aim at showing that

3Available at https://github.com/chathurilanchana/riak_
kv/tree/causal-dev-multidc-nostat-nostraggler

USENIX Association 2017 USENIX Annual Technical Conference 89

https://github.com/chathurilanchana/C-Stabilizer/tree/master/src
https://github.com/chathurilanchana/C-Stabilizer/tree/master/src
https://github.com/chathurilanchana/riak_kv/tree/causal-dev-multidc-nostat-nostraggler
https://github.com/chathurilanchana/riak_kv/tree/causal-dev-multidc-nostat-nostraggler

Eunomia optimizes both.

Experimental Setup. The experimental test-bed used is
a private cloud composed by a set of virtual machines
deployed over 20 physical machines (8 cores and 40 GB
of RAM) connected via a Gigabit switch. Each VM,
which runs Ubuntu 14.04, and is equipped with 2 (vir-
tual) cores, 10GB disk and 9GB of RAM memory; is al-
located in a different physical machine. Before running
each experiment, physical clocks are synchronized using
the NTP protocol [5] through a near NTP server.

Workload Generator. Each client VM runs its own in-
stance of a custom version of Basho Bench [1], a bench-
marking tool. For each experiment, we deploy as many
client instances as possible without overloading the sys-
tem. Latencies across datacenters are emulated using
netem [4], a Linux network emulator tool. The values
used in operations are a fixed binary of 100 bytes. Our
key-space is composed by 100k keys. The ratio of reads
and updates is varied depending on the experiment. Be-
fore running the experiments, we populate the database.
Each experiment runs for more than 6 minutes. In our
results, the first and the last minute of each experiment is
ignored to avoid experimental artifacts.

7.1 Eunomia Throughput

We report on a number of experiments that aim at:
(i) measuring the maximum load that our efficient im-
plementation of Eunomia can handle, varying the num-
ber of partitions connected to it; and (ii) assessing how
replication and failures affect Eunomia’s performance.

For comparison, these experiments also compute the
throughput upper-bound of a traditional sequencer. Our
implementation of a sequencer mimics traditional im-
plementations [44, 12]. In every update operation, data-
center partitions synchronously request a monotonically
increasing number to the sequencer before returning to
the client. We have also implemented a fault-tolerant
version of the sequencer based on chain replication [43]:
Replicas are organized in a chain. Partitions send re-
quests to the head of the chain. Requests traverse the
chain up to the tail. When the tail receives a request, it
replies back to the partition, which returns to the client.

In order to stretch as much as possible the implementa-
tion, circumventing potential bottlenecks in the system,
we directly connect clients to Eunomia, bypassing the
data store. Thus, each client acts as a partition in a multi-
server datacenter. This allowed us to emulate very large
datacenters, with much more servers than the ones that
were at our disposal for these experiments, and overload
Eunomia in a way that would be otherwise impossible
with our testbed.

Throughput Upper-Bound. We first compare the non

 0
 50

 100
 150

 200
 250
 300

 350
 400

T
h

ro
u
g
h
p
u

t
(K

o
p
s
/s

e
c
)

Eunomia 15
Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

Figure 2: Maximum throughput achieved by Eunomia and an
implementation of a sequencer. We vary the number of parti-
tions that propagate operations to Eunomia.

fault-tolerant version of the Eunomia against a non fault-
tolerant implementation of a sequencer. In these exper-
iments, partitions batch updates and only send them to
Eunomia after 1ms.

Figure 2 plots the maximum throughput achieved by
both services. As results show, Eunomia maximum
throughput is reached when having 60 partitions issuing
operations eagerly (with zero waiting time between op-
erations). We observe that Eunomia is able to handle
almost an order of magnitude more operations per sec-
ond than a sequencer (more precisely, 7.7 times more
operations, exceeding 370kops while the sequencer is
saturated at 48kops). Considering that according to our
experiments, a single machine in a Riak cluster is able
to handle approximately 3kops per second, results con-
firm that sequencers limit intra-datacenter concurrency
and can easily become a bottleneck for medium size clus-
ters (i.e, for clusters above 150 machines, the sequencer
would be the limiting factor of system performance),
even assuming a read dominant (9:1) workload, a com-
mon workload for internet-based services. Nevertheless,
under the same workload assumptions, more than a thou-
sand machines could be used before saturating Eunomia.

Another advantage of Eunomia in comparison to se-
quencers is that batching is not in client’s critical path.
Thus, Eunomia’s throughput can be further stretched by
increasing the batching time (while slightly increasing
the remote update visibility latency). Such stretching
cannot be easily achieved with sequencers, as any at-
tempt to batch requests at the sequencer blocks clients.

A final conclusion can be drawn from this experiment:
Eunomia maximum capacity does not significantly varies
with the number of partitions. Although we hit the max-
imum load with 60 partitions, we run an extra experi-
ment increasing the number to 75 to see if this nega-
tively impacts Eunomia’s performance and we observed
a very similar throughput. The reason is that the bottle-
neck of our Eunomia implementation is the propagation
to other geo-locations rather than the handling of oper-
ations. This confirms that the use of a red-black self-
balancing search tree was an appropriate design choice.

Fault-Tolerance Overhead. In the following experi-
ments we measure the overhead introduced by the fault-
tolerant version of Eunomia. Figure 3 compares the max-
imum throughput achievable by Eunomia when increas-

90 2017 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o

rm
a
liz

e
d
 t

h
ro

u
g
h
p

u
t

Eunomia Non-FT
Eunomia 1-FT
Eunomia 2-FT
Eunomia 3-FT

Sequencer Non-FT
Sequencer 3-FT

Figure 3: Maximum throughput achieved by a fault-tolerant
version of Eunomia and sequencers. Non-FT denotes non fault-
tolerant versions while 1-, 2-, and 3-FT denote fault-tolerant
versions with 1, 2, and 3 replicas

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700N
o
rm

a
liz

e
d
 t
h
ro

u
g

h
p
u
t

Time (seconds)

Non-FT
3-FT
2-FT
1-FT

Figure 4: Impact of failures in Eunomia.

ing the number of replicas up to three. For complete-
ness, the plot also includes the throughput for a non fault-
tolerant sequencer and its fault-tolerant version with a
chain of three replicas. We normalized the throughput
against the non fault-tolerant version of Eunomia. As
results show, the fault-tolerant version of Eunomia only
adds a small overhead (roughly 9% penalty) indepen-
dently on the number of replicas. We expect this over-
head to increase as the number of replicas increases, but
we consider three replicas to be a realistic number. On
the other hand, adding fault-tolerance to the sequencer
version adds a penalty of almost 33%, thus being more
expensive proportionally. The reason for this difference
is that Eunomia replicas do not need to coordinate as
their results are independent of relative order of inputs,
while sequencer replicas need to coordinate to avoid pro-
viding inconsistent sequence numbers.

Impact of Failures. Finally, we experiment injecting
failures into Eunomia. Figure 4 plots the results nor-
malized against the non fault-tolerant Eunomia (Non-FT
line). We compare Eunomia with one, two, and three
replicas. As the figure shows, at the beginning of the
experiment, all three versions produce similar through-
put (confirming Figure 3 results). After 160 seconds, we
crash one replica. As expected, the throughput of 1-FT
drops to zero since no more replicas are available. The
rest of the versions (2-FT and 3-FT), after a short pe-
riod of fluctuation, slightly increase their throughput up
to 95% of the Non-FT version throughput. Finally, after
210 more seconds (at 470), we crash a second replica.
Again, the 2-FT as expected drops its throughput to zero.
The 3-FT version, this time almost without fluctuations,
is capable of achieving the maximum throughput in few
seconds. These results demonstrate that failures have
negligible impact in Eunomia. Note that sometimes the
multi-replica version go beyond the Non-FT line because
the Non-FT line is drawn by computing the average.

7.2 Experiments with Geo-Replication

We now report on a set of experiments offering evidence
that a causally consistent geo-replicated datastore built
using Eunomia is capable of providing higher throughput
and better quality-of-service than previous solutions that
avoid the use of local sequencers.

For this purpose, we have implemented Gen-
tleRain [24] and a variation of it that uses vector clocks
instead of a single scalar to enforce causal consistency
across geo-locations. The latter resembles the causally
consistency protocol implemented by Cure [10]. Both
approaches are sequencer-free that rely on a global stabi-
lization procedure in order to apply operations in remote
locations consistently with causality. For this, sibling
partitions across datacenters have to periodically send
heartbeats, and each partition within a datacenter has to
periodically compute its local-datacenter stable time. In
our experiments, we set the time interval of this events
to 10ms and 5ms respectively unless otherwise specified.
These values are in consonance to the ones used by the
authors of these works. For a fair comparison, both ap-
proaches are implemented using the EunomiaKV’s code-
base and thus integrated with Riak KV.

In most of our experiments, we deploy 3 datacenters,
each of them composed of 8 logical partitions balanced
across 3 servers. The emulated round-trip-times across
datacenters are 80ms between dc1 and both dc2 and dc3,
and 160ms between dc2 and dc3. These latencies are ap-
proximately the round-trip-times between Virginia, Ore-
gon and Ireland regions of Amazon EC2.

7.2.1 Throughput

In the following experiments, we measure the through-
put provided by EunomiaKV, GentleRain, Cure, and an
eventually consistent multi-cluster version of Riak KV.
Note that the latter does not enforce causality, and thus
partitions install remote updates as soon as they are re-
ceived. Therefore, the comparison of EunomiaKV with
Riak KV allows to assess the overhead that enforcing
causal consistency adds when using our approach. As
discussed below, this overhead is very small.

We experiment with both uniform and power-law key
distributions, denoted with U and P respectively in Fig-
ure 5. For each of them, we vary the read:write ratio
(99:1, 90:10, 75:25 and 50:50). These ratios are rep-
resentative of real large internet-based services work-
loads. As shown by Figure 5, the throughput of all solu-
tions decreases as we increase the percentage of updates.
Nevertheless, EunomiaKV always provides a compa-
rable throughput to eventual consistency. Precisely,
on average, EunomiaKV only drops 4.7% of through-
put, being extremely close in read intensive workloads
(1% drop). Differently, GentleRain and Cure are al-

USENIX Association 2017 USENIX Annual Technical Conference 91

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50:50 U 75:25 U 90:10 U 99:1 U 50:50 P 75:25 P 90:10 P 99:1 P

T
h

ro
u
g
h
p

u
t
(o

p
s
/s

e
c
)

Eventual
EunomiaKV

GentleRain
Cure

Figure 5: Throughput comparison between EunomiaKV and
state-of-the-art sequencer-free solutions.

ways significantly below both eventual consistency (and
EunomiaKV). This is due to the cost of the global stabi-
lization procedure. Note that the throughput difference
between GentleRain and Cure is caused by the overhead
introduced by the metadata enrichment procedure of the
latter (as discussed in §4). Based on our experiments, it is
possible to conclude that the absolute number of updates
per unit of time is the factor that has the largest impact in
EunomiaKV (rather than key contention).

7.2.2 Remote Update Visibility

To compare the quality-of-service that can be provided
by EunomiaKV, GentleRain, and Cure, we measure re-
mote update visibility latencies. In EunomiaKV, we
measure the time interval between the data arrival and the
instant in which the update is executed at the responsible
partition. Note that, for an update to be applied, a data-
center needs to have access to the metadata (in our case,
provided by Eunomia) and check that all of its causal de-
pendencies have also been previously applied locally. In
our implementation, partitions ship updates immediately
to remote datacenters. Therefore, we have observed that
updates are always locally available to be applied by the
time metadata indicates that its causal dependencies are
already satisfied locally. Although other strategies could
be used to ship the payload of the updates, this has a cru-
cial advantage for the evaluation of Eunomia: under this
deployment the update visibility latency is exclusively
influenced by the performance of the metadata manage-
ment strategy, including the stabilization delay incurred
at the originating datacenter.

On the other hand, for GentleRain and Cure, we mea-
sure the time interval between the arrival of the remote
operation to the partition and when the global stabiliza-
tion procedure allows its visibility. Note that all values
presented in the figures already factor-out the network
latencies among datacenters (which are the same for all
protocols); thus numbers capture only the artificial arti-
facts inherent to the different approaches.

Figure 6 (left plot) shows the cumulative distribution
of the latency before updates originating at dc1 become
visible at dc2. We observe that EunomiaKV offers, by
far, the best remote update visibility latency. In fact, for
almost 95% of remote updates, EunomiaKV only adds
15ms extra delay. On the other hand, with GentleRain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Remote update visibility (milliseconds)

GentleRain Cure

 0 20 40 60 80 100 120

EunomiaKV

Figure 6: Left: from dc1 to dc2 (40ms trip-time). Right: from
dc2 to dc3 (80ms trip-time).

and Cure the extra delay goes up to 80ms and 45ms re-
spectively for the same amount of updates. Unsurpris-
ingly, GentleRain extra delay is larger than Cure’s be-
cause of the amount of false dependencies added when
aggregating causal dependencies into a single scalar. In
fact, GentleRain is not capable of making updates visible
without adding 40ms of extra delay. Again, the scalar is
the cause of this phenomenon since the minimum delay
will not depend on the originator of the update but on the
travel time to the furthest datacenter. This confirms the
rationale presented in the discussion of §4.

Although both Cure and EunomiaKV rely on vector
clocks for tracking causal dependencies, EunomiaKV is
able to offer better remote update latencies because par-
titions are less overloaded since checking dependencies
in EunomiaKV is trivial due to Eunomia. Note that in
EunomiaKV, even 20% of remote updates are made vis-
ible without any extra delay, and thus reaching the opti-
mal remote update visibility latency.

Finally, in order to isolate the impact of GentleRain’s
global stabilization procedure independently of the meta-
data size, we measure the remote update visibility la-
tency at dc3 for updates originating at dc2. As one can
observe in Figure 6 (right plot), GentleRain exhibits bet-
ter remote update latencies than Cure but still worse than
EunomiaKV. In this setting, vector clocks does not help
reducing latencies. Thus, the gap between Cure and Gen-
tleRain is exclusively due to the storage and computa-
tional overhead caused by vector clocks. Furthermore,
the fact that EunomiaKV still provides better latencies
is, once again, an empirical evidence that global stabi-
lization procedures are expensive in practice.

7.2.3 Impact of Stragglers

Finally, we assess the impact of stragglers in
EunomiaKV and its competitors. Due to lack of
space, and given that they provide no significant insight,
we omit experimental results for inter-dc stragglers.

In these experiments, we use three datacenters (same
setup of previous experiments) that run under optimal
conditions during 1 minute. Then, during the second
minute, we introduce a straggler. This is a partition
of dc3 that communicates abnormally with its local se-
quencer or Eunomia service. In Eunomia, instead of
communicating every millisecond (as every other parti-

92 2017 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 0 30 60 90 120 150 180

C
lie

n
t-

o
b

s
e

rv
e

d
 l
a

te
n

c
y
 (

m
s
)

Runtime (seconds)

Sequencer-based Stabilization-based

 0

 50

 100

 150

 200

 0 30 60 90 120 150 180

R
e

m
o

te
 u

p
d

a
te

 v
is

ib
ili

ty
 (

m
s
)

Figure 7: Client-observed latency (measured as the averaged
latency observed by clients of the straggling datacenter dc3) vs.
remote update visibility latency (measured at dc2 for updates
originating at dc3) tradeoff disclosed by intra-dc stragglers (one
second straggling interval).

tion), the straggler contacts Eunomia less frequently. In
the sequencer-based system, a similar delay (on average)
is introduced when the straggler partition contacts the se-
quencer. We have experimented with three straggling in-
tervals: 10, 100 and 1000ms, all exhibiting similar pat-
terns. Figure 7 shows results for a 1 second straggling
interval, as it is the most striking result. After the strag-
gling period, the partition gets healed.

As expected (§3.2), intra-dc stragglers do not affect
the remote visibility of updates in sequencer-based ap-
proaches but clients notice a significant increase in la-
tency. In contrast, stabilization-based approaches are ca-
pable of shielding clients from stragglers and the cost of
increasing the remote visibility of updates. Note that the
stabilization-based results were obtained with Eunomia,
but GentleRain and Cure exhibit a similar behaviour.

8 Related work

The support for causal consistency can already be found
in early pioneer works in distributed systems, such as
Bayou [38, 42], Lazy Replication [31], and the ISIS [18]
toolkit. Recently, and tackling scalability challenges
close to ours, multiple weakly consistent geo-replicated
data stores implementing causal consistency across geo-
locations have been proposed. We group them into two
categories: (i) sequencer-based solutions [12, 44, 21];
(ii) and sequencer-free solutions [35, 22, 36, 24, 10].

Sequencer-based. These solutions rely on a sequencer
per datacenter to enforce causal consistency. The se-
quencer totally orders local updates, in a causally con-
sistent manner, and propagate them to remote locations.
This design centralizes, thus simplifying, the implemen-
tation of causal consistency. Nevertheless, the use of
synchronous sequencers limits the intra-datacenter con-
currency, as demonstrated by our experiments. Swift-
Cloud [44] and ChainReaction [12] rely on a vector clock
with an entry per datacenter to track causal dependen-
cies, similarly to EunomiaKV. Practi [21], on the con-
trary, uses a single scalar and a sophisticated mechanism
of invalidations. Similar to EunomiaKV, Practi separates
the propagation of data and metadata. This and the con-
cept of imprecise invalidations optimize Practi for partial

replication, a setting that has not yet been explored in this
work. We have shown that sequencers may get easily sat-
urated for medium-size clusters, while Eunomia is able
to handle much heavier loads (up to 7.7 times more).

Sequencer-free. There have been two major trends in
this category: (i) solutions that rely on explicit depen-
dency check messages [35, 22, 36]; and (ii) solutions
based on global stabilization procedures [24, 10].

COPS [35] and Eiger [36] finely track dependencies
for each individual data item allowing full concurrency
within a datacenter. Updates are tagged with a list of
dependencies. When a datacenter receives a remote up-
date, it needs to explicitly check each dependency. This
process is expensive and limits systems performance [24]
due to the large amount of metadata managed. Orbe [22]
aggregates dependencies belonging to the same logical
partition into a scalar, only partially solving the problem.

Alternatives that use less metadata rely on a back-
ground global stabilization procedure [24, 10]. This pro-
cedure equips partitions with sufficient information to
safely execute remote updates consistently with causal-
ity. Thus, these solutions manage to aggregate the meta-
data as sequencer-based solutions without relying on an
actual sequencer. As our extensive evaluation has empir-
ically demonstrated, global stabilization procedures are
expensive in practice, forcing designers to favour either
throughput [24] or remote visibility latency [10]. Our
evaluation shows that EunomiaKV does not force de-
signers to sacrifice any of the two, exhibiting signifi-
cantly better throughput and remote visibility latencies
than Cure and GentleRain respectively.

9 Conclusions

We have presented a novel approach for building causally
consistent geo-replicated data stores. Our solution re-
lies on Eunomia, a new service that abstracts the inter-
nal complexity of datacenters, a key feature to reduce
the cost of causal consistency. Unlike sequencers, Eu-
nomia does not limit the intra-datacenter concurrency
by performing an unobtrusive ordering of updates. Our
evaluation shows that Eunomia can handle very heavy
loads without becoming a performance bottleneck (up to
7.7 times more operations per second than sequencers).
Experiments also show that EunomiaKV (a causally
consistent geo-replicated protocol that integrates Euno-
mia), unlike previous systems, permits optimizing both
throughput and remote update visibility latency simul-
taneously. In fact, results have shown that EunomiaKV
only adds a slight throughput overhead (4.7% on aver-
age) and exceptionally small artificial remote visibility
delays when compared to an eventually consistent data
store that makes no attempt to enforce causality.

USENIX Association 2017 USENIX Annual Technical Conference 93

Acknowledgments

We would like to thank our shepherd Chunqiang (CQ)
Tang, Kuganesan Srijeyanthan, and anonymous review-
ers for their comments and suggestions. This research
has been supported in part by the Horizon 2020 project
732 505 LightKone, by the Erasmus Mundus Doctorate
Programme under Grant Agreement No. 2012-0030, by
the European Master in Distributed Computing (EMDC),
and by FCT through projects PTDC/ EEI-SCR/ 1741/
2014 (Abyss) and UID/ CEC/ 50021/ 2013.

References
[1] Basho Bench.

http://github.com/basho/basho_bench.

[2] bet365.
http://www.bet365.com/.

[3] Customers of Riak KV.
http://basho.com/about/customers/.

[4] Netem.
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

[5] The network time protocol.
http://www.ntp.org.

[6] Riak KV.
https://github.com/basho/riak_kv.

[7] Rovio.
http://www.rovio.com/.

[8] ADELSON-VELSKII, M., AND LANDIS, E. An algorithm for the
organization of information. Tech. rep., DTIC Document, 1963.

[9] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P., AND
HUTTO, P. W. Causal memory: definitions, implementation, and
programming. Distributed Computing 9, 1 (1995), 37–49.

[10] AKKOORATH, D., TOMSIC, A., BRAVO, M., LI, Z., CRAIN,
T., BIENIUSA, A., PREGUIÇA, N., AND SHAPIRO, M. Cure:
Strong semantics meets high availability and low latency. In Pro-
ceedings of the International Conference on Distributed Comput-
ing Systems (Osaka, Japan, 2016).

[11] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,
commodity data center network architecture. In Proceedings of
the ACM SIGCOMM 2008 Conference on Data Communication
(Seattle, WA, USA, 2008), pp. 63–74.

[12] ALMEIDA, S., LEITÃO, J. A., AND RODRIGUES, L. Chainreac-
tion: A causal+ consistent datastore based on chain replication. In
Proceedings of the 8th ACM European Conference on Computer
Systems (Prague, Czech Republic, 2013).

[13] ALSBERG, P. A., AND DAY, J. D. A principle for resilient shar-
ing of distributed resources. In Proceedings of the 2nd Interna-
tional Conference on Software Engineering (San Francisco, CA,
USA, 1976).

[14] ATTIYA, H., ELLEN, F., AND MORRISON, A. Limitations of
highly-available eventually-consistent data stores. In Proceedings
of the ACM Symposium on Principles of Distributed Computing
(Donostia-San Sebastián, Spain, 2015).

[15] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Highly available trans-
actions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (Nov.
2013), 181–192.

[16] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M.,
AND STOICA, I. The potential dangers of causal consistency and
an explicit solution. In Proceedings of the ACM Symposium on
Cloud Computing (San Jose, California, 2012).

[17] BALEGAS, V., DUARTE, S., FERREIRA, C., RODRIGUES, R.,
PREGUIÇA, N., NAJAFZADEH, M., AND SHAPIRO, M. Putting
consistency back into eventual consistency. In Proceedings of
the 10th ACM European Conference on Computer Systems (Bor-
deaux, France, 2015).

[18] BIRMAN, K., SCHIPER, A., AND STEPHENSON, P. Lightweight
causal and atomic group multicast. ACM Trans. Comput. Syst. 9,
3 (Aug. 1991).

[19] BRAVO, M., DIEGUES, N., ZENG, J., ROMANO, P., AND RO-
DRIGUES, L. On the use of clocks to enforce consistency in the
cloud. IEEE Data Eng. Bull 38, 1 (2015), 18–31.

[20] CHANDRA, T., HADZILACOS, V., AND TOUEG, S. The weakest
failure detector for solving consensus. J. ACM 43, 4 (July 1996),
685–722.

[21] DAHLIN, M., GAO, L., NAYATE, A., VENKATARAMANA, A.,
YALAGANDULA, P., AND ZHENG, J. Practi replication. In Pro-
ceedings of the 3rd Symposium on Networked Systems Design and
Implementation (San Jose, CA, USA, 2006).

[22] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe:
Scalable causal consistency using dependency matrices and phys-
ical clocks. In Proceedings of the ACM Symposium on Cloud
Computing (Santa Clara, CA, USA, 2013).

[23] DU, J., ELNIKETY, S., AND ZWAENEPOEL, W. Clock-si: Snap-
shot isolation for partitioned data stores using loosely synchro-
nized clocks. In Proceedings of the 32nd IEEE Symposium on
Reliable Distributed Systems (Braga, Portugal, 2013).

[24] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W.
Gentlerain: Cheap and scalable causal consistency with physical
clocks. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA, 2014).

[25] DU, J., SCIASCIA, D., ELNIKETY, S., ZWAENEPOEL, W., AND
PEDONE, F. Clock-RSM: Low-latency inter-datacenter state ma-
chine replication using loosely synchronized physical clocks. In
Proceedings of the 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (Atlanta, Georgia
USA, 2014).

[26] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (Barcelona, Spain, 2009), pp. 51–62.

[27] GUERRAOUI, R., PAVLOVIC, M., AND SEREDINSCHI, D.-A.
Trade-offs in replicated systems. Data Engineering (2016), 14.

[28] GUIBAS, L. J., AND SEDGEWICK, R. A dichromatic framework
for balanced trees. In Proceedings of the 54th IEEE Annual Sym-
posium on Foundations of Computer Science (Ann Arbor, Michi-
gan, USA, 1978), pp. 8–21.

[29] GUNAWARDHANA, C., BRAVO, M., AND RODRIGUES, L.
Unobtrusive deferred update stabilization for efficient geo-
replication. arXiv:1702.01786 [cs.DC] (Feb. 2017).

[30] KULKARNI, S. S., DEMIRBAS, M., MADAPPA, D., AVVA, B.,
AND LEONE, M. Logical physical clocks. In Proceedings of
the 18th International Conference on Principles of Distributed
Systems (Cortina d’Ampezzo, Italy, 2014).

[31] LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. Pro-
viding high availability using lazy replication. ACM Trans. Com-
put. Syst. (1992).

94 2017 USENIX Annual Technical Conference USENIX Association

http://github.com/basho/basho_bench
http://www.bet365.com/
http://basho.com/about/customers/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.ntp.org
https://github.com/basho/riak_kv
http://www.rovio.com/

[32] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35–40.

[33] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[34] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA,
N., AND RODRIGUES, R. Making geo-replicated systems fast as
possible, consistent when necessary. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Imple-
mentation (Hollywood, CA, USA, 2012), pp. 265–278.

[35] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (Cascais, Portugal,
2011).

[36] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of the 10th Symposium on Networked
Systems Design and Implementation (Lombard, IL, USA, 2013).

[37] MAHAJAN, P., ALVISI, L., AND DAHLIN, M. Consistency,
availability, and convergence. Tech. rep., University of Texas at
Austin, 2011.

[38] PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. Flexible update propagation
for weakly consistent replication. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (Saint Malo,
France, 1997).

[39] SCHNEIDER, F. B. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv. 22,
4 (Dec. 1990), 299–319.

[40] SCHURMAN, E., AND BRUTLAG, J. The user and business im-
pact of server delays, additional bytes, and HTTP chunking in
web search. In Velocity Web Performance and Operations Con-
ference (San Jose, CA, USA, 2009).

[41] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.
Transactional storage for geo-replicated systems. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(Cascais, Portugal, 2011).

[42] TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER,
M. J., THEIMER, M. M., AND WELCH, B. B. Session guar-
antees for weakly consistent replicated data. In Proceedings of
the 3rdInternational Conference on Parallel and Distributed In-
formation Systems (Austin, TX, USA, 1994).

[43] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In Proceedings of
the 6th symposium on Operating systems design and implemen-
tation (San Francisco, CA, USA, 2004).

[44] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIENIUSA, A.,
BALEGAS, V., AND SHAPIRO, M. Write fast, read in the past:
Causal consistency for client-side applications. In Proceedings of
the annual ACM/IFIP/USENIX Middleware conference (Vancou-
ver, Canada, 2015).

USENIX Association 2017 USENIX Annual Technical Conference 95

Don’t cry over spilled records: Memory elasticity of data-parallel
applications and its application to cluster scheduling

Călin Iorgulescu*, Florin Dinu*, Aunn Raza‡, Wajih Ul Hassan†, and Willy Zwaenepoel*

*EPFL ‡NUST Pakistan †UIUC

Abstract
Understanding the performance of data-parallel work-
loads when resource-constrained has significant practical
importance but unfortunately has received only limited
attention. This paper identifies, quantifies and demon-
strates memory elasticity, an intrinsic property of data-
parallel tasks. Memory elasticity allows tasks to run with
significantly less memory than they would ideally need
while only paying a moderate performance penalty. For
example, we find that given as little as 10% of ideal mem-
ory, PageRank and NutchIndexing Hadoop reducers be-
come only 1.2x/1.75x and 1.08x slower. We show that
memory elasticity is prevalent in the Hadoop, Spark, Tez
and Flink frameworks. We also show that memory elas-
ticity is predictable in nature by building simple models
for Hadoop and extending them to Tez and Spark.

To demonstrate the potential benefits of leveraging
memory elasticity, this paper further explores its appli-
cation to cluster scheduling. In this setting, we observe
that the resource vs. time trade-off enabled by memory
elasticity becomes a task queuing time vs. task runtime
trade-off. Tasks may complete faster when scheduled
with less memory because their waiting time is reduced.
We show that a scheduler can turn this task-level trade-
off into improved job completion time and cluster-wide
memory utilization. We have integrated memory elastic-
ity into Apache YARN. We show gains of up to 60% in
average job completion time on a 50-node Hadoop clus-
ter. Extensive simulations show similar improvements
over a large number of scenarios.

1 Introduction
The recent proliferation of data-parallel workloads [27,
10, 24] has made efficient resource management [22,
26, 7] a top priority in today’s computing clusters. A
popular approach is to better estimate workload resource

†‡ Work done while authors were interns at EPFL.

needs to avoid resource wastage due to user-driven over-
estimations [26, 12, 21]. Another is over-committing
server resources to cope with the variability of work-
load resource usage [26, 7, 11]. Unfortunately, only
a few efforts [12] have touched on the malleability of
data-parallel workloads when resource-constrained. The
study of malleability is complementary to solutions for
over-estimations and variability. While the latter two at-
tempt to accurately track the actual workload resource
usage, the former is about allocating to applications
fewer server resources than they would ideally need. A
thorough understanding of the trade-offs involved in re-
source malleability is useful in many contexts ranging
from improving cluster-wide resource efficiency and pro-
visioning to reservation sizing in public clouds, disaster
and failure recovery, and cluster scheduling.

The main contribution of this paper is identifying,
quantifying and demonstrating memory elasticity, an in-
trinsic property of data-parallel workloads. We define
memory elasticity as the property of a data-parallel task
to execute with only a moderate performance penalty
when memory-constrained. Memory elasticity pertains
to tasks involved in data shuffling operations. Data
shuffling is ubiquitous [6, 20, 28]. It is used by a
large number of data-parallel applications across all data-
parallel frameworks. Most tasks are involved in shuffling
and show memory elasticity: mappers and reducers in
MapReduce, joins and by-key transformations (reduce,
sort, group) in Spark, and mappers, intermediate and fi-
nal reducers in Tez.

Despite significant differences in the designs of popu-
lar data-parallel frameworks, shuffling operations across
these frameworks share a common, tried-and-tested
foundation in the use of merge-sort algorithms that may
also use secondary storage [3]. The memory allocated to
a task involved in shuffling has a part for shuffling and
a part for execution. The best task runtime is obtained
when the shuffle memory is sized such that all shuffle
data fits in it. This allows the shuffle to perform an effi-

USENIX Association 2017 USENIX Annual Technical Conference 97

cient in-memory-only merge-sort. If the shuffle memory
is insufficient, an external merge-sort algorithm is used.

The key insight behind memory elasticity is that
under-sizing shuffle memory can lead to considerable
reductions in task memory allocations at the expense
of only moderate increases in task runtime. Two fac-
tors contribute to the sizeable memory reductions. First,
shuffle memory is usually a very large portion of the task
memory allocation (70% by default in Hadoop). Sec-
ond, external merge-sort algorithms can run with very
little memory because they can compensate by using sec-
ondary storage. A couple of factors also explain why
the task runtime increases only moderately when shuffle
memory is under-sized. First, a data-parallel task couples
shuffling with CPU-intensive processing thus making far
less relevant the performance gap between external and
in-memory merge-sort. Second, disk accesses are effi-
cient as the disk is accessed sequentially. Third, the per-
formance of external merge-sort algorithms remains sta-
ble despite significant reductions in shuffle memory (a
k-way merge is logarithmic in k).

Thus, memory elasticity presents an interesting re-
source vs. time trade-off. This paper quantifies this
trade-off and its implications using extensive experimen-
tal studies. We find that memory elasticity is prevalent
across the Hadoop, Spark, Tez and Flink frameworks
and across several popular workloads. In all cases, the
performance penalty of memory elasticity was moder-
ate despite sizeable reductions in task memory alloca-
tions. Let M be the task memory allocation that mini-
mizes task runtime by ensuring that all shuffle data fits
in shuffle memory. Given as little as 10% of M, PageR-
ank and NutchIndexing Hadoop reducers become only
1.22x/1.75x and 1.08x slower. For Hadoop mappers the
largest encountered penalty is only 1.5x. For Spark, Tez
and Flink the penalties were similar to Hadoop. Further-
more, we show the predictable nature of memory elas-
ticity which is key to leveraging it in practice. We build
simple models for Hadoop that can accurately describe
the resource vs. time trade-off. With only small changes,
the same models apply to Spark and Tez.

To demonstrate the potential benefits of leveraging
memory elasticity, this paper further explores its appli-
cation to cluster scheduling. Current clusters host con-
currently a multitude of jobs each running a multitude
of tasks. In this setting, we observe that the resource
vs. time trade-off of memory elasticity becomes a task
queueing time vs. task runtime trade-off. A task nor-
mally has to wait until enough memory becomes avail-
able for it but if it is willing to execute using less mem-
ory it might have to wait much less or not at all. Since
the completion time of a task is the sum of waiting time
plus runtime, a significant decrease in waiting time may
outweigh an increase in runtime due to elasticity and

overall lead to faster task completion times. We show
that a scheduler can turn this task-level trade-off into im-
proved job completion time and improved cluster-wide
memory utilization by better packing tasks on nodes with
respect to memory. Scheduling using memory elasticity
is an NP-hard problem because it contains as a special
case NP-hard variants of the RCPSP problem [8], a well-
known problem in operations research. We propose a
simple heuristic and show it can yield important bene-
fits: the tasks in a job can leverage memory elasticity
only if that does not lead to a degradation in job comple-
tion time.

We have integrated the concepts of memory elastic-
ity into Apache YARN. On a 50-node Hadoop cluster,
leveraging memory elasticity results in up to 60% im-
provement in average job completion time compared to
stock YARN. Extensive simulations show similar im-
provements over a large number of scenarios.

2 Memory elasticity in real workloads
This section presents an extensive study of memory elas-
ticity. We make three key points. First, memory elas-
ticity is generally applicable to several frameworks and
workloads. Our measurements put emphasis on Hadoop
but also show that elasticity applies to Apache Spark,
Tez and Flink. Second, memory elasticity costs little.
The performance degradation due to using elasticity was
moderate in all experiments. Third, elasticity has a pre-
dictable nature and thus can be readily modeled. We pro-
vide a model for Hadoop and with only simple changes
apply it to Tez and a Spark Terasort job. We also detail
the causes and implications of memory elasticity.

We use the term spilling to disk to refer to the usage of
secondary storage by the external merge-sort algorithms.
We call a task under-sized if its memory allocation is in-
sufficient to avoid spilling to disk during shuffling. We
call a task well-sized otherwise. We call ideal mem-
ory the minimum memory allocation that makes a task
well-sized and ideal runtime the task runtime when allo-
cated ideal memory. The term penalty refers to the per-
formance penalty caused by memory elasticity in under-
sized tasks.

2.1 Measurement methodology

For Hadoop we profiled 18 jobs across 8 different ap-
plications, most belonging to the popular HiBench big-
data benchmarking suite [4]. The jobs range from graph
processing (Connected Components, PageRank) to web-
indexing (Nutch), machine learning (Bayesian Classi-
fication, Item-Based Recommender), database queries
(TPC-DS) and simple jobs (WordCount, TeraSort). For
Spark we profiled TeraSort and WordCount, for Tez we
profiled WordCount and SortMerge Join and for Flink

98 2017 USENIX Annual Technical Conference USENIX Association

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o
rm

a
liz

e
d
 t
a
s
k
 e

x
e
c
u
ti
o
n
 t
im

e

Heap allocated as fraction of optimal

(a) Elasticity for Hadoop mappers

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o
rm

a
liz

e
d
 t
a
s
k
 e

x
e
c
u
ti
o
n
 t
im

e

Heap allocated as fraction of optimal

(b) Elasticity for Hadoop reducers

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

R
e
a
l-
to

-m
o
d
e
l
e
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o

Heap allocated as fraction of optimal

(c) Accuracy of reducer models

Pagerank 1
Pagerank 2

Connected Components 1

WordCount w/ combiner
WordCount

TPC-DS Query7 1

TPC-DS Query40 1
Terasort

Mahout Recommender 1

Mahout Recommender 2
NutchIndexing

Spark Terasort
Tez SortMergeJoin
Tez WordCount

Figure 1: Memory elasticity profiles for Hadoop mappers (a) and reducers (b). Accuracy of our model (c).
The reducers (b) exhibit a sawtooth-like pattern determined by the input-to-buffer ratio. Local minimum/maximum
penalty values occur right before and after the points where this ratio is an integer (further detailed in §2.3).

we profiled WordCount. We used Hadoop 2.6.3, Spark
2.0.0, Tez 0.7.0 and Flink 1.0.2. However, the same
behavior appears in Spark versions prior to 2.0.0 and
Hadoop versions at least as old as 2.4.1 (June 2014).

For accurate profiling we made sure that the profiled
task is not collocated with any other task. To measure
the worst case penalties for under-sized tasks we ensure
that disk I/O operations for spills actually go to the drive
and not to the OS buffer cache. For this, we ran each task
in a separate Linux cgroups container. We minimize the
amount of buffer cache available to a task by setting the
cgroups limits as close to the JVM heap size as possible.
As an alternative, we also modified Hadoop to perform
disk spills using direct I/O thus bypassing completely the
OS buffer cache. The two approaches gave consistently
similar results.

2.2 Memory elasticity for Hadoop mappers
Elasticity for mappers occurs on their output side. The
key-value pairs output by map function calls are written
to an in-memory buffer. If the mapper is well-sized then
the buffer never fills up. In this case, when the map-
per finishes processing its input, the buffer contents are
written to disk into one sorted and partitioned file (one
partition per reducer). If the mapper is under-sized, the
buffer fills up while the mapper is still executing map
function calls. The buffer contents are spilled to disk
and the buffer is reused. For under-sized mappers, at the
end there is an extra merge phase that merges together
all existing spills. If combiners are defined then they are
applied before spills.
The impact of elasticity on mapper runtime Fig. 1a
shows the mapping between normalized mapper run-
time (y-axis) and allocated heap size (x-axis) for several
Hadoop mappers. We call this mapping the memory elas-
ticity profile. The penalties are moderate. For example,
an under-sized WordCount mapper is about 1.35x slower

than when well-sized. If the same mapper uses a com-
biner, then the penalty is further reduced (1.15x) because
less data is written to disk. The maximum encountered
penalty across all mappers is 1.5x.
Why penalties are not larger As explained in the
introduction, three factors limit the penalties. First, the
mapper couples shuffling with CPU-intensive work done
by map function calls. Second, disk accesses are efficient
as the disk is accessed sequentially. Third, the perfor-
mance of external merge-sort algorithms remains stable
despite significant reductions in shuffle memory.
The shape of the memory elasticity profile The
elasticity profile of a mapper resembles a step function.
The reason is that under-sized mappers perform an extra
merge phase which takes a similar amount of time for
many different under-sized allocations.
Modeling memory elasticity for mappers A step
function is thus a simple and good approximation for
modeling memory elasticity for Hadoop mappers. To
build this model two profiling runs are needed, one with
an under-sized mapper and one with a well-sized mapper.
The runtime of the under-sized mapper can then be used
to approximate the mapper runtime for all other under-
sized memory allocations.

2.3 Memory elasticity for Hadoop reducers
Elasticity for reducers appears on their input side. Re-
ducers need to read all map outputs before starting the
first call to the reduce function. Map outputs are first
buffered in memory. For a well-sized reducer this buffer
never fills up and it is never spilled. These in-memory
map outputs are then merged directly into the reduce
functions. For an under-sized reducer the buffer fills up
while map outputs are being copied. In this case, the
buffer is spilled and reused. The in-memory and on-disk
data is then merged and fed to the reduce function of the
under-sized reducer.

USENIX Association 2017 USENIX Annual Technical Conference 99

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Heap allocated as fraction of optimal

Spark Terasort
Spark WordCount

Tez WordCount
Tez SortMergeJoin

Flink WordCount

(a) Elasticity for Spark, Tez and Flink reducers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Memory as fraction of optimal

Paging to SSD, w/ GC
Paging to SSD, w/o GC
Paging to HDD, w/ GC

Paging to HDD, w/o GC
Spilling to HDD, w/ GC

(b) Spilling vs. paging

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 3 4 5 6 7 8

A
v
g

 r
e

d
u
c
e

r
s
lo

w
d

o
w

n
 c

o
n

c
.

v
s
 s

e
q
u

e
n

t.

Number of reducers in job

PageRank 1 HDD
PageRank 2 HDD

Conn. Comp 1 HDD
Recommender 1 HDD
Recommender 2 HDD

WordCount HDD
WordCount SSD

(c) Impact of contention on Hadoop reducers

Figure 2: Memory elasticity for Spark, Tez and Flink jobs (a). Spilling vs. paging (b). Impact of disk contention (c).

The impact of elasticity on reducer runtime Fig. 1b
shows the memory elasticity profiles for several Hadoop
reducers. The reducer input size ranged from 5GB to
18GB with an average of 10GB. In addition to the jobs
in Fig. 1b we also profiled the vector creation part of Hi-
Bench’s Bayesian Classification. Because this applica-
tion has many jobs we could not obtain the full elasticity
profile for each individual job. Instead, we inferred the
maximum penalty for each job using the model described
at the end of this subsection. For the 8 distinct jobs we
encountered, the maximum penalties are: 1.8x, 1.67x,
2.65x, 1.42x, 3.32x, 1.37x, 1.75x and 1.42x.

Two main insights arise from the results in Fig. 1b.
Most importantly, under-sized reducers incur only mod-
erate penalties. Given as little as 10% of ideal mem-
ory, 7 of the 10 reducers are between 1.1x and 1.85x
slower than ideal. Second, the penalties are compara-
ble for a wide range of under-sized memory allocations.
For the WordCount reducer, for 83%, 41% and 10% of
ideal memory the penalties are: 1.84x, 1.83x and 1.82x.
Why the penalty varies among reducers We found
that the penalty correlates with the complexity of the re-
duce function. More complex reducers are more CPU-
intensive and thus are influenced less by reading inputs
from disk. A TeraSort reducer is very simple and shows
one of the highest penalties. On the other extreme, the
NutchIndexing reducer is complex and shows almost no
penalty. To further analyze how reducer complexity in-
fluences the penalty we added to the WordCount reduce
function a number of floating point operations (FPops)
between two randomly generated numbers. Adding 10,
50 and 100 FPops per reduce function call decreased the
maximum penalty from 2x to 1.87x, 1.65x and 1.46x.

We also found that the penalty correlates with the
number of values corresponding to each key processed
by a reducer. A large number of values per key leads
to increased penalties because the read-ahead performed
by the OS becomes insufficient to bring all keys in mem-
ory and thus some reduce calls will read on-disk data.
The Mahout recommender uses on average 1500 keys per

value for job1 and 15000 keys per value for job2. This
explains their larger penalty.
Why penalties are not larger The explanations for
reducers are the same as the ones provided for mappers.
Modeling Hadoop reducer behavior An accurate
reducer model can be obtained from just two profiling
runs: one with under-sized reducers and one with well-
sized ones. Given these, the model can infer the penalty
for all other under-sized memory allocations. While the
profiling runs are application-specific, the model we de-
scribe is generally applicable to any Hadoop reducer.

Our model is based on three insights: (a) disk-spilling
creates additional penalty on top of the ideal runtime, (b)
the penalty is proportional to the amount of data spilled,
and (c) the disk rate for reading and writing spills re-
mains constant for a reducer regardless of its memory
allocation. We summarize this in the following equation:

T (notId) = T + spilledBytes(notId)/diskRate
T (notId) is the reducer runtime for an under-sized re-

ducer given notId (not ideal) memory. T is the runtime
when that reducer is well-sized. spilledBytes(notId) is
the amount of data spilled when being allocated notId
memory. Finally, diskRate is the average rate at which
the under-sized reducer uses the disk when spilling.

The two profiling runs provide T (notId) and T .
Next, spilledBytes(notId) can be computed numeri-
cally from the reducer input size, the value of notId,
and a few Hadoop configuration parameters, thus
yielding diskRate. Any other T (notId′) can be ob-
tained numerically by computing the corresponding
spilledBytes(notId′) and plugging it in the equation.

Fig. 1c shows the accuracy of our model for the
Hadoop reducers profiled in Fig. 1b. The value of notId
chosen for the under-sized profiling run was 52% of opti-
mal. Any other under-sized amount would have sufficed.
The accuracy of the model is within 5% for most cases.
The shape of the memory elasticity profile We now
explain the sawtooth-like shape of the memory elasticity
profiles from Fig. 1b. The key insight is that the penalty

100 2017 USENIX Annual Technical Conference USENIX Association

is proportional to the amount of spilled data.
The sawtooth peaks are caused by the input-to-buffer

ratio of a reducer. When the input is close to a multiple of
the buffer, almost all data gets spilled to disk. For exam-
ple, given a 2.01GB input, two reducers with 500MB and
2GB shuffle buffers, respectively, will each spill 2GB.

There are several cases in which decreasing the mem-
ory allocation also decreases the penalty (e.g., Word-
Count with 52% vs. 83% of ideal memory). This is
caused by a decrease in the amount of spilled data. Given
a 2GB shuffle buffer and a 2.01GB input size, a reducer
spills 2GB to disk but given a 1.5GB shuffle buffer it
spills only 1.5GB to disk and keeps 510MB in memory.

One may argue that the static threshold used by
Hadoop for spilling is inefficient and that Hadoop should
strive to spill as little as possible. In this argument, the re-
ducer with 2.01GB input and a 2GB shuffle buffer would
spill 10MB only. Such a proposal actually strengthens
the case for memory elasticity as the penalties decrease
(due to less spilled data) and can be modeled similarly.

2.4 Elasticity for Spark, Tez and Flink
Fig. 2a shows that memory elasticity also applies to
Spark. The reducer input size ranged from 2GB to 22GB
with an average of 10GB. For Spark we profiled a task
performing a sortByKey operation (TeraSort) and one
performing a reduceByKey operation (WordCount). In-
ternally, Spark treats the two cases differently. A buffer
is used to store input data for sortByKey and a hashmap
for reduceByKey. Both data structures are spilled to disk
when a size threshold is reached. Despite the differences
both tasks show elasticity.

Fig. 2a shows that the elasticity profile for Spark re-
sembles that of Hadoop reducers. Given the similari-
ties we were able to extend our Hadoop reducer model
to Spark sortByKey tasks (TeraSort). The difference be-
tween the Hadoop and Spark TeraSort model is that for
Spark we also learn an expansion factor from the under-
sized profiling run. This is because Spark de-serializes
data when adding it to the shuffle buffers. Fig. 1c shows
that the accuracy of the Spark model is well within 10%,
matching that of Hadoop.

Fig. 2a also shows the memory elasticity profiles for
two Tez reducers. The elasticity profile for Tez is similar
to those for Spark and Hadoop. We extended our Hadoop
reducer model to Tez reducers by accounting for the fact
that in Tez, map outputs stored on the same node as the
reducer are not added to shuffle memory but are instead
read directly from disk. Fig. 1c shows that the accuracy
of our Tez model is equally good.

Finally, Fig. 2a also shows one Flink reducer. Flink
stands out with its low penalty between 70% and 99%
of optimal memory which suggests a different model is
needed. We plan to pursue this as part of our future work.

2.5 Spilling vs. paging
Why do frameworks implement spilling mechanisms
and do not rely on tried-and-tested OS paging mecha-
nisms for under-sized tasks? To answer, we provisioned
Hadoop with enough memory to avoid spilling but con-
figured cgroups such that part of the memory is avail-
able by paging to a swapfile. Fig. 2b shows the results
for the Hadoop Wordcount reducer. Paging wins when
a task gets allocated close to ideal memory (0.7 or more
on the x-axis) because it only writes to disk the mini-
mum necessary while Hadoop spills more than neces-
sary. However, spilling beats paging for smaller mem-
ory allocations because the task’s access pattern does
not match the LRU order used by paging. Fig. 2b also
shows that paging greatly increases garbage collection
(GC) times because the GC touches memory pages in
a paging-oblivious manner. We also see that the SSD
significantly outperforms the HDD due to more efficient
page-sized (4k) reads and writes. Using 2MB transpar-
ent huge pages (THP) did not improve results for either
the SSD or HDD since THP is meant to alleviate TLB
bottlenecks not improve IO throughput.

2.6 Memory elasticity and disk contention
Since memory elasticity leverages secondary storage, it
is interesting to understand the impact of disk contention
when several under-sized tasks are collocated.

The impact of disk contention depends on how well
provisioned the local storage is on nodes relative to com-
puting power. The ratio of cores to disks can give a
sense of how many under-sized tasks can compete, in the
worst case, for the same disk (a task usually requires at
least one core). In current data centers the ratio is low.
In [23], the authors mention ratios between 4:3 and 1:3
for a Facebook 2010 cluster. Public provider offerings
also have low core to disk ratios. The list of high-end
Nutanix hardware platforms [2] shows plenty of offer-
ings with a ratio of less than 2.5:1 and as low as 0.66:1.
Nutanix has more than two thousand small and medium
size clusters at various enterprises [9].

Nevertheless, not all clusters are equally well provi-
sioned. Thus, we analyzed the degree to which mem-
ory elasticity can produce disk contention by varying the
number of under-sized Hadoop reducers that spill con-
currently to the same disk. We start between 2 and 8
under-sized reducers each within 1 second of the previ-
ous. This is akin to analyzing disk contention on nodes
with a core to disk ratio ranging from 2:1 to 8:1. We fo-
cused on reducers because they spill more data than the
mappers (GBs is common).

We measured the slowdown in average reducer run-
time when all reducers run concurrently compared to the
case where they run sequentially. Fig. 2c shows the re-
sults. Several reducers (PageRank job1, Recommender

USENIX Association 2017 USENIX Annual Technical Conference 101

job1,2) show minimal slowdown (at most 15% degra-
dation for 8 concurrently under-sized reducers). In the
other extreme, running 8 under-sized WordCount reduc-
ers concurrently leads to a 70% degradation when an
HDD is used but that is reduced to just 15% when mov-
ing the spills to SSD. In conclusion, disk contention is a
manageable potential side effect but should nevertheless
be taken into consideration when leveraging elasticity.

2.7 Final considerations

Does elasticity cause increased GC? For Hadoop
and Tez reducers, GC times remain constant when tasks
are under-sized. For Hadoop mappers, GC times slowly
increase as the memory allocation decreases but they re-
main small in all cases. Overall, Hadoop does a good
job of mitigating GC overheads by keeping data serial-
ized as much as possible. For Spark, GC times increase
sub-linearly with an increase in task runtime. Interest-
ingly, GC times are a larger portion of task runtime for
well-sized tasks because spill episodes limit the amount
of data that needs to be analyzed for GC.
Feasibility of modeling Our models for Hadoop, Tez
and Spark are based on two profiling runs, one under-
sized and one well-sized. Related work shows that a
large fraction of jobs in current data centers are recurring,
have predictable resource requirements and compute on
similar data [14, 20, 5]. Thus, instead of profiling runs,
one can use prior runs of recurring jobs. Alternatively, if
no prior runs are available, the two profiling runs can be
performed efficiently on a sample of the job’s input data.
Sensitivity to configuration changes We repeated
our experiments on two different hardware platforms
(Dual Intel Xeon E5-2630v3 + 40Gb NIC, Dual AMD
Opteron 6212 + 10GB NIC), two OSes (RHEL 7, Ubuntu
14.04), three different disk configurations (HDD, SDD,
2*HDD in RAID 0), three IO schedulers (CFS, deadline,
noop) and three JVMs (HotSpot 1.7, 1.8, OpenJDK 1.7).
The changes did not impact the memory elasticity pro-
files or the accuracy of our model.
Elasticity of interactive workloads While interac-
tive applications are far less tolerant to increases in run-
time, they may still benefit from memory elasticity (e.g.,
by reducing queuing times in saturated clusters). Fur-
thermore, it can be ensured that latency-sensitive jobs are
not impacted negatively by providing additional job con-
straints (such as execution deadlines).

3 Applying elasticity to cluster scheduling.
Case study: Apache YARN

In this section, we explore the benefits that memory elas-
ticity can provide in cluster scheduling by integrating
memory elasticity into Apache YARN [25]. We chose

YARN because it is very popular and provides a com-
mon resource management layer for all popular frame-
works tested in §2. Moreover, several recent research ef-
forts from large Internet companies were validated with
implementations on top of YARN [11, 21, 17, 18]. In ad-
dition, we also discuss how the elasticity principles can
be adopted to the Mesos [19] resource manager.

Scheduling using memory elasticity is an NP-hard
problem because it contains as a special case NP-hard
variants of the RCPSP problem [8], a well-known prob-
lem in operations research. Nevertheless, we show that
the benefits of memory elasticity can be unveiled even
using a simple heuristic.

3.1 Overview

YARN distributes cluster resources to the jobs submitted
for execution. A typical job may contain multiple tasks
with specific resource requests. In YARN, each task is
assigned to a single node, and multiple tasks may run
concurrently on each node, depending on resource avail-
ability. The scheduler has a global view of resources and
orders incoming jobs according to cluster policy (e.g.,
fair sharing with respect to resource usage).
Notation We use the term regular to refer to the
memory allocation and runtime of well-sized tasks and
the term elastic for under-sized tasks. We further refer to
our elasticity-aware implementation as YARN-ME.
Benefits As previously discussed, memory elasticity
trades-off task execution time for task memory alloca-
tion. When applied to cluster scheduling it becomes a
trade-off between task queuing time and task completion
time. A task normally has to wait until enough memory
becomes available for it but executing it with less mem-
ory may reduce or eliminate its waiting time. Since the
completion time of a task is the sum of waiting time plus
runtime, a significant decrease in waiting time may out-
weigh an increase in runtime due to elasticity and overall
lead to faster task completion times. YARN-ME turns
this task-level trade-off into improved job completion
time and improved cluster-wide memory utilization.

Fig. 3 illustrates how memory elasticity benefits
scheduling using a simple example of a 3-task job sched-
uled on a single, highly utilized node. Fig. 3a presents a
timeline of task execution for vanilla YARN. Tasks 2 and
3 incur queuing times much larger than their execution
times. In Fig. 3b, using memory elasticity, the scheduler
launches all tasks soon after job submission, resulting in
the job completing in less than 30% of its original time,
despite its tasks now taking twice as long to execute.

3.2 System design

Two main additions are needed to leverage memory elas-
ticity in YARN.

102 2017 USENIX Annual Technical Conference USENIX Association

(a) All tasks regularly allocated. (b) All tasks elastically allocated (with less memory).

Figure 3: Example of job completion time reduction for a simple 3-task job and one highly utilized node. In (a) the
tasks wait for resources, while in (b) they start almost immediately. The job finishes faster, despite the longer tasks.

Metadata regarding task memory elasticity Rea-
soning about memory elasticity at the scheduler level
leverages additional knowledge about the submitted
tasks. The scheduler uses estimates for the regular execu-
tion time of a task (ideal duration), the minimal amount
of memory for a regular allocation (ideal memory) and
the performance penalty for under-sized memory alloca-
tions. This metadata is obtained using the profiling tech-
niques from §2.7.
The timeline generator YARN-ME uses a timeline
generator to provide an estimate of a job’s evolution (the
completion times of its tasks and of the whole job). In
doing this, it accounts for the expected memory avail-
ability in the cluster. The generator simply iterates over
all the nodes, adding up the task duration estimates of
the executing and queued tasks. Effectively, the genera-
tor builds simple timelines for each node, which it then
merges to obtain information about each job’s timeline.
The generator runs periodically, every heartbeat interval,
since during such a period all healthy nodes report their
status changes. It also runs when a new job arrives or an
existing one is prematurely canceled.

3.3 Scheduler decision process
Algorithm 1 presents the decision process of YARN-
ME. Lines 8-10 implement the main heuristic underlying
YARN-ME (described below). Line 7 also implements
disk contention awareness. Additionally, lines 7 and 9
always consider the minimum amount of memory that
yields the lowest possible execution time, leveraging the
behavior of elasticity described in §2.
Main heuristic YARN-ME aims to reduce job com-
pletion time by leveraging memory elasticity. As such,
an elastic task cannot be allowed to become a straggler
for its respective job. Therefore, an elastic allocation is
made for a task that cannot be scheduled regularly iff
its expected completion time does not exceed the current
estimated completion time of its job.
Disk contention awareness As shown in §2.6
scheduling too many elastic tasks concurrently on a node
may lead to disk contention. YARN-ME incorporates
disk contention awareness. As shown in §2.6, obtain-
ing the task metadata involves computing the disk band-
width required by an elastic task. YARN-ME allocates a
portion of each node’s disk bandwidth for elastic tasks.

Algorithm 1 YARN-ME decision process pseudocode.
1: while JOB QUEUE is not empty do
2: for all N in NODES do
3: J← N’s reserved job or next job in JOB QUEUE

4: T← next task of J
5: if T regularly fits on N then
6: allocate T on N, regular
7: else if T elastically fits on N then
8: get TIMELINE GENERATOR info for J
9: if T elastically finishes before J then

10: allocate T on N, elastic
11: if T was allocated then
12: unreserve N if reserved
13: resort the JOB QUEUE

14: else
15: reserve N for J, if not already reserved

It conservatively prohibits the scheduling of new elastic
tasks on nodes where this portion would be exceeded.
Node reservations In YARN, if a node has insuffi-
cient resources to satisfy the job at the head of the queue,
no allocation is performed, and the node is reserved for
that job. While this job still has pending tasks, no other
jobs can schedule tasks on the reserved node. This helps
mitigate resource starvation by ensuring that the tasks of
jobs with large memory requirements also get the chance
to be scheduled. To account for this, we adjusted the
timeline generator to take reservations into account when
building its estimates. Additionally, YARN-ME allows
tasks of other jobs to be allocated on a reserved node, but
only if this does not hinder the tasks of the reserved job.
Additional constraints Schedulers may set addi-
tional constraints for their jobs, such as running on a
data-local node only, or forcing certain tasks to start only
after others have completed. Our design is orthogonal to
this and only requires tweaking of the timeline generator.

4 Discussion: Mesos
Other schedulers beyond YARN can also be extended to
use memory elasticity. We next review the main differ-
ences between Mesos [19] and YARN and argue that they
do not preclude leveraging memory elasticity in Mesos.
Queuing policy Mesos uses Dominant Resource
Fairness (DRF) [15], a multi-resource policy, to ensure
fairness. Thus, the job queue may be sorted differently
compared to YARN’s policies. This does not restrict

USENIX Association 2017 USENIX Annual Technical Conference 103

memory elasticity as it only dictates job serving order.
Decision process Mesos decouples scheduling deci-
sions from node heartbeats. Thus, a job may be offered
resources from several nodes at the same time. This does
not restrict memory elasticity since the job needs to con-
sider each node from the offer separately (a task can only
run on one node), so memory elasticity can be applied for
every node in the offer.
Global vs. local decisions Mesos gives jobs the abil-
ity to accept or reject resource offers while YARN de-
cides itself what each job receives. Thus, in Mesos, jobs
can decide individually whether to use elasticity or not.
If a decision based on global cluster information (like in
YARN) is desired, jobs can express constraints (local-
ity, machine configuration) with Mesos filters that can be
evaluated by Mesos before making resource offers.

5 Cluster experiments
We next showcase the benefits of memory elasticity by
comparing YARN-ME to YARN.

5.1 Methodology

Setup We use a 51-node cluster (50 workers and 1
master), limiting the scheduler to 14 cores per node (out
of 16 cores we reserve 2 for the YARN NodeManager
and for the OS) and 10GB of RAM. The exact amount of
RAM chosen is not important (we could have chosen any
other value). What is important is the ratio of ideal task
memory requirements to node memory. Each node has
one 2 TB SATA HDD. YARN-ME was implemented on
top of Apache YARN 2.6.3 [25]. Disk spills use Direct
I/O so that the OS buffer cache does not mask perfor-
mance penalties due to elasticity.

We ran WordCount, PageRank and Mahout Item Rec-
ommender Hadoop applications. We chose them be-
cause they represent small, medium and large penalties
encountered for reducers in §2 (mapper penalties span a
much smaller range than reducers and are lower). We
configured the jobs as described in Table 1. We executed
each type of application separately (homogeneous work-
load) and all applications simultaneously (heterogeneous
workload). For the homogeneous workloads, we varied
the number of concurrent runs for each type of applica-
tion. The start of each run is offset by the inter-arrival
(IA) time indicated in Table 1. The IA time is chosen
proportionally to application duration such that map and
reduce phases from different jobs can overlap.

For each application we first perform one profiling run
using ideal memory to obtain the ideal task runtime. We
multiply this by the penalties measured in §2 to obtain
task runtimes for various under-sized allocations.
Metrics We compare average job runtime, trace
makespan and average duration of map and reduce

phases. By job runtime we mean the time between job
submission and the end of the last task in the job. Simi-
larly, a map or reduce phase represents the time elapsed
between the first request to launch such a task and the fin-
ish time of the last task in the phase. Each experiment is
run for 3 iterations, and we report the average, minimum
and maximum values.

5.2 Experiments
Benefits for memory utilization Fig. 4a shows the
benefits of using memory elasticity on both cluster uti-
lization and makespan, for an execution of 5 Pagerank
runs. YARN-ME successfully makes use of idle mem-
ory, bringing total memory utilization from 77% to 95%,
on average, and achieving a 39% reduction in makespan.
By comparing the results in Figs. 4a and 4c we also see
that the gain in job runtime is proportionally much higher
than the amount of memory reclaimed. Fig. 4b shows
how YARN-ME assigns the memory slack to tasks.
Benefits for homogeneous workloads We next show
that YARN-ME can provide benefits for the jobs in Ta-
ble 1. Figs. 4c, 5a and 5b show the improvement of
YARN-ME compared to YARN vs. the number of runs.
YARN-ME’s benefits hold for all jobs.

We find that the Recommender, which has the high-
est penalties we have observed for reducers, achieves up
to 48% improvement. We also find that mappers always
benefit noticeably from elasticity, a direct consequence
of their modest penalties. Pagerank’s lower-penalty re-
ducers yield an improvement of 30% even for a single
concurrent run, peaking at 39% with 5 runs. Wordcount
achieves a peak improvement of 41%, despite reducer
gains being lower due to higher penalties. The reduc-
tion in average job runtime steadily increases across runs.
For 3 concurrent Wordcount runs, the number of reduc-
ers leads only one out of the 3 jobs to be improved, but
the map phase still reaches improvements of 46%.
Benefits for heterogeneous workloads YARN-ME
achieves considerable gains even under a heterogeneous
workload composed of all the jobs from Table 1. We start
5 jobs at the same time (1 Pagerank, 1 Recommender and
3 Wordcount) and then submit a new job every 5 minutes,
until we reach a total of 14 jobs (3 Pagerank, 3 Recom-
mender and 8 Wordcount). Each job is configured ac-
cording to Table 1. Fig. 5c shows overall improvement
and breakdown by job type. YARN-ME improves av-
erage job runtime by 60% compared to YARN. The map
phase duration is reduced by 67% on average overall, and
by up to 72% for all Recommender jobs.

6 Simulation experiments
We use simulations to evaluate YARN-ME’s benefits and
its robustness to mis-estimations on a wide range of
workload configurations.

104 2017 USENIX Annual Technical Conference USENIX Association

Application Jobs Input
GB maps reduces

Penalties Memory GB Inter-arrival
(IA) time1st job 2nd job 1st job 2nd job

map reduce map reduce map reduce map reduce
Pagerank 2 550 1381 / 1925 275 1.3 1.22 1.25 1.75 1.7 3.7 1.5 6.8 120s

WordCount 1 540 2130 75 1.35 1.9 - - 1.7 5.4 - - 30s
Recommender 2 250 505 / 505 100 1.3 2.6 1.3 3.3 2.4 2.8 2.4 3.8 120s

Table 1: Characteristics of the evaluated applications.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

 2
00

00

T
o

ta
l
u

ti
liz

e
d

 c
lu

s
te

r
m

e
m

o
ry

 (
G

B
)

Time (s)

YARN
YARN-ME

(a) Cluster memory utilization – 5 runs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000 12000

T
o

ta
l
e

la
s
ti
c
 t

a
s
k
s
 r

u
n

n
in

g

Time (s)

MAP
REDUCE

(b) elastic tasks – 5 runs

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(c) Improvement over YARN

Figure 4: YARN-ME vs. YARN for running Pagerank on 50 nodes. Fig. 4a shows the timeline of cluster memory
utilization. Fig. 4b shows the timeline of tasks scheduled elastically. Fig. 4c reports improvement w.r.t. average job
runtime (JRT), average job phase time (map, reduce), and makespan.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(a) WordCount

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(b) Recommender

 0

 10

 20

 30

 40

 50

 60

 70

 80

Overall Pagerank Recommender Worcount

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Trace job type

JRT
MAP

REDUCE
MAKESPAN

(c) Mixed job trace – 14 jobs

Figure 5: Improvement of YARN-ME over YARN for various applications on 50 nodes w.r.t. average job runtime
(JRT), average job phase runtime (map, reduce), and makespan. We report average, min. and max. over 3 iterations.
Fig. 5c reports results for a mixed trace of jobs: 3x Pagerank, 3x Recommender, 8x Wordcount.

6.1 Simulation Methodology

Simulator We built DSS (Discrete Scheduler Simu-
lator), a discrete-time simulator for YARN, and we made
the code publicly available 1. In DSS, simulated tasks do
not perform computation or I/O. The tasks are simulated
using task start and task finish events. We simulate a
cluster with 16 cores and 10GB of RAM per node. Mem-
ory is assigned to tasks with a granularity of 100MB.
Jobs are ordered according to YARN’s fair-scheduling
policy [1]. Each task uses 1 core. The minimum amount
of memory allocatable to a task is set to 10% of its ideal
requirement. We use a 100-node cluster to perform a pa-
rameter sweep but also show results for up to 3000 nodes.
Simulation traces A trace contains for each job:
the job submission time, the number of tasks, the ideal
amount of memory for a task, and task duration. Each

1https://github.com/epfl-labos/DSS

job has one parallel phase. Job arrivals are uniformly
random between 0 and 1000s. The other parameters are
varied according to either a uniform or an exponential
random distribution. We use 100-job traces but also show
results for up to 3000 jobs.
Modeling elasticity Since the simulated jobs have
only a single phase we only use the reducer penalty
model from §2. We show results for 1.5x and 3x penal-
ties, to cover the range of penalties measured in §2.
Metrics We use average job runtime to compare the
different approaches.

6.2 Simulation experiments
YARN-ME vs. YARN We perform a parameter sweep
on 3 trace parameters: memory per task, tasks per job
and task duration. Table 2 shows the different parame-
ter ranges. We keep the min constant and vary the max
within an interval to perform the sweep. This gives us a

USENIX Association 2017 USENIX Annual Technical Conference 105

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

YARN-ME normalized to YARN wrt. average job runtime

1.5x penalty, unif, 50th
1.5x penalty, unif, max
3x penalty, unif, 50th
3x penalty, unif, max

1.5x penalty, exp, 50th
1.5x penalty, exp, max
3x penalty, exp, 50th
3x penalty, exp, max

(a) YARN-ME vs. YARN (avg job runtime)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

Y
A

R
N

-M
E

 n
o
rm

.
to

 Y
A

R
N

 w
rt

.
a
v
e
ra

g
e
 j
o
b
 r

u
n
ti
m

e

Trace size (Nr jobs and nr of nodes)

1.5x penalty, unif, 50th
1.5x penalty, unif, max
3x penalty, unif, 50th
3x penalty, unif, max

(b) Impact of scaling trace size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

YARN-ME normalized to Meganode wrt. average job runtime

1.5x penalty - unif
3x penalty - unif

1.5x penalty - exp
3x penalty - exp

(c) YARN-ME vs. Meganode (avg job runtime)

Figure 6: CDFs of average job runtime in YARN-ME vs. YARN (a) and vs. the idealized Meganode (c). YARN’s
benefits hold for traces of varying size (b).

range for each parameter, which is then varied indepen-
dently of the others. We draw the values from a uniform
or exponential random distribution. We perform 100 runs
for each combination of 3 ranges (one for each parame-
ter) and show the median and the maximum (worst-case)
results for normalizing YARN-ME to YARN in Fig. 6a.
We use 100-job traces on 100 nodes.

dist tasks / job task mem (GB) task duration (s)
min max min max min max

unif 1 [200,400] 1 [2,10] 1 [200,500]
exp 1 [20,220] 1 [2,10] 50 [100,500]

Table 2: Trace parameter sweep ranges.

The uniform distribution yields bigger benefits be-
cause it leads to more memory fragmentation in YARN.
As expected, YARN-ME’s improvements are larger if
penalties are lower. The cases in which YARN-ME does
not improve on YARN are either when the cluster uti-
lization is very low or when most tasks have very small
memory requirements. In such cases, memory elasticity
is less beneficial. Nevertheless, for 3x penalty and a uni-
form distribution, 40% of the configurations have a ratio
of YARN-ME to YARN of at most 0.7.

Fig. 6b shows the behavior of one uniform trace in a
weak scaling experiment. We scale the trace and cluster
size simultaneously from 100 to 3000. The benefits of
YARN-ME hold despite the scaling.
The need for elasticity (YARN-ME vs. Meganode)
We next show that YARN-ME yields improvements
beyond the reach of current elasticity-agnostic sched-
ulers. We compare against an idealized scenario
(called Meganode) which serves as an upper-bound for
elasticity-agnostic solutions that improve average job
runtime. The Meganode pools all cluster resources into
one large node with a memory and core capacity equal
to the aggregate cluster-wide core and memory capacity
available for YARN-ME. Thus, the Meganode does away
with machine-level memory fragmentation. Meganode
uses a shortest remaining job first (SRJF) scheduling pol-
icy because that is known to improve average job run-

JRT of YARN-ME normalized to YARN

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

C
D

F

a) Duration

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

b) Ideal memory

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

c) Penalty

[-0.50:0.0)
[-0.15:0.0)

0.0
(0.0:0.15]
(0.0:0.50]

Figure 7: Sensitivity to mis-estimations. 3x penalty.

time. However, in using SRJF, YARN-ME obeys the ex-
isting fairness policy whereas Meganode does not.

Fig. 6c compares the averge job runtime for Megan-
ode and YARN-ME on 20.000, 100-job traces on 100
nodes. While it is expected that Meganode wins in many
cases, YARN-ME beats Meganode for 40%-60% of the
cases for the uniform trace and for 20% of the exponen-
tial trace for 1.5x penalty. YARN-ME gains because it
turns even small amounts of memory fragmentation into
an opportunity by scheduling elastic tasks.

Sensitivity to mis-estimations Further, we show that
YARN-ME is robust to mis-estimations. We generate
20,000 traces with each of the trace parameters (mem-
ory per task, tasks per job, and task duration) follow-
ing an exponential random distribution, within bounds of
[0.1,10] GBs, [1,100] tasks, and [50,500] seconds. We
simulate mis-estimations by altering the duration, ideal
memory, and performance penalty of tasks for both reg-
ular and elastic allocations. This forces the scheduler
to make decisions based on imperfect information. We
change each parameter fractionally by a uniformly ran-
dom factor in the intervals of (0,0.15], and (0,0.5] (0.15
represents a 15% higher value). The former interval rep-
resents the worst-case deviation of our model in Fig. 1c,

106 2017 USENIX Annual Technical Conference USENIX Association

while the latter is an extreme example chosen to stress
YARN-ME. We present both positive and negative mis-
estimations. Fig. 7 presents the ratio between average
job completion time with YARN-ME and YARN, for a
3x penalty – one of the highest penalties measured in §2.
Sensitivity to task duration mis-estimation YARN-
ME is robust to task duration mis-estimation, which can
occur due to system induced stragglers or data locality.
The timeline generator of the simulator bases its infor-
mation on task durations from the trace. We alter each
actual task runtime by a different factor.

For [−0.15,0.5], YARN-ME achieves gains similar to
the scenario without mis-estimations on all traces. Even
for the very large [−0.5,0) mis-estimations, the gains are
still comparable, with only ∼35% of the traces report-
ing at most 10% lower gains. This is due to tasks being
shorter than the timeline generator expects, resulting in a
few elastic tasks exceeding the estimated job finish time.
Sensitivity to model mis-estimations YARN-ME is
also robust to model mis-estimations, which may occur
during profiling. We change task memory (Fig. 7b) and
penalty (Fig. 7c) by a different value for each job.

YARN-ME improves by up to 45% in the case of pos-
itive mis-estimation of ideal memory (Fig. 7b). In this
case, all tasks (in both YARN and YARN-ME) spill data
to disk and become penalized tasks. However, penalties
in YARN-ME are lower because YARN-ME can choose
the under-sized allocation that minimizes penalty while
YARN lacks this capability. Negative mis-estimation of
ideal memory has negligible impact.

In the case of penalty mis-estimation (Fig. 7c), only
the (0,0.5] runs exhibit gains reduced by at most 4%.
This is due to the scheduler being more conservative
since it perceives elastic tasks as taking longer.

7 Related Work
Current schedulers do not leverage memory elasticity.
Next, we review the most related mechanisms employed
by current schedulers.

Tetris [16] improves resource utilization (including
memory) by better packing tasks on nodes. It adapts
heuristics for the multi-dimensional bin packing prob-
lem to the context of cluster scheduling. However, it only
schedules a task on a node that has enough memory avail-
able to cover its estimated peak memory requirements.

Heracles [22] aggressively but safely collocates best-
effort tasks alongside a latency critical service. It does
this by dynamically managing multiple hardware and
software mechanisms including memory. However, Her-
acles only considers RAM bandwidth and not capacity.

Apollo [7] is a distributed scheduler that provides
an opportunistic scheduling mode in which low prior-
ity tasks can be scheduled using left-over memory un-
used by normal priority tasks. Normal priority tasks are

scheduled only if their resource demands are strictly met.
Apollo has no principled way of reasoning about the per-
formance implications of opportunistic allocations nor
does it provide a decision mechanism about when such
allocations are useful. Borg [26] provides similar capa-
bilities with a centralized design.

Quasar [12] leverages machine-learning classification
techniques to reason about application performance with
respect to scale-up allocations. A greedy algorithm
places tasks starting with nodes that give the best per-
formance satisfying application SLOs and improving re-
source utilization. Quasar does not identify nor discusses
memory elasticity.

ITask [13] is a new type of data-parallel task that can
be interrupted upon memory pressure and have its mem-
ory reclaimed. The task can then be resumed when the
pressure goes away. ITask is a system-level mechanism
that uses preemption to mitigate unmanageable memory
pressure before it can hurt system performance. Memory
elasticity can work in tandem with ITask, since elastic
tasks will need less time to spill, and thus can be pre-
empted and resumed faster than regular tasks.

8 Conclusion

The main contribution of this paper is identifying, quan-
tifying and demonstrating memory elasticity, an intrin-
sic property of data-parallel workloads. Memory elas-
ticity allows tasks to run with significantly less memory
than ideal while incurring only a moderate performance
penalty. We show that memory elasticity is prevalent
in the Hadoop, Spark, Tez and Flink frameworks. We
also show its predictable nature by building simple mod-
els for Hadoop and extending them to Tez and Spark.
Applied to cluster scheduling, memory elasticity helps
reduce task completion time by decreasing task waiting
time for memory. We show that this can be transformed
into improvements in job completion time and cluster-
wide memory utilization. We integrated memory elastic-
ity into Apache YARN and showed up to 60% improve-
ment in average job completion time on a 50-node cluster
running Hadoop workloads.
Acknowledgements We thank our anonymous re-
viewers and our shepherd, Christina Delimitrou, for
valuable feedback and advice. We thank Laurent
Bindschaedler, Diego Didona, Christos Gkantsidis,
Ashvin Goel, Sergey Legtchenko, Baptiste Lepers, T. S.
Eugene Ng, Amitabha Roy, and Yiting Xia for feedback
and suggestions on earlier drafts of the paper and in-
sightful discussions. We also thank Rolf Möhring, Roel
Leus, and Sigrid Knust for valuable explanations regard-
ing RCPSP, and Adrian Popescu for providing the TPC-
DS queries.

USENIX Association 2017 USENIX Annual Technical Conference 107

References
[1] Hadoop MapReduce Next Gen-

eration - Fair Scheduler.
http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html.

[2] Hardware Platform Specifications.
http://www.nutanix.com/products/hardware-
platforms/.

[3] Improving Sort Performance in
Apache Spark: It’s a Double.
http://blog.cloudera.com/blog/2015/01/improving-
sort-performance-in-apache-spark-its-a-double/.

[4] The Bigdata Micro Benchmark Suite.
https://github.com/intel-hadoop/HiBench.

[5] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,
I. Stoica, and J. Zhou. Re-optimizing data-parallel
computing. In Proc. NSDI 2012.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Shufflewatcher: Shuffle-aware
scheduling in multi-tenant mapreduce clusters. In
Proc. USENIX ATC 2014.

[7] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
coordinated scheduling for cloud-scale computing.
In Proc. OSDI 2014.

[8] P. Brucker, A. Drexi, R. Moerhing, K. Neu-
mann, and E. Pesch. Resource-constrained project
scheduling: Notation, classification, models, and
methods. In European Journal of Operational Re-
search, Volume 112, Issue 1, 1 January 1999, Pages
3–41.

[9] I. Cano, S. Aiyar, and A. Krishnamurthy. Char-
acterizing private clouds: A large-scale empirical
analysis of enterprise clusters. In Proc. SoCC 2016.

[10] Y. Chen, S. Alspaugh, and R. Katz. Interactive an-
alytical processing in big data systems: A cross-
industry study of mapreduce workloads. In Proc.
VLDB 2012.

[11] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan,
R. Ramakrishnan, and S. Rao. Reservation-based
scheduling: If you’re late don’t blame us! In Proc.
SoCC 2014.

[12] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In Proc. ASPLOS 2014.

[13] L. Fang, K. Nguyen, G. Xu, B. Demsky, and
S. Lu. Interruptible tasks: Treating memory pres-
sure as interrupts for highly scalable data-parallel
programs. In Proc. SOSP 2015.

[14] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: Guaranteed job latency in
data parallel clusters. In Proc. EuroSys 2012.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, S. Shenker, and I. Stoica. Dominant resource
fairness: Fair allocation of multiple resource types.
In Proc. NSDI 2011.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In Proc. SIGCOMM 2014.

[17] R. Grandl, M. Chowdhury, A. Akella, and G. Anan-
thanarayanan. Altruistic scheduling in multi-
resource clusters. In Proc. OSDI 2016.

[18] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. Graphene: Packing and dependency-
aware scheduling for data-parallel clusters. In Proc.
OSDI 2016.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In Proc. NSDI 2011.

[20] V. Jalaparti, P. Bodik, I. Menache, S. Rao,
K. Makarychev, and M. Caesar. Network-aware
scheduling for data-parallel jobs: Plan when you
can. In Proc. SIGCOMM 2015.

[21] S. A. Jyothi, C. Curino, I. Menache, S. M.
Narayanamurthy, A. Tumanov, J. Yaniv, R. Mav-
lyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao. Morpheus: Towards automated SLOs for
enterprise clusters. In Proc. OSDI 2016.

[22] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proc. ISCA 2015.

[23] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in
data analytics framework. In Proc. NSDI 2015.

[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz,
and M. A. Kozuch. Heterogeneity and dynamicity
of clouds at scale: Google trace analysis. In Proc.
SoCC 2012.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,

108 2017 USENIX Annual Technical Conference USENIX Association

J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proc. SOCC 2013.

[26] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proc. Eu-
roSys 2015.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proc. NSDI 2012.

[28] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin,
J. Y. Li, W. Lin, J. Zhou, and L. Zhou. Optimizing
data shuffling in data-parallel computation by un-
derstanding user-defined functions. In Proc. NSDI
2012.

USENIX Association 2017 USENIX Annual Technical Conference 109

Popularity Prediction of Facebook Videos
for Higher Quality Streaming

Linpeng Tang∗, Qi Huang[, Amit Puntambekar[, Ymir Vigfusson†, Wyatt Lloyd‡,[, Kai Li∗
∗Princeton University, †Emory University/Reykjavik University, ‡University of Southern California, [Facebook Inc.

Abstract

Streaming video algorithms dynamically select between
different versions of a video to deliver the highest quality
version that can be viewed without buffering over the
client’s connection. To improve the quality for viewers,
the backing video service can generate more and/or better
versions, but at a significant computational overhead.
Processing all videos uploaded to Facebook in the most
intensive way would require a prohibitively large cluster.
Facebook’s video popularity distribution is highly skewed,
however, with analysis on sampled videos showing 1% of
them accounting for 83% of the total watch time by users.
Thus, if we can predict the future popularity of videos, we
can focus the intensive processing on those videos that
improve the quality of the most watch time.

To address this challenge, we designed Chess, the first
popularity prediction algorithm that is both scalable and
accurate. Chess is scalable because, unlike the state-of-
the-art approaches, it requires only constant space per
video, enabling it to handle Facebook’s video workload.
Chess is accurate because it delivers superior predictions
using a combination of historical access patterns with
social signals in a unified online learning framework. We
have built a video prediction service, ChessVPS, using
our new algorithm that can handle Facebook’s workload
with only four machines. We find that re-encoding popular
videos predicted byChessVPS enables a higher percentage
of total user watch time to benefit from intensive encoding,
with less overhead than a recent production heuristic, e.g.,
80% of watch time with one-third as much overhead.

1 Introduction

Video is increasingly a central part of people’s online
experience. On Facebook alone, there are more than 8
billion video views each day [2]. Clients stream these
videos by progressively downloading video chunks from
a provider according to an adaptive bitrate (ABR) [33, 39]
algorithm. ABR algorithms strive to dynamically select
the version of a video with the highest bitrate a connection
can sustain without pausing. Higher bitrates provide
higher quality, but are larger and thus require clients
to have higher-bandwidth connections. The different
versions of the video used by ABR algorithms are typically
generated when a video is uploaded [3]. Generating the

different versions for the large volumes of videos uploaded
to Facebook each day requires a large fleet of servers.

There is a trade-off between the amount of computation
spent processing a video to prepare it for streaming and
the quality of experience for viewing that video. Videos
uploaded to Facebook are by default encoded to a small
number of standard versions with FFmpeg [16]. However,
investing in more computation can improve playback
experience by improving or increasing the choices for the
ABR algorithm. First, more computation can improve
the choices by further compressing a video at a fixed
quality. For instance, Facebook’s QuickFire engine [1]
uses up to 20× the computation of the standard encoding
to produce a version of the video with similar (or higher)
quality that is ~20% smaller than the standard encoding.
Second, more computation can increase the choices for
the streaming algorithm by generating more versions
of the video at different bitrates. In both cases, added
computation increases the highest quality version of a
video that can be streamed for some users.

Unfortunately, it is infeasible to compute the highest-
quality encodings for all videos. Using QuickFire and
increasing the number of versions of each video, for
example, would require a fleet at several tens the scale of
the already large processing fleet at Facebook. Fortunately,
video popularity is highly skewed, with 1% of the videos
accounting for over 80% of the watch time, i.e., the time
users spend viewing video. This skewenables us to achieve
most of the quality improvement with only a fraction of the
computation by generating the highest-quality encodings
for only the most popular videos.

The challenge in exploiting this insight is in scalably and
accurately predicting the videos that will become popular.
State of the art popularity prediction algorithms [9, 10, 45]
are accurate but do not scale to handle the Facebook
video workload because they keep per-video state that is
linear in its past requests. Simple heuristics that exploit
information from the social network scale, but are not
accurate. For example, predicting popular videos based on
owner like count requires 8×more resources to cover 80%
of watch time than what would be needed with clairvoyant
predictions, which only runsQuickFire encoding on videos
with the largest future watch time.

We overcome this challenge with Chess—Constant
History, Exponential kernels, and Social Signals—the

USENIX Association 2017 USENIX Annual Technical Conference 111

first scalable and accurate popularity prediction algo-
rithm. Chess is scalable because it uses constant per-video
state, needing only ~20GB to handle the Facebook video
workload. Chess is accurate: it outperforms even the
non-scalable state-of-the-art algorithm. Two key insights
led to Chess. First, we approximate the history of all
de-identified past accesses to a video with exponentially-
decayed watch time (§4.1) in a few fixed-size time win-
dows, each of which is not highly accurate but small and
fast to compute. Second, we combine those constant
sized historical features through a continuously updated
neural network model to obtain state-of-the-art accuracy,
and then further improve it by leveraging social network
features—e.g., the like count of video owner—while re-
maining scalable.

We validate Chess’s scalability by building ChessVPS,
a video prediction service based on Chess, that requires
only four machines to provide popularity prediction for
all of Facebook’s videos. ChessVPS has been deployed,
providing query-based access to new predictions updated
every ten minutes, although its predictions are not yet
used to inform encoding choices in production.

Our evaluation compares Chess against the state-of-the-
art non-scalable prediction algorithms, simple scalable
heuristics, and a clairvoyant predictor using traces of
Facebook’s video workload. We find Chess delivers
higher accuracy than all achievable baselines, and provides
QuickFire-encoded videos for more user watch time with
less re-encoding. Compared to the heuristic currently used
in production, Chess improves the watch time coverage
of QuickFire by 8%–30% using same CPU resources for
re-encoding. To cover 80% of watch time, Chess reduces
the overhead from 54% to 17%.

The contributions of this paper include:

• The case for video popularity prediction services to
improve streaming quality. (§3)

• The design of Chess, the first scalable and accurate
popularity prediction algorithm. (§4)

• The implementation of ChessVPS, a prediction service
for Facebook videos that uses only four machines. (§5)

• An evaluation using Facebook’s workload that shows
Chess achieves state-of-the-art prediction accuracy, and
delivers high watch time coverage for QuickFire with
low CPU overhead from re-encoding. (§6)

2 Background

The workflow of videos on Facebook, which starts with an
upload and finishes with streaming, is shown in Figure 1.
When a video is uploaded, it is immediately encoded
with the H.264 codec to a few standard versions for
streaming [40]. The encoded files are durably stored in a
backend [5, 32]. In addition, the original upload is kept

Backend Storage
Original Videos

(Temporary)
Encoded Videos

Standard H.264, QuickFire

Write

Standard/QF
Video Chunks

Read

Upload

Streaming Video Engine

Bit-rate
selector

Chunks

FBCDN

ABR Video Client

GET

Figure 1: The workflow of videos on Facebook. Addi-
tional processing in the Streaming Video Engine can
lead to higher quality video delivery to the client by
giving the ABR algorithm better choices.

for several days during which it can be re-encoded with
QuickFire, used to generate more versions, or both.
Videos are shown to users by a player that downloads

progressive chunks of the video from a content distribution
network [22, 38]. The player dynamically tries to stream
the highest quality version of a video it canwithout pausing
using an ABR algorithm [33, 39]. There are a variety
of ABR algorithms [23, 24, 25, 42], but they typically
estimate the bandwidth of a user’s connection and then
select the largest bitrate that is less than that bandwidth.
Generating additional bitrate versions of a video thus

improves quality for some users. For example, consider
two versions of a video with bitrates of 250 Kbps and 1
Mbps. Generating a third version with a bitrate of 500
Kbps would improve quality for all users with bandwidth
between 500 Kbps and 1Mbps. This is one way additional
processing can yield higher-quality video streaming.

Another way to improve video quality is by generating
more compressed versions of a video that yield similar or
higher video quality at a lower bitrate. FFmpeg’s H.264
encoding offers several preset parameters that range from
“ultrafast” to “veryslow”. Moving to slower encodings
yields more compressed versions with the same quality.
Facebook’s QuickFire [1, 41] technology provides a more
extreme trade-off. It intelligently tries many encodings for
each chunk of a video, and picks the smallest one with sim-
ilar or higher quality—client-side decoding is unaffected
because each chunk is H.264 compatible. QuickFire can
be configured to try 7–20 encodings; we use 20 in this
work due to its higher compression.

We quantified this processing/bitrate trade-off for the
FFmpeg presets and QuickFire for 1,000 randomly se-
lected videos uploaded to Facebook in one month of 2016.
The results of this experiment confirmed that more pro-
cessing can be used to find better-compressed versions of
a video at the same quality. In particular, using QuickFire

112 2017 USENIX Annual Technical Conference USENIX Association

takes 20× the processing of “veryslow”1 but yields a 21%
reduction in bitrate for the same quality. This in turn in-
creases the quality of video for some users. For example,
consider a 1 Mbps “veryslow” encoding. Generating the
QuickFire encoding would yield the same quality at ~800
Kbps. Users with bandwidth between 800 Kbps and 1
Mbps could then stream this higher quality version.
More processing improves the quality of videos that

users can stream. Maximally processing all videos would
require increasing the already huge number of processing
machines by 1-2 orders of magnitude, which is infeasible.
Our goal in this paper is to instead extract most of the
benefit of using the maximum processing on all videos,
but without requiring a substantially larger fleet of ma-
chines. We next explain how a scalable and accurate video
popularity prediction service helps meet this objective.

3 Motivation and Challenges

This section makes the case for a video popularity predic-
tion service and lays out the challenges of building one,
including the need to be quick, accurate, and scalable.

3.1 High Skew Motivates Prediction
Predicting the popularity of videos is compelling because
it can guide more processing to where it can do the most
good. A small core of videos in Facebook’s workload
account for most of the time spent watching videos. Thus,
if we know what videos will be watched the most in the
future, we can focus additional processing on them.
Figure 2a quantifies the skew of Facebook’s video

workload with the watch time of 1 million randomly
sampled videos in one month. The left sub-figure shows
the watch time of each unique video, ordered by popularity
rank in a log-log scale. For example, the most popular
video in the sampled trace has 13 years ofwatch time in one
month, while the 10, 000th most popular video out of the
million is watched for 42 hours. The shown distribution of
watch times follows a power-law with exponent α = 1.72.
(Related work has shown that access to Facebook photos
also follows a power-law distribution with α = 1.84 [22].)
The right sub-figure of 2a shows the potential benefit

from exploiting this skew. The cumulative ratio of video
watch time represented by videos with a given rank or
higher is depicted. For example, the top 0.1%/1% of
videos account for 62%/83% of the watch time, respec-
tively. Thus, if we use the maximum processing on only
1% of videos we would benefit from increased streaming
quality for over 80% of all video watch time. The cumu-
lative watch time ratio is an upper bound on the benefits
of popularity prediction because it ranks videos based on

1We could not directly measure the processing time of QuickFire so
we approximate it as 20× that of “veryslow” because it encodes each
chunk of the video ~20 times

100101102103104105106

Video rank

102
103
104
105
106
107
108
109

W
a
tc

h
 t

im
e
 (

se
c)

100101102103104105106

Video rank

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 r

a
ti

o

(a) Watch time distribution of sampled videos

0 1 2 3 4 5 6 7
Time since video upload (day)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

H
o
u
rl

y
 w

a
tc

h
 t

im
e

 (
se

c)

1e7

A

B

C

D

E

(b) Hourly watch time of five example videos

Figure 2: Facebook videos access patterns.

their exact accesses, i.e., it represents the benefit from
having perfect predictions at the time a video is uploaded.

3.2 Prediction is Challenging
The difficulty in exploiting the skew lies in being able to
quickly, accurately, and scalably predict the popularity
of individual videos. Prediction needs to be quick so
not many views of the video are missed while waiting
for prediction results. Prediction needs to be accurate so
computation is spent on videos that reap the most benefit.
Finally, prediction needs to be scalable so it can handle
video workloads at a global scale like Facebook.

Tomotivate each of these points, wemanually examined
the access pattern of 25 videos in the one month trace
with rank 10,000–10,024, i.e., they are near the cut-off
for the top 1% of popularity and all have a similar total
watch time. Figure 2b shows the access patterns of 5
representative videos. The other 20 videos have access
patterns that resemble one of the depicted patterns.

The Need for Quick Prediction The video access pat-
tern peaks quickly for videos A – D in Figure 2b. This
indicates we need our video prediction service to run
quickly. If our prediction takes longer than the interval
between when a video is uploaded and when it peaks,
then much of the watch time will have already taken place
when the prediction is ready. To further demonstrate this
point, we analyzed the full one month trace and found that
the most popular 1/4/16 hours of each video accounts for
6.3%/19%/29% of watch time. Previous work on video
popularity [18, 36] considered popularity on a daily basis.
Such methods, if applied on our workload, would have
a large delay in prediction and would miss a significant
portion of the total watch time. Instead, we aim for quick
predictions on the order of minutes.

USENIX Association 2017 USENIX Annual Technical Conference 113

The Need for Accurate Prediction The variety of ac-
cess patterns in Figure 2b suggests that accurately pre-
dicting future watch time will be challenging. Prediction
needs to be accurate so additional computation is used
where it will be the most useful. Using simple heuris-
tics based on features from the social network is quick,
but unfortunately is not accurate. For instance, a recent
production heuristic was to re-encode a video if the like
count of the owner exceeded 10,000. As our evaluation in
Section 6 shows, this heuristic is inaccurate: it requires
re-encoding 8× as many videos as a clairvoyant predictor
to cover 80% of the video watch time. Our goal is to
provide predictions with higher accuracy so higher watch
time coverage can be achieved with fewer resources.

The Need for Scalable Prediction Video popularity
prediction for Facebookmust be scalable because there are
tens of millions of videos uploaded each day. Identifying
popular videos thus requires predicting the popularity
of a large active set of videos. In the video prediction
service described in Section 5 we track 80 million videos.
The previous state of the art in popularity prediction,
SEISMIC, is accurate but unfortunately does not scale to
our workload because it stores the timestamp and watch
time of each past request. This linear per-video state
would require ~10TB of memory to make predictions for
80 million videos, and methods requiring more features
per request [10] have an even larger memory usage.

4 The Chess Prediction Algorithm

Achieving high watch time coverage through additional
processing requires quick, accurate, and scalable predic-
tion of video popularity. This section describes the core of
Chess, the novel prediction algorithm we designed with
these goals in mind. We focus on three key features:

1. Harnessing past access patterns with constant space
and time overhead.

2. Combining different features in a unified model.
3. Efficient online training using the recent access data.

4.1 Utilizing Past Access Patterns with EDWT

A common theme in popularity prediction is exploiting
past access patterns [13, 36, 43, 45]. The state of the art
approaches do so by modeling behavior as a self-exciting
process that predicts future accesses based on all past
accesses. A past access at time t is assumed to provide
some influence on future popularity at time τ, as modeled
by a kernel function φ(τ − t). The kernel function, φ,
is a probability density function defined on [0,+∞), and
it is commonly chosen to be a decreasing function, so
that a session’s influence is initially high and gradually
converges to zero over time.

Self-exciting processes predict future popularity—i.e.,
watch time—based on the sum of the influence of all past
requests from the current time to infinity. Let i be an index
over the past viewing sessions of a video. Let ti and xi be
the corresponding timestamp and watch time, respectively
of the session. Then, for the purposes of ranking different
videos, the total future watch time for i is modeled as

F̃ (t) =
∑
ti ≤t

∫ +∞

τ
xiφ(τ − ti)dτ.

One key insight in Chess is using a kernel that allows
for efficient updates to popularity predictions. Previous
popularity prediction algorithms used power-law kernels
that provide high accuracy predictions, but require each
new prediction to compute over all past accesses [13, 45].
This requires storage and computation linear in the past
requests to each video, which is not feasible in our setting.
In contrast, we set φ to be the exponential kernel, or
φ(t) = 1

w exp (−t/w), where w represents a time window
modeling how long past requests’ influence lasts into the
future. Such a kernel allows us to simplify the computation
of a new prediction to only require the last prediction, F̃,
and its timestamp, u, which drastically reduces the space
and time overhead. Below is the simplified update rule for
a new session with watch time x beginning at time t with
a previous session having occurred at time u < t. The
resulting prediction is the exponentially decayed watch
time (EDWT):

F̃ (t) =
∑
ti ≤t

xi

∫ ∞

t

φ(τ − ti)dτ

=
x
w
+

∑
ti ≤u

xi exp
(
−(t − ti)

w

)
=

x
w
+ exp

(
−(t − u)

w

) ∑
ti ≤u

xi exp
(
−(u − ti)

w

)
=

x
w
+ exp

(
−(t − u)

w

)
F̃ (u). (1)

4.2 Combining Efficient Features in a Framework
While EDWTs are efficiently computable, they are weaker
predictors of popularity than self-exciting processes with
more complex kernels as shown in our evaluation (§6). We
overcome this limitation of EDWTs with the second key
insight in the Chess design: combining many weak, but
readily computable, signals through a learning framework
achieves high accuracy while remaining efficient. We
use a neural network as our learning framework with two
types of features as input: stateless and stateful.
Stateless features are quantities that do not change

dramatically during the life-cycle of a video. A prediction
service does not need to keep any state associated with
these features or their past values. Instead it can query

114 2017 USENIX Annual Technical Conference USENIX Association

them from the social network at prediction time. For
our purposes, the most important are the social features,
including the number of likes and friends of the video
owner. They also include the video’s length, its age, and
several other easily queryable social features.

Stateful features are quantities that can vary dynamically
throughout the life-cycle of the video. Past access patterns
are one type of stateful feature. The changing pattern of the
number of comments, likes, shares, saves for later viewing,
etc. are all stateful features as well. They are stateful in
that a prediction service needs to keep state associatedwith
them between predictions. We use exponential kernels to
keep this state constant per-video and we combine four
kernels with different time windows—1, 4, 16, and 64
hours—to capture more complex patterns.
We use the stateless and stateful features as input to a

2-layer neural network (NN) with 100 hidden nodes for
predicting total future watch time. We find that neural
networks reduce the prediction error by 40% compared
to linear models, but more complex models, i.e., adding
more layers or using more hidden nodes do not further
improve accuracy. We initially selected all features from
the social network that we thought could provide some
signal and then trimmed those that did not have an effect
on prediction accuracy. We made features stateless or
stateful based on our intuition, e.g., friends of the video
owner is stateless because it changes little during the
lifetime of the video. We also tried several different sets
of time windows for stateful features and settled on 1,
4, 16, and 64 hours as providing the highest accuracy.
We did this feature engineering using a setup similar to
the single prediction experiments in our evaluation, on a
separate and earlier month-long trace.
Another important technique for boosting accuracy is

logarithmic scaling of both the feature values and predic-
tion targets. Because these values can vary from 10-108

depending on video popularity, they need to be prop-
erly scaled to avoid optimization difficulties. Although
linear scaling, in the form of standardization [6], is the
commonly used method in statistical learning, we find
that logarithmic scaling, i.e., x → log(x + 1), delivers
much better performance for our workload. It ensures
the model is not biased towards only predicting extremely
popular videos, achieves good prediction accuracy across
the whole popularity spectrum, and improves the coverage
ratio of QuickFire by as much as 6% over linear scaling.
We use this method in all our evaluations.

4.3 Efficient Online Model Update

Naively training our model would require a large set of
training examples with their full future watch time, which
is unknown. To address this issue, we use an example
queue to generate training examples from the recent past,
and use them as approximations for the future. When

a video is accessed, its current state is appended to the
queue. While the video is in the queue we track its watch
time and feature values. Later, when an example is evicted
from the queue it becomes training data with the difference
in watch time between its entry and eviction used as the
target future watch time. As an added benefit, because
examples keep entering and being evicted from the queue,
the prediction model is continuously updated at a constant
learning rate to keep up with changes in the workload.
The example queue needs to be carefully designed in

order to minimize the memory and CPU overhead while
achieving the best model accuracy. We found that two
design parameters are key to balancing this trade-off:
prediction horizon and example distance. Section 6.3
investigates the effect of varying each parameter and
shows that setting them properly leads to high accuracy
with low memory and CPU overhead.

The prediction horizon is the time difference between
entry and eviction of examples from the queue. In other
words, an example is evicted and becomes training data
when its age in the queue exceeds the prediction horizon.
A larger horizon provides a better approximation of total
future watch time, but it also results in a longer queue with
higher memory usage. For our workload, a prediction
horizon of 6 days achieves a good tradeoff with high
accuracy and low overhead.
We found our example queue was flooded by data

points from the most popular videos due to the skewed
power law distribution in video access. Many of these
data points were effectively redundant and did not help
improve accuracy. This is because the input values and
the prediction target will be very similar for the same
video at two nearby time points. We skip these redundant
examples using an admission policy that only allows a
new example into the queue if the difference between its
timestamp and the most recent example for the same video
is greater than a threshold. We call this threshold the
example distance D because it ensures there is at least D
time between all examples of the same video. Although
this alters the training data distribution, we find D = 2h
achieves high accuracy while greatly reducing memory
overhead, due to the high skew and large volume of data.

5 The Implementation of ChessVPS

To make video popularity predictions continuously avail-
able we implemented the Chess video prediction service
(ChessVPS). ChessVPS validates the scalability of our
design by providing popularity prediction for Facebook’s
video workload while running on only four machines.

Figure 3 provides a high-level view of the architecture of
ChessVPS. The service uses 8 workers distributed across
4 machines to generate predictions on the full workload.
The key steps in the process are: 1) ingesting access logs,

USENIX Association 2017 USENIX Annual Technical Conference 115

2) querying for additional features, 3) making predictions,
4) serving predictions, and 5) updating the models.

Ingesting Access Logs Video accesses on Facebook
are logged to Scribe [15]. We ingest the access logs
by continuously streaming them from Scribe. To han-
dle this streaming load—as well as distribute prediction
computation—we use 8 worker processes on 4 machines.
The access logs in Scribe are sharded based on video ID
and each worker streams one-eighth of the shards.

Querying for Additional Features Each worker aug-
ments the access logs with the additional features it queries
from TAO [7], Facebook’s cache for the social graph. Cur-
rent values of these features are already stored in TAO,
e.g., the number of likes of a video is stored in TAO so it
can be presented along with the video. Stateless features
are directly added to each access of a video. The 4 expo-
nentially decayed counters for each stateful features, with
varying time windows, are updated upon every access,
and the values added to the feature set as well.
We reduce the overhead from querying for additional

features in three ways. First, we batch queries and only
dispatch them once we have ingested 1000 accesses. Sec-
ond, we deduplicate queries for the same video in a batch.
Third, we cache results from TAO for 10 minutes, which
reduces the load we impose on TAO by over 50%.

Making and Serving Predictions Each worker main-
tains a table with its most recent predictions for the top 10
million most popular videos in its shard. The 80 million
videos in all shards encompass the actively accessed video
working set on Facebook. After the worker queries TAO
for additional features, it updates the exponentially de-
cayed kernels, and feeds all feature values into the neural
network to calculate a prediction—the design of Chess
has enabled us to do all this in real-time, on a small set
of machines. This prediction is then used to update the
video’s entry in the table. Every 10 minutes each worker
scans its table and sorts videos based on their predictions.
An aggregator in each machine collects the top 1 million
videos from the collocated workers, and then it broad-
casts its predictions to all aggregators and waits for their
predictions. Once an aggregator has the top 1 million
predictions from all 8 workers, it merges and sorts them.
It then caches the aggregated predictions and uses them to
answer requests for the next 10 minutes. Other services,
e.g., a re-encoding service, can query any worker to learn
the videos that we predict to be the most popular.

Updating the Model and Memory Overhead To re-
duce space overhead we maintain one model and example
queue per machine (shared between two workers). We use
an example queue with a prediction horizon of 6 days and
an example distance of 2 hours to keep the memory over-
head low. We further reduce the memory overhead of the

Shard1

Shard2

Shard7

Shard8

Worker1

Worker2

Worker7

Worker8

Aggr

Sharded
access logs

Prediction
workers

Aggregated
top videos

Prediction Service

Model

Model

Streaming

Aggr

Figure 3: Chess video prediction service architecture.

example queue by only admitting a consistently sampled
30% of the videos to it—this proportionally reduces the
queue size, without causing any model overfitting.2 The
resulting example queue consumes ~6 GB of memory per
machine, or ~24 GB in total.
Each video has 12 stateless features and 7 stateful

features. These features, associated metadata, and current
popularity prediction add up to a storage overhead of ~250
bytes per video. Thus, all 80 million videos use ~20GB
RAM in total to maintain. This results in a total memory
overhead of ~44GB RAM from models and metadata, or
only ~11GB RAM per machine. In contrast, if SEISMIC
were used instead, the timestamp and watch time of each
past request would need to be stored to make predictions,
translating to 1.2MB per video on average and ~10TB
total memory usage.

6 Evaluation

Our evaluation seeks to answer three key questions for
Facebook’s video workload:

1. How does the prediction accuracy of Chess compare
to the heuristic used in production, the state of the art,
and a clairvoyant predictor?

2. What are the effects of our design decisions, such
as prediction target scaling, prediction horizon, and
example distance, on accuracy and resource usage?

3. How would adopting ChessVPS for production pro-
cessing decisions impact resource consumption and
watch time coverage?

6.1 Experimental Setup
Predictors Table 1 shows the predictors we compare
in this evaluation in three groups: baselines, increasing
subsets of Chess, and a clairvoyant predictor. Among the
baselines, we modified SEISMIC and Initial(1d) to suit
our application scenario better, and tuned their parameters

2This sampling turned out to be unnecessary, as even without it the
memory footprint per machine is still only 25GB.

116 2017 USENIX Annual Technical Conference USENIX Association

Predictor Ranking of videos based on:
Initial(1d) [36] Watch time in the initial day after upload, or total watch time if less than a day old.
SEISMIC-CF [45] State of the art popularity prediction using a power-law kernel, with followers of each

viewer set to constant for our application.
Owner-Likes Like count of the video owner. This was recently used in production.
EDWT(4h) Exponentially decayed watch time with a four hour time window.
NN(EDWT) Neural network model using only EDWT features with time windows 1h, 4h, 16h, 64h.
Chess Neural network model with stateless features (e.g., owner likes) and stateful features (e.g.,

video views, video likes) made efficient using EDWTs.
Clairvoyant Total future watch time of each video. This is unattainable in practice.

Table 1: Popularity predictors evaluated on Facebook’s video workload in our evaluation.

to yield the best performance on our dataset. The original
SEISMIC algorithm needs the number of followers of
each retweeter for predicting tweet popularity, which is
unsuitable for video watch time prediction on Facebook
because a viewer might not share the video after watching
and directly influence its followers. Based on a parameter
sweep, we settled on a constant 1000 for this setting on our
workload, with the ensuing method called SEISMIC-CF—
as shown below, its performance remains competitive even
with this modification. Initial(1d) [36] originally uses the
number of requests—watch time in our case—of the entire
first day for predicting popularity, but for our application,
if the video is less than 1 day old we use its total watch
time to generate a prediction instead of waiting.
Comparing to baselines that represent the state of the

art—Initial(1d) and SEISMIC-CF—and a recent produc-
tion heuristic—Owner-Likes—enables us to quantify how
much Chess improves on the state of the art and would
improve production. Comparing increasing subsets of
Chess—EDWT(4h) and NN(EDWT)—allows us to quan-
tify the improvement from each addition to Chess. Com-
paring to a clairvoyant predictor allows us to quantify how
far Chess is from a perfect predictor.

Experimental Methods and Workloads We use three
experimental methods with progressively more realistic re-
sults and time-consuming experiments: single prediction,
simulation, and real-time sampled processing. The single
prediction method resembles that used by prior work on
popularity prediction [18, 45] and enables comparisons
with SEISMIC. The simulation method enables us to run
many experiments in a reasonable time frame and we
validate its results using real-time sampled processing.

Workloads. Single prediction and simulation experi-
ments each use the same 35-day trace of video access
as their workload. The trace is comprised of full ac-
cess logs for a random sample of 1% of videos during 5
weeks. The workload for the real-time sampled processing
experiments was the full Facebook video workload.

Single prediction. The memory and computational
overhead of SEISMIC3 made it infeasible for us to run the
more realistic simulation (or real-time sampled processing)
experiments with it, so we designed the single prediction
method to enable evaluation against it. In this method
each predictor takes as input the historical information for
a video up to a time point and then issues predictions. The
predictions are then evaluated using the watch time of the
video in the 15 days immediately following the time point.

The input historical information and future watch time
of the videos are extracted from the trace as follows. First,
we select only the videos in the trace that are accessed on
one day at the midpoint of the trace. This limits the size of
the prediction to make the experiments feasible. Second,
we randomly pick a time point on that day for each video
to control for diurnal effects. Finally, we extract the trace
up to the time point for each video and the future watch
time in the 15 days following the time point.

Simulation. Our main evaluation method is simulation
of a video prediction service that runs hourly using our
35-day trace. In each simulation, we replay the whole
trace, train our prediction model continuously, and the
predictor ranks videos for re-encoding every hour. Once a
video is selected for re-encoding, it is recorded in a hash
table. The hash table is then queried for each request to see
whether the requested video has already been re-encoded
before. We use the initial 23 days of the trace to populate
the hash table, and report results on the last 12 days.
Real-time sampled processing. Our final evaluation

method is the most realistic and follows the description in
Section 5. Thewhole service operates on 4machines, each
with 20 2.8GHz cores and 32GB memory, and processes
access logs of all Facebook videos in real time. We
then write a client using results from ChessVPS to make
encoding decisions in 10 minute intervals. The whole
system was run for a week for warm up and we present
the results from the next day.

3The implementation of SEISMIC is ~200× slower than Chess’s
implementation. However, part of this slowdown stems from SEISMIC
being implemented in the R language [45].

USENIX Association 2017 USENIX Annual Technical Conference 117

4 8 16 32 64 128 256 5121024
Video length (sec)

1
4

16
64

256
1024

E
n
co

d
in

g
 C

P
U

 (

se
c)

medium

veryslow

Figure 4: The linear relationship between video length
and encoding CPU makes video length a reasonable
proxy for encoding CPU.

Metrics Our ideal metrics for evaluating predictors
would include the future watch time ratio of re-encoded
videos and the encoding overhead from doing additional
processing on them. Neither of these metrics is feasible for
us to collect, but we can gather reasonable approximations
of them nevertheless. In the prediction experiments, total
future watch time is impossible to collect because there is
always more future. Instead we track watch time within
a 15-day period because popularity of Facebook videos
typically stabilizes in one week (from Figure 2b). In
simulations and real-time processing, we keep track of the
watch time coverage of re-encoded videos in every hour,
and find the coverage ratio stabilizes within 5 days after
enough recently popular videos have been re-encoded, so
in simulations we have a 23 day warm-up period and report
the average coverage ratio in the next 12 days trace, while
in real-time processing we wait 1 week before reporting
results in the next day. Doing additional processing on all
videos is not feasible because it would require the use of a
fleet of machines much larger than the current processing
fleet. Instead we approximate processing overhead using
video length and by doing sampled processing.

Video length is a reasonable proxy for processing CPU.
We use video length as our overhead metric for single
prediction and simulation experiments because it is fast to
compute and a reasonable proxy for processing CPU usage.
To demonstrate it is a reasonable proxy we randomly sam-
pled 3000 videos uploaded to Facebook, bucket them by
log2 of their lengths, and show the 20th percentile, median,
and 80th percentile CPU usage for FFmpeg “medium” and
“veryslow” encodings in each bucket. While there is a
large variance in each bucket, the CPU usage is approx-
imately linear in the video length. Statistically this is a
strong linear relationship with R2 = 0.981 between length
and median CPU usage across the buckets. Based on
this observation, in both single prediction and simulation
experiments, we rank the videos with each method, and
re-encode the top videos until the total length exceeds a
threshold (representing a fixed CPU budget). We then
compute its ratio to total length of all videos, terming the
quantity “encoding length ratio”.
Sampled processing. We use measured CPU usage

from processing a sample of videos as our overhead

10-6 10-5 10-4 10-3 10-2 10-1 100

Encoding length ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 r

a
ti

o
 o

f
 f

u
tu

re
 w

a
tc

h
 t

im
e

Clairvoyant

CHESS

NN(EDWT)

SEISMIC

EDWT(4h)

Initial(1d)

Owner Likes

Figure 5: Single prediction results shown by the cumu-
lative ratio of future watch time of the videos selected
by each predictor for a given encoding length ratio.

metric for the real-time sampled processing experiment.
For this experiment, a 0.5% random sample of the selected
videos for each predictor (≈ 3000 in total) are re-encoded
using QuickFire. At the same time, 5000 videos are
sampled from the video uploads that day and encoded
with FFmpeg “veryslow”. We then calculate the overhead
for encoding the selected videos using the measured
encoding time for these two sets: let U denote the average
FFmpeg “veryslow” encoding time of the sampled video
uploads, and Q the average QuickFire encoding time of
the videos selected by one method in the sample set,
with 95% confidence interval [Q−,Q+] (computed using
scikits-bootstrap [14]). If N is the total number of
videos selected by that method, and M the daily video
uploads to Facebook, then we estimate the CPU overhead
to be QN

UM , with confidence interval
[
Q−N
UM , Q

+N
UM

]
, which

helps us estimate the variance from sampled processing.

6.2 Single Prediction Experiments

The results of the single prediction experiment that enable
us to compare to SEISMIC are shown in Figure 5. The
results generally follow the intuition that predictors with
more information available to them will make better
predictions. For instance, Initial(1d) and Owner-Likes
each perform poorly because they use only a single scalar
value as their prediction. We highlight two results.

NN(EDWT) is competitive with SEISMIC-CF.
EDWT(4h) is a self-exciting process prediction method
inspired by SEISMIC with the primary difference being
the use of an exponentially decayed kernel that makes it
much more resource efficient. The gain in resource effi-
ciency, however, comes with a consistently lower coverage
ratio for EDWT(4h) than for SEISMIC-CF. For instance,
to achieve 80% coverage EDWT(4h) needs to select 2.9×
more minutes of video than SEISMIC-CF.

NN(EDWT) is a combination of four EDWTs in a neural
network model. It performs slightly worse (up to 6% lower
watch time coverage) than SEISMIC-CF when encoding
a very small fraction of videos (< 0.1%). When encoding
a more typical fraction of videos (> 0.1%), however,

118 2017 USENIX Annual Technical Conference USENIX Association

10-4 10-3 10-2 10-1

Encoding length ratio

0

20

40

60

80

100
C

o
v
e
ra

g
e
 r

a
ti

o
 (

%
)

Clairvoyant-L

Clairvoyant

CHESS-L

CHESS

EDWT(4h)

Owner Likes

Initial(1d)

Figure 6: Simulation results shown by the watch time
coverage ratio of videos selected by each predictor for
a given encoding length ratio. Clairvoyant-L/Chess-
L denotes the corresponding algorithm with scores
normalized by video length.

it achieves similar or slightly higher performance than
SEISMIC-CF. Both of these methods are based solely
on past access patterns, which indicates our learning
framework is able to deliver comparable results to a
handcrafted algorithm even when only using features of
lesser quality and consuming fewer resources.

Chess provides higher accuracy. The full Chess pro-
vides the highest watch time coverage of all achievable
predictors we evaluated and is the closest to the clairvoyant
predictor. Its improvement over SEISMIC-CF is signif-
icant: it achieves 40% watch time coverage with 2.0×
fewer minutes of video, 60% coverage with 1.8× fewer
minutes, and 80% coverage with 1.6× fewer minutes.

6.3 Simulation Experiments
Weused simulation experiments to provide amore realistic
comparison to other predictors and to investigate the effects
of three design parameters: prediction target scaling,
prediction horizon, and example distance.

Chess provides higher accuracy. Figure 6 show the
watch time coverage of all predictors except SEISMIC-CF
which is excluded because of its high memory usage and
slow speed. The relative performance of different methods
are similar to the single prediction experiment (Figure 5),
with Chess and Chess-L outperforming other practical
methods, which validates those results. For instance, to
reach 80% coverage, Chess-L encodes 2× as many video-
minutes as Clairvoyant-L, while Owner-Likes encodes 8×.
The overall performance at lower encoding length ratios
(<10−3), however, improves for two reasons: (1) due to
the power-law distribution of popularity, the simulation
will include a larger number of the most popular videos
than the single prediction experiments that use a smaller
sample, (2) in simulations a video is likely re-encoded
shortly after gaining popularity, therefore covering more
watch time, whereas in the single prediction experiment
a random time point is picked to divide the past and
future. The second reason also explains why Owner-Likes
now outperforms Initial(1d) under many settings even

10-4 10-3 10-2 10-1

Encoding length ratio

0
2
4
6
8

10
12

¢
 c

o
v
e
ra

g
e
 (

%
)

Clairvoyant

CHESS

EDWT(4h)

Owner Likes

Initial(1d)

Figure 7: Improvement of coverage ratio through
score normalization by video length.

though it did worse in the single prediction experiments.
With Owner-Likes, videos are re-encoded at upload time,
and so the benefits of re-encoding start accumulating
immediately. In contrast, Initial(1d) always waits up to 1
day until a video is popular to select it and misses many
of its early views. For most settings, the benefit from
higher accuracy in Initial(1d) does not make up for the
early views it misses relative to Owner-Likes.
The coverage ratio of different results saturates and

converges to the same value when encoding length ratio
is above 7%, but because QuickFire takes 20× CPU. This
translates to 140% additional CPU usage, a big increase
to the already large fleet.

Score normalization by length improves accuracy.
Figure 7 shows the increase in coverage of each method
with and without score normalization by video length. We
find this technique consistently improves the performance
of all methods, with Chess seeing the biggest improve-
ment and Clairvoyant seeing the smallest, which reduces
the gap between the two.
Clairvoyant-L and Chess-L in Figure 6 show the two

corresponding methods with scores normalized by video
length. Clairvoyant-L achieves the highest coverage ratio
consistent with Section 3.1: 80%+ with 1% encoding
length ratio, and 70%+ with 0.1% encoding length ratio.
Chess-L delivers the best result among all the practical
methods, only 6%–8% lower than Clairvoyant-L.

Chess-L improves the coverage ratio of the production
baseline, Owner-Likes by 8%-30%with the same encoding
length ratio from 0.01%-2%. To achieve 80% coverage
ratio, Chess-L only needs to encode 0.9% of total video
length, while Owner-Likes needs 2.5%. The results are
especially favorable at the middle to lower end of the
encoding length ratio. We hope this result motivates
the design of new encoding algorithms that utilizes even
higher CPU usage to achieves even better compression
ratios. Even if this encodingmethod uses 100× the CPU of
FFmpeg, with Chess-L, 64% of the watch time can still be
served with only ~10% CPU overhead from re-encoding
0.1% of videos.

Increasing the prediction horizon has diminishing re-
turns and higher memory usage. Due to space limi-

USENIX Association 2017 USENIX Annual Technical Conference 119

10-4 10-3 10-2 10-1

Encoding length ratio

−20
−15
−10
−5

0
¢

 c
o
v
e
ra

g
e
 (

%
)

0

2h

8h

128h

(a) Example distance vs. relative coverage difference.

0 1/8 0.5 2 8 32 128
Example distance (h)

0
1
2
3
4
5

R
e
la

ti
v
e
 R

A
M

(b) Memory usage with different example distances.

Figure 8: Effects of example distance.

tations we only summarize the results from varying the
prediction horizon. We experiment with horizons of 1h,
1d, 2d, 4d, 6d, 8d, 12d, and inf. The coverage is lowest
when prediction horizon is as short as 1 hour. It then
improves as the prediction horizon increases until 6d, then
however, when the horizon is 8d and inf, the coverage
drops by 1%-2%. Because the training target of our model
is the watch time within the prediction horizon, a longer
horizon means a better approximation for total future
watch time and improves the result. However, when the
horizon is too long, the training examples evicted from the
queue were created a long time ago, and the stale training
data hurts the prediction accuracy.
Meanwhile, the memory usage of the queue grows

roughly linearly with the prediction horizon because ex-
amples within the horizon are held in the queue. As it
provides the highest coverage with modest memory usage
in ChessVPS, we choose 6d to be the default prediction
horizon in our evaluations.

A short example distance increases coverage and de-
creases memory usage. Example distance, the mini-
mum time distance between two examples of the same
video, is another knob controlling the trade-off between
coverage and system resource usage. We have run experi-
ments with values 0, 1

8h,
1
2 h, 2h, . . . , 128h, and show the

relative coverage compared to the default 2h in Figure 8a,
and the simulator’s relative memory usage in Figure 8b.
We have omitted some lines in the former for clarity but
describe the results below.
The memory usage of the queue drops monotonically

as the example distance D increases. When D = 2h, we
reduce memory by 5× compared to D = 0 (not using the
heuristic) because most examples from the popular videos
never enter the queue. Interestingly, the coverage ratio
increases a little at the same time because the examples

10 20 30 40 50 60

CPU overhead (%)

30
40
50
60
70
80
90

C
o
v
e
ra

g
e
 (

%
)

0.5233.5
4

2K10K
50K

150K
500K

CHESS-L

Owner likes

Figure 9: Projected impact of Chess-L compared to
Owner-Likes. Encoding score thresholds are anno-
tated for each data point.

skipped are all “duplicates” of the most popular videos;
removing them has little effects on training set diversity
while making the model less biased towards those videos.
This improves the overall performance similar to the effects
of logarithmic scaling. If D further increases, memory
usage continues to drop, though at the expense of the
much lower coverage ratio, up to ~15% at 128h. Under
such a setting, most examples from even the moderately
popular videos are filtered out, and the model fails to
deliver accurate predictions. Based on these results we
have picked 2h as our default example distance.

6.4 Real-time Sampled Processing

We validate our algorithm and implementation by de-
ploying ChessVPS and running it in real-time with the
production access logs. Although the real-world encod-
ing logic is complex and our service is not used by the
production encoding pipeline yet, we have implemented a
“pseudo client” that queries the service every 10 minutes
and issues encoding decisions based on the prediction
scores. This way we can monitor the coverage and en-
coding statistics in real time, and verify its projected
impact more realistically. In simulations we ranked the
videos every hour and encoded them until the total video
lengths reach a threshold, but to more closely resemble
the production heuristic here, which re-encodes videos
whose owners have more than 10K likes, we also issue
re-encoding decisions for videos with prediction scores ex-
ceeding a threshold. In the following discussionChess(α)
means Chess with score threshold α, and similarly for
Owner-Likes(β).
Figure 9 shows the real-time sampled processing re-

sults. Chess-L(3) achieves ~80% coverage ratio as Owner-
Likes(10K), while reducing the re-encoding CPU over-
head from 54% to 17%. At slightly lower CPU usage,
Chess-L(2) improves the coverage of Owner-Likes(10K)
from 75.7% to 84.4%. The improvement of Chess-L is
greater at lower CPU overhead settings. For example,
Owner-Likes(500K) delivers 37% coverage with 6% CPU
overhead, whereas Chess-L(4) achieves 66.7% coverage
with 4.5% CPU overhead. This is favorable for limited
computing budgets, or if we want to apply even more

120 2017 USENIX Annual Technical Conference USENIX Association

computing intensive encoding methods or have more en-
coded versions. The relative performance between the
two methods concords with the simulation results shown
in Figure 6; the minute differences stem from a changing
workload and the logic for different encoding thresholds.

7 Related Work

Ourwork explores building a scalable and accurate popular
video prediction service, with applications on re-encoding
for improving streaming quality. In this section we discuss
related work on popularity prediction, video quality of
experience (QoE) optimization, and caching, which we
draw inspiration from for this study.

Popularity Prediction In recent years, the popularity
prediction of online content has attracted intense research
attention. Simple heuristics like counting requests in
the first few hours/days [36], or followers of the owner
are fast but inaccurate. Meanwhile, various methods
have been proposed for modeling Twitter/Facebook re-
sharing [10, 9, 44]. They usually maximize accuracy,
rely on more features and are memory/computation inten-
sive, e.g., requiring to store and scan multiple features of
each retweet/sharing when making every prediction. Our
method is designed for both accuracy and efficiency, and
delivers accurate, real-time prediction for all Facebook
videos with a small hardware footprint.

Self-exciting processes have been used for modeling
earthquakes [20], YouTube video accesses [13], and Twit-
ter resharing [45]. These methods use variants of power-
law kernels and thus store and process all past requests.
Instead, we use an exponential kernel to cut per-video
memory/computation overhead to O(1). Exponentially
decayed metrics are used in other contexts [12, 21]; our
contribution is using them for self-exciting processes and
appling them to popularity prediction. Furthermore, we
are the first to combinemultiple exponentially-decayed ker-
nels in a learning framework, which allows us to match the
accuracy of a power-law kernel while remaining resource
efficient, thus obtaining the best of both worlds.

Video QoE Optimization As videos gain increasing
importance in people’s online activities, research on im-
proving video streaming QoE has flourished. Many of
them focus on the delivery path, e.g., selecting the best
bit-rate per chunk in ABR for efficiency, stability and
fairness [23, 24, 25, 42], and building a control plane for
video delivery [17, 28, 30]. On the upload and encoding
path, video codecs have evolved towards using higher
computation in exchange for higher compression, from
MPEG-2 [19] to the now widely adopted H.264 [34], and
gradually moving to the next generation codecs such as
VP9 [31] and H.265 [35]. In addition, QuickFire [1, 41]
and Netflix per-title encoding [4] try to improve com-

pression of existing codecs by finding the best encoding
configuration based on video content as well as resolution.
We explore another dimension in video encoding based on
feedback from delivery. By applying more processing to
popular videos, we optimize the overall trade-off between
encoding CPU and streaming QoE.

Caching We find the video re-encoding problem also
bears some interesting similarities to caching. By locating
hot data in a small but fast storage, caching saves access
latency and bandwidth [37]. Meanwhile, by spending
more CPU on the popular videos, re-encoding improves
the video streaming quality at given network conditions.
Many caching algorithms have been designed to ex-

ploit different characteristics of request patterns, includ-
ing recency (LRU [26]), frequency (LFU [29]), or both
(SLRU [27], MQ [46]). The exponentially decayed kernel
used as a building block in Chess combines both recency
and frequency, and the trade-off is tuned through the time
window parameter. Similar to length normalization, size-
aware caching [8, 11] also favors smaller items so more
can be cached in limited space, improving object hit-ratio.

8 Conclusion

Facebook serves billions of videos views every day and
new videos are uploaded at a rapid rate. With limited
CPU resources, it is challenging to identify which of
these videos would most benefit from re-encoding with
computing intensive methods like QuickFire that enhance
the viewing experience.
We have described an efficient video popularity pre-

diction service that has the Chess algorithm at its core.
Chess achieves scalability by summarizing past access
patterns with a constant number of values, and it achieves
efficiency by combining the past access patterns and other
features in a continuously updated neural network model.
Our evaluation show that compared to a recent production
heuristic, Chess reduces encoding CPU required by 3× to
cover 80% of user watch time with QuickFire.

While the focus of this paper has been popularity predic-
tion for the Facebook video workload, we conjecture that
our ChessVPS approach would generalize to efficiently
predict popularity in other settings.

Acknowledgments We are grateful to our shepherd
Vishakha Gupta-Cledat, the anonymous reviewers of the
ATC program committee, Siddhartha Sen, Haoyu Zhang,
Theano Stavrinos, and Aqib Nisar for their extensive
comments that substantially improved this work. We
are also grateful to Sergiy Bilobrov, Minchuan Chen,
Maksim Khadkevich, and other Facebook engineers for
their discussion on this problem. Our work is supported
by Facebook, NSF CAREER award #1553579, and a
Princeton University fellowship.

USENIX Association 2017 USENIX Annual Technical Conference 121

References

[1] QuickFire technology explained @Scale.
https://www.facebook.com/atscaleevents/
videos/1682906415315789.

[2] Facebook Community Update. https:
//www.facebook.com/photo.php?fbid=
10102457977071041.

[3] Facebook’s Streaming Video Engine @Scale Talk.
https://www.facebook.com/atscaleevents/
videos/1741710496102047/.

[4] A. Aaron, Z. Li, M. Manohara, J. De Cock,
and D. Ronca. Per-Title Encode Optimiza-
tion. http://techblog.netflix.com/2015/
12/per-title-encode-optimization.html.

[5] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel,
et al. Finding a needle in haystack: Facebook’s photo
storage. In USENIX OSDI, 2010.

[6] C. M. Bishop. Pattern recognition. Machine Learn-
ing, 128, 2006.

[7] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. C. Li, et al. Tao: Facebook’s distributed data
store for the social graph. In USENIX ATC, 2013.

[8] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In USITS, 1997.

[9] G. H. Chen, S. Nikolov, and D. Shah. A latent source
model for nonparametric time series classification.
In ACM NIPS, 2013.

[10] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg,
and J. Leskovec. Can cascades be predicted? In
ACM WWW, 2014.

[11] L. Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching pol-
icy. Hewlett-Packard Laboratories, 1998.

[12] G. Cormode, F. Korn, and S. Tirthapura. Exponen-
tially decayed aggregates on data streams. In IEEE
ICDE, 2008.

[13] R. Crane and D. Sornette. Robust dynamic classes
revealed by measuring the response function of a
social system. PNAS, 2008.

[14] C. Evans. scikits-bootstrap. https://github.
com/cgevans/scikits-bootstrap.

[15] Facebook. Facebok Scribe. https://github.
com/facebook/scribe/wiki.

[16] FFmpeg. The FFmpeg project. http://ffmpeg.
org.

[17] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-scale
control plane for video quality optimization. In
USENIX NSDI, 2015.

[18] G. Gürsun, M. Crovella, and I. Matta. Describing
and forecasting video access patterns. In INFOCOM,
2011 Proceedings IEEE, pages 16–20. IEEE, 2011.

[19] B. G. Haskell, A. Puri, and A. N. Netravali. Digi-
tal Video: An Introduction to MPEG-2. Springer
Science & Business Media, 1997.

[20] A. G. Hawkes. Spectra of some self-exciting and
mutually exciting point processes. Biometrika, 1971.

[21] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient
identification of hot data for flash memory storage
systems. ACM TOS, 2006.

[22] Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of facebook
photo caching. In ACM SOSP, 2013.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service. ACMSIGCOMMComputer Communication
Review, 2015.

[24] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,
efficiency, and stability in HTTP-based adaptive
video streaming with festive. In ACM CoNEXT,
2012.

[25] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica,
and H. Zhang. CFA: A practical prediction system
for video QoE optimization. InUSENIX NSDI, 2016.

[26] T. Johnson and D. Shasha. 2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm. 1994.

[27] R. Karedla, J. S. Love, and B. G. Wherry. Caching
strategies to improve disk system performance. IEEE
Computer, 1994.

[28] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang. A case for a coordinated
internet video control plane. In ACM SIGCOMM,
2012.

[29] S. Maffeis. Cache management algorithms for flexi-
ble filesystems. ACM SIGMETRICS Performance
Evaluation Review, 1993.

[30] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Se-
shan, and H. Zhang. Practical, real-time centralized
control for cdn-based live video delivery. ACM SIG-
COMM Computer Communication Review, 2015.

[31] D. Mukherjee, J. Bankoski, A. Grange, J. Han,
J. Koleszar, P. Wilkins, Y. Xu, and R. Bultje. The
latest open-source video codec VP9-an overview and
preliminary results. In IEEE PCS, 2013.

[32] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,
et al. F4: Facebook’s warm blob storage system. In
USENIX OSDI, 2014.

122 2017 USENIX Annual Technical Conference USENIX Association

https://www.facebook.com/atscaleevents/videos/1682906415315789
https://www.facebook.com/atscaleevents/videos/1682906415315789
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/atscaleevents/videos/1741710496102047/
https://www.facebook.com/atscaleevents/videos/1741710496102047/
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
https://github.com/cgevans/scikits-bootstrap
https://github.com/cgevans/scikits-bootstrap
https://github.com/facebook/scribe/wiki
https://github.com/facebook/scribe/wiki
http://ffmpeg.org
http://ffmpeg.org

[33] I. Sodagar. The MPEG-DASH standard for multime-
dia streaming over the internet. IEEE MultiMedia,
2011.

[34] G. J. Sullivan, P. N. Topiwala, and A. Luthra. The h.
264/avc advanced video coding standard: Overview
and introduction to the fidelity range extensions. In
SPIE Optics + Photonics, 2004.

[35] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wie-
gand. Overview of the high efficiency video coding
(HEVC) standard. IEEE CSVT, 2012.

[36] G. Szabo and B. A. Huberman. Predicting the
popularity of online content. CACM, 2010.

[37] A. S. Tanenbaum and A. S. Woodhull. Operating
systems: design and implementation, volume 2.
Prentice-Hall Englewood Cliffs, NJ, 1987.

[38] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
RIPQ: advanced photo caching on flash for facebook.
In USENIX FAST, 2015.

[39] T. C. Thang, Q.-D. Ho, J. W. Kang, and A. T. Pham.
Adaptive streaming of audiovisual content using
MPEG DASH. IEEE Transactions on Consumer
Electronics, 2012.

[40] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the h. 264/avc video coding
standard. IEEE Transactions on circuits and systems
for video technology, 2003.

[41] WIRED. Facebook acquires QuickFire Net-
works. https://www.facebook.com/wired/
posts/10152676478868721.

[42] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
control-theoretic approach for dynamic adaptive
video streaming over HTTP. ACM SIGCOMM Com-
puter Communication Review, 2015.

[43] T. Zaman, E. B. Fox, E. T. Bradlow, et al. A Bayesian
approach for predicting the popularity of tweets. The
Annals of Applied Statistics, 2014.

[44] T. R. Zaman, R. Herbrich, J. Van Gael, and D. Stern.
Predicting information spreading in Twitter. In ACM
NIPS Workshop on computational social science
and the wisdom of crowds, 2010.

[45] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman,
and J. Leskovec. SEISMIC: A self-exciting point
process model for predicting tweet popularity. In
ACM SIGKDD, 2015.

[46] Y. Zhou, J. Philbin, and K. Li. The multi-queue
replacement algorithm for second level buffer caches.
In USENIX ATC, 2001.

USENIX Association 2017 USENIX Annual Technical Conference 123

https://www.facebook.com/wired/posts/10152676478868721
https://www.facebook.com/wired/posts/10152676478868721

Squeezing out All the Value of Loaded Data: An Out-of-core Graph
Processing System with Reduced Disk I/O

1Zhiyuan Ai∗ 1Mingxing Zhang∗ 1Yongwei Wu 2Xuehai Qian 1Kang Chen 1Weimin Zheng
1Tsinghua University† 2University of Southern California

Abstract
The current primary concern of out-of-core graph pro-
cessing systems is improving disk I/O locality, which
leads to certain restrictions on their programming and ex-
ecution models. Although improving the locality, these
constraints also restrict the expressiveness. As a re-
sult, only sub-optimal algorithms are supported for many
kinds of applications. When compared with the opti-
mal algorithms, these supported algorithms typically in-
cur sequential, but much larger, amount of disk I/O.

In this paper, we explore a fundamentally different
tradeoff: less total amount of I/O rather than better lo-
cality. We show that out-of-core graph processing sys-
tems uniquely provide the opportunities to lift the restric-
tions of the programming and execution model (e.g., pro-
cess each loaded block at most once, neighborhood con-
straint) in a feasible manner, which enable efficient algo-
rithms that require drastically less number of iterations.
To demonstrate the ideas, we build CLIP, a novel out-of-
core graph processing system designed with the principle
of “squeezing out all the value of loaded data”. With the
more expressive programming model and more flexible
execution, CLIP enables more efficient algorithms that
require much less amount of total disk I/O. Our experi-
ments show that the algorithms that can be only imple-
mented in CLIP are much faster than the original disk-
locality-optimized algorithms in many real-world cases
(up to tens or even thousands of times speedup).

1 Introduction
As an alternative to distributed graph processing, disk-
based single-machine graph processing systems (out-of-
core systems) can largely eliminate all the challenges of
using a distributed framework. These systems keep only
a small portion of active graph data in memory and spill
the remainder to disks, so that a single-machine can still
process large graphs with the limited amount of memory.
Due to the ease of use, several out-of-core systems have
been developed recently [15, 26, 41]. These systems
make practical large-scale graph processing available to
∗Z. Ai and M. Zhang equally contributed to this work.
†Department of Computer Science and Technology, Tsinghua Na-

tional Laboratory for Information Science and Technology (TNLIST),
Tsinghua University, Beijing 100084, China; Research Institute of Ts-
inghua University in Shenzhen, Guangdong 518057, China.

anyone with a modern PC. It is also demonstrated that
the performance of a single ordinary PC running Grid-
Graph is competitive with a distributed graph processing
framework using hundreds of cores [41].

The major performance bottleneck of out-of-core sys-
tems is disk I/O. Therefore, improving the locality of
disk I/O has been the main optimization goal. The cur-
rent systems [15, 26, 41] use two requirements to achieve
this goal. First, the execution engine defines a specific
processing order for the graph data and only iterates the
edges/vertices according to such order, which means that
each edge/vertex is processed at most once in an iter-
ation. By avoiding fully asynchronous execution, this
technique naturally reduces the tremendous amount of
random disk I/O that would have otherwise occurred.
The second is the neighborhood constraint that requires
a single user-defined programming kernel to access only
the neighborhood of its corresponding input vertex/edge.
This requirement improves the locality of disk I/O and
also makes automatic parallelization of in-memory pro-
cessing practical.

According to our investigation, almost all existing
out-of-core systems enforce the above two requirements
in their programming and execution models, which as-
sure the good disk I/O locality for the algorithms that
they supported. However, these restrictions (e.g., pro-
cess each loaded block at most once, neighborhood con-
straint) also affect the models’ expressiveness and flex-
ibility and lead to the sub-optimal algorithms. As a re-
sult, the execution incurs sequential, but excessive, the
amount of disk I/O, compared with more efficient algo-
rithms which require drastically less iterations.

As an illustration, the “at most once” requirement
obviously wastes the precious disk bandwidth. Many
graph algorithms (e.g. SSSP, BFS) are based on itera-
tive improvement methods and can benefit from iterat-
ing multiple times on a loaded data block. Moreover,
many important graph problems (e.g., WCC, MIS) can
be solved with much less iterations (typically only one
pass is enough) by changing algorithms. However, these
algorithms require the removal of “neighborhood con-
straint”. In essence, we argue that the current systems
follow a wrong trade-off: they improve the disk I/O lo-
cality at the expense of less efficient algorithms with
the larger amount of disk I/O, wasting the precious disk

USENIX Association 2017 USENIX Annual Technical Conference 125

bandwidth. As a consequence, current out-of-core sys-
tems only achieve sub-optimal performance.

In this paper, we propose CLIP, a novel disk-based
graph processing system, in which supporting more ef-
ficient algorithms is the primary concern. We argue that
out-of-core graph processing systems uniquely provide
the opportunities to lift the restrictions of the program-
ming and execution model (e.g., process each loaded
block at most once, neighborhood constraint) in a fea-
sible manner. Specifically, CLIP is designed with the
principle of “squeezing out all the value of loaded data”,
It defines a programming model that supports 1) loaded
data reentry by allowing more flexible processing or-
der; and 2) beyond-neighborhood accesses by allowing
an “edge function” to update vertex properties that do not
belong to the input edge’s neighborhood.

Essentially, CLIP chooses an alternative trade-off by
enabling more efficient algorithms and more flexible ex-
ecutions at the expense of accessing vertices beyond the
neighborhood. Obviously, randomly accessing vertices
in disk incurs random disk I/O that is detrimental to per-
formance. To mitigate this issue, CLIP simply mmap all
the vertex data into memory. Without incurring develop-
ment efforts, this method is vastly different from existing
systems that load only needed part of vertices at a time
(e.g., GraphChi, X-Stream, GridGraph).

Using this method, although the vertex data could re-
side in either memory or disk, Lin et al. [17] showed
that the built-in caching mechanism of mmap is partic-
ularly desirable for processing real-world graphs, which
often exhibit power-law degree distributions [12]. In
such graphs, high-degree nodes tend to be accessed
much more frequently than others and hence will always
be cached in memory and result in good performance.
Moreover, because the vertex data are typically much
smaller than edge data but are accessed more frequently,
our method is deemed to be a good heuristic in memory
allocation that naturally reserves as much memory for
vertices as possible. In fact, in our experiments, we 1)
test on many different real-world graphs that contain up
to 6.6 billion edges; and 2) modulate the maximum size
of memory that the system is allowed to use for simulat-
ing the different size of available memory, from 32GB
down to only 128MB (even 16MB for small graphs), by
using cgroup. According to the results, CLIP is faster
than any existing out-of-core systems on various mem-
ory limits.

The evaluation of our system consists of two parts.
First, we evaluate the effectiveness of loaded data reen-
try, which can be applied to not only our system but also
existing frameworks. According to our experiments, this
simple technique can significantly reduce the number of
required iterations for intrinsically iterative algorithms
like SSSP and BFS, achieving up to 14.06× speedup.

Second, we compare our novel beyond-neighborhood al-
gorithms with prior ones on many important graph prob-
lems. We found that they can reduce the number of
required iterations from 7∼6261 to only one pass for
popular graph problems such as WCC (3.25×-4264×
speedup) and MIS (20.9×-60× speedup).

2 Out-of-Core Graph Processing

GraphChi [15] is the first large-scale out-of-core graph
processing system that supports vertex programs. In
GraphChi, the whole set of vertices are partitioned into
“intervals”, and the system only processes the related
sub-graph of an interval at a time (i.e., only the edges
related to vertices in this interval are accessed). This
computation locality of vertex program (i.e. access only
the neighborhood of input vertex) makes it easy for
GraphChi to reduce random disk accesses. As a result,
GraphChi requires a small number of non-sequential disk
accesses and provides competitive performance com-
pared to a distributed graph system [15].

Some successor systems (e.g., X-Stream [26], Grid-
Graph [41]) propose an edge-centric programming
model to replace the vertex-centric model used in
GraphChi. A user-defined function in the edge-centric
model is only allowed to access the data of an edge and
the related source and destination vertices. This require-
ment also enforces a similar neighborhood constraint as
the vertex-centric models, and hence ensures the systems
to incur only limited amount of random disk I/O.

However, although these existing out-of-core graph
processing systems differ vastly in detailed implementa-
tion, they share two common design patterns: 1). Graph
data (i.e. edges/vertices) is always (selectively) loaded
in specific order and each of the loaded data block is
processed at most once in an iteration; 2). They all re-
quire that the user-defined functions should only access
the neighborhood of the corresponding edge/vertex.

3 Reducing Disk I/O

According to our investigation, these two shared patterns
could potentially prohibit programmers from construct-
ing more efficient algorithms, and therefore increase the
total amount of disk I/O. Motivated by this observation,
our approach lifts the restrictions in the current program-
ming and execution model by: 1) providing more flexible
processing order; and 2) allowing the user-defined func-
tion to access an arbitrary vertex’s property. This section
discuss the rationale behind these two common patterns,
and why they are not always necessary in an out-of-core
system. More importantly, with the restrictions removed,
how our approach could enable more efficient algorithms
that require less number of iterations and less amount of

126 2017 USENIX Annual Technical Conference USENIX Association

1 6

5

3

2

4

Once Iter 1 Iter 2 Iter 3 Iter 4

1 → 6 𝑑𝑖𝑠𝑡 6 = 1 − − −

2 → 1 − − − −

3 → 2 − − − 𝑑𝑖𝑠𝑡 2 = 5

4 → 3 − − 𝑑𝑖𝑠𝑡 3 = 4 −

5 → 4 − 𝑑𝑖𝑠𝑡 4 = 3 − −

6 → 5 𝑑𝑖𝑠𝑡 5 = 2 − − −

Reentry Iter 1 Iter 2
Pass 1 Pass 2 Pass 1 Pass 2

1 → 6 𝑑𝑖𝑠𝑡 6 = 1 − − −

2 → 1 − − − −

3 → 2 − − − 𝑑𝑖𝑠𝑡 2 = 5

4 → 3 − − 𝑑𝑖𝑠𝑡 3 = 4 −

5 → 4 − 𝑑𝑖𝑠𝑡 4 = 3 − −

6 → 5 𝑑𝑖𝑠𝑡 5 = 2 − − −0 ∞ ∞ ∞ ∞ ∞𝒅𝒊𝒔𝒕

𝟏 𝟔

(a) An example graph (b) The loaded block is processed only once (c) The loaded block is processed multiple times

Figure 1: SSSP example. All the edges of this graph have the same distance set to 1.

disk I/O. In essence, our approach squeezes out all the
values of loaded data.

3.1 Reentry of Loaded Data

Out-of-core systems typically define a specific pro-
cessing order for the graph data and only iterate the
edges/vertices according to such order. This is natural,
because a fully asynchronous graph processing would in-
cur the tremendous amount of random accesses to the
graph data, drastically reducing disk I/O performance.
However, this strategy could potentially increase the
number of required iterations of many graph problems
(e.g. SSSP, BFS) based on iterative improvement algo-
rithms.

Figure 1 shows an example that calculates single
source shortest path (SSSP) on a graph of 6 vertices. In
SSSP, the vertex property dist[v] is initialized to 0 for ver-
tex 1 and ∞ for the others (Figure 1 (a)). The edge func-
tion applied to each edge (u,v) checks whether dist[v]
is larger than dist[u] + 1, If it is true, dist[v] is immedi-
ately updated as dist[u]+1. Figure 1 (b) shows the exe-
cution, where each iteration sequentially loads one edge
at a time, processes it and updates dist[v] if necessary.
As a result, 4 iterations are needed. The number of it-
erations is determined by the diameter of the graph. To
mitigate this issue, some prior systems (e.g., GraphChi,
GridGraph) 1) allows an update function to use the most
recent values of the edges/vertices; and 2) provides selec-
tive scheduling mechanisms that skip certain data blocks
if they are not needed. Although these optimizations en-
able “asynchronous execution”, the essential workflow
is not changed as each block loaded is still processed at
most once in every iteration.

We argue that the current approaches fail to exhaust
the value of loaded data, because a block of edges rather
than only one edge is loaded at a time. While the edges
in a block are independent, they constitute a sub-graph
in which information could be propagated by process-
ing it multiple times. In another word, the system could
squeeze more value of the loaded data block. This ap-
proach is a mid-point between fully synchronous and
asynchronous processing and achieves the best of both:
ensuring sequential disk I/O by synchronously process-

ing between blocks; and, at the same time, enabling asyn-
chronous processing within each block.

The idea is illustrated in the example in Figure 1 (c).
Here, we partition the edges into blocks that each con-
tains two edges, and we apply two computation passes to
every loaded block. As a result, the number of iterations
is reduced to 2. In the extreme case, if the user further
enlarges the loaded data block to contain 6 edges, then
only one iteration is needed. We call the proposed simple
optimization technique loaded data reentry. As we see
from the SSSP example in Figure 1, loaded data reentry
could effectively reduce the number of iterations, reduce
the amount of disk I/O and eventually reduce the whole
execution time. For each loaded data block, more CPU
computation is required. Considering the relative speed
of CPU and disk I/O, trading CPU computation for less
disk I/O is certainly a sensible choice.

3.2 Beyond the Neighborhood

“Loaded data reentry” is simple and requires only moder-
ate modifications to be applied to existing systems (e.g.,
GridGraph). However, to apply the principle of “squeez-
ing all the values of loaded data” to more applications,
we found that the neighborhood constraint imposed by
existing systems prohibits the possibility of optimizing in
many cases. This neighborhood constraint is enforced by
almost all single-machine graph processing systems be-
cause in this way one can easily infer the region of data
that will be modified by the inputs, which is necessary
for disk I/O optimizations. Despite the rationale behind,
neighborhood constraint limits the expressiveness of pro-
gramming model in a way that certain algorithms cannot
be implemented in the most efficient manner.

We use weakly connected component (WCC) to ex-
plain the problem. WCC is a popular graph problem that
calculates whether two arbitrary vertices in a graph are
weakly connected (i.e., connected after replacing all the
directed edges with undirected edges). With the existing
programming models, this problem can only be solved
by a label-propagation-based algorithm, in which each
node repeatedly propagates its current label to its neigh-
bors and update itself if it receives a lower label. The in-
trinsic property of this algorithm (i.e., the label informa-

USENIX Association 2017 USENIX Annual Technical Conference 127

tion only propagates one hop in each iteration) inevitably
causes the large number of required iterations to cover-
age, especially for graphs with large diameters. How-
ever, if the user-defined function is allowed to update the
property of an arbitrary vertex, a disjoint-set [11, 29, 30]
data structure can be built in memory. Based on the
disjoint-set, WCC problem for any graph can be solved
with only one pass of the edges.

In general, this method is used in a class of graph al-
gorithms termed Graph Stream Algorithms [21], where
a graph G = (V,E) is represented as a stream of edges,
the storage space of an algorithm is bounded by O(|V |).
Graph Stream Algorithms has been studied by the theo-
retical community for about twenty years [21, 23], and
it has been shown that if a randomly accessible O(|V |)
space is given, many important graph algorithms can
be solved by reading only one (or a few) pass(es) of
the graph stream [8]. Unfortunately, the whole class of
Graph Stream Algorithms cannot be implemented by the
programming model of current disk-based out-of-core
systems (or only in a very inefficient manner).

3.3 Limitations
Although the “beyond-neighborhood” algorithms offer
significant performance improvements, it also becomes
more difficult to infer the range of vertices that will be ac-
cessed by a user-defined function. As a result, it becomes
more challenging to: 1) selectively load vertex proper-
ties; and 2) automatically parallelize the execution.

To address the first problem, our solution is to simply
mmap all the vertices into memory. While counterintu-
itive, this straightforward method actually works quite
well on many real-world scenarios. In our experiments,
we test various data size (up to 6.6B edges) and memory
limits (down to only 16MB for small graphs). Results
show that our system largely outperforms existing ones
in many real-world cases.

The reason of this phenomenon is two-fold. First,
the size of vertices is usually considerably smaller than
the size of edges but used much more frequently. Our
method is deemed to be a good heuristic in memory al-
location that naturally reserves as much memory for ver-
tices as possible. Since the density of real-world dataset
is usually larger than 30, in typical cases, our method
could in fact keep all the vertices in memory. This be-
havior is even valid for industrial-grade workloads. Re-
searchers in Facebook declared in their paper “One Tril-
lion Edges: Graph Processing at Facebook Scale” [7]
that industry graphs “can be two orders of magnitude
larger” than popular benchmark graphs, which means
“hundreds of billions or up to one trillion edges”. But,
even for such huge graphs, the number of vertices is only
about one billion (288M vertices and 60B edges for Twit-
ter, 1.39B vertices and 400B edges for Facebook). This

number means that most of the vertices can be cached in
memory as the edges typically only need to be read in a
stream fashion. This assumption is still valid after using
reentry, because we only reentry the loaded edges.

Even more, as discussed in Lin et al. [17], the caching
mechanism of mmap is particularly desirable for pro-
cessing real-world graphs, which often exhibit power-
law degree distributions. Our experiment results validate
this assumption. Since these high-degree vertices are al-
ways cached in memory, accesses to their properties are
cheap. In contrast, the other low-degree vertices may be
swapped out if the memory limit is low, but they are ac-
cessed very infrequently.

As for the second problem, our observation is that:
since the complexity of computation is quite low, disk
I/O is the real bottleneck. It is also confirmed by our re-
sults in Section 5: the performance of our single-thread
implementation can in fact match the multi-threaded
all-in-memory systems and is significantly faster than
prior multi-threaded out-of-core systems. The same phe-
nomenon is also observed by many existing investiga-
tions [26], which conclude that there is no need of us-
ing multi-threading in an out-of-core environment. To
be more general, we also provide a multi-threaded mode
in CLIP, which requires users to use atomic operation
if necessary. Based on our experience, the increased
programming burden is quite limited (only requires the
straightforward replacement of the original instruction
by the atomic counterpart).

4 CLIP

To support the loaded data reentry and beyond-
neighborhood optimization, we design and implement a
C++-based novel out-of-core graph processing system,
CLIP. CLIP allows users to flexibly write more efficient
algorithms that require less number of iterations (and less
disk I/O) than algorithms based on previous program-
ming models. The flexibility of our system is achieved
due to 1) its unique execution workflow; and 2) the abil-
ity to break neighborhood constraint. The kernel pro-
gramming API of CLIP is still “edge function”, which is
very similar to X-Stream and GridGraph and hence will
not much affect the programmability.

4.1 Workflow
CLIP uses the same data model as X-Stream and Grid-
Graph, where the data is modeled as a directed data graph
and only the property of vertices can be modified. Fig-
ure 2 illuminates the main workflow of CLIP in detail.
As for the computation, its procedure is split into two
phases. The first phase sorting is a pre-processing proce-
dure that sorts all the edges according to a specific order
defined by users. We provide a simple interface to al-

128 2017 USENIX Annual Technical Conference USENIX Association

low the assignment of the user-defined identifier for each
edge. The system will sort edges according to the iden-
tifiers. This procedure is typically used to sort edges in
grid order1, where the length of grid is the page size.
With this order, the accesses to the property of vertices
show good locality. If this standard pre-processing is
used, it is the same as GridGraph. But, by exposing
this API to users, we provide more flexibility. In our ex-
periments, we observe that other orders (e.g., sorting by
source only) may be helpful in certain cases (e.g., mem-
ory size is enough for caching all the vertices).

e e e e

Reentry

𝑣0, 𝑣1
(𝑣2, 𝑣1)

(𝑣i, 𝑣j)
⋮

Block-1

Block-2

⋯⋯
Block-n

S

𝒇(𝒆)

Edges (Sequential Read)

v v
All vertices

(Random R/W)

Block-1 Block-2 ⋯⋯ Block-n

Load

↑ 𝑆𝑜𝑟𝑡𝑖𝑛𝑔
↓ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

Memory

Disk

Figure 2: Main workflow of CLIP.

The second phase execution is an iterative procedure
that circularly reads edges until the property of vertices
are converged. Within each iteration, CLIP loads and
processes each of the data block by executing the user-
defined “edge function” on every edge. Traditional graph
processing systems restrict that each data block is pro-
cessed with only one execution pass in an iteration. In
CLIP, each loaded data block is processed by multiple
execution passes until all the vertices/edges become in-
active. Moreover, we allow users to specify a maximum
reentry times (MRT), which is the maximum number of
passes that will be executed for every loaded data block.
MRT is useful when most further local updating will be
invalided by global updating.

4.2 APIs
The programming interface of CLIP is defined in Table
1. This simple API is similar to those provided by ex-
isting edge-centric out-of-core systems [26, 41]. Sort()
and Exec() are used to execute one iteration of the sort-
ing and execution phase, respectively. To facilitate the
users, we also provide a VMap() function that iterates
every vertex and applies the user-defined input function.
Table 1 also defines the type of input parameters and re-
turn value of each API function. The input parameter of
user-defined function Fe and Fv both contain v list with

1Grid order means that the adjacent matrix of this graph is cut
into grids and the edges belonging to the same grid are stored con-
tiguously. Specifically, an edge (src, dst) is sorted by (src/grid length,
dst/grid length, src, dst).

type Vertices. Vertices is a container by which we can
access the property of an arbitrary vertex (mmap-ed into
the address space).

Specifically, the input of Sort() is a user-defined
function Fs that accepts an edge as input and returns a
double as the edge’s identifier. After the sorting phase,
users of CLIP may repeatedly call the function Exec()

to perform the execution phase for updating the property
of vertices. During an iteration, the user-defined func-
tion Fe is applied to edges (potentially multiple times)
and can update the property of arbitrary vertices.

Table 1: Programming model of CLIP.

Sort(Fs) — Fs := double function(Edge &e)

Exec(Fe) — Fe := void function(Vertices &v list, Edge &e)

VMap(Fv) — Fv := void function(Vertices &v list, VertexID &vid)

Our system also supports selective scheduling, which
enables us to skip an edge or even a whole block if it is
not needed. Specifically, through the v list argument, Fe
can both modify the property of an arbitrary vertex and
set its activity. We define that 1) an edge is inactive if its
source vertex is inactive; and 2) an entire block is inactive
if all the edges it contains are inactive. CLIP automati-
cally maintains the activity of every edge/block and uses
this information to avoid the unnecessary execution.

4.3 Disk I/O
Although the bandwidth of disk is constantly improv-
ing, it still remains as the main bottleneck of out-of-
core graph processing systems. Thus, in CLIP, we im-
plement an overlapping mechanism by using a separate
loading thread that continuously reads data into a cir-
cular buffer until it is full. Moreover, CLIP also en-
ables selective scheduling to further improve the perfor-
mance. This mechanism is implemented by maintaining
the current activity of vertices with a bit-array. With this
data structure, CLIP implements two kinds of skipping,
namely edge skipping and block skipping. As we have
mentioned in Section 4.2, for block skipping, an entire
on-disk edge grid will be ignored when it does not con-
tain any active edges (very easy to check bit-array since
these source vertices are a continuous range). Moreover,
in order to further enable edge skipping, one needs to
use Sort() function to sort the input edges according to
their source vertex. In that case, edges that have the same
source vertex will be placed continuously and hence can
be skipped at once if this source vertex is inactive (no
need of checking the source ID for every edge).

4.4 Examples
To illustrate the usages of CLIP’s API, this sec-
tion presents the implementation of SSSP and WCC,

USENIX Association 2017 USENIX Annual Technical Conference 129

which benefit from loaded data reentry and beyond-
neighborhood optimization, respectively.
SSSP In SSSP, a property “distance” is attached to each
edge and the shortest path is defined as the lowest ag-
gregating distance of all the edges along the path. Sim-
ilar to other systems, we use a relaxing-based algorithm
to solve this problem [5, 9]. Algorithm 1 illustrates the
pseudo-code of this algorithm. The VMap function is
called in the beginning for initialization, which is fol-
lowed by a series of execution iterations. Each of these
iterations executes the same edge function Fe on every
edge, which modifies the distance property of the edge’s
destination vertex and sets it to active.

Algorithm 1 SSSP Algorithm in CLIP.
Functions:

Fv(v list,vid) :— {
if vid == start do

v list[vid].dist← 0;
v list.setActive(vid, true);

else v list[vid].dist← INF ;
v list.setActive(vid, f alse); }

Fe(v list,e) :— {
dist← v list[e.src].dist + e.weight
if v list[e.dst].dist > dist do

v list[e.dst].dist← dist;
v list.setActive(e.dst, true);

else v list.setActive(e.dst, f alse); }
Computation:

VMap(Fv);
Until convergence:

Exec(Fe);

Note that this SSSP implementation is almost the same
as original ones, because the trade-off between execution
time and disk time is modulated only by MRT. As we will
show in Section 5.2.3, the value of MRT is important for
achieving a good performance, but it is rather simple to
choose an MRT that is good enough.
WCC Different from the label-propagation based al-
gorithm used by prior systems, our algorithm builds a
disjoint-set over the property of vertices and uses it to
solve WCC for an arbitrary graph with only one itera-
tion. Disjoint-set, also named union-find set, is a data
structure that keeps track of a set of elements partitioned
into a number of disjoint subsets. It supports two use-
ful operations: 1) find(v), which returns an item from v’s
subset that serves as this subset’s representative; and 2)
union(u, v), which joins the subsets of u and v into a sin-
gle subset. Typically, one can check whether two items u
and v belong to the same subset by comparing the results
of find(u) and find(v). It is guaranteed that if u and v are
from the same subset then find(u) == find(v). Otherwise,
one can invoke a union(u, v) to merge these two subsets.

Algorithm 2 presents the code of our disjoint-set based
WCC algorithm. Figure 3 gives an example. In our im-
plementation, each vertex maintains a property pa that
stores the ID of a vertex. If pa[u] = v, we name that

the “parent” of vertex u is v. Vertex u is the representa-
tive of its subset if and only if pa[u] = u. Otherwise,
if pa[u] 6= u, the representative of u’s subset can only
be found by going upstream along the pa property un-
til finding a vertex that satisfies the above restriction (i.e.
function find in Algorithm 2). For example, if pa[3] = 2,
pa[2] = 1, pa[1] = 1, the subset representative of all these
three vertices is 1. The union function is implemented by
finding the representative of the two input vertices’ sub-
set and setting one’s pa to another. Therefore, the whole
procedure of our WCC algorithm can be simply imple-
mented by applying the union function to every edge.

Algorithm 2 WCC Algorithm in CLIP.
Functions:

F f ind(v list,vid) :— {
if v list[vid].pa == vid do return vid;
else return v list[vid].pa =

F f ind(v list,v list[vid].pa); }
Funion(v list,src,dst) :— {

s← F f ind(v list,src);
d← F f ind(v list,dst);
if s < d do v list[d].pa← v list[s].pa;
else if s > d do v list[s].pa← v list[d].pa; }

Fe(v list,e) :— { Funion(v list,e.src,e.dst); }
Fv(v list,vid) :— {

v list[vid].pa← vid;
v list.setActive(vid, true); }

Computation:
VMap(Fv);
Exec(Fe);

In Figure 3 (a), the graph has 4 vertices and 3 edges,
the pa of every vertex is illustrated by arrows in Fig-
ure 3 (b). At the beginning of our algorithm, each vertex
belongs to a unique disjoint subset. Hence, all arrows
point to their starting vertex (1 in Figure 3(b)). During
the execution, the first edge read is (1,2), so their subsets
are union-ed by pointing vertex 2’s arrow to 1 (2 in Fig-
ure 3(b)). In the second step, edge (2,3) is read and their
subsets are also union-ed. By going toward upstream of
vertex 2’s arrow, we can find that its representative is 1.
As a result, the union is performed by pointing vertex 3’s
arrow to vertex 1 (3 in Figure 3(b)). Similarly, the arrow
of vertex 4 is redirected to vertex 1 after reading edge
(3,4) (4 in Figure 3(b)). Eventually, all arrows point to
vertex 1 and hence we found that there is only one weak
connected component in the graph.

As one can imagine, this disjoint-set based algorithm
always requires only one iteration to calculate WCC for
an arbitrary graph, so that it leads to much less work than
the original label-propagation based algorithm. But, a
potential problem of this algorithm is that, when access-
ing the property of a vertex, it also needs to access its
parent’s property (i.e., breaking the neighborhood con-
straint). Thus, in an extreme case that the property of
vertices cannot be all cached and the accesses to parents
show great randomness, it may lead to very bad perfor-

130 2017 USENIX Annual Technical Conference USENIX Association

mance. However, this problem can be avoided by two
simple optimizations: 1) when calling union on two ver-
tices, always uses the vertex that has smaller ID as the
parent; and 2) iterate the edge grids by their x index,
which means that the grids are read in the order of “(0,
0), (0, 1), ..., (0, P-1), (1, 0), ...” if the graph edges are
partitioned into P×P grids. According to our evalua-
tion, these two simple optimizations can make sure that
most of the parents are stored in the first several pages of
vertex property and hence show good locality.

1 → 2
2 → 3
3 → 4

(a) An example graph (b) Execution process (c) Edge stream

1 2

3 41 2

3 4

1 2

3

1 2

3

1 2

3 4

1 2

3 4

4

4

Figure 3: WCC example.

5 Evaluation

In this section, we present our evaluation results on CLIP
and compare it with the state-of-art systems X-Stream
and GridGraph (as they are reported to be faster than
other existing out-of-core graph processing systems like
GraphChi). We split all the benchmarks we tested into
two categories by their properties and discuss the reason
of our speedup respectively.

5.1 Setup
5.1.1 Environment

All our experiments are performed on a single machine
that is equipped with two Intel(R) Xeon(R) CPU E5-
2640 v2 @ 2.00GHz (each has 8-cores), 32GB DRAM
(20MB L3 Cache), and a standard 1TB SSD. According
to our evaluation, the average throughput of our SSD is
about 450MB/s for sequential read. We use a server ma-
chine rather than an ordinary PC for the testing because
we want to show that the single-thread algorithms im-
plemented in CLIP is even faster than the multi-threaded
implementations in X-Stream and GridGraph, which can
take advantage of at most 16 threads.

5.1.2 Benchmarks

We consider two categories of benchmarks. The first
category is asynchronous applications, which includes
SSSP, BFS and other algorithms like delta-based PageR-
ank [37], diameter approximation [25], transitive clo-
sures [32], betweenness centrality [6], etc. For this
kind of applications, the same relaxation based algo-
rithms can be implemented with CLIP as in X-Stream
and GridGraph. The only difference is that the user of

CLIP can inform the system to enable loaded data reen-
try by setting MRT. The second category is beyond-
neighborhood applications (e.g., WCC, MIS), which
require users to develop new algorithms to achieve
the best performance. One should notice that, for
each application, we use either “reentry” or “beyond-
neighborhood”, so that there is no need for a piecewise
breakdown of the performance gain.

5.1.3 Methodology

The main performance improvement of CLIP is achieved
by reducing the number of iterations with more efficient
algorithms. Thus, if all the disk data is cached in memory
(which is possible as we have a total of 32GB memory),
we cannot observe the impact of disk I/O on overall per-
formance. In order to demonstrate our optimizations in a
realistic setting with disk I/O, we use cgroup to set vari-
ous memory limits (from 16MB to 32GB).

Specifically, for every combination of (system, appli-
cation, dataset), we test three different scenarios: 1) all-
in-memory, i.e., limit is set to 32GB so that most of
the tested datasets can be fully contained in memory;
2) semi-external, where the memory limit is enough for
holding all the vertices but not all the edges; and 3) ex-
ternal, where the memory limit is extremely small so
that even vertices cannot be fully held in memory. As the
number of vertices and edges are different for different
datasets, the thresholds used for semi-external and exter-
nal are also dataset-specific. The exact numbers are pre-
sented in Table 2, from which we can see that the limit is
down to only 16MB as the vertex number of LiveJournal
is less than 5M.

Table 2: The real-world graph datasets. A random
weight is assigned for unweighted graphs.

Graph
Vertices Edges Type Threshold

external semi

LiveJournal [3] 4.85M 69.0M Directed 16MB 256MB

Dimacs [4] 23.9M 58.3M Undir. 64MB 256MB

Twitter [14] 41.7M 1.47B Directed 128MB 4GB

Friendster [2] 65.6M 1.8B Directed 128MB 4GB

Yahoo [1] 1.4B 6.64B Directed 4GB 8GB

Moreover, for the clarity of presentation, if not speci-
fied explicitly, we always attempt all the possible number
of threads and report the best performance. This means
that we use at most 16 threads for testing X-Stream and
GridGraph. In contrast, we testing CLIP with 16 threads
for asynchronous applications but only one thread for
beyond-neighborhood algorithms.

5.2 Loaded Data Reentry

We use two applications, SSSP and BFS, to evaluate the
effect of loaded data reentry technique. All of them can
be solved by relaxation based algorithms.

USENIX Association 2017 USENIX Annual Technical Conference 131

Table 3: Execution time (in seconds) On SSSP/BFS. For each case, we report the results of all three scenarios in the format
of “external / semi-external / all-in-memory”. ‘-’ is used if we cannot achieve all-in-memory even when the limit is set to 32GB.
Since X-Stream requires extra memory for shuffling the messages, 32GB is not enough even for smaller datasets like Friendster
and Twitter. ‘∞’ means that the application does not finish after running 24 hours.

LiveJournal Dimacs Friendster Twitter Yahoo

SSSP
X-Stream 357.9 / 118.4 / 8.45 77212/ 22647/ 853.2 6352 / 3346 / - 4065 / 2255 / - ∞ / ∞ / -
GridGraph 66.42 / 48.1 / 6.97 14618/ 13480/ 889.9 1086 / 784.6 / 85.31 1639 / 1083 / 83.51 77298/ 17432/ -
CLIP 30.14 / 11.23 / 5.09 3202 / 1981 / 316.1 176.2 / 55.79 / 55.85 1353 / 600.6 / 91.82 18160/ 6932 / -

BFS
X-Stream 91.50 / 22.94 / 4.06 8934 / 6538 / 114.9 2526 / 1084 / - 1421 / 627.4 / - ∞ / ∞ / -
GridGraph 13.20 / 15.4 / 2.49 5199 / 5239 / 406.2 499.6 / 493.7 / 61.54 220.5 / 209.6 / 32.16 35572/ 7403 / -
CLIP 10.01 / 5.46 / 2.53 1768 / 1059 / 96.12 98.87 / 38.55 / 38.72 141.2 / 110.4 / 44.7 10533/ 3297 / -

5.2.1 Comparison

The results are presented in Table 3, in which all the
three different scenarios are included. In this table, ‘-’
means that we cannot achieve all-in-memory even when
the limit is set to 32GB. and ‘∞’ means that the appli-
cation does not finish after running 24 hours. As we
can see, CLIP can achieve a significant speedup (1.8×-
14.06×) under the semi-external scenario. In contrast,
the speedup on external scenario is less (only up to
6.16×). This is reasonable because, with a smaller limit,
the number of edges that can be held in memory is
less, therefore, the diameter of the sub-graph loaded into
memory is smaller. As a result, the effect of reentry is
also weaker. Moreover, even for all-in-memory settings,
CLIP still outperforms the others if the diameter of the
graph is large (e.g., we achieve a 2.7× speedup on Di-
macs), which is because that CLIP allows the information
to be propagated faster within a sub-graph and eventually
makes the convergence faster.

In order to justify the above argument, we compare the
number of iterations that is needed for converge on CLIP
and the other systems. Results show that our loaded data
reentry technique can greatly reduce this number. This
improvement is especially significant for large-diameter
graphs, like Dimacs, where more than 90% of the itera-
tions can be reduced.

Figure 4: The scalability for SSSP on Twitter graph,
evaluated in semi-external scenario.

5.2.2 Scalability

Since we use the same algorithm as X-Stream and Grid-
Graph, our implementation of SSSP and BFS follow the
neighborhood constraint. Following neighborhood con-
straint makes it easy to enable the multi-thread model of

CLIP to leverage the multi-core architecture. However,
since disk I/O is the real bottleneck, there is actually not
a big difference between using multi-thread or not.

Figure 4 illustrates our experiments results on scala-
bility. As we can see, GridGraph has the best scalabil-
ity as it can achieve a 1.55x speedup by using 4 threads.
However, it is large because the single-thread baseline of
GridGraph is inefficient. In fact, the single-thread CLIP
is already faster than multi-thread version of GridGraph.

Figure 5: Execution time and required iterations for ex-
ecuting SSSP on Dimacs graph in the semi-external sce-
nario, with different MRT values.

5.2.3 MRT
The value of Maximum Reentry Times (MRT) modulates
the trade-off between global updating and local updating.
As its effect depends not only on the property of input
graph but also on the type of application, there isn’t a
rule for calculating the best MRT. But, according to our
experiences, heuristically setting MRT to 5-10 is usually
enough for producing a performance that is matchable
with the best possible result (less than 4% difference).
For example, all the values we reported in Table 3 is
measured at “MRT = 5”. The intuitive reason for this
phenomena is that the diameter of a real-world graph is
typically not large. Figure 5 shows the execution time
and required iterations of SSSP on Dimacs graph with
different MRTs. We see that both an excessively small
MRT (e.g., =1) or an excessively large MRT (≥20) are
not helpful. When MRT is larger than 10, while the num-
ber of iterations is decreasing, the execution time will
actually increase. The reason is that large MRT will lead
to many useless iterations within each block, which in-
creases the amount of calculation of CPU without prop-
agating the updates to other blocks.

132 2017 USENIX Annual Technical Conference USENIX Association

Table 4: Execution time (in seconds) on WCC and MIS. Format of this table is the same as Table 3. As the size of vertex
property is only 1/4 of other applications in MIS, its corresponding thresholds for external and semi-external execution is also only
1/4 of the given number in Table 2, e.g., only 4MB for executing MIS with LiveJournal in external scenario.

LiveJournal Dimacs Friendster Twitter Yahoo

WCC
X-Stream 179.5 / 57.77 / 10.25 16633/ 6751 / 185.3 4521 / 2341 / - 1904 / 1194 / - ∞ / ∞ / -
GridGraph 22.32 / 13.8 / 3.57 6547 / 5757 / 422.5 967.5 / 466.6 / 82.95 431.5 / 272.3 / 62.3 19445/ 2916 / -
CLIP 3.73 / 2.40 / 2.43 2.61 / 1.35 / 1.33 186 / 65.48 / 64.56 132.7 / 49.03 / 48.85 310.6 / 220.9 / -

MIS
X-Stream 422.1 / 152.6 / 13.06 103.4 / 41.42 / 5.95 9880 / 4867 / - 5513 / 3042 / - ∞ / ∞ / -
GridGraph 166.6 / 122.1 / 2.98 46.32 / 39.19 / 14.46 3945 / 3777 / 253.7 2510 / 2473 / 156.1 ∞ / ∞ / -
CLIP 6.7 / 2.57 / 2.58 1.6 / 1.17 / 1.21 188.8 / 62.49 / 62.18 90.44 / 49.08 / 49.13 321.5 / 220.2 / -

5.3 Beyond-neighborhood
5.3.1 Applications
For some problems, new algorithms need to be imple-
mented to leverage beyond-neighborhood strategy. Be-
sides WCC that described in Section 4.2, we introduce
one more example named MIS in our evaluation.

MIS is an application that finds an arbitrary maxi-
mal independent set for a graph. In graph theory, a set
of vertices constitutes an independent set if and only if
any two of these vertices do not have an edge in be-
tween. We define that a maximal independent set as a
set of vertices that 1) constitutes an independent set; and
2) is not a proper subset of any other independent sets.
Note that there may be multiple maximal independent
sets in a graphs, and MIS only requires to find one ar-
bitrary maximal independent set from them. To solve
this problem, X-Stream and GridGraph implement the
same parallel algorithm that is based on Monte Carlo al-
gorithm [19]. In contrast, we use a simple greedy algo-
rithm to solve this problem, which consists of three steps:
1) a Sort() is invoked to sort all the edges by their source
IDs; 2) a VMap() is called to set the property of all the
vertices to true; and 3) an Exec() is executed which it-
erates all the edges in order and set the property in mis
of the input edge e’s source vertex to false if and only
if “e.dst < e.src && v list[e.dst].in mis == true”. Af-
ter executing only one time of the Exec(), the final re-
sults can be obtained by extracting all the vertices whose
property in mis are true.

Our MIS algorithm is not only beyond-neighborhood
but also requires that the edges are processed in a spe-
cific order. Thus, it is essentially a sequential algorithm
that requires users to use the Sort() function provided
by CLIP to define a specify pre-processing procedure.
However, our algorithm is much faster than the parallel
algorithm used by X-Stream and GridGraph, because it
requires only one iteration for arbitrary graphs.

5.3.2 Comparison

Table 4 shows the evaluation results on beyond neighbor-
hood applications. We see that CLIP can achieve a signif-
icant speed up over the existing systems on all the three
scenarios: up to 2508× on external, up to 4264× on

semi-external, and up to 139× on all-in-memory. Same
as the asynchronous algorithms, the main reason of the
speedup in CLIP is that the algorithms require much less
iterations to calculate the results. The original algorithms
can only converge after using tens or even thousands of
iterations. In contrast, out algorithms require only one it-
eration for all the graphs. As a result, even if we can only
use a single thread to execute our beyond-neighborhood
algorithms, the large amount of disk I/O and computa-
tion avoided by this iteration reduction is enough to offer
better performance than other parallel algorithms.

Moreover, as we can see from the table, even though
that the algorithms used by CLIP do not follow the neigh-
borhood constraint, they are still much faster than the
other systems in the external scenario, where the vertices
are not fully cached in memory. As we have explained
in Section 3.3, this is because that the caching mech-
anism of mmap is particularly suitable for processing
power-law graphs. Hence, the number of pages swap-
ping needed for vertices are moderate, at least far less
from offsetting the benefit we gain from reducing redun-
dant read of edges.

6 Discussion
6.1 Scope of Application
Although our “reentry” technique is quite simple, it es-
sentially provides a midpoint between the fully syn-
chronous algorithm and the fully asynchronous algo-
rithm. It makes the convergence faster than fully syn-
chronous execution but makes an implementation more
“disk-friendly” than fully asynchronous execution (i.e.
process once a block rather than once a vertex). As a re-
sult, all applications that can benefit from asynchronous
execution can benefit from “reentry”, because they are
based on the same principle.

In contrast, the application of “beyond-neighborhood”
does rely on the existence of such algorithms. But, ac-
cording to our study, there are indeed a large set of ap-
plications can be optimized with our model. For exam-
ple, finding WCC of a graph lies at the core of many
data mining algorithms, and is a fundamental subroutine
in graph clustering. Thus, our method can benefit not
only WCC itself but also all these applications. Simi-

USENIX Association 2017 USENIX Annual Technical Conference 133

larly, MIS shares a similar access pattern of many graph
matching applications. In fact, the number of these so-
called Graph Stream Algorithms is large enough for pub-
lishing a survey on them [8, 21].

Essentially, our “beyond-neighborhood” optimization
fundamentally enhances the expressiveness of the ver-
tex programs so that important graph operations like
“pointer-jumping” could be implemented. A recent ar-
ticle [16] made the same observation but only discussed
it in the context of Galois [24]. This paper shows that
such more expressive programming model is not only
applicable for in-memory but also feasible for out-of-
core graph processing systems. Even more, we argue that
the significant performance improvements that “beyond-
neighborhood” can achieve also overshadows its limita-
tion on applicability.

6.2 Programmability
McSherry et al. [22] have observed that the scalability
of many distributed graph processing system is based on
their inefficient single-thread implementation. As a re-
sult, they argue that specialized optimized implementa-
tions should be used in many real-world scenarios, which
share the same principle as our system. However, dif-
ferent from their work that uses a set of distinct pro-
grams, CLIP is a complete system that provides a general
enough programming model.

The trade-off between more flexibility (potentially
worse programmability) and better performance is well-
known. Neighborhood-constraint systems choose one
extreme of this spectrum, which provides the best pro-
grammability but worse performance. McSherry et al.’s
work [22] and some others (e.g., Galois [24], smart al-
gorithm in GoFFish [27], Polymer [35]) choose the other
extreme. They provide only some basic functionalities
(e.g., concurrent loop) or even barely anything. These
methods can achieve the best performance, but impose a
much larger burden on programmers.

In contrast, we believe that CLIP is a sweet spot in
the design space that is just right for out-of-core sys-
tems. The slight sacrifice of programmability is defi-
nitely worthwhile because this makes CLIP up to tens
and even thousands of times faster than existing systems.
According to our evaluation, the programming model of
CLIP helps us to write all the programs described in this
paper in less than 80 lines of codes, comparing to 1200
lines for the native algorithms (many lines of code are
used for dealing with chores like I/O, partitioning, etc.).

6.3 Compared with In-memory System
Thanks to flexibility of CLIP, its performance on many
kinds of applications is matchable with in-memory sys-
tems. As an illustration, Table 5 presents the comparison
between CLIP (semi-external mode) and manually opti-

mized algorithms that implemented in Galois. Since the
loading of data dominates the execution time, the per-
formance of CLIP is indeed comparable to Galois. CLIP
is slower than Galois on large datasets (Friendster, Twit-
ter) because we use different encoding formats for the
binary graph file on disk. Take “Twitter” as an example,
the input edges size of WCC is 11.25GB for Galois but
21.88GB for CLIP.

Besides Galois, GraphMat [28] is also an in-memory
graph processing system that takes advantage from ef-
ficient matrix operations. According to our evaluation,
GraphMat requires only 0.72s to calculate the WCC of
LiveJournal, which is faster than both Galois and CLIP
(while it requires 9.78s for loading data). However,
GraphMat employs a synchronous execution engine that
enforces neighborhood constraint. Thus, for graphs that
have a large diameter, its performance is poor. For exam-
ple, GraphMat needs 6262 iterations (221.9s) to achieve
the convergence of WCC algorithm on Dimacs (only 1
iteration and 1.35s are needed for CLIP).

Table 5: Execution time (in seconds) for CLIP and Ga-
lois. ‘-’ designates out of memory.

LiveJournal Dimacs Friendster Twitter Yahoo
WCC
Galois 2.58 1.81 49.75 42.36 -
CLIP 2.4 1.35 65.48 49.03 220.9
MIS

Galois 2.01 1.36 40.14 34.15 -
CLIP 2.57 1.17 62.49 49.08 220.2

6.4 Concurrency
As mentioned in Section 5.2.2, users of CLIP can enable
multi-thread execution for applications that voluntarily
obey the neighborhood constraint (e.g., SSSP). Specifi-
cally, for executing VMap() in parallel, the whole vertex
set is split into equal intervals that are dispatched to dif-
ferent worker threads. Similarly, for executing Exec(),
the loaded edge grid is further split and dispatched. With
neighborhood constraint, the concurrency control can be
implemented by fined-grained locking in a straightfor-
ward manner. However, although the locking mecha-
nism can assure the correctness of our system, certain
downsides of asynchronous execution still exist in CLIP,
such as non-deterministic execution and unstable per-
formance. However, asynchronous execution has been
demonstrated to be able to accelerate the convergence of
iterative computations [10].

Besides multi-threads, there are also some graph sys-
tems that support multi-tenant execution [7, 20]. Differ-
ent from them, CLIP is a single machine graph process-
ing system and does not support multi-tenant execution,
which is similar to prior systems [15, 26, 41]. Typically,
multi-tenant is more useful for distributed systems that
share the same cluster.

134 2017 USENIX Annual Technical Conference USENIX Association

6.5 Evaluation on HDD
It is worth mentioning that, CLIP can also achieve a
good performance on slow storage devices (e.g., HDD).
We evaluate CLIP on a standard 3TB HDD and com-
pare it with X-Stream and GridGraph. According to our
evaluation, the average throughput of our HDD is about
150MB/s for sequential read. Table 6 shows the eval-
uation results under the semi-external scenario. Since
the amount of loading data dominates the execution
time, CLIP can achieve a similar or even better speedup
(5.59×-5999× for WCC, 2.32×-15.37× for BFS) with
the evaluation on SSD.

Table 6: Execution time (in seconds) on HDD. ‘∞’ means
that the application does not finish after running 24 hours.

LiveJournal Dimacs Friendster Twitter Yahoo
WCC

X-Stream 128.1 15417 5219 2519 ∞

GridGraph 34.68 16467 1314 785.9 8764
CLIP 6.2 2.57 160.2 132.1 590.4
BFS

X-Stream 53.25 16943 2566 1067 ∞

GridGraph 34.28 12790 1431 604.8 22528
CLIP 14.77 2659 93.1 217.3 8844

6.6 Preprocessing Time
Pre-processing is a necessary procedure for most (e.g.,
GraphChi, GridGraph, CLIP) but not all (e.g., X-
Stream) out-of-core graph processing systems. The pre-
processing cost of CLIP is similar to GridGraph, as
they are almost the same. Moreover, although some-
times the pre-processing time is longer than the execu-
tion time, it is still worthwhile in terms of total execu-
tion time. For example, the total execution time (pre-
processing+computation) of computing MIS on Friend-
ster is 4867s for X-Stream and 3962.5s for GridGraph.
In contrast, the total execution time of CLIP is 145.3s for
pre-processing and only 62.49s for computation, which
in total is 207.79s. As we can see, the total execu-
tion time of CLIP is 19.07× faster than GridGraph and
23.42× faster than X-Stream, not to mention that the pre-
processing cost can be amortized by reusing the results.

7 Related Work
There are also many distributed graph processing sys-
tems. Pregel [20] is the earliest distributed graph pro-
cessing system that proposes a vertex-centric program-
ming model, which is later inherited by many other graph
processing systems [12, 18, 26, 36, 40]. Some exist-
ing works [27, 31], such as Giraph++ [32], have sug-
gested to replace “think as vertex” with “think as sub-
grapg/partition/embedding”. They can take advantage of
the fact that each machine contains a subset of data rather
than only one vertex/edge and hence are much faster
than prior works. However, none of these existing works

could support the beyond-neighborhood algorithms used
by CLIP.

Similarly, in addition to GraphChi, X-Stream and
GridGraph, there are other out-of-core graph processing
systems using alternative approaches [13, 17, 38, 39].
However, most of them only focus on maximizing the
locality of disk I/O and still use neighborhood-constraint
programming model. As a counter example, MMap [17]
leverages the memory mapping capability found on op-
erating systems by mapping edge and vertex data files in
memory, which inspires the design of CLIP. But, MMap
only demonstrates that mmap’s caching mechanism is
naturally suitable for processing power-law graphs. It
does not consider the limitations of the original out-of-
core systems’ restrictions , which is the key contribution
of this work.

There are some works [34, 39] that aim to load only
necessary data in an iteration, which can also reduce disk
I/O. However, these methods are actually an orthogonal
optimization with our efforts of reducing the number of
iterations. According to our evaluation, our simple selec-
tive scheduling method is enough for our case.

Some existing works [15, 33] are proposed to support
evolving graphs, which is not currently supported in our
system. But, although it is not discussed, the same mech-
anism for dealing with evolving graph in GraphChi can
be added to CLIP in a straightforward manner. To main-
tain the consistency of data, we reserve all the addition
and deletion of edges within an iteration and only apply
them in the interval between two iterations.

8 Conclusion
In this paper, we propose CLIP, a novel out-of-core
graph processing system designed with the principle of
“squeezing out all the value of loaded data”. With the
more expressive programming model and more flexible
execution, CLIP enables more efficient algorithms that
require much less amount of total disk I/O. Our exper-
iment results show that CLIP is up to tens or some-
times even thousands times faster than existing works X-
Stream and GridGraph.

Acknowledgement This work is supported by Na-
tional Key Research & Development Program of China
(2016YFB1000504), Natural Science Foundation of
China (61433008, 61373145, 61572280, 61133004,
61502019, U1435216), National Basic Research (973)
Program of China (2014CB340402), Intel Labs China
(Funding No.20160520). This work is also sup-
ported by NSF CRII-1657333, NSF SHF-1717754, NSF
CSR-1717984, Spanish Gov. & European ERDF un-
der TIN2010-21291-C02-01 and Consolider CSD2007-
00050. Contact: Yongwei Wu (wuyw@tsinghua.edu.cn)
and Kang Chen (chenkang@tsinghua.edu.cn).

USENIX Association 2017 USENIX Annual Technical Conference 135

References

[1] G2 - Yahoo! AltaVista Web Page Hyperlink Con-
nectivity Graph, circa 2002. http://webscope. sand-
box.yahoo.com/.

[2] S. N. A. Project. Stanford large network dataset
collection. http://snap.stanford.edu/data/com-
Friendster.html.

[3] S. N. A. Project. Stanford large network dataset
collection. http://snap.stanford.edu/data/soc-
LiveJournal1.html.

[4] The Center for Discrete Mathematics and Theoret-
ical Computer Science. http://www.dis.uniroma1.it
/challenge9/download.shtml.

[5] Richard Bellman. On a routing problem. Quarterly
of applied mathematics, pages 87–90, 1958.

[6] Ulrik Brandes. A faster algorithm for between-
ness centrality*. Journal of mathematical sociol-
ogy, 25(2):163–177, 2001.

[7] Avery Ching, Sergey Edunov, Maja Kabiljo,
Dionysios Logothetis, and Sambavi Muthukrish-
nan. One trillion edges: graph processing at
Facebook-scale. Proceedings of the VLDB Endow-
ment, 8(12):1804–1815, 2015.

[8] Joan Feigenbaum, Sampath Kannan, Andrew Mc-
Gregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. In Interna-
tional Colloquium on Automata, Languages, and
Programming, pages 531–543. Springer, 2004.

[9] Michael L Fredman. New bounds on the complex-
ity of the shortest path problem. SIAM Journal on
Computing, 5(1):83–89, 1976.

[10] Andreas Frommer and Daniel B Szyld. On Asyn-
chronous Iterations. 1999.

[11] Harold N Gabow and Robert Endre Tarjan. A
linear-time algorithm for a special case of disjoint
set union. Journal of computer and system sciences,
30(2):209–221, 1985.

[12] Joseph E Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural
graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 12), pages 17–30, 2012.

[13] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park,
Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and

Hwanjo Yu. TurboGraph: a fast parallel graph en-
gine handling billion-scale graphs in a single PC.
In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 77–85. ACM, 2013.

[14] Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue Moon. What is Twitter, a social network
or a news media? In Proceedings of the 19th in-
ternational conference on World wide web, pages
591–600. ACM, 2010.

[15] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: large-scale graph computation on just
a PC. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 12), pages 31–46, 2012.

[16] Andrew Lenharth, Donald Nguyen, and Keshav
Pingali. Parallel Graph Analytics. Communication
of ACM, 59(5):78–87, 2016.

[17] Zhiyuan Lin, Minsuk Kahng, Kaeser Md Sabrin,
Duen Horng Polo Chau, Ho Lee, and U Kang.
Mmap: Fast billion-scale graph computation on
a pc via memory mapping. In Big Data (Big
Data), 2014 IEEE International Conference on,
pages 159–164. IEEE, 2014.

[18] Yucheng Low, Danny Bickson, Joseph Gonza-
lez, Carlos Guestrin, Aapo Kyrola, and Joseph M
Hellerstein. Distributed GraphLab: a framework
for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716–
727, 2012.

[19] Michael Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM journal
on computing, 15(4):1036–1053, 1986.

[20] Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, pages 135–146. ACM, 2010.

[21] Andrew McGregor. Graph stream algorithms: a
survey. ACM SIGMOD Record, 43(1):9–20, 2014.

[22] Frank McSherry, Michael Isard, and Derek G Mur-
ray. Scalability! But at what COST? In 15th Work-
shop on Hot Topics in Operating Systems (HotOS
XV), 2015.

[23] Shanmugavelayutham Muthukrishnan. Data
streams: Algorithms and applications. Now Pub-
lishers Inc, 2005.

136 2017 USENIX Annual Technical Conference USENIX Association

[24] Donald Nguyen, Andrew Lenharth, and Keshav
Pingali. A lightweight infrastructure for graph an-
alytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
456–471. ACM, 2013.

[25] Liam Roditty and Virginia Vassilevska Williams.
Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the forty-
fifth annual ACM symposium on Theory of comput-
ing, pages 515–524. ACM, 2013.

[26] Amitabha Roy, Ivo Mihailovic, and Willy
Zwaenepoel. X-Stream: edge-centric graph pro-
cessing using streaming partitions. In Proceedings
of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 472–488. ACM,
2013.

[27] Yogesh Simmhan, Alok Kumbhare, Charith Wick-
ramaarachchi, Soonil Nagarkar, Santosh Ravi,
Cauligi Raghavendra, and Viktor Prasanna. Goff-
ish: A sub-graph centric framework for large-scale
graph analytics. In European Conference on Paral-
lel Processing, pages 451–462. Springer, 2014.

[28] Narayanan Sundaram, Nadathur Satish,
Md Mostofa Ali Patwary, Subramanya R Dulloor,
Michael J Anderson, Satya Gautam Vadlamudi,
Dipankar Das, and Pradeep Dubey. GraphMat:
High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment,
8(11):1214–1225, 2015.

[29] Robert E Tarjan and Jan Van Leeuwen. Worst-case
analysis of set union algorithms. Journal of the
ACM (JACM), 31(2):245–281, 1984.

[30] Robert Endre Tarjan. Efficiency of a good but not
linear set union algorithm. Journal of the ACM
(JACM), 22(2):215–225, 1975.

[31] Carlos HC Teixeira, Alexandre J Fonseca, Marco
Serafini, Georgos Siganos, Mohammed J Zaki, and
Ashraf Aboulnaga. Arabesque: a system for dis-
tributed graph mining. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages
425–440. ACM, 2015.

[32] Yuanyuan Tian, Andrey Balmin, Severin Andreas
Corsten, Shirish Tatikonda, and John McPherson.
From think like a vertex to think like a graph. Pro-
ceedings of the VLDB Endowment, 7(3):193–204,
2013.

[33] Keval Vora, Rajiv Gupta, and Guoqing Xu. Syner-
gistic Analysis of Evolving Graphs. ACM Trans-
actions on Architecture and Code Optimization
(TACO), 13(4):32, 2016.

[34] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load
the Edges You Need: A Generic I/O Optimization
for Disk-based Graph Processing. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16).
USENIX Association, 2016.

[35] Kaiyuan Zhang, Rong Chen, and Haibo Chen.
NUMA-aware graph-structured analytics. In ACM
SIGPLAN Notices, volume 50, pages 183–193.
ACM, 2015.

[36] Mingxing Zhang, Yongwei Wu, Kang Chen, Xue-
hai Qian, Xue Li, and Weimin Zheng. Exploring
the hidden dimension in graph processing. In 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 285–300.
USENIX Association, 2016.

[37] Yanfeng Zhang, Qixin Gao, Lixin Gao, and
Cuirong Wang. Accelerate large-scale iterative
computation through asynchronous accumulative
updates. In Proceedings of the 3rd workshop on
Scientific Cloud Computing Date, pages 13–22.
ACM, 2012.

[38] Yunming Zhang, Vladimir Kiriansky, Charith
Mendis, and Matei Zaharia Saman Amarasinghe.
Optimizing Cache Performance for Graph Analyt-
ics. arXiv preprint arXiv:1608.01362, 2016.

[39] Da Zheng, Disa Mhembere, Randal Burns, Joshua
Vogelstein, Carey E Priebe, and Alexander S
Szalay. FlashGraph: Processing billion-node
graphs on an array of commodity SSDs. In 13th
USENIX Conference on File and Storage Technolo-
gies (FAST 15), pages 45–58, 2015.

[40] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A computation-centric dis-
tributed graph processing system. In 12th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 16)(Savannah, GA, 2016.

[41] Xiaowei Zhu, Wentao Han, and Wenguang Chen.
GridGraph: Large-scale graph processing on a sin-
gle machine using 2-level hierarchical partition-
ing. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 375–386, 2015.

USENIX Association 2017 USENIX Annual Technical Conference 137

Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi

Toke Høiland-Jørgensen

Karlstad University

Michał Kazior

Tieto Poland

Dave Täht

TekLibre

Per Hurtig

Karlstad University

Anna Brunstrom

Karlstad University

Abstract

With more devices connected, delays and jitter at theWiFi

hop become more prevalent, and correct functioning dur-

ing network congestion becomes more important. How-

ever, two important performance issues prevent modern

WiFi from reaching its potential: increased latency under

load caused by excessive queueing (i.e. bufferbloat) and

the 802.11 performance anomaly.

To remedy these issues, we present a novel two-part

solution. We design a new queueing scheme that elim-

inates bufferbloat in the wireless setting. Leveraging

this queueing scheme, we then design an airtime fairness

scheduler that operates at the access point and doesn’t re-

quire any changes to clients.

We evaluate our solution using both a theoretical model

and experiments in a testbed environment, formulating

a suitable analytical model in the process. We show that

our solution achieves an order of magnitude reduction in

latency under load, large improvements in multi-station

throughput, and nearly perfect airtime fairness for both

TCP and downstream UDP traffic. Further experiments

with application traffic confirm that the solution provides

significant performance gains for real-world traffic.We

develop a production quality implementation of our solu-

tion in the Linux kernel, the platform powering most ac-

cess points outside of the managed enterprise setting. The

implementation has been accepted into the mainline ker-

nel distribution, making it available for deployment on

billions of devices running Linux today.

1 Introduction

As more mobile devices connect to the internet, and in-

ternet connections increase in capacity, WiFi is increas-

ingly the bottleneck for users of the internet. This means

that congestion at the WiFi hop becomes more common,

which in turn increases the potential for bufferbloat at the

WiFi link, severely degrading performance [10].

The 802.11 performance anomaly [9] also negatively

affects the performance of WiFi bottleneck links. This is

a well-known property of WiFi networks: if devices on

the network operate at different rates, the MAC protocol

will ensure throughput fairness between them, meaning

that all stations will effectively transmit at the lowest rate.

The anomaly was first described in 2003, and several

mitigation strategies have been proposed in the literature

(e.g., [13, 26]), so one would expect the problem to be

solved. However, none of the proposed solutions have

seen widespread real-world deployment.

Recognising that the solutions to these two problems

are complementary, we design a novel queue management

scheme that innovates upon previous solutions to the buf-

ferbloat problem by adapting it to support the 802.11 suite

of WiFi protocols. With this queueing structure in place,

eliminating the performance anomaly becomes possible

by scheduling the queues appropriately. We develop a

deficit-based airtime fairness scheduler to achieve this.

We implement our solution in the WiFi stack of the

Linux kernel. Linux is perhaps the most widespread

platform for commercial off-the-shelf routers and access

points outside the managed enterprise, and hundreds of

millions of users connect to the internet through a Linux-

based gateway or access point on a daily basis. Thus,

while our solution is generally applicable to any platform

that needs to support WiFi, using Linux as our example

platform makes it possible to validate that our solution is

of production quality, and in addition gives valuable in-

sights into the practical difficulties of implementing these

concepts in a real system.

The rest of this paper describes our solution in detail,

and is structured as follows: Section 2 describes the buf-

ferbloat problem in the context of WiFi and the WiFi per-

formance anomaly, and shows the potential performance

improvement from resolving them. Section 3 describes

our proposed solution in detail and Section 4 presents our

experimental evaluation. Finally, Section 5 summarises

related work and Section 6 concludes.

USENIX Association 2017 USENIX Annual Technical Conference 139

2 Background

In this section we describe the two performance issues

we are trying to solve – Bufferbloat in the WiFi stack and

the 802.11 performance anomaly. We explain why these

matter, and show the potential benefits from solving them.

2.1 Bufferbloat in the context of WiFi

Previous work on eliminating bufferbloat has shown that

the default buffer sizing in many devices causes large

delays and degrades performance. It also shows that this

can be rectified by introducingmodern queuemanagement

to the bottleneck link [10, 15, 29]. However, this does

not work as well for WiFi; prior work has shown that

neither decreasing buffer sizes [23] nor applying queue

management algorithms to the WiFi interface [10] can

provide the same reduction in latency under load as for

wired links.

10
00

 *

Q
di

sc
 la

ye
r

M
A

C
la

ye
r

at
h9

k
dr

iv
er

*Can be replaced with an
arbitrary configuration

Per HW queue
(x4)

2
ag

gr

FIFO

FIFO*

buf_q retry_q

TID

12
3

Prio

buf_q retry_q

TID

RR

Assign TID

Retries

To hardware

12
3

Prio

Figure 1: The queueing structure of the Linux WiFi stack.

The reason for the limited effect of prior solutions is

queueing in the lower layers of the wireless network stack.

For Linux, this is clearly seen in the queueing structure,

depicted in Figure 1. The upper queue discipline (”qdisc”)

layer, which is where the advanced queue management

schemes can be installed, sits above both the mac80211

subsystem (which implements the base 802.11 protocol)

and the driver. As the diagram shows, there is signific-

ant unmanaged queueing in these lower layers, limiting

the efficacy of the queue management schemes and lead-

ing to increased delay. Such a design is typical for an

environment where low-level protocol details impose a

certain queueing structure (as opposed to a wired Ether-

net network, where the protocol-specific processing per-

formed by the driver does not necessitate queueing). In

WiFi this queueing is needed to build aggregates (and to

a lesser extent to keep the hardware busy within the time

constrains imposed by the protocol), but a similar situ-

ation can be seen in, e.g., mobile broadband devices, DSL

modem drivers, and even in some VPN protocols, where

the encryption processing can require a separate layer of

queueing.

101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

With our solution Without our solution

Figure 2: Latency of an ICMP ping flow with simultaneous

TCP download traffic, before and after our modifica-

tions.

To solve this, an integrated queueing scheme is needed,

that applies modern queue management to the protocol-

specific queueing structures. In Section 3 we describe our

design of such a solution for the WiFi domain. Figure 2

showcases the gain from applying our solution. The figure

shows a latency measurement (ICMP ping) performed

simultaneously with a simple TCP download to each of

the stations on the network. The dashed line shows the

state of the Linux kernel before we applied our solution,

with several hundred milliseconds of added latency. The

solid line shows the effects of applying the solution we

propose in this paper – a latency reduction of an order of

magnitude.

2.2 Airtime fairness

The 802.11 performance anomaly was first described

for the 802.11b standard in [9], which showed that in a

wireless network with differing rates, each station would

achieve the same effective throughput even when their

rates were different. Later work has shown both ana-

lytically and experimentally that time-based fairness im-

proves the aggregate performance of the network [26], and

140 2017 USENIX Annual Technical Conference USENIX Association

that the traditional notion of proportional fairness [18]

translates to airtime fairness when applied to a WiFi net-

work [12].

This latter point is an important part of why airtime

fairness is desirable – proportional fairness strikes a bal-

ance between network efficiency and allowing all users a

minimal level of service. Since a wireless network oper-

ates over a shared medium (the airwaves), access to this

medium is the scarce resource that needs to be regulated.

Achieving airtime fairness also has the desirable property

that it makes a station’s performance dependent on the

number of active stations in the network, and not on the

performance of each of those other stations.

The addition of packet aggregation toWiFi (introduced

in 802.11n and also present in 802.11ac) adds some com-

plexity to the picture. To quantify the expected gains of

airtime fairness in the context of these newer revisions

of 802.11, the following section develops an analytical

model to predict throughput and airtime usage.

2.2.1 An analytical model for 802.11 with aggregation

The models in [9] and [26] give analytical expressions

for expected throughput and airtime share for 802.11b

(the latter also under the assumption of airtime fairness).

Later work [16] updates this by developing analytical ex-

pressions for packet sizes and transmission times for a

single station using 802.11n. However, this work does not

provide expressions for predicting throughput and airtime

usage. In this section we expand on the work of [16] to

provide such an expression. While we focus on 802.11n

here, the 802.11ac standard is backwards-compatible with

802.11n as far as the aggregation format is concerned, so

these calculations apply to the newer standard as well.

For the following exposition, we assume a set of active

stations, I . Each station, i, transmits aggregates of a

fixed size of Li bytes. In practice, the aggregates are

composed of data packets, plus overhead and padding.

The 802.11n standard permits two types of aggregation

(known as A-MPDU and A-MSDU), which differ in how

they combine packets into MAC-layer aggregates. For

A-MPDU aggregation (which is the most common in use

in 802.11n devices), the size of an aggregate consisting

of ni packets of size li is given by:

Li = ni(li + Ldelim + Lmac + LFCS + Lpad) (1)

where Ldelim, Lmac, LFCS , Lpad are, respectively,

the frame delimiter, MAC header, frame check sequence

and frame padding. However, these details are not strictly

necessary for our exposition, so we leave them out in the

following and instead refer to [16] for a nice overview of

the details of aggregate composition.

A station transmits data over the air at a particular

Aggr

size

T (i) Rates (Mbps)

PHY Base R(i) Exp

Baseline (FIFO queue)1

6892 10% 144.4 97.3 9.7 7.1
7833 11% 144.4 101.1 11.4 6.3
2914 79% 7.2 6.5 5.1 5.3

Total 26.4 18.7

Airtime Fairness

28434 33% 144.4 126.7 42.2 38.8
28557 33% 144.4 126.8 42.3 35.6
2914 33% 7.2 6.5 2.2 2.0

Total 86.8 76.4

Table 1: Calculated airtime, calculated rate and measured rate

for the three stations (two fast and one slow) in our ex-

perimental setup. The aggregation size is the measured

mean aggregation size (in bytes) from our experiments

and the measured rates (Exp column) are mean UDP

throughput values.

data rate ri (measured in bits per second). So the time to

transmit the data portion of an aggregate is simply:

Tdata(i) =
8Li

ri
(2)

From this we can compute the expected effective sta-

tion rate, assuming no errors or collisions, and no other

active stations:

R0(i) =
Li

Tdata(i) + Toh
(3)

where Toh is the per-transmission overhead, which

consists of the frame header, the inter-frame spacing, the

average block acknowledgement time, and the average

back-off time before transmission. We again leave out the

details and point interested readers to [2, 16].

Turning to airtime fairness, we borrow two insights

from the analysis in [26]:

1. The rate achieved by station i is simply given by

the baseline rate it can achieve when no other stations

are present (i.e., R0(i)) multiplied by the share of airtime

available to the station.

2. When airtime fairness is enforced, the airtime is di-

vided equally among the stations (by assumption). When

it is not, the airtime share of station i is the ratio between
the time that station spends on a single transmission (i.e.,

Tdata(i)) and the total time all stations spend doing one

1The aggregation size and throughput values vary quite a bit for this

test, because of the randomness of the FIFO queue emptying and

filling. We use the median value over all repetitions of the per-test

mean throughput and aggregation size; see the online appendix for

graphs with error bars.

USENIX Association 2017 USENIX Annual Technical Conference 141

transmission each.

With these points in mind, we express the expected

airtime share T (i) and rate R(i) as:

T (i) =

{
1
|I| with fairness

Tdata(i)∑
j∈I Tdata(j)

otherwise
(4)

R(i) = T (i)R0(i) (5)

Using the above, we can calculate the expected airtime

share and effective rate for each station in our experi-

mental setup. The assumption of no contention holds

because all data is transmitted from the access point. As

the queueing structure affects the achievable aggregation

level (and thus the predictions of the model), we use the

measured average aggregation levels in our experiments

as input to the model.

The model predictions, along with the actual measured

throughput in our experiments, are shown in Table 1. The

values will be discussed in more detail in Section 4, so

for now we will just remark that this clearly shows the

potential of eliminating the performance anomaly: An

increase in total throughput by up to a factor of five.

3 Our solution

We focus on the access point scenario in formulating our

solution, since a solution that only requires modifying the

access point makes deployment easier as there are fewer

devices to upgrade. However,WiFi client devices can also

benefit from the proposed queueing structure. And while

we have focused on 802.11n here, the principles apply

equally to both earlier (802.11abg) and newer (802.11ac)

standards. The rest of this section describes the two parts

of our solution, and outlines the current implementation

status in Linux.

3.1 A bloat-free queueing structure for 802.11

An operating system networking stack has many layers of

intermediate queueing between different subsystems, each

of which can add latency. For specialised systems, it is

possible to remove those queues entirely, which achieves

significant latency reductions [1]. While such a radical

restructuring of the operating system is not always pos-

sible, the general principle of collapsing multiple layers

of queues can be applied to the problem of reducing buf-

ferbloat in WiFi.

As mentioned in Section 2.1, an integrated queueing

structure is needed to deal with protocol-specific con-

straints while still eliminating bufferbloat. What we pro-

pose here is such an integrated structure that is specifically

suited to the 802.11 MAC. The components we use to

build this structure already exists in various forms; the

novelty of our solution lies in their integration, and some

algorithmic innovations to make the implementation feas-

ible, even on small devices.

There are three main constraints we must take into ac-

count when designing our queueing scheme. First, we

must be able to handle aggregation; the 802.11e stand-

ard specifies that packets can be assigned different Traffic

Identifiers (TIDs) (typically based on their DiffServ mark-

ings [25]), and the 802.11n standard specifies that aggreg-

ation be performed on a per-TID basis. Second, we must

have enough data processed and ready to go when the hard-

ware wins a transmit opportunity; there is not enough

time to do a lot of processing at that time. Third, we

must be able to handle packets that are re-injected from

the hardware after a failed transmission; these must be re-

transmitted ahead of other queued packets, as transmission

can otherwise stall due to a full Block Acknowledgement

Window.

The need to support aggregation, in particular, has in-

fluenced our proposed design. A generic packet queueing

mechanism, such as that in the Linux qdisc layer (see Sec-

tion 2.1), does not have the protocol-specific knowledge

to support the splitting of packets into separate queues,

as is required for aggregation. And introducing an API

to communicate this knowledge to the qdisc layer would

impose a large complexity cost on this layer, to the detri-

ment of network interfaces that do not have the protocol-

specific requirements. So rather than modifying the gen-

eric queueing layer, we bypass it completely, and instead

incorporate the smart queue management directly into the

802.11 protocol-specific subsystem. The main drawback

of doing this is, of course, a loss of flexibility. With this

design, there is no longer a way to turn off the smart queue

management completely; and it does add some overhead

to the packet processing. However, as we will see in the

evaluation section, the benefits by far outweigh the costs.

We build our smart queue management solution on

the FQ-CoDel queue management scheme, which has

been shown to be a best-in-class bufferbloat mitigation

technique [10, 15, 29]. The original FQ-Codel algorithm

is a hybrid fairness queueing and AQM algorithm [11].

It functions as a Deficit Round-Robin (DRR) scheduler

[24] between flows, hashing packets into queues based

on their transport protocol flows, and applying the CoDel

AQM separately to each queue, in order to keep the latency

experienced by each flow under control. FQ-CoDel also

adds an optimisation for sparse flows to the basic DRR

algorithm. This optimisation allows flows that use less

than their fair share of traffic to gain scheduling priority,

reducing the time their packets spend in the queue. For a

full explanation of FQ-CoDel, see [11].

FQ-CoDel allocates a number of sub-queues that are

used for per-flow scheduling, and so simply assigning a

full instance of FQ-CoDel to each TID is impractical. In-

142 2017 USENIX Annual Technical Conference USENIX Association

Algorithm 1 802.11 queue management algorithm - enqueue.

1: function enqueue(pkt, tid)

2: if queue_limit_reached() then . Global limit

3: drop_queue← find_longest_queue()

4: drop(drop_queue.head_pkt)

5: queue← hash(pkt)

6: if queue.tid 6= NULL and queue.tid 6= tid then

7: queue← tid.overflow_queue . Hash collision

8: queue.tid← tid

9: timestamp(pkt) . Used by CoDel at dequeue

10: append(pkt, queue)

11: if queue is not active then

12: list_add(queue, tid.new_queues)

stead, we innovate on the FQ-CoDel design by having

it operate on a fixed total number of queues, and group

queues based on which TID they are associated with. So

when a packet is hashed and assigned to a queue, that

queue is in turn assigned to the TID the packet is destined

for. In case that queue is already active and assigned to

another TID (which means that a hash collision has oc-

curred), the packet is instead queued to a TID-specific

overflow queue.2 A global queue size limit is kept, and

when this is exceeded, packets are dropped from the glob-

ally longest queue, which prevents a single flow from

locking out other flows on overload. The full enqueue

logic is shown in Algorithm 1.

The lists of active queues are kept in a per-TID struc-

ture, and when a TID needs to dequeue a packet, the

FQ-CoDel scheduler is applied to the TID-specific lists

of active queues. This is shown in Algorithm 2.

The obvious way to handle the two other constraints

mentioned above (keeping the hardware busy, and hand-

ling retries), is, respectively, to add a small queue of pre-

processed aggregates, and to add a separate priority queue

for packets that need to be retried. And indeed, this is how

the ath9k driver already handled these issues, so we simply

keep this. The resulting queueing structure is depicted in

Figure 3.

3.2 Airtime fairness scheduling

Given the above queueing structure, achieving airtime

fairness becomes a matter of measuring the airtime used

by each station, and appropriately scheduling the order

in which stations are served. For each packet sent or re-

ceived, the packet duration can either be extracted directly

from a hardware register, or it can be calculated from

the packet length and the rate at which it was sent (in-

cluding any retries). Each packet’s duration is subtracted

2A hash collision can of course also mean that two flows assigned to

the same TID end up in the same queue. In this case, no special

handling is needed, and the two flows will simply share a queue

like in any other hash-based fairness queueing scheme.

Qdisc layer (bypassed)

M
A

C
la

ye
r

at
h9

k
dr

iv
er

HW queue
(x4)

2
ag

gr

FIFO

RR

Assign TID

Retries

To hardware

retry_q

TID

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

retry_q

TID

FQ-
CoDel

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

FQ-
CoDel

Figure 3: Our 802.11-specific queueing structure, as it looks

when applied to the Linux WiFi stack.

from a per-station airtime deficit which is used by a de-

ficit scheduler, modelled after FQ-CoDel, to decide the

destination station ahead of each transmission. The de-

cision to keep the deficit per station instead of per TID

follows from the fact that the goal of airtime fairness is

to even out differences in the physical signal conditions,

which is a per-station property. However, because the

four 802.11 QoS precedence markings (VO, VI, BE and

BK) are commonly scheduled independently down to the

hardware level, we actually keep four deficits per station,

corresponding to the four precedence levels, to simplify

the scheduler implementation.

The resulting airtime fairness scheduler is shown in

Algorithm 3. It is similar to the the FQ-CoDel dequeue

algorithm, with stations taking the place of flows, and

the deficit being accounted in microseconds instead of

bytes. The two main differences are (1) that the scheduler

function loops until the hardware queue becomes full (at

two queued aggregates), rather than just dequeueing a

single packet; and (2) that when a station is chosen to be

scheduled, it gets to build a full aggregate rather than a

single packet.

Compared to the closest previously proposed solu-

USENIX Association 2017 USENIX Annual Technical Conference 143

Algorithm 2 802.11 queue management algorithm - dequeue.

1: function dequeue(tid)

2: if tid.new_queues is non-empty then

3: queue← list_first(tid.new_queues)

4: else if tid.old_queues is non-empty then

5: queue← list_first(tid.old_queues)

6: else

7: return NULL

8: if queue.deficit ≤ 0 then
9: queue.deficit← queue.deficit+ quantum

10: list_move(queue, tid.old_queues)

11: restart

12: pkt← codel_dequeue(queue)

13: if pkt is NULL then . queue empty

14: if queue ∈ tid.new_queues then

15: list_move(queue, tid.old_queues)

16: else

17: list_del(queue)

18: queue.tid← NULL

19: restart

20: queue.deficit← queue.deficit − pkt.length

21: return pkt

tion [6], our scheme has several advantages:

1. We lower implementation complexity by leveraging

existing information on per-aggregate transmission rates

and time, and by using a per-station deficit instead of token

buckets, which means that no token bucket accounting

needs to be performed at TX and RX completion time.

2. [6] measures time from an aggregate is submitted

to the hardware until it is sent, which risks including time

spent waiting for other stations to transmit. We increase

accuracy by measuring the actual time spent transmitting,

and by also accounting the airtime from received frames

to each station’s deficit.

3. We improve on the basic scheduler design by adding

an optimisation for sparse stations, analogous to FQ-

CoDel’s sparse flow optimisation. This improves latency

for stations that only transmit occasionally, by giving them

temporary priority for one round of scheduling. We apply

the same protection against gaming this mechanism that

FQ-CoDel does to its sparse flow mechanism [11].

3.3 Implementation

We have implemented our proposed queueing scheme in

the Linux kernel, modifying the mac80211 subsystem to

include the queueing structure itself, and modifying the

ath9k and ath10k drivers for QualcommAtheros 802.11n

and 802.11ac chipsets to use the new queueing structure.

The airtime fairness scheduler implementation is limited

to the ath9k driver, as the ath10k driver lacks the required

scheduling hooks.

Our modifications have been accepted into the main-

line Linux kernel, different parts going into kernel releases

Algorithm 3Airtime fairness scheduler. The schedule function

is called on packet arrival and on transmission completion.

1: function schedule

2: while hardware queue is not full do

3: if new_stations is non-empty then

4: station← list_first(new_stations)

5: else if old_stations is non-empty then

6: station← list_first(old_stations)

7: else

8: return

9: deficit← station.deficit[pkt.qoslvl]

10: if deficit ≤ 0 then
11: station.deficit[pkt.qoslvl]← deficit+quantum

12: list_move(station, old_stations)

13: restart

14: if station’s queue is empty then

15: if station ∈ new_stations then

16: list_move(station, old_stations)

17: else

18: list_del(station)

19: restart

20: build_aggregate(station)

4.8 through 4.11, and is included in the LEDE open source

router firmware from release 17.01. The implementation

is available online, as well as details about our test envir-

onment and the full evaluation dataset.3

4 Evaluation

We evaluate ourmodifications in a testbed setup consisting

of five PCs: Three wireless clients, an access point, and a

server located one Gigabit Ethernet hop from the access

point, which serves as source and sink for the test flows.

All the wireless nodes are regular x86 PCs equipped with

PCI-Express QualcommAtherosAR9580 adapters (which

use the ath9k driver). Two of the test clients are placed in

close proximity to the access point (and are referred to as

fast nodes), while the last (referred to as the slow node)

is placed further away and configured to only support the

MCS0 rate, giving a maximum throughput to that station

of 7.2 Mbps at the PHY layer. A fourth virtual station

is added as an additional fast node to evaluate the sparse

station optimisation (see Section 4.1.4 below). All tests

are run in HT20 mode on an otherwise unused channel in

the 5Ghz band. We use 30 test repetitions of 30 seconds

each unless noted otherwise.

The wireless nodes run an unmodified Ubuntu 16.04

distribution. The access point has had its kernel replaced

with a version 4.6 kernel from kernel.org on top of which

we apply our modifications. We run all experiments with

four queue management schemes, as follows:

3See http://www.cs.kau.se/tohojo/airtime-fairness/ for

the online appendix that contains additional material, as well as the

full experimental dataset and links to the relevant Linux code.

144 2017 USENIX Annual Technical Conference USENIX Association

http://www.cs.kau.se/tohojo/airtime-fairness/

101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e p
ro

ba
bi

lit
y

Slow - FQ-MAC
Fast - FQ-MAC

Slow - FQ-CoDel
Fast - FQ-CoDel

Slow - FIFO
Fast - FIFO

Figure 4: Latency (ICMP ping) with simultaneous TCP down-

load traffic.

FIFO: The default 4.6 kernel from kernel.org modified

only to collect the airtime used by stations, running with

the default PFIFO queueing discipline installed on the

wireless interface.

FQ-CoDel: As above, but using the FQ-CoDel qdisc

on the wireless interface.

FQ-MAC: Kernel patched to include the FQ-CoDel

based intermediate queues in the MAC layer (patching

the mac80211 subsystem and the ath9k driver).

Airtime fair FQ: As FQ-MAC, but additionally in-

cluding our airtime fairness scheduler in the ath9k driver.

Our evaluation is split into two parts. First, we valid-

ate the effects of the modifications in simple scenarios

using synthetic benchmark traffic. Second, we evaluate

the effect of our modifications on two application traffic

scenarios, to verify that they provide a real-world benefit.

4.1 Validation of effects

In this section we present the evaluation of our modific-

ations in simple synthetic scenarios designed to validate

the correct functioning of the algorithms and to demon-

strate various aspects of their performance.

4.1.1 Latency reductions

Figure 4 is the full set of results for our ICMP latency

measurements with simultaneous TCP download traffic

(of which a subset was shown earlier in Figure 2). Here,

the FIFO case shows several hundred milliseconds of

latency when the link is saturated by a TCP download.

FQ-CoDel alleviates this somewhat, but the slow station

still sees latencies of more than 200 ms in the median, and

the fast stations around 35 ms. With the FQ-MAC queue

restructuring, this is reduced so that the slow station now

has the same median latency as the fast one does in the

FQ-CoDel case, while the fast stations get their latency

reduced by another 45%. The airtime scheduler doesn’t

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

0.0

0.2

0.4

0.6

0.8

1.0

Ai
rt

im
e s

ha
re

FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 5: Airtime usage for one-way UDP traffic. Each column

shows the relative airtime usage of one of the three

stations, with the four sections corresponding to the

four queue management schemes.

improve further upon this, other than to alter the shape of

the distribution slightly for the slow station (but retaining

the same median). For this reason, we have omitted it

from the figure to make it more readable.

For simultaneous upload and download the effect is

similar, except that in this case the airtime scheduler

slightly worsens the latency to the slow station, because

it is scheduled less often to compensate for its increased

airtime usage in the upstream direction. The graph of this

case can be found in the online appendix.

4.1.2 Airtime usage

Figure 5 shows the airtime usage of the three active sta-

tions for one-way UDP traffic going to the stations. There

is no reverse traffic and no contention between stations,

since only the access point is transmitting data. This is the

simplest case to reason about and measure, and it clearly

shows the performance anomaly is present in the current

Linux kernel (left half of the figure): The third station

(which transmits at the lowest rate) takes up around 80%

of the available airtime, while the two other stations share

the remaining 20%.

The differences between the first two columns and the

third column are due to changes in aggregation caused

by the change to the queueing structure. In the FIFO

and FQ-CoDel cases, there is a single FIFO queue with

no mechanism to ensure fair sharing of that queue space

between stations. So because the slow station has a lower

egress rate, it will build more queue until it takes up

the entire queueing space. This means that there are not

enough packets queued to build sufficiently large aggreg-

ates for the fast stations to use the airtime effectively.

The FQ-MAC queueing scheme drops packets from the

largest queue on overflow, which ensures that the avail-

able queueing space is shared between stations, which im-

proves aggregation for the fast stations and thus changes

USENIX Association 2017 USENIX Annual Technical Conference 145

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 6: Jain’s fairness index (computed over the airtime usage

of the three stations) for UDP traffic, TCP download,

and simultaneous TCP upload and download traffic.

the airtime shares. Referring back to Table 1, the values

correspond well to those predicted by the analytical model.

The fourth column shows the airtime fairness scheduler op-

erating correctly – each station receives exactly the same

amount of airtime in this simple one-way test.

Going beyond the simple UDP case, Figure 6 shows

Jain’s fairness index for the airtime of the four different

schemes for UDP (for comparison) and both unidirectional

(to the clients) and bidirectional (simultaneous up and

down) TCP traffic. The same general pattern is seen with

TCP as with UDP traffic: The performance anomaly is

clear for the FIFO case, but somewhat lessened for the FQ-

CoDel and FQ-MAC cases. The airtime fairness scheduler

achieves close to perfect sharing of airtime in the case of

uni-directional traffic, with a slight dip for bidirectional

traffic. The latter is because the scheduler only exerts

indirect control over the traffic sent from the clients, and

so cannot enforce perfect fairness as with the other traffic

types. However, because airtime is also accounted for

received packets, the scheduler can partially compensate,

which is why the difference between the unidirectional

and bidirectional cases is not larger than it is.

4.1.3 Effects on throughput

As was already shown in Table 1, fixing the performance

anomaly improves the efficiency of the network for uni-

directional UDP traffic. Figure 7 shows the throughput

for downstream TCP traffic. For this case, the fast stations

increase their throughput as fairness goes up, and the slow

station decreases its throughput. The total effect is a net

increase in throughput. The increase from the FIFO case

to FQ-CoDel and FQ-MAC is due to better aggregation

for the fast stations. This was observed for UDP as well in

the case of FQ-MAC, but for FQ-CoDel the slow station

would occupy all the queue space in the driver, preventing

the fast station from achieving full aggregation. With the

TCP feedback loop in place, this lock-out behaviour is

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e0

10

20

30

40

M
bi

ts
/s

Station 1 Station 2 Station 3 Average

Figure 7: Throughput for TCP download traffic (to clients).

5 10 15 20 25 30
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y
Enabled (UDP)
Disabled (UDP)
Enabled (TCP)
Disabled (TCP)

Figure 8: The effects of the sparse station optimisation.

lessened, and so fast stations increase their throughput.

When traffic is flowing in both directions simultan-

eously, the pattern is similar, but with a slightly higher

variance. The graph for the bidirectional case can be found

in the online appendix.

4.1.4 The sparse station optimisation

To evaluate the impact of the sparse station optimisation,

we add a fourth station to our experiments which receives

only a ping flow, but no other traffic, while the other sta-

tions receive bulk traffic as above. Wemeasure the latency

to this extra station bothwith andwithout the sparse station

optimisation. The results of this are shown in Figure 8.

For both UDP and TCP download traffic, the optimisa-

tion achieves a small, but consistent, improvement: The

round-trip latency to the fourth station is reduced by 10

to 15% (in the median) when the optimisation is in place.

4.1.5 Scaling to more stations

While the evaluations presented in the previous sections

have shown that our modifications work as planned, and

that they provide a substantial benefit in a variety of scen-

arios, one question is left unanswered – does the solution

scale to more stations? To answer this, we arranged for

146 2017 USENIX Annual Technical Conference USENIX Association

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e0.0

0.2

0.4

0.6

0.8

1.0
Fa

irn
es

s i
nd

ex

(a) Airtime usage fairness
FQ
-C
oD
el

FQ
-M
AC

Ai
rt
im
e0

5

10

15

M
bi
ts
/s

(b) Aggregate throughput

Figure 9: Aggregate results for the 30 stations TCP test.

an independent third party to repeat a subset of our tests

in their testbed, which features an access point and 30 cli-

ents. The nodes are all embedded wireless devices from a

commercial vendor that bases its products on the Open-

Wrt/LEDE open-source router platform, running a LEDE

firmware development snapshot from November 2016.

In this setup, one of the 30 clients is artificially limited

to only transmit at the lowest possible rate (1 Mbps, i.e.

disabling HT mode), while the others are configured to

select their rate in the usual way, on a HT20 channel in the

2.4 Ghz band. One of the 29 “fast” clients only receives

ping traffic, leaving 28 stations to contend with the slow

1 Mbps station for airtime and bandwidth.

In this environment, our downstream TCP experiment

presented above was repeated, with the difference that

each test was run for five minutes, but with only five

repetitions, and without the FIFO test case. A subset

of these results are shown in figures 9 and 10. From this

experiment, we make several observations:

1. When the slow station is at this very low rate, it

manages to grab around two thirds of the available airtime,

even with 28 other stations to compete with. However, our

airtime fairness scheduler manages to achieve completely

fair sharing of airtime between all 29 stations. This is

reflected in the fairness index as seen in Figure 9a.

2. As seen in Figure 9b, total throughput goes from a

mean of 3.3Mbps for the FQ-CoDel case to 17.7Mbps

with the airtime scheduler. That is, the relative throughput

gain with airtime fairness is 5.4x in this scenario.

3. As can be expected, with the airtime fairness sched-

uler, the latency to the fast stations is improved with the

increased throughput (Figure 10, green lines). However,

the latency to the slow station increases by an order of

magnitude in the median, as it is throttled to stay within

its fair share of the airtime (Figure 10, dashed orange line).

Overall, the average latency to all stations is improved by

a factor of two (not shown on the figure).

4. With 30 stations, we see the sparse station optimisa-

0 250 500 750 1000 1250 1500 1750 2000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Slow - FQ-CoDel
Fast - FQ-CoDel
Slow - FQ-MAC
Fast - FQ-MAC
Slow - Airtime
Fast - Airtime

Figure 10: Latency for the 30 stations TCP test.

tion being even more effective; in this scenario it reduces

latency to the sparse station by a factor of two (not shown

in the figures; see the online appendix).

Finally, we verify the in-kernel airtime measurement

against a tool developed by the same third party that meas-

ures airtime from captures taken with a monitor device.

We find that the two types of measurements agree to within

1.5%, on average.

4.2 Effects on real-world application performance

In the previous section we evaluated our solution in a

number of scenarios that verify its correct functioning

and quantify its benefits. In this section we expand on

that validation by examining how our modifications affect

performance of two important real-world applications –

VoIP and web browsing.

4.2.1 VoIP

VoIP is an important latency-sensitive application which

it is desirable to have working well over WiFi, since that

gives mobile handsets the flexibility of switching between

WiFi and cellular data as signal conditions change. To

evaluate our modifications in the context of VoIP traffic,

we measure VoIP performance when mixed with bulk

traffic. As in Section 4.1.4 we include a virtual station as

another fast station, and so these scenarios have three fast

stations. Due to space constraints, we only include the

case where the slow station receives both VoIP traffic and

bulk traffic, while the fast stations receive bulk traffic. The

other cases show similar relative performance between

the different queue management schemes.

The QoS markings specified in the 802.11e standard

can be used to improve the performance of VoIP traffic,

and so we include this aspect in our evaluation. 802.11e

specifies four different QoS levels, of which voice (VO)

has the highest priority. Packets transmitted with this QoS

marking gets both queueing priority and a shorter conten-

tion window, but cannot be aggregated. This difference

USENIX Association 2017 USENIX Annual Technical Conference 147

5 ms 50 ms

QoS MOS Thrp MOS Thrp

FIFO
VO 4.17 27.5 4.13 21.6

BE 1.00 28.3 1.00 22.0

FQ-CoDel
VO 4.17 25.5 4.08 15.2

BE 1.24 23.6 1.21 15.1

FQ-MAC
VO 4.41 39.1 4.38 28.5

BE 4.39 43.8 4.37 34.0

Airtime
VO 4.41 56.3 4.38 49.8

BE 4.39 57.0 4.37 49.7

Table 2: MOS values and total throughput when using different

QoS markings for VoIP traffic. Data for 5 ms and 50

ms baseline one-way delay.

can dramatically reduce the latency of the traffic, at a cost

in throughput because of the lack of aggregation. We re-

peat the voice experiments in two variants – one where

the VoIP packets are sent as best effort (BE) traffic, and

one where they are put into the high-priority VO queue.

We also repeat the tests with a baseline one-way delay of

both 5 ms and 50 ms.

To serve as a metric of voice quality, we calculate an

estimate of the Mean Opinion Score (MOS) of the VoIP

flow according to the E-model specified in the ITU-T

G.107 recommendation [27]. This model can predict the

MOS from a range of parameters, including the network

conditions. We fix all audio and codec related parameters

to their default values and calculate the MOS estimate

based on the measured delay, jitter and packet loss. The

model gives MOS values in the range from 1− 4.5.
Table 2 shows the results. This shows that throughput

follows the trends shown in previous tests, as expected.

Also as expected, the FIFO and FQ-CoDel cases have low

MOS values when the voice traffic is marked as BE, and

higher values when using the VO queue. However, both

the FQ-MAC and airtime fairness schemes achieve better

MOS values with best-effort traffic than the unmodified

kernel does with VO-marked traffic. In the FQ-MAC and

airtime cases, using the VO queue still gives a slightly

better MOS score than using the BE queue does; but the

difference is less than half a percent. This is an important

improvement, because it means that with our modifica-

tions, applications can rely on excellent real-time perform-

ance even when unable to control DiffServ markings, as

well as when the markings are removed in transit.

4.2.2 Web

Another important real-world application is web traffic.

To investigate the impact of our modifications on this,

we measure page load time (PLT) with emulated web

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

1 0 0

1 0 1

M
ea

n
do

w
nl

oa
d

tim
e (

s)

Small page Large page

Figure 11: HTTP page fetch times for a fast station (while the

slow station runs a bulk transfer). Note the log scale

- the fetch time for the large page is 35 seconds for

the FIFO case.

traffic. Our test client mimics the common web browser

behaviour of fetching multiple requests in parallel over

four different TCP connections. We simply measure the

total time to fetch a web site and all its attached resources

(including the initial DNS lookup) for two different pages

– a small page (56 KB data in three requests) and a large

page (3 MB data in 110 requests). We run the experiments

in two scenarios. One where a fast station fetches the

web sites while the slow station runs a simultaneous bulk

transfer, to emulate the impact of a slow station on the

browsing performance of other users on the network. And

another scenario where the slow station fetches the web

sites while the fast stations run simultaneous bulk transfers,

to emulate the browsing performance of a slow station on

a busy network.

The results for the fast station are seen in Figure 11.

Fetch times decrease from the FIFO case as the slowest

to the airtime fair FQ case as the fastest. In particular,

there is a an order-of-magnitude improvement when go-

ing from FIFO to FQ-CoDel, which we attribute to the

corresponding significant reduction in latency seen earlier.

When the slow station is fetching the web page, adding

airtime fairness increases page load time by 5−10%. This

is as expected since in this case the slow station is being

throttled. The graph for this can be found in the online

appendix.

4.3 Summary

Our evaluation shows that our modifications achieve their

design goal. We eliminate bufferbloat and the 802.11 per-

formance anomaly, and achieve close to perfect airtime

fairness even when station rates vary; and our solution

scales successfully as more clients are added. We im-

prove total throughput by up to a factor of five and reduce

latency under load by up to an order of magnitude. We

also achieve close to perfect airtime fairness in a scenario

148 2017 USENIX Annual Technical Conference USENIX Association

where traffic is mixed between upstream and downstream

flows from the different stations. Finally, the optimisation

that prioritises sparse stations achieves a consistent im-

provement in latency to stations that only receive a small

amount of traffic.

In addition, we show that our modifications give signi-

ficant performance increases for two important real-world

applications – VoIP and web traffic. In the case of VoIP,

we manage to achieve better performance with best effort

traffic than was achievable with traffic marked as Voice

according to the 802.11e QoS standard. For web traffic

we achieve significant reductions in page load times.

Finally, even though our evaluation scenario only fea-

tures a limited number of stations, we have sought to rep-

resent a challenging scenario, by having high congestion

rates and a large difference between the station rates. As

such, we believe that it serves well as a validation of the

effects. In addition, the feedback we have received from

users of the code indicates that our solution works well in

a variety of deployments.

5 Related work

There have been several previous studies on bufferbloat

and its mitigations (e.g. [15, 29]), but only a few that

deal with the problem in a WiFi-specific context. [10]

and [15] both feature a WiFi component in a larger evalu-

ation of bufferbloat mitigation techniques and show that

while these techniques can help on a WiFi link, the lower-

level queueing in the WiFi stack prevents a full solution

of the problem in this space. [23] draws similar conclu-

sions while looking at buffer sizing (but only mentions

AQM-based solutions briefly). Finally, [4] touches upon

congestion at the WiFi hop and uses different queueing

schemes to address it, but in the context of a centralised

solution that also seek to control fairness in the whole net-

work. None of these works actually provide a solution for

bufferbloat at the WiFi link itself, as we present here.

Several different schemes to achieve fairness based on

modifying the contention behaviour of nodes are presen-

ted in [8, 12, 13, 19, 22, 30]. [12] and [19] both propose

schemes that use either the 802.11e TXOP feature to al-

locate equal-length to all stations, or scaling of the con-

tention window by the inverse of the transmission rate

to achieve fairness. [13] develops an analytical model to

predict the values to use for a similar scaling behaviour,

which is also verified in simulation. [22] presents a modi-

fied contention behaviour that can lower the number of

collisions experienced, but they do not verify the effect

of their schemes on airtime fairness. [8] proposes a modi-

fication to the DCF based on sensing the idle time of the

channel scaling CWmin with the rate to achieve fairness.

Finally, [30] proposes a scheme for airtime fairness that

runs several virtual DCF instances per node, scaling the

number of instances with the rate and channel properties.

Achieving fairness by varying the transmission size

is addressed in [5, 16, 20]. The former two predate the

aggregation features of 802.11n and so [5] proposes to

scale the packet size downwards by varying the MTU

with the transmission rate. [20] goes the other way and

proposes a scheme where a station will burst packets to

match the total transmission length of the previous station

that was heard on the network. Finally, [16] uses the

two-level aggregation feature of 802.11n and proposes a

scheme to dynamically select the optimal aggregation size

so all transmissions take up the same amount of time.

Turning to schedulers, [7] and [6] both propose sched-

ulers which work at the access point to achieve airtime

fairness, the former estimating the packet transmission

time from channel characteristics, and the latter measuring

it after transmission has occurred. [21] proposes a solu-

tion for wireless mesh networks, which leverages routing

metrics to schedule links in a way that ensures fairness.

Finally, [17] proposes a scheme to scale the queue space

at the access point based on the BDP of the flows going

through the access point. Our solution is closest to [6],

but we improve upon it by increasing accuracy and redu-

cing implementation difficulty, while adding an important

latency-reducing optimisation for sparse stations, as was

described in Section 3.2.

A few proposals fall outside the categories above. [14]

proposes a TCP congestion control algorithm that uses

information about the wireless conditions to cap the TCP

window size of clients to achieve fairness. Finally, there

are schemes that sidestep the fairness problems of the

802.11 MAC and instead replace it entirely with TDMA

scheduling. [3] proposes a scheme for TDMA scheduling

in a mesh network that ensures fair bandwidth allocation

to all connecting clients, and [28] implements a TDMA

transmission scheme for infrastructure WiFi networks.

6 Conclusion

We have developed a novel two-part solution to two large

performance problems affecting WiFi – bufferbloat and

the 802.11 performance anomaly. The solution consists

of a new integrated queueing scheme tailored specifically

to eliminate bufferbloat in WiFi, which reduces latency

under load by an order of magnitude. Leveraging the

queueing structure, we have developed a deficit-based

airtime fairness scheduler that works at the access point

with no client modifications, and achieves close to perfect

fairness in all the evaluated scenarios, increasing total

throughput by up to a factor of 5.

Our solution reduces implementation complexity and

increases accuracy compared to previous work, and has

been accepted into the mainline Linux kernel, making it

deployable on billions of Linux-based devices.

USENIX Association 2017 USENIX Annual Technical Conference 149

7 Acknowledgements

We would like to thank Sven Eckelmann and Simon Wun-

derlich for their work on independently verifying our im-

plementation. Their work was funded by Open Mesh Inc,

who also supplied their test hardware. We would also like

to thank Felix Fietkau, Tim Shepard, Eric Dumazet, Jo-

hannes Berg, and the numerous other contributors to the

Make-Wifi-Fast and LEDE projects for their insights, re-

view and contributions to many different iterations of the

implementation.

Portions of this work were funded by Google Fiber

and by the Comcast Innovation Fund, and parts of the

infrastructure was sponsored by Lupin Lodge.

8 References

[1] Adam Belay et al. ‘IX: A Protected Dataplane

Operating System for High Throughput and Low

Latency’. In: OSDI. 11th USENIX Symposium on

Operating Systems Design and Implementation.

Oct. 2014, pp. 49–65.

[2] Teuku Yuliar Arif and Riri Fitri Sari. ‘Throughput

Estimates for A-MPDU and Block ACK Schemes

Using HT-PHY Layer’. In: Journal of Computers

9.3 (Mar. 2014). doi: 10.4304/jcp.9.3.678-
687.

[3] Naouel Ben Salem and Jean-Pierre Hubaux. ‘A

fair scheduling for wireless mesh networks’. In:

WiMesh. 2005.

[4] KanCai et al. ‘Wireless Unfairness:AlleviateMAC

Congestion First!’ In: Proceedings of the Second

ACM International Workshop on Wireless Network

Testbeds, Experimental Evaluation and Charac-

terization. WinTECH ’07. New York, NY, USA:

ACM, 2007, pp. 43–50. doi: 10.1145/1287767.
1287777.

[5] Joseph Dunn et al. ‘A practical cross-layer mechan-

ism for fairness in 802.11 networks’. In:Broadband

Networks, 2004. BroadNets 2004. Proceedings.

First International Conference on. IEEE, 2004,

pp. 355–364.

[6] Rosario G. Garroppo et al. ‘Providing air-time us-

age fairness in IEEE 802.11 networks with the de-

ficit transmission time (DTT) scheduler’. In: Wire-

less Networks 13.4 (Aug. 2007), pp. 481–495. doi:

10.1007/s11276-006-9201-7.

[7] K. Gomez et al. ‘On efficient airtime-based fair

link scheduling in IEEE 802.11-based wireless net-

works’. In: 2011 IEEE 22nd International Sym-

posium on Personal, Indoor and Mobile Radio

Communications. Sept. 2011, pp. 930–934. doi:

10.1109/PIMRC.2011.6140105.

[8] Martin Heusse et al. ‘Idle Sense: An Optimal Ac-

cess Method for High Throughput and Fairness in

Rate Diverse Wireless LANs’. In: Proceedings of

the 2005 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer

Communications. SIGCOMM ’05. New York, NY,

USA: ACM, 2005, pp. 121–132. doi: 10.1145/
1080091.1080107.

[9] Martin Heusse et al. ‘Performance anomaly of

802.11 b’. In: INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer

and Communications. IEEE Societies. Vol. 2. IEEE,

2003, pp. 836–843.

[10] Toke Høiland-Jørgensen, Per Hurtig, and Anna

Brunstrom. ‘The Good, the Bad and the WiFi:

Modern AQMs in a residential setting’. In: Com-

puter Networks 89 (Oct. 2015), pp. 90–106. doi:

10.1016/j.comnet.2015.07.014.

[11] T. Høiland-Jørgensen et al. FlowQueue-Codel. In-

ternet Draft (informational). Mar. 2016.

[12] Li Bin Jiang and Soung Chang Liew. ‘Proportional

fairness in wireless LANs and ad hoc networks’.

In:Wireless Communications and Networking Con-

ference, 2005 IEEE. Vol. 3. IEEE, 2005, pp. 1551–

1556.

[13] T. Joshi et al. ‘Airtime Fairness for IEEE 802.11

Multirate Networks’. In: IEEE Transactions on

Mobile Computing 7.4 (Apr. 2008), pp. 513–527.

doi: 10.1109/TMC.2007.70740.

[14] K. Kashibuchi, A. Jamalipour, and N. Kato. ‘Chan-

nel Occupancy Time Based TCP Rate Control for

Improving Fairness in IEEE 802.11DCF’. In: IEEE

Transactions on Vehicular Technology 59.6 (July

2010), pp. 2974–2985. doi: 10.1109/TVT.2010.
2048931.

[15] Naeem Khademi, David Ros, and Michael Welzl.

‘The New AQM Kids on the Block: Much Ado

About Nothing?’ In: Technical Report, Oslo Uni-

versity (2013).

[16] Minho Kim, Eun-Chan Park, and Chong-Ho Choi.

‘Adaptive Two-Level Frame Aggregation for Fair-

ness and Efficiency in IEEE 802.11n Wireless

LANs’. In: Mobile Information Systems 2015

(2015), pp. 1–14. doi: 10.1155/2015/548109.

[17] Dzmitry Kliazovich et al. ‘Queue Management

Mechanism for 802.11 Base Stations’. In: IEEE

Communications Letters 15.7 (July 2011), pp. 728–

730. doi: 10 . 1109 / LCOMM . 2011 . 051911 .
110642.

150 2017 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.4304/jcp.9.3.678-687
https://doi.org/10.4304/jcp.9.3.678-687
https://doi.org/10.1145/1287767.1287777
https://doi.org/10.1145/1287767.1287777
https://doi.org/10.1007/s11276-006-9201-7
https://doi.org/10.1109/PIMRC.2011.6140105
https://doi.org/10.1145/1080091.1080107
https://doi.org/10.1145/1080091.1080107
https://doi.org/10.1016/j.comnet.2015.07.014
https://doi.org/10.1109/TMC.2007.70740
https://doi.org/10.1109/TVT.2010.2048931
https://doi.org/10.1109/TVT.2010.2048931
https://doi.org/10.1155/2015/548109
https://doi.org/10.1109/LCOMM.2011.051911.110642
https://doi.org/10.1109/LCOMM.2011.051911.110642

[18] M. Laddomada et al. ‘On the throughput per-

formance of multirate IEEE 802.11 networks with

variable-loaded stations: analysis, modeling, and

a novel proportional fairness criterion’. In: IEEE

Transactions on Wireless Communications 9.5

(May 2010), pp. 1594–1607. doi: 10.1109/TWC.
2010.05.081191.

[19] Pochiang Lin, Wu-I. Chou, and Tsungnan Lin.

‘Achieving airtime fairness of delay-sensitive

applications in multirate IEEE 802.11 wireless

LANs’. In: Communications Magazine, IEEE 49.9

(2011), pp. 169–175.

[20] Tahiry Razafindralambo et al. ‘Dynamic packet ag-

gregation to solve performance anomaly in 802.11

wireless networks’. In: Proceedings of the 9th ACM

international symposium onModeling analysis and

simulation of wireless and mobile systems. ACM,

2006, pp. 247–254.

[21] R. Riggio, D. Miorandi, and I. Chlamtac. ‘Airtime

Deficit Round Robin (ADRR) packet scheduling

algorithm’. In: 2008 5th IEEE International Con-

ference on Mobile Ad Hoc and Sensor Systems.

Sept. 2008, pp. 647–652. doi: 10.1109/MAHSS.
2008.4660101.

[22] Luis Sanabria-Russo et al. ‘Future evolution of

CSMA protocols for the IEEE 802.11 standard’. In:

Communications Workshops (ICC), 2013 IEEE In-

ternational Conference on. IEEE, 2013, pp. 1274–

1279.

[23] A. Showail, K. Jamshaid, and B. Shihada. ‘Buf-

fer sizing in wireless networks: challenges, solu-

tions, and opportunities’. In: IEEE Communica-

tions Magazine 54.4 (Apr. 2016), pp. 130–137. doi:

10.1109/MCOM.2016.7452277.

[24] M. Shreedhar and G. Varghese. ‘Efficient fair

queuing using deficit round-robin’. In: IEEE/ACM

Transactions on Networking 4.3 (June 1996),

pp. 375–385. doi: 10.1109/90.502236.

[25] T. Szigeti and F. Baker. DiffServ to IEEE 802.11

Mapping. Internet Draft (standards track). Nov.

2016.

[26] Godfrey Tan and John V. Guttag. ‘Time-based

Fairness Improves Performance in Multi-Rate

WLANs.’ In: USENIX Annual Technical Confer-

ence, General Track. 2004, pp. 269–282.

[27] The E-model: a computational model for use in

transmission planning. Tech. rep. G.107. ITU-T,

June 2015.

[28] Wim Torfs and Chris Blondia. ‘TDMA on com-

mercial of-the-shelf hardware: Fact and fiction re-

vealed’. In:AEU-International Journal of Electron-

ics and Communications 69.5 (2015), pp. 800–813.

[29] Greg White. Active Queue Management Al-

gorithms for DOCSIS 3.0: A Simulation Study of

CoDel, SFQ-CoDel and PIE in DOCSIS 3.0 Net-

works. Tech. rep. Cable Television Laboratories,

Inc., 2013.

[30] M. A. Yazici and N. Akar. ‘Running Multiple In-

stances of the Distributed Coordination Function

for Air-Time Fairness in Multi-Rate WLANs’. In:

IEEE Transactions onCommunications 61.12 (Dec.

2013), pp. 5067–5076. doi: 10 . 1109 / TCOMM .
2013.111113.130120.

USENIX Association 2017 USENIX Annual Technical Conference 151

https://doi.org/10.1109/TWC.2010.05.081191
https://doi.org/10.1109/TWC.2010.05.081191
https://doi.org/10.1109/MAHSS.2008.4660101
https://doi.org/10.1109/MAHSS.2008.4660101
https://doi.org/10.1109/MCOM.2016.7452277
https://doi.org/10.1109/90.502236
https://doi.org/10.1109/TCOMM.2013.111113.130120
https://doi.org/10.1109/TCOMM.2013.111113.130120

Persona: A High-Performance Bioinformatics Framework

Stuart Byma∗ Sam Whitlock∗ Laura Flueratoru† Ethan Tseng‡

Christos Kozyrakis§ Edouard Bugnion∗ James Larus∗

Abstract
Next-generation genome sequencing technology has
reached a point at which it is becoming cost-effective to
sequence all patients. Biobanks and researchers are faced
with an oncoming deluge of genomic data, whose pro-
cessing requires new and scalable bioinformatics archi-
tectures and systems. Processing raw genetic sequence
data is computationally expensive and datasets are large.
Current software systems can require many hours to pro-
cess a single genome and generally run only on a single
computer. Common file formats are monolithic and row-
oriented, a barrier to distributed computation.

To address these challenges, we built Persona, a
cluster-scale, high-throughput bioinformatics frame-
work. Persona currently supports paired-read alignment,
sorting, and duplicate marking using well-known algo-
rithms and techniques. Persona can significantly reduce
end-to-end processing times for bioinformatics compu-
tations. A new Aggregate Genomic Data (AGD) format
unifies sample data and analysis results, while enabling
efficient distributed computation and I/O.

In a case study on sequence alignment, Persona sus-
tains 1.353 gigabases aligned per second with 101 base
pair reads on a 32-node cluster and can align a full
genome in ∼16.7 seconds using the SNAP algorithm.
Our results demonstrate that: (1) alignment computa-
tion with Persona scales linearly across servers with no
measurable completion-time imbalance and negligible
framework overheads; (2) on a single server, sorting with
Persona and AGD is up to 2.3× faster than commonly
used tools, while duplicate marking is 3× faster; (3) with
AGD, a 7 node COTS network storage system can ser-
vice up to 60 alignment compute nodes; (4) server cost
dominates for a balanced system running Persona, while
long-term data storage dwarfs the cost of computation.

∗EPFL
†U. Politehnica of Bucharest (work done during EPFL internship)
‡Carnegie Mellon University (work done during EPFL internship)
§Stanford University

1 Introduction

In 2001, the approximate cost of sequencing a whole
human genome was $100 million. In 2017, the cost of
Whole Genome Sequencing (WGS) is rapidly approach-
ing $100 [25], a faster-than-Moore’s Law improvement.
Low-cost sequencing is a key enabler of personalized
medicine, which tailors treatments for patients to their
genetic makeup, promising better diagnoses and more ef-
fective therapies.

The genomic data produced by modern sequencing
machines, however, is unusable in its raw form. A large
amount of pre-processing must be done before analysis.
Depending on the sequencing parameters, raw data for
one human cell genome can range from several gigabytes
to hundreds of gigabytes. The data analysis and stor-
age problems are already challenging and will continue
to grow with the increasing ambition of doctors and re-
searchers to sequence more humans and other organisms.

WGS processing consists of a number of steps, includ-
ing read alignment (matching short snippets of genomic
data against a known reference), sorting, indexing, du-
plicate marking and variant calling (determining where a
patient has mutations/differences in their genome). For a
typical human genome, processing reads and writes tens
to hundreds of gigabytes of data and can require many
hours with current tools. Computational costs were mi-
nor when sequencing was rare and expensive. However,
as sequencing becomes an integral part of medical diag-
nosis and treatment, fast and efficient processing is in-
valuable for timely diagnosis and treatment.

Many existing tools run in parallel on a single mul-
ticore computer but are not designed to scale to server
clusters or cloud computing (though there are signifi-
cant efforts in this direction; see §7). A crucial chal-
lenge in scaling is that genomic data is stored in multiple
file formats, none of which are appropriate for parallel or
distributed computation. Sequencing machines produce
raw genomic data in one file format (FASTQ [8]) while
aligned data uses a different format (SAM/BAM [31]),

USENIX Association 2017 USENIX Annual Technical Conference 153

Data
Access

Decompress
Parse Process

Write
Results

Shared Data

Queuing

A B

Storage Subsystem

Server

Relative Index

Compressed
Data

Header

AGD Dataset

Figure 1: A.Persona architecture. Processing genomic
data across multiple servers using a distributed dataflow
framework. B.The Aggregate Genetic Data format stores
data in columns to facilitate distributed processing.

which results in data duplication. Downstream analy-
sis produces more files with different formats. In ad-
dition, common file formats are mainly row-oriented,
which precludes efficient field access and frustrates data
partitioning.

This state of affairs requires a new computing architec-
ture to deal with the coming deluge of genomic data. We
need a software architecture that runs effectively across
computers ranging from a single machine to a cluster, so
that genomic data processing can be performed in envi-
ronments ranging from doctors’ offices to hospitals and
regional “gene banks”.

To accomplish this, we require appropriate file formats
that enable: (1) scalable, parallel access from multiple
servers; (2) efficient use of both read and write band-
width; (3) flexibility, to support the multiple phases in
a genomics analytics pipeline; Additionally, scaling re-
quires the efficient use of compute resources in terms
of throughput and latency, which implies: (1) saturating
compute resources of a server at all times, which requires
data and task partitioning; (2) when possible, distribute
computation across multiple servers; (3) scheduling this
work, while avoiding stragglers [10]; (4) overlapping I/O
with compute to hide latency.

In this paper, we present Persona, a scalable, high-
performance framework for bioinformatics workloads,
and the Aggregate Genomic Data (AGD) format. Fig-
ure 1 shows Persona and AGD at a high level. The goal
of Persona and AGD is to provide a complete solution
for bioinformatics computations, including (but not lim-
ited to) read alignment, sorting, duplicate marking, fil-
tering, and variant calling. A secondary goal is exten-
sibility — both Persona and AGD are designed and im-
plemented in a way that allows straightforward integra-
tion of new capabilities (e.g., different alignment algo-
rithms or new data fields). Currently, Persona integrates

well-known algorithms from the bioinformatics commu-
nity, including those from BWA-MEM [30], SNAP [47],
Samblaster [14], and samtools [31], so users can be con-
fident in the results produced.

This paper makes the following contributions: (1)
To address the limitations of disparate monolithic row-
oriented files, the AGD format is a column-oriented file
structure designed for compute, storage and I/O band-
width efficiency, offering selective field and random ac-
cess, distributed computation support, and unified stor-
age of all genomic data for a given patient; (2) To
run efficiently across single computers and moderate-
sized clusters, we use distributed dataflow. Persona is
built on Google TensorFlow [1], a state-of-the-art dis-
tributed dataflow framework. TensorFlow’s coarse-grain
dataflow minimizes framework overheads, yet, when
augmented by a simple fine-grain mechanism, allows ef-
ficient use of all CPU resources in a cluster. We show
that decoupling I/O granularity from task granularity in
read alignment is necessary to maximize I/O bandwidth
and balance work on modern multicore architectures; (3)
We demonstrate linear scaling to the saturation point of
our testbed storage cluster. We perform WGS alignment
for a typical dataset in ∼16.7 seconds, a near order of
magnitude improvement over existing solutions; (4) We
demonstrate that the architecture is balanced from a total
cost of ownership perspective, with the cost dominated
by compute servers. Assuming full occupancy over 5
years, the cost of alignment is as little as 6.07¢. However,
the long-term overall costs are likely to be dominated by
storage.

Persona, AGD, and benchmarking scripts are freely
available [13].

The rest of this paper is organized as follows: §2 pro-
vides some background in relevant algorithms and file
formats. §3 describes the new AGD format and §4 de-
scribes the architecture of Persona. §5 evaluates our so-
lution on a 32-server compute cluster attached to a scale-
out storage subsystem. §6 provides some insight into
bioinformatics workloads, and analyzes the TCO for dif-
ferent cluster options. Finally, we discuss related work
in §7 and conclude in §8.

2 Background

The explosion of interest in and use of genomic data
has been made possible by Next-Generation Sequenc-
ing (NGS) [6]. NGS machines, through a biochemical
process called shotgun sequencing, read a genome by
chopping long DNA strands into small pieces and read-
ing these short snippets, which typically consist of 100
to 200 bases (A,T,C,G). The short snippets of a genome
are called reads and must be aligned — reassembled into
a full, coherent genome — before further analysis.

154 2017 USENIX Annual Technical Conference USENIX Association

2.1 Bioinformatics Computations

Since our case study focuses on alignment, we provide
some additional background.

To form a coherent genome, the reads in a raw dataset
must be aligned to a reference genome (about 3 billion
base pairs for a human). An aligner takes an individual
read and attempts to find the most likely match in the ref-
erence sequence. Insertions, deletions, and mismatches
between the bases are allowed, since genomes can have
small mutations and the sequencing machines regularly
misread base pairs. A read from a sequencing machine
consists of three data fields: the bases (A,C,T,G or N,
which is an ambiguous base), a quality score for each
base indicating the machine’s confidence, and metadata
uniquely identifying the read. Datasets typically ensure
that each base in the sample is overlapped by many reads
— this is called coverage and is typically 30 to 50×. Raw
datasets are typically single-ended, where each read is
independent, or paired-ended, where reads are aligned as
pairs with some gap between them. Reads are produced
in arbitrary order.

Common algorithms for performing alignment include
Smith-Waterman [43], an exact, dynamic programming
algorithm, and BLAST (Basic Local Alignment Search
Tool) [3], which uses seed-and-extend heuristics to lo-
cate short common words between sequences and extend
them to reach a threshold. These approaches are expen-
sive computationally, especially considering that modern
read datasets with 50× coverage can contain billions of
reads. Newer aligners, for example BWA-MEM [30],
Bowtie [29], NovoAlign [37] and SOAP [32], rely on
heuristics and algorithmic techniques such as tree-based
indexing of the reference to speed up alignment. Others,
such as SNAP [47], use hash-based indexing of the ref-
erence and are designed for multicore scalability. Align-
ment throughput is measured in bases aligned per sec-
ond, a read-length agnostic measure.

Other expensive operations follow alignment. Down-
stream processing usually requires datasets to be sorted
by read ID or aligned location in the genome. In addition,
some downstream steps are more efficient with random
access to the dataset. Sorting and indexing common data
formats (§2.2) is often very time-consuming.

Once data is aligned, sorted and indexed, further filter-
ing of data may take place. The preceding steps are usu-
ally followed by variant calling, another expensive pro-
cess that compares the reassembled genome to the refer-
ence and attempts identify mutations. Common variant
calling tools include GATK [34] and FreeBayes [16].

This is a sample of all the commonly used tools in
bioinformatics; readers are referred to [38] for a more
comprehensive survey.

manifest.json

test-0.bases

test-0.qual

test-0.metadata

test-0.results

...

File Header

Relative Index

Compressed
Data

Chunks 0

File on Disk

1
N{

 "name":"test",
 "records": [
 "path": "test-0",
 "path": "test-1",
 "path": "test-N"
],
 "columns": [
 "bases","qual",
 "metadata",
 "results"
]
}

Figure 2: A dataset in AGD format.

2.2 File Formats
The canonical format produced by sequencing machines
is FASTQ [8], an ASCII text format containing a delim-
ited list of reads. FASTQ delimits reads by the @ char-
acter, which makes parsing nontrivial as @ is also an en-
coded quality score value. FASTQ files are usually dis-
tributed in a compressed format to save disk space.

The de facto standard for read and aligned data is the
Sequence Alignment Map (SAM) format [31], or more
often its binary, compressed version BAM. Variant call-
ing results use the standard VCF format [9].

Typically, a dataset is stored in one
FASTQ/SAM/BAM file, so these files are very large (50
to 100+ GB). While FASTQ just holds raw read data
from a sequencer, SAM/BAM stores both the read and
alignment data. The files are row oriented, so accessing
a specific field requires reading all preceding entries, or
generating a separate index file.

3 Aggregate Genomic Data Format

The Aggregate Genomic Data (AGD) format is a new
extensible format for storing and manipulating genomic
data designed to support the high I/O demands of Per-
sona. AGD is designed for high-throughput read and
write performance and to easily partition genomic data
for parallel processing across one or more computers.
Persona provides efficient utilities to export/import AGD
to/from existing formats (SAM/BAM/FASTQ).

An AGD dataset is a table of records, each of which
contains one or more fields (i.e., a relational table). AGD
stores the data in an indexed, column-store format (Fig-
ure 2). Record fields are stored by columns, which in
turn are divided into large granularity chunks that reside
in disk files. A descriptive manifest metadata file holds
an index describing the columns, chunks, and records in
an AGD dataset, in addition to other relevant data such as
the names and sizes of contiguous reference sequences to
which the dataset reads have been aligned. The manifest
is implemented as a simple JSON file, which can be re-

USENIX Association 2017 USENIX Annual Technical Conference 155

constructed from the set of chunk files it describes. As an
illustrating example, Persona uses three columns to store
bases, quality scores, and metadata, and a fourth to store
alignment results.

Operations on a genome dataset do not always require
all elements in a record. For example, some duplicate
marking schemes only require results, not base pairs or
quality scores. In contrast to the row-oriented format of
both FASTQ and SAM, each AGD column can be read
independently and its data processed independently and
simultaneously.

Moreover, AGD is extensible. A new record field (one
or more columns) can be easily added by writing the col-
umn chunk files and adding appropriate entries to the
metadata file. For example, Persona appends alignment
results to a new AGD column. Any required parsing
functions for a new column may be added to Persona.
Columns can also be row-grouped, indicating that record
indices align in those columns.

AGD columns are split into chunks containing vary-
ing number of records, enabling optimization for differ-
ent storage subsystems. A chunk file contains a header,
index, and data block (Figure 2). AGD specifies the
record type in the chunk header, which informs applica-
tions how the data is stored (e.g., what type of parsing to
apply to each record). The index is relative, with offsets
to records being generated by summing preceding index
values. For more efficient random access, an absolute
index can be generated on the fly.

AGD applies two techniques to reduce the size of
the dataset: block compression of the data block and
base compaction. The type of compression may be se-
lected on a column-by-column basis. For example, a user
may compress the bases column with gzip while using
LZMA for the metadata. This flexibility allows tradeoffs
between compressed file size and decompression time,
which allow a user to balance the frequency of access
against the size of a column. Our implementation uses
gzip, as it has a good compression without being too
compute-intensive. An additional optimization of base
compaction is applied to the base reads column, which
stores base characters using 3 bits each, with 21 bases in
a 64-bit word.

The choice of chunk size is an important factor to max-
imize I/O performance. Larger chunk sizes have bet-
ter compression ratios and lower overhead due to large
contiguous reads from local storage. However, smaller
chunk sizes decrease the I/O and decompression latency
during which processing cores may stand idle.

4 System Architecture

We use a coarse-grain dataflow execution model for Per-
sona. The major functions of the system — I/O, com-
putation, and system management — are separated into

Disk rd
mmap

Process
Subgraph

AGD
Parsers

...

Shared Data
(e.g. Ref Index)

Filename
Queue

Network
Download

Network
Upload

Object
Pools

Disk
write

Ceph Dist.
Object Store

10GbE

Buffer

C

C

Recycleable
Buffer Pool

ACTGA

Genome Index

Seed Ref. Loc

2349523... ...

Reference Genome

...ACTGA...
3 Bn BasePair

Sink Node
Request Complete

Server 0

Server N

Writer Node(s)

Reader Node(s)

Input buffer
queue

Chunk object
queue

Output queue

Chunk
ObjectC

[Chunk file names]

Figure 3: Persona dataflow architecture.

dataflow kernels. Each kernel can be mapped to available
hardware resources (servers, cores, threads, or acceler-
ators). This computation model simplifies the design,
implementation, and deployment of the system, and al-
lows for simple integration of new processing steps. In
particular, the explicit flow between kernels simplifies
performance and bottleneck analysis and makes it easy
to adjust queuing for flow control and load balancing.
Dataflow semantics mean that independent tasks always
execute in parallel, both at the multicore and server lev-
els.

We use Google TensorFlow as our underlying dataflow
execution engine [1]. Although designed for machine
learning, the core of TensorFlow is a generic dataflow
engine. In TensorFlow, dataflow operators are called
nodes, which are assembled into computation graphs us-
ing a Python API. Underlying kernel implementations
of nodes are written in C++ and compiled alongside the
runtime framework.

We demonstrate that it is possible to use the Google
engine in a different context with minimal overhead
(1%). To achieve this low overhead, Persona: (1) Uses
a coarse-grain dataflow execution model between ker-
nels, while adding a fine-grain execution model within
compute-intensive kernels; (2) Uses pools of reusable
objects to buffer data and implement a zero-copy archi-

156 2017 USENIX Annual Technical Conference USENIX Association

tecture; (3) Controls memory usage by limiting the size
of object pools and the length of the queues between ker-
nels; (4) Balances the parallelism of I/O and alignment
to keep all CPU threads busy.

4.1 Persona Architecture

Persona consists of two layers: a set of TensorFlow
dataflow operators that read, parse, write, and operate on
AGD chunks, and a thin Python library that stitches these
nodes together into optimized subgraphs for common I/O
patterns and bioinformatics functions.

Figure 3 shows an instance of a Persona graph on a
single server. AGD chunk file names are consumed by
reader nodes that read data from disk or network sources.
AGD parsers decompress read chunks, enqueuing them
for the process subgraph. The process subgraph contains
the compute-intense operations — alignment, sorting,
duplicate marking, variant calling, etc. The writer nodes
store results from the process stage. Shared data objects
and pools provide recyclable buffers for AGD chunks
and results, and other shared objects such as the multi-
gigabyte reference indexes required for some aligners.

Individual dataflow nodes and queues can be stitched
together using the Python API however the user desires.
However, certain configuration patterns are more effi-
cient. The following subsections describe subgraphs that
Persona uses to achieve high performance.

4.2 I/O Input Subgraph

The input subgraph is designed to keep the process sub-
graph fed with data while incurring minimal overhead.
Reader nodes are implementations that read AGD chunks
from storage. Currently, Persona supports a local disk
or the Ceph object store [46] — other storage systems
can be supported simply by writing the interface into a
new Reader dataflow node. For disk files, Reader nodes
mmap AGD chunk files, producing a handle to a read-
only mapped file memory region. For network files,
Reader nodes request the chunk files from a storage sys-
tem (e.g., Ceph), putting each into a recyclable buffer ob-
tained from a buffer Pool. Once a chunk has been read, it
passes via a queue to an AGD Parser node, which decom-
presses and parses the chunk into a useable, in-memory
chunk object. Chunk objects are then passed to the pro-
cess subgraph via a central queue.

4.3 Process Subgraphs

Process subgraphs implement the bioinformatics opera-
tions on the AGD chunk objects. We describe the im-
plementation of several major functions and variants that
are currently implemented in Persona. In our experience,

Input
AGD Chunk

...

Output Buffer

Task/subchunk
Queue

Compute
Threads

Notify

Subchunk

Executor Object

Executor Resource

Process
Subgraph

Figure 4: To abstract and share threads in a coherent
way between parallel compute-intense kernels, a thread-
owning executor object is provided via a resource.

since the I/O and parallel execution are provided by Per-
sona, integrating existing tools is usually simple.

SNAP Alignment The Persona SNAP aligner node
uses the SNAP short read aligner [47], an open source
tool that is highly optimized for modern servers with
a large amount of memory and many cores. To at-
tain maximum performance, each core in the system
should be running the SNAP algorithm continuously on
AGD chunks, however we found the granularity of AGD
chunks, being optimized for storage, is too coarse for
threads and produces work imbalance that leads to strag-
glers. To remedy this, execution of the alignment algo-
rithm is delegated to an executor resource that owns all of
the threads, and implements a fine-grain task queue (Fig-
ure 4). Multiple parallel aligner nodes then feed chunks
to this executor, and wait for them to be completed. All
cores in the system are thus kept running continuously
doing meaningful work.

When executed, the aligner node receives chunk ob-
jects containing reads (base pairs and quality scores), a
handle to a buffer pool of output objects, and a handle
to the executor resource. The chunk object and output
buffer are logically divided into subchunks and placed in
the executor task queue as (subchunk, buffer) pairs. Once
a full chunk is completed, the originating aligner node is
notified, and the result buffer is placed in the subgraph
output queue.

BWA-MEM Alignment BWA-MEM [30] is another
popular read alignment tool that uses the Burrows-
Wheeler transform to efficiently find candidate align-
ment positions for reads. We integrate BWA-MEM in
the same manner as SNAP, using the executor resource
with a fine-grain task queue (Figure 4). We call BWA-
MEM alignment functions directly, with only several
lines of cosmetic code changes required. For single-read
alignment, this approach is straightforward, however for

USENIX Association 2017 USENIX Annual Technical Conference 157

paired reads, BWA-MEM incorporates a single-threaded
step over sets of reads to infer information about the
data. This leads to better alignment results, but separates
the computationally intense multithreaded step into two
parts. Therefore, the executor resource for BWA paired
alignment divides the system threads among these tasks.
We find a balance empirically, but because the computa-
tion times are data dependent, some efficiency is lost.

Sorting and Duplicate Marking Persona also inte-
grates full dataset sorting by various parameters, includ-
ing mapped read location and read ID. The sort imple-
mentation is a simple external merge sort, where sev-
eral chunks at a time are sorted and merged into tem-
porary file “superchunks”. A final merge stage merges
superchunks into the final sorted dataset. Persona sort is
several times faster than samtools sorting of SAM/BAM
files (§5).

Duplicate marking is a process of marking reads that
map to the exact same location on the reference genome.
This step is often performed since duplicate data can dis-
rupt downstream statistical methods. Persona duplicate
marking uses an efficient hashing technique based on the
approach used by Samblaster [14].

4.4 I/O Output Subgraph
The output subgraph mirrors the input subgraph, with
Writer nodes writing AGD chunks to disk or a Ceph ob-
ject store, with an optional compression stage. In gen-
eral, the process subgraph is responsible for ensuring
AGD chunks to write are properly formatted for a given
AGD column, as the Writer nodes are generic.

Persona also implements an output subgraph for the
common SAM/BAM format for compatibility with tools
that have not been integrated or do not yet support AGD.

4.5 Memory Management and Queuing
Proper memory management is necessary to efficiently
use the underlying server hardware. In particular, it
is important to avoid freeing, reallocating, and copying
memory and to avoid bringing in too much data, which
sits idle, or too little data, which stalls the pipeline.

We avoid using TensorFlow tensors directly for stor-
ing data, as they are not amenable to byte strings or raw
buffers. Instead, we pass tensors of handles, which are
identifiers for resources stored in the TensorFlow Ses-
sion. The resources in Persona are the pools and their
objects (buffers, chunk objects, shared read-only objects)
as shown in Figure 3. With this technique, Persona per-
forms no unnecessary copies.

Because computations in bioinformatics tend to be
compute- or memory-bound, the input subgraph gener-
ally runs ahead of the alignment subgraph, quickly fill-

ing the process subgraph input queue. Persona controls
memory pressure by limiting the queue length and there-
fore the number of objects passed around. The total
quantity of objects is the sum of the queue lengths and
the number of dataflow nodes that use an object. Overall
memory use in Persona is stable after the input queues
are filled. Because of the relatively coarse granularity of
AGD chunks, default queue lengths are set to the number
of parallel downstream nodes they feed, but can be tuned
lower for low-memory systems.

Queue capacity is kept at a level that ensures there is
always data to feed the process subgraph, but the individ-
ual servers do not have too many AGD chunks in their
pipelines, which can lead to stragglers. A server can be-
come a straggler if its queue contains “expensive” chunks
with high compute latency. Work stealing [5] is an alter-
native to avoid stragglers, but the approach of bounding
the queues is simpler and incurs less communication in a
distributed system.

4.6 Discussion

Using TensorFlow as a general dataflow engine was a
key design decision that had many benefits, but also led
to some challenges. Bioinformatics data is not particu-
larly amenable to storage in tensors. Initially, we had
stored strings of bases, qualities and metadata in string

type tensors, however this led to large amounts of small
memory allocations, and constant data copying since the
std::string type owns its data. This prompted the de-
cision to move to the recyclable buffer pooling strategy
outlined in the previous subsections. In an ideal world,
the dataflow engine and runtime of TensorFlow would
be separate from the Tensor data type and allow arbitrary
types.

The execution semantics of TensorFlow also caused
some issues when trying to maximize performance, es-
pecially in the multithreaded aligner kernels. Because
graphs are executed in steps, there is necessarily a delay
between one execution of a kernel and the next. There-
fore, parallelism must be used in the graph to ensure that
threads do not sit idle between executions. However, ad-
hoc sharing of threads between these multiple kernels via
the TensorFlow CPU device threadpool becomes diffi-
cult due to the way we need to split AGD chunks to re-
duce thread-level stragglers. The solution to this was the
method described in §4.3, where all threads executing a
given task are owned by a shared resource that can be fed
with work by multiple kernels.

Despite these difficulties, we were still pleased over-
all with TensorFlow. The framework provides numer-
ous features that greatly ease development and optimiza-
tion, such as node-level profiling, graph visualization,
and runtime statistics including current queue states or
any other variable one wishes to track. We were also

158 2017 USENIX Annual Technical Conference USENIX Association

pleasantly surprised at how seamlessly the implementa-
tion was able to overlap disk or network I/O with com-
putation. We also found that the dataflow semantics in
general enforce a fairly high degree of code separation
and modularity, which makes for seamless extension for
new support (e.g., different I/O subsystems).

5 Evaluation

5.1 Experimental Setup
We use a cluster of typical datacenter machines, each
with two Intel Xeon E5-2680v3 CPU chips at 2.5GHz
and 256 GBytes of DRAM. With 12 cores per socket nd
hyperthreading enabled, each node has 48 logical cores.
All machines run Ubuntu 16.04 Xenial Linux. Each ma-
chine includes 2 SSDs in RAID1 configuration for the
OS, 6 SATA disks (4TB, 7200 RPM, 6 GB/s), a hard-
ware RAID controller, and 10GbE network interface. For
single-node (local) experiments, we store the input data
on a 20 TB RAID0 disk array. For distributed (cluster)
experiments, we store the AGD dataset in a Ceph dis-
tributed object store [46] spread over 7 servers. The Ceph
cluster is configured to use 3-way replication and each of
its 7 nodes has 10 disks. The compute and storage are
connected by a 40GbE-based IP fabric consisting of 8
top-of-rack switches and 3 spine switches.

Persona accesses Ceph objects via the Rados API. Us-
ing the rados bench tool, we measure the peak Ceph
read throughput of our configuration at 6 GB/s, with se-
quential reads and evenly distributed data.

In all our experiments, we use half of a paired-end
whole genome dataset from Illumina [12] (ERR174324),
which consists of 223 million single-end 101-base reads,
and is 18 GB in gzipped-FASTQ format and 16 GB in
AGD format. The use of single-end read data is an arbi-
trary choice; Persona’s integrated aligners and AGD also
support paired-end alignment. The reference genome to
which we align the dataset is the common hg19 human
genome [23]. As mentioned in §2, alignment throughput
is measured in bases aligned per second.

5.2 Persona Configuration
All execution uses the TensorFlow direct session, un-
modified. For cluster-wide execution, Persona launches
a TensorFlow instance per compute server. Within each
server, the first stage in the TensorFlow graph fetches a
chunk name from the manifest server; the latter is im-
plemented as a simple message queue. Unless noted,
the AGD chunk size is 100,000, grouped into 2231
chunks. At this chunk size, both the bases and the quali-
ties are ∼3.5 MB. As our performance analysis focuses
mainly on alignment, we read only these two columns of
each chunk, totaling ∼7 MB per chunk.

SNAP AGD Single Node Speedup

Disk(Single) 817 sec 501 sec 1.63

Disk(RAID) 494 sec 499 sec 0.99

Network 760 sec 493.5 sec 1.54

Data Read 18GB 15GB 1.2

Data Written 67GB 4GB 16.75

Table 1: Dataset Alignment Time, Single Server

5.3 I/O Behavior of AGD

We first study the I/O behavior of Persona and AGD.
I/O behavior in Persona is fundamental, since we can
never assume a given patient’s genome data will already
be in memory (or that it even fits in memory). We per-
form alignment using different disk I/O configurations,
using the SNAP alignment subgraph and comparing to
the SNAP standalone program. We use SNAP instead of
BWA because it has higher throughput and is better able
to exercise the I/O subsystem. The single disk config-
uration stores the genome (and the results) on a single
local disk. The RAID0 configuration uses a hardware
RAID0 array of 6 disks to increase bandwidth. Both
SNAP and Persona are tuned for best performance, and
use 47 aligner threads.

Figure 5 provides a characterization of the CPU uti-
lization using a single disk and the full RAID0 config-
uration. Both systems overlap I/O and decompression
with alignment: SNAP uses an ad-hoc combination of
threads, whereas Persona leverages dataflow execution.
Figure 5a and Figure 5b show that Persona is CPU bound
in both configurations, but that SNAP can only use the
CPU resource fully in the RAID0 configuration.

In particular, Figure 5a shows a cyclical pattern with
SNAP where the operating system’s buffer cache write-
back policy competes with the application-driven data
reads; during periods of writeback, the application is un-
able to read input data fast enough and threads go idle.

Table 1 summarizes the difference in terms of the
amount of I/O traffic required as well as the impact on
execution time. While the column-orientation of AGD
has a marginal benefit in terms of data input, it has a
16.75× impact on data output, and a 1.63× speedup for
the single-disk configuration. When the storage subsys-
tem provides sufficient bandwidth, as for the RAID0 con-
figuration, the performance of SNAP and Persona are
nearly identical. Persona, however, does at least the same
amount of work with less hardware and eliminates the
disk I/O bottleneck.

The benefits of column-orientation of AGD are not
limited to local disks. Table 1 also shows the speedup of
1.54× when the data is stored on Ceph network-attached

USENIX Association 2017 USENIX Annual Technical Conference 159

(a) Single Disk CPU (b) RAID 0 CPU

Figure 5: Comparison of SNAP (GZIP’d FASTQ) and Persona (AGD) in CPU utilization with single disk and RAID0.

storage1.
Finally, Table 1 shows that, by overlapping I/O with

computation in meaningful-sized pieces, the perfor-
mance of Persona is nearly identical to SNAP and CPU
bound in three very different storage configurations.

5.4 Single-node CPU Alignment
We characterize the thread scaling behavior for Persona
in both the SNAP and BWA-MEM aligners, while com-
paring them to their standalone baselines, with single-
end alignment. These experiments show that Persona
imposes negligible core-scaling overhead on the subsys-
tems we have integrated, and avoids thread and I/O satu-
ration issues by efficient overlapping.

Figure 6 shows the scalability of standalone SNAP and
BWA-MEM compared to Persona as a function of the
number of provisioned aligner threads on the 48 core
server. The experiments were measured on the RAID0
configuration so that SNAP has enough I/O bandwidth.
For SNAP, Figure 6 shows clearly: (1) a near-linear
speedup for up to 24 threads, corresponding to the 24
physical processor cores of the server; (2) that, beyond
24 cores, the 2nd hyperthread increases the alignment
rate of a core by 32%. At 48 threads however, con-
tention with I/O scheduling causes a drop in performance
in SNAP. Persona is less sensitive to operating system
kernel thread scheduling decisions because of Tensor-
Flow’s built-in queue abstractions.

BWA scales fairly well to 24 threads, but afterwards
suffers from high memory contention after hyperthread-
ing kicks in, something we can not fix without signif-
icant changes to the codebase. However, because Per-
sona avoids setting up and tearing down threads for dif-

1SNAP does not natively support reading from Ceph, so we use the
rados utility to pipe the dataset in gzipped FASTQ format, and pipe
the resulting SAM file into Ceph.

ferent steps of processing, Persona’s BWA-MEM sub-
graph scales slightly better with more threads than the
standalone program.

5.5 Cluster Scalability

Figure 7 shows the throughput of two different systems
as a function of the number of nodes. “Actual” represents
the measured performance of Persona using the SNAP
alignment node, reported in gigabases aligned per sec-
ond for a single genome (i.e., a measurement of latency).
“Simulation” is the ideal speedup line based on the max-
imum local server performance of ∼45.45 megabases
aligned per second (see §5.4).

Persona scales linearly up to the available 32 nodes
by making efficient use of all compute resources, hid-
ing all I/O latencies and addressing the straggler prob-
lem through shallow queues. Again, we use SNAP be-
cause the higher throughput is better able to exercise the
I/O subsystems. When considering BWA-MEM, align-
ment throughput may be lower per node, but may scale
to higher numbers of servers. We reiterate that our point
is not to compare BWA-MEM to SNAP, but to show that
Persona is able to scale to a high number of servers while
keeping process subgraphs fully supplied with data.

Using 32 servers and the SNAP process subgraph, Per-
sona aligns the genome in 16.7 seconds, from the begin-
ning of the request to when all results are written back
to the Ceph cluster. This corresponds to 1.353 gigabases
aligned per second. As far as we are aware, this repre-
sents the fastest whole genome alignment to date.

We use a different methodology to test the scalabil-
ity of the storage cluster. For this, we deploy multiple
“virtual” TensorFlow sessions per server and replace the
CPU-intensive SNAP algorithm with a stub that simply
suspends execution for the mean time required to align
a chunk, and then output a representative (but obviously

160 2017 USENIX Annual Technical Conference USENIX Association

0 6 12 18 24 30 36 42 48
Number of Threads

0

10

20

30

40

50

60

70

Al
ign

m
en

t R
at

e (
 M

eg
ab

as
e /

 S
ec

on
d

)
SNAP
Persona SNAP
BWA
Persona BWA
SNAP Perfect
BWA Perfect

Figure 6: Throughput scaling across cores. Persona adds
no measurable overhead.

Tool Time Speedup

Persona 556 sec 1.0×

Samtools 856 sec 1.54×

Samtools w/ conversion 1289 sec 2.32×

Picard 2866 sec 5.15×

Table 2: Dataset Sort Time in Seconds, Single Server

incorrect) result.
Figure 7 shows the results in the “Simulation” line.

We first validate that the simulation matches the “Actual”
measurements up to 32 nodes. We then observe that the
Ceph cluster scales to ∼60 nodes without loss of effi-
ciency. Beyond 60 nodes, and for an AGD chunk size
of 100,000 reads, write performance of the alignment re-
sults limits performance.

5.6 Sorting and Duplicate Marking
We also compare Persona in sorting performance to Sam-
tools [31] and Picard [27], standard utilities for sorting
SAM/BAM files. Table 2 shows the results when con-
figuring Samtools to use all 48 cores available. Picard
does not have an option for multithreading. Samtools
requires sorting input in BAM format; we include both
sort and sort + conversion times. Persona can directly
process aligned results in AGD, performing up to 2.32
times faster than Samtools when considering the file con-
version time. Persona’s sort implementation is currently
naive, using std::sort() across chunks, and we be-
lieve these results can be improved substantially.

We compare Persona’s duplicate marking perfor-
mance to Samblaster [14], whose algorithm we have used
in our implementation. Samblaster can mark duplicates
at 364,963 reads per second, while Persona, which uses
Google’s optimized dense hashtable, can mark duplicates

0 20 40 60 80 100
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gi
ga

ba
se

s A
lig

ne
d

/ S
ec

on
d

Actual
Simulation

Figure 7: Actual cluster throughput up to 32 servers us-
ing the Persona SNAP aligner. Simulated throughput
while scaling to 100 servers.

at 1.36 million reads per second. Note that Persona also
uses less I/O since only the results column needs to be
read/written from the AGD dataset.

5.7 Conversion and Compatibility
To support existing sequencer output formats and other
tools that have not yet been integrated, Persona can im-
port FASTQ and export BAM formats at high through-
put. FASTQ is imported to AGD at 360 MB/s, while
BAM format files are produced from AGD at 82 MB/s.

6 Discussion

Our performance analysis focuses on alignment, as it is
the most compute-intense step we have yet integrated
into Persona. As this is a primary bottleneck for anal-
ysis, we used Intel’s VTune Amplifier [41] to profile
both BWA-MEM and SNAP while running in Persona,
to identify any possible avenues for improvement. Fig-
ures 8a–8b summarize our findings, while comparing to
several relevant SPEC benchmarks.

Both aligner profiles share some similarity, in that
they are heavily CPU backend-bound (i.e., many cycles
stalled due to lack of resources for accepting µOps into
the pipeline, like D-cache misses or occupied functional
units). With SNAP, we see that the issue is due to the
core and not memory access — this is due to short but
frequent calls to a local alignment edit distance function
that has a small instruction mix and many data dependent
instructions and branches. In BWA-MEM, the system is
much more memory bound. VTune reports that this is
due mostly to cache misses and DTLB misses, and our
findings corroborate previous analyses [48]. This also
helps explain our improved thread scaling — by restrict-
ing primary functions to sets of cores, we reduce thread

USENIX Association 2017 USENIX Annual Technical Conference 161

(a) Analysis breakdown. (b) Core and memory
bound levels.

Figure 8: Workload analysis (with and without Hyper-
threading) compared to several SPEC benchmarks.

interference in the memory hierarchy.

6.1 TCO of Cluster Architectures
Personalized medicine has become practical because of
dramatic decreases in the cost of genome sequencing. In
light of these decreases, it is worth considering the cost
contributions of storage and computation. We consider
three cases: a single system attached to a single NGS
sequencer, our own balanced cluster, and a nation-wide
solution. We limit the analysis to alignment, the most
expensive computation we have yet integrated into Per-
sona.

First, Figure 5 shows the performance of single server,
where genomic data is stored, aligned, and processed on
a local machine. A single server can align ∼144 full se-
quences per day. Considering the total cost of ownership
(TCO) of the server over 5 years, this implies a cost of
4.1¢ per alignment, assuming full utilization. Note that
this scenario has limited genome storage capacity.

Second, there are economies of scale for sequencing,
and a more likely scenario would be a regional center
providing sequencing and processing services. A small
cluster and network storage subsystem, as we have used
in our experiments, could support 5173 alignments per
day. Figure 7 shows that our storage cluster can sustain
the I/O requests of a cluster of twice this size, offering
expansion capacity. Table 3 summarizes the cluster com-
pute and storage costs over a 5 year lifetime. For the
network fabric cost, we determine the per-port cost of
the 8-TOR, 3-spine architecture deployed in our phys-
ical cluster, and multiply by the number of ports used.
Table 3 shows that, assuming the system is fully loaded,
the TCO of a genome alignment on such a regional clus-
ter is 6.07¢, higher than above because of the larger stor-
age subsystem needed to support the throughput.

Item Unit cost Units Total

Compute Server $8,450 60 $507K

Storage server $7,575 7 $53K

Fabric ports $792 67 $53K

Total $613K

TCO(5yr) [21] $943K
Cost/Alignment (100% Utilization) 6.07¢

Table 3: Cluster TCO and alignment costs. The storage
cluster has 126 TB of usable capacity, corresponding to
approximately 6,000 sequenced genomes.

Third, a nation-wide solution would be needed to
support initiatives such as Genomics England’s 100,000
Genomes [17]. For this, additional storage is required
as our balanced cluster has a usable capacity of 126 TB,
which can store 6,000 in AGD format (1 days worth of
sequencing). One can use the 60:7 ratio of compute to
storage machines as a “not to exceed” scaling guide. The
TCO model of Table 3 can be adjusted to estimate the
capacity and throughput requirements of a deployment.

Storage is the dominant cost of a cluster and of
genome processing. With our current high-throughput
storage subsystem, the cost per genome for storage is
$8.83, two orders of magnitude higher than the align-
ment cost. Genomes that are not being actively processed
could be stored in tiered storage system using slower,
lower-cost storage and erasure coding [11]. Currently,
using Amazon Glacier storage ($0.007 GB/month [4]), a
full genome could be stored for 5 years for $6.72, only
slightly less expensive than locally hosted storage. Note
that with higher coverage datasets, storage amounts and
cost would increase.

Computation is far from the dominant contribution to
the cost of sequencing a genome. Storage, while more
expensive, is still far from a significant expense, but if
the cost of sequencing continues to decline at its faster-
than-Moore’s-Law rate, storage may become the limiting
factor in widespread genome sequencing. Novel com-
pression for genomic data, such as reference-based com-
pression [15], will likely be required.

7 Related Work

Because of its potential, bioinformatics and genomics
have been the topic of much research. Large orga-
nizations such as the Broad Institute have established
pipelines (Genome Analysis Toolkit [34]), a system sim-
ilar to Persona. GATK also employs sharding for par-
allel data access (i.e. HDFS), but uses the standard
SAM/BAM formats, often merging multiple input files
into single files, which can limit scalability. Recently,

162 2017 USENIX Annual Technical Conference USENIX Association

GATK has also been ported a cloud environment, Google
Genomics [26]. Microsoft also advertizes cloud-based
genomics capabilities [35]. However, these companies
have not released details of their internal systems archi-
tectures, so it is unclear how they compare.

In terms of file formats, the recent ADAM format [33]
is most similar to AGD. It also uses a column store for-
mat to achieve better compression. In addition, data is
serialized using a common framework (Avro) that sup-
ports multiple languages and is easily parsed. ADAM
relies on Spark and HDFS for distributed computation,
again restricting users to a single storage subsystem
type. In terms of performance, ADAM claims a ∼2×
speedup over Picard in single node sorting, whereas Per-
sona achieves a ∼5× speedup. HDF5 [44] is a general
purpose hierarchical file format that can also support a
bioinformatics schema similar to ADAM. In contrast to
AGD, it restricts users to MPI for multiprocessing and is
difficult to tune for high performance. TileDB [39] is a
system that stores multi-dimensional array data in fixed
size data tiles, similar to HDF5 but superior in write per-
formance and concurrency. TileDB “chunking” is sim-
ilar to AGD, but it employs a more rigid data model
and is generally much more complex. Parallel access is
implemented using MPI as in HDF5. Futhermore, Ge-
nomicsDB [22] is built on TileDB to store genomic vari-
ant data in 2D arrays, columns and rows correspond to
genome positions and samples, respectively.

AGD differs substantially from these formats in that it
is simple and requires only a way to store keyed chunks
of data. The AGD API to access chunk data can simply
be layered on top of different storage or file systems, us-
ing those system’s APIs for parallel access, distribution,
replication, etc.

Distributed alignment has been explored before, for
example CloudBurst [42], which uses Hadoop MapRe-
duce. They also find that the problem scales linearly
and that distribution can result in significant speedups.
CloudBurst reports 7 million reads aligned to one hu-
man chromosome in 500 seconds using 96 cores (5256
bases aligned per second per core), however a direct
performance comparison is difficult because the align-
ment algorithm is different, the read size is different (36
base pairs versus our 101), and the cluster architecture
and CPU were different. Cloud-Scale BWAMEM [7]
is a distributed aligner that can align a genome in
∼80 minutes over 25 servers, but requires different file
formats for single (SAM) or distributed computation
(ADAM). SparkBWA [2] is similar, scaling alignment
out over a Spark cluster, but not achieving linear scaling.
ParSRA [19] shows close to linear scaling using a PGAS
approach, but relies on FUSE to split input files among
nodes. Eoulsan [28] uses MapReduce to perform several
pipeline steps and supports different aligners. Pmap [24]
uses MPI to scale several different aligners across servers

and claims linear scaling.
Other efforts include SAND [36], where alignment

is divided into stages for reads, candidate selection and
alignment on dedicated clusters using algorithms sim-
ilar to BLAST. There have also been efforts to dis-
tribute BLAST computation itself [40]. Others have
shown that aligning reads to a reference genome scales
linearly [20]. merAligner [18] implements a seed-and-
extend algorithm that is highly parallel at all stages, but
uses fine-grained parallelism more amenable to super-
computing systems rather than the clusters or datacen-
ters that Persona targets. GENALICE Map [45] reports
92 million bases aligned per second on a single machine,
faster than even SNAP, however it is a closed-source pro-
prietary product.

In contrast to previous work, Persona and AGD pro-
vide a general high-performance framework that facili-
tates linear core and server scale out of not only align-
ment but many bioinformatics processes. Persona has
negligible overhead, and does not restrict users to spe-
cific storage systems or parallel patterns. The dataflow
architecture can support different models of parallelism,
while the Python API allows user composable pipelines.
AGD provides scalable, high-bandwidth access to data.
Both Persona and AGD are also extensible, making it
easy to integrate new or existing tools and data schemas.

8 Conclusion

In this paper, we demonstrate that existing state-of-the-
art bioinformatics tools can be embedded in a distributed
dataflow framework based on Google TensorFlow, yield-
ing a composable bioinformatics pipeline that scales lin-
early with near-zero overhead. In addition, we propose a
new data format for genomic data (AGD) that allows for
efficient data partitioning and distribution across clusters.

When using the SNAP algorithm, Persona aligns a
peak throughput of 1.353 gigabases per second on 32
servers. It can align a 223 million read dataset in
∼16.7 seconds. As far as we are aware, this represents
the fastest genomic sequence alignment system to date.

When scaled up, alignment can be very cost-efficient,
at only 6.07¢ per alignment, showing that bioinformatics
computing can be both fast and cost effective. Costs for
sequencing, at least in the near future, will be dominated
by the cost of consumables and data storage.

Persona and AGD are under active development, with
work ongoing to integrate comprehensive data filtering
and variant calling. The goal of Persona is to bring
the many disparate bioinformatics tools and algorithms
into a single, high-performance, yet easy-to-use system
that will meet the needs of both small-scale research and
large-scale personalized medicine. We look forward to
working with the systems and bioinformatics communi-
ties to achieve this end.

USENIX Association 2017 USENIX Annual Technical Conference 163

Acknowledgements

We thank the anonymous reviewers for their construc-
tive feedback and our shepherd, Fred Douglis for his sug-
gestions. This work was supported in part by the Nano-
Tera YINS project, Microsoft-EPFL Joint Research Cen-
ter, and a grant from VMware.

References

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO,
E., CHEN, Z., CITRO, C., CORRADO, G. S., DAVIS,
A., DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFEL-
LOW, I. J., HARP, A., IRVING, G., ISARD, M., JIA, Y.,
JZEFOWICZ, R., KAISER, L., KUDLUR, M., LEVEN-
BERG, J., MANÉ, D., MONGA, R., MOORE, S., MUR-
RAY, D. G., OLAH, C., SCHUSTER, M., SHLENS, J.,
STEINER, B., SUTSKEVER, I., TALWAR, K., TUCKER,
P. A., VANHOUCKE, V., VASUDEVAN, V., VIÉGAS,
F. B., VINYALS, O., WARDEN, P., WATTENBERG, M.,
WICKE, M., YU, Y., AND ZHENG, X. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. CoRR abs/1603.04467 (2016).

[2] ABUÍN, J. M., PICHEL, J. C., PENA, T. F., AND
AMIGO, J. Sparkbwa: speeding up the alignment of high-
throughput dna sequencing data. PloS one 11, 5 (2016),
e0155461.

[3] ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS,
E. W., AND LIPMAN, D. J. Basic local alignment search
tool. Journal of Molecular Biology 215, 3 (1990), 403 –
410.

[4] AMAZON, I. Amazon glacier pricing. https://aws.

amazon.com/glacier/pricing/. Accessed: 10-16-
2016.

[5] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling
Multithreaded Computations by Work Stealing. J. ACM
46, 5 (1999), 720–748.

[6] BROWN, S. M. Next-Generation DNA Sequencing Infor-
matics. Cold Spring Harbor Laboratory Press Cold Spring
Harbo, 2013.

[7] CHE, Y.-T., CONG, J., LEI, J., LI, S., PETO, M.,
SPELLMAN, P., WEI, P., AND ZHOU, P. CS-BWAMEM:
A Fast and Scalable Read Aligner at the Cloud Scale for
Whole Genome Sequencing (Poster). HiTSeq (2015).

[8] COCK, P. J., FIELDS, C. J., GOTO, N., HEUER, M. L.,
AND RICE, P. M. The sanger fastq file format for se-
quences with quality scores, and the solexa/illumina fastq
variants. Nucleic acids research 38, 6 (2010), 1767–1771.

[9] DANECEK, P., AUTON, A., ABECASIS, G., ALBERS,
C. A., BANKS, E., DEPRISTO, M. A., HANDSAKER,
R. E., LUNTER, G., MARTH, G. T., SHERRY, S. T.,
ET AL. The variant call format and vcftools. Bioinfor-
matics 27, 15 (2011), 2156–2158.

[10] DEAN, J., AND BARROSO, L. A. The tail at scale. Com-
mun. ACM 56, 2 (2013), 74–80.

[11] DIMAKIS, A. G., GODFREY, B., WU, Y., WAIN-
WRIGHT, M. J., AND RAMCHANDRAN, K. Network
coding for distributed storage systems. IEEE Trans. In-
formation Theory 56, 9 (2010), 4539–4551.

[12] EBERLE, M. A., FRITZILAS, E., KRUSCHE, P., KALL-
BERG, M., MOORE, B. L., BEKRITSKY, M. A., IQBAL,
Z., CHUANG, H.-Y., HUMPHRAY, S. J., HALPERN,
A. L., KRUGLYAK, S., MARGULIES, E. H., MCVEAN,
G., AND BENTLEY, D. R. A reference dataset of 5.4
million human variants validated by genetic inheritance
from sequencing a three-generation 17-member pedigree.
bioRxiv (2016).

[13] EPFL VSLC-DCSL. Persona - A High-Performance
Bioinformatics Framework. https://github.com/

epfl-vlsc/persona.

[14] FAUST, G. G., AND HALL, I. M. Samblaster: fast dupli-
cate marking and structural variant read extraction. Bioin-
formatics (2014), btu314.

[15] FRITZ, M. H.-Y., LEINONEN, R., COCHRANE, G.,
AND BIRNEY, E. Efficient storage of high throughput
dna sequencing data using reference-based compression.
Genome research 21, 5 (2011), 734–740.

[16] GARRISON, E., AND MARTH, G. Haplotype-based vari-
ant detection from short-read sequencing. arXiv preprint
arXiv:1207.3907 (2012).

[17] GENOMICS ENGLAND (NHS). The 100,000 Genome
Project. https://www.genomicsengland.co.uk,
2016.

[18] GEORGANAS, E., BULUÇ, A., CHAPMAN, J., OLIKER,
L., ROKHSAR, D., AND YELICK, K. A. merAligner: A
Fully Parallel Sequence Aligner. In Proceedings of the
29th IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS) (2015), pp. 561–570.

[19] GONZLEZ-DOMNGUEZ, J., HUNDT, C., AND
SCHMIDT, B. parsra: A framework for the parallel
execution of short read aligners on compute clusters.
Journal of Computational Science (2017), –.

[20] GUO, S., AND PHAN, V. A distributed framework for
aligning short reads to genomes. BMC Bioinformatics 15,
S-10 (2014), P22.

[21] HAMILTON, J. Overall data center costs. Accessed: 08-
13-2016.

[22] HEALTH, I., AND SCIENCES, L. Genomicsdb. https:

//github.com/Intel-HLS/GenomicsDB/wiki. Ac-
cessed: 05-05-2017.

[23] HG19 Human Genome Download. http:

//hgdownload.cse.ucsc.edu/goldenPath/hg19/

bigZips/. Accessed: 06-20-2016.

[24] HPC LAB – OSU. Parallel Sequence Mapping
Tool. http://bmi.osu.edu/hpc/software/pmap/

pmap.html, 2016.

[25] ILLUMINA, INC. Illumina NovaSeq. https://www.

illumina.com/systems/sequencing-platforms/

novaseq.html, 2017.

164 2017 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/glacier/pricing/
https://github.com/epfl-vlsc/persona
https://github.com/epfl-vlsc/persona
https://www.genomicsengland.co.uk
https://github.com/Intel-HLS/GenomicsDB/wiki
https://github.com/Intel-HLS/GenomicsDB/wiki
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://bmi.osu.edu/hpc/software/pmap/pmap.html
http://bmi.osu.edu/hpc/software/pmap/pmap.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html

[26] INC., G. Broad institute gatk on google genomics.
https://cloud.google.com/genomics/gatk. Ac-
cessed: 08-13-2016.

[27] INSTITUTE, B. Picard. https://broadinstitute.

github.io/picard/. Accessed: 08-10-2016.

[28] JOURDREN, L., BERNARD, M., DILLIES, M.-A., AND
LE CROM, S. Eoulsan: a cloud computing-based frame-
work facilitating high throughput sequencing analyses.
Bioinformatics 28, 11 (2012), 1542.

[29] LANGMEAD, B., TRAPNELL, C., POP, M., AND
SALZBERG, S. L. Ultrafast and memory-efficient align-
ment of short dna sequences to the human genome.
Genome Biology 10, 3 (2009), 1–10.

[30] LI, H., AND DURBIN, R. Fast and accurate short read
alignment with Burrows-Wheeler transform. Bioinfor-
matics 25, 14 (2009), 1754–1760.

[31] LI, H., HANDSAKER, B., WYSOKER, A., FENNELL,
T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G.,
DURBIN, R., ET AL. The Sequence Alignment/map For-
mat and SAMtools. Bioinformatics 25, 16 (2009), 2078–
2079.

[32] LI, R., YU, C., LI, Y., LAM, T. W., YIU, S.-M., KRIS-
TIANSEN, K., AND WANG, J. SOAP2: an improved ul-
trafast tool for short read alignment. Bioinformatics 25,
15 (2009), 1966–1967.

[33] MASSIE, M., NOTHAFT, F., HARTL, C., KOZANITIS,
C., SCHUMACHER, A., JOSEPH, A. D., AND PATTER-
SON, D. A. Adam: Genomics formats and processing
patterns for cloud scale computing. University of Cali-
fornia, Berkeley Technical Report, No. UCB/EECS-2013
207 (2013).

[34] MCKENNA, A., HANNA, M., BANKS, E.,
SIVACHENKO, A., CIBULSKIS, K., KERNYTSKY,
A., GARIMELLA, K., ALTSHULER, D., GABRIEL, S.,
DALY, M., ET AL. The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Research 20, 9 (2010),
1297–1303.

[35] MICROSOFT. Microsoft genomics. https://

enterprise.microsoft.com/en-us/industries/

health/genomics/. Accessed: 08-13-2016.

[36] MORETTI, C., THRASHER, A., YU, L., OLSON, M.,
EMRICH, S. J., AND THAIN, D. A Framework for Scal-
able Genome Assembly on Clusters, Clouds, and Grids.
IEEE Trans. Parallel Distrib. Syst. 23, 12 (2012), 2189–
2197.

[37] NOVOCRAFT TECHNOLOGIES SDN BHD.
NovoAlign. http://www.novocraft.com/products/
novoalign/, 2016.

[38] PABINGER, S., DANDER, A., FISCHER, M., SNAJDER,
R., SPERK, M., EFREMOVA, M., KRABICHLER, B.,
SPEICHER, M. R., ZSCHOCKE, J., AND TRAJANOSKI,
Z. A survey of tools for variant analysis of next-
generation genome sequencing data. Briefings in Bioin-
formatics 15, 2 (2013), 256.

[39] PAPADOPOULOS, S., DATTA, K., MADDEN, S., AND
MATTSON, T. G. The TileDB Array Data Storage Man-
ager. PVLDB 10, 4 (2016), 349–360.

[40] PELLICER, S., CHEN, G., CHAN, K. C., AND PAN,
Y. Distributed sequence alignment applications for the
public computing architecture. IEEE transactions on
nanobioscience 7, 1 (2008), 35–43.

[41] REINDERS, J. VTune performance analyzer essentials.
Intel Press, 2005.

[42] SCHATZ, M. C. CloudBurst: highly sensitive read map-
ping with MapReduce. Bioinformatics 25, 11 (2009),
1363–1369.

[43] SMITH, T. F., AND WATERMAN, M. S. Identification of
common molecular subsequences. Journal of molecular
biology 147, 1 (1981), 195–197.

[44] THE HDF GROUP. Hierarchical data format version 5.
http://www.hdfgroup.org/HDF5, 2000-2010.

[45] TOLHUIS, B., LUNENBERG, J., AND KARTEN,
H. Ultra-fast, accurate and cost-effective ngs read
alignment with significant storage footprint reduction.
http://www.genalice.com/wp-content/uploads/

2013/07/GENALICE-poster-HiTSeq-2013.pdf.
Accessed: 08-13-2016.

[46] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A Scalable, High-
Performance Distributed File System. In Proceedings of
the 7th Symposium on Operating System Design and Im-
plementation (OSDI) (2006), pp. 307–320.

[47] ZAHARIA, M., BOLOSKY, W. J., CURTIS, K., FOX, A.,
PATTERSON, D. A., SHENKER, S., STOICA, I., KARP,
R. M., AND SITTLER, T. Faster and More Accurate
Sequence Alignment with SNAP. CoRR abs/1111.5572
(2011).

[48] ZHANG, J., LIN, H., BALAJI, P., AND FENG, W. C.
Optimizing burrows-wheeler transform-based sequence
alignment on multicore architectures. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (2013), pp. 377–384.

USENIX Association 2017 USENIX Annual Technical Conference 165

https://cloud.google.com/genomics/gatk
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
http://www.novocraft.com/products/novoalign/
http://www.novocraft.com/products/novoalign/
http://www.hdfgroup.org/HDF5
http://www.genalice.com/wp-content/uploads/2013/07/GENALICE-poster-HiTSeq-2013.pdf
http://www.genalice.com/wp-content/uploads/2013/07/GENALICE-poster-HiTSeq-2013.pdf

SPIN: Seamless Operating System Integration of Peer-to-Peer DMA
Between SSDs and GPUs

Shai Bergman
Technion

Tanya Brokhman
Technion

Tzachi Cohen Mark Silberstein
Technion

Abstract

Recent GPUs enable Peer-to-Peer Direct Memory Ac-
cess (P2P) from fast peripheral devices like NVMe SSDs
to exclude the CPU from the data path between them
for efficiency. Unfortunately, using P2P to access files
is challenging because of the subtleties of low-level non-
standard interfaces, which bypass the OS file I/O layers
and may hurt system performance.

SPIN integrates P2P into the standard OS file I/O stack,
dynamically activating P2P where appropriate, transpar-
ently to the user. It combines P2P with page cache
accesses, re-enables read-ahead for sequential reads,
all while maintaining standard POSIX FS consistency,
portability across GPUs and SSDs, and compatibility
with virtual block devices such as software RAID.

We evaluate SPIN on NVIDIA and AMD GPUs us-
ing standard file I/O benchmarks, application traces and
end-to-end experiments. SPIN achieves significant per-
formance speedups across a wide range of workloads, ex-
ceeding P2P throughput by up to an order of magnitude.
It also boosts the performance of an aerial imagery ren-
dering application by 2.6× by dynamically adapting to
its input-dependent file access pattern, and enables 3.3×
higher throughput for a GPU-accelerated log server.

1 Introduction

GPU-accelerated applications often require fast data
transfers between the GPU and storage devices. They
combine high I/O demands with heavy computations
amenable to GPU acceleration. Thus, application perfor-
mance is bounded by the throughput of transfers between
the disk and the GPU. As high-speed NVMe SSDs with
multi-GB/s I/O rates are becoming commodity, we ex-
pect an increasing number of I/O-intensive applications
to benefit from GPU acceleration. In fact, recent AMD
Solid State GPUs (SSG) [1] target such I/O intensive
workloads by hosting NVMe SSDs on a GPU card.

In order to realize the potential of high speed I/O de-
vices in GPU workloads, all recent discrete GPUs enable
peer-to-peer direct memory access (P2P) to GPU mem-
ory from PCIe-attached peripherals [2, 3]. P2P eliminates
redundant copies in CPU memory when transferring data
between the devices. Without P2P, copying file contents
into a GPU buffer requires reading it first into an interme-
diate CPU buffer, which is then transferred to the GPU.
P2P allows direct transfers into GPU memory, improving
performance and power efficiency, as has been shown in
several prior works [4–8].

Unfortunately, P2P poses significant programming
challenges. First, the usage of P2P requires intimate
knowledge of low-level hardware constraints. For exam-
ple, P2P cannot access files at misaligned file offsets [9],
and may be slow or unusable across devices in different
NUMA nodes [10].

More crucially, P2P actually hurts system performance
for a range of popular file access patterns. Figure 1
shows one such example. For short sequential reads P2P
is dramatically slower than CPU-mediated I/O. It per-
forms faster only for reads larger than 512KB. In this
scenario, CPU-mediated I/O reaps the benefits of the OS
read-ahead mechanism, which P2P bypasses.

Finally, the use of P2P in hybrid CPU-GPU producer-
consumer workloads is prone to subtle consistency bugs.
Consider, for example, a log processing application like
fail2Ban [11], accelerated by leveraging GPUs. Using
P2P to read recently updated files might result in an in-
consistent read if the contents have not yet reached the
disk. Furthermore, because P2P is not integrated with the
page cache, users would not benefit from the extensive
OS efforts to cache file contents.

We conclude that P2P between SSDs and GPUs is too
low-level a mechanism to be exposed directly to devel-
opers. Existing frameworks [4–8] provide non-standard,
custom APIs for performing P2P, but rely on the pro-
grammer to work around its limitations and to choose
the best-performing transfer mechanism for a given ap-

USENIX Association 2017 USENIX Annual Technical Conference 167

plication scenario. Instead, the OS should hide the sub-
tleties of direct access to storage, exploit existing file
I/O optimization mechanisms like read-ahead and page
cache, while dynamically and transparently steering the
data path to P2P.

SPIN is a system that achieves these goals by integrat-
ing P2P into the file I/O layer in the OS. The programmer
uses standard pread and pwrite calls to transfer the
file contents to and from the GPU memory, while SPIN
seamlessly activates P2P when necessary. Unlike previ-
ous works on P2P [4–8] which target GPU-only work-
loads with large sequential reads, SPIN addresses a broad
range of application scenarios with diverse file access
patterns and cooperative CPU-GPU processing.

SPIN addresses three key challenges: integration of
P2P with the page cache, read-ahead for GPU reads, and
invocation of P2P via a direct disk I/O interface.

Combining page cache and P2P. If a GPU read re-
quest can be partially served from the CPU page cache,
naively reading all the cached data from memory and the
rest via P2P might be slower by up to 16× vs. serving
the whole request via P2P. We construct a greedy heuris-
tic that solves the underlying scheduling problem for ev-
ery access, and produces the interleaving schedule that
achieves about 98% of the optimal performance (§4.3.1).

GPU read-ahead. Our read-ahead mechanism uses
CPU page cache pages to store the contents of prefetched
data for GPU reads. However, SPIN prevents page cache
pollution by maintaining a separate GPU read-ahead
eviction policy that restricts the space used for prefetched
contents (§4.3.2).

Direct disk I/O for P2P. Using direct disk I/O inter-
face to invoke P2P SSD-GPU transfers is advantageous
because of its tight integration with the file I/O stack, in-
cluding page cache consistency handling and file offset-
to-logical block address mapping. However, direct I/O
calls cannot be used with GPU resident pages. We devise
a lightweight address tunneling mechanism to overcome
this problem (§5.1).

We implement and systematically evaluate SPIN in
Linux by running standard file system benchmarks, ap-
plication traces and full applications. We use NVIDIA
K40 and AMD R9 Fury GPUs with two Intel P3700
SSDs, both separately and in a software RAID. SPIN
tracks or exceeds the performance of the best transfer
mechanism for the respective access pattern, with pro-
nounced benefits over P2P for sequential accesses and ac-
cesses to cached files. For example, it achieves 10.1GB/s
when reading a file from the page cache – 3.8× higher
than 2.65 GB/s of P2P in the same configuration (within
5% of the maximum SSD bandwidth). For partially
cached files, SPIN is faster than either CPU-mediated I/O
or P2P in isolation, e.g., by 2× and 20% respectively for
50% cache hits.

SPIN is compatible with virtual block devices such as
software RAID, in contrast to the published P2P imple-
mentations. SPIN achieves up to 5.2GB/s of file stream-
ing performance from two SSDs in RAID-0 managed by
Linux software RAID [12] – the fastest P2P result re-
ported to date, to the best of our knowledge. For com-
parison, AMD SSG [1] GPUs with the SSD drives on
a GPU card [13] reportedly achieve 4GB/s and require
custom API and special-purpose hardware.

In real application scenarios, we evaluate a GPU-
accelerated log server, an aerial imagery viewer [14], and
an image collage creator [15]. SPIN achieves signifi-
cant speedups for all applications, e.g., 3.3× for the log
server. A highly optimized implementation of the collage
creator is improved by 29% while requiring modification
of only 10 LOC.

Our main contributions are as follows:
• Analysis of programmability and performance limita-

tions of P2P.
• Integration of P2P into the OS file I/O stack, including

standard file I/O API, page cache with a transfer in-
terleaving scheduler, read-ahead and enabling P2P via
direct I/O.

• Thorough evaluation on synthetic and real workloads
for both NVIDIA and AMD GPUs, showing significant
performance benefits of SPIN over alternatives.

2 Background

This section provides a brief overview of the system ar-
chitecture we target in our work.
System architecture. We consider a system where the
CPU, discrete GPUs, and NVMe SSD are connected via
Peripheral Component Interconnect Express (PCIe) bus.
The PCIe switch enables fast peer-to-peer direct memory
access (P2P) between the GPU and the SSD. P2P allows
the SSD to transfer data directly to/from GPU memory,
bypassing the CPU.
Mapping GPU memory into process address space.
GPUs expose a portion of GPU memory on the PCIe bus
(device’s BAR) accessible to the CPU. To allow access
to this memory from a user mode application NVIDIA’s
gdrcopy and AMD’s OpenCL extensions provide the
tools to map it into the process address space.
Direct disk I/O. Direct disk I/O (O DIRECT) allows file
system operations to bypass kernel caches and interact
directly with the storage device.

3 Motivation

Prior works [4–8] show that P2P between SSDs and
GPUs substantially boosts system performance for popu-
lar GPU benchmarks. These applications exhibit stream-

168 2017 USENIX Annual Technical Conference USENIX Association

����

����

����

����

����

����

����

��

�	

�
�

�
�

���

���

��

�	

�

���	

����

��

�
��

�
�
�
�
�
�
�

��������	

�����

������

��������	
���

����� ������

Figure 1: The speedup of CPU-mediated I/O over P2P
for sequential reads.

ing access patterns, sequentially reading files in large
chunks. Our measurements in this section, however,
show that P2P is actually slower than CPU-mediated I/O
for access patterns and application scenarios that have not
been considered previously. We then highlight the key
challenges that P2P poses to programmers, motivating its
integration into the OS file I/O stack.

3.1 P2P inefficiencies

Short sequential reads. We compare the performance
of P2P and CPU-mediated I/O for reading file contents
into NVIDIA GPU (AMD GPUs are similar). We run
the standard TIOtest [16] benchmark only modifying it
to transfer data to GPU buffers. The CPU-mediated I/O
version issues pread() into a CPU buffer followed by
cudaMemcpy() to transfer the buffer to the GPU. For
P2P we use our own implementation described in detail
in Section 5.1. For the hardware setup see Section 6.

Figure 1 shows the relative throughput of sequential
accesses to a 100MB file. P2P is more than an order of
magnitude slower that CPU-mediated I/O for very short
reads, and about 3× slower for larger 32KB reads. This
is a common access pattern, found, e.g., in grep utility.
P2P attains speedups only for reads of 512KB and above.

This performance gap is due to the read-ahead mecha-
nism which transparently optimizes CPU-mediated I/O,
and which P2P bypasses entirely. The OS asyn-
chronously prefetches the file into the page cache, over-
lapping the reads from the disk with CPU-GPU data
transfers. The prefetcher gradually increases the size
of the prefetch data requests up to 512KB (by default),
achieving much higher effective bandwidth to SSD than
P2P, which performs short reads.
Complex workloads. P2P is significantly slower than
CPU-mediated I/O if the file contents are cached in the
page cache, as is often the case for complex software
systems with multiple cooperating applications. How-
ever, since the page cache contents change dynamically
depending on the workload, a programmer is left with-
out a single best choice of file transfer mechanism. For
example, consider a central log server that receives logs
from other machines over the network and stores them lo-

cally. A log scanner invoked as another application might
analyze the logs later to detect suspicious events. Using
P2P for such a streaming workload might seem as a vi-
able choice. However, if the scanner is invoked immedi-
ately after the files are updated, the contents might still
be in the page cache, thus using P2P would reduce sys-
tem throughput, as we also show in our experiments in
Section 6.

3.2 P2P programming challenges
P2P is a low-level mechanism, exposed directly to the
programmer. Besides the performance issues discussed
earlier, it introduces a number of challenges to program-
mers.
Non-standard API. There is no standard OS API for ac-
cessing files via P2P. All the existing frameworks devi-
ate from the standard file API, e.g., send()/recv()
streaming-like calls in Gullfoss [5] and NVMMU’s
move() [4]. Custom APIs require programmers to ex-
plicitly select the file transfer mechanism, a choice that
is not trivial in many cases, as we explain earlier.
Data inconsistency. Updates written to a file via regular
FS API will be stored in the page cache first, and might
remain invisible to the P2P unless the file contents are
written back to the disk.
Unsupported misaligned accesses. P2P requires both
the source and destination to be aligned according to
device-specific rules (p.91, [9]). Specifically, an SSD
data offset and destination address must be aligned on
the minimum transfer size supported by the device (512
bytes on Intel SSDs), otherwise the I/O request fails.

In summary, as GPUs find their ways to accelerat-
ing complex data-processing systems, such as Apache
Spark [17], the simplicity, portability, and transparent op-
timizations offered by OS file I/O interfaces make such
interfaces essential for building efficient and maintain-
able GPU-accelerated systems. These observations guide
us in our goal to integrate P2P mechanism into the OS file
system layer as we discuss next.

4 Design

Design goals. SPIN aims to integrate P2P into the OS
file I/O layer. It uses P2P as a low-level mechanism for
optimizing file I/O where applicable. We focus on the
following design goals:
• CPU-GPU workloads: efficiently handle complex

scenarios with opportunistic data reuse, where appli-
cations may share files, e.g., in producer-consumer in-
teraction. SPIN should provide standard POSIX file
consistency guarantees regardless of the transfer mech-
anism used.

USENIX Association 2017 USENIX Annual Technical Conference 169

NVMe SSD

SPIN

P-router
P-Read
Ahead
policy

P-cache
checker

P2PDMA

VFS
Page cache

Block
Layer

NVMe
Driver

GPU

GPU
buffer

GPU addr.
extraction

Current FS API

file

2.a 2.b

3.b

3.a

4.b

4.a

PCIe

P2
PD

M
A

tr
an

sf
er

5.a

fd GPU
buffer

1

pread(,)

5.b

GPU
RA

CPU
PC

Figure 2: SPIN high-level design and control flow of
pread (), as explained in Section 4.2

• Various access patterns: enable high performance
across random/sequential access patterns and an unre-
stricted range of request sizes, from as little as a few
bytes.
• Standard File API: support standard I/O calls like
pwrite () and pread () for portability.
• Compatibility: be compatible with virtual block de-

vices such as LVM and software RAIDs, as well as with
different GPUs and SSDs.

4.1 Design considerations

Page cache is the cornerstone of file I/O in CPU systems,
but its integration with P2P raises a number of questions.
Page cache in GPU memory? One way to combine
caching with P2P is to partition the page cache between
the CPU and GPU memories, and use each to cache
file accesses from the respective device. In fact, GPUfs
demonstrated the benefits of hosting a page cache for
GPU tasks in GPU memory [15, 18]. Unfortunately,
modern GPUs still lack critical features to enable OS-
controlled GPU-resident page cache. In particular, they
do not support anonymous memory that does not belong
to any CPU process, neither do they provide the means
for the OS to manage GPU memory mappings. As a
result, GPUfs, for example, maintains a per-application
page cache, which disappears when an application termi-
nates. Workarounds, such as running a daemon process
in user space that owns the GPU page cache, are insecure
because they expose the whole page cache to all running
GPU tasks. We conclude that maintaining page cache in
GPU memory is currently not practical.
Reusing file contents from the CPU page cache. P2P
transfers bypass the CPU page cache. But if the content

is already in the cache, using P2P would be slower than
reading the data from the page cache. However, if only
part of the request can be served from the cache, the best
way to combine P2P and cache accesses depends on the
distribution of the pages in the cache. For example, if
only every second page in a 8MB-large read request is
cached, reading from the page cache is 16× slower than
a single P2P of the whole requested buffer. We address
the problem of optimal interleaving in Section 4.3.1.
Read-ahead integration. A read-ahead mechanism is
essential for fast sequential accesses (see § 3), but the
best way to integrate it with P2P is not obvious. Tech-
nically, the prefetcher never runs because P2P bypasses
the heuristic which identifies a sequential access pat-
tern and triggers the read-ahead mechanism. However
if we re-enable the prefetcher, where will it store the
prefetched contents? One of the benefits of P2P is that
it does not pollute the CPU page cache with the data
used only by the GPU. But without the page cache on
the GPU, the read-ahead mechanism would have to store
the prefetched data in the CPU page cache, losing this
advantage. We discuss the prefetcher in Section 4.3.2.
Portability across GPU software. GPU vendors expose
different APIs for GPU management and data transfers to
and from GPU memory, none of which are available for
use from kernel space. As a result, providing a generic
OS service which is agnostic to the GPU type and its
software stack is challenging.

4.2 Overview
Figure 2 shows the main design components. SPIN is
positioned on top of the Virtual File System (VFS) layer.
We illustrate the interaction of the SPIN components on
the example of pread (). The user allocates the desti-
nation buffer in GPU memory and passes the pointer to
the buffer to pread. To make GPU memory buffers ac-
cessible to I/O calls, the user maps the buffers into the
CPU process address space using existing GPU vendor-
specific tools (§ 5). We note that using CPU-mapped
GPU buffers in I/O calls is possible without SPIN, how-
ever P2P is not invoked.

The SPIN core is implemented in P-router. P-router
inspects every I/O request (1 in the Figure) and detects
the requests that operate on GPU memory buffers and
are amenable to P2P. P-router invokes the P-readahead
mechanism, which identifies sequential access pattern
and prefetches file contents into a GPU read-ahead par-
tition (GPU RA in the Figure) of the CPU page cache, as
described in § 4.3.2). It also checks with P-cache whether
the request can be served from the page cache, and cre-
ates an I/O schedule to interleave P2P and page cache ac-
cesses, as discussed in § 4.3.1. Finally, it generates VFS
I/O requests that are served by a combination of the page

170 2017 USENIX Annual Technical Conference USENIX Association

cache 2.b and P2P 2.a . To invoke P2P via direct disk I/O
interface, P-router employs an address tunneling mecha-
nism 3.a described in § 5.1.

4.3 Integration with page cache
We deal with three aspects: interleaving page cache reads
with P2P, integration with read-ahead, and data consis-
tency.

4.3.1 Combining page cache with P2P

Optimal scheduling of page cache transfers. P-cache
retrieves the CPU page cache residence map for a given
read access. If the entire requested region is cached, the
request is served from the page cache. However, if the
cache contains only part of the requested data, the system
combines both P2P and page cache transfers, by breaking
the original request into sub-requests each served via its
own method.

Finding the best interleaving of P2P and page cache
accesses is a challenge. On the one hand, reading from
the page cache is faster than reading from the SSD. On
the other hand, interleaving P2P and page cache reads at
a fine granularity results in poor performance, because
short I/O requests to the SSD are less efficient than larger
ones, and because of the P2P invocation overhead. Thus,
SPIN needs to determine the best interleaving schedule
for each I/O request.

The following example illustrates the problem. Con-
sider a request of 20KB (5 pages) with its second, and
fourth pages in the page cache. Then, there are 3 possi-
ble schedules: three P2P transfers of 4KB and two 4KB
transfers from page cache, a single P2P of 20KB of the
whole range, and a combination of P2P and page cache
transfers for the second and the fourth page, resulting in
two P2P transfers of 4KB and 12KB. The choice of the
best schedule depends on the actual P2P throughput for
each transfer size, as well as on the throughput of the
page cache reads. The scheduling decision for different
pages are not independent, however, because SSD trans-
fer time is a non-linear function of the request size for
smaller reads [19].

To summarize, the scheduling problem at hand is as
follows: for a given I/O request, find all the constituent
continuous ranges of pages which can be served from the
page cache. For every such a range, decide whether to
transfer it from the page cache or via P2P, effectively
merging it with the two flanking segments into a single
P2P transfer, such that the total transfer time of the whole
request is minimized.
Greedy heuristic. This problem can be solved exactly
in polynomial time via dynamic programming, however
this is too slow since the solution has to be found for

every I/O request. Instead, we simplify the problem to
apply a simple greedy heuristic as follows.

We start by assuming that the P2P transfer time,
Tp2p(s), is a piece-wise linear function of the transfer
size s of the form given in Eq 1. Intuitively, for requests
smaller than Scuto f f , the device bandwidth is not satu-
rated, thus the transfer time is constant and capped by the
device’s invocation overhead Cp2p. For requests larger
than Scuto f f , the device operates at maximum bandwidth
BWp2p. These assumptions are consistent with the archi-
tectural model of modern SSDs [19]. Page cache trans-
fers, in turn, always achieve maximum bandwidth thus
the transfer time for size s is Tpc(s) =

s
BWpc

.

Tp2p(s) =

Cp2p if s < Scuto f f

Cp2p +
s−Scuto f f

BWp2p
if s≥ Scuto f f

(1)

The greedy heuristic works as follows. For each three
consecutive data ranges a,b,c, where b is in the page
cache, if |a|+ |b| < Scuto f f , always choose P2P for b
(where |x| is the size of x). Otherwise, choose P2P for b
if Tp2p(|a|+ |b|+ |c|) < Tp2p(|a|)+Tpc(|b|)+Tp2p(|c|).
In other words, P2P for b is preferable if the benefits of
reading b from the page cache are smaller than the over-
head of transferring c in a separate P2P transaction.
Parameter fitting. We experimentally measure the
transfer times for different request sizes for Intel P3700
SSD, and fit the parameters of the transfer time function
in Eq 1 using regression. The function fits very well,
with the coefficient of determination of over 0.99. We
find Scuto f f = 512KB and Cp2p = 584µsec, which cor-
responds to the time for transferring 249 pages from the
page cache. Thus, for two consecutive data ranges b,c
where b is in the page cache and c is not, b will be al-
ways transferred via P2P if |b|< 249 pages.
Evaluation. We build a simulator which quickly com-
putes the transfer cost of an I/O request, given transfer
schedule, using the transfer times measured on real hard-
ware. We validate the simulator experimentally on 5,000
I/O requests, and find that its error is 1.6% on average.

We use the simulator to evaluate the quality of the
greedy heuristic, by comparing its results with the op-
timal transfer schedules obtained by the exact algorithm.
We evaluate the schedules on 200,000 random vectors,
each representing an 8MB data transfer having different
page cache residency patterns. We find that the transfer
time of the greedy schedules is within 98.9% of the opti-
mal schedule on average.
Generalization to other SSDs. We believe that our
heuristic reflects the general SSD performance trends and
can be used with other SSDs. Specifically, architectural
properties of SSDs, such as multi-channel/multi-way, en-
able a high degree of parallelism for relatively large re-

USENIX Association 2017 USENIX Annual Technical Conference 171

quests. These requests are often striped across domains
and exploit the internal parallelism SSDs offer [19, 20].
Therefore, our model which predicts higher performance
for larger requests is consistent with these properties. We
provide a calibration tool to perform the measurements
and regression to automatically adjust Scuto f f and Cp2p.

4.3.2 Read-ahead for GPU accesses

The OS read-ahead is not activated for accesses via
P2P, therefore we introduce P-readahead. It stores the
prefetched data in a special partition in the CPU page
cache as we explain next.
GPU read-ahead cache. To avoid cache pollution by
the contents prefetched as part of the read-ahead, we
add a lightweight management mechanism, GPU read-
ahead cache, RA cache. A page is assigned to the RA
cache when it is first used by P-readahead to store the
prefetched data. The pages in the RA cache belong to the
OS page cache, and are subject to OS page cache man-
agement policies. In addition, the RA cache forces evic-
tion of its pages once its total size exceeds a predefined
threshold. If a page is later accessed by a CPU program,
the page is removed from the RA cache, but remains in
the OS page cache. As a result, the pages used exclu-
sively to store the data prefetched for GPU I/O do not
pollute the OS page cache.
Read-ahead mechanism. P-readahead watches for se-
quential access pattern by monitoring the last accessed
offset in each file, similarly to the CPU read-ahead
heuristic. For sequential accesses, the data is read into the
GPU RA cache via CPU VFS calls, effectively engaging
the original OS read-ahead mechanism redirected to store
data in the GPU RA page cache. As a result, P-readahead
respects the standard fadvise calls, and does not re-
quire new management interfaces. We also modify the
default behavior of P-readahead in response to fadvise
policies, e.g., disabling it for POSIX FADV RANDOM.

For sequential requests that cannot be served from the
page cache and exceed a certain threshold, P-router deac-
tivates P-readahead and switches to P2P. The threshold
equals to the maximum size of the OS-configured read-
ahead window (512KB by default), which determines the
maximum size of SSD requests generated by the read-
ahead. Using P2P for requests exceeding the threshold
results in larger SSD requests and higher throughput.

4.3.3 Data consistency

Combining file accesses from the page cache with direct
accesses to a storage device raises an obvious data con-
sistency problem, since the data in the page cache might
not be synchronized with the content on the SSD. There-
fore, SPIN detects dirty pages in the range of the P2P

transfer, and explicitly performs a write back from the
page cache to the SSD.

5 Implementation

Our implementation leverages existing kernel mecha-
nisms to achieve SPIN’s design goals. We encapsulate
all new functionality in a kernel module SPINDRV, a
slightly modified generic NVMe driver, and a lightweight
user space library LIBSPIN. Thus, SPIN requires no
modifications to the kernel and is readily deployable on
existing systems.
libSPIN. is a shim that interposes on standard file I/O
calls. The library is loaded via an LD PRELOAD envi-
ronment variable. Applications that do not load LIBSPIN
may share files with those that do.
Interaction with GPUs. SPIN leverages exist-
ing tools for mapping GPU memory into the CPU
address space. In particular, we use OpenCL’s
CL MEM USE PERSISTENT MEM AMD extension
from AMD, and gdrcopy module from NVIDIA.
Using CPU-mapped GPU memory for I/O enables porta-
bility across GPU vendors, interaction with GPUs from
kernel space, and independence from GPU software
interfaces.
SPINdrv. The driver implements the SPIN design in-
cluding the page cache and read-ahead as described in
§ 4. In addition, it introduces a new address tunneling
mechanism to enable P2P via direct disk I/O which we
discuss next.

5.1 P2P via direct disk I/O
Our implementation of P2P takes advantage of the direct
disk I/O file interface, adding a special mechanism to en-
able its use with GPU memory buffers.

Direct disk I/O and P2P pursue the same goals: they al-
low direct access to storage devices while bypassing the
OS page cache. Using direct disk I/O mechanisms for
P2P has a number of advantages. First, the file I/O stack
performs the standard file offset-to-LBA mapping which
is compatible with virtual block layers, e.g., software
RAID. Second, the mechanism already implements vari-
ous optimizations, e.g. uses multiple submission queues
and merges/splits block I/O requests. Last, it already
handles the data consistency by writing back dirty page
cache pages in the range of its I/O request.

Unfortunately, direct disk I/O requires the user buffers
to reside in CPU physical memory, and cannot accommo-
date CPU-mapped GPU buffers. This is because it pins
user buffers in memory to perform DMA to/from the stor-
age device, and fails to pin GPU buffers. This problem
has no easy solution, as we discuss below (§5.2).

172 2017 USENIX Annual Technical Conference USENIX Association

Translation

SPIN
Driver

SPIN LIb

Linux File I/O stack

fd GPU
bufferpread(,)

GPU
buffer

Phony
Buffer

Phony
Buffer

GPU
buffer

NVMe SSD

Figure 3: Address tunneling for direct disk I/O with GPU
buffers.

Address tunneling. To overcome this limitation with-
out major modifications to the Linux kernel, we design a
simple mechanism that we call address tunneling, which
delivers the GPU address through unmodified VFS stack
and block layers down to the generic NVMe driver.

Figure 3 explains the basic idea. We allocate a special
user-space phony buffer in the CPU, which is used as an
envelope for the GPU buffer address. The phony buffer
is then passed to a VFS file I/O call, instead of the origi-
nal GPU buffer. Therefore, it successfully undergoes all
the translation and pinning process while passing through
intermediate I/O layers. When the envelope reaches the
generic NVMe driver, the driver retrieves the address of
the GPU buffer and uses this address to perform P2P.
Security of address tunneling. One potential problem
with the tunneling mechanism is that phony buffers are
allocated in the user-space memory (otherwise they can-
not be passed to VFS calls), hence they are accessible to
user-space programs and can be overwritten by an ad-
versary to potentially hold any physical CPU address,
thereby enabling DMA attacks. SPIN, therefore, does
not store the actual GPU addresses in phony buffers. In-
stead, it first creates a temporary pseudo-random token
associated with the current request, and uses the token
as the key to the kernel-space translation table with the
actual GPU addresses.
Implementation details. The phony buffer is a user
space CPU memory buffer allocated once during the pro-
cess invocation when LIBSPIN is loaded. The buffer is
pinned in memory and registered with the SPINDRV. Its
size remains constant (currently 4MB) throughout the ex-
ecution. Since an I/O request must fit in the phony buffer,
the I/O requests larger than 4MB are split into multiple
requests. Each memory page of the phony buffer is used
to store the address of one page in the GPU buffer, since

the block layer may reorder the requests and split them
into smaller chunks.

Multiple threads in the same process may use the same
phony buffer simultaneously in a lockless manner. One
thread consumes only 16 bytes per a GPU address in a 4K
page, therefore a single phony buffer may accommodate
up to 256 concurrent requests from different threads.

The GPU read-ahead cache is implemented as a linked
list that references 512 pages (tunable), located in the OS
page cache. The eviction is policy is LRU. Pages ac-
cessed by a CPU program are simply removed from the
list, and are not evicted from the OS page cache itself.
Interaction with generic NVMe driver. The phony
buffer’s pages are marked by setting an unused (for user
mode) arch 1 flag in their page struct. This flag
is used by the driver to differentiate P2P requests from
regular pages and extract the GPU addresses.
Implementation complexity. SPINDRV is implemented
in 700 LOC and LIBSPIN just 30 LOC. We modified 10
LOC in the Linux generic NVMe driver to detect phony
buffers and extract respective GPU addresses.

5.2 Limitations
Supporting pwrite(). Mapping GPU memory into
the process’s address space is a recent capability that is
not yet well supported in current systems. Specifically,
CPU reads from that memory mapping are about two-
three orders of magnitude slower than CPU writes [21],
i.e., about 30MB/s and 70MB/s for NVIDIA and AMD
GPUs respectively. Therefore, while reading data from
the page cache into the GPU is fast, writing files from the
GPU into the page cache – which might be beneficial e.g.,
for buffering writes in CPU memory – results in severe
performance degradation. Therefore, we currently con-
figure SPIN to perform writes from GPU memory only
via P2P, while taking care of data consistency.
Changing Linux to natively support GPU buffers. The
address tunneling mechanism sidesteps the problem of
passing GPU buffers to direct disk I/O, but why not
changing the kernel in the first place? Technically, the
problem originates in the use of struct page which is
not available for I/O re-mapped addresses such as GPU
memory buffers. However, this struct is required by the
block layer. Attempts have been made to solve the prob-
lem in a systematic way [22], yet they require touching
over 100 files of kernel code. We therefore choose a more
conservative solution.

6 Evaluation

We evaluate SPIN on two hardware systems (Table 1).
We disable HyperThreading and configure the frequency

USENIX Association 2017 USENIX Annual Technical Conference 173

Nvidia Tesla K40c 2 × Intel Xeon E5-2620v2,
Intel C602 Chipset, 64GB DDR4, 1 NVMe SSD

AMD Radeon R9 Fury Intel Core i7-5930K,
Intel X99 Chipset, 24GB DDR4, 2 NVMe SSDs

Table 1: Evaluation platforms. Both use one or two Intel
P3700 800GB NVMe SSD

ClWrite Regular read into the CPU, followed by a blocking
clEnqueueWriteBuffer / cudaMemcopy call to
the GPU.

ClWrite+D Same as ClWrite but with bypassing the CPU page cache via
O DIRECT flag.

P2P SPIN’s implementation of P2P that bypasses the page cache.
pread+GPU pread into the GPU memory that is mapped to the pro-

cess’s address space. Unlike SPIN, pread ()+GPU always
uses the page cache. Not evaluated in prior works.

Table 2: Transfer mechanisms used for evaluation.

governor to high performance to reduce overall system
noise. Both machines run Ubuntu 15.04 with and un-
tainted Linux kernel 3.19.0-47 and ext4 on SSD. We use
CUDA 7.5 for NVIDIA and OpenCL 2.0 for AMD.
Methodology. We run each experiment 11 times, omit
the first result as a warmup, and report the average of
the last 10 runs. We explicitly flush the contents of the
page cache before each run (unless stated otherwise). We
observe the standard deviation below 1% across all the
experiments and do not report it in the figures.
Alternative transfer methods. We compare SPIN with
several different implementations described in Table 2.
We note that the implementation where pread () is in-
voked with the CPU-mapped GPU buffer (last row) has
not been evaluated in prior works.
Alternative implementations of P2P. Although several
prior works reportedly implement P2P between SSDs and
GPUs [4–8], we found only the early prototype of Project
Donard [8] to be publicly available. However, this pro-
totype is limited and is slower for all request sizes, and
particularly for shorter requests, therefore we do not in-
clude it in the experiments.

6.1 Threaded IO benchmarks

We use TIOtest [16] for our benchmarks. TIOtest is a
standard tool for evaluating file I/O performance in CPU-
only systems. It supports multi-threading (each thread
accesses its own file), sequential/random access patterns
and different I/O request sizes. We modify the original
code 1 to read data into GPU buffers using all the five
evaluated implementations. For SPIN our changes re-
quired modifying 10 LOC for buffer allocation.

1https://wiki.codeaurora.org/xwiki/bin/Linux+
Filesystems/Tiobench

We report the results for the AMD GPU, and discuss
the performance of the NVIDIA GPU in the text.

Random Reads. In this experiment each worker thread
reads 500 blocks at random offsets from a 50GB thread-
private file. Figure 4a shows the results. Note that the
drops in the relative throughput on the graph do not imply
lower absolute throughput, rather they mean slowdown
compared to SPIN in the respective configuration. The
results for a single CPU thread are similar and omitted
due space limitations.

SPIN performance matches the one of P2P, adding
only 1% overhead. For blocks above 1MB the overhead
of additional memory copy in CPU memory gets amor-
tized for all the implementations but ClWrite, because of
its second extra copy in the temporary CPU buffer.

Sequential reads. For sequential reads, each worker
thread in TIOtest reads an entire file of 100MB. Figure 4b
shows that SPIN tracks the best performing method for
the specific block size, switching from page cache to P2P
at 512KB as explained in Section 4.3.2. We observe that
for blocks smaller than 4K SPIN experiences higher rel-
ative overhead of up to 10% because it serves them from
the page cache. The overhead is amortized for larger
reads, however.

Sequential/random writes. For the sequential writes,
each worker thread writes a 100MB file. The pwrite
+GPU mechanism is dramatically slower than P2P, as we
explain in Section 5.2, therefore SPIN always performs
aligned writes via P2P. Random writes perform similarly.
Due to the lack of space, the figure is omitted.

Performance on NVIDIA and AMD GPUs. SPIN
achieves 5-10% higher throughput on AMD R9 GPU
than on NVIDIA K40C GPU, while the overall behav-
ior is similar. We find that cudaMemcopy might be
slower then AMD ClWrite, and the GPU BAR writes for
NVIDIA GPUs are slower for some block sizes. These
results indicate that SPIN works well with GPUs from
different vendors, however the small performance gap we
observe requires further investigation.

Software RAID-0 . We use the standard mdadm Linux
utility to create a RAID-0 (striping) volume over two
NVMe SSDs. In this configuration, the stored data is split
between two SSDs according to the configured stripe size
(512KB in our configuration), thus performing larger file
accesses in parallel.

Figure 4c shows the relative throughput of random ac-
cesses for which SPIN always uses P2P. RAID-0 outper-
forms a single SSD only for large reads (above 512KB).
This is due to extra overheads of additional processing
in the RAID layer which get amortized for larger blocks.
For large sequential reads, SPIN achieves a throughput
of 5.2GB/s. The higher bandwidth is due to the SSDs
performance characteristics.

174 2017 USENIX Annual Technical Conference USENIX Association

https://wiki.codeaurora.org/xwiki/bin/Linux+Filesystems/Tiobench
https://wiki.codeaurora.org/xwiki/bin/Linux+Filesystems/Tiobench

�

��

��

��

��

���

���

����

��

�	

�
�

��	

���

��	

���

���	

��
�

��

����

��

����

��

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
���������� ����

��������	
���

(a) Random reads, 4 threads

�

��

��

��

��

���

���

����

����

��

�			

���

�

	

���

�	��

����

����

��

��	�

��

�	�	

�

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
�������� ����

��������	
���

(b) Sequential reads, 4 threads

�

��

��

��

��

���

���

����

�	

�

�	�

��

���

��

	��

���

����

��

����

��

�	��

��

����

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

��������	

�����
 �����
�� ��� �
���������� ����

��������	
���

(c) RAID: Random reads, 4 threads

�

��

��

��

��

���

���

�� ��� ���� �� ��� ���� �� ��� ����

���	 �	�
 ��	� ���� �	�� ���� �
� �
�� �
��

��������� ���������� ����������
�
�
��
��
�
�
��
	

�
�

�
��
�

�������������	
����
��

������� ��������� ��� 	��
��������� ����

��������	
���

(d) Random 512KB reads, in parallel with CPU / I/O workloads

Figure 4: Threaded IO benchmarks for AMD GPUs.

SPIN pread
+ GPU

P2P P2P +
RAID

ClWrite CLWrite+
D+RAID

10.13 10.28 2.65 5.29 5.72 4.69

Table 3: Max read throughput (GB/s). File in page cache.

�

��

��

��

��

���

���

�

�

��

�

��

�

��

��

��

��

	�

��

��

��

��

��

��

��

�

	�

���

��

�
�
��
��
�
�
��
	

�
�

	
�
�
��
�

�������������	
����
��

������� ��������� ������ 	��
������� ����

��������	
���

Figure 5: Random access performance for different page
cache occupancy. Reading blocks of 512B.

Maximum sequential read throughput. We compare
the maximum achievable throughput over different trans-
fer mechanisms. The test performs sequential reads from
4 threads, 8MB per read from a 4GB file, when a file is
prefetched into the page cache. Table 3 shows the re-
sults. SPIN is faster than all the transfer methods that
do not use page cache, and faster than ClWrite that does.
SPIN’s overhead in this scenario is 1.5%.

Effect of the page cache on read throughput. The
goal of this experiment is to show potential performance
gains for producer-consumer workloads which may uti-
lize both the CPU and GPU while they access a shared
file. We prefetch different portions of a 40GB file into
the page cache using vmtouch 2, and run TIOtest for
512B random reads.

Figure 5 shows the relative throughput, highlighting
the differences between transfer methods. Not only does
SPIN track the best alternative, it is faster than the fastest
among them by up to 20%. That is because it combines
both page cache and P2P, dynamically choosing between
them per request depending on the residence in the page
cache (discussed in (§ 4.3.1)). SPIN is slightly slower
on the extremes due to the 5% overhead it introduces
in this scenario. ClWrite results in low performance
due to its constant invocation overhead, whose relative
weight grows when most requests are served from the
page cache, as we also see in Figure 4b.

SPIN performance under CPU and I/O load. We exe-
cute the same experiment as in Figure 5, but now impose
heavy load on all the CPUs or SSD in parallel with the
benchmark. The benchmark performs 512KB random
reads (cutoff size for reading from the page cache), to
show the worst-case scenario for SPIN under CPU load.

2https://hoytech.com/vmtouch/

USENIX Association 2017 USENIX Annual Technical Conference 175

�

��

��

��

��

���

���

��� ��� ���� ��� ����

�	
������������

�	����

��������������

�	����

�
�
��
��
�
�
�	

�
�
�
�

������ �������� ��� ��	�� !�!"�# $�%&

Figure 6: Aerial imagery benchmark throughput relative
to SPIN for different file layouts. Higher is better.

We use stress-ng 3 benchmarking tool. Figure 4d
shows the relative throughput for 0%, 50%, and 100%
file residency in the page cache, with and without CPU
or SSD load. We observe that SPIN retains its perfor-
mance advantages regardless of the system load.

6.2 Application benchmarks

Aerial Imagery Rendering. GPUs are commonly used
for rendering aerial imagery in geographic information
systems (GIS). The datasets used in such systems may
grow to hundreds of GBs. Large rasters are split into tiles
in order to shorten system response time. The rendering
engine reads the tiles from a file depending on the view
point, and stitches them together.

In our evaluation we generate I/O traces via a bench-
marking tool for web-based rendering engines [23].
We use TrueMarble dataset [24] from standard bench-
marks [23], which is a 190GB multi-raster of the Earth,
each raster corresponds to a different image resolution.

The actual file access pattern in this application de-
pends on the underlying file layout. There are two lay-
outs: (1) raster-contiguous layout, where the whole raster
is stored as a 1D vector in the file and (2) tile-contiguous
layout, where each tile is a 1D vector and the raster is
composed of many 1D tiles. The first layout results in
mostly random accesses 2-4KB each, whereas the sec-
ond involves mostly sequential accesses each from 12KB
to 192KB. We emphasize that the rendering applications
must be able to accommodate files with both layouts.

To generate the trace we randomly choose the target
image resolution and the view region, derive the tiles to
render that region and record their respective offsets in
the dataset file. We use tiles of sizes ranging from 64x64
pixels up to 1024x1024 pixels. In every trace we emulate
rendering of 1000 different regions in full HD.

We generate the traces for different input layouts
and compare the throughput of different transfer mech-
anisms. As Figure 6 shows, the choice of the transfer

3https://openbenchmarking.org/test/pts/stress-ng

GPUConfiguration CPU
P2P ClWrite() SPIN

Thput 771 594 (0.8×) 1921 (2.5×) 1950 (2.5×)R-time CPU util 79.5% 3% 11.8% 10.7%
Thput 634 2549 (4×) 1822 (2.9×) 2550 (4×)Offline CPU util 70.3% 8.5% 12.3% 8.5%

Table 4: Log server throughput (in MB/s), CPU utiliza-
tion and speedup over the CPU-only version

mechanism depends on the layout in use. For the native
layout with mostly random access pattern, P2P and SPIN
achieve the highest throughput. However, for tiled layout
the reads are mostly sequential, and SPIN benefits from
the read-ahead achieving up to 2.5× higher throughput
than P2P for 12K reads. SPIN eliminates the need to
manually perform such low level optimizations, reducing
code complexity and development efforts.
GPU-accelerated log server. Log servers, such as
VMWare VRealize [25], are commonly used in dis-
tributed systems for centralized storage and processing
of logs from multiple servers. Log processing usually
involves string and regular expression matching, which
may benefit from acceleration on GPUs [26].

We implement a simple log server which receives log
files over the network, stores them locally in files, and
scans them for suspicious IPs from the list provided by
the user. As is common in log processing systems, e.g.,
Fail2Ban [11], log analysis is performed in a separate
scanner process that reads the specified log file and pro-
cesses it. Such a modular design is convenient because
it enables to easily extend the analysis using several in-
dependent backends. Our implementation of the scanner
offloads the string matching to a GPU.

We measure the maximum system throughput in two
scenarios: (1) real time, in which the scanner is invoked
each time the files get updated (using inotify inter-
face) (2) offline, in which the scanner is invoked on a
specific log file to be processed as a whole. In both con-
figurations, a total of 80GB of data is processed.

We evaluate our GPU implementation with different
I/O mechanisms: (1) traditional pread() followed by
ClWrite() to GPU memory, (2) P2P (3) SPIN. We also
implement a CPU-only version that uses Intel’s Thread-
ing Building Blocks and runs on 6 cores.

Table 4 shows that in the real time scenario SPIN
achieves the highest throughput among all other I/O
methods. Since the system triggers log processing right
after it receives log file updates from the network, the
new contents have not yet been written back to the disk
and reside entirely in the page cache. SPIN, therefore,
reads the data from the page cache, relieving I/O con-
tention on the SSD which do occur in P2P configuration.
In the steady state, the system throughput is limited by
the maximum SSD write throughput, because the net-

176 2017 USENIX Annual Technical Conference USENIX Association

work server keeps writing the updates to storage, eventu-
ally exhausting the page cache space. In the offline sce-
nario the data is not in the page cache, therefore SPIN
switches to use P2P.

In this application, complex interactions between mul-
tiple processes dynamically create file data reuse oppor-
tunities that cannot be known in advance, hence are hard
to leverage without the OS support. SPIN re-enables the
standard OS ability to handle such opportunistic reuse
automatically for file transfers to the GPU.
Image collage. The image collage application [15] cre-
ates an image collage by replacing blocks in the input
image with ”similar” tiny images from a data base (we
use [27]). Pre-processed tiny images are stored in a
file of size 38GB. We use an open-source implementa-
tion that uses GPUfs [18] GPU-side library for accessing
files from GPU kernels. GPUfs uses a dedicated worker
thread running on the CPU to handle the file transfers
into the GPU memory. This application performs mostly
random reads 512B each.

The original version of GPUfs first reads the file con-
tents into the host staging area, and then copies the data
into GPU memory via cudaMemcopy. We remove the
staging area in the host, and allocate the staging area in
the GPU memory, changing in total 30 LOC.

We measure the SPIN speedup over the unmodified
version. For three different input images of 3MB, 12MB
and 48MB SPIN is×1.27±0.02 faster on average thanks
to the use of P2P for short random reads.

7 Related work

System support for P2P. There have been several works
which enable P2P between NVMe SSDs and GPUs, but
SPIN is the first to integrate P2P with the OS file I/O,
dealing with page cache, read-ahead, data consistency,
and compatibility with virtual block devices.

GPUDrive [6] is a system for processing streaming
I/O-intensive GPU workloads based on an all-flash stor-
age array connected to the GPU.

NVMMU [4] introduces a special programming model
and runtime for P2P with GPUs. NVMUU shows that
P2P achieves high performance with standard GPU com-
pute benchmarks modified to read input data from files.
Unlike SPIN, however, it requires a custom interface for
P2P, does not address the page cache integration issues,
and focuses only on GPU-only applications with large se-
quential reads. In fact, it shows that P2P is slow for small
I/O requests but does not address this problem.

Project Donard [8] was among the first to support P2P
via a low level driver interface. Among its many limita-
tions, it runs only with root privileges due to direct access
to NVMe DMA, and suffers from performance issues.

Gullfoss [5] software framework for P2P shares many
conceptual similarities with NVMMU, and hence many
of its limitations. Morpheus [7] enables P2P to GPUs
from SSDs, but does not address the challenges of inte-
grating P2P into standard file I/O, focusing primarily on
low level P2P functionality.

GDRcopy [21] uses CPU-mapped regions of GPU
memory for efficient data transfers to GPUs. SPIN lever-
ages the same functionality.
P2P technologies. Recent GPUs offer support for P2P,
including GPUDirectRDMA [28] from NVIDIA and Di-
rectGMA [3] from AMD. These technologies provide
generic support for direct access to GPU memory from
PCIe devices, but they do not integrate it into higher level
services like file I/O.
System abstractions for GPUs. GPUfs and GPUnet
[10, 18, 29] provide file access and networking directly
to GPU programs. The current work is complementary
as it simplifies the use of P2P for CPU programs.

8 Conclusions

SPIN focuses on the fundamental problem of providing
generic OS abstractions in heterogeneous systems, ex-
tending the traditional I/O mechanisms to systematically
deal with direct I/O into the GPU. We show the impor-
tance of tighter integration of P2P with the file I/O stack,
expose the challenges associated with the use of P2P to-
gether with the page cache and read-ahead, and devise a
practical solution which outperforms the state-of-the-art
in a range of realistic scenarios.

Current hardware trends are toward systems with mul-
tiple accelerators [30, 31], which will dramatically in-
crease system heterogeneity and complicate software de-
velopment. OS support for such increasingly heteroge-
neous systems must extend beyond low-level APIs, and
provide the convenience of high level OS abstractions to
achieve their performance potential. SPIN is a step in this
direction.

SPIN is available at https://github.com/acsl-
technion/spin

Acknowledgements

Mark Silberstein is supported by the Israel Science Foun-
dation (grant No. 1138/14), and the Israeli Ministry of
Economics via HiPer consortium.

References

[1] “AMD Radeon Pro SSG Set to Transform
Workstation PC Architecture, and to Shat-
ter Real-Time Visual Computing Barriers.”

USENIX Association 2017 USENIX Annual Technical Conference 177

https://github.com/acsl-technion/spin
https://github.com/acsl-technion/spin

http://www.amd.com/en-us/press-
releases/Pages/amd-radeon-pro-
2016jul25.aspx, 2016.

[2] “GPUDirect RDMA.” http://docs.nvidia.
com/cuda/gpudirect-rdma/index.
html, 2015.

[3] “Tech Brief: AMD FireProTM SDI -
Link and AMD DirectGMA Technology.”
https://www.amd.com/Documents/SDI-
tech-brief.pdf.

[4] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir,
and M. Jung, “NVMMU: A Non-volatile Memory
Management Unit for Heterogeneous GPU-SSD
Architectures,” in PACT, pp. 13–24, IEEE, 2015.

[5] H.-W. Tseng, Y. Liu, M. Gahagan, J. Li, Y. Jin, and
S. Swanson, “Gullfoss: Accelerating and Simplify-
ing Data Movement Among Heterogeneous Com-
puting and Storage Resources,” Tech. Rep. CS2015-
1015, Department of Computer Science and Engi-
neering, University of California, San Diego tech-
nical report, 2015.

[6] M. Shihab, K. Taht, and M. Jung, “GPUDrive: Re-
considering Storage Accesses for GPU Accelera-
tion,” in Workshop on Architectures and Systems for
Big Data, 2014.

[7] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and
S. Swanson, “Morpheus: creating application ob-
jects efficiently for heterogeneous computing,” in
Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on, pp. 53–
65, IEEE, 2016.

[8] “Project Donard.” https://github.com/
sbates130272/donard, 2015.

[9] “NVM Express 1.0e.” http://www.
nvmexpress.org/wp-content/uploads/
NVM-Express-1_0e.pdf, 2013.

[10] S. Kim, S. Huh, X. Z. Yige Hu, A. Wated,
E. Witchel, and M. Silberstein, “GPUnet: Network-
ing Abstractions for GPU Programs,” in OSDI 14,
pp. 6–8, USENIX, 2014.

[11] “Fail2Ban.” www.fail2ban.org/.

[12] “mdadm - manage MD devices aka Linux Soft-
ware RAID.” https://www.kernel.org/
pub/linux/utils/raid/mdadm/.

[13] Anandech, “AMD announces Radeon-Pro SSG.”
http://www.anandtech.com/show/
10518/amd-announces-radeon-pro-
ssg-fiji-with-m2-ssds-onboard, 2016.

[14] “ArcGIS for Desktop.” http://desktop.
arcgis.com/en/arcmap.

[15] S. Shahar, S. Bergman, and M. Silberstein, “Ac-
tivePointers: A Case For Software Translation on
GPUs,” ISCA, IEEE, ACM, 2016.

[16] “Threaded I/O Tester.” https://
sourceforge.net/p/tiobench.

[17] “GPU Support in Apache Spark and GPU/CPU
Mixed Resource Scheduling at Production
Scale.” http://www.spark.tc/gpu-
support-in-spark-and-gpu-cpu-
mixed-resource-scheduling-at-
production-scale/, 2016.

[18] M. Silberstein, B. Ford, I. Keidar, and E. Witchel,
“GPUfs: integrating file systems with GPUs,” in
ASPLOS’13, ACM, 2013.

[19] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil,
S. Yoon, and J. Cha, “Vssim: Virtual machine based
ssd simulator,” in Mass Storage Systems and Tech-
nologies (MSST), 2013 IEEE 29th Symposium on,
pp. 1–14, IEEE, 2013.

[20] F. Chen, R. Lee, and X. Zhang, “Essential roles
of exploiting internal parallelism of flash memory
based solid state drives in high-speed data process-
ing,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium
on, pp. 266–277, IEEE, 2011.

[21] “A fast GPU memory copy library based on
NVIDIA GPUDirect RDMA technology.” https:
//github.com/NVIDIA/gdrcopy, 2015.

[22] “Evacuate struct page from the block layer.”
https://lwn.net/Articles/636968/,
2015.

[23] “FOSS4G Benchmark.” https://wiki.
osgeo.org/wiki/FOSS4G_Benchmark.

[24] “True Marble.” http://www.
unearthedoutdoors.net/global_data/
true_marble/.

[25] VMWare, “vRealize Log Insight.” http://www.
vmware.com/products/vrealize-log-
insight.html.

[26] G. Vasiliadis, M. Polychronakis, S. Antonatos,
E. P. Markatos, and S. Ioannidis, “Regular ex-
pression matching on graphics hardware for intru-
sion detection,” in International Workshop on Re-
cent Advances in Intrusion Detection, pp. 265–283,
Springer, 2009.

178 2017 USENIX Annual Technical Conference USENIX Association

http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-radeon-pro-2016jul25.aspx
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.amd.com/Documents/SDI-tech-brief.pdf
https://www.amd.com/Documents/SDI-tech-brief.pdf
https://github.com/sbates130272/donard
https://github.com/sbates130272/donard
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
www.fail2ban.org/
https://www.kernel.org/pub/linux/utils/raid/mdadm/
https://www.kernel.org/pub/linux/utils/raid/mdadm/
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://www.anandtech.com/show/10518/amd-announces-radeon-pro-ssg-fiji-with-m2-ssds-onboard
http://desktop.arcgis.com/en/arcmap
http://desktop.arcgis.com/en/arcmap
https://sourceforge.net/p/tiobench
https://sourceforge.net/p/tiobench
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
http://www.spark.tc/gpu-support-in-spark-and-gpu-cpu-mixed-resource-scheduling-at-production-scale/
https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy
https://lwn.net/Articles/636968/
https://wiki.osgeo.org/wiki/FOSS4G_Benchmark
https://wiki.osgeo.org/wiki/FOSS4G_Benchmark
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.unearthedoutdoors.net/global_data/true_marble/
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html

[27] Antonio Torralba, Robert Fergus and William T
Freeman, “80 Million Tiny Images: A Large Data
Set for Nonparametric Object and Scene Recogni-
tion,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 30, no. 11, pp. 1958–
1970, 2008.

[28] “Benchmarking GPUDirect RDMA on Modern
Server Platforms.” https://devblogs.
nvidia.com/parallelforall/
benchmarking-gpudirect-rdma-on-
modern-server-platforms/, 2014.

[29] M. Silberstein, B. Ford, I. Keidar, and E. Witchel,
“GPUfs: Integrating a File System with GPUs,”
TOCS, vol. 32, no. 1, p. 1, 2014.

[30] OpenCAPI. http://opencapi.org/.

[31] Cache Coherent Interconnect for Accelerators
(CCIX). http://www.ccixconsortium.
com/.

USENIX Association 2017 USENIX Annual Technical Conference 179

https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
http://opencapi.org/
http://www.ccixconsortium.com/
http://www.ccixconsortium.com/

Poseidon: An Efficient Communication Architecture for Distributed Deep
Learning on GPU Clusters

Hao Zhang1,2, Zeyu Zheng2, Shizhen Xu1, Wei Dai1,2, Qirong Ho2, Xiaodan Liang1,
Zhiting Hu1,2, Jinliang Wei1, Pengtao Xie1,2, Eric P. Xing2

Carnegie Mellon University1, Petuum Inc.2

Abstract

Deep learning models can take weeks to train on a single
GPU-equipped machine, necessitating scaling out DL
training to a GPU-cluster. However, current distributed
DL implementations can scale poorly due to substantial
parameter synchronization over the network, because the
high throughput of GPUs allows more data batches to be
processed per unit time than CPUs, leading to more fre-
quent network synchronization. We present Poseidon, an
efficient communication architecture for distributed DL
on GPUs. Poseidon exploits the layered model structures
in DL programs to overlap communication and compu-
tation, reducing bursty network communication. More-
over, Poseidon uses a hybrid communication scheme that
optimizes the number of bytes required to synchronize
each layer, according to layer properties and the num-
ber of machines. We show that Poseidon is applicable
to different DL frameworks by plugging Poseidon into
Caffe and TensorFlow. We show that Poseidon enables
Caffe and TensorFlow to achieve 15.5x speed-up on
16 single-GPU machines, even with limited bandwidth
(10GbE) and the challenging VGG19-22K network for
image classification. Moreover, Poseidon-enabled Ten-
sorFlow achieves 31.5x speed-up with 32 single-GPU
machines on Inception-V3, a 50% improvement over the
open-source TensorFlow (20x speed-up).

1 Introduction
Deep learning (DL) is a class of machine learning (ML)
approaches that has achieved notable success across
a wide spectrum of tasks, including speech recogni-
tion [10], visual recognition [34, 35] and language un-
derstanding [21, 20]. These DL models exhibit a high
degree of model complexity, with many parameters in
deeply layered structures that usually take days to weeks
to train on a GPU-equipped machine. The high compu-
tational cost of DL programs on large-scale data neces-
sitates the training on distributed GPU cluster in order to

keep the training time acceptable.
DL software such as TensorFlow [1] and Caffe [14]

allow practitioners to easily experiment with DL models
on a single machine. However, their distributed imple-
mentations can scale poorly for larger models. For exam-
ple, we find that on the VGG19-22K network (229M pa-
rameters), open-source TensorFlow on 32 machines can
be slower than single machine (Section 5.1). This obser-
vation underlines the challenge of scaling DL on GPU
clusters: the high computational throughput of GPUs al-
lows more data batches to be processed per minute (than
CPUs), leading to more frequent network synchroniza-
tion that grows with the number of machines. Exist-
ing communication strategies, such as parameter servers
(PS) for ML [31, 19], can be overwhelmed by the high
volume of communication [7]. Moreover, despite the
increasing availability of faster network interfaces such
as Infiniband or 40GbE Ethernet, GPUs have continued
to grow rapidly in computational power, and continued
to produce parameter updates faster than can be naively
synchronized over the network. For instance, on a 16-
machine cluster with 40GbE Ethernet and one Titan X
GPU per machine, updates from the VGG19-22K model
will bottleneck the network, so that only an 8x speedup
over a single machine is achieved (Section 5.1).

These scalability limitations in distributed DL stem
from at least two causes: (1) the gradient updates to
be communicated are very large matrices, which quickly
saturate network bandwidth; (2) the iterative nature of
DL algorithms causes the updates to be transmitted in
bursts (at the end of an iteration or batch of data), with
significant periods of low network usage in between. We
propose that a solution to these two problems should ex-
ploit the structure of DL algorithms on two levels: on one
hand, it should identify ways in which the matrix updates
can be separated from each other, and then schedule them
in a way that avoids bursty network traffic. On the other
hand, the solution should also exploit the structure of the
matrix updates themselves, and wherever possible, re-

USENIX Association 2017 USENIX Annual Technical Conference 181

duce their size and thus the overall load on the network.
For such a solution to be relevant to practitioners (who
may have strong preferences for particular frameworks),
we would prefer not to exploit specific traits of Tensor-
Flow’s or Caffe’s design, but should strive to be relevant
to as many existing frameworks as possible.

With this motivation, we design Poseidon, an effi-
cient communication architecture for data-parallel DL
on distributed GPUs. Poseidon exploits the sequential
layer-by-layer structure in DL programs, finding inde-
pendent GPU computation operations and network com-
munication operations in the training algorithm, so that
they can be scheduled together to reduce bursty network
communication. Moreover, Poseidon implements a hy-
brid communication scheme that accounts for each DL
program layer’s mathematical properties as well as the
cluster configuration, in order to compute the network
cost of different communication methods, and select the
cheapest one – currently, Poseidon implements and sup-
ports a parameter server scheme [31] that is well-suited
to small matrices, and a sufficient factor broadcasting
scheme [32] that performs well on large matrices. We
focus on synchronous parallel training which is shown
to yield faster convergence compared with asynchronous
training in distributed DL (as measured by wall clock
time) on GPUs [7, 2]. Unless otherwise specified, our
discussion in this paper assumes synchronous replica-
tion of model parameters in each training iteration, al-
though we note that Poseidon’s design can easily be ap-
plied to asynchronous or bounded-asynchronous consis-
tency models [12, 8].

To demonstrate Poseidon’s applicability to multiple
DL frameworks, we implement it into two different
DL frameworks: Caffe and TensorFlow, and show that
Poseidon allows them to scale almost-linearly in algo-
rithm throughput with additional machines, while incur-
ring little additional overhead even in the single ma-
chine setting. For distributed execution, with 40GbE
network bandwidth available, Poseidon consistently de-
livers near-linear increases in throughput across vari-
ous models and engines: 31.5x speedup on training
the Inception-V3 network using TensorFlow engine on
32 nodes, which improves 50% upon the original Ten-
sorFlow (20x); when training a 229M parameter net-
work (VGG19-22K), Poseidon still achieves near-linear
speedup (30x on 32 nodes) using both Caffe and Ten-
sorFlow engines, while distributed TensorFlow some-
times experiences negative [37] scaling with additional
machines. Our experiments also confirm that Poseidon
successfully alleviates network communication bottle-
necks, by reducing the required bandwidth for paralleliz-
ing large models. For example, when training VGG19-
22K under limited bandwidth (10GbE), in contrast to a
PS-based parallelization which only achieves 4x speedup

with 16 machines, Poseidon effectively reduces the com-
munication overheads by automatically specializing the
best communication method for each layer, and is able
to keep linearly scaling with throughput. Compared to
other communication reduction methods [4, 36], Posei-
don demonstrates either systems advantages (increased
algorithm throughput) or statistical advantages (fewer al-
gorithm steps or iterations to reach a fixed termination
criteria). Poseidon does not suffer much from imbal-
anced communication loads, which we found to be the
case when using the sufficient factor strategy used in
Project Adam [4]. Poseidon also guarantees that the
number of algorithm steps to reach termination remains
unchanged, unlike the 1-bit quantization strategy used in
CNTK [36] which is approximate and can hurt statistical
performance in some applications.

The rest of the paper is organized as follows. Sec-
tion 2 motivates Poseidon with introduction on large-
scale DL, parameter servers and sufficient factor broad-
casting. Section 3 and section 4 elaborates Poseidon’s
design and implementation, respectively. Section 5 eval-
uates Poseidon by training different models over multiple
datasets, including comparisons to state-of-the-art GPU-
based distributed DL systems. Section 6 discusses re-
lated works and section 7 concludes.

2 Large-scale Deep Learning
In this section, we formulate the DL training as an
iterative-convergent algorithm, and describe parameter
server (PS) and sufficient factor broadcasting (SFB) for
parallelizing such computation on clusters.

2.1 Distributed Deep Learning
DL programs are distinguished from other ML programs
mainly by their use of neural networks (NNs), a family of
hierarchical models containing many layers, from as few
as 5-10 [16] to as many as 100s [11]. Figure 1 illustrates
a neural network with 6 layers. The first layer (green) is
an input layer that reads data in application-specific for-
mats, e.g., raw pixels if it is trained to classify images.
The input layer is connected to a sequence of interme-
diate layers (cyan, orange), each of which consists of a
few neurons, where each neuron applies a function trans-
formation f on its input and produces an output. A vec-
tor output is obtained by concatenating the output of all
neurons from a layer. By stacking multiple intermediate
layers, the NN can transform raw input data one layer at
a time, first into a series of intermediate representations,
and finally into the desired output or prediction (red). DL
programmers usually need to specify the computation of
a layer by defining two properties of its neurons. The first
is the transformation function f (W,x), where x is the in-
put to the neuron, and W is an optional trainable param-
eter. The other is the connectivity that determines how
the neuron should be connected to its adjacent layer. For

182 2017 USENIX Annual Technical Conference USENIX Association

Conv	layers FC	layers
Figure 1: A convolutional neural network with 6 layers.

Worker	1 Worker	2

Worker	3 Worker	4

PS

𝛻𝜃" 𝛻𝜃#

𝛻𝜃$ 𝛻𝜃+

𝜃 𝜃

𝜃 𝜃

Worker	1 Worker	2

Worker	3 Worker	4

𝑢", 𝑣"
𝑢#, 𝑣#

𝑢", 𝑣" 𝑢$, 𝑣$

𝑢$, 𝑣$
𝑢+, 𝑣+

𝑢#, 𝑣# 𝑢+, 𝑣+

𝑢", 𝑣"

𝑢+, 𝑣+
𝑢$, 𝑣$

𝑢#, 𝑣#

(a) (b)
Figure 2: An illustration of (a) the parameter server and (b)
sufficient factor broadcasting for distributed ML.

instance, a convolutional neural network has two types
of neuron: convolutional (CONV) neuron (cyan) that are
only locally connected to a subset of neurons in its pre-
vious layer, and fully-connected (FC) neurons (orange).

Most NNs need to be trained with data to give accu-
rate predictions. Stochastic gradient descent (SGD) and
backpropagation are commonly employed to train NNs
iteratively – each iteration performs a feed forward (FF)
pass followed with a backpropagation (BP) pass. In the
FF pass, the network takes a training sample as input,
forwards from its input layer to output layer to produce
a prediction. A loss function is defined to evaluate the
prediction error, which is then backpropagated through
the network in reverse, during which the network param-
eters are updated by their gradients towards where the
error would decrease. After repeating a sufficient num-
ber of passes, the network will usually converge to some
state where the loss is close to a minima, and the training
is then terminated. In a mathematical form, given data D
and a loss function L, fitting the parameters θ of a NN
can be formulated as an iterative-convergent algorithm
that repeatedly executing the update equation

θ
(t) = θ

(t−1)+ ε ·∇L(θ (t−1),D(t)) (1)

until θ reaches some stopping criteria, where t denotes
the iteration. The update function ∇L calculates the gra-
dients of L over current data Di(Di ∈ D). The gradi-
ents are then scaled by a learning rate ε and applied on
θ as updates. As the gradients are additive over data
samples i, i.e., θ (t) = θ (t−1) + ε ·∑i ∇L(θ

(t−1),Di), for
efficiency, we usually feed a batch of training samples
D(t)(D(t) ⊂ D) at each training iteration t, as in Eq.1.

In large-scale deep learning, data D are usually too
large to process on a single machine in acceptable time.
To speedup the training, we usually resort to data par-

allelism, a parallelization strategy that partitions the data
D and distributes to a cluster of computational worker
machines (indexed by p = 1, · · · ,P), as illustrated in Fig-
ure 2. At each iteration t, every worker fetches a batch
D(t)

p from its data partition and computes the gradients
∇L(θ

(t),D(t)
p). Gradients from all workers are then ag-

gregated and applied to update θ (t) to θ (t+1) following

θ
(t+1) = θ

(t)+ ε

P

∑
p=1

∇L(θ
(t),D(t)

p) (2)

Data-parallelism allows data to be locally partitioned to
each worker, which is advantageous for large datasets.
It however requires every worker to have read and
write access to the shared model parameters θ , which
causes communication among workers; this shared ac-
cess can be provided by a parameter server architec-
ture [31, 4] (Figure 2a) or a peer-to-peer broadcast-
ing architecture [32] (Figure 2b), both are designed for
general-purpose data-parallel ML programs on CPUs.
Parameter Server. A parameter server (PS) is a
distributed shared memory system that provides sys-
tematic abstraction of iterative-convergent algorithms
in data-parallel distributed ML. Typically, PS enables
each worker to access the global model parameters θ

via network communications following the client-server
scheme. DL can be trivially parallelized over distributed
workers using PS with the following 3 steps: (1) Each
worker computes the gradients (∇L) on their own data
partition and send them to remote servers; (2) servers re-
ceive the updates and apply (+) them on globally shared
parameters; (3) a consistency scheme coordinates the
synchronization among servers and workers (Figure 2a).
Sufficient Factor Broadcasting. Many ML models rep-
resent their parameters θ as matrices. For example, fully-
connected NNs, when trained using SGD, their gradi-
ent ∇θ over a training sample is a rank-1 matrix, which
can be cast as the outer product of two vectors u,v:
∇θ = uv>, where u and v are called sufficient factors
(SFs). Sufficient factor broadcasting (SFB) [32] is de-
signed to parallelize these models by broadcasting SFs
among workers and then reconstructing the gradient ma-
trices ∇θ using u,v locally. SFB presents three key dif-
ferences from PS: (1) SFB uses a P2P communication
strategy that transmits SFs instead of full matrices. (2)
Unlike gradients, SFs are not additive over training sam-
ples, i.e., the number of SFs needed to be transmitted
grows linearly with the number of data samples (not data
batches); (3) the overall communication overheads of
SFB increase quadratically with the number of workers.

2.2 Parallel DL on Distributed GPUs
Modern DL models are mostly trained using NVIDIA
GPUs, because the primary computational steps (e.g.,
matrix-matrix multiplications) in DL match the SIMD
operation that could be efficiently performed by GPUs.

USENIX Association 2017 USENIX Annual Technical Conference 183

In practice, DL practitioners often use single-node soft-
ware frameworks, such as Caffe [14] and Torch [6],
which mathematically derive the correct training algo-
rithm and execute it on GPU by calling GPU-based ac-
celeration libraries, such as CUBLAS and cuDNN. It is
thus straightforward to parallelize these programs across
distributed GPUs using either PS or SFB, by moving the
computation from CPU to GPU, and performing memory
copy operations (between DRAM and GPUs) or com-
munication (among multiple nodes) whenever needed.
However, we argue below and show empirically in Sec-
tion 5 that these usually lead to suboptimal performance.

The inefficiency is mainly caused by parameter syn-
chronization via the network. Compared to CPUs, GPUs
are an order of magnitude more efficient in matrix com-
putations; the production of gradients on GPUs is much
faster than they can be naively synchronized over the net-
work. As a result, the training computations are usually
bottlenecked by communications. For example, when
training AlexNet [16] (61.5M parameters) on Titan X
with a standard batch size 256, 240 million gradients will
be generated per second on each GPU (0.25s/batch). If
we parallelize the training on 8 nodes using a PS, with
every node also holding 1/8 of parameters as a PS shard;
then, every node needs to transfer 240M×7/8× 4 =
840M float parameters in one second to make sure the
next iteration of computation not being blocked. Ap-
parently, the demanded throughput (>26Gbps) exceeds
the bandwidth that commodity Ethernet (i.e., 1GbE and
10GbE Ethernet) provides; the GPUs distributed across
clusters cannot be fully utilized. Practically, it is usually
difficult to partition the parameters completely equally,
which will result in more severe bandwidth demands, or
bursty communication traffic on several server nodes (as
we will show in Section 5.3), which prevents the trivial
realization of efficient DL on distributed GPUs 1. We
next describe our strategies and system design to over-
come the aforementioned obstacles.
3 Poseidon Design
In this section, we first analyze the DL program in both
a single-node and distributed environment by decompos-
ing the program into a sequence of operations. Based on
it, we introduce two strategies to address the issues.
The Structure of DL Programs. At the core of the
DL program is the BP algorithm that performs forward-
backward pass through the network repeatedly. If we
define a forward and a backward pass through the lth
layer of a network as f l

t and bl
t , respectively, then

a Computation step at iteration t is notated as Ct =
[f 1

t , · · · , f L
t ,b

L
t , · · · ,b1

t], as illustrated in Fig. 3(a). When

1Frequent memory copy operations between DRAM and GPU
memory can also cause extra overheads, which is minor compared to
the network communication according to our empirical results. How-
ever, our strategies in this paper can also alleviate this overhead.

	𝐶4 	𝑂4 𝐼4 𝐶47" 	𝐼47"

⋯

𝐶4
𝑂4
𝐼4

(a) 𝑂47"

𝑏>𝑏#𝑏"
𝑜C CD">

𝑖C CD">

⋯
𝑏>𝑏#𝑏"

𝑜>𝑜$𝑜#𝑜"

𝑖>𝑖$𝑖#𝑖"
𝐶47"
𝑂47"
𝐼47"

𝐶47#
𝑂47#
𝐼47#

𝐶47$
𝑂47$
𝐼47$

(b)

Figure 3: (a) Traditional backpropagation and (b) wait-free
backpropagation on distributed environment.

executing on distributed GPUs, inter-machine communi-
cations are required after each C step to guarantee the
synchronized replication of model parameters. We sim-
ilarly define the Synchronization step St as the process
that a worker sends out locally generated updates and
then receives updated parameters from remote workers at
iteration t. Therefore, a naive parallelization of DL train-
ing over distributed GPUs using either PS or SFB can
be expressed as alternating Ct and St defined above. We
note that DL training is highly sequential; the commu-
nication and computation perform sequentially, waiting
each other to finish (Fig. 3a).

Fortunately, we also note that as every layer of a NN
contains an independent set of parameters, St can be de-
coupled as St = (s1

t , · · · ,sL
t), by defining sl

t as the syn-
chronization of parameters of layer l. If we further de-
compose sl

t = [ol
t , i

l
t] as first sending out local updates of

layer l (ol
t) and reads in the updated parameters remotely

(ilt), we can rewrite a training iteration as: [Ct ,St] =
[f 1

t , · · · , f L
t ,b

L
t , · · · ,b1

t ,o
L
t , · · · ,o1

t , i
L
t , · · · , i1t]. The sequen-

tial nature of the BP algorithm presents us an opportunity
to overlap the computations and communications. Our
first strategy, wait-free backpropagation, overlaps Ct and
St by partially rescheduling those bt and st that are in-
dependent. Our second strategy, hybrid communication,
utilizes the independency among st , and tries to reduce
the communication overheads by specializing different
communication methods for different st .
3.1 Wait-free Backpropagation
The wait-free backpropagation (WFBP) is designed to
overlap communication overheads with the computation
based on two key independencies in the program: (1) the
send-out operation ol

t is independent of backward oper-
ations bi

t(i < l), so they could be executed concurrently
without blocking each other; (2) the read-in operation ilt
could update the layer parameters as long as bl

t was fin-
ished, without blocking the subsequent backward opera-
tions bi

t(i < l). Therefore, we can enforce each layer l to
start its communication once its gradients are generated
after bl

t , so that the time spent on operation sl
t could be

overlapped with those of bi
t(i < l), as shown in Fig. 3b.

184 2017 USENIX Annual Technical Conference USENIX Association

WFBP is most beneficial for training DL models that
have their parameters concentrating at upper layers (FC
layers) but computation concentrating at lower layers
(CONV layers)2, e.g., VGG [26] and AdamNet [4, 7]),
because it overlaps the communication of top layers
(90% of communication time) with the computation of
bottom layers (90% of computation time) [37, 7]. Be-
sides chain-like NNs, WFBP is generally applicable to
other non-chain like structures (e.g., tree-like structures),
as the parameter optimization for deep neural networks
depends on adjacent layers (and not the whole network),
there is always an opportunity for parameter optimiza-
tion (i.e., computation) and communication from differ-
ent layers to be performed concurrently.

Some DL frameworks, such as TensorFlow, represent
the data dependencies of DL programs using graphs,
therefore implicitly enable auto-parallelization. How-
ever, they fail on exploring the potential opportunities
of parallelization between iterations. For example, Ten-
sorFlow needs to fetch the updated parameters from the
remote storage at the beginning of each iteration, while
it is possible to overlap this communication procedure
with the computation procedure of the previous iteration.
In comparison, WFBP enforces this overlapping by ex-
plicitly pipelining compute, send and receive procedures.
We describe our implementation of WFBP in Section 4
and empirically show its effectiveness in Section 5.1.

3.2 Hybrid Communication
While WFBP overlaps communication and computation,
it does not reduce the communication overhead. In sit-
uations where the network bandwidth is limited (e.g.,
commodity Ethernet or the Ethernet is shared with other
communication-heavy applications), the communication
would still be unacceptably slow. To address the issue,
we introduce a hybrid communication (HybComm) strat-
egy that combines the best of PS and SFB by being aware
of both the mathematical property of DL models and the
structure of computing clusters. Our idea comes from
two observations: first, as presented in Section 3, the syn-
chronization operations {Sl

t}L
l=1 are independent of each

other, meaning that we can use different communication
methods for different Sl

t by specializing ol
t and ilt accord-

ing to the two methods described in Figure 2; second, a
NN structure is usually predefined and fixed throughout
the training – by measuring the number of parameters
needed to transferred, we are able to estimate the com-
munication overhead, so that we can always choose the
optimal method even before the communication happens.

Consider training VGG19 network [26], the over-
heads of Sl

t could be estimated as follows (Table 1):
assume the batch size K = 32, the number of work-

2Most classification models will fall into this family if the number
of classes to be classified is large.

Method Server Worker Server & Worker

PS 2P1MN/P2 2MN 2MN(P1 +P2−
2)/P2

SFB N/A 2K(P1−
1)(M+N)

N/A

Adam
(max)

P1MN +
P1K(M+N)

K(M+N)+
MN

(P1−1)(MN +
KM+KN)

Table 1: Estimated communication cost of PS, SFB and Adam
for synchrnizing the parameters of a M×N FC layer on a clus-
ter with P1 workers and P2 servers, when batchsize is K.

ers and server nodes P1 = P2 = 8 (assume parameters
are equally partitioned over all server shards), respec-
tively. On one hand, if l is an FC layer (with shape
4096× 4096,M = N = 4096), synchronizing its param-
eters via PS will transfer 2MN ≈ 34 million parameters
for a worker node, 2P1MN/P2 ≈ 34 million for a server
node, and 2MN(P1 + P2 − 2)/P2 ≈ 58.7 million for a
node that is both a server and a worker, compared to
2K(M+N)(P1−1)≈ 3.7 million for a single node using
SFB. On the other hand, if l is a CONV layer, the updates
are indecomposable and sparse, so we can directly resort
to PS. Therefore, the synchronization overheads depend
not only on the model (type, shape, size of the layer), but
also the size of the clusters. The optimal solution usu-
ally changes with M,N,K,P1,P2. HybComm takes into
account these factors and allows to dynamically adjust
the communication method for different parts of a model
– it always chooses the best method from available ones
whenever it results in fewer communication overheads.

Microsoft Adam [4] employs a different communica-
tion strategy from those in Figure 2. Instead of broad-
casting SFs across workers, they first send SFs to a pa-
rameter server shard, then pull back the whole updated
parameter matrices. This seems to reduce the total num-
ber of parameters needed to be communicated, but usu-
ally leads to load imbalance; the server node that holds
the corresponding parameter shard overloads because it
has to broadcast the parameter matrices to all work-
ers (P1MN + P1K(M +N) messages need to be broad-
casted), which easily causes communication bottleneck
(Section 5.3). It is noticeable that reconstructing gradi-
ents from SFs may cause extra computation cost, which
however is often negligible compared to communication.
We describe our implementation of HybComm in the
next section, and assess its effectiveness in Section 5.

4 Implementation
This section first elaborates Poseidon’s system architec-
ture and APIs, and then describes how to modify a frame-
work using Poseidon to enable distributed execution.

4.1 System Implementation and APIs
Figure 4 illustrates the architecture of Poseidon: a C++
communication library that manages parameter commu-
nication for DL programs running on distributed GPUs.
It has three main components: coordinator, that main-

USENIX Association 2017 USENIX Annual Technical Conference 185

Method Owner Arguments Description
BestScheme Coordinator A layer name or index Get the best communication scheme of a layer
Query Coordinator A list of property names Query information from coordinators’ information book
Send Syncer None Send out the parameter updates of the corresponding layer
Receive Syncer None Receive parameter updates from either parameter server or peer workers
Move Syncer A GPU stream and an indicator

of move direction
Move contents between GPU and CPU, do transformations and
application of updates if needed

Send KV store updated parameters Send out the updated parameters
Receive KV store parameter buffer of KV stores Receive gradient updates from workers

Table 2: Poseidon APIs for parameter synchronization.

Algorithm 1 Get the best comm method of layer l
1: function BESTSCHEME(l)
2: layer property = Query(l.name)
3: P1,P2,K = Query(‘n worker’, ‘n server’, ‘batchsize’)
4: if layer property.type == ‘FC’ then
5: M = layer property.width
6: N = layer property.height
7: if 2K(P1−1)(M+N)≤ 2MN(P1+P2−2)

P2
then

8: return ‘SFB’
9: end if

10: end if
11: return ‘PS’
12: end function

GPU CPU

Stream
Pool

KV Store

Synceri

Coordinator

SFB

data flow
allocate
instruction

KV Store

Thread
Pool

Client Library

Figure 4: An overview of the architecture of Poseidon.

tains the model and the cluster configuration; KV store, a
shared memory key-value store that provides support for
parameter server based communication; client library,
which is plugged into DL programs to handle parame-
ter communication. Their APIs are listed in Table 2.
Coordinator. To setup distributed training, the client
program (e.g., Caffe) first instantiates Poseidon by cre-
ating a coordinator within its process. Coordinators will
first collect necessary information, including the clus-
ter information (e.g., the number of workers and server
nodes, their IP addresses) and the model architecture
(e.g., the number of layers, layer types, number of neu-
rons and how they are connected, etc.). With the in-
formation, the coordinator will initialize the KV stores
and the client library with two steps: (1) allocate proper
communication ports for each PS shard and peer worker;
(2) determine what parameters should be transmitted via
the KV store and what by SFB, and hash the parame-
ters equally to each KV store if necessary, and save the
mapping in the information book, which, throughout the
whole training, is maintained and synchronized across

nodes, and could be accessed elsewhere through coor-
dinator’s Query API. Besides, the coordinator provides
another API BestScheme that takes in a layer and re-
turns the optimal communication scheme for it according
to the strategy described in Section 3.2 (Algorithm 1).
KV Store. The KV store is implemented based on a bulk
synchronous parameter server [31, 7], and instantiated
by coordinators on a list of user-specified “server” ma-
chines. Each instance of the KV store holds one shard
of the globally shared model parameters in the form of
a set of KV pairs, of which each KV pair is stored on
a chunk of DRAM. Poseidon sets the size of a KV pair
to a fixed small size (e.g., 2MB), so as to partition and
distribute model parameters to server nodes as equally as
possible, reducing the risk of Ethernet bottleneck. Each
KV store instance manages a parameter buffer on RAM,
and provides PS-like APIs, such as Receive and Send,
for receiving and applying updates from client libraries,
or sending out parameters. It will regularly checkpoint
current parameter states for fault tolerance.
Client Library. Poseidon coordinates with DL pro-
grams via its client library. Particularly, users plug the
client library into their training program, and the client
library will create a syncer for each NN layer during net-
work assembling (so that each layer one-to-one maps to
one syncer), accounting for its parameter synchroniza-
tion. Each sycner is then initialized, for example, set-
ting up connections to its corresponding PS shards or
(remote) peer syncers according to the coordinator’s in-
formation book, and allocating a small memory buffer
for receiving remote parameter matrices or SFs, etc.

The client library manages a CPU thread pool and a
GPU stream pool on the worker machine, which can
be allocated by the syncer APIs when there is a syncer
job created. The syncer has three main APIs, Send,
Receive and Move, to be used in client programs. The
Move API takes care of the memory movement between
RAM and GPU memory, and performs necessary com-
putation, e.g., the transformation between SFs and gradi-
ents, and the application of updates. It is multi-threaded
using the CUDA asynchronous APIs, and will trigger an
allocation from the client library’s thread/stream pools
when a syncer job starts (see L14 of Algorithm 2). The
Send and Receive are communication APIs that syn-
chronize layer parameters across different model repli-

186 2017 USENIX Annual Technical Conference USENIX Association

cas. The Send API is nonblocking; it sends out param-
eter updates during backpropagation once they are gen-
erated, following the protocol returned by coordinator’s
BestScheme API. The Receive API will be called
once Send is finished. It requests either fresh parameter
matrices from the KV stores or SFs from its peer syncers,
and will block its current thread until it receives all of
what it requested. The received messages are put into
the syncer’s memory buffer for the Move API to fetch.
Managing Consistency. Poseidon implements the bulk
synchronous consistency (BSP) model as follows. The
client library maintains a binary vector C with length the
number of syncers and values reset to zeros at the start
of each iteration. A syncer will set its corresponding en-
try in C as 1 when its job finishes, and the client starts
next iteration when all entries are 1. While, the KV store
maintains a zero-initialized count value for each KV pair
at the start of each iteration. Every time when there is
an update being applied on a KV pair, its count value
is increased by 1. The KV pair will be broadcasted via
its Send API when its count equals to the number of
workers. Poseidon handles stragglers by simply drop-
ping them. Although asynchronous models can alleviate
the straggler problem in distributed ML [12], Poseidon
focuses on synchronous parallel training, because syn-
chronous execution yields the fastest per-iteration im-
provement in accuracy for distributed DL (as measured
by wall clock time) on GPUs [7, 2] (see Section 5.1).

Algorithm 2 Parallelize a DL library using Poseidon
1: function TRAIN(net)
2: for iter = 1→ T do
3: sync count = 0
4: net.Forward()
5: for l = L→ 1 do
6: net.BackwardThrough(l)
7: thread pool.Schedule(sync(l))
8: end for
9: wait until(sync count == net.num layers)

10: end for
11: end function
12: function SYNC(l)
13: stream = stream pool.Allocate()
14: syncers[l].Move(stream, GPU2CPU)
15: syncers[l].method = coordinator.BestScheme(l)
16: syncers[l].Send()
17: syncers[l].Receive()
18: syncers[l].Move(stream, CPU2GPU)
19: sync count++
20: end function

4.2 Integrate Poseidon with DL Libraries
Poseidon could be plugged into most existing DL frame-
works to enable efficient distributed execution. Algo-
rithm 2 provides an example. Specifically, one needs to
first include Poseidon’s client library into the framework,

then figure out where the backpropagation proceeds (L6),
and insert Poseidon’s syner APIs in between gradient
generation and application (L7). We demonstrate in Sec-
tion 5.1 that with slight modifications (150 and 250 LoC
for Caffe and TensorFlow), both Poseidon-enable Caffe
and TensorFlow deliver linear scalings up to 32 GPU ma-
chines. Poseidon respects the programming interfaces by
the native DL library and stores necessary arguments for
distributed execution as environment variables to allow
zero changes on the DL application programs.

5 Evaluation
In this section, we evaluate Poseidon’s performance on
scaling up DL with distributed GPUs. We focus on the
image classification task where DL is most successfully
applied. Our evaluation reveals the following results: (1)
Poseidon has little overhead when plugged into exist-
ing frameworks; it achieves near-linear speedups across
different NNs and frameworks, on up to 32 Titan X-
equipped machines. (2) Poseidon’s system design effec-
tively improves GPU and bandwidth utilization. (3) Po-
seidon’s communication strategy HybComm effectively
alleviates the communication bottleneck, thus achieves
better speedups under limited bandwidth; Moreover,
Poseidon compares favorably to other communication-
reduction methods, such as the SF strategy in Adam [4],
and the 1-bit quantization in CNTK [36].
Cluster Configuration. We conduct our experiments on
a GPU cluster with each node equipped with a NVIDIA
GeForce TITAN X GPU card, an Intel 16-core CPU and
64GB RAM, interconnected via a 40-Gigabit Ethernet
switch. All cluster nodes have shared access to a NFS
and read data through the Ethernet interface. We run our
system on UBUNTU 16.04, with NVIDIA driver version
361.62, CUDA 8.0 and cuDNN v5.
Computation Engines. We deploy Poseidon on two DL
frameworks, Caffe [14] and TensorFlow [1]. For Caffe,
we use the official version at 2016/06/30 as the single
node baseline, and modify it using Poseidon’s client li-
brary API for distributed execution. For TensorFlow,
we use its open source version r0.10, and parallelize its
single-node version with Poseidon’s client library, and
compare to its original distributed version. 3

Dataset and Models. Our experiments use three well-
known image classification datasets. (1) CIFAR-10 [15],
which contains 32× 32 colored images of 10 classes,
with 50K images for training and 10K for testing; (2)
ILSVRC12 [23], a subset of ImageNet22K that has 1.28
million of training images and 50K validation images in
1,000 categories; (3) ImageNet22K [23], the largest pub-
lic dataset for image classification, including 14,197,087

3Note that as the distributed engine of TensorFlow is highly opti-
mized (e.g., auto-parallelization of graphs [1]). Poseidon avoids lever-
aging any build-in optimization of distributed TensorFlow by paral-
lelizing its single-node version instead.

USENIX Association 2017 USENIX Annual Technical Conference 187

Model # Params Dataset Batchsize

CIFAR-10 quick 145.6K CIFAR10 100
GoogLeNet 5M ILSVRC12 128

Inception-V3 27M ILSVRC12 32
VGG19 143M ILSVRC12 32

VGG19-22K 229M ImageNet22K 32
ResNet-152 60.2M ILSVRC12 32

Table 3: Neural networks for evaluation. Single-node batchsize
is reported. The batchsize is chosen based on the standards
reported in literature (usually the maximum batch size that can
fill in the GPU memory).

labeled images from 21,841 categories.
We test Poseidon’s scalability across different neural

networks: (1) CIFAR-10 quick: a toy CNN from Caffe
that converges at 73% accuracy for classifying images
in CIFAR-10 dataset; (2) GoogLeNet [27]: a 22-layer
CNN with 5M parameters. (3) Inception-V3 [28]: the
ImageNet winner, an improved version of GoogLeNet
from TensorFlow; (4) VGG19: A popular feature extrac-
tion network in the computer vision community [26] that
has 16 CONV layers and 3 FC layers, in total 143M pa-
rameters; (5) VGG19-22K: we modify the VGG19 net-
work by replacing its 1000-way classifier with a 21841-
way classifier, to classify images from the ImageNet22K
dataset. The modified network has 229M parameters. (6)
ResNet-152: the ImageNet winner network with 152 lay-
ers. We list their statistics and configurations in Table 3.
Metrics. In this paper, we mainly focus on metrics that
measure the system performance, such as speedups on
throughput (number of images scanned per second). Our
experiments focus on medium-scale distributed cluster
with up to 32 machines, which distributed DL empiri-
cally benefits most from. Larger clusters require larger
batch sizes, which hurt the convergence rate of each iter-
ation [3, 7]. For completeness, we also report the statis-
tical performance (time/epoch to converge) on ResNet-
152. Poseidon uses synchronized replication which en-
ables many models to converge in fewer steps [1, 7, 3, 2].

5.1 Scalability
To demonstrate Poseidon’s scalability, we train CNNs
using Poseidon with different computational engines,
and compare different systems in terms of their speedups
on throughput. For Caffe engine, we train GoogLeNet
VGG19 and VGG19-22K networks; for TensorFlow en-
gine, we train Inception-V3, VGG-19, VGG19-22K.
Caffe Engine. Figure 5 shows the throughput vs. num-
ber of workers when training the three networks using
Caffe engine, given 40GbE Ethernet bandwidth avail-
able. We compare the following systems: (1) Caffe:
unmodified Caffe that executes on a single GPU; (2)
Caffe+PS: we parallelize Caffe using a vanilla PS, i.e.,
the parameter synchronization happens sequentially after
the backpropagation in each iteration; (3) Caffe+WFBP:
Parallelized Caffe using Poseidon so the communication

and computation are overlapped. However, we disable
HybComm so that parameters are synchronized only via
PS; (4) Poseidon: the full version of Poseidon-Caffe.

Poseidon shows little overheads when combined with
Caffe; running on a single node with no communication
involved, Poseidon-Caffe can process 257, 35.5 and 34.2
images per second when training GoogLeNet, VGG19
and VGG19-22K, respectively, as compared to the origi-
nal Caffe, which can process 257, 35.5 and 34.6 images,
and Caffe+PS, which can only process 213.3, 21.3 and
18.5 images per second, due to the overheads caused
by memory copy operations between RAM and GPU,
which have been overlapped by Poseidon with the com-
putation. In distributed environment, the rescheduling of
computation and communication significantly improves
the throughput: when training GoogLeNet and VGG19,
incorporating WFBP achieves almost linear scalings up
to 32 machines, and for the larger VGG19-22K network,
Caffe+WFBP achieves 21.5x speedup on 32 machines.
We conclude that rescheduling and multi-threading the
communication and computation are key to the perfor-
mance of distributed DL on GPUs, even when the band-
width resource is abundant. Poseidon provides an effec-
tive implementation to overlap these operations for DL
frameworks, to guarantee better GPU utilization.

When the available bandwidth is sufficient, Poseidon’s
HybComm strategy shows small improvement on train-
ing GoogLeNet and VGG19. However, when training
VGG19-22K which has three FC layers that occupy 91%
of model parameters, it improves over Caffe-WFBP from
21.5x to 29.5x on 32 nodes.
TensorFlow Engine. We also modify TensorFlow using
Poseidon, and compare the following systems in terms
of speedup on throughput: (1) TF: TensorFlow with its
original distributed executions; (2) TF+WFBP: we mod-
ify TensorFlow using Poseidon’s client library. Specif-
ically, we change the assign operator in TensorFlow, so
that instead of being applied, the parameter updates will
be synchronized via Poseidon’s PS interface with WFBP;
(3) Poseidon: the full version of Poseidon-parallelized
TensorFlow with HybComm enabled.

We train Inception-V3, VGG19 and VGG19-22K
models and report the results in Figure 6. Running on a
single node, Poseidon processes 43.2, 38.2 and 34.5 im-
ages per second on training Inception-V3, VGG19 and
VGG19-22K, while original TensorFlow processes 43.2,
38.5 and 34.8 images per second on these three models,
respectively – little overhead is introduced by our modi-
fication. In distributed execution, Poseidon achieves al-
most linear speedup on up to 32 machines. Distributed
TensorFlow, however, demonstrates only 10x speedup on
training Inception-V3 and even fails to scale on training
the other two networks in our experiments. To investi-
gate the problem of TensorFlow and explain how Posei-

188 2017 USENIX Annual Technical Conference USENIX Association

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

GoogLeNet (40 GbE)
Linear
Poseidon
Caffe+WFBP
Caffe+PS

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

VGG19 (40 GbE)
Linear
Poseidon
Caffe+WFBP
Caffe+PS

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

VGG19-22K (40 GbE)
Linear
Poseidon
Caffe+WFBP
Caffe+PS

Figure 5: Throughput scaling when training GoogLeNet, VGG19 and VGG19-22K using Poseidon-parallelized Caffe and 40GbE
bandwidth. Single-node Caffe is set as baseline (i.e., speedup = 1).

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

Inception-V3 (40 GbE)
Linear
Poseidon
TF+WFBP
TF

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

VGG19 (40 GbE)
Linear
Poseidon
TF+WFBP
TF

1 2 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

VGG19-22K (40 GbE)
Linear
Poseidon
TF+WFBP
TF

Figure 6: Throughput scaling when training Inception-V3, VGG19 and VGG19-22K using Poseidon-parallelized TensorFlow and
40GbE bandwidth. Single-node TensorFlow is set as baseline (i.e., speedup = 1).

Inception-v3 VGG19 VGG19-22k
0

30

60

90

Pe
rc

en
ta

ge TF TF+WFBP PSD TF TF+WFBP PSD TF TF+WFBP PSD

Stall time Computation time

Figure 7: Breakdown of GPU computation and stall time when
training the three networks on 8 nodes using different systems.

don improves upon it, we illustrates in Figure 7 the (aver-
aged) ratio of busy and stall time of a GPU when training
the three networks using different systems on 8 nodes.
Observe that Poseidon keeps GPUs busy in most of the
time, while TensorFlow wastes much time on waiting
for parameter synchronization. The inefficiency of dis-
tributed TensorFlow stems from two sources. First, Ten-
sorFlow partitions model parameters in a coarse-grained
granularity – each tensor (instead of a KV pair) in the
model is assigned to a PS shard. A big tensor (such as
the parameter matrix in VGG19) is highly likely to cre-
ate communication bottleneck on its located server node.
Poseidon fixes this problem by partitioning parameters
among server nodes in a finer-grained granularity us-
ing KV pairs, so that every node has evenly distributed
communication load; as an evidence, TF-WFBP demon-
strates higher computation-to-stall ratio in Figure 7. Sec-
ond, TensorFlow cannot reduce the communication over-
heads while Poseidon’s HybComm effectively reduces
the size of messages. As a result, Poseidon further im-
proves upon TF-WFBP from 22x to 30x on 32 nodes.
Multi-GPU Settings. Poseidon’s key strategies can be

directly extended to support distributed multi-GPU en-
vironment with minor modifications. Specifically, when
there are more than 1 GPU on a worker node, Poseidon
will first collect the gradient updates following WFBP lo-
cally (either by full matrices or SFs) from multiple GPUs
to a leader GPU using CudaMemcpy(DeviceToDevice)
API. If those updates are determined to be communi-
cated via full matrices, Poseidon will aggregate them lo-
cally before sending out. Using Caffe engine on a single
node, Poseidon achieves linear scalings on up to 4 Titan
X GPUs when training all three networks, outperforming
Caffe’s multi-GPU version, which shows only 3x and 2x
speedups when training GooLeNet and VGG19. When
running on AWS p2.8xlarge instances (8 GPUs each
node), Poseidon reports 32x and 28x speedups when
training GoogLeNet and VGG19 with 4 nodes (32 GPUs
in total), confirming our statement that the overheads
caused by memory movement between GPUs are usually
negligible compared to network communication4.
Statistical Performance. For completeness, we re-
port in Figure 9 the statistical performance for training
ResNet-152 using Poseidon. Poseidon achieves near-
linear speedups on both system throughput and statisti-
cal convergence: Poseidon delivers 31x speedup in terms
of throughput, and reaches 0.24 reported error with less
than 90 epochs with both 16 and 32 nodes – thus lin-
ear scales in terms of time to accuracy, compared to 8
nodes with batchsize = 32× 8, which is a standard set-

4The K80 GPUs on p2.8xlarge has less GFLOPS than Titan X used
in our main experiments – the communication burden is less severe.

USENIX Association 2017 USENIX Annual Technical Conference 189

1 2 4 8 16
of Nodes

1
2

4

8

16

Sp
ee

du
ps

GoogLeNet
Linear
Poseidon (2GbE)
Poseidon (5GbE)
Poseidon (10GbE)
Caffe+WFBP (2GbE)
Caffe+WFBP (5GbE)
Caffe+WFBP (10GbE)

1 2 4 8 16
of Nodes

1
2

4

8

16

Sp
ee

du
ps

VGG19
Linear
Poseidon (10GbE)
Poseidon (20GbE)
Poseidon (30GbE)
Caffe+WFBP (10GbE)
Caffe+WFBP (20GbE)
Caffe+WFBP (30GbE)

1 2 4 8 16
of Nodes

1
2

4

8

16

Sp
ee

du
ps

VGG19-22K
Linear
Poseidon (10GbE)
Poseidon (20GbE)
Poseidon (30GbE)
Caffe+WFBP (10GbE)
Caffe+WFBP (20GbE)
Caffe+WFBP (30GbE)

Figure 8: Throughput scaling when training GoogLeNet, VGG19 and VGG19-22K using Poseidon-parallelized Caffe with varying
network bandwidth. Single-node Caffe is set as baseline (speedup = 1).

12 4 8 16 32
of Nodes

12
4

8

16

32

Sp
ee

du
ps

(a) Throughput

Linear
Poseidon
TF

0 30 60 90 120
Epoch

0.20
0.24

0.30

0.40

0.50

0.60

To
p-

1
Er

ro
r (

%
)

(b) Convergence

32 nodes
16 nodes
8 nodes

Figure 9: (a) Speedup vs. number of nodes and (b) Top-1
test error vs. epochs for training ResNet-152 using Poseidon-
TensorFlow and the original TensorFlow.

TF-WFBP Adam Poseidon
0

10

20

Tr
af

fic
 (G

b/
ite

r)

Figure 10: Averaged communication load when training
VGG19 using TF-WFBP, Adam and Poseidon with TensorFlow
engine. Each bar represents the network traffic on a node.

ting as in [11], echoing recent results that synchronous
training on distributed GPUs yields better performance
than asynchronous training in terms of time to quality
for most NNs [7, 2]. For other NNs in Table. 3, Posei-
don delivers the same quality of accuracies as reported in
their papers [16, 28, 27, 26] on up to 32 GPUs.

5.2 Bandwidth Experiments
To further assess Poseidon’s HybComm strategy, we
simulate the environment where network bandwidth is
limited. We use Linux traffic control tool tc to lower
the available bandwidth on each node, and compare
the training throughput between with and without Hyb-
Comm. We focus on Caffe engine in this section because
it is lighter and less optimized than TensorFlow.

Figure 8 plots the speedup on throughput vs. num-
ber of workers when training GoogLeNet, VGG19
and VGG19-22K with different maximum bandwidth.
Clearly, limited bandwidth prevents a standard PS-
based system from linearly scaling with number of
nodes; for example, given 10GbE bandwidth (which is
a commonly-deployed Ethernet configuration in most
cloud computing platforms), training VGG19 using PS

on 16 nodes can only be accelerated by 8x. This observa-
tion confirms our argument that limited bandwidth would
result in communication bottleneck when training big
models on distributed GPUs. Fortunately, Poseidon sig-
nificantly alleviates this issue. Under limited bandwidth,
it constantly improves the throughput by directly reduc-
ing the size of messages needed to be communicated,
especially when the batch size is small; when training
VGG19 and VGG19-22K, Poseidon achieves near-linear
speedup on 16 machines using only 10GbE bandwidth,
while an optimized PS would otherwise need 30GbE or
even higher to achieve. Note that Poseidon will never
underperform a traditional PS scheme because it will re-
duce to a parameter server whenever it results in less
communication overheads; for instance, we observe that
Poseidon reduces to PS when training GoogLeNet on 16
nodes, because GoogleNet only has one thin FC layer
(1000×1024) and is trained with a large batch size (128).

5.3 Comparisons to Other Methods
In this section, we compare Poseidon against other com-
munication methods, including Adam [4] and CNTK 1-
bit quantization [36], and show Poseidon’s advantages.
Adam. To save bandwidth, Adam [4] synchronizes the
parameters of a FC layer by first pushing SFs generated
on all workers to a PS node, and then pulling back the
full parameter matrices thereafter. As direct comparisons
to Adam [4] are inaccessible, we implement its strategy
in Poseidon, and compare it (denoted as Adam) to TF-
WFBP and Poseidon by monitoring the network traffic
of each machine when training VGG19 on 8 nodes using
TensorFlow engine. As shown in Figure 10, the com-
munication workload is highly imbalanced using Adam’s
strategy. Unlike a traditional PS (TF-WFBP) where the
parameters are equally distributed over multiple shards,
Adam cannot partition the parameters of FC layers be-
cause of their usage of SFs. Although the “push” op-
eration uses SFs to reduce message size, the “pull” re-
quires some server nodes to broadcast big matrices to
each worker node, which creates bursty traffic that re-
sults in communication bottleneck on them. By contrast,
Poseidon either partitions parameters equally over multi-
ple PS shards, or transmits SFs among peer workers, both

190 2017 USENIX Annual Technical Conference USENIX Association

are communication load-balanced that avoid bursty com-
munication situations. Quantitatively, Adam delivers 5x
speedup with 8 nodes when training VGG19.
CNTK. We compare Poseidon to the 1-bit quantization
technique proposed in CNTK [36]. We create a baseline
Poseidon-1bit which uses the 1-bit strategy to quantize
the gradients in FC layers, and add the residual to up-
dates of the next iteration. We then train the CIFAR-10
quick network, and plot the training loss and test error
vs. iterations for two systems (both have linear scal-
ing on throughput). As in Figure 11, 1-bit quantization
yields worse convergence in terms of accuracy – on 4
GPUs, it achieves 0.5 error after 3K iterations, while Po-
seidon quickly converges to 0.3 error at iteration 1000.
We conjecture this is caused by the quantization residual,
which is equivalent to delayed updates that may hurt the
convergence performance when training NNs on images,
confirmed by [7]. We also directly train VGG19 using
CNTK-1bit system, and report 5.8x, 11x, 20x speedups
on 8, 16 and 32 nodes, respectively, thus less scale-ups
than Poseidon, and also compromised statistical perfor-
mance due to approximated updates.

0 5 10 15 20 25 30
Iterations (x100)

0.4

0.8

1.2

1.6

2.0

2.4

Tr
ai

n
Lo

ss

Poseidon
Poseidon-1bit

0 5 10 15 20 25 30
Iterations (x100)

0.2

0.4

0.6

0.8

0.9

Te
st

 E
rr

or

Poseidon
Poseidon-1bit

Figure 11: Training loss and test error vs. iteration when train-
ing CIFAR-10 quick network using Poseidon and Poseidon-
1bit on 4GPUs with Caffe engine.

6 Related Work
PS-based Distributed DL Systems. Based on the pa-
rameter server [31, 19] architecture, a number of CPU-
based distributed DL systems have been developed, such
as [38, 29, 9, 17] and Adam [4]. They are purely PS-
based systems on CPU-only clusters, whereas we ad-
dress the more challenging case of GPU clusters.

Scaling up DL on distributed GPUs is an active field
of research. Coates et al. [5] build a GPU-based multi-
machine system for DL using model parallelism rather
than data parallelism, and their implementation is rather
specialized for a fixed model structure while demand-
ing specialized hardware, such as InfiBand networking.
TensorFlow [1] is Google’s distributed ML platform that
uses a dataflow graph to represent DL models, and syn-
chronizes model parameters via PS. It therefore can-
not dynamically adjust its communication method de-
pending on the layer and cluster information as Posei-
don does. MXNet [3] is another DL system that uses
PS for distributed execution, and supports TensorFlow-
like graph representations for DL models. By auto-

parallelizing independent subgraphs, both frameworks
implicitly overlap the communication and computation.
By contrast, Poseidon has a more explicit way to over-
lap them via its client library. Hence, Poseidon can
be also used to parallelize non-graph-based frameworks.
Moreover, both MXNet and TensorFlow do not address
the bottleneck caused by limited network bandwidth,
which undermines their scalability when training large
models with dense layers (e.g., big softmax). Besides,
Cui et al. propose GeePS [7] that manages the limited
GPU memory and report speedups on distributed GPUs.
While, GeePS does not address the issue of limited
network bandwidth. Therefore, Poseidon’s technique
could be combined with them to enable better training
speedups. Also of note are several efforts to port Caffe
onto other distributed platforms, such as SparkNet [22],
YahooCaffe [33] and FireCaffe [13], the former reports
a 4-5 times speedup with 10 machines (and hence less
scalability than our results herein).
Other distributed ML systems. CNTK [36] is a DL
framework that supports distributed executions and ad-
dresses the problem of communication bottleneck via
the 1-bit quantization technique. CNTK demonstrates
little negative impact on convergence in speech do-
mains [25, 24]. However, in some other domains (Sec-
tion 5.3), the performance is usually compromised by
noisy gradients [1, 7]. By contrast, Poseidon’s Hyb-
Comm reduces the communication while always guar-
anteeing synchronous training. There are also growing
interest in parallelizing ML applications using peer-to-
peer communication, such as MALT [18], SFB [32] and
Ako [30]. Poseidon draws inspiration from these works
but goes one step further as it is an adaptive best-of-both-
worlds protocol, which will select client-server commu-
nication whenever it would result in fewer overheads.

7 Conclusion
We present Poseidon, a scalable and efficient commu-
nication architecture for large-scale DL on distributed
GPUs. Poseidon’s design is orthogonal to TensorFlow,
Caffe or other DL frameworks – the techniques present
in Poseidon could be used to produce a better distributed
version of them. We empirically show that Poseidon
constantly delivers linear speedups using up to 32 nodes
and limited bandwidth on a variety of neural network,
datasets and computation engines, and compares favor-
ably to Adam and Microsoft CNTK.

Acknowledgments
We thank our shepherd Yu Hua and ATC reviewers for
their helpful feedback. We thank the CMU Parallel Data
Laboratory for their machine resources and Henggang
Cui for insightful discussion. This research is supported
by NSF Big Data IIS1447676 and NSF XPS Parallel
CCF1629559.

USENIX Association 2017 USENIX Annual Technical Conference 191

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z.,
DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT,
S., IRVING, G., ISARD, M., ET AL. Tensorflow:
A system for large-scale machine learning. arXiv
preprint arXiv:1605.08695 (2016).

[2] CHEN, J., MONGA, R., BENGIO, S., AND JOZE-
FOWICZ, R. Revisiting distributed synchronous
sgd. arXiv preprint arXiv:1604.00981 (2016).

[3] CHEN, T., LI, M., LI, Y., LIN, M., WANG, N.,
WANG, M., XIAO, T., XU, B., ZHANG, C., AND
ZHANG, Z. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274 (2015).

[4] CHILIMBI, T., APACIBLE, Y. S. J., AND KALYA-
NARAMAN, K. Project Adam: Building an Effi-
cient and Scalable Deep Learning Training System.
In OSDI (2014).

[5] COATES, A., HUVAL, B., WANG, T., WU, D. J.,
NG, A. Y., AND CATANZARO, B. Deep Learning
with COTS HPC Systems. In ICML (2013).

[6] COLLOBERT, R., KAVUKCUOGLU, K., AND
FARABET, C. Torch7: A Matlab-like Environment
for Machine Learning. In NIPSW (2011).

[7] CUI, H., ZHANG, H., GANGER, G. R., GIB-
BONS, P. B., AND XING, E. P. Geeps: Scal-
able deep learning on distributed gpus with a gpu-
specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems (2016), ACM, p. 4.

[8] DAI, W., KUMAR, A., WEI, J., HO, Q., GIB-
SON, G., AND XING, E. P. Analysis of high-
performance distributed ml at scale through param-
eter server consistency models. In Proceedings of
the 29th AAAI Conference on Artificial Intelligence
(2015).

[9] DEAN, J., CORRADO, G. S., MONGA, R., CHEN,
K., DEVIN, M., LE, Q. V., MAO, M. Z., RAN-
ZATO, M., SENIOR, A., TUCKER, P., YANG, K.,
AND NG, A. Y. Large Scale Distributed Deep Net-
works. In NIPS (2012).

[10] DENG, L., LI, J., HUANG, J.-T., YAO, K., YU,
D., SEIDE, F., SELTZER, M. L., ZWEIG, G., HE,
X., WILLIAMS, J., GONG, Y., AND ACERO, A.
Recent Advances in Deep Learning for Speech Re-
search at Microsoft. In ICASSP (2013).

[11] HE, K., ZHANG, X., REN, S., AND SUN, J.
Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385 (2015).

[12] HO, Q., CIPAR, J., CUI, H., KIM, J. K., LEE,
S., GIBBONS, P. B., GIBSON, G. A., GANGER,
G. R., AND XING, E. P. More Effective Dis-
tributed ML via a Stale Synchronous Parallel Pa-
rameter Server. In NIPS (2013).

[13] IANDOLA, F. N., MOSKEWICZ, M. W., ASHRAF,
K., AND KEUTZER, K. Firecaffe: near-linear ac-
celeration of deep neural network training on com-
pute clusters. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(2016), pp. 2592–2600.

[14] JIA, Y., SHELHAMER, E., DONAHUE, J.,
KARAYEV, S., LONG, J., GIRSHICK, R.,
GUADARRAMA, S., AND DARRELL, T. Caffe:
Convolutional Architecture for Fast Feature Em-
bedding. In MM (2014).

[15] KRIZHEVSKY, A. Learning Multiple Layers of
Features from Tiny Images. Master’s thesis, Uni-
versity of Toronto, 2009.

[16] KRIZHEVSKY, A., SUTSKEVER, I., AND HIN-
TON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In NIPS (2012).

[17] LE, Q. V., MONGA, R., DEVIN, M., CHEN, K.,
CORRADO, G. S., DEAN, J., AND NG, A. Y.
Building High-level Features Using Large Scale
Unsupervised Learning. In ICML (2012).

[18] LI, H., KADAV, A., KRUUS, E., AND UNGURE-
ANU, C. Malt: distributed data-parallelism for
existing ml applications. In Proceedings of the
Tenth European Conference on Computer Systems
(2015), ACM, p. 3.

[19] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA,
A. J., AHMED, A., JOSIFOVSKI, V., LONG,
J., SHEKITA, E. J., AND SU, B.-Y. Scaling
distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14)
(2014), pp. 583–598.

[20] LIANG, X., HU, Z., ZHANG, H., GAN, C.,
AND XING, E. P. Recurrent topic-transition gan
for visual paragraph generation. arXiv preprint
arXiv:1703.07022 (2017).

[21] MIKOLOV, T., CHEN, K., CORRADO, G., AND
DEAN, J. Efficient Estimation of Word Represen-
tations in Vector Space. In ICLRW (2013).

192 2017 USENIX Annual Technical Conference USENIX Association

[22] MORITZ, P., NISHIHARA, R., STOICA, I., AND
JORDAN, M. I. Sparknet: Training deep networks
in spark. arXiv preprint arXiv:1511.06051 (2015).

[23] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE,
J., SATHEESH, S., MA, S., HUANG, Z., KARPA-
THY, A., KHOSLA, A., BERNSTEIN, M., BERG,
A. C., AND FEI-FEI, L. ImageNet Large Scale
Visual Recognition Challenge. IJCV (2015), 1–42.

[24] SEIDE, F., FU, H., DROPPO, J., LI, G., AND YU,
D. 1-bit stochastic gradient descent and its appli-
cation to data-parallel distributed training of speech
dnns. In INTERSPEECH (2014), pp. 1058–1062.

[25] SEIDE, F., FU, H., DROPPO, J., LI, G., AND YU,
D. On parallelizability of stochastic gradient de-
scent for speech dnns. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (2014), IEEE, pp. 235–239.

[26] SIMONYAN, K., AND ZISSERMAN, A. Very
Deep Convolutional Networks for Large-Scale Im-
age Recognition. In ICLR (2015).

[27] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P.,
REED, S., ANGUELOV, D., ERHAN, D., VAN-
HOUCKE, V., AND RABINOVICH, A. Going deeper
with convolutions. In CVPR (2015).

[28] SZEGEDY, C., VANHOUCKE, V., IOFFE, S.,
SHLENS, J., AND WOJNA, Z. Rethinking the in-
ception architecture for computer vision. arXiv
preprint arXiv:1512.00567 (2015).

[29] WANG, W., CHEN, G., DINH, T. T. A., GAO, J.,
OOI, B. C., TAN, K.-L., AND WANG, S. SINGA:
Putting Deep Learning in the Hands of Multimedia
Users. In MM (2015).

[30] WATCHARAPICHAT, P., MORALES, V. L., FER-
NANDEZ, R. C., AND PIETZUCH, P. Ako: De-
centralised deep learning with partial gradient ex-
change. In Proceedings of the Seventh ACM Sym-
posium on Cloud Computing (2016), ACM, pp. 84–
97.

[31] WEI, J., DAI, W., QIAO, A., HO, Q., CUI,
H., GANGER, G. R., GIBBONS, P. B., GIBSON,
G. A., AND XING, E. P. Managed Communica-
tion and Consistency for Fast Data-parallel Iterative
Analytics. In SoCC (2015).

[32] XIE, P., KIM, J. K., ZHOU, Y., HO, Q., KU-
MAR, A., YU, Y., AND XING, E. Distributed Ma-
chine Learning via Sufficient Factor Broadcasting.
In arXiv (2015).

[33] YAHOO. Caffe on spark. http:
//yahoohadoop.tumblr.com/post/
129872361846/large-scale-
distributed-deep-learning-on-
hadoop.

[34] YAN, Z., ZHANG, H., JAGADEESH, V., DE-
COSTE, D., DI, W., AND PIRAMUTHU, R. Hd-
cnn: Hierarchical deep convolutional neural net-
work for image classification. ICCV (2015).

[35] YAN, Z., ZHANG, H., WANG, B., PARIS, S., AND
YU, Y. Automatic photo adjustment using deep
neural networks. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 11.

[36] YU, D., EVERSOLE, A., SELTZER, M., YAO,
K., HUANG, Z., GUENTER, B., KUCHAIEV, O.,
ZHANG, Y., SEIDE, F., WANG, H., ET AL. An in-
troduction to computational networks and the com-
putational network toolkit. Tech. rep.

[37] ZHANG, H., HU, Z., WEI, J., XIE, P., KIM,
G., HO, Q., AND XING, E. Poseidon: A
system architecture for efficient gpu-based deep
learning on multiple machines. arXiv preprint
arXiv:1512.06216 (2015).

[38] ZOU, Y., JIN, X., LI, Y., GUO, Z., WANG, E.,
AND XIAO, B. Mariana: Tencent Deep Learning
Platform and its Applications. In VLDB Endow-
ment (2014).

USENIX Association 2017 USENIX Annual Technical Conference 193

http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop

Garaph: Efficient GPU-accelerated Graph Processing on a Single Machine
with Balanced Replication

Lingxiao Ma§#, Zhi Yang§#∗, Han Chen§, Jilong Xue† and Yafei Dai‡
§Computer Science Department, Peking University, Beijing, China

†Microsoft Research, Beijing, China
‡Institute of Big Data Technologies Shenzhen Key Lab for Cloud Computing

Technology & Applications, Peking University, China

Abstract

Recent advances in storage (e.g., DDR4, SSD, NVM)
and accelerators (e.g., GPU, Xeon-Phi, FPGA) provide
the opportunity to efficiently process large-scale graphs
on a single machine. In this paper, we present Garaph,
a GPU-accelerated graph processing system on a single
machine with secondary storage as memory extension.
Garaph is novel in three ways. First, Garaph propos-
es a vertex replication degree customization scheme that
maximizes the GPU utilization given vertices’ degrees
and space constraints. Second, Garaph adopts a balanced
edge-based partition ensuring work balance over CPU
threads, and also a hybrid of notify-pull and pull com-
putation models optimized for fast graph processing on
the CPU. Third, Garaph uses a dynamic workload assign-
ment scheme which takes into account both characteris-
tics of processing elements and graph algorithms. Our
evaluation with six widely used graph applications on
seven real-world graphs shows that Garaph significantly
outperforms existing state-of-art CPU-based and GPU-
based graph processing systems, getting up to 5.36x
speedup over the fastest among them.

1 Introduction

Triggered by the availability of graph-structured data in
domains ranging from social networks to genomics and
business, the need for efficient large scale graph process-
ing has grown. The resulting demand has driven the de-
velopment of many distributed systems, including Pregel
[22], Giraph [2], GraphX [11], GraphLab [21], Power-
Graph [10], PowerLyra [7] and Gemini [36]. These sys-
tems attempt to scale to graphs of billions of edges by
distributing the computation over multiple cluster nodes.
However, the performance of existing graph frameworks

∗Corresponding author (yangzhi@pku.edu.cn)
#These authors contributed equally to this work.

relies on effective partitioning to minimize communica-
tion, which is very difficult for natural graphs [1, 20, 10].
Therefore, network performance required for communi-
cation between graph partitions emerges as the bottle-
neck, and thus distributed graph systems require very fast
networks to realize good performance.

As an alternative, several non-distributed graph pro-
cessing systems have been proposed. Galois [27] and
Ligra [32] are specific for shared-memory/multi-core
machines, whereas GraphChi [17], X-Stream [29] and
GridGraph [37] are designed for processing large graphs
on a single machine, by relying on secondary storage.
Such solutions no longer require the resources of very
large clusters, and users need not to be skilled at manag-
ing and tuning a distributed system in a cluster.

But the large amount of data to be processed in a single
machine put pressure on two scarce resources: memory
and computing power. We observe, however, that today
more efficient non-distributed solutions are affordable.
On the one hand, current commodity single unit servers
can easily aggregate hundreds of GBs to TBs of RAM
[32]. Further, with recent advances of secondary stor-
age such as SATA/PCIe-based solid-state drive (SSD)
and non-volatile memory (NVM), it is feasible to aggre-
gate multiple secondary storages to achieve a high access
bandwidth close to memory. On the other hand, current
GPUs have much higher massive parallelism and mem-
ory access bandwidth than traditional CPUs, which has
the potential to offer high-performance graph processing.

Given these recent advances, GPU-accelerated,
secondary-storage based graph processing has the poten-
tial to offer a viable solution. However, while several
attempts [8, 34] have been made recently, efficient large-
scale graph computation on CPU/GPU hybrid platforms
still remains a challenge due to the highly skewed de-
gree distribution of the natural graphs and heterogeneous
parallelism of CPU and GPU. In particular, the skewed
degree distribution implies that a small fraction of the
vertices are adjacent to a large fraction of the edges. This

USENIX Association 2017 USENIX Annual Technical Conference 195

0

1

2

3

4

5

1

4

2
2

5

1

5

31

0 1 2 4
1 4 1 4 0 0 3 2 4Nbr

Idx 5 7 9
CSR (outgoing edges)

0 2 4 5
3 4 0 2 5 4
1 2 1 3 5 4 2 5 1

1 2 5
Edge

Nbr

Idx 6 9 9
CSC (incomming edges)

0 0 1 1IdxOff 2 0 1 1 1
Shard 0 Shard 1

0
0
0
0
0
0

5
4
3
2
1
0

Vertex

Figure 1: Graph Representation in Garaph

concentration of edges results in heavy write contention
among GPU threads due to atomic updates of the same
vertices. Colliding threads will be serialized, serious-
ly harming performance on GPUs. Further, the power-
law degree distribution can lead to substantial work im-
balance across CPU threads in existing non-distributed
graph systems that treat vertices symmetrically. Thus, its
impact on the parallelism of both GPU and CPU should
be alleviated by effective optimization techniques. An-
other challenge is how to efficiently integrate heteroge-
neous parallelism of CPU and GPU for graph processing
under an unified abstraction, as CPUs are fast for the se-
quential processing whereas GPUs are suitable for the
bulk parallel processing.

In this context, we present Garaph, a non-distributed
system that supports GPU-accelerated graph processing
with secondary storage as memory extension. Garaph
enables using all CPU and GPU cores on a given node
for graph processing, and with Garaph’s abstractions,
users only need to write one program that can be execut-
ed by both CPU and GPU. Besides, Garaph uses an ar-
ray of SSDs to achieve high throughput and low latency
storage, which enables the system to process large-scale
graphs exceeding the computer’s memory capacity.

Garaph is novel in the following aspects: To cope
with the heterogeneity of vertex degree, Garaph propos-
es a vertex replication degree customization scheme on
the GPU side that maximizes the GPU utilization given
vertex degree and space constraints. On the CPU side,
Garaph adopts a balanced edge-based partition to ensure
work balance over CPU threads. For the heterogeneity of
computation units, Garaph first uses a pull computation
model matching the SIMD processing model of GPU,
and a hybrid of notify-pull and pull computation mod-
els optimized for fast sequential processing on the CPU.
Further, Garaph uses a dynamic workload assignment
scheme which takes into account both the characteristics
of processing elements and the properties of graph appli-
cations. These new schemes together make for an effi-
cient implementation, achieving full parallelism on both
CPU and GPU sides in a single machine.

We evaluate our Garaph prototype with extensive ex-
periments and compared it with four state-of-the-art
systems. Experiments with six applications on seven
real-world graphs demonstrate that Garaph significantly
outperforms existing state-of-art CPU-based and GPU-

based systems, getting a speedup of 2.56x on average
(up to 5.36x). Through solving conflicts in computation,
customized replication scheme can improve GPU’s per-
formance by 4.84x speedup on average (up to 32.15x).

2 System Overview

In this section, we give a brief overview on the graph
representation, the architecture and the computation ab-
straction of Garaph.

2.1 Graph Representation

Garaph adopts both Compressed Sparse Column (CSC)
and Compressed Sparse Row (CSR) for organizing in-
coming and outgoing edges, respectively. The index ar-
ray Idx records each vertex’s edge distribution: for ver-
tex i, Idx[i] and Idx[i+1] indicate the beginning
and ending offsets of its incoming/outgoing edges. The
array Nbr records sources of incoming edges or des-
tinations of outgoing ones. The arrays Vertex and
Edge record values of vertices and edges, respective-
ly. For example, as shown in CSC of Figure 1, Idx[0]
and Idx[1] indicates that vertex 0 has two incomming
edges with sources 3,4 and values 1,2, respectively.

As stated in CuSha [16], the CSR representation is not
friendly for processing graphs in GPUs, which could in-
cur high frequency of non-coalesced memory accesses
and warp divergence. To overcome this problem, we al-
so adopt the concept of shard. In particular, we split the
vertices V of graph G = (V,E) into disjoint sets of ver-
tices and each set is represented by a shard that stores
all the incoming edges whose destination is in that set.
Edges in a shard are listed based on increasing order of
their indexes of destination vertices. Given sorted edges,
we index the destination of each edge by the offset to the
first destination vertex in this shard, represented by a ar-
ray of IdxOff, for example, as illustrated in Figure 1,
edges with destination 3,4,5 are in shard 1 and destina-
tions’ IdxOff are 0,1,2, respectively.

To improve GPU utilization, we allow each shard to be
fit into the shared memory for high bandwidth. Specifi-
cally, the number of vertices in each shard is determined
by Cshm/(NBlock · Svertex), where Cshm is the size of the
shared memory, NBlock is the number of threads blocks
in the SM and Svertex is the size of one vertex. Howev-
er, if a chunk adopts vertex replication with a factor of
R (described later), the shard size should reduce by R
times. In practice, one block of GPU threads can use up
to 48KB shared memory. Let Svertex ≥ 32 bits for billion-
scale graphs, so each shard contains at most 12K ver-
tices. This also implies that maximum offset in IdxOff
is 12K, so we can use 16-bit integer to represent the index
of destination vertices. This compression could not only
save GPU memory, but also reduce the traffic of copying

196 2017 USENIX Annual Technical Conference USENIX Association

Storage Storage Storage

GPU

Global
Memory Vertex Data

Page

 Host
 Memory

Vertex DataPage PagePage

SM

Dispatcher

CPU

Sync

Secondary Storage

Garaph Architecture

ShardShard

Figure 2: Garaph Architecture

a shard from the host memory to the GPU memory.
To improve the efficiency of CPU-GPU memory copy,

we transfer the shards from host memory to GPU memo-
ry in batch. In the following, we call the set of shards
transferred in a batch as a page. Each page contains
the maximum number of consecutive shards that can be
stored completely in the GPU memory. As we shall de-
scribe later, the system also leverages the multi-stream
feature of GPUs for the overlap of memory copy and ker-
nel execution. Let Ns be the number of streams. In this
case, the page size is chosen as the maximum number of
shards that can be stored in 1/Ns of the GPU memory.

With above graph representations, our system adopts
the following two vertex-centric computation models.
The first is pull model where every vertex updates its
state by pulling the new states of neighboring vertices
through incoming edges. The other is the notify-pull
model where only the active vertices notify their outgo-
ing neighbors to update, who in turn perform local com-
putation by pulling states of their incoming neighbors.
Clearly, this model is more effective in case of few active
vertices. Note that the CSR is only used for notification.
To save memory usage, Garaph does not store the values
of outgoing edges in the CSR (see Figure 1).

2.2 System Architecture.
Figure 2 shows the architecture of Garaph, which con-
sists of three main components: dispatcher, CPU and
GPU computation kernels.
Dispatcher. This functional module is responsible for
loading graph from secondary storages, distributing the
computation over CPU and GPU and making adjustment
if necessary. To exploit I/O parallelism, Garaph parti-
tions the each graph page of into equal-size data blocks,
which are uniformly distributed over multiple secondary
storages (e.g., SSDs) with a hash function.

To process the graph, data blocks are loaded from the
secondary storages to the host memory to construct pages
by the dispatcher. After one page has been constructed,
it will be dispatched to either the CPU or the GPU.
GPU/CPU computation kernel. These two kernels

interface GASVertexProgram(u)
gather(Du,D(u,v),Dv)→ Accum
sum(Accum left,Accum right)→ Accum
apply(Du,Accum)→ Dnew

u
activate(Dnew

u ,Du)→ A[u]

Figure 3: Garaph API

are in charge of graph processing. After receiving a page
from the dispatcher, the GPU kernel processes the shards
of page in a parallel manner, where each shard is pro-
cessed by a block in the GPU. For efficient graph pro-
cessing, only the pull model is enabled on the GPU side.
This is because the notify-pull model can lead to high
frequency of non-coalesced memory accesses because of
poor locality and warp divergence caused by distinguish-
ing active/inactive vertices, significantly limit its perfor-
mance while processing graphs in the GPU.

The CPU kernel enables both pull and notify-pull com-
putation models. To balance the computation across mul-
tiple threads, the kernel divides edges of a page into sets
of equal size, with each thread processing one edge set.
When either of two kernels has processed one page, there
will be a synchronization between the CPU and the GPU.
We shall describe these two kernels in Section 3 and 4.

Garaph enables programs to be executed both syn-
chronously and asynchronously. As the system process-
es the graph page-by-page, we define an iteration as a
complete process over all the pages for one time, irre-
spective of synchronous or asynchronous execution. The
synchronous execution model ensures a deterministic ex-
ecution regardless of the number of machines and closely
resembles Pregel [22]. Changes made to the vertex data
are committed at the end of each iteration and are visible
in the subsequent iteration. When run asynchronously,
changes made to the vertex data are immediately com-
mitted and visible to current and subsequent iterations.
The system terminates the processing if the graph state
converges or a given number of iterations are completed.
Fault Tolerance. Garaph enables fault tolerance by
writing the vertex data to secondary storages periodical-
ly. When Garaph runs synchroniously, Garaph will write
the vertex data into stable storages after one or several
iterations (user-defined). When Garaph runs asynchro-
niously, Garaph will write the updated vertex data from
the main memory into stable storages after one page has
been processed or write the whole vertex data into sta-
ble storages after one or several iterations (user-defined).
When a fault occurs, it loads the vertex data from the
secondary storage and continues to run the application.

2.3 Programming APIs
Garaph implements a modified Gather-Apply-Scatter
(GAS) abstraction used in PowerGraph [10]. For a vertex

USENIX Association 2017 USENIX Annual Technical Conference 197

template<typename T>
h o s t d e v i c e void u n i f i e d A d d (T ∗addr , T v a l) {

i f d e f CUDA ARCH / / For GPU, a t om ic o p e r a t i o n
atomicAdd (addr , v a l) ;

e l s e / / For CPU, non−a tom ic o p e r a t i o n
∗add r += v a l ;

e n d i f
}

Figure 4: Garaph unifiedAdd Operation

u, the gather function is passed the data on the adjacent
vertex Dv and edge D(u,v) and returns a temporary accu-
mulator Accum, which is combined using the commuta-
tive and associative sum operation. When algorithms are
commutative and associative, this abstraction is equiva-
lent to original GAS abstraction [10]. After the gather
phase has completed, the apply function takes the final
accumulator and computes a new vertex value Dnew

u .
In the GAS abstraction, the scatter function is invoked

to produce new edge value Dnew
(u,v) which are written back

to different machines in a distributed environment. How-
ever, Garaph is specific for a non-distributed platform,
where each vertex can access its neighbors’ updated val-
ues in memory so that pushing new data over edges is
unnecessary. Thus, we modify the scatter function to ac-
tivate function which sets A[u] = 1 if vertex u satisfies
the active condition defined in the function (e.g., there is
a significant change in the vertex value), otherwise, the
function sets A[u] = 0 to indicate u is inactive. Figure 3
shows the functions Garaph supports.

Garaph packages a set of operations with atomic and
non-atomic as unified operations (e.g. unifiedAdd in fig-
ure 4) which covers all the atomic operations of CUDA
[25]. In Garaph, users only need to write one kernel code
which could be executed by both CPU and GPU. Since
multiple GPU threads might simultaneously modify the
same memory address, the user-provided sum function
must be atomic on the GPU side. Garaph packages the
non-atomic operations for CPU and the atomic opera-
tions for GPU into one set of operations, so that users
could directly invoke irrespective of implementing the
program on GPU or CPU.

3 GPU-Based Graph Processing

In this section, we first describe how Garaph executes
iterative parallel graph algorithms on the GPU side. We
then propose an vertex replication degree customization
scheme that maximizes the expected GPU performance
given properties of the graph and the GPU.

3.1 Graph Processing Engine
To facilitate efficient processing of graphs on GPU us-
ing shards, the GPU kernel maintains an array named

GPU

 Global Memory
Global

Vertices
Page

1. Initialization

2. Gather

4. Sync

H
ost M

em
o

ry

3. Apply

Local Vertices
3. Apply Shared Memory

/L1 Cache

SM

Shard

Figure 5: GPU-Based Graph Processing Engine

GlobalVertices in the global memory, which allows
quick access to the values of vertices. Current GPUs
can support up to 24GB global memory, whereas the
size of vertices is usually 4 bytes (FP32 or INT) or 2
bytes (FP16). So GPUs can store up to 6 billion (or 12
billion) vertices in global memory, which is sufficient
for most datasets, for example, the largest open source
dataset (HyperLink12 [18]) has 3.5 billion vertices.

Multiple shards of a page are processed by threads
blocks running on many streaming-multiprocessors
(SM) in a parallel manner, where each shard is processed
by a thread block. As illustrated in Figure 5, each shard
in a page is processed by one GPU block in three phas-
es: initialization, gather and apply. When the page has
been processed, the new vertex values are synchronized
between GPU global memory and host memory. Let Si
represent the destination vertices in one shard.
Initialization. At the beginning, the GPU allocates an
array LocalVertices in the shared memory of this SM
to store the accumulate value of each vertex in a shard.
Then, consecutive threads of a block initialize this array
with default vertex values defined by users, e.g., 0 for the
PageRank application.
Gather. Threads of one GPU block process edges
of an individual shard. For each edge (u,v), one
thread fetches vertex and edge data from the glob-
al memory and increases the accumulate value: au ←
sum(au,gather(Du,D(u,v),Dv)),∀v∈Nbr[u]. To have co-
alesced global memory accesses, consecutive threads of
the block read consecutive edges’ data in global memory.
Apply. Each thread of a block updates the vertex value
in the shared memory: Dnew

u ← apply(Du,au),∀u ∈ Si.
Consecutive threads of this block process consecutive
vertices. When executing programs asynchronously, the
system commits new vertex data to the GlobalVertices
array, which are immediately visible to the subsequent
computation. Otherwise, these values are written to a
temporary array in the global memory, which would be
visible in the next iteration.
Synchronization from GPU to CPU. Once the whole
graph page has been processed, the GPU global memo-
ry will be synchronized with the host memory. For pro-
grams executed asynchronously, the system transmits the

198 2017 USENIX Annual Technical Conference USENIX Association

updated values of the GlobalVertices in the GPU glob-
al memory to the array storing the most updated values
of vertices in the host memory. For those executed syn-
chronously, updated values stored in the temporary space
of the GPU global memory are transmitted to a tempo-
rary array in the host memory, which will be committed
after this iteration ends. As the PCIe bus is full-duplex
and most GPUs have two copy engines, the synchroniza-
tion can be overlapped with processing pages in GPU.

3.2 Replication-Based Gather
Our above GPU-accelerated framework provides a con-
venient environment to write graph processing applica-
tions. However, the current design still suffers the write
contention problem in the gather phase, since multiple
threads might collide while simultaneously modifying
the same shared memory address (e.g., processing edges
with the same destination). Such a collision is called as
position conflict. The position conflict typically entails a
need to serialize memory updates that is resolved by us-
ing atomic operations. These consist of a memory read,
an arithmetic operation, and a memory write, entailing
a latency penalty that is proportional to the number of
colliding threads n: a n-way position conflict incurs a
penalty of (n−1)× tposition, where tposition is the process-
ing time of one atomic operation [9].

Notice that natural graphs in the real-world have high-
ly skewed power-law degree distributions, which implies
that position conflicts will be very frequent, especially
for those vertices of high degree. The heavy write con-
tention leads to an immense performance bottleneck on
the GPU side, so its impact on the gather phase should
be alleviated by effective optimization techniques.

A general strategy for reducing the conflicts is repli-
cation, which consists of placing R adjoining copies of
the partial accumulated value a′u in the shared memory
to spread these accesses over more shared memory ad-
dresses. Then these R partial accumulated values are ag-
gregated to calculate the final accumulated value au for a
vertex u. Here, R is called as replication factor.
Mapping and Aggregation To implement the repli-
cation, a mapping function is needed to assign to each
thread a replicated copy of the vertex, where the thread
will perform the atomic operations. For efficient map-
ping, we require the vertices of a shard Si have the same
replica factor of Ri. So for any vertex ui in this shard,
the mapping function used in our system is given by:
addr[u′i] = (i−rs)∗Ri+tid%Ri,∀ui ∈ Si, where addr[u′i]
represents the address of the replica u′i assigned to the
thread tid, and the rs is the beginning index of the shard.

The mapping makes consecutive threads access con-
secutive copies. With the mapping, threads perform
gather on multiple replicas in a parallel manner: a′u ←

0 0 1 1 2 2 3 3

0 0 0 0 2 1 1 0

Src Dst Val

0 2 1

1 2 1

3 2 1

0 3 1

(a) Mapping (R = 2)

0 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1

4 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

Stride L
4

2

1

0

(b) Aggregation (R = 8)

Figure 6: Mapping and Aggregation

sum(a′u,gather(Du,D(u,v),Dv)),∀v∈Nbr[u′], where u′ is
a replica of vertex u.

After all the edges in the shard have been processed,
the system needs a additional phase to aggregate values
of different replicas in the shared memory, i.e., au ←
sum(au,a′u). For fast aggregation, we set Ri = 2n(n≥ 0)
to implement a two-way merge illustrated in Figure 6(b).
In each iteration, the thread tid executes the user-defined
sum function with a stride length of L. Initially, L=Ri/2,
after all replicas are processed, L← L/2 and the next it-
eration begins. This procedure stops until L < 1.
Replication Factor Customization. Although repli-
cation can reduce write conflicts, excessive replication
could still lead to GPU underutilization in that fewer ver-
tices can be fit in the shared memory. To achieve a bal-
anced replication, we propose a replication factor cus-
tomization scheme that maximizes the expected perfor-
mance under given conflict degree and space constraints.

To do so, we model the execution time of the
replication-based gather phase to examine impact of Ri.
Let Vi, Ei be the number of destination vertices and edges
in a shard Si, and let tl and ta be the time of accessing the
global memory and executing an atomic operation in the
shared memory, respectively.

In the gather phase, to process a shard Si with repli-
cation factor Ri, threads read Ri×|Vi| vertices’ data and
|Ei| edges’ data from the global memory into the shared
memory, thus taking Ri× |Vi| × tl and |Ei| × tl , respec-
tively. In the shared memory, threads execute |Ei| atom-
ic operations with the average conflict degree of |Ei|

|Vi|×Ri
,

which takes |Ei|2
|Vi|×Ri

× ta. The final step of aggregation
takes |Vi| × ta × logRi. Thus, the total time TG(Ri) of
processing the shard Si is given by:

TG(Ri) = Ri|Vi|tl + |Ei|tl +
|Ei|2

|Vi|Ri
ta + |Vi|ta logRi. (1)

Our goal is to find the Ri minimizing TG(Ri). We sim-
plify the above equation with logRi � Ri, and T (Ri) is

minimized when Ri×|Vi|× tl =
|Ei|2
|Vi|×Ri

× ta.
Solving the above equation, we get the best replica-

tion factor for a shard Si as: Ri =
|Ei|
|Vi| ·

ta
tl

. In practice,

ta ≈ tl , and we get Ri =
|Ei|
|Vi| . Notice that position con-

flicts between two consecutive threads will be complete-

USENIX Association 2017 USENIX Annual Technical Conference 199

Page

0 1 2 r0 r0 r1 r_{p-1} n

Rep Rep Rep

1. Gather

GlobalVertices

Aggregation

2. Apply
Thread 0 Thread 1 Thread Thread p-1

LocalVertices

Figure 7: Processing with Edge Partitions on the CPU

ly removed when the replication factor is up to 32, i.e.,
one copy for each thread of one warp [13]. Also recall
Ri = 2n(n ≥ 0) for efficient aggregation, so we choose
the value of 2n form that is closest to average degree of a
shard as its final replication factor:

Ri = 2min
{⌈

log |Ei |
|Vi |
−0.5

⌉
,5
}
. (2)

Our replication policy suggests that the number of
replicas for each vertex should be customized to the av-
erage degree of vertices in a given shard. Specifically,
shards containing more high-degree vertices tend to have
higher replication degrees for a larger probability of re-
duction in conflicts.

4 CPU-Based Graph Processing

In this section, we first describe the graph processing of
Garaph on the CPU side, which adopts a balanced edge-
based partition to exploit full parallelism. We then de-
scribe the dual-mode processing model of Garaph, which
adaptively switches between the pull/notify-pull modes
according to the density of active vertices in the page.

4.1 Processing with Edge Partitions

Existing single-node graph systems treat vertices sym-
metrically and parallelize the graph processing by as-
signing each thread a subset of vertices to process. How-
ever, this method leads to substantial computation imbal-
ance due to the power-law degree distribution. Further, it
also increases the random memory access of edge data if
adjacent vertices are assigned to different threads. These
issues degrade the overall system performance.

Different from common systems, Garaph adopts edge-
centric partition. As illustrated in Figure 7, the edges
of a page are equally partitioned across threads, where
multiple CPU threads process independent edge sets in a
parallel manner. Vertices cut at the partition boundaries
would be replicated, and the system would aggregate the
replicas’ values to obtain the vertex value. This partition
enhances the sequential access of edge data and improves
work balance over threads.

The CPU engine also maintains a GlobalVertices ar-
ray in the host memory for quick access to values of ver-
tices. Each page is processed in three stage: initializa-
tion, gather, apply. If a page has been processed on the
GPU side, the system also synchronizes new vertex val-
ues between the GPU memory and the host memory. For
a common graph application, the processing is done by
pulling new vertex states along outgoing edges, until the
graph state converges (e.g., no active vertices) or a given
number of iterations are completed. Vertices with signif-
icant state change are called active vertices (determined
by activate() function). We use a bitmap A to indicates
the inactive/active state of each vertex.

Initialization. Let nt be the number of CPU threads.
The edges of the page is divided to nt partitions of the
same size, and thread tid processes the tidth partition.
The fist and last vertices of partition will create a repli-
ca respectively if they are cut at the boundaries. So the
number of replicas is at most nt − 1. Each CPU thread
maintains a LocalVertices array to store the accumulate
values of destination vertices in the corresponding par-
tition. Like the GPU, this array is initialized with the
vertices’ default value defined by users.

Gather. Each partition of the page is processed by one
CPU thread. For each edge, the CPU thread performs
gather and updates the accumulate value au in LocalVer-
tices with sum function. Edges are processed in a se-
quential order whereas the source vertices’ values are
accessed randomly by each thread. After each thread
has processed its partition, an aggregation phase aggre-
gates values of vertices replicated at the partition bound-
aries. Recall that the number of replicas is at most nt−1,
which is small enough for one CPU thread to process.
In Garaph, thread 0 scans the whole partitions in the re-
verse order and aggregates values of replicated vertices,
as illustrated in Figure 7.

Apply. After the gather phase of each page is fin-
ished, every thread updates vertices’ values in their own
LocalVertices array. For each partition, if the first vertex
is replicated, it will be ignored because its value has al-
ready been aggregated to the last vertex of the previous
adjacent partition. For each vertex in a partition, the cor-
responding thread calls activate() function to examine if
the vertex is active or not and updates the bitmap A.

Synchronization from CPU to GPU. As described in
Section 3.1, after the GPU has processed a page, it sends
the corresponding vertex values to the host memory.
When receiving the new values, the system first calls Ac-
tivate() function to update the bitmap A of these updated
vertices. When runs asynchronously, the system enables
the updates received from the GPU immediately visible
through writing them into the GlobalVertices array of
host memory. After that, the system sends back new ver-

200 2017 USENIX Annual Technical Conference USENIX Association

tices updated on CPU side to the GPU and overwrites
the corresponding part of the GlobalVertices array in the
GPU global memory. When run synchronously, the sys-
tem stores updated values in a temporary array, and com-
mits these new values at the end of each iteration. In this
case, the CPU transmits the new GlobalVertices array to
that in the GPU memory at the end of each iteration.

4.2 Dual-Mode Processing Engine

To this end, our CPU-based processing engine adopts a
pull mode where every vertex performs local computa-
tion by pulling the states of neighboring vertices through
incoming edges. However, a vertex needs to be updat-
ed only when one of its source vertices is active in the
previous iteration. Thus, another way to process vertices
is notify-pull mode where only the vertices activated in
the last iteration notify their outgoing neighbors, who in
turn perform local computation by pulling states of their
incoming neighbors. Intuitively, the notify-pull mode is
more efficient when few vertices are active in the last it-
eration (sparse active vertex set), as the system only tra-
verses the outgoing edges of active vertices where new
updates to be made. In contrast, the pull mode is more
beneficial when most vertices are activated (dense active
vertex set), which avoids the extra cost of notifications.

At a given time during graph processing, the active
vertex set may be dense or sparse. For example, SSSP or
the BFS starts from a very sparse set, becoming denser
as more vertices being activated by their in-neighbors,
and sparse again when the algorithm approaches conver-
gence. To incorporate the benefits of both modes, we
extend our CPU processing to a dual engine design de-
termined by the size of the vertex set VA = {v|(u,v) ∈
E,A[u] = true} given graph G(V,E), i.e., the outgoing
neighbors of vertices activated in the last iteration.

We first consider the case where the graph representa-
tions can be completely loaded into the host memory. Let
Tpull be the time of graph processing in the pull mode.
Clearly, Tpull is independent of |VA|. In contrast, the
notify-pull mode only notifies a fraction of f = |VA|/|V |,
who are updated in turn. Hence, we estimate the average
processing time in this mode as Tnoti f y−pull = 2 f Tpull , as
the time to notify is at most equal to pulling state along
edges. So the system would adopt notify-pull mode if
the f ≤ 1/2 (i.e., Tnoti f y−pull < Tpull), otherwise, the pull
model would be adopted.

However, for the scenario where only part of graph
can be loaded into the host memory, the system entails
I/O cost due to sequential and random accesses of out-
going/incoming edges on secondary storage for pull and
notify-pull modes respectively. Let k (k > 1) be the rate
of speeds between sequential read and random read (e.g.,
k≈ 10 in SSD), the Tnoti f y−pull = 2k f ·Tpull . In this case,

the system would adopt notify-pull mode if f ≤ 1
2k .

Let Γ= {u|A[u] = 1} be the set of active vertices in the
last iteration, the system can estimate f ≈ ∑u∈Γ du

|E| where
du is the out-degree of an active vertex u and E is the set
of edges. Garaph estimates f in the beginning of each
iteration and choose which mode to use based on f .

5 Dispatcher

We have discussed how to design and optimize graph
processing kernel for efficient execution on both GPU
and CPU sides. To further improve the performance, we
propose an adaptive scheduling mechanism to exploit the
overlap of two engines. Besides, we also perform multi-
stream scheduling for data transfer and GPU kernel ex-
ecution overlap. Below we shall detail each scheduling
strategy respectively.

5.1 CPU-GPU Scheduling
We first determine when it is beneficial to adopt GPU ac-
celeration. From Section 4.2 we know that the process-
ing time with only CPU kernel is TCPU = min{2 f ρ,1} ·
Tpull , where f is the fraction of vertices to be updated and
Tpull is processing time in the pull mode. Here, ρ = 1 if
the graph representations can be fit into the host memory,
otherwise, ρ = k, which is the rate of speeds between se-
quential read and random read of secondary storage. No-
tice that GPU-based kernel needs to process all the edges
of a given page, so the GPU’s processing time TGPU is
independent of f . Therefore, if TCPU < TGPU , the system
adopts CPU kernel only due to sparse active vertex set.
Otherwise, Garaph adopts both GPU and CPU kernels to
reduce the overall time of the processing.

Based on the above insight, our scheduler works as
follows: At beginning of every iteration, the scheduler
calculates the following ratio of TCPU to TGPU :

α = min{2 f ρ,1} ·
Tpull

TGPU
, (3)

where the fraction Tpull/TGPU is initialized by the speed
ratio of CPU/GPU hardwares, and is updated once both
kernels have begun to process pages. Specifically, let
t p
cpu and t p

gpu be the measured time to process a page
via CPU and GPU kernels, respectively, we can estimate
Tpull/TGPU = t p

cpu/(f · t p
gpu).

In the case of α < 1, only CPU kernel is used for graph
processing in this iteration as most vertices are inactive
(e.g., a very small f). Otherwise, the system processes
graph pages in parallel on both CPU and GPU kernels. In
the hybrid mode, the system reactively assigns a page to a
(GPU or CPU) kernel once the kernel becomes free. The
processing is finished if the graph state converges (i.e.,
f = 0) or a given number of iterations are completed.

USENIX Association 2017 USENIX Annual Technical Conference 201

Graph |V | |E| Max
in-deg

Avg
deg

Size
edgelist

uk-2007@1M 1M 41M 0.4M 41 0.6GB
uk-2014-host 4.8M 51M 0.7M 11 0.8GB
enwiki-2013 4.2M 0.1B 0.4M 24 1.7GB
gsh-2015-tpd 31M 0.6B 2.2M 20 10GB
twitter-2010 42M 1.5B 0.8M 35 27GB
sk-2005 51M 1.9B 8.6M 39 35GB
renren-2010 58M 2.8B 0.3M 48 44GB
uk-union 134M 5.5B 6.4M 41 0.1TB
gsh-2015 988M 34B 59M 34 0.7TB

Table 1: Graph datasets [19, 5, 4, 23] used in evaluation.

5.2 GPU Multi-Stream Scheduling
To trigger the graph processing on the GPU side, there
are two threads running on the host: the transmission
thread and the computation thread. The former thread
continuously transmits each page from the host memo-
ry to GPU’s global memory. The later thread launches
a new GPU kernel to process the page that has already
been transmitted.

Using NVIDIA’s Hyper-Q feature [24], we perform
multi-stream scheduling for the pipelining of CPU-GPU
memory copy and kernel execution, so that the pro-
cessing tasks of pages can be dispatched onto multi-
ple streams and handled concurrently. In particular, we
schedule tasks of processing pages onto Nstream streams,
the transmission thread periodically examines which
stream is idle, and dispatches the transmission task of one
page to the idle stream, where pages are asynchronous-
ly transferred from the host memory to the GPU global
memory. The computation thread periodically examines
which page has been completely transferred, and triggers
the computation of that page by dispatching the com-
putation task to the corresponding stream. This multi-
stream scheduling enables a high overlapping between
CPU-GPU memory copy and kernel execution.

6 Evaluation

In this section, we describe and evaluate our implemen-
tation of the Garaph system. Garaph is implemented in
more than 8,000 lines of C++ and CUDA code, com-
piled by GCC 4.8 and CUDA 8.0 on Ubuntu 14.04 with
O3 code optimization. In the CPU processing kernel, the
number of processing threads is equal to the number of
CPU cores by default. In the dispatcher module, each I/O
thread reads/writes one secondary storage device so that
threads process I/O operations in a parallel manner.

The experiments are performed on a system with
Nvidia GeForce GTX 1070 which has 15 SMs (1920
cores) and 8GB global memory. On the host side, there
is an Intel Haswell-EP Xeon E5-2650 v3 CPU with 10
cores (hyper-threading enabled) operating at 2.3 GHz

clock frequency, and 64GB dual-channel memory. PCI
Express 3.0 lanes operating at 16x speed transfer data
between the host DDR4 RAM (CPU side) and the device
RAM (GPU side).

We use the real-world graphs in Table 1 for evaluation.
The largest graph is the gsh-2015 graph with about 1 bil-
lion vertices and 34 billion edges. We use six represen-
tative graph analytics applications: single source short-
est paths (SSSP), connected components (CC), PageR-
ank (PR) [26], neural network (NN) [3], heat simulation
(HS) [16], circuit simulation (CS) [16]. We run PR, NN,
HS, CS for 10 iterations and CC, SSSP till convergence.
To get stable performance, the reported runtime is calcu-
lated as the average time of 5 runs.

6.1 Comparison with Other Systems

We compare Garaph of hybrid CPU/GPU kernels
(marked as Garaph-H in Table 2) with four state-
of-the-art systems: shared-memory systems including
CuSha [16], Ligra [32] and Gemini [36], and one
secondary-storage-based system GraphChi [17]. Here,
CuSha is a GPU framework for processing graphs that
can be fit in the GPU memory. To show the performance
of each kernel, we also give the performance of Garaph
with CPU-kernel only and GPU-kernel only (marked as
Garaph-C and Garaph-G in Table 2, respectively).

For datasets that can be placed in host memory, Table 2
presents the performance of evaluated systems. Benefit
from customized replication for reducing position con-
flicts, Garaph-G significantly outperforms CuSha in all
cases, 2.34x on average and up to 3.38x for PR on the
uk-2014-host dataset. Garaph-G also outperforms oth-
er CPU-based systems in compute-intensive applications
such as PR, NN, HS and CS. But for SSSP and CC, both
Garaph-G and CuSha take longer time to get conver-
gence, as they have to process the whole graph despite
of a few active vertices to be processed.

With balanced replication and the optimization for se-
quential memory access, Garaph-C also outperforms ex-
isting systems in many cases: e.g., for PR excluding
enwiki-2013 and sk-2005 datasets, for NN and SSSP ex-
cluding renren-2010 dataset and for CC in all datasets.
Adaptive dual-mode processing engine enables Garaph-
C to significantly outperform GPU-based systems in the
cases of SSSP and CC.

The above results reveal that Garaph-G is suitable for
compute-intensive applications whereas and Garaph-C
performs well in applications like SSSP and CC. With
the CPU-GPU scheduling, Garaph-H combines the ad-
vantages of both Garaph-C and Garaph-G. As a result,
Garaph-H significantly outperforms other systems in all
cases, e.g., 2.56x on average and up to 5.36x for CC on
the twitter-2010 dataset.

202 2017 USENIX Annual Technical Conference USENIX Association

PR NN
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 0.48 0.77 0.43 0.43 0.20 0.16 0.70 0.78 0.44 0.33 0.33 0.20
uk-2014-host 0.83 1.06 0.74 0.60 0.25 0.22 0.82 0.98 0.88 0.46 0.41 0.26
enwiki-2013 1.39 1.80 0.96 1.29 0.49 0.39 1.63 1.27 1.18 0.96 0.81 0.52
gsh-2015-tpd - 11.80 8.08 7.80 2.91 2.42 - 11.00 7.78 5.91 4.83 3.36
twitter-2010 - - 22.82 22.40 7.50 6.13 - - 20.67 18.53 11.80 8.61
sk-2005 - - 15.85 17.18 9.38 6.83 - - 18.42 12.46 15.67 9.73
renren-2010 - - 84.63 79.77 22.54 20.89 - - 67.60 73.50 22.47 20.63

SSSP CC
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 6.57 0.57 1.42 0.56 3.95 0.48 0.50 0.45 0.38 0.20 0.20 0.14
uk-2014-host 13.93 0.73 2.19 0.72 5.88 0.57 1.20 0.62 0.72 0.24 0.54 0.17
enwiki-2013 11.56 0.99 1.73 0.92 5.54 0.70 0.97 0.80 0.77 0.45 0.44 0.28
gsh-2015-tpd - 8.36 9.54 6.70 14.51 4.32 - 7.47 5.14 2.58 2.62 1.21
twitter-2010 - - 26.97 23.24 42.49 12.75 - - 17.78 8.78 12.04 3.32
sk-2005 - - 61.04 26.82 1335.29 18.13 - - 13.33 6.49 22.53 4.74
renren-2010 - - 54.60 73.00 615.82 26.79 - - 41.80 35.79 205.03 8.55

HS CS
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 0.80 0.87 0.30 0.39 0.33 0.23 0.80 0.87 0.32 0.43 0.33 0.23
uk-2014-host 0.98 1.06 0.71 0.55 0.41 0.29 0.99 1.06 0.83 0.59 0.41 0.29
enwiki-2013 1.95 1.69 0.98 1.14 0.81 0.55 1.95 1.44 0.91 1.19 0.81 0.55
gsh-2015-tpd - 13.80 6.15 6.67 4.84 3.40 - 11.10 6.30 4.84 7.20 3.45
twitter-2010 - - 18.83 21.17 11.81 9.11 - - 16.10 21.74 11.80 8.99
sk-2005 - - 13.52 14.34 15.66 9.95 - - 13.24 15.33 15.66 10.62
renren-2010 - - 78.10 82.97 22.47 21.53 - - 59.51 83.84 22.47 21.29

Table 2: Runtime (in seconds) of six applications in memory. ’-’ indicates incompletion due to running out of memory.

PR CC
Graph GraphChi Garaph GraphChi Garaph

In-memory (10 iters for PR, convergence for CC.)
uk-2007@1M 2.58 0.16 12.47 0.20
uk-2014-host 4.55 0.22 21.17 0.24
enwiki-2013 7.39 0.39 27.46 0.46
gsh-2015-tpd 39.69 2.42 179.27 1.21
twitter-2010 253.45 6.13 618.58 3.32
sk-2005 - 6.83 - 4.74
renren-2010 - 20.89 - 8.55

Secondary Storage (5 iters for PR and CC.)
uk-union 899 161 2558 157
gsh-2015 11595 2269 13897 1383

Table 3: Runtime (in seconds) of PR and CC in memory
and secondary storages (three SATA SSDs). ’-’ indicates
incompletion due to running out of memory.

As uk-union and gsh-2015 datasets can be only placed
in secondary storage, CuSha, Ligra and Gemini cannot
run any applications due to the limit of memory capacity.

We compare Garaph with GraphChi in two ways:
(1) For datasets that can be fit in memory, we redirect
GraphChi’s I/O operations from secondary storages to
memory by modifing its open-source code. We run PR
for 10 iterations and CC till convergence. (2) For datasets
that need the extension of secondary storage, we run
GraphChi on a Raid-0 provided by three SATA SSDs.
In this case, Garaph also uses the same SSDs managed
by the dispatcher. We only run 5 iterations for PR and
CC on large-scale graphs such as uk-union and gsh-2015
that are very time-consuming to get convergence.

Table 3 shows that Garaph outperforms GraphChi in

all cases. The experiments of in-memory graphs demon-
strate that Garaph’s computation engine is more efficient
than GraphChi. There are three reasons why Garaph out-
performs GraphChi for SSD-based computation: First,
benefiting from the the compressed graph representation,
Garaph can use less space to store graph data. Second,
GraphChi needs both read data from SSDs and write data
to SSDs, which may also cause I/O conflicts. Garaph on-
ly reads data from SSDs. Futher, in SSDs, the sequential
read speed is much faster than the sequential write speed.
Finally, according to our tests, Garaph’s disk manager
is more efficient than the RAID-0 supported by the raid
card which is not linear scalable. Note this is a just pre-
liminary result of adopting the secondary storages. We
shall try PCIe SSDs or NVMs in the future work.

6.2 Customized Replication

In this section, we evaluate the performance of the cus-
tomized replication on the GPU side. We partition the sk-
2005 dataset into 33 subgraphs (pages) of similar sizes
but different topological structures. We run PR on these
pages to evaluate the runtime (computation time only) of
each page by using the CUDA toolkit profiler.

Figure 8 shows the runtime of each page in one iter-
ation with/without replication. Without replication, the
processing time of pages varies significantly, where the
slowest one is about 45.17x slower than the fastest one.
We also find that the correlation between the runtime
and the maximum degree of individual pages is 0.9853,
which implies that the time of processing a page is main-

USENIX Association 2017 USENIX Annual Technical Conference 203

0 5 10 15 20 25 30

Page No.

0

500

1000

1500

2000

2500

T
im

e
 (

m
s
)

No Replication

Customized Replication

Figure 8: Per-page runtime (computation time only) of PR on
the sk-2005 dataset

0 5 10 15 20 25 30 35

Replication Factor

0

20

40

60

80

100

T
im

e
 (

s
)

Fixed Replication Factor

Customized Replication

14.87

8.6

Figure 9: Runtime with different replication factors, the
X-axis of customized replication is the average of Ri.

0 10 20 30 40

Iteration No.

0

2000

4000

6000

T
im

e
 (

m
s
) Notify-Pull

Pull

(a) SSSP: twitter-2010

0 10 20 30 40

Iteration No.

0

1

2

T
im

e
 (

m
s
)

10
4

Notify-Pull

Pull

(b) SSSP: renren-2010

0 5 10 15 20

Iteration No.

0

2000

4000

6000

T
im

e
 (

m
s
) Notify-Pull

Pull

(c) CC: twitter-2010

0 10 20 30 40

Iteration No.

0

1

2

T
im

e
 (

m
s
)

10
4

Notify-Pull

Pull

(d) CC: renren-2010

Figure 10: Runtime under notify-pull and pull modes, “o” indicates the iteration where Garaph switches modes.

ly impacted by the vertices of high degree. In contrast,
with the customized replication, the processing time of
pages is much more balanced and efficient, getting a
4.84x speedup on average (up to 32.15x), significantly
reducing the overall time.

We next show customized replication can gain a bet-
ter performance than a fixed replication factor. To do so,
we run 10 iterations PR on the sk-2005 dataset with the
fixed factor R ∈ {1,2,4,8,16,32} for the whole graph.
Figure 9 shows that the runtime (computation time only)
decreases at the beginning and increases with the grow-
ing of R. Customized Ri according to equation (2) gets
the best performance of 8.6s, getting 1.73x speedup than
the best one (14.87s) among all fixed factors.

6.3 Dual Modes of the CPU Kernel

Adaptive switching between pull and notify-pull modes
according to the density of active vertices improves the
performance of Garaph-C significantly. We propose an
experiment by forcing Garaph-C to run under the two
modes for each iteration respectively to illustrate the ne-
cessities of the dual-mode abstraction.

Figure 10 shows that the performance gap between
notify-pull and pull modes is quite significant. For SSSP,
the notify-pull mode outperforms the pull mode in most
iterations, except several iterations where most vertices
are updated. For CC, the pull mode only outperforms
the notify-pull mode at the first few iterations when most
of the vertices remain active. However, with switching
model proposed in Section 4.2, Garaph-C is able to adopt
the better mode for each iteration. We see that the switch
of Garaph-C occurs at the next iteration around the inter-
section of the two modes’ performance curves.

CuSha Ligra GraphChi Gemini Garaph
enwiki-2013 47.57 70.45 41.1 17.96 26.2
gsh-2015-tpd - 442 249 107.21 137.6
twitter-2010 - - 654 266.18 353.8

Table 4: Preprocessing Cost (in seconds) of PR

6.4 Scheduling Performance

To demonstrate the speedup of processing graphs on a
hybrid platform (compared to processing it on the host
only or the GPU only), we run SSSP and CC on twitter-
2010 and renren-2010 datasets under CPU-only, GPU-
only and hybrid for each iteration, respectively.

As Figure 11 shows, Garaph-H gains much better per-
formance by combing CPU and GPU kernels. For both
SSSP and CC, when a few vertices are active, Garaph-
H chooses to only use the CPU to process graphs with
notify-pull model. However, when most of vertices are
active, Garaph-H switches to pull mode in the CPU ker-
nel, and the GPU also joins in computation and acceler-
ates the processing significantly. In contrast, The runtime
of the Garaph-C incurs long processing time when most
of vertices are active, whereas Garaph-G remains con-
stant because the amount of computation does not change
in all iterations of SSSP and CC.

6.5 Preprocessing Cost

Finally, we evaluate the preprocessing cost of Garaph
compared to CuSha, Ligra, Gemini and GraphChi on
a RAID-0 provided by three SATA SSDs. Garaph and
GraphChi will write preprocessed data into secondary
storages. Garaph’s preprocessing is light-weight, which
only needs to scan the input data twice to build the CSC
and the CSR data. Table 4 shows the preprocessing cost

204 2017 USENIX Annual Technical Conference USENIX Association

0 10 20 30 40

Iteration No.

0

500

1000

1500

2000
T

im
e

 (
m

s
)

CPU

GPU

Hybrid

(a) SSSP: twitter-2010

0 10 20 30 40

Iteration No.

0

2000

4000

6000

8000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(b) SSSP: renren-2010

0 5 10 15 20

Iteration No.

0

500

1000

1500

2000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(c) CC: twitter-2010

0 10 20 30 40

Iteration No.

0

2000

4000

6000

8000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(d) CC: renren-2010

Figure 11: Runtime under CPU-only, GPU-only and hybrid modes in two datasets.

of PR on three graphs. It is clear that Garaph’s prepro-
cessing is faster than CuSha, Ligra and GraphChi. As
Garaph needs to write preprocessed data to secondary
storages, Garaph’s preprocessing is slower than Gemini.

7 Related Works

In recent years, a large number of graph processing sys-
tems have been proposed [36, 28, 37, 7, 16, 11, 32, 29,
21, 17, 10, 2, 27, 22, 35, 33]. We mention here only those
most closely related to our work.

GPUs provide a massive amount of parallelism with
the potential to outperform CPUs. Numerous graph pro-
cessing systems [33, 16, 35, 31] have been proposed
to use GPUs for high-performance graph processing.
Medusa [35] is a generalized GPU-based graph process-
ing framework that focuses on abstractions for easy pro-
gramming and scaling to multiple GPUs. CuSha [16] pri-
marily focuses on exploring new graph representations
to allow faster graph processing. It uses two graph repre-
sentations G-Shards and Concatenated Windows to im-
prove coalesced memory access and GPU utilization. In
CuSha, vertices’ values are stored in shards and CuSha
needs a phase to write updated values to shards. This
design would incur significant data transfer cost between
GPU and CPU if it enxtened data to host memory. In
Garaph, updated vertices’ values are written to global
memory instead of shards. Further, CuSha incurs heavy
conflicts without any data replicaiton. However, Garaph
adopts the replication-based gather to reduce conflicts.
Futher, both Medusa and CuSha cannot process graphs
exceeding the GPU memory capacity.

To scale out GPU-accelerated graph processing,
TOTEM [8] is a processing engine that provides a con-
venient environment to implement graph algorithms on
hybrid CPU and GPU platforms. TOTEM can process
graphs whose size is smaller than the host memory ca-
pacity. gGraph [34] is another hybrid CPU-GPU system
which uses hard-disk drives (HDDs) as secondary stor-
ages. For load balancing, both systems initially partition
graph into subgraphs that are proportional to the process-
ing power of CPUs and GPUs.

However, existing GPU-accelerated systems cannot
fully utilize the GPU for processing large-scale graphs
due to ignoring heavy write contention caused by skewed

power-law degree distributions and properties of graph
algorithms. Garaph further exploits the replication and
dynamical scheduling to achieve the best performance on
the CPU/GPU hybrid platform.

Shared-memory graph processing systems provide ei-
ther a push-based [22, 30, 2, 15] or a pull-based mod-
el [21, 10, 11, 6, 7], or a switchable model [32, 12,
36]. Garaph modifies push/pull models of Ligra [32]
to notify-pull/pull models to achieve lock-free process-
ing. In particular, Ligra’s push operations are atom-
ic, whereas our notify-pull/pull model is lock-free with
edge-based partitioning. Also, Ligra’s critical switch-
ing parameter is set by experience, which may not be
the best parameter for different applications and datasets.
However, notify-pull/pull model is switched by the data-
driven model, and thus can achieve a better performance.

8 Conclusion

In this work, we designed a general graph processing
platform called Garaph which can efficiently process
large-scale graphs using both CPUs and GPUs on a sin-
gle machine. We design critical system components
such as replication-based GPU kernel, optimized CPU
kernel with edge-based partition and dual computation
modes, and dispatcher with dynamic CPU-GPU schedul-
ing. Our deployment and evaluation reveal demonstrate
that Garaph can fully explore both CPU and GPU par-
allelism for graph processing. Although Garaph is de-
signed for a single machine, the proposed techniques
could also be easily applied to distributed, CPU/GPU hy-
brid systems. Garaph focuses on systems with fast stor-
age (e.g., RAM, or NVM/PCIe-SSD arrary). However,
for enviorment with slow secondary storages (e.g., HDD-
based system), other optimizations on I/O of secondary
storages should be introduced to allivate the bottleneck.

Acknowledgements

Authors would like to thank Christopher J. Rossbach, our
shepherd, and the anonymous reviewers for their insight-
ful comments. This work was supported by the National
Natural Science Foundation under Grant No. 61472009
and Shenzhen Key Fundamental Research Projects under
Grant No. JCYJ20151014093505032.

USENIX Association 2017 USENIX Annual Technical Conference 205

References
[1] ABOU-RJEILI, A., AND KARYPIS, G. Multilevel algorithms

for partitioning power-law graphs. In Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International
(2006), IEEE, pp. 10–pp.

[2] AVERY, C. Giraph: Large-scale graph processing infrastructure
on hadoop. Proceedings of the Hadoop Summit. Santa Clara 11
(2011).

[3] BAKHODA, A., YUAN, G. L., FUNG, W. W., WONG, H., AND
AAMODT, T. M. Analyzing cuda workloads using a detailed
gpu simulator. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on (2009),
IEEE, pp. 163–174.

[4] BOLDI, P., CODENOTTI, B., SANTINI, M., AND VIGNA, S.
Ubicrawler: A scalable fully distributed web crawler. Software:
Practice & Experience 34, 8 (2004), 711–726.

[5] BOLDI, P., MARINO, A., SANTINI, M., AND VIGNA, S. BUb-
iNG: Massive crawling for the masses. In Proceedings of the
Companion Publication of the 23rd International Conference on
World Wide Web (2014), International World Wide Web Confer-
ences Steering Committee, pp. 227–228.

[6] CHEN, R., DING, X., WANG, P., CHEN, H., ZANG, B., AND
GUAN, H. Computation and communication efficient graph pro-
cessing with distributed immutable view. In Proceedings of the
23rd international symposium on High-performance parallel and
distributed computing (2014), ACM, pp. 215–226.

[7] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), ACM, p. 1.

[8] GHARAIBEH, A., REZA, T., SANTOS-NETO, E., COSTA, L. B.,
SALLINEN, S., AND RIPEANU, M. Efficient large-scale graph
processing on hybrid cpu and gpu systems. arXiv preprint arX-
iv:1312.3018 (2013).

[9] GOMEZ-LUNA, J., GONZALEZ-LINARES, J. M., BENITEZ, J.
I. B., AND MATA, N. G. Performance modeling of atomic addi-
tions on gpu scratchpad memory. IEEE Transactions on Parallel
and Distributed Systems 24, 11 (2013), 2273–2282.

[10] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In OSDI (2012), vol. 12, p. 2.

[11] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing
in a distributed dataflow framework. In OSDI (2014), vol. 14,
pp. 599–613.

[12] HAN, W., MIAO, Y., LI, K., WU, M., YANG, F., ZHOU, L.,
PRABHAKARAN, V., CHEN, W., AND CHEN, E. Chronos: a
graph engine for temporal graph analysis. In Proceedings of the
Ninth European Conference on Computer Systems (2014), ACM,
p. 1.

[13] HARRIS, M., ET AL. Optimizing parallel reduction in cuda.
NVIDIA Developer Technology 2, 4 (2007).

[14] INTEL. Intel ssd dc p3608 series product brief. Tech. rep., 2015.

[15] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: a system for dynamic
load balancing in large-scale graph processing. In Proceedings of
the 8th ACM European Conference on Computer Systems (2013),
ACM, pp. 169–182.

[16] KHORASANI, F., VORA, K., GUPTA, R., AND BHUYAN, L. N.
Cusha: vertex-centric graph processing on gpus. In Proceedings
of the 23rd international symposium on High-performance par-
allel and distributed computing (2014), ACM, pp. 239–252.

[17] KYROLA, A., BLELLOCH, G. E., GUESTRIN, C., ET AL.
Graphchi: Large-scale graph computation on just a pc. In OS-
DI (2012), vol. 12, pp. 31–46.

[18] LEHMBERG, O., MEUSEL, R., AND BIZER, C. Graph structure
in the web: Aggregated by pay-level domain. In Proceedings of
the 2014 ACM conference on Web science (2014), ACM, pp. 119–
128.

[19] LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/
data, June 2014.

[20] LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MAHONEY,
M. W. Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clusters. Internet
Mathematics 6, 1 (2009), 29–123.

[21] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-
ROLA, A., AND HELLERSTEIN, J. M. Distributed graphlab: a
framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment 5, 8 (2012), 716–727.

[22] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management
of data (2010), ACM, pp. 135–146.

[23] MISLOVE, A., MARCON, M., GUMMADI, K. P., DRUSCHEL,
P., AND BHATTACHARJEE, B. Measurement and Analysis of
Online Social Networks. In Proceedings of the 5th ACM/Usenix
Internet Measurement Conference (IMC’07) (San Diego, CA,
October 2007).

[24] NVIDIA. Kepler gk110 architecture whitepaper, v1.0. Tech. rep.,
2012.

[25] NVIDIA. CUDA C Programming Guide. nvidia, 2017.

[26] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web. Tech. rep.,
Stanford InfoLab, 1999.

[27] PINGALI, K., NGUYEN, D., KULKARNI, M., BURTSCHER, M.,
HASSAAN, M. A., KALEEM, R., LEE, T.-H., LENHARTH, A.,
MANEVICH, R., MÉNDEZ-LOJO, M., ET AL. The tao of par-
allelism in algorithms. In ACM Sigplan Notices (2011), vol. 46,
ACM, pp. 12–25.

[28] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), ACM, pp. 410–424.

[29] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
edge-centric graph processing using streaming partitions. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 472–488.

[30] SALIHOGLU, S., AND WIDOM, J. Gps: A graph processing
system. In Proceedings of the 25th International Conference on
Scientific and Statistical Database Management (2013), ACM,
p. 22.

[31] SEO, H., KIM, J., AND KIM, M.-S. Gstream: A graph stream-
ing processing method for large-scale graphs on gpus. In ACM
SIGPLAN Notices (2015), vol. 50, ACM, pp. 253–254.

[32] SHUN, J., AND BLELLOCH, G. E. Ligra: a lightweight graph
processing framework for shared memory. In ACM Sigplan No-
tices (2013), vol. 48, ACM, pp. 135–146.

[33] WANG, Y., DAVIDSON, A., PAN, Y., WU, Y., RIFFEL, A., AND
OWENS, J. D. Gunrock: A high-performance graph processing
library on the gpu. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(2016), ACM, p. 11.

206 2017 USENIX Annual Technical Conference USENIX Association

[34] ZHANG, T., ZHANG, J., SHU, W., WU, M.-Y., AND LIANG, X.
Efficient graph computation on hybrid cpu and gpu systems. The
Journal of Supercomputing 71, 4 (2015), 1563–1586.

[35] ZHONG, J., AND HE, B. Medusa: Simplified graph processing
on gpus. IEEE Transactions on Parallel and Distributed Systems
25, 6 (2014), 1543–1552.

[36] ZHU, X., CHEN, W., ZHENG, W., AND MA, X. Gemini: A
computation-centric distributed graph processing system. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16)(Savannah, GA (2016).

[37] ZHU, X., HAN, W., AND CHEN, W. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical
partitioning. In USENIX Annual Technical Conference (2015),
pp. 375–386.

USENIX Association 2017 USENIX Annual Technical Conference 207

GPU Taint Tracking

Ari B. Hayes
Rutgers University

Lingda Li∗

Brookhaven National Lab
Mohammad Hedayati

University of Rochester

Jiahuan He
Rutgers University

Eddy Z. Zhang
Rutgers University

Kai Shen
Google

Abstract
Dynamic tainting tracks the influence of certain inputs
(taint sources) through execution and it is a powerful
tool for information flow analysis and security. Taint
tracking has primarily targeted CPU program executions.
Motivated by recent recognition of information leaking
in GPU memory and GPU-resident malware, this paper
presents the first design and prototype implementation of
a taint tracking system on GPUs. Our design combines
a static binary instrumentation with dynamic tainting at
runtime. We present new performance optimizations by
exploiting unique GPU characteristics—a large portion
of instructions on GPU runtime parameters and constant
memory can be safely eliminated from taint tracking;
large GPU register file allows fast maintenance of a hot
portion of the taint map. Experiments show that these
techniques improved the GPU taint tracking performance
by 5 to 20 times for a range of image processing, data
encryption, and deep learning applications. We further
demonstrate that GPU taint tracking can enable zeroing
sensitive data to minimize information leaking as well as
identifying and countering GPU-resident malware.

1 Introduction

GPUs have been widely used in many important applica-
tion domains beyond scientific computing, including ma-
chine learning, graph processing, data encryption, com-
puter vision, etc. Sensitive information propagates into
GPUs and, while being processed, leaves traces in GPU
memory. For example, in a face recognition application,
besides the input photo itself, the features extracted at
different levels of the deep learning neural networks may
also contain part of sensitive or private information. Fig-
ure 1 shows the extracted features from the first level of
neural networks in a face recognition program, where

∗This work was done when Lingda Li was a postdoctoral associate
at Rutgers University

Figure 1(a) is the original picture and Figure 1(b) are
features such as silhouette of a human face. Given a sen-
sitive input user photo, features in deep learning appli-
cations may contain much of the sensitive data as well.
Other sensitive data in today’s GPU applications include
encryption keys, digits in personal checks, license plates,
location information in virtual reality apps, etc. If not
tracked or protected, sensitive information can be inad-
vertently leaked or stolen by malicious applications on
GPUs.

(a) Org. Photo (b) Extracted Features

Figure 1: Neural network information leaking example.

Taint analysis [3, 4, 6, 11, 22, 26, 29, 30] is a powerful
tool for information flow tracking and security. It tracks
where and how sensitive information flows during pro-
gram execution. Taint analysis is a form of data flow
analysis, wherein an input set of sensitive data is marked
as “tainted”, and this taint is tracked during runtime as
it spreads into different locations in memory via move,
arithmetic, and control operations. Taint analysis results
can be used to protect data by clearing tainted variables at
the end of its life range—for instance, the temporary key
schedule at every round of AES algorithm—or by en-
crypting live but inactive tainted data [27]. Taint analysis
can also help identify and counter abnormal behaviors
of malicious malware. Existing dynamic taint analysis
has primarily been applied to CPU programs though its
functions are increasingly desirable for GPUs as well.

This paper presents the first design and implementa-
tion of a GPU taint tracking system. Our approach is
based on static binary instrumentation that enables dy-
namic taint tracking of a GPU program. In comparison

USENIX Association 2017 USENIX Annual Technical Conference 209

to dynamic instrumentation that captures and modifies
instructions on the fly, our approach does not require a
dynamic instrumentation framework or virtual machine
emulation that is not readily available on GPUs. We
perform static instrumentation on GPU program binaries
without source access so that it is easy to apply in prac-
tice. We instrument programs on a per-application basis
and when the program runs, every thread can dynami-
cally track information flow by itself.

The major challenge for efficient taint tracking is that
tracking every dynamic binary instruction is expensive.
Our solution exploits the fact that a large portion of a
typical GPU program execution operates on un-taintable
runtime parameters and constants. Examples include
the logical thread indexes, thread block identifiers, di-
mension configurations, and pointer-type kernel param-
eters. We use a simple filtering policy that the run-
time taint tracking only operates on instructions whose
operands can be reached from potential global memory
taint sources through dependencies and can reach poten-
tial global memory taint sinks. We present an iterative
two-pass taint reachability analysis to implement such
instruction filtering which significantly reduces runtime
taint tracking costs.

Our taint tracking system also exploits the heteroge-
neous memory architecture on GPUs. A GPU has dif-
ferent types of memory, including either physically par-
titioned or logically partitioned memory storage. For in-
stance, local memory is private to every thread, shared
memory is a software cache visible to a group of threads,
and global memory is visible to all threads. Our taint
system handles different types of memory storage sep-
arately and optimizes the tracking for different types of
memory storage. Specifically, we allocate a portion of
the register file to store part of the taint map, since GPU
contains a much larger register file than CPU—e.g., ev-
ery streaming multi-processor (SM) has 64K registers on
most NVIDIA GPUs. Not all registers are needed [8,20]
nor the maximum occupancy is necessary [10] for best
performance. Using fast access registers to maintain the
taint map of frequently accessed data will improve the
dynamic tainting performance.

GPU taint tracking enables data protection that clears
sensitive (tainted) data objects at the end of their life
range as well as detects leak of the sensitive data in the
midst of program execution. We recognize that data in
different GPU memory storage may have different life
ranges. For instance, registers and local memory are
thread private and can be cleared once a thread finishes
its execution; shared memory is only used by a thread
block and sensitive data in shared memory can be cleared
by that thread block once it releases the SM. Global
memory may be accessed at any time of a program run
so we cannot clear it at the end of every kernel execu-

tion. However, we can detect when and where the sen-
sitive information (in global memory) is sent out by in-
strumenting memory communication APIs since all com-
munication between GPU, CPU and other network de-
vices require explicit memory API calls. By checking if
the sensitive information falls within the region of mem-
ory that is transferred, we can identify GPU malware
(like Keylogger [17] and Jellyfish [15]) that uses GPU
to snoop CPU activities while storing these activities in
GPU memory. Such GPU-resident malware would es-
cape detection by a CPU-only taint tracking mechanism.

2 Background

GPU functions, also known as kernel functions, make
use of memory which is not directly accessible from the
CPU. GPU memory is split into several regions, both on-
chip and off-chip. On-chip memory consists of registers,
caches, and scratch-pad memory (called shared memory
in NVIDIA terminology). Note that we use NVIDIA
terminology throughout this paper. Off-chip memory
is GDDR SGRAM, which is logically distributed into
texture memory, constant memory, local memory, and
global memory, with texture memory and constant mem-
ory mapped to texture and constant caches.

Both texture memory and constant memory are read-
only during the GPU kernel execution. Therefore, in this
paper we focus on registers, shared memory, local mem-
ory, and global memory. Shared memory is available to
the programmer, often treated as a software cache. Local
memory is thread-private, and is most commonly used
for register spilling. Global memory is visible to the en-
tire GPU device, and is typically used as input and output
for GPU functions. In all four of these memory types,
data persists after deallocation [25].

Global memory can be set and cleared through API
functions, with overhead similar to that of running a GPU
kernel, but local memory, shared memory, and registers
are only accessible from within a kernel function, and al-
located and deallocated by the driver. These three mem-
ory types can only be reliably cleared through instru-
mentation. Moreover, local memory and registers are
managed by compilers and they can only be cleared by
compile-time instrumentation.

Sensitive information can also propagate to differ-
ent data storage locations on GPU: memory, software
caches, and registers. An example is the advanced en-
cryption standard (AES), in which the key and the plain
text to be encrypted may reside in different types of
memory [25]. They can be stored in global memory as
allocated data objects and in registers as program execu-
tion operands.

Currently, there is less memory protection on GPUs
as compared with CPUs. When two applications run si-

210 2017 USENIX Annual Technical Conference USENIX Association

multaneously on the same GPU with the Multi-process
Service (MPS), one application can peek into the mem-
ory of another application, documented in NVIDIA’s
MPS manual at Section 2.3.3.1, “An out-of-range read
in a CUDA Kernel can access CUDA-accessible mem-
ory modified by another process, and will not trigger
an error, leading to undefined behavior.” When two ap-
plications do not run simultaneously, in which case ev-
ery application will get a serially scheduled time-slice
on the whole GPU, information leaking is still possi-
ble. The second running application can read data left
by the first running application if its allocated memory
locations happen to overlap with those of the first one.
This vulnerability has been detailed in several recent
works [18, 25, 28].

Future hardware trends such as the fine-grained mem-
ory protection in AMD APUs suggest potentially bet-
ter process isolation. Hardware-level memory protec-
tion may exhibit superior performance, but its realiza-
tion must take into account the hardware implementation
complexity. And more importantly, process memory pro-
tection does not distinguish sensitive data and its propa-
gation within one program or process. Such protection
would be critical for securing sensitive information flows
between CPU, GPU and their memories.

3 Efficient GPU Taint Tracking

A typical information flow tracking system on CPUs
monitors instructions and operands to maintain proper
taint propagations. For example, in a binary operation
v = binop v1, v2, assuming T (v1), T (v2), and T (v) rep-
resent the taint status for operands v, v1, and v2 respec-
tively: true means tainted and false means untainted. The
taint tracking rule for this instruction is T (v) = T (v1)
|| T (v2). Taint statuses for all data storage locations
(program memory, registers, conditional flags, etc.) are
maintained in a taint map in memory. A baseline GPU
taint tracking system would operate in a similar way.

Dynamic taint tracking [3, 4, 6, 11, 22, 26, 29, 30] is
known to incur high runtime costs. Fortunately, GPU ex-
ecutions exhibit some unique characteristics that enable
optimization. We present an optimization that recognizes
and identifies the large portion of GPU instructions that
cannot be involved in taint propagation from sources to
sinks. Furthermore, given the large register file on GPU
and frequent register accesses, we maintain register taint
map in registers to accelerate their taint tracking. These
optimizations are performed through binary-level static
analysis.

3.1 Taint Reachability
On GPUs, we discover that programs frequently operate
on a set of critical runtime un-taintable values, and that

not all operands need to be tracked. We exploit this fact
and only track the operands that potentially carry taints
or may have an impact on the state transition of the un-
taintable objects. In the earlier example, if v1 does not
carry any taint, the taint maintenance only needs to track
v2 and v such that T (v) = T (v2). If neither v1 or v2 can
be tainted, or if v does not propagate to memory, no taint
maintenance is necessary for the variables v, v1, and v2.

A frequently used GPU runtime un-taintable is the log-
ical thread index. A thread index is used to help identify
the task that is assigned to every thread. It is a built-in
variable, and does not come from global memory that
is managed by a programmer, and thus the instruction
operand as a thread index or an expression of thread in-
dex can never be tainted. Similarly, other built-in thread
identification variables, including thread block id and di-
mension configuration, are also un-taintable.

Another frequently used GPU runtime un-taintable
value are the non-scalar pointer-type kernel parameters.
A GPU kernel function does not allow call-by-reference.
To reference a memory data object that can be modified
at runtime, it can only use pointers. Moreover, these ker-
nel parameters are kept in a memory region named as
“constant memory” in GPUs and are read-only in ker-
nel execution. The memory region pointed to by the
kernel parameter must be tracked, but the pointer or
the address expression computed using the pointer and
thread index (or part of the expression) does not need
to be tracked. Other examples include compile-time un-
taintable values, such as loop induction variables and
stack framework pointers, programmer-specified con-
stants, and combinations of GPU-specific runtime con-
stants with these constants. We analyze and categorize
these un-taintable values in Section 5 and Table 1.

To avoid tracking un-taintable values in GPU pro-
grams, we take the following approaches.

1. We classify an instruction operand into two types:
taintable and un-taintable. The taintable state indi-
cates that the operand might be tainted at runtime—
whether it will be really tainted depends on the ex-
act dynamic analysis done by tracking instructions.
The un-taintable state indicates that the operand
cannot be tainted at runtime. Any operand that
cannot be reached from the taintable source is un-
taintable. The taintable sources are program inputs
given by the users and reside in the global memory
on GPUs. Examples include face recognition pho-
tos, a plain-text message, and encryption key.

2. A variable can be overwritten with taintable or
un-taintable values at different program execution
points. We check for potential state transition of
a variable: from un-taintable to taintable, or from
taintable to un-taintable. The latter arises in a situa-

USENIX Association 2017 USENIX Annual Technical Conference 211

tion called taint removal—e.g., assigning a constant
to a register who might be in a tainted state before
the assignment but must now transition to the un-
tainted state.

3. We statically check the memory reachability:
whether an operand might reach memory (potential
taint sinks). Even if an operand is taintable, as long
as it does not flow into memory, it will not affect any
taint sink. We do not need to add tracking instruc-
tion for this type of operands. Common examples
include loop trip counters, predicate registers, and
stack frame pointers.

block0:
 R0 = 0x1234;
 R0 = 0x0;
 if (some_condition)

 R0 = [R1];
 [R2] = R0;
 some_condition = random();
 GOTO block0;

 T(R0) = false;

T(R0) = T([R1]) || T(R1);
T([R2]) = T(R0);

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

Original Code Tracking Code

We show an example in the code snippet above. The
code describes a loop. Register R0 is overwritten with
different types of values. Initially R0 is written with an
un-taintable value (lines 2-3). Later in the i f statement,
it is written by a taintable value [R1]; note that here the
[R1] notation indicates a memory operation and the ad-
dress of the memory location is R1. We need a track-
ing instruction within the i f statement since [R1] comes
from global memory and every operand from memory
needs to be tracked. We do not need a tracking instruc-
tion for line 2 since 0x1234 is a constant and the assign-
ment target R0 at line 2 cannot reach memory. However,
we do need a tracking instruction for line 3 since the as-
signment target may reach memory and taint removal ap-
plies here (R0 may be tainted from an earlier iteration of
the loop and if so, taint must be removed here).

3.2 Iterative Two-pass Taint Analysis
To mark the taintability and reachability attributes for ev-
ery operand and to detect potential taint state transition,
we perform an iterative dataflow analysis.

There are two passes in our iterative dataflow anal-
ysis component. The forward pass marks the taintable
operands and the un-taintable operands only at the pro-
gram points where a potential taint state transition oc-
curs. The backward pass marks an operand that poten-
tially reaches memory (taint sinks). In the end, when
adding code to track the original program, we only track
the operands that are marked in both forward and back-
ward passes.

Figure 2 provides an overview of our taint tracking
system. First, we analyze the binary code to obtain
the control flow graph and a list of basic blocks. A

• Store hot taint map
in registers

• Clear sensitive data
• Rewrite binary

• Backward memory
reachability tracking

• Iteratively mark operands
that do not reach memory

• Prepare for forward pass

• Filter un-necessary tracking operands based on
two-pass reachability analysis results

• Insert tracking code for remaining operands

1

Forward Pass
Binary Analysis
• Control flow graph
• Basic blocks
• Memory alloc. info
• Initialize taintability

attributes

• Forward tainting
reachability analysis

• Iteratively mark operands as
taintable or untaintable

• Mark taint state transition

Backward Pass

Tracking Filter
Instrumentation

3 2

5
4

Two-pass Reachability Analysis

Figure 2: Overview of our taint tracking system.

basic block is the maximum length single-entrance and
single-exit code segment. We also mark the operands
that are known to be un-taintable before the program
starts. They include built-in thread identification vari-
ables, non-scalar pointer type kernel parameters, and
other programmer-specified constants.

We perform the backward pass first to analyze each
operand and set its memory reachability attribute. We
name it the mightSpread attribute, indicating whether
there exists an execution path through which the value
of this operand might spread into memory.

We then perform the forward pass to mark all operands
as taintable or un-taintable, and for every un-taintable
operand, we also analyze if its last immediate state is
taintable in one of the potential execution paths. If
an operand is taintable or its last immediate state is
taintable, we set the taintTrack attribute to be true. The
taintTrack attribute indicates that the operand may be
tainted at runtime. For an indirect memory operand, we
also need an attribute on the taintability of the addressing
register. We call this addrTrack attribute.

Finally, in the Tracking Filter component, we scan all
instructions and review the taintability and reachability
attributes each operand. For the destination operand, if
its taintTrack and mightSpread attributes are both true,
we add tracking code for this destination operand, other-
wise we don’t. Similarly, for source operands, if both of
its taintTrack and mightSpread attributes are true, we add
tracking code for the source operand before the tracking
code for the destination operand. For an indirect mem-
ory source operand, if its addrTrack and mightSpread at-
tributes are both true, we add taint tracking code for the
source operand addressing register.

We describe the detailed algorithms for forward and
backward passes below.

Forward Taint Reachability Analysis The input is a
control flow graph and a set of basic blocks for the GPU
program. The output is the taintTrack property value for
every operand in every instruction. We show the forward

212 2017 USENIX Annual Technical Conference USENIX Association

forward_prep(block n, regTaintState & m)
for (each instruction i in execution order in basic block n)
 for (each source operand s in i)
 if (s.type == reg && m[s.id]) s.taintTrack = true;
 if (s.type == mem) s.taintTrack = true;
 if (s.type == mem && m[s.addrReg]) s.addrTrack = true;

 if (∃ source operand s in i such that s.taintTrack == true)
 for (each dest operands d in i)
 d.taintTrack = true;
 if (d.type == reg) m[d.id] = true:;

 for (each dest operand d in i)
 if (d.type == mem) d.taintTrack = true;
 if (!d.taintTrack)
 if (m[d.id] && d.mightSpread) d.taintTrack = true;
 if (d.type == reg) m[d.id] = false;

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

forward_pass(program P)
L = all basic blocks of P;
while (worklist L not empty)

i = dequeue(L);
r = i.taintTrackBeg;

 forward_prep(i, r);
for (each successor block j of i)

if (r != j.taintTrackBeg)
 j.taintTrackBeg = j.taintTrackBeg | r;
 enqueue(L, j);

1:
2:
3:
4:
5:
6:
7:
8:
9:
10

Forward Filtering Pass:
Every operand in every instruction will be assigned a
TaintTrack state: this is set to true iff the operand
might be tainted or its taint state might be changed

(a) (b)

P

Q2Q1 Qn……

P.taintTrackBeg =
 forward_prep(Qi, Qi.taintTrackBeg),

 i = 1…n

(c)

the dataflow problem in the forward pass

∪

Figure 3: Forward taint reachability analysis.

pass algorithm in Figure 3(a).
We adopt the fixed-point computation algorithm that

is used in standard dataflow analysis (DFA) framework.
Function forward pass in Figure 3(a) scans the basic
blocks one by one, sets the taintTrack attribute for ev-
ery operand, and updates the taintTrackBeg attribute for
every basic block. Our forward analysis pass checks if
one basic block’s taintability updates affect another ba-
sic block’s taintability results, and if so, adds the affected
basic block to the worklist. Initially, all basic blocks are
added to the list. The analysis pass finishes only when
all basic block’s taintability results do not change.

A DFA problem is formulated using (a set of) dataflow
equation(s). We describe the dataflow equation as fol-
lows. The taintTrackBeg attribute describes the taint
tracking state of every register at the beginning of a ba-
sic block, which is a bit array. Every bit in the bit array
corresponds to one physical register. If a register’s taint-
Track attribute is true at the beginning of the basic block
of interest, this bit is set to 1, otherwise 0. Assume a
basic block P and it has n predecessor basic blocks Qi,
i = 1...n, the dataflow relation is

P.taintTrackBeg = ∪
forward prep(Qi,Qi.taintTrackBeg).

The forward prep function in Figure 3(b) updates the
taintability state for all instructions in a basic block based
on the taintability state at the beginning of the basic
block. It scans the first instruction to the last instruction.

Given an instruction, the forward prep function
checks its source operands first (lines 3−6 in Fig-
ure 3(b)). If a source operand is register and the taint-
Track attribute is true, this source operand needs to be
tracked. If a source operand is of memory type, it has
to be tracked. Note that if the address register of an in-
direct memory operand is taintable, we need to track the
register as well—setting addrTrack attribute at line 6 in
Figure 3(b).

Next, the forward prep function checks every destina-
tion operand. If any source operand needs to be tracked
based on the above analysis, destination operand needs
to be tracked as well. In the meantime, we update

the register tracking state for the corresponding destina-
tion operand (line 10 in Figure 3(b)). If the destination
operand is of memory type, it needs to be tracked. If the
destination operand is un-taintable (lines 13-15 in Figure
3), and its prior tracking state is taintable, and the desti-
nation operand might spread to memory, the destination
operand needs to be tracked as well. Further we update
the register tracking state for the corresponding destina-
tion operand.

 block 3:
R0 = R1 + R2;
R1 = 0x5000;
R2 = [R1];
R3 = R0 + 0x1;
BRA block5;

taintTrack(R0, R1, R2) = {true, true, false};
taintTrack(R1) = true;
taintTrack(R2, R1) = {true, false};
taintTrack(R3, R0) = {true, true};

[1,1,0,0];
[1,0,0,0];
[1,0,1,0];
[1,0,1,1];

regTaintState taintTrackcode

We use the above example to illustrate the for-
ward prep step for updating the register tracking state.
Let the initial regTaintState be [0, 1, 0, 0], meaning that
only register R1 is found to be taintable on entry to this
basic block. Since the first instruction has R1 as a source
and R0 as a destination, we set the operand’s taintTrack
flag and regTaintState[0] to true.

Since the second instruction writes an immediate value
to R1, but since regTaintState[1] was previously true, we
have to set the operand’s taintTrack flag to true, if its re-
sult can spread to memory. This instruction potentially
changes the taint value of R1 at runtime from true to
false, so if it can reach memory, then we need to instru-
ment it, or else we will suffer from over-tainting as a re-
sult of incorrectly treating the data as still being tainted.
We flip regTaintState[1] to false since at compile-time
and at the second instruction, register R1 is untaintable.

The next instruction loads from memory into R2,
so we set the operands’ taintTrack flags and reg-
TaintState[2] to true, because memory is a possible taint
source. The final instruction before the branch carries
potential taint from R0 to R3; since regTaintState[0]
is true, regTaintState[3] is set to true along with the
operand’s taintTrack flag.

USENIX Association 2017 USENIX Annual Technical Conference 213

backward_prep(block n, regSpreadState &m)
 for (each instruction i in reverse order in basic block n)
 for (each destination operand d in i)

if (d.type == mem || (d.type == reg && m[d.id]))
 d.mightSpread = true;
 if (d.type == reg) m[d.id] = false;
 if (d.type == mem) m[d.addr_reg.id] = true;

if (∃ destination operand d in i, d.mightSpread == true)
 for each source operand s in i,
 s.mightSpread = true;
 if (s.type == reg) m[s.id] = true;

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

backward_pass(block n, regReachState m)
L = all basic blocks of P;
while (worklist L not empty)
i = dequeue(L);
s = 0x0;

 for (each successor k of i) s = s | k.mightSpreadBeg;
 backward_prep(i, s);

 if (s != i.mightSpreadBeg)
i.mightSpreadBeg = i.mightSpreadBeg | s;

 for (each predecessor block j of i)
 enqueue(L, j);

1:
2:
3:
4:
5:
6:
7:
8:
9:
11:
12:

Backward Filtering Pass:
Every operand in every instruction will be assigned a
mightSpread state: true means it might spread to
memory, false means not possible to spread to mem

Backward filtering pass called before forward_pass

(a) (b)

P

Q2Q1 Qn……

P.mightSpreadBeg =

 backward_prep(P, Qi.mightSpreadBeg),

the dataflow problem in backward_pass

∪
i = 1…m

(c)

Figure 4: Backward memory reachability analysis.

Backward Memory Reachability Analysis Similar to
the forward pass, the backward pass uses the program as
input. The output is the memory reachability property
of every operand. The backward reachability analysis
also uses a dataflow analysis framework, which solves
the mightSpreadBeg bit array for every individual basic
block, representing the memory reachability state of the
registers at the beginning of basic block. In this bit array,
each bit corresponds to one physical register. A value
of 1 for the bit at index n of basic block b means that
the value of register Rn at the beginning of basic block b
might reach memory.

The relationship between one basic block P and its
successor basic blocks Qi, i = 1..m, where m is the to-
tal number of immediate successor basic blocks, is de-
scribed using the following equation:

P.mightSpreadBeg = backward prep(∪
Qi.mightSpreadBeg).

The initial mightSpreadBeg bit array is set to 0 for
every basic block. Our backward pass keeps updating
the mightSpreadBeg bit arrays until they do not change
any further (Figure 4(a)). In the meantime, the attribute
mightSpread is updated for every operand, as described
in Figure 4(b).

The backward prep function calculates mightSpread-
Beg for every individual basic block. In Figure 4(b), we
scan the instructions in reverse order in a basic block.
First, we check the destination operand, if it is register
type and the register’s memory reachability state is true,
the destination operand’s mightSpread attribute is set to
true. In the meantime, we update the register’s memory
reachability state for the destination register to false since
the value to spread into memory is defined at this point
and for any instruction that happens before this instruc-
tion, they don’t see the same value as defined here. If it is
memory type, the mightSpread attribute is set to true and
the address register’s reachability state is set to true (line
7 in Figure 4(b)). Next, we check the source operands.
If any destination operand can spread into memory, then
all source operands’ mightSpread property is set to true
(line 10). Correspondingly, we will set the register reach-

ability state to true (line 11).

block4:
 R0 = R1 + R2;
 R1 = 0x6000;
 [R1] = R2;
 R3 = R0 + 0x1;
 BRA block6;

regSpreadState is initaially [0, 1, 0, 1].

regSpreadState = [1, 1, 0, 0].
regSpreadState = [1, 1, 1, 0].
regSpreadState = [1, 0, 1, 0].
regSpreadState = [0, 1, 1, 0].

We use the above example to illustrate the process for
updating the mightSpreadBeg bit arrays in the backward
pass. The backward pass is mechanically similar to the
forward pass, aside from the direction in which instruc-
tions are processed. In this example, we assume that
registers R1 and R3 have been determined to spread to
memory in later blocks, hence the initial regSpreadState
value of [0, 1, 0, 1]. We skip over the branch instruction
since it has no operands except for a jump offset.

The last instruction has data flow into R3 from R0, and
regSpreadState[3] is true, so we mark the R0 operand’s
mightSpread flag as true and set regSpreadState[0] to
true. We also flip regSpreadState[3] to false since this
instruction is overwriting R3.

The instruction before the last stores register R2 to
memory, so we simply mark the R2 operand’s might-
Spread flag as true and set regSpreadState[2] to true.

The third instruction counting from the last puts an
immediate value into R1, so we set regSpreadState[1]
to false. Finally, the fourth instruction counting from
the last has data flow into R0 from R1 and R2, and
regSpreadState[0] is true, so we mark both source
operands’ mightSpread as true, set regSpreadState[1]
and regSpreadState[2] to true, and set regSpreadState[0]
to false since R0 has been overwritten.

3.3 Register Taint Map in Registers
A GPU contains a much larger register file than CPU
does—e.g., every streaming multi-processor has 64K
registers on most NVIDIA GPUs. Registers are natu-
rally accessed frequently and maintaining their taint sta-
tuses require frequent reads and writes from/to their taint
map locations. At the same time, the large GPU register

214 2017 USENIX Annual Technical Conference USENIX Association

file presents the opportunity to maintain a portion of the
taint map in registers. These facts motivate us to place
the register taint map in registers.

We use multiple 32-bit general purpose registers to
store the taint map, in which one bit corresponds to
one register that is tracked. Using register-stored taint
map increases the number of registers used per-thread,
and might decrease occupancy, determined as the num-
ber of active threads running at the same time. Fortu-
nately in many GPU programs, not all the register file
is needed [8, 20] nor the maximum occupancy is neces-
sary [10] for the best program performance. Therefore
the overall taint tracking cost is significantly reduced by
our use of register-stored taint map, as demonstrated later
in evaluation.

4 Tainting-Enabled Data Protection

Taint tracking results can be used to help protect sensi-
tive data and prevent information leaking on GPUs. We
describe two major use cases of taint tracking analysis
and present our prototype implementation of tainting-
enabled data protection.

4.1 Sensitive Data Removal
Lee et al. [18] and Pietro et al. [25] have recently demon-
strated that information leaking from one program to an-
other may occur in GPU local memory between GPU
kernel executions, and in GPU global memory between
program runs. Our taint tracking results may help a pro-
gram understand the propagation of certain sensitive in-
formation and clear all taints before relevant points of
vulnerability (e.g., clearing local memory taints at the
end of each kernel and clearing global memory taints at
the end of program run).

We make a prototype implementation of this use case.
For registers, we let every thread clear its own tainted
registers. It is possible that some threads exit earlier
than others. However since register taint map is thread-
private, we can insert the clearing code right before every
EXIT point and thus early-exiting threads can also clear
their tainted registers early. For local memory, since it is
thread-private, we treat it the same way as registers. Note
that registers and local memory cannot be cleared by pro-
grammers themselves (unlike shared memory and global
memory) and thus a trustworthy binary instrumentation
tool is necessary to prevent sensitive data from leaving
taints on GPUs.

For shared memory, since shared memory is visible
to all threads in the same basic block, we need to make
sure the sensitive shared memory data is cleared after all
threads in the same thread block finish their work. There-
fore, our design is to create a control flow reconvergence
point for all threads since different threads might take

different execution paths. We then insert a thread block
level barrier at the reconvergence point before clearing
the tainted shared memory data.

Pietro et al. [25] proposed a register-spilling based at-
tack, which makes use of compiler to force spilling the
registers so that the encryption key (or reversibly trans-
formed encryption key) in the AES encryption module
in the SSLShader program can be moved from registers
to local memory. Then a second running application can
steal the leaked information in local memory. Our taint
clearing approach prevents such attacks by clearing the
registers, local memory, and shared memory right before
every thread in the GPU application completes.

Experimental results in Section 5 will show that the
data clearing cost is low—worst-case slowdown of 13%
and in most cases no more than 5% slowdown.

4.2 GPU Malware Countermeasure
GPU taint analysis identifies where and when sensitive
data is sent from GPU device to CPU or other net-
work devices. This is especially important for integrated
CPU-GPU whole system taint tracking. A dynamic taint
tracking system that only monitors data dependences
during CPU execution may miss the influence propa-
gation of untrusted inputs or execution results through
GPU computation. For example, GPU malware Keylog-
ger [17] and Jellyfish [15] exploited direct memory ac-
cess (DMA) at mapped CPU memory to snoop the CPU
system activities and steal host information. GPU may
obtain the leaked CPU information, process it, and send
it through a network or other output device while evading
countermeasures that only monitor CPU executions.

Our GPU data protection system can not only clear
sensitive data, but also capture possible attempts of steal-
ing and emitting sensitive information. We prevent this
type of attacks by dynamically monitoring the data trans-
fer between CPU and GPU. If the GPU-mapped CPU
memory contains sensitive information (i.e., keystroke
buffer in the Keylogger attack [17]), the mapped data
region is marked as taint sources. We track the depen-
dency propagation of tainted data in GPU executions.
Further we statically instrument memory transfer APIs
so that before any data is sent from GPU through cud-
aMemcpy APIs in CUDA or clEnqueueReadBuffer APIs
in OpenCL, the memory address range is checked. If the
transmitted data falls within the sensitive tainted mem-
ory range, we either alert the system that tainted data
is transmitted, or mark the corresponding CPU destina-
tion memory region (if data is transferred back to CPU)
as tainted. Since all communication between GPU and
other devices rely on explicit memory transfer API, we
can check and protect information flow by instrumenting
these memory transfer APIs.

Our taint tracking and data protection system helps

USENIX Association 2017 USENIX Annual Technical Conference 215

protect applications that utilize both CPU and GPU, if
combined with CPU taint tracking. Our work ensures full
system taint tracking that is essential to whole system se-
curity. We are not aware of any other work that provides
the same degree of protection. Besides the Keylogger
case, other potential whole-system tracking examples in-
clude a web site that relies on taint tracking to prevent un-
trusted user inputs with malicious database queries (e.g.,
through SQL injections) or invoking dangerous system
calls (e.g., through buffer overflow attacks).

Finally, when GPU tainting is securely applied to un-
trusted programs, it can also identify malicious programs
that attempt to scan uninitialized data which may have
been left by previous kernel and program runs from other
users. We have not implemented this type of data protec-
tion. However, our tool can be readily extended to help
detect uninitialized memory region containing sensitive
data left by prior GPU program execution and clear / zero
them if appropriate.

5 Evaluation

We perform evaluation on a machine configured with
an NVIDIA GTX 745. This is a “Maxwell” generation
GPU with compute capability 5.0. Since NVIDIA’s com-
piler and binary ISA are closed-source, we modify the
GPU binaries using tools inspired by the asfermi [12]
and MaxAs [9] projects, allowing for binary instructions
be directly inserted into the executable.

5.1 Benchmarks
Our evaluation employs a variety of GPU kernels in deep
learning, image processing, and data encryption. First,
Caffe [16] is a deep learning framework in which a user
writes a “prototxt” file describing the input and layers
of the deep learning network (e.g., convolutional lay-
ers, inner-product layers, etc.), which can be fed into the
Caffe executable to create, train, and test the network.
Newer versions of Caffe allow various layers to be exe-
cuted on the GPU via CUDA. A common use of Caffe
is image classification. We use three Caffe kernels in
our evaluation: im2col, ReLUForward, and MaxPool-
Forward. These three kernels consume the majority of
the execution time for image classification.

We additionally use kernel functions from the CUDA
SDK [23], the Rodinia benchmark suite [2], and
SSLShader [13]. From the CUDA SDK we include
BlackScholes, a program for financial analysis, and
FDTD3d, a 3D Finite Difference Time Domain solver.
As a numerical analysis program, FDTD3d is unlikely to
have sensitive data to protect, but serves as an additional
data point for testing our performance. From Rodinia,
we include Needleman-Wunsch, a bioinformatics bench-
mark used for DNA sequencing. From SSLShader, we

include an AES encryption program.

5.2 Taint Analysis & Optimizations
We evaluate the effectiveness of the two performance en-
hancing techniques in Section 3—taint reachability filter-
ing and taint map in registers.

Since we modify the executable directly, we measure
the cost of taint analysis in terms of both slowdown and
code size. There are a few factors which exacerbate these
costs. Whenever we insert an instruction to get or set a
location’s taintedness in memory, we first have to calcu-
late its address. Since addresses for global memory are
64-bit on this architecture, but registers and integer oper-
ations are 32-bit, this requires multiple instructions with
immediate dependencies.

Additionally, each thread has access to only one carry
flag, so if it is already in use where we need to get the
taint address, extra instructions are needed to spill it into
a register or to memory. Furthermore, the singular carry
flag makes it difficult to interleave instructions effec-
tively, since they may overwrite each other’s result. As
the GPU is incapable of out-of-order execution within a
thread, the latency for accessing the taint-map is costly.

 0

 10

 20

 30

 40

im
2col

ReLUForward

MaxPoolForward

FDTD3d

BlackScholes

SSLShader

nw

51.8

N
o
rm

a
liz

e
d

 e
xe

cu
ti

o
n
 t

im
e

naive
reg-in-reg

forward-filter
backward-filter

two-pass-filter
fully optimized

(a) Normalized slowdown from instrumentation.

 0

 3

 6

 9

 12

im
2col

ReLUForward

MaxPoolForward

FDTD3d

BlackScholes

SSLShader

nw

N
o
rm

a
liz

e
d
 c

o
d

e
 s

iz
e

naive
reg-in-reg

forward-filter
backward-filter

two-pass-filter
fully optimized

(b) Normalized code size after instrumentation.

Figure 5: Overhead of tainting instrumentation.

Figure 5(a) illustrates the GPU tainting slowdown with
each of our optimizations, compared to native execution.
The ‘naive’ bar shows slowdown without any optimiza-
tions, the ‘reg-in-reg’ bar shows the results of placing
part of the taint map into registers, the ‘forward-filter’
and ‘backward-filter’ bars show the results of each filter
pass, the ‘two-pass-filter’ bar shows results when using

216 2017 USENIX Annual Technical Conference USENIX Association

both filter passes, and the ‘fully optimized’ bar shows re-
sults when using all of these optimizations. Figure 5(b)
shows normalized code sizes (static instruction counts)
for the same cases.

Figure 5 shows that both two-pass filtering and hot
register taint map can reduce the tainting cost signifi-
cantly. For the filter passes, there is a high correlation
between relative slowdown and code size after instru-
mentation. Saving taint mapping into registers does not
shrink as much of the code size as two-pass filtering, but
it still improves the tracking performance significantly.
The tracking cost saving comes more from the reduced
memory latency than from reduced instruction count.

Taint Map in Registers Even on its own, saving part
of the taint map in registers reduces significant time dur-
ing taint analysis. The main alternatives, local memory
and global memory, are both off-chip memories that may
take hundreds of cycles to access. Even the cache to
which such memory is saved is off-chip, because the on-
chip L1-cache is typically only used for read-only data
on newer architectures [24]. Since most GPU programs
have numerous threads running at once, some of this la-
tency is hidden by some threads continuing to execute
while others wait for memory accesses to complete, but
even so, saving register taint information into registers
reduces slowdown compared to naive taint tracking in
our benchmarks by 78% on average.

Filtering The forward pass filtering also saves signif-
icant time, though it has more variance across different
benchmarks. Its effectiveness stems from the properties
of GPU kernels. Most kernels make use of non-taintable,
read-only data such as thread ID and grid size to perform
many calculations. Additionally, function parameters are
read-only in GPU functions, making it impossible for
them to become tainted in most programs. On its own,
the forward pass reduces slowdown in our benchmarks
by an average of 53%.

kernel para- imme- const thread
meter diate mem. block id

im2col 85% 85% 29% 64%
ReLUForward 20% 40% 47% 57%
MaxPoolForward 70% 72% 57% 58%
FDTD3d 17% 17% 11% 12%

Table 1: Percentage of filtered-out instructions for vari-
ous reasons.

We also analyze the reason why we are able to filter
out a significant number of instructions for some appli-
cations in the forward pass. Table 1 shows the percentage
of filtered out instructions under different categories. Pa-
rameter means one or more source registers are from the
(constant-memory) kernel parameters. Immediate means

one or more source operands are immediate numbers.
Const memory means at least one source is from constant
memory. Finally, thread / block id means the influence is
from the identifier of the current thread or thread block.
The identifiers are stored in special registers private to
each thread or constant memory depending on the archi-
tecture, but in either case they are known at static-time.
While it might be surprising that the sum of percentages
due to multiple reasons may exceed 100%, note that an
instruction may be filtered out due to multiple reasons.

We discover that most instructions are filtered out be-
cause of these four categories. The reason is that GPU
programs distribute workload among threads based on
their ids. To get the assigned workload, each thread must
perform a lot of computation using ids, immediate, and
constant memory values (e.g., thread block & grid di-
mensions). The computation results, together with pa-
rameters (e.g., the start address of an array), are used
to fetch assigned data. Then the real computation starts
as well as the taint tracking. For most GPU programs,
the real computation is short with several instructions,
and the preprocessing including address calculation con-
sumes most of the time. That is why we can filter out
most instructions in our forward pass: most instructions
do preparation work and are not related to the potentially
tainted input data. For FDTD3d, the computation is more
complex and fewer instructions are filtered out. It also
explains why FDTD3d does not benefit from two-pass
filtering as much as compared with other benchmarks, as
shown in Figure 5(a).

The backward pass is usually less effective than the
other optimizations. While a lot of the inputs to a ker-
nel function are effectively constants, the only means of
returning anything is through global memory. As such,
we can expect that most operations will produce val-
ues which influence memory. Regardless, the backward
pass does provide some benefit in most cases, and in the
SSLShader benchmark it reduces slowdown compared to
the naive approach by 22%.

Combined Optimizations Compared to the forward
pass, the two-pass filter reduces slowdown by 12% on
average, and compared to the backward pass, it reduces
slowdown by 50%. Full optimization reduces slowdown
by 56% compared to the two-pass filter, and 42% com-
pared to only keeping part of the taint map in registers.
This demonstrates the merit of combining our different
optimization techniques, which together reduce slow-
down by an average of 87%.

With full optimizations, our benchmarks’ kernel func-
tions experience an average normalized runtime of 3.0×
after instrumentation. The FDTD3d benchmark suffers
the worst slowdown at 5.7× runtime, due to frequent use
of shared memory making the filter less effective. The

USENIX Association 2017 USENIX Annual Technical Conference 217

Needleman-Wunsch benchmark, which also has shared
memory usage, is the next slowest with a 3.6× runtime.
Although the SSLShader benchmark also makes use of
shared memory, it only uses shared memory to store
compile-time constants for faster retrieval, allowing us
to filter out all shared memory instructions for less run-
time slowdown of 2.5×.

One special consideration when modifying GPU pro-
grams is occupancy—the number of threads that can be
live at once. A high occupancy means that latency is
less costly, as the GPU can switch to different groups of
threads every cycle. Since our instrumentation results in
additional use of registers, and the register file is evenly
split among all live threads, there is potential for occu-
pancy to be decreased, hurting performance more dras-
tically. In such a case, it may be more beneficial not to
store any part of the taint map into registers. However, in
practice, we use few enough additional registers that re-
ducing occupancy is unlikely, since for every 32 registers
in the original program, we only need 1 extra register to
store their taintedness. We find that GPU programs typ-
ically use less than 64 registers per-thread, and so none
of our benchmarks require more than two extra registers
per-thread for storing register taintedness.

5.3 Memory Protection
We next evaluate the incorporation of memory protection
into our dynamic analysis framework. As discussed in
Section 4, the GPU does not clear memory before deal-
location. This includes all types of memory, both on-chip
and off-chip. [25] demonstrates that data left behind even
in local memory and shared memory can be stolen, such
as the encryption key and plaintext in the SSLShader
benchmark. We have found that this data can also be
stolen directly from registers by preparing a kernel func-
tion with the same thread block size and occupancy as the
victim kernel function—thereby ensuring the register file
will be partitioned in the same, predictable manner—and
then manually coding the eavesdropping kernel’s binary
to read the desired registers.

Programmers can manually erase global memory be-
fore program exit, but registers and local memory are al-
located by the compiler and cannot be as easily cleared.
Sensitive data in registers, local memory, and also shared
memory must be cleared before the kernel function exits,
or else a malicious kernel function may be invoked and
acquire these resources for itself. We leverage our in-
strumentation framework to clear sensitive data in these
regions, via additional modification to the binary code.
This can be used to prevent attacks such as the one in
[25], which stole encryption key data through such re-
sources. The results are summarized in Table 2.

Since registers and local memory are thread-private,
they can be safely cleared by each thread prior to exit.

GPU kernel Memory Slowdown
im2col N/A 0.26%
ReLUForward N/A 0.33%
MaxPoolForward N/A 0.59%
FDTD3d Shared 5.10%
BlackScholes N/A 0.40%
SSLShader Local 0.41%
needle Shared 13.05%

Table 2: Slowdown from memory erasure during kernel
execution, measured as a fraction of the original kernel
time. ”Memory” column indicates which memory types
need to be cleared (besides registers).

We insert instructions to clear this data before the EXIT
instruction, using the results of our forward-filter pass to
avoid unnecessary work. But shared memory is shared
by every thread in a thread block, and therefore may not
be safe to erase until all of its threads finish execution.
Before the EXIT instruction we insert a synchroniza-
tion barrier, which causes threads to halt until all other
threads in the block reach the same point, and then add
a loop which has every thread zero out a separate por-
tion of shared memory. In benchmarks with less regular
control flow, where threads exit at different points in the
code, we can instead have shared memory cleared by a
subset of its threads.

We find that the cost to clear tainted registers is triv-
ial, adding only a fraction of a percent to runtime. Each
register takes only one cycle of amortized time to erase
for every 32 threads, and the GPU is likely able to over-
lap most of these cycles with memory stalls from other
threads. None of our benchmarks use local memory by
default, since it is usually used for register spilling. In
order to evaluate the slowdown of clearing local mem-
ory, we recompile SSLShader, which uses 40 registers,
to instead use 20 registers. Clearing local memory and
registers in this benchmark adds 0.41% time overhead.

Shared memory is slower to clear. In FDTD3d, clear-
ing taints in shared memory adds 5.10% runtime com-
pared to the original kernel function, and in Needleman-
Wunsch it adds 13.05%. The increased slowdown com-
pared to clearing local memory likely stems from the use
of a loop, due to the GPU’s inability to perform specula-
tive and out-of-order execution, forcing a thread to wait
until each shared memory location is cleared until it can
zero the next one. Local memory is simpler to handle,
with every thread accessing the same logical addresses
despite using different physical locations, allowing for
the local memory clearing loop to be fully unrolled.

Using the taint information to erase only sensitive data
can help significantly, compared to naively clearing these
memories fully. For example, in the SSLShader bench-

218 2017 USENIX Annual Technical Conference USENIX Association

mark the tainted registers and local memory are cleared
in 47 mSecs, but this benchmark makes use of shared
memory which is never tainted. If its shared memory ar-
rays are erased, in addition to clearing the small amount
of registers and local memory in their entirety, then the
overhead would jump to 407 mSecs.

6 Related Work

Dynamic taint analysis [3, 4, 6, 11, 22, 26, 29, 30] tracks
data (and sometimes control) dependencies of informa-
tion as a program or system runs. Its purpose is to iden-
tify the influence of taint sources on data storage loca-
tions (memory, registers, etc.) during execution. Taint
tracking is useful for understanding data flows in com-
plex systems, detecting security attacks, protecting sen-
sitive data, and analyzing software bugs. Its implemen-
tation usually involves static code transformation, dy-
namic instrumentation, or instruction emulation using
virtual machines to extend the program to maintain taint-
ing metadata. While existing dynamic tainting systems
track CPU execution, this paper presents the first design
and implementation of a GPU taint tracking system.

A large body of previous work presented techniques
to improve the performance of CPU taint tracking.
LIFT [26] checks whether unsafe data are involved be-
fore a code region is executed, and if not, no taint track-
ing code is executed for that code region to reduce over-
head. Minemu [1] proposes a novel memory layout to
reduce the number of taint tracking instructions. It also
uses SSE registers for taint tracking to reduce perfor-
mance overhead. TaintEraser [30] makes use of function
summary to reduce the performance overhead of taint
tracking. It summarizes taint propagation at the function
level so that instruction level taint tracking is reduced.
TaintDroid [6] is a taint analysis tool proposed for An-
droid systems. By leveraging Androids virtualized exe-
cution environment and coarse-grained taint propagation
tracking, it can achieve nearly real time analysis with
low performance overhead. Jee et al. [14] proposed to
separate taint analysis code from the original program,
and dynamic and static analysis was applied on the taint
analysis code to optimize its performance. In this paper,
we present new performance optimizations by exploiting
unique GPU characteristics.

Security vulnerabilities on GPUs have been recog-
nized recently. Dunn et al. [5] showed that sensitive
data can be leaked into graphics device driver buffers.
They proposed encryption to protect data in transit over
the device driver but their approach does not protect
data in GPU memory. Lee et al. [18] uncovered sev-
eral vulnerabilities of leaking sensitive data in GPU
memory—leaking global memory data after a program
context finishes and releases memory without clearing;

leaking local memory data across kernel switches on a
CU. They did not present any solution to address these
vulnerabilities. More recently, Pietro et al. [25] pro-
posed memory zeroing to prevent information leaking in
GPU. However, memory zeroing alone provides limited
protection—it cannot track information flow in memory;
nor can it counter GPU malware such as Keylogger [17]
and Jellyfish [15]. Furthermore, GPU tainting is comple-
mentary to memory zeroing—tainting identifies a subset
of sensitive memory for zeroing to reduce the costs.

GPU information flow analysis has been performed in
the past. Leung et al. [19] and Li et al. [21] employed
static taint analysis to reduce the overhead of GPU pro-
gram analysis and verification. Static analysis requires
memory aliasing analysis of memory accesses that are
inherently imprecise. While they are suitable for testing
and debugging purposes [19,21], security data flow anal-
ysis in this paper requires more precise dynamic track-
ing. Farooqui et al. [7] proposed static dependency anal-
ysis between thread index and control conditions to iden-
tify possible thread divergence in GPU executions (the
result of which helps determine whether symbolic execu-
tion can be performed on given GPU basic blocks). Their
static dependency analysis is narrowly targeted and it is
unclear whether it applies to general taint tracking.

7 Conclusion

Recent discoveries of information leaking through GPU
memory and GPU-resident malware call for systematic
data protection in GPUs. This paper presents the first
design and implementation of a dynamic taint tracking
system for GPU programs. We exploit unique character-
istics of GPU programs and architecture to optimize taint
tracking performance. Specifically, we recognize that a
large portion of instructions on GPU runtime parameters
and constants can be safely eliminated from taint track-
ing to reduce tainting costs. We also utilize the large
GPU register file for fast maintenance of the taint map
for registers. These optimizations result in 5 to 20 times
tainting speed improvement for a range of image pro-
cessing, data encryption, and deep learning applications.

Acknowledgement

We thank Adam Bates for his help during the prepara-
tion of the final version of the paper, and the anonymous
reviewers for their insightful comments. This work is
supported by NSF Grant NSF-CCF-1421505, NSF-CCF-
1628401, and the Google Faculty Award. Any opinions,
findings, conclusions, or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of our sponsors.

USENIX Association 2017 USENIX Annual Technical Conference 219

References
[1] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: The

world’s fastest taint tracker. In International Workshop on Recent
Advances in Intrusion Detection (2011), Springer, pp. 1–20.

[2] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,
J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A benchmark
suite for heterogeneous computing. In IEEE Int’l Symp. on Work-
load Characterization (IISWC) (2009), pp. 44–54.

[3] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K.,
AND ROSENBLUM, M. Understanding data lifetime via whole
system simulation. In Proc. of the 13th USENIX Security Symp.
(2004), pp. 321–336.

[4] CLAUSE, J., LI, W., AND ORSO, A. Dytan: A generic dynamic
taint analysis framework. In Proc. of the 2007 Int’l Symp. on
Software Testing and Analysis (London, United Kingdom, 2007),
pp. 196–206.

[5] DUNN, A. M., LEE, M. Z., JANA, S., KIM, S., SILBERSTEIN,
M., XU, Y., SHMATIKOV, V., AND WITCHEL, E. Eternal sun-
shine of the spotless machine: Protecting privacy with ephemeral
channels. In Proc. of the 10th USENIX Symp. on Operating Sys-
tems Design and Implementation (OSDI) (Hollywood, CA, Oct.
2012), pp. 61–75.

[6] ENCK, W., GILBERT, P., HAN, S., TENDULKAR, V., CHUN,
B.-G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH,
A. N. Taintdroid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans. Comput.
Syst. 32, 2 (June 2014), 5:1–5:29.

[7] FAROOQUI, N., SCHWAN, K., AND YALAMANCHILI, S. Effi-
cient instrumentation of GPGPU applications using information
flow analysis and symbolic execution. In Proc. of Workshop on
General Purpose Processing Using GPUs (Salt Lake City, UT,
Mar. 2014), GPGPU-7, pp. 19:19–19:27.

[8] GEBHART, M., KECKLER, S. W., KHAILANY, B., KRASHIN-
SKY, R., AND DALLY, W. J. Unifying primary cache, scratch,
and register file memories in a throughput processor. In Proc.
of the 45th Annual IEEE/ACM Int’l Symp. on Microarchitecture
(Vancouver, B.C., CANADA, Dec. 2012), MICRO-45, pp. 96–
106.

[9] GRAY, S. Maxas: Assembler for nvidia maxwell architecture.
github.com/NervanaSystems/maxas, 2014.

[10] HAYES, A. B., AND ZHANG, E. Z. Unified on-chip memory
allocation for simt architecture. In Proc. of the 28th ACM Int’l
Conf. on Supercomputing (Munich, Germany, 2014), ICS’14,
pp. 293–302.

[11] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical taint-based protection using demand emula-
tion. In Proc. of the First EuroSys Conf. (Leuven, Belgium, Apr.
2006), pp. 29–41.

[12] HOU, Y., LAI, J., AND MIKUSHIN, D. Asfermi: An assem-
bler for the nvidia fermi instruction set. code.google.com/p/
asfermi/, 2011.

[13] JANG, K., HAN, S., HAN, S., MOON, S. B., AND PARK, K.
SSLShader: Cheap SSL acceleration with commodity processors.
In Proc. of the 8th USENIX Conf. on Networked Systems Design
and Implementation (NSDI) (Boston, MA, Mar. 2011), pp. 1–14.

[14] JEE, K., PORTOKALIDIS, G., KEMERLIS, V. P., GHOSH, S.,
AUGUST, D. I., AND KEROMYTIS, A. D. A general ap-
proach for efficiently accelerating software-based dynamic data
flow tracking on commodity hardware. In Proc. of the 19th An-
nual Network & Distributed System Security Symp. (NDSS) (San
Diego, CA, Feb. 2012).

[15] GPU rootkit PoC by team Jellyfish. github.com/x0r1/

jellyfish.

[16] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG,
J., GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T.
Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014).

[17] LADAKIS, E., KOROMILAS, L., VASILIADIS, G., POLY-
CHRONAKIS, M., AND IOANNIDIS, S. You can type, but you
cant hide: A stealthy GPU-based keylogger. In Proc. of the
6th European Workshop on Systems Security (EuroSec) (Prague,
Czech Republic, Apr. 2013).

[18] LEE, S., KIM, Y., KIM, J., AND KIM, J. Stealing webpages
rendered on your browser by exploiting GPU vulnerabilities. In
Proc. of the 35th IEEE Symp. on Security and Privacy (San Jose,
CA, May 2014), pp. 19–33.

[19] LEUNG, A., GUPTA, M., AGARWAL, Y., GUPTA, R., JHALA,
R., AND LERNER, S. Verifying GPU kernels by test amplifica-
tion. In Proc. of the 33rd ACM Conf. on Programming Language
Design and Implementation (PLDI) (Beijing, China, June 2012),
pp. 383–394.

[20] LI, C., YANG, Y., LIN, Z., AND ZHOU, H. Automatic data
placement into GPU on-chip memory resources. In proc. of the
13th Int’l Symp. on Code Generation and Optimization (CGO)
(Feb. 2015), pp. 23–33.

[21] LI, P., LI, G., AND GOPALAKRISHNAN, G. Practical sym-
bolic race checking of GPU programs. In Proc. of SC14: The
Int’l Conf. for High Performance Computing, Networking, Stor-
age and Analysis (New Orleans, LA, Nov. 2014).

[22] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In Proc. of the 12th Annual Network
& Distributed System Security Symp. (NDSS) (San Diego, CA,
2005).

[23] NVIDIA. GPU computing sdk. developer.nvidia.com/

gpu-computing-sdk.

[24] NVIDIA. Maxwell tuning guide. docs.nvidia.com/cuda/

maxwell-tuning-guide/, 2014.

[25] PIETRO, R. D., LOMBARDI, F., AND VILLANI, A. CUDA
leaks: A detailed hack for CUDA and a (partial) fix. ACM Trans.
on Embedded Computing Systems (TECS) 15, 1 (Feb. 2016).

[26] QIN, F., WANG, C., LI, Z., SEOP KIM, H., ZHOU, Y., AND
WU, Y. LIFT: A low-overhead practical information flow track-
ing system for detecting security attacks. In 39th Int’l Symp. on
Microarchitecture (2006), pp. 135–148.

[27] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A., GEAM-
BASU, R., AND SARDA, N. CleanOS: Limiting mobile data ex-
posure with idle eviction. In Proc. of the 10th USENIX Symp.
on Operating Systems Design and Implementation (OSDI) (Hol-
lywood, CA, Oct. 2012), pp. 77–91.

[28] VASILIADIS, G., ATHANASOPOULOS, E., POLYCHRONAKIS,
M., AND IOANNIDIS, S. PixelVault: Using GPUs for secur-
ing cryptographic operations. In Proc. of the 21st ACM Conf. on
Computer and Communications Security (CCS) (Scottsdale, Ari-
zona, USA, Nov. 2014), pp. 1131–1142.

[29] XU, W., BHATKAR, S., AND SEKAR, R. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of at-
tacks. In Proc. of the 15th USENIX Security Symp. (Vancouver,
B.C., Canada, 2006).

[30] ZHU, D. Y., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. SIGOPS Oper. Syst. Rev. 45, 1
(Feb. 2011), 142–154.

220 2017 USENIX Annual Technical Conference USENIX Association

Optimizing the Design and Implementation of the Linux ARM Hypervisor

Christoffer Dall Shih-Wei Li Jason Nieh
Department of Computer Science

Columbia University
{cdall,shihwei,nieh}@cs.columbia.edu

Abstract
Modern hypervisor designs for both ARM and x86

virtualization rely on running an operating system kernel,
the hypervisor OS kernel, to support hypervisor functionality.
While x86 hypervisors effectively leverage architectural
support to run the kernel, existing ARM hypervisors map
poorly to the virtualization features of the ARM architecture,
resulting in worse performance. We identify the key reason
for this problem is the need to multiplex kernel mode state
between the hypervisor and virtual machines, which each
run their own kernel. To address this problem, we take a
fundamentally different approach to hypervisor design that
runs the hypervisor together with its OS kernel in a separate
CPU mode from kernel mode. Using this approach, we
redesign KVM/ARM to leverage a separate ARM CPU
mode for running both the hypervisor and its OS kernel.
We show what changes are required in Linux to implement
this on current ARM hardware as well as how newer ARM
architectural support can be used to support this approach
without any changes to Linux other than to KVM/ARM
itself. We show that our redesign and optimizations can
result in an order of magnitude performance improvement for
KVM/ARM, and can provide faster performance than x86 on
key hypervisor operations. As a result, many aspects of our
design have been successfully merged into mainline Linux.

1 Introduction

Given their customizability and power efficiency, ARM
CPUs have become an attractive option across a wide range
of computer systems, from their dominance in mobile and
embedded systems to their increasing popularity in server
systems. Recognizing that virtualization is a key technology
for the successful deployment of ARM hardware, modern
ARM CPUs include hardware support for virtualization, the
Virtualization Extensions (VE). Popular ARM hypervisors,
including KVM [14] and Xen [30], utilize VE to run unmod-
ified commodity operating systems (OSes) and applications

across a wide range of deployment scenarios for virtual-
ization, from enterprise servers to locomotive computer
systems [5]. Despite these successes, we have shown that
ARM virtualization costs remain too high for important de-
ployment scenarios, including network-intensive workloads
such as network functions virtualization (NFV) [14, 12].

Hypervisor designs for ARM and x86 virtualization rely
on running a full OS kernel to support the hypervisor func-
tionality. This is true for both Type 1 hypervisors which
run an isolated hypervisor runtime and Type 2 hypervisors
which integrate with a host OS [17]. KVM, a Type 2 hyper-
visor, is integrated with the Linux kernel and leverages the
Linux kernel for common OS functionality such as schedul-
ing, memory management, and hardware support. Similarly,
Xen, a Type 1 hypervisor, runs a full copy of Linux in a
special privileged Virtual Machine (VM) called Dom0 to
leverage existing Linux drivers to provide I/O for other VMs.
These hypervisor OS kernels which support the hypervisor
run in the CPU’s kernel mode just like OS kernels run when
not using virtualization. Modern hypervisors use hardware
support for virtualization, avoiding the need to deprivilege
the guest OS kernel in a VM to run in user mode [8]. As
each VM runs a guest OS kernel in addition to the hypervisor
OS kernel, and both kernels run in the same kernel mode,
the shared hardware state belonging to kernel mode is multi-
plexed among the OS kernels. When a VM is running on the
CPU, the VM’s guest OS kernel is using the CPU’s kernel
mode, but when it becomes necessary to run the hypervisor,
for example to perform I/O on behalf of the VM, the hyper-
visor OS kernel takes over using the CPU’s kernel mode.

Transitioning from the guest OS kernel to the hypervisor
OS kernel involves saving the guest kernel’s state and
restoring the hypervisor kernel’s state, and vice versa. This
save and restore operation is necessary because both the
guest and hypervisor OS kernels use the same hardware state
such as registers and configuration settings, but in different
contexts. On x86, these transitions happen using operations
architecturally defined as part of the Intel Virtual Machine
Extensions (VMX). These hardware operations save and

USENIX Association 2017 USENIX Annual Technical Conference 221

restore the entire kernel mode register state, typically as a
result of executing a single instruction. Unlike x86, ARM
does not provide a hardware mechanism to save and restore
kernel mode state, but instead relies on software performing
these operations on each register, which results in much
higher overhead. The cost of transitioning from a VM to the
hypervisor can be many times worse on ARM than x86 [12].

To address this problem, we present a new hypervisor
design and implementation that takes advantage of unique
features of the ARM architectural support for virtualization in
the context of Type 2 hypervisors. We take a fundamentally
different approach that runs the hypervisor together with its
OS kernel in a separate CPU mode from kernel mode. ARM
VE provides an extra hypervisor CPU mode, EL2, designed
to run standalone hypervisors. EL2 is a separate mode from
the EL1 kernel mode, and the architecture allows switching
from EL1 to EL2 without saving or restoring any EL1
register state. In this design, the hypervisor and its OS kernel
no longer run in EL1, but EL1 is reserved exclusively to be
used by VMs. This means that the kernel mode hardware
state no longer has to be multiplexed between the hypervisor
OS kernel and a VM’s guest OS kernel, and transitioning
between the two does not require saving and restoring any
kernel mode state. This new design, using separate hardware
state for VMs and the hypervisor OS kernel can significantly
improve hypervisor performance.

Our new hypervisor design benefits from the Virtual-
ization Host Extensions (VHE) introduced in ARMv8.1.
With VHE, our design does not require any changes to
existing hypervisor OS kernels. Without VHE, our design
requires modifications to the hypervisor OS kernel so it can
run in EL2 instead of EL1. Although Type 1 hypervisors
also suffer from poor performance due to slow transitions
between the hypervisor OS kernel and guest OS kernels, our
design is not easily applicable to Type 1 hypervisors. We
focus on improving the performance of Type 2 hypervisors
on ARM given their widespread popularity, which is at least
in part due to their benefits over Type 1 hypervisors on ARM.
ARM hardware does not have the same legacy and standards
as x86, so Type 1 hypervisors have to be manually ported
to every hardware platform they support. Type 2 hypervisors
leverage their host OS and are automatically supported on
all hardware platforms supported by their host OS.

Running the hypervisor and its OS kernel in a separate
CPU mode with its own hardware state allows a number
of improvements to the hypervisor implementation. First,
transitioning from the VM to the hypervisor no longer
requires saving and restoring the kernel mode register state.
Second, the hypervisor OS kernel can program hardware
state used by the VM directly when needed, avoiding extra
copying to and from intermediate data strutures. Third,
the hypervisor and its OS kernel no longer need to operate
across different CPU modes with separate address spaces
which requires separate data structures and duplicated code.

Instead, the hypervisor can directly leverage existing OS
kernel functionality while at the same time configure ARM
hardware virtualization features, leading to reduced code
complexity and improved performance.

We have implemented our approach by redesigning
KVM/ARM and demonstrated that it is effective at providing
significant performance benefits with reduced implementa-
tion complexity. A number of our changes have been merged
into mainline Linux over the course of Linux kernel versions
v4.5 through v4.8, with additional changes scheduled to
be applied in upcoming kernel versions. We show that
our redesign and optimizations can result in an order of
magnitude performance improvement for KVM/ARM in
microbenchmarks, and can reduce virtualization overhead by
more than 50% for real application workloads. We show that
both hardware and software need to work together to provide
the optimal performance. We also show that our optimized
KVM/ARM provides significant performance gains com-
pared to x86, indicating that our hypervisor design combined
with the required architectural support for virtualization
provides a superior approach to x86 hardware virtualization.

2 Background

We first provide a brief overview of current state-of-the-art
Type 2 hypervisor designs on both x86 and ARM and discuss
how they must multiplex kernel mode to run both their VM
and hypervisor OS kernels using hardware virtualization
support. For architectural support for virtualization on x86,
we focus on Intel VMX, though AMD-V is similar for the
purposes of this discussion.

2.1 Intel VMX
The Intel Virtual Machine Extensions (VMX) [21], support
running VMs through the addition of a new feature, VMX
operations. When VMX is enabled, the CPU can be in one of
two VMX operations, VMX root or VMX non-root operation.
Root operation allows full control of the hardware and is for
running the hypervisor. Non-root operation is restricted to op-
erate only on virtual hardware and is for running VMs. VMX
provides memory virtualization through Extended Page Ta-
bles (EPT) which limits the memory the VM can access in
VMX non-root. Both VMX root and non-root operation have
the same full set of CPU modes available to them, including
both user and kernel mode, but certain sensitive instructions
executed in non-root operation cause a transition to root op-
eration to allow the hypervisor to maintain complete control
of the system. The hypervisor OS kernel runs in root opera-
tion and a VM’s guest OS kernel runs in non-root operation,
but both run in the same CPU mode. Since the hypervisor
and the VM have separate execution contexts in form of
register state and configuration state, all of this state must be
multiplexed between root and non-root operation.

222 2017 USENIX Annual Technical Conference USENIX Association

VMX supports this multiplexing in hardware by defining
two VMX transitions, VM Entry and VM Exit. VM Entry
transitions from root to non-root operation which happens
when the hypervisor decides to run a VM by executing a
specific instruction. VM Exit transitions from non-root to
root operation which transfers control back to the hypervisor
on certain events such as hardware interrupts or when the
VM attempts to perform I/O or access sensitive state. The
transitions are managed by hardware using an in-memory
data structure called the Virtual-Machine Control Structure
(VMCS). VMX root and non-root operation do not have sepa-
rate CPU hardware modes, but VMX instead multiplexes the
modes between the hypervisor and VM by saving and restor-
ing CPU state to memory using hardware VMX transitions.

2.2 ARM VE

ARM took a very different approach than x86 in adding
hardware virtualization support. Instead of introducing an
orthogonal feature to distinguish between the hypervisor
and VM operation, ARM extended the existing CPU mode
hierarchy, originally just EL0 user mode and EL1 kernel
mode, by adding a separate more privileged mode called EL2
to run the hypervisor. Although ARM refers to EL0, EL1,
and EL2 as exception levels, we refer to them here as CPU
modes to simplify the discussion. EL2 cannot be used to run
existing unmodified OS kernels for a number of reasons. For
example, EL2 has its own set of control registers and has a
limited and separate address space compared to EL1, so it is
not compatible with EL1. Furthermore, EL2 does not easily
support running userspace applications in EL0 which expect
to interact with a kernel running in EL1 instead of EL2.

Therefore, both the hypervisor and VM OS kernels
must run in EL1, and this mode must be multiplexed
between the two execution contexts. On ARM, this can be
done by software running in EL2. EL2 is a strictly more
privileged mode than user and kernel modes, EL0 and EL1,
respectively, and EL2 has its own execution context defined
by register and control state, and can therefore completely
switch the execution context of both EL0 and EL1 in
software, similar to how the kernel in EL1 context switches
between multiple userspace processes running in EL0.

When both the hypervisor and VM OS kernels run at the
same privilege level on ARM without an equivalent feature
to x86 VMX operations, an obvious question is how to
differentiate between the roles of the hypervisor and the VM
kernel. The hypervisor kernel should be in full control of the
underlying physical hardware, while the VM kernel should
be limited to the control of virtual hardware resources. This
can be accomplished by using ARM VE which allows fine
grained control of the capabilities of EL1. Software running
in EL2 can enable certain sensitive instructions and events
executed in EL0 or EL1 to trap to EL2. For example, similar
to x86 EPT, ARM VE provides memory virtualization by

adding an additional stage of address translation, the stage 2
translations. Stage 2 translations are controlled from EL2 and
only affect software executing in EL1 and EL0. Hypervisor
software running in EL2 can therefore completely disable the
stage 2 translations when running the hypervisor OS kernel,
giving it full access to all physical memory on the system,
and conversely enable stage 2 translations when running VM
kernels to limit VMs to manage memory allocated to them.

ARM VE supports the multiplexing of EL1 analogously
to how EL0 is multiplexed between processes using EL1.
Because EL2 is a separate and strictly more privileged mode
than EL1, hypervisor software in EL2 can multiplex the entire
EL1 state by saving and restoring each register and config-
uration state, one by one, to and from memory. In line with
the RISC design of ARM, and in contrast to the CISC design
of x86, ARM does not provide any hardware mechanism to
multiplex EL1 between the hypervisor and VM kernels, but
instead relies on existing simpler mechanisms in the architec-
ture. For example, if a VM kernel tries to halt the physical
processor, because this is a sensitive instruction and the VM
is not allowed to control the physical CPU resource, this in-
struction will cause a trap to the more privileged EL2 mode,
which can then reuse existing instructions to save and restore
state and switch the EL1 execution context to the hypervi-
sor kernel context, configure EL1 to have full access to the
hardware, and return to EL1 to run the hypervisor OS kernel.

2.3 KVM

Figure 1 compares how the KVM hypervisor runs using
x86 VMX versus ARM VE. We refer to the hypervisor OS
kernel as the host OS kernel, the more commonly used term
with KVM, and applications interacting directly with the OS,
and running outside of a VM, as host user space. Figure 1(a)
shows how KVM x86 works. The hypervisor and host OS
run in root operation, with the host user space running in
the least privileged CPU mode level 3, and the host kernel
running in the privileged CPU mode, level 0, similar to
running on a native system. All of the VM runs in non-root
operation and the VM user space and kernel also run in level
3 and level 0, respectively. Transitions between root and
non-root mode are done in hardware using the atomic VMX
transitions, VM Entry and VM Exit.

Figure 1(b) shows how KVM/ARM works. Since the host
OS kernel cannot run in EL2, but EL2 is needed to enable
the virtualization features and to multiplex EL1, KVM/ARM
uses split-mode virtualization [14] to support both the host
OS kernel running in EL1 and at the same time run software
in EL2 to manage the virtualization features and multiplex
EL1. Most of the hypervisor functionality runs in EL1 with
full access to the hardware as part of the host OS kernel, and
a small layer, the lowvisor, runs in EL2.

When KVM x86 runs a VM, it issues a single instruction
to perform the VM Entry. The VM Entry operation saves the

USENIX Association 2017 USENIX Annual Technical Conference 223

Host Kernel
KVM VM Kernel

VM User
Space

Host User
Space

VM Entry
VM Exit

Root Non-Root

L0

L3

(a) KVM x86

Host Kernel
KVM VM Kernel

VM User
Space

Host User
Space

EL1

EL0

(b) KVM/ARM

Lowvisor
EL2

Run VM
Exit from VM Host Kernel

KVM

VM Kernel

VM User
Space

Host User
Space

EL1

EL0

(c) KVM/ARM in EL2

EL2
Eret

Trap

Eret Trap Eret Trap

Figure 1: Hypervisor Designs and CPU Privilege Levels

hypervisor execution context of the processor to the VMCS
and restores the VM execution context from the VMCS. On
a VM Exit, x86 VMX performs the reverse operation and
returns to the hypervisor. Since ARM does not have a single
hardware mechanism to save and restore the entire state of
the CPU, KVM/ARM issues a hypercall to trap to the lowvi-
sor in EL2, which saves and restores all the registers and
configuration state of the CPU, one by one, using a software
defined structure in memory. After changing the EL0 and
EL1 execution context to the VM, the lowvisor performs
an exception return (eret) to the VM. When the VM traps to
EL2, the lowvisor again saves and restores the entire state of
the CPU and switches the execution context of EL0 and EL1
back to the hypervisor. As we shall see in Section 5.1, while
the x86 VMX transitions are very complicated hardware
operations, and the traps on ARM from EL1 to EL2 are
cheap, multiplexing the kernel mode between two contexts
ends up being much more expensive on ARM as a result of
having to save and restore the entire CPU state in software.

3 Hypervisor OS Kernel Support

Running the hypervisor OS kernel in the same CPU mode as
the VM kernels invariably results in multiplexing the kernel
CPU mode, either in hardware or software, which adds over-
head from the need to save and restore state. If instead a ded-
icated separate CPU mode were available to run the hypervi-
sor OS kernel, this would avoid the need to multiplex a single
mode and allow the hardware to simply trap from the VM to
the hypervisor OS kernel to manage the underlying hardware
and service the VM. Being able to transition back and forth
between the full hypervisor functionality and the VM quickly
without repeatedly saving and restoring the entire CPU state
can reduce latency and improve virtualization performance.

Running the hypervisor OS kernel in a separate mode
requires support from both hardware and software. The
hardware must obviously be designed with a separate mode
in addition to the mode used to run the VM kernel and

VM user space. The hardware for the separate mode must
support running full OS kernels that interact with user space
applications. Furthermore, the hypervisor software must be
designed to take advantage of running the hypervisor OS
kernel in a separate CPU mode. As explained in Section 2,
x86 does not meet these requirements because it does not
have a separate CPU mode for the hypervisor OS kernel.
ARM at least provides a separate CPU mode, EL2, but it
was not designed for running hypervisor OS kernels. We
show how this limitation can be overcome.

Figure 1(c) shows how KVM/ARM can be re-designed to
run both the hypervisor (KVM) and its hypervisor OS kernel
(Linux) together in EL2. This design is superior to previous
ARM hypervisor designs including existing KVM/ARM
and Xen on ARM, because it allows for very fast transitions
between the VM and the hypervisor, including when running
the hypervisor OS kernel, because there is no need to
repeatedly save and restore the entire CPU state when
transitioning between the VM and the hypervisor OS kernel.
Furthermore, because the hypervisor is integrated with its
hypervisor OS kernel, it can directly manage the underlying
hardware using existing functionality such as device drivers
in the hypervisor OS kernel without having to run special
privileged VMs as is the case on Xen [12].

However, running an existing OS kernel in EL2 requires
modifying the hardware or OS kernel, because EL2 was
designed only to run hypervisors and lacks key features
available in EL1, ARM’s kernel mode, used to support OS
kernels. First, EL2 uses a separate set of control registers
accessed using different instructions than the EL1 control
registers, causing incompabilities with a kernel written
to run in EL1. Second, EL2 lacks support for host user
space, which is needed to run applications such as QEMU,
which provides device emulation. Running host user space
applications in EL0 in conjunction with software running
in EL2 without using EL1, as shown in Figure 1(c), requires
handling exceptions from EL0 directly to EL2, for example
to handle system calls, hardware interrupts, and page faults.

224 2017 USENIX Annual Technical Conference USENIX Association

EL2 provides a Trap General Exceptions (TGE) bit to
configure the CPU to route all exceptions from EL0 directly
to EL2, but setting this bit also disables the use of virtual
memory in EL0, which is problematic for real applications.
Finally, EL2 uses a different page table format and only
supports a single virtual address range, causing problems for
a kernel written to use EL1’s page table format and EL1’s
support for two separate virtual address space ranges.

3.1 Virtualization Host Extensions

To run existing hypervisor OS kernels in EL2 with almost
no modifications, ARM introduced the Virtualization Host
Extensions (VHE) in ARMv8.1. VHE is an architectural
hardware modification that provides improved support for
Type 2 hypervisors on ARM. It provides three key features.

First, VHE introduces additional EL2 registers to provide
the same functionality available in EL1 to software running
in EL2. VHE adds new virtual memory configuration
registers, a new context ID register used for debugging, and
a number of new registers to support a new timer. With
these new registers in place, there is a corresponding EL2
system register for each EL1 system register. VHE then
transparently changes the operation of instructions that
normally access EL1 system registers to access EL2 registers
instead when they run in EL2. By transparently changing
the operation of the instructions, existing unmodified OSes
written to issue EL1 system register instructions will instead
access EL2 system registers when run in EL2. VHE also
changes the bit layout of some EL2 system registers to share
the same layout and semantics as their EL1 counterparts.

Second, VHE supports running host user space applica-
tions that use virtual memory in EL0 and interact directly
with a kernel running in EL2. VHE introduces new func-
tionality so that the EL0 virtual memory configuration can
be managed by either EL1 or EL2, depending on a run time
configuration setting, which allows EL2 to route exceptions
from EL0 directly to EL2 and at the same time support
virtual memory in EL0. VHE extends the functionality of
the TGE bit such that when enabled and exceptions from
EL0 are routed to EL2, virtual memory support is enabled in
EL0 and controlled using EL2 page table registers. A Type
2 hypervisor will typically configure EL0 to use the EL2
system registers when running the hypervisor, and configure
EL0 to use the EL1 system registers when running the VM.

Third, VHE changes the page table format of EL2 to use
the same format as used in EL1, which avoids the need to
change an existing OS kernel’s page table management code
to support different formats. VHE also adds support to EL2
for an additional separate virtual address space which can
be used to provide the same split between kernel and user
space addresses commonly used by existing ARM OSes in
EL1 and EL0.

Using VHE to run Linux as the hypervisor OS kernel

in conjunction with KVM requires very little effort. The
early boot code in Linux simply sets a single bit in a register
to enable VHE, and the kernel itself runs without further
modification in EL2.

While the hypervisor OS kernel can run largely unmod-
ified in EL2, the hypervisor itself must be modified to run
with VHE. In particular, because EL1 system register access
instructions are changed to access EL2 registers instead, the
hypervisor needs an alternative mechanism to access the
real EL1 registers, for example to prepare a VM’s execution
context. For this purpose, VHE adds new instructions,
the _EL12 instructions, which access EL1 registers when
running in EL2 with VHE enabled. The hypervisor must
be modified to replace all EL1 access instructions that
should continue to access EL1 registers with the new _EL12

access instructions when using VHE, and use the original
EL1 access instructions when running without VHE.

3.2 el2Linux

Unfortunately, VHE hardware is not yet publicly available
and remains an optional extension to the ARM architecture.
As an alternative, we introduce el2Linux [11], a lightly
modified version of Linux that runs in EL2 on non-VHE
hardware. el2Linux brings the benefits of running Linux as
the hypervisor OS kernel in a separate CPU mode to existing
hardware alongside the KVM hypervisor. It involves three
main kernel modifications to Linux.

First, to control its own CPU mode, Linux must access
EL2 register state when running in EL2, and we modify the
Linux kernel source code as needed to access EL2 system
registers instead of EL1 registers. This can be done using
either build time conditionals or at runtime using instruction
patching to avoid overhead from introducing additional
conditional code paths in the kernel.

Second, to support host user space applications such as
QEMU in EL0 interacting with a kernel running in EL2, we
install a tiny runtime in EL1, which includes an exception
vector to forward exceptions to EL2 by issuing a hypercall
instruction. The result is that exceptions from EL0 are
forwarded to EL2 via EL1. However, this introduces two
sources of additional overhead for applications running
outside of a VM. One is a small overhead from going
through EL1 to EL2 when handling an exception in EL0.
The other is a larger overhead due to the need to multiplex
EL1 between the EL1 runtime and a VM’s guest OS kernel.
While saving and restoring the EL1 state is expensive, it is
only necessary when running host user space applications,
not on each transition between a VM and the hypervisor. For
the KVM hypervisor, returning to host user space is already
an expensive transition on both ARM and x86. As a result,
KVM is heavily optimized to avoid returning to host user
space. Measurements presented in Section 5 indicate this
overhead is negligible in practice.

USENIX Association 2017 USENIX Annual Technical Conference 225

Third, to support virtual memory for host user space appli-
cations in EL0 and the kernel running in EL2 while preserv-
ing normal Linux virtual memory management semantics,
we make two Linux modifications. One provides a way to
bridge the differences between the different page table for-
mats of EL0 and EL2, and the other uses the single EL2 page
table to mimic the behavior using two EL0/EL1 page tables.

Bridging the differences between different page table
formats of EL0 and EL2 is important because Linux memory
management is designed around the assumption that the
same page tables are used from both user and kernel mode,
with potentially different access permissions between the
two modes. This allows Linux to maintain a consistent
per-process view of virtual memory from both the kernel
and user space. Violating this assumption would require
invasive and complex changes to the Linux kernel. el2Linux
takes advantage of the fact the differences between EL0/EL1
and EL2 page table formats are relatively small and can be
bridged to use the same page tables for both EL0 and EL2
by slightly relaxing a security feature and accepting a higher
TLB invalidation frequency on some workloads.

el2Linux relaxes a security feature because the EL2 page
table format only has a single non-execute bit which must
be shared by EL0 and EL2 to use the same page tables for
both EL0 and EL2. When setting this bit on a page table
entry which is used in both EL2 and EL0, the page is not
executable by the kernel or user space, and when clearing
this bit, the page is executable by both. Since kernel pages
containing code must be executable by the kernel, the single
non-execute bit means they end up executable by both user
space and the kernel. This problem does not exist for EL1
page tables because they support two bits to control if a page
is executable or non-executable, one for EL0 and one for
EL1. We emphasize that while this is a slight relaxation
of a security feature, it is not a direct security exploit. All
kernel pages can still not be read or written from user
space, but only executed, and can still only be executed
with user privileges. This security relaxation may work
against the purpose of kernel hardening techniques such as
kernel address space randomization (KASLR), because user
software can try to execute random addresses in the kernel’s
address space and rely on signals to regain control, and by
observing the register state of the CPU or by observing other
side effects, applications can attempt to reason about where
the kernel maps its code and data within its address space.

Alternative solutions exist to support virtual memory for
host user space applications in EL0 without relaxing this
security feature, but require more invasive changes to Linux.
One approach would be to simply not use the same page
tables between the kernel and user space and maintain two
page tables per process, one used by the host user space in
EL0 and one used by the kernel in EL2. This solution would
require additional synchronization mechanisms to make sure
the two page tables always maintained a consistent view of

a process address space between user space threads and the
kernel. Another approach would be to not allow Linux to
access user space pointers from within the kernel and instead
require Linux to translate every user space virtual address
into a kernel virtual address by walking the EL0 user space
page tables in software from within the kernel on every user
access such as read or write system calls that transfer data
between user space processes and the kernel.

el2Linux may incur a higher TLB invalidation frequency
because virtual memory accesses performed in EL2 are not
tagged with an Address Space Identifier (ASID), which are
used to distinguish different address space resolutions in
the TLB to avoid having to invalidate TLB entries when
changing address spaces, for example when switching
between processes. While the kernel address space is shared
for all processes, the kernel also some times accesses user
space addresses when copying data between user space, for
example when handling system calls. Such accesses should
be tagged with the process ASID to ensure that TLB entries
only match for the right process. Since memory accesses
performed in EL2 are not associated with a ASID, we
must invalidate all EL2 entries in the TLB when switching
between processes. This does not affect TLB entries for
memory accesses done by user space applications, as these
still run in EL0 and all EL0 accesses still use ASIDs. We did
not observe a slowdown in overall system performance as a
result of this design, and estimate that for most virtualization
workloads the effect will be minimal, but it could be sub-
stantial for other host workloads. Note that VHE hardware
uses ASIDs in EL2 and does not have this limitation.

Finally, el2Linux uses an approach similar to x86 Linux to
enable a single EL2 page table to mimic the behavior using
two EL0/EL1 page tables. Instead of having separate page
tables for user and kernel address spaces as is done in EL1,
el2Linux splits a single address space so that half is for user
space and the other half is for a shared kernel space among
all processes. Similar to x86 Linux, el2Linux only maintains
a single copy of the second level page tables for the kernel
and points to these from the first level page table across all
processes. ARM supports a maximum of 48 bits of contigu-
ous virtual addresses, resulting in a maximum of 47 bits of
address space for both the kernel and each user space process.

4 Hypervisor Redesign

While running the hypervisor OS kernel in a separate CPU
mode is a key aspect of our approach, it turns out that this
alone is insufficient to significantly improve virtualization
performance, as we will show in Section 5. The hypervisor
itself must also be redesigned to take advantage of not having
to multiplex the same CPU mode between the hypervisor OS
kernel and the VM. We redesigned KVM/ARM based on this
insight. A key challenge was to do this in such a way that our
modifications could be accepted by the Linux community,

226 2017 USENIX Annual Technical Conference USENIX Association

which required also supporting legacy systems in which
users may still choose to run the hypervisor OS kernel in
EL1. We describe three techniques we used to redesign
KVM/ARM’s execution flow to improve performance.

First, we redesigned KVM/ARM to avoid saving and
restoring EL1 registers on every transition between a VM
and the hypervisor. The original KVM/ARM had to save and
restore EL1 state on every transition because EL1 was shared
between a VM’s guest OS kernel and the hypervisor OS
kernel. Since the hypervisor OS kernel now runs in EL2 and
does not use the EL1 state anymore, it can load the VM’s EL1
state into CPU registers when it runs the VM’s virtual CPU
(VCPU) on the physical CPU for the first time. It does not
have to save or modify this state again until it runs another
VCPU or has to configure its EL1 runtime to run applications
in host user space. This entails not only eliminating copying
EL1 state to in-memory hypervisor data structures on
each transition between a VM and the hypervisor, but
also modifying KVM/ARM to directly access the physical
CPU for the running VCPU’s EL1 register state since the
hypervisor data structures may be out of date. To preserve
backwards compatibility to also use KVM/ARM without
Linux running in EL2, we keep track of whether a VCPU’s
EL1 registers are loaded onto the physical CPU or stored in
memory and direct accesses to EL1 registers in KVM/ARM
to the appropriate location using access functions.

Second, we redesigned KVM/ARM to avoid enabling and
disabling virtualization features on every transition between
the VM and the hypervisor. The original KVM/ARM had to
disable virtualization features when running the hypervisor
OS kernel so it could have full access to the underlying
hardware, but then enable virtualization features when
running a VM so it only had restricted access to virtualized
hardware. The configuration of virtualization features
such as stage 2 translations, virtual interrupts, and traps on
sensitive instructions only apply to software running in EL1
and EL0. Since the hypervisor OS kernel now runs in EL2, it
automatically has full access to the underlying hardware and
the configuration of virtualization features do not apply to
it. Instead, the virtualization features simply remain enabled
for running VMs in EL1 and EL0, eliminating frequent
writes to the group of special EL2 registers that configures
the virtualization features. The only time the virtualization
features need to be disabled is for running host user space
applications and its supporting EL1 runtime, which happens
relatively infrequently.

Third, we redesigned KVM/ARM to avoid the use of
shared, intermediate data structures between EL1 and EL2.
The original KVM/ARM using split-mode virtualization had
to communicate across EL1 and EL2 modes via intermediate
data structures mapped in both CPU modes because much
of the hypervisor functionality was implemented in the hy-
pervisor OS kernel running in EL1 but needed to have some
aspect run in EL2 to program EL2 hardware. The hypervisor

ends up processing data twice, once in EL1 which results
in writing data to an intermediate data structure, and once in
EL2 to process the intermediate data structure and program
the hardware. Similarly, duplicative processing also hap-
pened when intermediate data structures were used to store
EL2 state that needed to be read by the hypervisor OS kernel
in EL1 but could only be read by the hypervisor in EL2.
This complicates the code and results in many conditional
statements. To make matters worse, since EL1 and EL2 run
in separate address spaces, accessing the intermediate data
structures can result in a TLB miss for both EL1 and EL2.
Since the hypervisor OS kernel now runs in EL2 together
with the rest of KVM/ARM, there is no longer any need for
these intermediate data structures. The previously separate
logic to interact with the rest of the hypervisor OS kernel and
to program or access the EL2 hardware can be combined into
a single optimized step, resulting in improved performance.

A prime example of how eliminating the need for
intermediate data structures helped was the virtual interrupt
controller (VGIC) implementation, which is responsible
for handling virtual interrupts for VMs. VGIC hardware
state is only accessible and programmable in EL2, however
hypervisor functionality pertaining to virtual interrupts relies
on the hypervisor OS kernel, which ran in EL1 with the
original KVM/ARM. Since it was not clear when running in
EL2 what VGIC state would be needed in EL1, the original
KVM/ARM would conservatively copy all of the VGIC state
to intermediate data structures so it was accessible in EL1, so
that, for example, EL1 could save the state to in-memory data
structures if it was going to run another VM. Furthermore,
the original KVM/ARM would identify any pending virtual
interrupts but then could only write this information to an
intermediate data structure, which then needed to be later
accessed in EL2 to write them into the VGIC hardware.

Since the hypervisor OS kernel now runs in EL2 together
with the rest of KVM/ARM, the redesigned KVM/ARM
no longer needs to conservatively copy all VGIC state to
intermediate data structures, but can instead have the hyper-
visor kernel access VGIC state directly whenever needed.
Furthermore, since the redesign simplified the execution flow,
it became clear that some VGIC registers were never used by
KVM and thus never needed to be copied, saved, or restored.
It turns out that eliminating extra VGIC register accesses is
very beneficial because VGIC register accesses are expensive.
Similarly, since the hypervisor OS kernel now runs in EL2,
there is no need to check for pending virtual interrupts in
both EL1 and EL2. Instead these steps can be combined into
a single optimized step that also writes them into the VGIC
hardware as needed. As part of this redesign, it became
clear that the common case that should be made fast is
that there are no pending interrupts so only a single simple
check should be required. We further optimized this step by
avoiding the need to hold locks in the common case, which
was harder to do with the original KVM/ARM code base that

USENIX Association 2017 USENIX Annual Technical Conference 227

had to synchronize access to intermediate data structures.
To maintain backwards compatibility support for systems

not running the hypervisor and its host OS kernel in
EL2, while not adding additional runtime overhead from
conditionally execution almost all operations in the run
loop, we take advantage of the static key infrastructure in
Linux. Static keys patch the instruction flow at runtime
to avoid conditional branches, and instead replaces no-ops
with unconditional branches when a certain feature is
enabled. During initialization of KVM/ARM, we activate
or deactivate the static branch depending on whether
KVM/ARM runs in EL2 or EL1. For example, the run loop
uses a static branch to decide if it should call the lowvisor
to start switching to a VM in EL2, or if it should simply run
the VM if the hypervisor is already running in EL2.

5 Experimental Results

We have successfully merged many of our implementation
changes in redesigning KVM/ARM into the mainline Linux
kernel, demonstrating the viability of our approach. Getting
changes accepted into mainline Linux takes time, and as
such, our improvements have been merged into mainline
Linux over the course of Linux kernel versions v4.5 through
v4.8, with remaining changes scheduled to be applied in
upcoming kernel versions.

We evaluate the performance of our new hypervisor design
using both microbenchmarks and real application workloads
on ARM server hardware. Since no VHE hardware is
publicly available yet, we ran workloads on non-VHE ARM
hardware using el2Linux. We expect that el2Linux provides
a conservative but similar measure of performance to what
we would expect to see with VHE since the critical hypervi-
sor execution paths are almost identical between the two, and
VHE does not introduce hardware features that would cause
runtime overhead from the hardware. In this sense, these
measurements provide the first quantitative evaluation of
the benefits of VHE, and provide chip designers with useful
experimental data to evaluate whether or not to support
VHE in future silicon. We also verified the functionality and
correctness of our VHE-based implementation on ARM soft-
ware models supporting VHE. As a baseline for comparison,
we also provide results using KVM on x86 server hardware.

ARM measurements were done using a 64-bit ARMv8
AMD Seattle (Rev.B0) server with 8 Cortex-A57 CPU cores,
16 GB of RAM, a 512 GB SATA3 HDD for storage, and a
AMD 10 GbE (AMD XGBE) NIC device. For benchmarks
that involve a client interfacing with the ARM server, we
ran the clients on an x86 machine with 24 Intel Xeon
CPU 2.20 GHz cores and 96 GB RAM. The client and the
server were connected using 10 GbE and we made sure the
interconnecting switch was not saturated during our measure-
ments. x86 measurements were done using Dell PowerEdge
r320 servers, each with a 64-bit Xeon 2.1 GHz E5-2450 with

8 physical CPU cores. Hyper-Threading was disabled on
the r320 servers to provide a similar hardware configuration
to the ARM servers. Each r320 node had 16 GB of RAM,
4 500 GB 7200 RPM SATA RAID5 HDs for storage, and a
Dual-port Mellanox MX354A 10 GbE NIC. For benchmarks
that involve a client interfacing with the x86 server, we ran
the clients on an identical x86 client. CloudLab [10] infras-
tructure was used for x86 measurements, which also provides
isolated 10 GbE interconnect between the client and server.

To provide comparable measurements, we kept the
software environments across all hardware platforms and
hypervisors the same as much as possible. KVM/ARM was
configured with passthrough networking from the VM to an
AMD XGBE NIC device using Linux’s VFIO direct device
assignment framework. KVM on x86 was configured with
passthrough networking from the VM to one of the physical
functions of the Mellanox MX354A NIC. Following best
practices, we configured KVM virtual block storage with
cache=none. We configured power management features
on both server platforms and ensured both platforms were
running at full performance. All hosts and VMs used Ubuntu
14.04 with identical software configurations. The client
machine used for workloads involving a client and server
used the same configuration as the host and VM, but using
Ubuntu’s default v3.19.0-25 Linux kernel.

We ran benchmarks on bare-metal machines and in VMs.
Each physical or virtual machine instance used for running
benchmarks was configured as a 4-way SMP with 12 GB
of RAM to provide a common basis for comparison. This
involved two configurations: (1) running natively on Linux
capped at 4 cores and 12 GB RAM, (2) running in a VM
using KVM with 8 physical cores and 16 GB RAM with the
VM capped at 4 virtual CPUs (VCPUs) and 12 GB RAM.
For network related benchmarks, the clients were run natively
on Linux and configured to use the full hardware available.

To minimize measurement variability, we pinned each
VCPU of the VM to a specific physical CPU (PCPU) and
ensured that no other work was scheduled on that PCPU.
We also statically allocated interrupts to a specific CPU, and
for application workloads in VMs, the physical interrupts
on the host system were assigned to a separate set of PCPUs
from those running the VCPUs.

We compare across Linux v4.5 and v4.8 on ARM to
quantify the impact of our improvements, as the former does
not contain any of them while the latter contains a subset of
our changes merged into mainline Linux. To ensure that our
results are not affected by other changes to Linux between
the two versions, we ran both v4.5 and v4.8 Linux natively on
both the ARM and x86 systems and compared the results and
we found that there were no noticeable differences between
these versions of Linux. For comparison purposes, we mea-
sured four different system configurations, ARM, ARM EL2,
ARM EL2 OPT, and x86. ARM uses vanilla KVM/ARM
in Linux v4.5, the kernel version before any of our imple-

228 2017 USENIX Annual Technical Conference USENIX Association

Name Description
Hypercall Transition from the VM to the hypervisor and return to the

VM without doing any work in the hypervisor. Measures
bidirectional base transition cost of hypervisor operations.

I/O Kernel Trap from the VM to the emulated interrupt controller
in the hypervisor OS kernel, and then return to the VM.
Measures a frequent operation for many device drivers
and baseline for accessing I/O devices supported by the
hypervisor OS kernel.

I/O User Trap from the VM to the emulated UART in QEMU and
then return to the VM. Measures base cost of operations
that access I/O devices emulated in the hypervisor OS
user space.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU
running on a different PCPU, both PCPUs executing VM
code. Measures time between sending the virtual IPI
until the receiving VCPU handles it, a frequent operation
in multi-core OSes.

Table 1: Microbenchmarks

mentation changes were merged into Linux. ARM EL2 uses
the same KVM/ARM in Linux v4.5 but with modifications
to run el2Linux to quantify the benefits of running Linux
in EL2 without also redesigning the KVM/ARM hypervisor
itself. ARM EL2 OPT uses our redesigned KVM/ARM in
Linux v4.8, including all of the optimizations described in
this paper, both those already merged into Linux v4.8 and
those scheduled to be applied in upcoming Linux versions.

5.1 Microbenchmark Results
We first ran various microbenchmarks as listed in Table 1,
which are part of the KVM unit test framework [23]. We
slightly modified the test framework to measure the cost
of virtual IPIs and to obtain cycle counts on the ARM
platform to ensure detailed results by configuring the VM
with direct access to the cycle counter. Table 2 shows the
microbenchmark results. Measurements are shown in cycles
instead of time to provide a useful comparison across server
hardware with different CPU frequencies.

The Hypercall measurement quantifies the base cost of
any operation where the hypervisor must service the VM.
Since KVM handles hypercalls in the host OS kernel, this
metric also represents the cost of transitioning between the
VM and the hypervisor OS kernel. For Hypercall, the ARM
EL2 OPT is a mere 12% of the ARM cost and roughly
50% of the x86 cost, measured in cycles. Comparing the
ARM and ARM EL2 costs, we see that only running the
hypervisor OS kernel in a separate CPU mode from the VM
kernel does not by itself yield much improvement. Instead,
redesigning the hypervisor to take advantage of this fact is
essential to obtain a significant performace improvement as
shown by the ARM EL2 OPT costs.

The I/O Kernel measurement quantifies the cost of I/O
requests to devices supported by the hypervisor OS kernel.
The cost consists of the base Hypercall cost plus doing
some work in the hypervisor OS kernel. For I/O Kernel, the

Microbenchmark ARM ARM EL2 ARM
EL2 OPT

x86

Hypercall 6,413 6,277 752 1,437
I/O Kernel 8,034 7,908 1,604 2,565
I/O User 10,012 10,186 7,630 6,732
Virtual IPI 13,121 12,562 2,526 3,102

Table 2: Microbenchmark Measurements (cycle counts)

ARM EL2 OPT cost is only 20% of the original ARM cost
because of the significant improvement in the Hypercall cost
component of the overall I/O Kernel operation.

The I/O User measurement quantifies the cost of I/O
requests that are handled by host user space. For I/O User,
ARM EL2 OPT cost is only reduced to 76% of the ARM
cost. The improvement is less in this case because our
el2Linux implementation requires restoring the host’s EL1
state before returning to user space since running user
applications in EL0 without VHE uses an EL1 runtime, as
discussed in Section 3.2. However, returning to user space
from executing the VM has always been known to be slow,
as can also be seen with the x86 I/O User measurement in Ta-
ble 2. Therefore, most hypervisor configurations do this very
rarely. For example, the vhost configuration of virtio [25]
paravirtualized I/O that is commonly used with KVM
completely avoids going to host user space when doing I/O.

Finally, the Virtual IPI measurement quantifies the cost
of issuing virtual IPIs (Inter Processor Interrupts), a frequent
operation in multi-core OSes. It involves exits from both the
sending VCPU and receiving VCPU. The sending VCPU
exits because sending an IPI traps and is emulated by the
underlying hypervisor. The receiving VCPU exits because it
gets a physical interrupt which is handled by the hypervisor.
For Virtual IPI, ARM EL2 OPT cost is only 19% of the
original ARM cost because of the significant improvement
in the Hypercall cost, which benefits both the sending and
receiving VCPUs in terms of lower exit costs.

Our microbenchmark measurements show that our
KVM/ARM redesign is roughly an order of magnitude faster
than KVM/ARM’s legacy split-mode design in transitioning
between the VM and the hypervisor. The ARM EL2
numbers show slight improvement over the ARM numbers,
due to the removal of the double trap cost [14] introduced
by split-mode virtualization. However, a key insight based
on our implementation experience and these results is that
only running the hypervisor OS kernel in a separate CPU
mode from the VM kernel is insufficient to have much
of a performance benefit, even on architectures like ARM
which have the ability to quickly switch between the two
separate CPU modes without having to multiplex any state.
However, if the hypervisor is designed to take advantage of
running the hypervisor OS kernel in a separate mode, and
the hardware provides the capabilities to do so and to switch
quickly between the two modes, then the cost of low-level
VM-to-hypervisor interactions can be much lower than on

USENIX Association 2017 USENIX Annual Technical Conference 229

Name Description
Kernbench Compilation of the Linux 3.17.0 kernel using the

allnoconfig for ARM using GCC 4.8.2.
Hackbench hackbench [24] using Unix domain sockets and 100

process groups running with 500 loops.
Netperf netperf v2.6.0 [22] starting netserver on the server and

running with its default parameters on the client in three
modes: TCP STREAM, TCP MAERTS, and TCP RR,
measuring throughput and latency, respectively.

Apache Apache v2.4.7 Web server with a remote client running
ApacheBench [28] v2.3, which measures number of
handled requests per second serving the 41 KB index file
of the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with its default parameters.

Table 3: Application Benchmarks

systems like x86, even though they have highly optimized
VM Entry and Exit hardware mechanisms to multiplex a
single CPU mode between the hypervisor and the VM.

5.2 Application Benchmark Results
We next ran a mix of widely-used CPU and I/O intensive
application workloads as listed in Table 3. For workloads
involving a client and a server, we ran the client on a
dedicated machine and the server on the configuration
being measured, ensuring that the client was never saturated
during any of our experiments. Figure 2 shows the relative
performance overhead of executing in a VM compared to
natively without virtualization.

We normalize measurements to native execution for the
respective platform, with one being the same as native perfor-
mance. ARM numbers are normalized to native execution on
the ARM platform, and x86 numbers are normalized to native
execution on the x86 platform. Lower numbers mean less
overhead and therefore better overall performance. We focus
on normalized overhead as opposed to absolute performance
since our goal is to improve VM performance by reducing
the overhead from intervention of the hypervisor and from
switching between the VM and the hypervisor OS kernel.

Like the microbenchmark measurements in Section 5.1,
the application workload measurements show that ARM
EL2 performs similarly to ARM across all workloads,
showing that running the hypervisor OS kernel in a separate
CPU mode from the VM kernel without changing the
hypervisor does not benefit performance much. The ARM
EL2 OPT results, however, show significant improvements
across a wide range of applications workloads.

For cases in which original ARM did not have much
overhead, ARM EL2 OPT performs similarly to original
ARM as there was little room for improvement. For example,
Kernbench runs mostly in user mode in the VM and seldom
traps to the hypervisor, resulting in very low overhead on
both ARM and x86. However, the greater the initial overhead
for original ARM, the greater the performance improvement
achieved with ARM EL2 OPT. For example, original ARM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Application Benchmarks

ARM ARM	EL2 ARM	EL2	OPT X86

Figure 2: Application Benchmark Performance

incurs more than 60% overhead for Memcached while ARM
EL2 OPT reduces that overhead by more than five times to
roughly 10% compared to native execution. Memcached
causes frequent traps to the hypervisor OS kernel to process,
configure, and forward physical interrupts. As a result, this
workload benefits greatly from the much reduced hypercall
cost for ARM EL2 OPT compared to original ARM. As an-
other example, original ARM incurs roughly 15% overhead
for Apache while ARM EL2 OPT reduces that overhead by
roughly 50% to 8% compared to native execution, which is
even smaller than x86. Apache requires processing network
interrupts and sending virtual IPIs, both of which benefit
from the reduced hypercall cost for ARM EL2 OPT.

It is instructive to take a closer look at the various
Netperf measurements, TCP STREAM, TCP RR and
TCP MAERTS, which show ARM EL2 OPT providing
different performance improvements over original ARM and
x86. Since we use passthrough to directly assign the network
device to the VM, the primary source of overhead comes
from interrupt handling because the VM can otherwise
directly program the device without intervention from the
hypervisor. The network devices used on both the ARM
and x86 servers generate physical RX interrupts when
receiving network data, which is the primary operation of
TCP STREAM and TCP RR. These physical interrupts
are handled by VFIO in the host kernel and KVM must
forward them as virtual interrupts to the VM, which results
in execution overhead. The driver for the AMD XGBE NIC
used in the ARM server frequently masks and unmasks
interrupts for this device due to driver implementation details
and support for NAPI, which switches between interrupt
driven and polling mode for the VM network driver. On the
other hand, the driver for the Mellanox NIC used in the x86
server does not enable and disable IRQs using the interrupt
controller, but instead manages masking of interrupts at the
device level, which avoids traps to the hypervisor for these
operations because the device is directly assigned to the VM.

TCP STREAM is a throughput benchmark and since

230 2017 USENIX Annual Technical Conference USENIX Association

x86 has fewer traps to the hypervisor than ARM due to
these NIC diferences, x86 has lower virtualization overhead
than any ARM configuration, including ARM EL2 OPT.
The same explanation applies to Memcached as well. The
TCP RR workload is a latency measurement benchmark,
which sends a single network packet back and forward
between the client and the server in serial, and every single
packet causes an interrupt for both ARM and x86, resulting
in overhead on both platforms. Since ARM EL2 OPT
has lower transition costs between the VM and hypervisor
when comparing against either original ARM or x86, it also
ends up having the lowest overhead for TCP RR. For both
TCP STREAM and TCP RR, ARM EL2 OPT reduces the
overhead of original ARM by approximately 50% as a result
of the reduced cost of transitioning between the hypervisor
OS kernel and the VM when masking and unmasking virtual
interrupts, and when forwarding physical interrupts as virtual
interrupts, respectively. TCP MAERTS shows almost no
overhead for all configurations, because sending packets
from the VM to the client generates almost no interrupts
and the VMs can access the devices directly because of their
passthrough device configuration.

6 Related Work

Virtualization on x86 started with software-only ap-
proaches [3, 7], but as virtualization became increasingly
important, Intel introduced VMX hardware virtualiza-
tion support to run VMs with unmodified guest OSes
and eliminate the need for binary translation and CPU
paravirtualization [29]. Initially, hypervisors using
hardware virtualization support did not provide good
performance [1], but as the hardware support matured
and provided additional features like EPT, performance
improved using VMX. Much other work has been also
done on analyzing and improving the performance of x86
virtualization [27, 26, 2, 18, 9, 16, 19, 6], but none of these
techniques addressed the core issue of the cost of sharing
kernel mode across guest and hypervisor OS kernels.

Full-system virtualization of the ARM architecture in
some ways mirrors the evolution of x86 virtualization.
Early approaches were software only, could not run
unmodified guest OSes, and often suffered from poor perfor-
mance [20, 13, 15, 4]. As virtualization became increasingly
important on ARM, ARM introduced hardware virtualization
support to run VMs with unmodified guest OSes, but ARM
took a very different approach to CPU virtualization that
made it difficult to implement popular hypervisors such as
KVM due to mismatches between the hardware support
and assumptions about the software design [14]. As a
result, ARM hypervisor implementations have much higher
costs for many common VM operations than their x86
counterparts [12]. We show that by taking advantage of the
additional CPU mode provided by ARM VE to run not only

the hypervisor but also its OS kernel, in conjunction with
a redesign of the hypervisor itself, it is possible to achieve
superior VM performance on ARM versus x86.

7 Conclusions

Although ARM and x86 architectural support for virtual-
ization are quite different, previous hypervisors across both
architectures shared a common limitation; the need to share
kernel mode state between the host OS kernel used by the hy-
pervisor and guest OS kernels used in VMs. Our work shows
for the first time how, with the proper architectural support
and hypervisor design, the hypervisor and its OS kernel can
be run in a separate CPU mode from VMs, avoiding the cost
of multiplexing shared CPU state between the hypervisor and
VMs. We show how this codesign of hardware and software
support for virtualization can be used to reimplement an ex-
isting hypervisor, KVM/ARM, with evolutionary changes to
the code base without requiring a clean slate implementation.
This approach was essential in allowing us to merge many of
our changes into mainline Linux. We show that our approach
can be implemented using currently available ARM
hardware, and that new hardware features in future ARM
architecture versions can be used to support this approach
without any changes to Linux other than to KVM/ARM
itself. We show that our KVM/ARM redesign can provide an
order of magnitude performance improvement over previous
versions of KVM/ARM on key hypervisor operations. We
also show that the combination of hardware and software
virtualization support on ARM can provide roughly two
times better performance than its counterpart on x86. Our
results indicate that running the hypervisor and its hypervisor
OS kernel in a separate CPU mode from the VMs as
possible on ARM can provide superior performance to x86
approaches because it allows for faster transitions between
the hypervisor and VMs. As virtualization continues to be of
importance, our work provides an important counterpoint to
x86 practices which we believe is instrumental in designing
future virtualization support for new architectures.

8 Acknowledgments

Marc Zyngier implemented some VGIC optimizations
and supported our efforts to upstream our improvements
to KVM/ARM. Ard Biesheuvel helped us understand the
virtual memory changes needed to run Linux in EL2. Eric
Auger implemented VFIO passthrough support for ARM
and provided help in configuring passthrough on ARM
server hardware. Paolo Bonzini and Alex Williamson helped
analyze KVM x86 performance. Mike Hibler provided
support for system configurations in CloudLab. This work
was supported in part by Huawei Technologies and NSF
grants CNS-1422909, CNS-1563555, and CCF-1162021.

USENIX Association 2017 USENIX Annual Technical Conference 231

References

[1] ADAMS, K., AND AGESEN, O. A Comparison of
Software and Hardware Techniques for x86
Virtualization. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (Oct. 2006),
pp. 2–13.

[2] AGESEN, O., MATTSON, J., RUGINA, R., AND
SHELDON, J. Software Techniques for Avoiding
Hardware Virtualization Exits. In Proceedings of the
2012 USENIX Annual Technical Conference (June
2012), pp. 373–385.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND,
S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT,
I., AND WARFIELD, A. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (Oct.
2003), pp. 164–177.

[4] BARR, K., BUNGALE, P., DEASY, S., GYURIS, V.,
HUNG, P., NEWELL, C., TUCH, H., AND ZOPPIS, B.
The VMware Mobile Virtualization Platform: is that a
hypervisor in your pocket? SIGOPS Operating
Systems Review 44, 4 (Dec. 2010), 124–135.

[5] BONZINI, P. Virtualizing the locomotive, Sept. 2005.
https://lwn.net/Articles/657282/.

[6] BUELL, J., HECHT, D., HEO, J., SALADI, K., AND
TAHERI, H. R. Methodology for Performance
Analysis of VMware vSphere under Tier-1
Applications. VMware Technical Journal 2, 1 (June
2013), 19–28.

[7] BUGNION, E., DEVINE, S., ROSENBLUM, M.,
SUGERMAN, J., AND WANG, E. Y. Bringing
Virtualization to the x86 Architecture with the Original
VMware Workstation. ACM Transactions on
Computer Systems 30, 4 (Nov. 2012), 12:1–12:51.

[8] BUGNION, E., NIEH, J., AND TSAFRIR, D.
Hardware and Software Support for Virtualization,
vol. 12 of Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, Feb. 2017.

[9] CHERKASOVA, L., AND GARDNER, R. Measuring
CPU Overhead for I/O Processing in the Xen Virtual
Machine Monitor. In Proceedings of the 2005 USENIX
Annual Technical Conference (May 2005),
pp. 387–390.

[10] CLOUDLAB. http://www.cloudlab.us.

[11] DALL, C., AND LI, S.-W. el2linux.
https://github.com/chazy/el2linux.

[12] DALL, C., LI, S.-W., LIM, J. T., NIEH, J., AND
KOLOVENTZOS, G. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (2016), pp. 304–316.

[13] DALL, C., AND NIEH, J. KVM for ARM. In
Proceedings of the Ottawa Linux Symposium (July
2010), pp. 45–56.

[14] DALL, C., AND NIEH, J. KVM/ARM: The Design
and Implementation of the Linux ARM Hypervisor. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages
and Operating Systems (Mar. 2014), pp. 333–348.

[15] DING, J.-H., LIN, C.-J., CHANG, P.-H., TSANG,
C.-H., HSU, W.-C., AND CHUNG, Y.-C. ARMvisor:
System Virtualization for ARM. In Proceedings of the
Ottawa Linux Symposium (July 2012), pp. 93–107.

[16] GAMAGE, K., AND KOMPELLA, X. Opportunistic
Flooding to Improve TCP Transmit Performance in
Virtualized Clouds. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (Oct. 2011),
pp. 24:1–24:14.

[17] GOLDBERG, R. P. Architectural Principles for Virtual
Computer Systems. PhD thesis, Harvard University,
Cambridge, MA, 1972.

[18] GORDON, A., AMIT, N., HAR’EL, N.,
BEN-YEHUDA, M., LANDAU, A., SCHUSTER, A.,
AND TSAFRIR, D. ELI: Bare-Metal Performance for
I/O Virtualization. In Proceedings of the 17th
International Conference on Architectural Support for
Programming Languages and Operating Systems (Feb.
2012), pp. 411–422.

[19] HEO, J., AND TAHERI, R. Virtualizing
Latency-Sensitive Applications: Where Does the
Overhead Come From? VMware Technical Journal 2,
2 (Dec. 2013), 21–30.

[20] HWANG, J., SUH, S., HEO, S., PARK, C., RYU, J.,
PARK, S., AND KIM, C. Xen on ARM: System
Virtualization using Xen Hypervisor for ARM-based
Secure Mobile Phones. In Proceedings of the 5th
Consumer Communications and Newtork Conference
(Jan. 2008), pp. 257–261.

[21] INTEL CORPORATION. Intel 64 and IA-32
Architectures Software Developer’s Manual,
325384-056US, Sept. 2015.

[22] JONES, R. Netperf.
http://www.netperf.org/netperf/.

232 2017 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/657282/
http://www.cloudlab.us
https://github.com/chazy/el2linux
http://www.netperf.org/netperf/

[23] KIVITY, A. KVM Unit Tests. http://www.linux-
kvm.org/page/KVM-unit-tests.

[24] RED HAT. Hackbench, Jan. 2008.
http://people.redhat.com/mingo/cfs-

scheduler/tools/hackbench.c.

[25] RUSSELL, R. virtio: Towards a De-Facto Standard for
Virtual I/O Devices. SIGOPS Operating Systems
Review 42, 5 (July 2008), 95–103.

[26] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G. J.,
AND PRATT, I. Bridging the Gap between Software
and Hardware Techniques for I/O Virtualization. In
Proceedings of the 2008 USENIX Annual Technical
Conference (June 2008), pp. 29–42.

[27] SUGERMAN, J., VENKITACHALAM, G., AND LIM,
B.-H. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In
Proceedings of the 2001 USENIX Annual Technical
Conference (June 2001), pp. 1–14.

[28] THE APACHE SOFTWARE FOUNDATION. ab.
http://httpd.apache.org/docs/2.4/

programs/ab.html.

[29] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI,
A. L., MARTINS, F. C. M., ANDERSON, A. V.,
BENNETT, S. M., KAGI, A., LEUNG, F. H., AND
SMITH, L. Intel Virtualization Technology. IEEE
Computer 38, 5 (May 2005), 48–56.

[30] XEN ARM WITH VIRTUALIZATION EXTENSIONS.
http://wiki.xenproject.org/wiki/Xen_ARM_

with_Virtualization_Extensions.

USENIX Association 2017 USENIX Annual Technical Conference 233

http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions

Multi-hypervisor Virtual Machines: Enabling an Ecosystem of
Hypervisor-level Services

Kartik Gopalan, Rohith Kugve, Hardik Bagdi, Yaohui Hu
Computer Science, Binghamton University

Dan Williams, Nilton Bila
IBM T.J. Watson Research Center

Abstract

Public cloud software marketplaces already offer users a
wealth of choice in operating systems, database manage-
ment systems, financial software, and virtual network-
ing, all deployable and configurable at the click of a but-
ton. Unfortunately, this level of customization has not
extended to emerging hypervisor-level services, partly
because traditional virtual machines (VMs) are fully con-
trolled by only one hypervisor at a time. Currently, a VM
in a cloud platform cannot concurrently use hypervisor-
level services from multiple third-parties in a compart-
mentalized manner. We propose the notion of a multi-
hypervisor VM, which is an unmodified guest that can si-
multaneously use services from multiple coresident, but
isolated, hypervisors. We present a new virtualization ar-
chitecture, called Span virtualization, that leverages nest-
ing to allow multiple hypervisors to concurrently control
a guest’s memory, virtual CPU, and I/O resources. Our
prototype of Span virtualization on the KVM/QEMU
platform enables a guest to use services such as intro-
spection, network monitoring, guest mirroring, and hy-
pervisor refresh, with performance comparable to tradi-
tional nested VMs.

1 Introduction

In recent years, a number of hypervisor-level services
have been proposed such as rootkit detection [61], live
patching [19], intrusion detection [27], high availabil-
ity [24], and virtual machine (VM) introspection [30,
53, 26, 49, 42, 60]. By running inside the hypervisor
instead of the guest, these services can operate on mul-
tiple guests, while remaining transparent to the guests.
Recent years have also seen a rise in the number of spe-
cialized hypervisors that are tailored to provide VMs
with specific services. For instance, McAfee Deep De-
fender [46] uses a micro-hypervisor called DeepSafe to
improve guest security. SecVisor [56] provides code in-

tegrity for commodity guests. CloudVisor [68] guar-
antees guest privacy and integrity on untrusted clouds.
RTS provides a Real-time Embedded Hypervisor [52] for
real-time guests. These specialized hypervisors may not
provide guests with the full slate of memory, virtual CPU
(VCPU), and I/O management, but rely upon either an-
other commodity hypervisor, or the guest itself, to fill in
the missing services.

Currently there is no good way to expose multiple
services to a guest. For a guest which needs multiple
hypervisor-level services, the first option is for the single
controlling hypervisor to bundle all services in its super-
visor mode. Unfortunately, this approach leads to a “fat”
feature-filled hypervisor that may no longer be trustwor-
thy because it runs too many untrusted or mutually dis-
trusting services. One could de-privilege some services
to the hypervisor’s user space as processes that control
the guest indirectly via event interposition and system
calls [63, 40]. However, public cloud providers would be
reluctant to execute untrusted third-party services in the
hypervisor’s native user space due to a potentially large
user-kernel interface.

The next option is to de-privilege the services further,
running each in a Service VM with a full-fledged OS. For
instance, rather than running a single Domain0 VM run-
ning Linux that bundles services for all guests, Xen [4]
can use several disaggregated [23] service domains for
resilience. Service domains, while currently trusted by
Xen, could be adapted to run third-party untrusted ser-
vices. A service VM has a less powerful interface to
the hypervisor than a user space service. However, nei-
ther user space services nor Service VMs allow control
over low-level guest resources, such as page mappings or
VCPU scheduling, which require hypervisor privileges.

One could use nested virtualization [34, 10, 48, 29]
to vertically stack hypervisor-level services, such that a
trusted base hypervisor at layer-0 (L0) controls the phys-
ical hardware and runs a service hypervisor at layer-1
(L1), which fully or partially controls the guest at layer-2

USENIX Association 2017 USENIX Annual Technical Conference 235

L0

H1 H2 H3 H4

V3V2 V5

V1

V4

Figure 1: Span virtualization: V1 is a traditional single-
level VM. V2 is a traditional nested VM. V3, V4 and V5
are multi-hypervisor VMs.

(L2). Nested virtualization is experiencing considerable
interest [25, 31, 64, 68, 55, 53, 56, 39, 7, 65, 45]. For ex-
ample, one can use nesting [21] to run McAfee Deep De-
fender [46], which does not provide full system and I/O
virtualization, as a guest on XenDesktop [20], a full com-
modity hypervisor, so that guests can use the services of
both. Similarly, Bromium [15] uses nesting on a Xen-
based hypervisor for security. Ravello [2] and XenBlan-
ket [66, 57] use nesting on public clouds for cross-cloud
portability. However, vertical stacking reduces the de-
gree of guest control and visibility to lower layers com-
pared to the layer directly controlling the guest. Also, the
overhead of nested virtualization beyond two layers can
become rather high [10].

Instead, we propose Span virtualization, which pro-
vides horizontal layering of multiple hypervisor-level
services. A Span VM, or a multi-hypervisor VM, is
an unmodified guest whose resources (virtual memory,
CPU, and I/O) can be simultaneously controlled by mul-
tiple coresident, but isolated, hypervisors. A base hy-
pervisor at L0 provides a core set of services and uses
nested virtualization to run multiple deprivileged service
hypervisors at L1. Each L1 augments L0’s services by
adding/replacing one or more services. Since the L0
no longer needs to implement every conceivable service,
L0’s footprint can be smaller than a feature-filled hyper-
visor. Henceforth, we use the following terms:

• Guest or VM refers to a top-level VM, with quali-
fiers single-level, nested, and Span as needed.

• L1 refers to a service hypervisor at layer-1.
• L0 refers to the base hypervisor at layer-0.
• Hypervisor refers to the role of either L0 or any L1

in managing guest resources.

Figure 1 illustrates possible Span VM configurations.
One L0 hypervisor runs multiple L1 hypervisors (H1,
H2, H3, and H4) and multiple guests (V1, V2, V3, V4 and
V5). V1 is a traditional single-level (non-nested) guest that
runs on L0. V2 is a traditional nested guest that runs on
only one hypervisor (H1). The rest are multi-hypervisor
VMs. V3 runs on two hypervisors (L0 and H1). V4 runs
on three hypervisors (L0, H2, and H3). V5 is a fully nested

Span VM that runs on two L1s (H3 and H4). This paper
makes the following contributions:

• We examine the solution space for providing mul-
tiple services to a common guest and identify the
relative merits of possible solutions.

• We present the design of Span virtualization which
enables multiple L1s to concurrently control an un-
modified guest’s memory, VCPU, and I/O devices
using a relatively simple interface with L0.

• We describe our implementation of Span virtualiza-
tion by extending the nested virtualization support
in KVM/QEMU [40] and show that Span virtual-
ization can be implemented within existing hyper-
visors with moderate changes.

• We evaluate Span VMs running unmodified Linux
and simultaneously using multiple L1 services in-
cluding VM introspection, network monitoring,
guest mirroring, and hypervisor refresh. We find
that Span VMs perform comparably with nested
VMs and within 0–20% of single-level VMs, across
different configurations and benchmarks.

2 Solution Space
Table 1 compares possible solutions for providing multi-
ple services to a guest. These are single-level virtualiza-
tion, user space services, service VMs, nested virtualiza-
tion, and Span.

First, like single-level and nested alternatives, Span
virtualization provides L1s with control over the virtual-
ized instruction set architecture (ISA) of the guest, which
includes trapped instructions, memory mappings, VCPU
scheduling, and I/O.

Unlike all alternatives, Span L1s support both full and
partial guest control. Span L1s can range from full hy-
pervisors that control all guest resources to specialized
hypervisors that control only some guest resources.

Next, consider the impact of service failures. In
single-level virtualization, failure of a privileged service
impacts the L0 hypervisor, all coresident services, and
all guests. For all other cases, the L0 hypervisor is pro-
tected from service failures because services are deprivi-
leged. Furthermore, failure of a deprivileged service im-
pacts only those guests to which the service is attached.

Next, consider the failure impact on coresident ser-
vices. User space services are isolated by process-level
isolation and hence protected from each other’s fail-
ure. However, process-level isolation is only as strong
as the user-level privileges with which the services run.
Nested virtualization provides only one deprivileged ser-
vice compartment. Hence services for the same guest
must reside together in an L1, either in its user space
or kernel. A service failure in a nested L1’s kernel im-
pacts all coresident services whereas a failure in its user

236 2017 USENIX Annual Technical Conference USENIX Association

Level of Guest Control Impact of Service Failure Additional
Virtualized Partial or L0 Coresident Guests Performance

ISA Full Services Overheads
Single-level Yes Full Fails Fail All None
User space No Partial Protected Protected Attached Process switching
Service VM No Partial Protected Protected Attached VM switching
Nested Yes Full Protected Protected in Attached L1 switching + nesting

L1 user space
Span Yes Both Protected Protected Attached L1 switching + nesting

Table 1: Alternatives for providing multiple services to a common guest, assuming one service per user space process,
service VM, or Span L1.

L0	Hypervisor

Virtual	Guest	EPTVirtual	Guest	EPT

L1	Hypervisor(s)

Span	Guest
(unmodified)

Guest	Control	
Requester

Memory	
Manager

I/O	
Manager

VCPU	
Manager

Event	Producer/Consumer

Guest	Controller
(attach/detach/subscribe/unsubscribe)

Event	Processing
(Relay/Emulation)

Message	Channel L1	Traps Guest	
Faults

Messages Traps Fault	Handler

Memory	
Manager

I/O	
Manager
VCPU	

Manager

Figure 2: High-level architecture for Span virtualization.

space does not. Service VMs and Span virtualization iso-
late coresident services in individual VM-level compart-
ments. Thus, failure of a service VM or Span L1 does
not affect coresident services.

Finally, consider additional performance overhead
over the single-level case. User space services introduce
context switching overhead among processes. Service
VMs introduce VM context switching overhead, which
is more expensive. Nesting adds the overhead of emu-
lating privileged guest operations in L1. Span virtual-
ization uses nesting but supports partial guest control by
L1s. Hence, nesting overhead applies only to the guest
resources that an L1 controls.

3 Overview of Span Virtualization
The key design requirement for Span VMs is trans-
parency. The guest OS and its applications should re-
main unmodified and oblivious to being simultaneously
controlled by multiple hypervisors, which includes L0
and any attached L1s. Hence the guest sees a virtual re-
source abstraction that is indistinguishable from that of a
traditional (single) hypervisor. For control of individual
resources, we translate this requirement as follows.

• Memory: All hypervisors must have the same con-
sistent view of the guest memory.

• VCPUs: All guest VCPUs must be controlled by
one hypervisor at a given instant.

• I/O Devices: Different virtual I/O devices of the
same guest may be controlled exclusively by differ-

ent hypervisors at a given instant.
• Control Transfer: Control of guest VCPUs and/or

virtual I/O devices can be transferred from one hy-
pervisor to another, but only via L0.

Figure 2 shows the high-level architecture. A Span guest
begins as a single-level VM on L0. One or more L1s can
then attach to one or more guest resources and optionally
subscribe with L0 for specific guest events.

Guest Control Operations: The Guest Controller
in L0 supervises control over a guest by multiple L1s
through the following operations.

• [attach L1, Guest, Resource]: Gives L1
control over the Resource in Guest. Resources in-
clude guest memory, VCPU, and I/O devices. Con-
trol over memory is shared among multiple attached
L1s, whereas control over guest VCPUs and virtual
I/O devices is exclusive to an attached L1. Attach-
ing to guest VCPUs or I/O device resources requires
attaching to the guest memory resource.

• [detach L1, Guest, Resource]: Releases
L1’s control over Resource in Guest. Detaching
from the guest memory resource requires detaching
from guest VCPUs and I/O devices.

• [subscribe L1, Guest, Event, <GFN

Range>] Registers L1 with L0 to receive Event
from Guest. The GFN Range option specifies
the range of frames in the guest address space on
which to track the memory event. Presently we
support only memory event subscription. Other
guest events of interest could include SYSENTER
instructions, port-mapped I/O, etc.

• [unsubscribe L1, Guest, Event, <GFN

Range>] Unsubscribes L1 Guest Event.

The Guest Controller also uses administrative policies to
resolve apriori any potential conflicts over a guest con-
trol by multiple L1s. While this paper focuses on mecha-
nisms rather than specific policies, we note that the prob-
lem of conflict resolution among services is not unique to
Span. Alternative techniques also need ways to prevent
conflicting services from controlling the same guest.

USENIX Association 2017 USENIX Annual Technical Conference 237

Isolation and Communication: Another design goal
is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Shadow EPT that directly maps guest pages to physical
pages. To accomplish this, manipulations to the Virtual
EPT by L1 trigger traps to L0. Whenever L1 loads a Vir-
tual EPT, L0 receives a trap and activates the appropriate
Shadow EPT. This style of nested page table manage-
ment is also called multi-dimensional paging [10].

EPT faults on guest memory can be due to (a) the guest
accessing its own pages that have invalid Shadow EPT
entries, and (b) the L1 directly accessing guest pages that
have invalid EPTL1 entries to perform tasks such as I/O
processing and VM introspection (VMI). Both kinds of
EPT faults are first intercepted by L0. L0 examines a
Shadow EPT fault to further determine whether it is due
to a invalid Virtual EPT entry; such faults are forwarded
to L1 for processing. Otherwise, faults due to invalid
EPTL1 entries are handled by L0.

Finally, an L1 may modify the Virtual EPT it main-
tains for a guest in the course of performing its own
memory management. However, since the Virtual EPT
is shadowed by L0, all Virtual EPT modifications cause
traps to L0 for validation and a Shadow EPT update.

4.2 Memory Translation for Span VMs
In Span virtualization, L0 extends nested EPT manage-
ment to guests that are controlled by multiple hypervi-
sors. Figure 3(c) shows that a Span guest has multiple
Virtual EPTs, one per L1 that is attached to the guest.
When an L1 acquires control over a guest’s VCPUs, the
L0 shadows the guest’s Virtual EPT in the L1 to construct
the corresponding Shadow EPT, which is used for mem-
ory translations. In addition, an EPTGuest is maintained
by L0 for direct guest execution on L0. A guest’s mem-
ory mappings in Shadow EPTs, the EPTGuest , and the
EPTL1 are kept synchronized by L0 upon page faults so
that every attached hypervisor sees a consistent view of
guest memory. Thus, a guest virtual address leads to the
same host physical address irrespective of the Shadow
EPT used for the translation.

4.3 Memory Attach and Detach
A Span VM is initially created directly on L0 as a single-
level guest for which the L0 constructs a regular EPT. To
attach to the guest memory, a new L1 requests L0, via a
hypercall, to map guest pages into its address space.

Figure 4 illustrates that L1 reserves a range in the L1
physical address space for guest memory and then in-
forms L0 of this range. Next, L1 constructs a Virtual EPT
for the guest which is shadowed by L0, as in the nested
case. Note that the reservation in L1 physical address
space does not immediately allocate physical memory.
Rather, physical memory is allocated lazily upon guest
memory faults. L0 dynamically populates the reserved
address range in L1 by adjusting the mappings in EPTL1

Span	Guest

Shadow	EPT

Virtual	Guest	
EPT

EPTL1

Virtual	Guest	
EPT

L1	Hypervisor(s)
Virtual	EPT

Virtual	EPT	
Trap	Handler

Guest	Event	
Handling

Memory	Event	
Emulator

L0
Virtual	EPT	
Modifications

Shadow	EPTShadow	EPT

L1PA

HPA

Page	Table

Process	VA

Event	Subscription	
Service

Memory	
EventsGPA

Event
Notifications

Figure 4: Span memory management overview.

and the Shadow EPT. A memory-detach operation cor-
respondingly undoes the EPTL1 mappings for guest and
releases the reserved L1 address range.

4.4 Synchronizing Guest Memory Maps
To enforce a consistent view of guest memory across
all L1s, L0 synchronizes memory mappings upon two
events: EPT faults and Virtual EPT modifications.

Fault handling for Span VMs extends the correspond-
ing mechanism for nested VMs described earlier in Sec-
tion 4.1. The key difference in the Span case is that
L0 first checks if a host physical page has already been
mapped to the faulting guest page. If so, the existing
physical page mapping is used to resolve the fault, else a
new physical page is allocated.

As with the nested case, modifications by an L1 to es-
tablish Virtual EPT mappings trap to a Virtual EPT trap
handler in L0, shown in Figure 4. When the handler re-
ceives a trap due to a protection modification, it updates
each corresponding EPTL1 with the new least-permissive
combination of page protection. Our current prototype
allows protection modifications but disallows changes to
established GPA-to-L1PA mappings to avoid having to
change mappings in multiple EPTs.

4.5 Memory Event Subscription
An L1 attached to a guest may wish to monitor and con-
trol certain memory-related events of the guest to provide
a service. For instance, an L1 that provides live check-
pointing or guest mirroring may need to perform dirty
page tracking in which pages to which the guest writes
are periodically recorded so they can be incrementally
copied. As another example, an L1 performing intrusion
detection using VM introspection might wish to monitor
a guest’s attempts to execute code from certain pages.

In Span virtualization, since multiple L1s can be at-
tached to a guest, the L1 controlling the guest’s VCPUs
may differ from the L1s requiring the memory event no-
tification. Hence L0 provides a Memory Event Subscrip-

USENIX Association 2017 USENIX Annual Technical Conference 239

tion interface to enable L1s to independently subscribe to
guest memory events. An L1 subscribes with L0, via the
message channel, requesting notifications when a spe-
cific type of event occurs on certain pages of a given
guest. When the L0 intercepts the subscribed events,
it notifies all L1 subscribers via the message channel.
Upon receiving the event notification, a memory event
emulator in each L1, shown in Figure 4, processes the
event and responds back to L0, either allowing or dis-
allowing the guest’s memory access which triggered the
event. The response from the L1 also specifies whether
to maintain or discontinue the L1’s event subscription
on the guest page. For example, upon receiving a write
event notification, an L1 that performs dirty page track-
ing will instruct L0 to allow the guest to write to the page,
and cancel the subscription for future write events on the
page, since the page has been recorded as being dirty.
On the other hand, an intrusion detection service in L1
might disallow write events on guest pages containing
kernel code and maintain future subscription. L0 concur-
rently delivers event notifications to all L1 subscribers.
Guest memory access is allowed to proceed only if all
subscribed L1s allow the event in their responses.

To intercept a subscribed memory event on a page, the
L0 applies the event’s mask to the corresponding EPTL1
entry of each L1 attached to the guest. Updating EPTL1
prompts L0 to update the guest’s Shadow EPT entry with
the mask, to capture guest-triggered memory events. Up-
dating EPTL1 entries also captures the events resulting
from direct accesses to guest memory by an L1 instead
of the guest. For instance, to track write events on a guest
page, the EPT entry could be marked read-only after sav-
ing the original permissions for later restoration.

5 I/O Control

In this work, guests use paravirtual devices [54, 6]
which provide better performance than device emula-
tion [59] and provide greater physical device sharing
among guests than direct device assignment [11, 12, 50].

For single-level virtualization, the guest OS runs a set
of paravirtual frontend drivers, one for each virtual de-
vice, including block and network devices. The hypervi-
sor runs the corresponding backend driver. The frontend
and the backend drivers communicate via a shared ring
buffer to issue I/O requests and receive responses. The
frontend places an I/O request in the ring buffer and no-
tifies the backend through a kick event, which triggers
a VM exit to the hypervisor. The backend removes the
I/O request from the ring buffer, completes the request,
places the I/O response in the ring buffer, and injects an
I/O completion interrupt to the guest. The interrupt han-
dler in the frontend then picks up the I/O response from
the ring buffer for processing. For nested guests, paravir-

L1a

Guest

Backend

Frontend

Ring	
Buffer

I/O	
Request

I/O	
Response Forwarded

Interrupt

L0	

L1b

Forwarded
Kick

Native	I/O	
via	L0

Figure 5: Paravirtual I/O for Span VMs. L1a controls
the guest I/O device and L1b controls the VCPUs. Kicks
from L1b and interrupts from L1a are forwarded via L0.

tual drivers are used at both levels.
For Span guests, different L1s may control guest VC-

PUs and I/O devices. If the same L1 controls both guest
VCPUs and the device backend then I/O processing pro-
ceeds as in the nested case. Figure 5 illustrates the other
case, when different L1s control guest VCPUs and back-
ends. L1a controls the backend and L1b controls the
guest VCPUs. The frontend in the guest and backend
in L1a exchange I/O requests and responses via the ring
buffer. However, I/O kicks are generated by guest VC-
PUs controlled by L1b, which forward the kicks to L1a.
Likewise, L1a forwards any virtual interrupts from the
backend to L1b, which injects the interrupt to the guest
VCPUs. Kicks from the frontend and virtual interrupts
from the backend are forwarded between L1s via L0 us-
ing the message channel.

6 VCPU Control

In single-level virtualization, L0 controls the scheduling
of guest VCPUs. In nested virtualization, L0 delegates
guest VCPU scheduling to an L1. The L1 schedules
guest VCPUs on its own VCPUs and L0 schedules the
L1’s VCPUs on PCPUs. This hierarchical scheduling
provides the L1 some degree of control over customized
scheduling for its guests.

Span virtualization can leverage either single-level or
nested VCPU scheduling depending on whether the L0
or an L1 controls a guest’s VCPUs. Our current design
requires that all VCPUs of a guest be controlled by one
of the hypervisors at any instant. However, control over
guest VCPUs can be transferred between hypervisors if
needed. When L0 initiates a Span VM, it initializes the
all the VCPUs as it would for a single-level guest. After
the guest boots up, the control of guest VCPUs can be
transferred to/from an L1 using attach/detach operations.

240 2017 USENIX Annual Technical Conference USENIX Association

L0 L0 L0
KVM KVM KVM

Guest Guest
QEMU

L1b

L1
L1	

QEMU

Guest Guest
QEMU

Span	Guest

NestedSingle Span

L1a
QEMU

Guest	
QEMU
In	L1a

Guest
QEMU

Guest
QEMU
In	L1b

L1a

L1b	
QEMU

KVM KVM
KVM

Figure 6: Roles of QEMU (Guest Controller) and KVM
(hypervisor) for Single-level, Nested, and Span VMs.

7 Implementation Details
Platform and Modifications: Our prototype supports
running an unmodified Linux guest as a Span VM in
modes V3, V4, and V5 from Figure 1. In our test setup, the
guest runs Ubuntu 15.10 with Linux 4.2.0. The prototype
for Span virtualization is implemented by modifying the
KVM/QEMU nested virtualization support that is built
into standard Linux distributions. Currently the imple-
mentation of L0 and all L1s uses modified KVM/QEMU
hypervisors in Linux, specifically QEMU-1.2.0, kvm-
kmod-3.14.2 and Linux 3.14.2. The modifications are
different for the L0 and L1 layers. Ideally, we would
prefer L1 to be unmodified to simplify its interface with
L0. However, current hypervisors assume complete and
exclusive guest control whereas Span allows L1s to exer-
cise partial control over a subset of guest resources. Sup-
porting partial guest control necessarily requires changes
to L1 for attaching/detaching with a subset of guest re-
sources and memory event subscription. In implement-
ing L1 attach/detach operations on a guest, we tried, as
much as possible, to reuse existing implementations of
VM creation/termination operations.

Code size and memory footprint: Our implemen-
tation required about 2200 lines of code changes in
KVM/QEMU, which is roughly 980+ lines in KVM and
500+ lines in QEMU for L0, 300+ in KVM and 200+ in
QEMU for L1, and another 180+ in the virtio backend.
We disabled unnecessary kernel components in both L0
and L1 implementations to reduce their footprint. When
idle, L0 was observed to have 600MB usage at startup.
When running an idle Span guest attached to an idle L1,
L0’s memory usage increased to 1756MB after exclud-
ing usage by the guest and the L1. The L1’s initial mem-
ory usage, as measured from L0, was 1GB after exclud-
ing the guest footprint. This is an initial prototype to
validate our ideas. The footprints of L0 and L1 imple-
mentations could be further reduced using one of many
lightweight Linux distributions [14].

Guest Controller: A user-level control process,
called the Guest Controller, runs on the hypervisor along-
side each guest. In KVM/QEMU, the Guest Controller
is a QEMU process which assists the KVM hypervisor
with various control tasks on a guest, including guest ini-

tialization, I/O emulation, checkpointing, and migration.
Figure 6 shows the position of the Guest Controller in
different virtualization models. In both single-level and
nested virtualization, there is only one Guest Controller
per guest, since each guest is completely controlled by
one hypervisor. Additionally, in the nested case, each L1
has its own Guest Controller that runs on L0. In Span vir-
tualization, each guest is associated with multiple Guest
Controllers, one per attached hypervisor. For instance,
the Span Guest in Figure 6 is associated with three Guest
Controllers, one each on L0, L1a, and L1b. During at-
tach/detach operations, the Guest Controller in an L1 ini-
tiates the mapping/unmapping of guest memory into the
L1’s address space and, if needed, acquires/releases con-
trol over the guest’s VCPU and virtual I/O devices.

Paravirtual I/O Architecture: The Guest Controller
also performs I/O emulation of virtual I/O devices con-
trolled by its corresponding hypervisor. The paravirtual
device model described in Section 5 is called virtio in
KVM/QEMU [54]. For nested guests, the virtio drivers
are used at two levels: once between L0 and each L1 and
again between an L1 and the guest. This design is also
called virtio-over-virtio. A kick is implemented in vir-
tio as a software trap from the frontend leading to a VM
exit to KVM, which delivers the kick to the Guest Con-
troller as a signal. Upon I/O completion, the Guest Con-
troller requests KVM to inject a virtual interrupt into the
guest. Kicks and interrupts are forwarded across hyper-
visors using the message channel. Redirected interrupts
are received and injected into the guest by a modified
version of KVM’s virtual IOAPIC code.

VCPU Control: The Guest Controllers in different
hypervisors communicate with the Guest Controller in
L0 to acquire or relinquish guest VCPU control. The
Guest Controller represents each guest VCPU as a user
space thread. A newly attached L1 hypervisor does not
initialize guest VCPU state from scratch. Rather, the
Guest Controller in the L1 accepts a checkpointed guest
VCPU state from its counterpart in L0 using a technique
similar to that used for live VM migration between phys-
ical hosts. After guest VCPU states are transferred from
L0 to L1, the L1 Guest Controller resumes the guest
VCPU threads while the L0 Guest Controller pauses
its VCPU threads. A VCPU detach operation similarly
transfers a checkpoint of guest VCPU states from L1 to
L0. Transfer of guest VCPU states from one L1 to an-
other is presently accomplished through a combination
of detaching the source L1 from the guest VCPUs fol-
lowed by attaching to the destination L1 (although a di-
rect transfer could be potentially more efficient).

Message Channel: The message channel between
L0 and each L1 is implemented using a combination
of hypercalls and UDP messages. Hypercalls from an
L1 to L0 are used for attach/detach operations on guest

USENIX Association 2017 USENIX Annual Technical Conference 241

memory. UDP messages between an L1 and L0 are
used for relaying I/O requests, device interrupts, mem-
ory subscription messages, and attach/detach operations
on guest VCPU and I/O devices. UDP messages are
presently used for ease of implementation and will be
replaced by better alternatives such as hypercalls, call-
backs, or shared buffers.

8 Evaluation

We first demonstrate unmodified Span VMs that can si-
multaneously use services from multiple L1s. Next we
investigate how Span guests perform compared to tradi-
tional single-level and nested guests. Our setup consists
of a server containing dual six-core Intel Xeon 2.10 GHz
CPUs, 128GB memory and 1Gbps Ethernet. The soft-
ware configurations for L0, L1s, and Span guests are as
described earlier in Section 7. Each data point is a mean
(average) over at least five or more runs.

8.1 Span VM Usage Examples
We present three examples in which a Span VM trans-
parently utilizes services from multiple L1s. An unmod-
ified guest is controlled by three coresident hypervisors,
namely, L0, L1a, and L1b.

Use Case 1 – Network Monitoring and VM Intro-
spection: In the first use case, the two L1s passively
examine the guest state, while L0 supervises resource
control. L1a controls the guest’s virtual network device
whereas L1b controls the guest VCPUs. L1a performs
network traffic monitoring by running the tcpdump tool
to capture packets on the guest’s virtual network inter-
face. Here we use tcpdump as a stand-in for other more
complex packet filtering and analysis tools.

L1b performs VM introspection (VMI) using a tool
called Volatility [3] which continuously inspects a
guest’s memory using a utility such as pmemsave to
extract an accurate list of all processes running inside
the guest. The guest OS is infected by a rootkit, Ker-
nel Beast [38], which can hide malicious activity and
present an inaccurate process list to the compromised
guest. Volatility, running in L1b, can nevertheless extract
an accurate guest process list using VM introspection.

Figure 7 shows a screenshot, where the top window
shows the tcpdump output in L1a, specifically the SSH
traffic from the guest. The bottom right window shows
that the rootkit KBeast in the guest OS hides a process
evil, i.e. it prevents the process evil from being listed
using the ps command in the guest. The bottom left win-
dow shows that Volatility, running in L1b, successfully
detects the process evil hidden by the KBeast rootkit in
the guest.

This use case highlights several salient features of our
design. First, an unmodified guest executes correctly

L1a: Network Monitoring

L1b: Volatility

Guest infected
with KBeast

Figure 7: A screenshot of Span VM simultaneously us-
ing services from two L1s.

even though its resources are controlled by multiple hy-
pervisors. Second, an L1 can transparently examine
guest memory. Third, an L1 controlling a guest virtual
device (here network interface) can examine all I/O re-
quests specific to the device even if the I/O requests are
initiated from guest VCPUs controlled by another hyper-
visor. Thus an I/O device can be delegated to an L1 that
does not control the guest VCPUs.

Use Case 2 – Guest Mirroring and VM Introspec-
tion: In this use case, we demonstrate an L1 that sub-
scribes to guest memory events from L0. Hypervisors
can provide a high availability service that protects un-
modified guests from a failure of the physical machine.
Solutions, such as Remus [24], typically work by con-
tinually transferring live incremental checkpoints of the
guest state to a remote backup server, an operation that
we call guest mirroring. When the primary VM fails, its
backup image is activated, and the VM continues run-
ning as if failure never happened. To checkpoint incre-
mentally, hypervisors typically use a feature called dirty
page tracking. The hypervisor maintains a dirty bitmap,
i.e. the set of pages that were dirtied since the last check-
point. The dirty bitmap is constructed by marking all
guest pages read-only in the EPT and recording dirtied
pages upon write traps. The pages listed in the dirty
bitmap are incrementally copied to the backup server.

As a first approximation of guest mirroring, we mod-
ified the pre-copy live migration code in KVM/QEMU
to periodically copy all dirtied guest pages to a backup
server at a given frequency. In our setup, L1a mirrors a
Span guest while L1b runs Volatility and controls guest
VCPUs. L1a uses memory event subscription to track
write events, construct the dirty bitmap, and periodically
transfer any dirty pages to the backup server. We mea-
sured the average bandwidth reported by the iPerf [1]
client benchmark running in the guest when L1a mir-
rors the guest memory at different frequencies. When
guest mirroring happens every 12 seconds, iPerf delivers
800Mbps average bandwidth which is about the same as

242 2017 USENIX Annual Technical Conference USENIX Association

Host Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1
N

o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

107.7s

102.4%

121.0s
131.0s

123.0s

135.4s

92.5% 96.0% 93.1% 94.0%

0.2

0.3

0.2
0.3

0.2

0.1 0.3 0.3 0.1 0.3

+-

+
-

+-

+-

+-

+- +-
+- +

- +-

(a) Kernbench

Host Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

29.3s

100.2%

29.5s
30.8s

29.6s
31.52s

92.2% 92.6% 91.8% 93.6%

0.0 0.0
0.1

0.0

0.3

0.1 0.2 0.1 0.6 0.7

+- +
- +-

+-
+
-

+- +-
+- +

- +-

(b) Quicksort

Host Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

942

2.7%

942

889
941

836

126.4% 191.2% 112.0% 198.0%

0 0

24
0

74

0.1

0.3 0.3 0.1 0.3

+-
+-

+-

+
-

+-

+-

+-
+- +

- +-

Mbps Mbps

Mbps
Mbps

Mbps

(c) iPerf

Figure 8: No-op Mode: Normalized performance when no services run in host, L0, or L1s. The L0 controls the virtio
block and network devices of the guest.

with a nested guest. When guest mirroring happens every
second, the average bandwidth drops to 600Mbps, indi-
cating a 25% performance impact of event subscription
at very high mirroring frequencies.

Use Case 3 – Proactive Refresh: Hypervisor-level
services may contain latent bugs, such as memory leaks,
or other vulnerabilities that become worse over time,
making a monolithic hypervisor unreliable for guests.
Techniques like Microreboot[18] and ReHype[43] have
been proposed to improve hypervisor availability, ei-
ther proactively or post-failure. We have already seen
how Span virtualization can compartmentalize unreliable
hypervisor-level services in an isolated deprivileged L1.
Here, we go one step further and proactively replace un-
reliable L1s with a fresh reliable instance while the guest
and the base L0 hypervisor keep running. In our setup, an
old L1 (L1a) was attached to a 3GB Span guest. To per-
form hypervisor refresh, we attached a new pre-booted
replacement hypervisor (L1b) to the guest memory. Then
L1a was detached from the guest by transferring guest
VCPU and I/O devices to L1b via L0. In our implemen-
tation, the entire refresh operation from attaching L1b to
detaching L1a completes on the average within 740ms.
Of this, 670ms are spent in attaching L1b to guest mem-
ory while the guest is running. The remaining 70ms is
the guest downtime due to the transfer of VCPU and I/O
states. Thus Span virtualization achieves sub-second L1
refresh latency. If we attach the replacement L1b to guest
memory well in advance, then the VCPU and I/O state
transfer can be triggered on-demand by events, such as
unusual memory pressure or CPU usage, yielding sub-
100ms guest downtime and event response latency. In
contrast, using pre-copy [22] to live migrate a guest from
L1a to L1b can take several seconds depending on guest
size and workload [65].

8.2 Macro Benchmarks
Here we compare the performance of macro benchmarks
in Span VM against a native host (no hypervisor), single-
level, and nested guests. Table 2 shows the memory and
processor assignments at each layer for each case. The
guest always has 3GB memory and one VCPU. L0 al-

L0 L1 L2
Mem CPUs Mem VCPUs Mem VCPUs

Host 128GB 12 N/A N/A N/A N/A
Single 128GB 12 3GB 1 N/A N/A
Nested 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB 1 on L0
Span1 128GB 12 8GB 4 3GB 1 on L1

Table 2: Memory and CPU assignments for experiments.

ways has 128GB and 12 physical CPU cores. In the
nested configuration, L1 has 16GB memory and 8 VC-
PUs. The guest VCPU in the Span0 configuration is
controlled by L0, and in Span1 by an L1. Finally, in
both Span0 and Span1, L1a and L1b each have 8GB of
memory and 4VCPUs, so their sums match the L1 in the
nested setting.

The guest runs one of the following three bench-
marks: (a) Kernbench [41] compiles the Linux kernel.
(b) Quicksort sorts 400MB of data in memory. (c) iPerf
[1] measures network bandwidth to another host.

The benchmarks run in two modes: No-op Mode,
when no hypervisor-level services run, and Service
Mode, when network monitoring and VM introspection
services run at either L0 or L1s. The figures report each
benchmark’s normalized performance against the best
case and system-wide average CPU utilization, which is
measured in L0 using the atop command each second
during experiments.

From Figures 8(a) and (b) and Figures 9(a) and (b),
in both modes for Kernbench and Quicksort, Span0
performs comparably with the single-level setting and
Span1 performs comparably with the nested setting, with
similar CPU utilization.

For iPerf in No-op mode (Figure 8(c)), we observe that
the Span1 guest experiences about 6% degradation over
the nested guest with notable bandwidth fluctuation and
7% more CPU utilization. This is because the guest’s
VCPU in Span1 is controlled by L1a, but the guest’s
network device is controlled by L0. Hence, guest I/O
requests (kicks) and responses are forwarded from L1a
to L0 via the message channel. The message channel
is currently implemented using UDP messages, which
compete with guest’s iPerf client traffic on the L1’s vir-

USENIX Association 2017 USENIX Annual Technical Conference 243

Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1
N

o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

121.0s

134.6s

120.9s

132.0s

169.0%
152.4%

144.6% 145.5%

+
- 0.2

0.5

1.1

1.0+-

+-
+-

0.9
0.6

1.8 1.2

+-
+- +- +-

(a) Kernbench

Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

29.5s
31.4s

29.8s

31.24s

168.2%
150.5%

143.5% 137.0%

+
- 0.0

0.1
0.5

0.4
+-

+-
+-

1.9
2.6

5.4 3.6

+-
+- +- +-

(b) Quicksort

Single Nested Span0 Span1
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

 P
e
rf

o
rm

a
n
ce

0

50

100

150

200

250

300

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

Normalized Performance CPU Utilization

942

817 809 812

209.0% 254.5% 210.0% 227.4%

+
- 0

23 40 36
+- +- +

-

3.9 5.6 8.6 8.0
+-

+- +- +-

Mbps

Mbps
MbpsMbps

(c) iPerf

Figure 9: Service Mode: Normalized performance with hypervisor-level services network monitoring and Volatility.
For single-level, L0 runs both services. For nested, L1 runs both services. For Span0 and Span1, L1a runs network
monitoring and controls the guest’s network device; L1b runs Volatility; L0 controls guest’s block device.

tio network interface with L0. We observed that if L1a
controls the guest network device as well, then iPerf in
the Span1 guest performs as well as in the nested guest.

For iPerf in service mode (Figure 9(c)), nested, Span0,
and Span1 guests perform about 14–15% worse than the
single-level guest, due to the combined effect of virtio-
over-virtio overhead and tcpdump running in L1a. Fur-
ther, for Span0, the guest VCPU is controlled by L0
whereas the network device is controlled by L1a. Thus
forwarding of I/O kicks and interrupts between L0 and
L1a via the UDP-based message channel balances out
any gains from having guest VCPUs run on L0.

Figure 8(c) shows that the average CPU utilization
increases significantly for iPerf in no-op mode – from
2.7% for the native host to 100+% for the single-level
and Span0 configurations and 180+% for the nested and
Span1 configurations. The increase appears to be due
to the virtio network device implementation in QEMU,
since we observed this higher CPU utilization even with
newer versions of (unmodified) QEMU (v2.7) and Linux
(v4.4.2). Figures 8(c) and 9(c) also show higher CPU
utilization for the nested and Span1 cases compared to
the single-level case. This is because guest VCPUs are
controlled by L1s in the nested and Span1 cases, making
nested VM exits more expensive.

8.3 Micro Benchmarks
Attach Operation: Figure 10 shows the time taken to
attach an L1 to a guest’s memory, VCPU, and I/O de-
vices as the guest memory size is increased. The time
taken to attach memory of a 1GB Span guest is about
220ms. Memory attach overhead increases with guest
size because each page that L1 has allocated for Span
needs to be remapped to the Span physical page in L0.

Attaching VCPUs to one of the L1s takes about 50ms.
Attaching virtual I/O devices takes 135ms. When I/O
control has to be transferred between hypervisors, the
VCPUs need to be paused. The VCPUs could be running
on any of the L1s and hence L0 needs to coordinate paus-
ing and resuming the VCPUs during the transfer. The

1024 2048 3072 4096

Span VM memory size (MB)

0

200

400

600

800

1000

O
v
e
rh

e
a
d

 (
m

ill
is

e
co

n
d

s)

Memory
VCPU
I/O

Figure 10: Overhead of attaching an L1 to a guest.
Single Nested Span

EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Table 3: Low-level latencies(µs) in Span virtualization.

detach operation for VCPUs and I/O devices has similar
overhead.

Page Fault Servicing: Table 3 shows the latency of
page fault handling and message channel. We measured
the average service times for EPT faults in Span at both
levels of nesting. It takes on the average 3.3µs to resolve
a fault caused against EPTL1 and on the average 24.1µs
to resolve a fault against the Virtual EPT. In contrast, the
corresponding values measured for the nested case are
2.8µs and 23.3µs. For the single-level case, EPT-fault
processing takes 2.4µs. The difference is due to the extra
synchronization work in the EPT-fault handler in L0.

Message Channel and Memory Events: The mes-
sage channel is used in Span virtualization to exchange
events and requests between L0 and L1s. It takes on
the average 53µs to send a message between L0 and an
L1. We also measured the overhead of notifying L1 sub-
scribers from L0 for write events on a guest page. With-
out any subscribers, the write-fault processing takes on
the average 3.5µs in L0. Notifying the write event over

244 2017 USENIX Annual Technical Conference USENIX Association

the message channel from L0 to an L1 subscriber adds
around 100µs, including a response from L1.

9 Related Work

Here, we review prior work on user space services, ser-
vice VMs, and nested virtualization. We build upon ear-
lier discussion of their relative merits in Section 2.

User space Services: Microkernels and library oper-
ating systems have a long history [44, 13, 28, 35] of pro-
viding OS services in user space. µDenali [63] allows
programmers to use event interposition to extend the hy-
pervisor with new user-level services such as disk and
network I/O. In the KVM/QEMU [40] platform, each
guest is associated with a dedicated user space man-
agement process, namely QEMU. A single QEMU pro-
cess bundles multiple services for its guest such as VM
launch/exit/pause, paravirtual I/O, migration, and check-
pointing. One can associate different variants of QEMU
with different guests, allowing some degree of service
customization. However, QEMU’s interface with the
KVM hypervisor is large, consisting of system calls, sig-
nals, and shared buffers with the kernel, which increases
the KVM hypervisor’s exposure to potentially untrusted
services. Also, while user space services can map guest
memory and control paravirtual I/O, they lack direct con-
trol over low-level guest resources such as EPT map-
pings and VCPU scheduling, unlike nesting and Span.

Service VMs: Another option is to provide guest ser-
vices via specialized Service VMs that run alongside
the guest. For instance, the Xen [4] platform runs a
trusted service VM called Dom0 which runs paravirtual-
ized Linux, controls all guests via hypercalls to the Xen
hypervisor, and provides guests with services related to
lifecycle management and I/O. To avoid a single point
of failure or vulnerability, the Xoar [47, 23] project pro-
posed decomposing Dom0 into smaller service domains,
one per service, that can be replaced or restarted. Pos-
sible support for third-party service domains has been
discussed [16], but its status is unclear. Nova [58] min-
imizes the size of the hypervisor by implementing the
VMM, device drivers, and special-purpose applications
in user space. Self-service clouds [17] allows users to
customize control over services used by their VMs on
untrusted clouds. Services, such as storage and secu-
rity, can be customized by privileged service domains,
whereas the hypervisor controls all low-level guest re-
sources, such as VCPUs and EPT mappings.

Nested Virtualization: Nested virtualization was
originally proposed and refined in the 1970s [32, 33, 51,
8, 9, 48] and has experienced renewed interest in recent
years [29, 34, 10]. Recent support [25], such as VMCS
shadowing [62] and direct device assignment [67] aim to
reduce nesting overheads related to VM exits and I/O.

Nesting enables vertical stacking of two layers of
hypervisor-level services. Third parties such as Rav-
ello [2] and XenBlanket [66, 57] leverage nesting to of-
fer hypervisor-level services (in an L1) over public cloud
platforms (L0) such as EC2 and Azure, often pitching
their service as a way to avoid lock-in with a cloud
provider. However, this model also leads to a different
level of lock-in, where a guest is unable use services from
more than one third party. Further, these third-party ser-
vices are not fully trusted by the base hypervisor (L0)
of the cloud provider, necessitating the use of nesting,
rather than user space services. Span virtualization pre-
vents guest lock-in at all levels by adding support for
multiple third-party L1s to concurrently service a guest,
while maintaining the isolation afforded by nesting.

Ephemeral virtualization [65] combines nesting and
optimized live migration [22, 36] to enable transient con-
trol over guest by L1s. L1s and L0 take turns exchanging
full control over the guest by co-mapping its memory. In
contrast, Span allows multiple L1s to concurrently exer-
cise either full or partial control over a guest, in either
continuous or transient modes.

10 Conclusions
A rich set of hypervisor-level services have been pro-
posed in recent years, such as VM introspection, high
availability, live patching, and migration. However, in
modern cloud platforms, a sole controlling hypervisor
continues to host all such services. Specifically, sup-
port for third-parties to offer hypervisor-level services to
guests is lacking. We presented a new approach, called
Span virtualization, which leverages nesting to enable
multiple coresident, but isolated, hypervisors to control
and service a common guest. Our prototype of Span vir-
tualization on the KVM/QEMU platform can support un-
modified guests which simultaneously use multiple ser-
vices that augment the base hypervisor’s functionality.
Span guests achieve performance comparable to tradi-
tional nested guests. Looking ahead, we believe that the
opportunity for a cloud-based ecosystem of hypervisor-
level services is large, including security services, cross-
cloud portability, custom schedulers, virtual devices, and
high availability.

11 Acknowledgement
This work was funded in part by the National Science
Foundation via awards 1527338 and 1320689. We thank
our shepherd, Nadav Amit, and all reviewers for insight-
ful feedback; Umesh Deshpande, Spoorti Doddamani,
Michael Hines, Hani Jamjoom, Siddhesh Phadke, and
Piush Sinha, for discussions, implementation, and evalu-
ation; and the Turtles Project [10] authors for inspiration.

USENIX Association 2017 USENIX Annual Technical Conference 245

References

[1] iPerf: The Network Bandwidth Measurement Tool.
http://iperf.fr/.

[2] Ravello Systems.
https://www.ravellosystems.com/.

[3] Volatility Framework.
http://www.volatilityfoundation.org/.

[4] Xen Hypervisor.
http://www.xen.org/.

[5] AMD. AMD Virtualization (AMD-V).
http://www.amd.com/en-us/solutions/

servers/virtualization.

[6] BARHAM, P., DRAGOVIC, B., FRASER, K.,
HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, I., AND WARFIELD, A. Xen and the art
of virtualization. In Proc. of SOSP (Bolton Land-
ing, NY, USA, 2003), pp. 164–177.

[7] BEHAM, M., VLAD, M., AND REISER, H. In-
trusion detection and honeypots in nested virtu-
alization environments. In Proc. of 43rd Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks(DSN) (Budapest, Hun-
gary, June 2013).

[8] BELPAIRE, G., AND HSU, N.-T. Formal proper-
ties of recursive virtual machine architectures. In
Proc. of SOSP, Austin, Texas, USA (1975), pp. 89–
96.

[9] BELPAIRE, G., AND HSU, N.-T. Hardware archi-
tecture for recursive virtual machines. In Proc. of
Annual ACM Conference (1975), pp. 14–18.

[10] BEN-YEHUDA, M., DAY, M. D., DUBITZKY,
Z., FACTOR, M., HAR’EL, N., GORDON, A.,
LIGUORI, A., WASSERMAN, O., AND YASSOUR,
B.-A. The Turtles project: Design and implemen-
tation of nested virtualization. In Proc. of Operat-
ing Systems Design and Implementation (2010).

[11] BEN-YEHUDA, M., MASON, J., XENIDIS, J.,
KRIEGER, O., VAN DOORN, L., NAKAJIMA, J.,
MALLICK, A., AND WAHLIG, E. Utilizing IOM-
MUs for virtualization in Linux and Xen. In Ottawa
Linux Symposium (July 2006).

[12] BEN-YEHUDA, M., XENIDIS, J., OSTROWSKI,
M., RISTER, K., BRUEMMER, A., AND VAN
DOORN, L. The price of safety: Evaluating
IOMMU performance. In Proc. of Ottawa Linux
Symposium (July 2007).

[13] BERSHAD, B. N., CHAMBERS, C., EGGERS, S.,
MAEDA, C., MCNAMEE, D., PARDYAK, P., SAV-
AGE, S., AND SIRER, E. G. SPIN : An extensi-
ble microkernel for application-specific operating
system services. Proc. of ACM SIGOPS Operating
Systems Review 29, 1 (1995), 74–77.

[14] BHARTIYA, S. Best lightweight linux distros for
2017.
https://www.linux.com/news/best-

lightweight-linux-distros-2017.

[15] BROMIUM.
https://www.bromium.com.

[16] BULPIN, J. Whatever happened to XenServer’s
Windsor architecture?
https://xenserver.org/blog/entry/

whatever-happened-to-xenserver-s-

windsor-architecture.html.

[17] BUTT, S., LAGAR-CAVILLA, H. A., SRIVAS-
TAVA, A., AND GANAPATHY, V. Self-service
cloud computing. In Proc. of ACM Conference
on Computer and Communications Security(CCS)
(Raleigh, NC, USA, 2012).

[18] CANDEA, G., KAWAMOTO, S., FUJIKI, Y.,
FRIEDMAN, G., AND FOX, A. Microreboot-a
technique for cheap recovery. In Proc. of 6th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (San Francisco, CA,
USA, 2004), vol. 4, pp. 31–44.

[19] CHEN, H., CHEN, R., ZHANG, F., ZANG, B.,
AND YEW, P. Live updating operating systems
using virtualization. In Proc. of ACM Interna-
tional Conference on Virtual Execution Environ-
ments (VEE) (Ottawa, Canada, June 2006).

[20] CITRIX. XenDesktop.
https://www.citrix.com/products/

xenapp-xendesktop/.

[21] CITRIX. XenDesktop and The Evolution of
Hardware-Assisted Server Technologies.
https://www.citrix.com/content/dam/

citrix/en_us/documents/go/2015-

edition-hosted-desktop.pdf.

[22] CLARK, C., FRASER, K., HAND, S., HANSEN,
J., JUL, E., LIMPACH, C., PRATT, I., AND
WARFIELD, A. Live migration of virtual machines.
In Proc. of Network System Design and Implemen-
tation (2005).

246 2017 USENIX Annual Technical Conference USENIX Association

http://iperf.fr/
https://www.ravellosystems.com/
http://www.volatilityfoundation.org/
http://www.xen.org/
http://www.amd.com/en-us/solutions/servers/virtualization
http://www.amd.com/en-us/solutions/servers/virtualization
https://www.linux.com/news/best-lightweight-linux-distros-2017
https://www.linux.com/news/best-lightweight-linux-distros-2017
https://www.bromium.com
https://xenserver.org/blog/entry/whatever-happened-to-xenserver-s-windsor-architecture.html
https://xenserver.org/blog/entry/whatever-happened-to-xenserver-s-windsor-architecture.html
https://xenserver.org/blog/entry/whatever-happened-to-xenserver-s-windsor-architecture.html
https://www.citrix.com/products/xenapp-xendesktop/
https://www.citrix.com/products/xenapp-xendesktop/
https://www.citrix.com/content/dam/citrix/en_us/documents/go/2015-edition-hosted-desktop.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/go/2015-edition-hosted-desktop.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/go/2015-edition-hosted-desktop.pdf

[23] COLP, P., NANAVATI, M., ZHU, J., AIELLO, W.,
COKER, G., DEEGAN, T., LOSCOCCO, P., AND
WARFIELD, A. Breaking up is hard to do: Security
and functionality in a commodity hypervisor. In
Proc. of SOSP (2011), pp. 189–202.

[24] CULLY, B., LEFEBVRE, G., MEYER, D., FEE-
LEY, M., HUTCHINSON, N., AND WARFIELD, A.
Remus: High availability via asynchronous virtual
machine replication. In Proc. of Networked Sys-
tems Design and Implementation, San Francisco,
CA, USA (2008).

[25] DAS, B., ZHANG, Y. Y., AND KISZKA, J. Nested
virtualization: State of the art and future directions.
In KVM Forum (2014).

[26] DINABURG, A., ROYAL, P., SHARIF, M., AND
LEE, W. Ether: malware analysis via hardware vir-
tualization extensions. In Proc. of 15th ACM con-
ference on Computer and communications security
(CCS) (Alexandria, VA, USA, 2008), pp. 51–62.

[27] DUNLAP, G. W., KING, S. T., CINAR, S., BAS-
RAI, M. A., AND CHEN, P. M. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Log-
ging and Replay. In Proc. of 5th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI) (Boston, MA, Dec. 2002).

[28] ENGLER, D. R., KAASHOEK, M. F., ET AL.
Exokernel: An operating system architecture
for application-level resource management. In
ACM SIGOPS Operating Systems Review (1995),
vol. 29(5), pp. 251–266.

[29] FORD, B., HIBLER, M., LEPREAU, J., TULL-
MANN, P., BACK, G., AND CLAWSON, S. Micro-
kernels Meet Recursive Virtual Machines. In Proc.
OSDI, Seattle, Washington, USA (1996), pp. 137–
151.

[30] GARFINKEL, T., AND ROSENBLUM, M. A Vir-
tual Machine Introspection Based Architecture for
Intrusion Detection. In Network & Distributed Sys-
tems Security Symposium (San Diego, CA USA,
2003).

[31] GEBHARDT, C., AND DALTON, C. LaLa: A
Late Launch Application. In Workshop on Scalable
Trusted Computing, Chicago, Illinois, USA (2009),
pp. 1–8.

[32] GOLDBERG, R. P. Architecture of Virtual Ma-
chines. In Proceedings of the Workshop on Virtual
Computer Systems, Cambridge, MA, USA (1973),
pp. 74–112.

[33] GOLDBERG, R. P. Survey of Virtual Machine Re-
search. Computer 7, 6 (1974), 34–45.

[34] GRAF, A., AND ROEDEL, J. Nesting the virtual-
ized world. In Linux Plumbers Conference (Sept.
2009).

[35] HAND, S., WARFIELD, A., FRASER, K., KOTSO-
VINOS, E., AND MAGENHEIMER, D. J. Are vir-
tual machine monitors microkernels done right? In
Proc. of HotOS (2005).

[36] HINES, M., DESHPANDE, U., AND GOPALAN,
K. Post-copy live migration of virtual machines.
In SIGOPS Operating Systems Review (July 2009),
14–26.

[37] INTEL CORP. Intel 64 and IA-32 Architecture Soft-
ware Developers Manual, Volume 3, System Pro-
gramming Guide. Order number 325384. April
2016.

[38] IPSECS. Kernel Beast.
http://core.ipsecs.com/rootkit/kernel-

rootkit/.

[39] JIANG, X., WANG, X., AND XU, D. Stealthy
malware detection and monitoring through VMM-
based “out-of-the-box” semantic view reconstruc-
tion. ACM Trans. Information Systems Security 13,
2 (Mar. 2010), 1–28.

[40] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U.,
AND LIGUORI, A. KVM: the linux virtual machine
monitor. In Proc. of Linux Symposium (June 2007).

[41] KOLIVAS, C. Kernbench.
http://ck.kolivas.org/apps/kernbench/.

[42] KOURAI, K., AND CHIBA, S. Hyperspector: Vir-
tual distributed monitoring environments for se-
cure intrusion detection. In ACM/USENIX Inter-
national Conference on Virtual Execution Environ-
ments (2005), pp. 197 – 207.

[43] LE, M., AND TAMIR, Y. ReHype: enabling VM
survival across hypervisor failures. In Proc. of ACM
SIGPLAN Notices (2011), vol. 46, ACM, pp. 63–
74.

[44] LIEDTKE, J. On micro-kernel construction. Proc.
of ACM SIGOPS Operating Systems Review 29, 5
(1995), 237–250.

[45] LOWELL, D. E., SAITO, Y., AND SAMBERG,
E. J. Devirtualizable virtual machines enabling
general, single-node, online maintenance. Proc. of
SIGARCH Comput. Archit. News 32, 5 (Oct. 2004),
211–223.

USENIX Association 2017 USENIX Annual Technical Conference 247

http://core.ipsecs.com/rootkit/kernel-rootkit/
http://core.ipsecs.com/rootkit/kernel-rootkit/
http://ck.kolivas.org/apps/kernbench/

[46] MCAFEE. Root Out Rootkits: An Inside Look at
McAfee Deep Defender.
http://www.intel.com/content/dam/

www/public/us/en/documents/white-

papers/mcafee-deep-defender-deepsafe-

rootkit-protection-paper.pdf.

[47] MURRAY, D. G., MILOS, G., AND HAND, S.
Improving Xen Security Through Disaggregation.
In Proc. of Virtual Execution Environments (2008),
pp. 151–160.

[48] OSISEK, D. L., JACKSON, K. M., AND GUM,
P. H. Esa/390 interpretive-execution architecture,
foundation for vm/esa. IBM Systems Journal 30, 1
(Feb. 1991), 34–51.

[49] PAYNE, B. D., CARBONE, M., SHARIF, M., AND
LEE, W. Lares: An Architecture for Secure Ac-
tive Monitoring Using Virtualization. In Proc. of
IEEE Symposium on Security and Privacy (2008),
pp. 233 – 247.

[50] PCI SIG. Single Root I/O Virtualization and
Sharing.
http://www.pcisig.com/specifications/

iov/single_root/.

[51] POPEK, G. J., AND GOLDBERG, R. P. Formal re-
quirements for virtualizable third generation archi-
tectures. Proc. of Communications of ACM 17, 7
(July 1974), 412–421.

[52] REAL TIME SYSTEMS GMBH. RTS Real-Time
Hypervisor.
http://www.real-time-systems.com/

products/index.php.

[53] RILEY, R., JIANG, X., AND XU, D. Guest-
transparent prevention of kernel rootkits with
VMM-based memory shadowing. In Proc. of Re-
cent Advances in Intrusion Detection (2008), pp. 1–
20.

[54] RUSSELL, R. Virtio: Towards a de-facto standard
for virtual I/O devices. Proc. of SIGOPS Operating
Systems Review 42, 5 (July 2008), 95–103.

[55] RUTKOWSKA, J. Subverting vista kernel for fun
and profit. In Blackhat (Las Vegas, USA, Aug.
2006).

[56] SESHADRI, A., LUK, M., QU, N., AND PERRIG,
A. SecVisor: a tiny hypervisor to provide life-
time kernel code integrity for commodity OSes. In
Proc. of ACM SIGOPS Operating Systems Review
(2007), vol. 41(6), pp. 335–350.

[57] SHEN, Z., JIA, Q., SELA, G.-E., RAINERO, B.,
SONG, W., VAN RENESSE, R., AND WEATHER-
SPOON, H. Follow the Sun Through the Clouds:
Application Migration for Geographically Shifting
Workloads. In Proceedings of the Seventh ACM
Symposium on Cloud Computing (2016), pp. 141–
154.

[58] STEINBERG, U., AND KAUER, B. NOVA: A
Microhypervisor-based Secure Virtualization Ar-
chitecture. In Proc. of EuroSys, pp. 209–222.

[59] SUGERMAN, J., VENKITACHALAM, G., AND
LIM, B.-H. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In
Proc. of USENIX Annual Technical Conference,
Monterey, CA, USA (2002).

[60] SUNEJA, S., ISCI, C., BALA, V., DE LARA,
E., AND MUMMERT, T. Non-intrusive, Out-of-
band and Out-of-the-box Systems Monitoring in
the Cloud. In Proc. of SIGMETRICS’14, Austin,
TX, USA (2014).

[61] TOLDINAS, J., RUDZIKA, D., ŠTUIKYS, V., AND
ZIBERKAS, G. Rootkit Detection Experiment
within a Virtual Environment. Electronics and
Electrical Engineering–Kaunas: Technologija, 8
(2009), 104.

[62] WASSERMAN, O. Nested Virtualization: Shadow
Turtles. In KVM Forum, Edinburgh, Spain (October
2013).

[63] WHITAKER, A., COX, R., AND SHAW, M. Con-
structing services with interposable virtual hard-
ware. In Proc. of First USENIX Symposium on Net-
worked Systems Design and Implementation (San
Francisco, California, 2004).

[64] WIKIPEDIA. Phoenix Hyperspace.
https://en.wikipedia.org/wiki/

HyperSpace_(software).

[65] WILLIAMS, D., HU, Y., DESHPANDE, U.,
SINHA, P. K., BILA, N., GOPALAN, K., AND
JAMJOOM, H. Enabling efficient hypervisor-as-a-
service clouds with ephemeral virtualization. In
Proc. of the 12th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environ-
ments (VEE) (2016).

[66] WILLIAMS, D., JAMJOOM, H., AND WEATHER-
SPOON, H. The Xen-Blanket: Virtualize once, run
everywhere. In EuroSys, Bern, Switzerland (2012).

248 2017 USENIX Annual Technical Conference USENIX Association

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf
http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/
http://www.real-time-systems.com/products/index.php
http://www.real-time-systems.com/products/index.php
https://en.wikipedia.org/wiki/HyperSpace_(software)
https://en.wikipedia.org/wiki/HyperSpace_(software)

[67] YASSOUR, B.-A., BEN-YEHUDA, M., AND
WASSERMAN, O. Direct Device Assignment
for Untrusted Fully-Virtualized Virtual Machines.
Tech. rep., IBM Research, 2008.

[68] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B.
CloudVisor: Retrofitting Protection of Virtual Ma-
chines in Multi-tenant Cloud with Nested Virtual-
ization. In Proc. of the Twenty-Third ACM Sym-
posium on Operating Systems Principles (2011),
ACM, pp. 203–216.

USENIX Association 2017 USENIX Annual Technical Conference 249

Preemptive, Low Latency Datacenter Scheduling via
Lightweight Virtualization

Wei Chen1, Jia Rao2, and Xiaobo Zhou1

1University of Colorado, Colorado Springs, {cwei, xzhou}@uccs.edu
2University of Texas at Arlington, jia.rao@uta.edu

Abstract
Data centers are evolving to host heterogeneous work-
loads on shared clusters to reduce the operational cost
and achieve higher resource utilization. However, it is
challenging to schedule heterogeneous workloads with
diverse resource requirements and QoS constraints. On
the one hand, latency-critical jobs need to be scheduled
as soon as they are submitted to avoid any queuing de-
lays. On the other hand, best-effort long jobs should
be allowed to occupy the cluster when there are idle
resources to improve cluster utilization. The challenge
lies in how to minimize the queuing delays of short jobs
while maximizing cluster utilization. Existing solutions
either forcibly kill long jobs to guarantee low latency for
short jobs or disable preemption to optimize utilization.
Hybrid approaches with resource reservations have been
proposed but need to be tuned for specific workloads.

In this paper, we propose and develop BIG-C, a
container-based resource management framework for
Big Data cluster computing. The key design is to lever-
age lightweight virtualization, a.k.a, containers to make
tasks preemptable in cluster scheduling. We devise two
types of preemption strategies: immediate and grace-
ful preemptions and show their effectiveness and trade-
offs with loosely-coupled MapReduce workloads as well
as iterative, in-memory Spark workloads. Based on the
mechanisms for task preemption, we further develop a
preemptive fair share cluster scheduler. We have imple-
mented BIG-C in YARN. Our evaluation with synthetic
and production workloads shows that low-latency and
high utilization can be both attained when scheduling
heterogeneous workloads on a contended cluster.

1 Introduction
Recently, the proliferation of data-intensive cluster ap-
plications, such as data mining, data analytics, scientific
computation, and web search has led to the development
of datacenter-scale computing. Resource efficiency is a
critical issue when operating such datacenters at scale.

Studies [5, 20, 21, 35] have shown that increasing utiliza-
tion by sharing the hardware infrastructure among multi-
ple users leads to superior resource and energy efficien-
cies. Therefore, cluster management frameworks, such
as [16, 29, 31, 33] face the challenges of efficiently host-
ing a variety of heterogeneous workloads with diverse
QoS requirements and resource demands.

Short jobs have stringent latency requirements and
are sensitive to scheduling delays while long jobs can
tolerate long latency but have higher requirements for
the quality of scheduling, e.g., preserving data locality.
To reconcile the conflicting objectives, recent proposed
schedulers [4, 10] reserve a portion of the cluster to run
exclusively short jobs using distributed scheduling while
long jobs are scheduled onto the unreserved portion us-
ing centralized scheduling. The challenge is to determine
the optimal partition of the cluster to guarantee low la-
tency to short jobs while maintaining high cluster uti-
lization, under highly dynamic workloads.

We look at the cluster scheduling problem from a dif-
ferent angle – if tasks from short jobs can preempt any
long tasks, their scheduling can be made simple and fast
while long jobs can run on any server in the cluster to
maintain high utilization. Unfortunately, existing cluster
schedulers do not support efficient task preemption. For
example, YARN [31] and Mesos [16] only support kill-
based preemption and killed tasks need to be restarted.
This could lead to substantial slowdown to long-running
jobs due to the loss of execution progress.

In this paper, we leverage application containers, a
form of lightweight virtualization, to enable preemp-
tive and low latency scheduling in clusters with het-
erogeneous workloads. Although containers, such as
Docker, are being increasingly adopted in distributed
systems [6, 33, 34], their usage is primarily for ag-
ile application deployment, leaving much of contain-
ers’ potential in resource management unexploited. We
explore the flexible resource management provided by
container virtualization to enable low-cost task preemp-

USENIX Association 2017 USENIX Annual Technical Conference 251

tion. Specifically, tasks encapsulated in containers can
be suspended by depriving the resources allocated to
their containers and resumed later by replenishing the
resources. Based on this preemption mechanism, we
propose and develop BIG-C, a Container-based resource
management framework for BIG data analytics that pro-
vides low-latency scheduling to preempting jobs while
minimizing performance penalty to preempted jobs.

BIG-C uses Docker [22] to containerize tasks and re-
lies on Linux cgroups to precisely control the CPU
and memory allocations to such containers. In BIG-C,
long jobs are immediately preempted upon the arrival
of short jobs to guarantee low latency. We devise two
types of preemptions: immediate and graceful preemp-
tions. Immediate preemption instantaneously reduces
the resources of the preempted task to a minimum foot-
print while still keeping the task alive to the task man-
agement. Graceful preemption gradually takes resources
away from long tasks, minimizing long job slowdown.
The two container-based preemption schemes replace the
kill-based task preemption and can be seamlessly inte-
grated into any fair sharing cluster schedulers and are
transparent to applications. In BIG-C, we integrate the
two preemption schemes into a preemptive fair share
scheduler based on YARN’s capacity scheduler.

We have implemented BIG-C on Apache YARN and
evaluated it on a 26-node cluster using heterogeneous
workloads composed of TPC-H queries and batch jobs
from HiBench [17]. Experimental results show that BIG-
C strikes a balance between short job latency and clus-
ter utilization compared with state-of-the-art schedulers.
The source code of BIG-C is publicly available 1.

Our results also provide insights on serving hetero-
geneous workloads in MapReduce and Spark. Imme-
diate preemption works generally well for MapReduce
jobs: (1) tasks are loosely coupled and the preemption of
some tasks does not impede the progress of other tasks;
(2) tasks have dedicated containers and their interme-
diate results are periodically persisted to disk, making
it faster to reclaim their memory when preempted. In
contrast, immediate preemption incurs significant perfor-
mance loss to jobs in Spark: (1) Spark executors employ
a multi-threaded model and the preemption of one con-
tainer affects multiple tasks; (2) for Spark jobs with iter-
ative computation, tasks involve in frequent synchroniza-
tion between each other within and across executors/-
containers; (3) due to in-memory processing, reclaiming
memory from preempted containers may incur signifi-
cant memory swapping. We find that graceful preemp-
tion is more suitable for Spark workloads.

1
https://github.com/yncxcw/big-c

Figure 1: The analysis of Google’s trace. (a) Job comple-
tion time (JCT). (b) Job submission and eviction rates.

2 Motivation

2.1 Real-world Trace Analysis

To understand job characteristics and resource usage of
production workloads, we analyze the publicly available
traces [28, 7] from Google data centers. Figure 1(a)
shows that short jobs that complete within 1 minute dom-
inate the traces and contribute to 80% of the total number
of jobs. Although data center workloads mostly consist
of short jobs, long jobs account for most resource usage.
It has been reported by other researchers [10, 18, 27]
that the top 10% long jobs, which are only responsible
for 28% of the total number of tasks, account for more
than 80% of the total task execution time. According
to the analysis, there is a difficult tradeoff in data center
scheduling: short jobs are sensitive to delays and criti-
cal to QoS enforcements while long jobs are important
to maintaining high resource utilization. Existing re-
search [11, 20, 21] shows that prioritizing short jobs and
serving long jobs in a best-effort manner on a shared in-
frastructure meet both requirements.

When resources are contended, both prioritization and
the enforcement of fair sharing can lead to the preemp-
tion of already running tasks. Preempted tasks are often
evicted or killed. Figure 1(b) plots task submission and
eviction rates in the Google trace for a period of 48 hours.
According to Google, a task can be evicted by higher pri-
ority tasks in the case of resource shortage or stopped if
the task owner user/group exceeds its fair share of clus-
ter resources. Figure 1(b) shows that task eviction rate
climbs up as submission rate increases, indicating a clear
relationship between task preemptions and resource con-
tention. In the 48-hour period, there were 910,099 tasks
submitted, of which 93,714 were evicted and most of
them were long jobs. As discussed above, long jobs ac-
count for a disproportionate amount of resource usage.
The evictions of long jobs are especially expensive as the
loss of their execution progress translates to significant
resource waste. While evicted jobs can be relaunched
when there are sufficient resources, the eviction can also
add substantial delay to the completion time of such jobs.

252 2017 USENIX Annual Technical Conference USENIX Association

Figure 2: The overhead of kill-based task preemption in
different types of workloads.

2.2 Overhead of Kill-based Preemption
Task killing is a simple means to realize preemption.
However, killed tasks cannot be resumed and have to be
relaunched. Most cluster schedulers use this approach
due to its simplicity.

Figure 2 shows the overhead of kill-based preemption
for different types of MapReduce and Spark jobs. We
configured long jobs to fully utilize a 26-node YARN
cluster. Detailed configuration of the cluster can be
found in §5.1. During the execution of each long job,
we injected a 6-minute burst of short Spark-SQL queries.
The YARN default capacity scheduler was set to assign a
share of 95% cluster resources to Spark-SQL queries, en-
forcing a strictly higher priority for the short jobs. Upon
the arrival of short jobs, YARN kills tasks selected ran-
domly from the long job to free resources needed by
short jobs. Killed tasks are immediately resubmitted to
YARN for rescheduling.

As shown in Figure 2, MapReduce jobs suffer less
performance penalty from task killing than Spark jobs
do. Task killing degraded the overall performance of
MapReduce jobs by 8% - 64% while incurring as much
as 92% overhead to Spark jobs. Among MapReduce
jobs, those are dominated by the map phase, e.g., word-
count, suffered marginal degradation compared to the
noticeable slowdown experienced by reduce-heavy jobs,
e.g., terasort. Because mappers are usually small and in-
dependent from each other, the termination of a few map-
pers does not lead to much computation loss nor signifi-
cantly delay job completion. In contrast, reducers require
all-to-all communications with mappers. This data shuf-
fling phase runs much longer than mappers. Therefore,
the killing of one reducer requires the lengthy and re-
source intensive shuffling process to be restarted, which
substantially delays job completion.

Spark jobs are more susceptible to delays due to task
killings for the following reasons. First, Spark jobs, es-
pecially machine learning algorithms that iterate over
a data set, require frequent synchronizations between
tasks. If one task is killed, other dependent tasks are un-
able to make any progress. Second, Spark in-memory
processing does not persist intermediate results to stor-
age. For jobs with multiple stages, the killing of one task

could lead to the re-computation of dependent stages.
This recovery process is usually quite expensive. Fig-
ure 2 shows that Spark jobs suffered on average 70%
slowdown when interrupted by the burst of short jobs.

3 Container-based Task Preemption
In this section, we present two simple container-based
approaches for task preemption and in the next section
we integrate them into cluster scheduling.

3.1 Container-based Virtualization
Container-based virtualization, such as Docker, has
gained popularity due to its almost negligible overhead
compared to hypervisor-based virtualization. A con-
tainer provides isolated namespaces for applications run-
ning inside the container and forms a resource account-
ing and allocation unit. Linux uses control groups
(cgroups) to precisely control the resource allocation
to a container. Not only priorities can be set to reflect
the relative importance of containers, hard resource lim-
its guarantee that containers consume resources no more
than a predefined upper bound even there are available
resources in the system.

3.2 Immediate Task Preemption
We leverage the flexible resource allocation enabled by
containers to temporarily suspend a task in Big Data an-
alytics and reclaim its resources without losing the exe-
cution progress. We assume that each task is encapsu-
lated into a container 2. Each container forms a cgroup

and is configured with two types of resources: CPU and
memory. Parameter cpuset.cpus controls the number
of CPU cores that a container can use and parameter
memory.limit in bytes limits the maximum memory
usage. cpu.cfs quota us and cpu.cfs period us

together determine the maximum CPU allocation to a
container. This enables fine-grained control of CPU cy-
cles beyond allocating CPU cores.
Task suspension involves two steps: stop task execu-
tion and save task context. To stop a task, the host con-
tainer is deprived of CPU to stop task execution. To save
the task’s context for later resumption, its dirty data in
memory needs to be written back to disk. Fortunately,
no additional effort is needed to support context saving.
When reclaiming a container’s memory, the virtual mem-
ory management in the host operating system (OS) writes
back dirty data. For fault tolerance, cluster schedulers
monitor the progress of individual tasks and launch spec-
ulative tasks if stragglers are detected.

The suspension of containers will falsely trigger the
failover. To avoid extensive changes to cluster sched-
ulers to support task preemption, we suspend a task but

2Spark runs multi-threaded task in an executor. Therefore, a con-
tainer corresponds to an executor in Spark and contains multiple tasks.

USENIX Association 2017 USENIX Annual Technical Conference 253

Figure 3: Immediate preemption incurs high overhead
due to memory reclaiming and restoring.

maintain a minimal footprint for the task to keep it alive
to the cluster scheduler. We empirically set the minimal
container footprint to 1% CPU and 64 MB memory, with
which the thread responsible for sending the heartbeat in
the container still appears to be alive to the scheduler. We
also disable speculative execution for suspended tasks.
Task resumption is simply re-activating the container
by restoring its deprived resources. The resumption also
follows two steps. The memory size of the container is
restored from the minimal footprint back to its original
size and the CPU limit is lifted. We call this type of
preemption, which reclaims and restores all resources of
a preempted task in one pass, immediate preemption (IP).
Overhead of immediate preemption Despite that kill-
based preemption is crude, it guarantees timely schedul-
ing of short jobs. The container-based immediate pre-
emption, however, can possibly delay short job schedul-
ing and inflict performance degradation to long jobs.
First, it may take non-negligible time to reclaim the
memory of preempted tasks before short tasks can be
scheduled, depending on the working set size of pre-
empted tasks. Second, task resumption requires loading
saved context into memory. For certain jobs, this process
is particularly long.

Figure 3 shows the memory swapping activities when
a 1 GB container was suspended to the minimal footprint
and later resumed. The container ran a multi-threaded
synthetic Java benchmark that repeatedly and randomly
touched a 1 GB array. Figure 3(a) shows that it took 3
seconds (between the 40th and 45th seconds) to reclaim
nearly 1 GB memory. Note that the swapping activities
lasted much longer until the container was deprived of
CPU at the 130th second. It took even longer to load
saved context into memory after the container was re-
sumed at the 230th second. The reason is that the multi-
ple threads in the container simultaneously loaded their
working sets when memory was restored, resulting in
a large volume of random disk access. The synthetic
benchmark provides following insights on IP overhead:

• It is expensive to reclaim memory from a container that
is actively dirtying its working set.

• Depriving CPU effectively throttles disk reads during
memory reclaiming, shortening the suspension delay.

• Spark jobs are particularly susceptible to the resump-
tion overhead when multiple tasks from an/a execu-
tor/container are activated to simultaneously load their
working sets from disk.

To reduce the overhead, one optimization is to first re-
claim CPU from a container to throttle task activity be-
fore memory is reclaimed. However, this optimization is
not sufficient to guarantee short job latency or minimize
long job degradation, which motivated us to develop the
graceful preemption.

3.3 Graceful Task Preemption
While immediate preemption deprives a task of all re-
sources to completely suspend the task, graceful preemp-
tion (GP) shrinks a preempted task and reclaims its re-
sources in multiple rounds.

Compared to immediate preemption, graceful preemp-
tion reclaims a task’s resources at a pre-defined step
~r = (c,m), where c and m are the unit resource recla-
mation for CPU cores and memory, respectively. GP is
based on the following insights:

• Tasks from long jobs are usually larger than tasks from
short jobs. Launching a short task often does not need
to reclaim all resources of a long task.

• Resource slack is common in cluster computing.
Memory slack could come from intentional over-
provisioning at job launch to avoid Out-Of-Memory er-
rors, dynamic and epochal memory demands at differ-
ent job stages [24], or diminishing memory demands
towards job completion. CPU slack is due to similar
reasons. Even if CPU is fully utilized, gracefully re-
ducing CPU allocation does not cause drastic perfor-
mance degradation to a preempted task.

• Since tasks’ requests are usually based on their peak
demands, the partially reclaimed resources from pre-
empted tasks are often sufficient for high priority tasks
to make progress at an early stage of execution.

To reclaim resources from a preempted task, the clus-
ter scheduler controls the iteration of graceful preemp-
tion. This process stops if the demands of the high prior-
ity tasks are satisfied. Similar to immediate preemption,
in which we deprive the container of CPU to throttle task
execution so as to accelerate memory reclamation, grace-
ful preemption freezes a container’s CPU when swap-
ping activities are detected. Graceful preemption will
continue until new tasks’ demands are met.

254 2017 USENIX Annual Technical Conference USENIX Association

Figure 4: The architecture of BIG-C.

4 BIG-C: Preemptive Cluster Scheduling
In this section, we describe how to integrate container-
based task preemption into YARN. We begin with a
brief overview of YARN’s resource management and
task scheduling (§4.1). Next, we present the design of
BIG-C and discuss the changes in YARN to support task
preemption (§4.2), and present a preemptive fair share
scheduler based on YARN’s capacity scheduler (§4.3).

4.1 YARN Resource Management
YARN is a generic resource management framework that
allows multiple applications to negotiate resources on a
shared cluster. YARN uses container, a logical bundle
of resources (e.g., h1 CPU, 2GB RAMi) as the resource
allocation unit. A container is considered as a resource
lease and its resources are reclaimed as a whole when a
task is completed or killed. The resource manager (RM),
one per cluster, is responsible for allocating containers to
competing applications. The application master (AM),
one per application, submits requests for containers to
RM. The node manager (NM), one per machine, moni-
tors the allocation of resources on each node and updates
the RM with resource availability.

4.2 BIG-C Design
Figure 4 shows the architecture of BIG-C. The key com-
ponents of BIG-C include a resource monitor (RMon), a
preemptive fair scheduler at the RM and a container al-
locator (CA), a container monitor (CM) at each NM.
Container allocator Although YARN also uses the no-
tion of “container” in resource management, a YARN
container is a logical representation of a task’s resources
but does not control the actual allocation of resources.
The CA component addresses this issue. Upon receiv-
ing the request for launching a new task, CA loads the
task into a Docker container. Next, CA configures the
container with the resources requested by the task.
Container monitor is a per-container daemon in NM
responsible for container preemption. Instructed by the

NM, CM performs two actions: container suspend

and container resume (SR operations in Figure 4).
It reconfigures the preempted container to reclaim re-
sources. If memory swapping is detected in a container,
CM immediately freezes the container by setting the
CPU allocation to 1%.
Resource monitor is a daemon running on the resource
manager. It periodically (every 3 seconds) checks the
resource distribution among queues according to the cur-
rent scheduling policy, the resource availability, and re-
source demands of incoming tasks. Based on the re-
source sharing policy enforced by the scheduler, RMon
together with the scheduler compute how much resource
should be preempted from over-provisioned queues and
send the preemption decision to individual NMs.

4.3 Preemptive Fair Share Scheduler
Overview The preemptive scheduler is built on YARN’s
capacity scheduler, which enforces fair resource al-
location among users. Capacity scheduler is work-
conserving and allows users, each assigned with a job
queue, to use more than their fair shares if there are
available resources in the cluster. When resources
are contended, capacity scheduler kills tasks from
over-provisioned queues to free resources for under-
provisioned queues. The preemptive scheduler replaces
kill-based preemption with immediate preemption (IP) or
graceful preemption (GP). While IP does not require al-
gorithmic changes to capacity scheduler, we need to aug-
ment the fair sharing algorithm to support GP.

Capacity scheduler’s fair sharing algorithm enforces
dominant resource fairness (DRF) [13] among job
queues. Upon receiving resource requests, in the form
of hCPU, RAMi, capacity scheduler calculates the domi-
nant resource in these requests and enforces fair alloca-
tion of the dominant resource. Non-dominant resources
are allocated in proportion to the dominant resource as
specified in the requests. Algorithm 1 shows how ca-
pacity scheduler calculates the amount of resources to be
reclaimed from over-provisioned queues and our modi-
fication (highlighted in red) to support GP. For ease of
discussion, the algorithm assumes two queues, i.e., one
for long jobs and one for short jobs, and two type of re-
sources, i.e., CPU and memory. It can be extended to
support more than two queues and two resources.

Capacity scheduler first determines the desired share
of resource (line 3). The over-provisioned resources for
the long job queue is the difference between the queue’s
current resource allocation~rl and its desired share ~fl (line
4). If the demand of the short jobs is less than the long
job’s over-occupied resources, the demand can be fully
satisfied (line 5-6). Otherwise, all over-provisioned re-
sources should be reclaimed (line 9). The amount of pre-
empted resources ~p is used in Algorithm 2 to determine

USENIX Association 2017 USENIX Annual Technical Conference 255

Algorithm 1 Calculate resources to be preempted.
1: Variables: Long job’s fair share fl , current resource

allocation ~rl , fair allocation ~fl ; total CPU C and
memory M resources; short job’s resource request
~rs; over-provisioned resources ~a; resources of long
job to be preempted ~p.

2: /* Long job’s fair and over-provisioned resources */
3: ~fl = (C⇥fl ,M⇥fl)
4: ~a =~rl�~fl
5: if~rs <~a then
6: ~p =~rs
7: else
8: /* Use DR to calculate preempted resources*/
9: ~p =~a =) ~p = COMPUTEDR(~rs,~a)

10: end if
11: procedure COMPUTEDR(~rs,~a)
12: Determine dominant resource
13: if dominant resource is CPU then
14: ~p = (acpu,amem⇥

rs mem
rs cpu

)

15: else
16: ~p = (acpu⇥

rs cpu
rs mem

,amem)
17: end if
18: return ~p
19: end procedure

which containers that belong to the long job should be
killed to release these resources.

As shown in Algorithm 2, capacity scheduler uses
the heuristic proposed in [37] to choose a job with the
longest remaining time and releases ~p resources from its
containers. Note that ~p is calculated in algorithm 1. Each
time such a container is found, it is added to the kill set C
until either the job has no container left or ~p has been sat-
isfied (line 3-9). If more resources need to be reclaimed,
capacity scheduler moves to the next job (line 10). Note
that as long as the over-provisioned dominant resource
is fully reclaimed, ~p is considered satisfied. The to-be-
killed container set C is then sent to NMs to perform the
killings (line 13). There are two drawbacks of capacity
scheduler due to kill-based preemption. First, kill-based
preemption may lead to resource fragmentation. A killed
long job container may be too large for one short task but
not sufficient for two short tasks. Second, task killing is
not a flexible way to reclaim resource. The killing of a
large container only frees resources on one machine and
may lead to the launch of a large number of small tasks
all clustered on the machine, causing not only load bal-
ancing but also reliability problems.

We make simple changes to capacity scheduler to ad-
dress the above drawbacks. To avoid resource fragmen-
tation, the preempted resource is accurately calculated
by function COMPUTEDR based on the demand of short
jobs and over-provisioned resources (Algorithm 1, line

Algorithm 2 Container preemption.
1: Variables: Set of container to be preempted C; re-

sources to be preempted ~p; preempted resources at
each GP step ~rGP; resources of a preempted con-
tainer~rc.

2: AGAIN:
3: Choose a job with the longest remaining time
4: while ~p > (0,0) do
5: Choose a container c from the job
6: C c
7: ~p = ~p�~rc =) ~p = ~p�~rGP,~rc =~rc�~rGP
8: remove c =) if c is empty or swapping, re-

move c
9: if job has no container left and ~p > (0,0) then

10: goto AGAIN
11: end if
12: end while
13: KILL(C) =) PREEMPT(C)

9). Specifically, the scheduler computes the dominant
resource in request ~rs against the over-provisioned re-
source~a. Instead of reclaiming all over-provisioned non-
dominant resource as capacity scheduler does, it reclaims
the non-dominant resource in proportion to the reclaimed
dominant resource as indicated in~rs. For instance, sup-
pose~a = h10 CPU, 15GB RAMi and~rs = h20 CPU, 10GB
RAMi. Since 20

10 > 10
15 , CPU is the dominant resource.

Because~rs > ~a, capacity scheduler will compute ~p = ~a
and over-reclaim the memory resource. Instead, the pre-
emptive scheduler computes ~p = h10 CPU, 10⇥ 10

20 GB
RAMi. Note that resource preemption based on the dom-
inant resource of short job requests is not possible in the
original capacity scheduler because resource allocation
of long jobs’ containers is based on long jobs’ dominant
resource and should be reclaimed as a whole.

Further, we introduce graceful task preemption in Al-
gorithm 2. When a job is selected, its over-provisioned
resources are reclaimed from a large number of its tasks
at a step of~rGP. For each round, the remaining resources
of a container c are also updated (line 7). Once a con-
tainer starts swapping, showing a memory shortage, it is
immediately frozen and removed from resource reclama-
tion (line 8). As such, preempted resources are collected
from many containers, avoiding drastic slowdown to in-
dividual containers as much as possible. As discussed in
§2.2, evenly preempting resources from tightly-coupled
tasks help minimize slowdowns of Spark jobs.
Practical considerations
Tuning~rGP. The step at which resources are preempted
in graceful preemption presents a tradeoff. The larger the
~rGP, (hopefully) the sooner the short jobs’ demand can
be satisfied, but at the risk of causing more pronounced
slowdown to long jobs. If ~rGP is too large and pre-

256 2017 USENIX Annual Technical Conference USENIX Association

empted containers incur swapping, short jobs can even
wait longer for resources to be freed from swapping con-
tainers. Small~rGP leads slow resource allocation to short
jobs, which may suffer poor performance after launch.
Delayed resumption factor D. Killed and preempted
tasks resubmit their resource requests to the RM and are
treated like ordinary incoming tasks. However, resource
request from a preempted task has a special locality re-
quirement - it can only be satisfied on the machine where
the task was preempted. Moreover, under high burst of
short job arrival, a resumed container can be quickly pre-
empted again. The repeated and wasteful preemptions
hurt long job performance but also cause long queuing
delay to short jobs. To address this issue, we require that
a preempted container needs to try D times before it is
really resumed. This also avoids possible starvation.

4.4 Implementation
We have implemented BIG-C in Hadoop YARN. The re-
source monitor is a new module residing in the resource
manager that extends SchedulingEditPolicy. Our
new preemptive fair share scheduler is based on YARN’s
capacity scheduler. The modifications includes adding
a new task state PREEMPTED, interfaces for task suspen-
sion and resumption in the resource manager. These
changes are generic and can interface with any cluster
schedulers. On node manager, the container monitor ex-
tends ContainerManagerImpl. We build a new mod-
ule called CoresManager to handle CPU allocation at
worker nodes. A Java interface for libcontianer is
added to each node manager to operate Docker contain-
ers. Our implementation includes 2000 lines of Java code
and is based on Hadoop-2.7.1.

5 Evaluation
This section presents the performance evaluation of BIG-
C on a 26-node cluster using representative MapReduce
and Spark workloads. We first provide details of our
testbed (§5.1). Next, we present results from synthetic
workloads with MapReduce and Spark jobs (§5.2), and
study the sensitivity of two tunable parameters in our de-
sign (§5.3). Last, we give results from production work-
loads based on the Google trace (§5.5).

5.1 Experimental Setup
Cluster Setup Each machine in the 26-node cluster has
two 8-core Intel Xeon E5-2640 processors with hyper-
threading enabled, 132GB of RAM, and 5x1-TB hard
drivers configured as RAID-5. The machines were in-
terconnected by 10 Gbps Ethernet. Hadoop-2.7.1. was
deployed on the cluster and HDFS was configured with
a replication factor of 3 and a block size of 128MB. The
worker nodes sent heartbeats to the resource manager ev-
ery 3 seconds. Docker-1.12.1 was used to create contain-

ers and the images were downloaded from online repos-
itory sequenceiq/hadoop-docker.

We configured two queues in YARN’s resource man-
ager to serve heterogeneous workloads. One queue was
dedicated to short jobs and the other was for long jobs.
Such a two-queue setting is commonly used in produc-
tion systems and has been adopted by other works [8, 9,
10]. Additionally, BIG-C can leverage approaches pre-
sented in [10, 12] to classify short and long jobs. To
enforce strictly higher priority for short jobs, we set the
resource share of the short job queue to 95%. The re-
maining 5% was assigned to the long job queue in a best-
effort manner. For comparison, we evaluated the follow-
ing cluster schedulers:

• FIFO scheduler serves all tasks in a single first-in-
first-out queue. It achieves optimal performance for
long jobs, but incurs significant performance penalty
for short jobs.

• Reserve schedulers such as Hawk [10] reserve a por-
tion of the cluster to run short jobs exclusively without
preemption. Our experiments empirically reserve 60%
of cluster resources for short jobs. Long jobs can use
up to 40% of cluster capacity. However, it is challeng-
ing to find the optimal reservation factor under highly
dynamic workloads.

• Kill is the preemption mechanism in YARN. The ca-
pacity scheduler is used to enforce share between
queues. It achieves optimal performance for short jobs,
but causes performance degradation to long jobs.

• IP and GP are immediate preemption and graceful
preemptions, respectively. Our preemptive fair share
scheduler is used with these two approaches.

Workloads We used Spark-SQL [2] to generate TPC-
H queries as short jobs. Hive [30] was used to pop-
ulate TPC-H tables in HDFS. The total data size was
10GB. The container size for Spark-SQL tasks were set
to h4 CPU, 4GBi. We selected long jobs from HiBench
benchmarks. For MapReduce jobs, we chose map-heavy
wordcount and reduce-heavy terasort. The map and re-
duce containers were set to h1 CPU, 2GBi and h1 CPU,
4GBi, respectively. The input size of the MapReduce
jobs was 600GB. We selected PageRank, Kmeans, Bayes
and WordCount from HiBench as the Spark jobs. The
containers of Spark executors were much larger with
configurations of h8 CPU, 16GBi, h8 CPU, 32GBi, and
h16 CPU, 32GBi, depending on the input size. 3

Metrics We evaluated the cluster schedulers using the
following metrics: job completion time (JCT) is the time

3The number of CPUs specifies the number of parallel tasks Spark
will launch in each executor. Memory size should be large enough to
prevent tasks from running into the Out-Of-Memory error.

USENIX Association 2017 USENIX Annual Technical Conference 257

Figure 5: (a) The submission patterns of short jobs in the synthetic workloads. The performance of short Spark-SQL
queries (b,d,f) and long Spark jobs (c,e,g) with different schedulers.

when job is submitted until it is completed; job queue-
ing delay is the time when a job is submitted until its
execution starts; CoV of JCT is JCT’s coefficient of vari-
ation; cluster utilization is the CPU utilization over the
total CPU capacity of the cluster.

5.2 Results on Synthetic Workloads
Setting In this experiment, we created a controlled en-
vironment to study the performance of BIG-C. We gener-
ated three workload patterns, each with mixed long and
short jobs and lasting for 900 seconds. Long jobs were
continuously submitted throughout the experiment and
persistently utilized about 80% of the cluster resources.
Figure 5(a) shows the submission pattern of short jobs.
While all three patterns had a base demand of around
20% cluster capacity, they differed in the submission
bursts. High-load and low-load generated approximately
90% and 40% cluster utilizations, respectively, during
the burst period between the 300th and 700th seconds.
In contrast, multi-load had two peaks during the burst
period with each peak demanding over 80% cluster re-
sources. Clearly, the cluster was overloaded during the
bursts and long jobs should be preempted by short jobs.
Spark performance Figure 5(b)-(g) shows the results.
Among schedulers, reserve achieved the best perfor-
mance for short jobs under low-load and multi-load,
since the reserved 60% cluster resources were sufficient
to serve the burst. Under high-load, Reserve had de-
graded performance as the resource reservation for short
jobs was less than the peak demand. Kill was among
the best performing schedulers for all three scenarios. In
contrast, FIFO inflicted substantially delays to short jobs
due to the absence of preemption. Short jobs needed to
wait for the completion of long jobs before they can be
scheduled. Our approaches IP and GP with the preemp-

tive fair scheduler achieved close performance to the best
performing schedulers. Overall, GP had superior perfor-
mance than IP as it required less resource reclamation
time before short jobs can be launched.

We draw the 50th percentile and 90th percentile per-
formance for long Spark jobs to show the median and
the long tail JCTs. FIFO achieved the best performance
for long jobs because short jobs were unable to preempt
and interrupt long job execution. In contrast, kill based
preemption incurred significant delays to long jobs, es-
pecially for the 90th percentile JCT, in all scenarios. It
caused on average 140% degradation compared to FIFO
for the tail JCT. Note that kill-based preemption did
not affect the median performance much under low-load
since only a few long jobs were killed.

In comparison, IP had the worst median and tail per-
formance among all schedulers under low-load. Its ag-
gressive resource preemption and the resulted memory
swapping even affected the median JCT under low-load,
in which other non-preempted jobs suffered degradation
due to memory thrashing. Another reason for IP’s poor
performance was because complete suspension of one
task in Spark jobs often stops the entire job due to task
synchronization. Note that even reserve, which only ded-
icated 40% cluster capacity to long jobs, achieved better
performance than kill and IP, indicating that long queu-
ing delay was less damaging on performance than ag-
gressive killings and preemptions. Finally, GP was the
best performing scheduler compared to baseline FIFO.
It incurred 13%, 61%, and 17% penalty to the tail per-
formance compared to FIFO under low-load, high-load,
and multi-load, respectively. The slightly worse median
performance of GP compared to kill was the evidence
that many tasks were slowed down due to the collection
of preempted resources on these tasks.

258 2017 USENIX Annual Technical Conference USENIX Association

Figure 6: The performance of short Spark-SQL queries (a,b,c) and two long MapReduce jobs (d,e).

Another important finding is that kill-based preemp-
tion caused 13%, 15%, and 20% of long jobs failed to
complete 4. In contrast, although IP incurred significant
overhead, it caused no jobs to fail.
MapReduce performance Figure 6 shows the results
of MapReduce workloads. The long job performance is
normalized to the scenario in which the cluster is dedi-
cated to long jobs. The short jobs were the same Spark-
SQL queries while the long jobs were map-heavy word-
count and reduce-heavy terasort. MapReduce jobs differ
from Spark jobs in many ways. First, a long job usually
contains a large number of small mappers, which com-
plete quickly. Second, while Spark’s in-memory com-
puting imposes persistent resource demand throughout
job execution, MapReduce jobs show clear decline in de-
mand when entering the reduce phase. Finally, MapRe-
duce tasks persist intermediate data onto disk whenever
their memory buffers are full. These differences led to
different findings in MapReduce workloads.

Figure 6 does not show the results of FIFO because
the background long jobs had a large number of mappers
backlogged and most short jobs suffered 15-20 minutes
slowdown. In Figure 6(a)-(c), it is unexpected that kill in-
curred significant queuing delay to short jobs while both
IP and GP performed much better. An examination of
YARN’s job submission log revealed that the large num-
bers of killed MapReduce tasks were immediately resub-
mitted to the scheduler and later killed again, causing
wasted cluster resources and additional queuing delays
to short jobs. In contrast, both IP and GP is config-
ured with delayed resumption, which avoided repeated
preemptions. Reserve had superior performance among
the schedulers except for the scenario under high-load,
in which the reservation was not sufficient. Both IP and
GP performed well for short jobs.

4Failed jobs were not included in JCT calculation.

Figure 7: Effects of (a) various degrees of resumption
delay and (b) the granularity of graceful preemption.

For long MapReduce jobs, the performance of sched-
ulers depends on the type of the long job workloads. As
shown in Figure 6(d), kill, IP, and GP had similar perfor-
mance for map-heavy workload wordcount. It suggests
that kill-based preemption is not particularly more ex-
pensive than container-based preemption as the mappers
are usually small. Because there are a large number of
mappers, which are independent from each other, the lost
work due to the killings of small mappers can be over-
lapped with other mappers backlogged in the scheduler.
In contrast, kill-based preemption incurred substantial
overhead to reduce-heavy terasort workload. The cost
of killing a reduce task is prohibitively high as relauch-
ing the killed reducer requires re-shuffling all its input
data over the network.

Both IP and GP achieved near-optimal performance
with IP incurring slight degradation under high-load and
multi-load. The write-back of dirty data effectively re-
duces the in-memory footprint of preempted tasks, mak-
ing it easier for IP and GP to reclaim memory compared
to that in Spark jobs.

5.3 Parameter Sensitivity
As discussed above, the delayed resumption in our ap-
proaches effectively avoided repeated preemptions. In
this section, we evaluate the effects of two configurable

USENIX Association 2017 USENIX Annual Technical Conference 259

Figure 8: Results on the Google trace. (a) Jobs submission patterns. (b) The CDF of short job’s JCT. (c) Long job’s
50th and 90th percentile completion time. (d) Statistics on cluster utilization, sampled every 2 seconds.

parameters in our approach. The first parameter is the
number of tries a preempted container needs to perform
before it is actually resumed. Figure 7(a) shows the effect
of varying numbers of the delayed try D on short job per-
formance. The figure suggests that delayed resumption is
critical to guaranteeing low latency for short jobs. Dis-
abling delayed resumption (D = 0) led to queuing delay
as high as 80 seconds for short jobs. Enabling delayed
preemption had salient impact on performance but with
diminishing gain when further increasing D. We empir-
ically set resumption factor D to 3 to strike a balance
between short job latency and long job starvation. This
setting was used in all other experiments.

We have shown that there exist tradeoffs between ag-
gressive and graceful resource preemption. Next, we
quantitatively study how the granularity (aggressiveness)
of GP affects long job performance. We use the coeffi-
cient of variance (CoV) of JCT to measure the distribu-
tion of preempted resources. The basic preemption unit
was set to h1 CPU, 2GB RAMi. The GP granularity is
determined by how many basic resource units should be
reclaimed in one round. Figure 7(b) shows that the CoV
of job completion time increased as we increased the
granularity of GP. Compared to kill-based and immediate
preemptions, graceful preemption, even with aggressive
resource reclamation, still incurred less variation across
jobs. We set the preemption granularity to h2 CPU, 4GB
RAMi, i.e., two basic units.

5.4 Overhead
The overhead of BIG-C mainly comes from reclaiming
the memory of preempted tasks and the delay caused by
memory restoration. Our experiments show that it takes
approximately 3 seconds to reclaim 1GB dirty memory,
which adds considerable scheduling delay to short jobs.
Although BIG-C avoids such overhead for most of time
due to graceful preemption, performance degradation is
inevitable if GP fails to satisfy short job demands.

5.5 Results on the Google Trace
We also evaluated BIG-C by replaying the production
Google trace on our testbed. This trace contains 2202

jobs, of which 2020 are classified as short jobs and 182
as long jobs based on job completion time and resource
usage. The setting conforms with that used in [10].
We scaled down the task numbers in each job to match
our cluster capacity so that each job takes a reasonable
amount of time to complete. The total trace ran for 3.8
hours. We first dedicated the entire cluster to short jobs
and long jobs to respectively quantify their resource us-
age. The results are shown in Figure 8(a). The average
cluster utilization was about 17% and 75% for short and
long jobs, respectively. The short jobs only consumed a
small portion of the total resource, but with highly vari-
able and unpredictable submission rates. We can clearly
see a few short job usage spikes throughout the trace. For
example, the spike at the 8000th second used up to 95%
of the cluster capacity. Similarly, we configured the short
job share to be 95% of the cluster capacity.

Figure 8(b) plots the latency distribution of short job in
the Google trace. Most schedulers except FIFO achieved
good performance. FIFO had a 90th percentile latency of
335s, which was 6 times larger than its median latency.
We also examined the tail latency under other schedulers.
The 95th percentile latency for reserve, kill, IP, and GP
were 183s, 176s, 118s, and 96s, respectively. Our two
approaches outperformed other schedulers with GP be-
ing the best.

Figure 8(c) draws the 50th percentile and 90th per-
centile performance for long jobs. With the default kill-
based preemption, 105 out of the 182 long jobs were
killed, among which 41 failed and 105 suffered signif-
icant slowdown due to job re-launch. Note that failed
jobs were excluded from JCT calculation. As shown in
the figure, GP improved the 90th percentile job runtime
by 67%, 37% and 32% over kill, IP, and reserve, respec-
tively. Compared to the optimal FIFO scheduler for long
jobs, GP only added 4% delay to JCT. Similarly, about
23% long jobs failed with kill-based preemption while
our approaches did not cause any job failures.

Figure 8(d) plots the cluster utilization under different
schedulers. Work-conserving schedulers achieved much
higher resource utilizations than reserve did. For more
than 60% of time in the experiment, the overall cluster

260 2017 USENIX Annual Technical Conference USENIX Association

utilization was above 80% for FIFO, kill, IP, and GP.
In contrast, reserve rarely used more than 60% of clus-
ter capacity due to the reservation for short jobs. Note
that both kill and IP had periods when the cluster utiliza-
tion was lower than 40%. This was due to the killing and
aggressive preemption of tasks that impeded the over-
all progress of the tightly-coupled long jobs, e.g., Spark
jobs. When waiting for the killed or preempted task to
relaunch or resume, other sibling tasks were idling.

6 Related Work
The last few years have witnessed the growth of work-
loads provisioned on top of data processing frameworks
like Hadoop [1], Naiad [23] or Spark [36]. The char-
acteristics of such workloads have been well-studied in
previous work [32].
Cluster Scheduling is a core component in data-
intensive cluster computing. YARN [31] and Mesos [16]
are two widely used open-source cluster managers. Both
YARN and Mesos use a two-level architecture, decou-
pling allocation from application-specific logic such as
task scheduling, speculative execution or failure han-
dling. Omega [29] is a parallel scheduler architecture
based on lock-free optimistic concurrency control to
achieve implementation extensibility, globally optimized
scheduling, and scalability. Another thread of work fo-
cuses on distributed scheduler to overcome the scalabil-
ity problem in large-scale clusters. Sparrow [25] is a
fully distributed scheduler that performs scheduling by
performing randomized sampling. Hawk [10] and Mer-
cury [18] both implement a hybrid scheduler to avoid
inferior scheduling decisions for a subset of jobs as a
trade-off of scheduling quality and scalability. yaq-d and
yaq-c [27] provides queue management at worker nodes
to improve cluster utilization and to avoid head-of-line
blocking. Our proposed container-based preemption is
orthogonal to these approaches and helps simplify the
design of cluster schedulers by providing an alternative
means of enforcing task priority. Note that our work does
not intend to improve task classification but focuses on a
lightweight mechanism for task preemption.
Preemption Amoeba [3] and Natjam [8] implement pre-
emption using checkpointing to achieve elastic resource
allocation. Natjam targets at Hadoop applications and
Amoeba built a prototype based on Sailfish [26]. Li et.
al., propose a new checkpoint mechanism by leveraging
CRIU [19]. Their approaches interact with the Appli-
cation Master and dump the checkpoints to user space.
There are two drawbacks in checkpoint-based preemp-
tion. First, it is challenging to determine the frequency
of checkpointing. On-demand checkpointing, such as the
preemption approaches based on CRIU [19], requires the
entire preempted task to be dumped onto HDFS and is
equivalent to our proposed immediate preemption. Peri-

odic checkpointing at each iteration reduces preemption
delay but incurs considerable runtime overhead. Sec-
ond, existing checkpointing approaches require changes
to user applications. Our proposed container-based pre-
emption is application agnostic and the tuning of the GP
granularity is relatively straightforward.
Utilization To improve cluster utilization, authors in [21,
35, 20, 38, 14] propose to consolidate applications on a
shared infrastructure and separately manage their inter-
ference so that applications’ QoS could be guaranteed.
These techniques employ online profiling to identify the
best combinations of workloads that do not interfere with
each other. However, in data center scheduling, in which
job submissions are unpredictable and the composition
of jobs is heterogeneous, offline training or online pro-
filing may not be accurate. Our approach does not re-
quire the cluster to be under-provisioned nor assumes
scheduling-friendly job submissions.
Lightweight virtualization Container-based virtualiza-
tion have been widely used both in industry and in re-
search. Xavier et. al., [34] evaluated the HPC perfor-
mance in container based environments. Burns et al., [6]
propose a new design pattern for container based dis-
tributed systems. Google Borg [33] has used OS con-
tainer to aid cluster management. However, its con-
tainer usage is limited to task isolation and preemption
is still based on task killing. Harter et al., [15] propose
a Docker storage driver to enable fast container startup.
The YARN community has also provided support to run
Docker containers to replace the logical YARN con-
tainer. However, there still lacks support to fully control
the resource allocation to containers in YARN.

7 Conclusion
In this paper, we tackle the problem of scheduling het-
erogeneous workloads on a shared cluster. Inspired by
task scheduling in operating systems, in which fast and
low-cost preemption is key to achieving both responsive-
ness and high utilization, we leverage lightweight vir-
tualization to enable task preemption in cluster comput-
ing, such as YARN. Experimental results show that our
proposed mechanism for preemption is effective for dif-
ferent types of Big Data workloads, e.g., MapReduce
and Spark. Note that container-based preemption is not
yet suitable for workloads with sub-second latency, like
those studied in [25]. Suspending and saving the context
of a data-intensive task still takes a few seconds. Pro-
viding extremely low-latency task preemption for sub-
second workloads is an interesting future direction.
Acknowledgement We are grateful to our reviewers for
their comments on this paper and our shepherd Mona At-
tariyan for her suggestions. This research was supported
in part by U.S. NSF grants CNS-1422119, CNS-1649502
and IIS-1633753.

USENIX Association 2017 USENIX Annual Technical Conference 261

References
[1] Apache hadoop project. https://hadoop.apache.org/.

[2] Spark-sql. http://spark.apache.org/sql/.

[3] ANANTHANARAYANAN, G., DOUGLAS, C., RAMAKRISHNAN,
R., RAO, S., AND STOICA, I. True elasticity in multi-tenant
data-intensive compute clusters. In Proceedings of the Third ACM
Symposium on Cloud Computing (2012).

[4] ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W. Cluster re-
serves: a mechanism for resource management in cluster-based
network servers. In Proceedings of ACM SIGMETRICS Perfor-
mance Evaluation Review (2000).

[5] BARROSO, L. A., AND HOELZLE, U. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan and Claypool Publishers, 2009.

[6] BURNS, B., AND OPPENHEIMER, D. Design patterns for
container-based distributed systems. In Proceedings of the 8th
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 16) (2016).

[7] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive analytical
processing in big data systems: A cross-industry study of mapre-
duce workloads. In Proceedings of the VLDB Endowment (2012).

[8] CHO, B., RAHMAN, M., CHAJED, T., GUPTA, I., ABAD, C.,
ROBERTS, N., AND LIN, P. Natjam: Design and evaluation of
eviction policies for supporting priorities and deadlines in mapre-
duce clusters. In Proceedings of the 4th annual Symposium on
Cloud Computing (2013).

[9] CURINO, C., DIFALLAH, D. E., DOUGLAS, C., KRISHNAN, S.,
RAMAKRISHNAN, R., AND RAO, S. Reservation-based schedul-
ing: If you’re late don’t blame us! In Proceedings of the ACM
Symposium on Cloud Computing (2014).

[10] DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W. Hawk: Hybrid datacenter scheduling. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 15) (2015).

[11] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of
the 19th international conference on Architectural support for
programming languages and operating systems (2014).

[12] FERGUSON, A. D., BODIK, P., KANDULA, S., BOUTIN, E.,
AND FONSECA, R. Jockey: guaranteed job latency in data paral-
lel clusters. In Proceedings of the 7th ACM european conference
on Computer Systems (2012).

[13] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness:
Fair allocation of multiple resource types. In Proceedings of the
USENIX Symposium on Networked Systems Design and Imple-
mentation (2011).

[14] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND ANAN-
THANARAYANAN, G. Altruistic scheduling in multi-resource
clusters. In Proceedings of OSDI16: 12th USENIX Symposium
on Operating Systems Design and Implementation (2016).

[15] HARTER, T., SALMON, B., LIU, R., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Slacker: fast distribution with
lazy docker containers. In Proceedings of 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16) (2016).

[16] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R. H., SHENKER, S., AND STOICA, I.
Mesos: A platform for fine-grained resource sharing in the data
center. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (2011).

[17] HUANG, S., HUANG, J., DAI, J., XIE, T., AND HUANG, B. The
hibench benchmark suite: Characterization of the mapreduce-
based data analysis. In Proceedings of the Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International Conference
on (2010).

[18] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS, C.,
CHALIPARAMBIL, K., FUMAROLA, G. M., HEDDAYA, S., RA-
MAKRISHNAN, R., AND SAKALANAGA, S. Mercury: Hybrid
centralized and distributed scheduling in large shared clusters. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 15) (2015).

[19] LI, J., PU, C., CHEN, Y., TALWAR, V., AND MILOJICIC, D.
Improving preemptive scheduling with application-transparent
checkpointing in shared clusters. In Proceedings of the 16th An-
nual Middleware Conference (2015).

[20] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P.,
AND KOZYRAKIS, C. Heracles: improving resource efficiency
at scale. In Processings of the ACM SIGARCH Computer Archi-
tecture News (2015).

[21] MARS, J., TANG, L., HUNDT, R., SKADRON, K., AND SOFFA,
M. L. Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Proceedings of the
44th annual IEEE/ACM International Symposium on Microarchi-
tecture (2011).

[22] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Proceedings of the Linux Journal
(2014).

[23] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-
tem. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013).

[24] NGUYEN, K., FANG, L., XU, G., DEMSKY, B., LU, S.,
ALAMIAN, S., AND MUTLU, O. Yak: A high-performance
big-data-friendly garbage collector. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16) (2016).

[25] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STO-
ICA, I. Sparrow: distributed, low latency scheduling. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (2013).

[26] RAO, S., RAMAKRISHNAN, R., SILBERSTEIN, A., OVSIAN-
NIKOV, M., AND REEVES, D. Sailfish: A framework for large
scale data processing. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing (2012).

[27] RASLEY, J., KARANASOS, K., KANDULA, S., FONSECA, R.,
VOJNOVIC, M., AND RAO, S. Efficient queue management for
cluster scheduling. In Proceedings of the Eleventh European
Conference on Computer Systems (2016).

[28] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND
KOZUCH, M. A. Towards understanding heterogeneous clouds
at scale: Google trace analysis. Proceedings of the Intel Science
and Technology Center for Cloud Computing, Tech. Rep (2012).

[29] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M.,
AND WILKES, J. Omega: flexible, scalable schedulers for large
compute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems (2013).

[30] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,
ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY, R. Hive:
a warehousing solution over a map-reduce framework. Proceed-
ings of the VLDB Endowment (2009).

[31] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache hadoop yarn: Yet another

262 2017 USENIX Annual Technical Conference USENIX Association

resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing (2013).

[32] VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B.,
AND STOICA, I. Ernest: efficient performance prediction for
large-scale advanced analytics. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16)
(2016).

[33] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-scale cluster manage-
ment at google with borg. In Proceedings of the Tenth European
Conference on Computer Systems (2015).

[34] XAVIER, M. G., NEVES, M. V., ROSSI, F. D., FERRETO, T. C.,
LANGE, T., AND DE ROSE, C. A. Performance evaluation of
container-based virtualization for high performance computing
environments. In Proceedings of the 2013 21st Euromicro In-
ternational Conference on Parallel, Distributed, and Network-
Based Processing (2013).

[35] YANG, H., BRESLOW, A., MARS, J., AND TANG, L. Bubble-
flux: Precise online qos management for increased utilization
in warehouse scale computers. In Proceedings of the ACM
SIGARCH Computer Architecture News (2013).

[36] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster computing with
working sets. Proceedings of HOTCLOUD’16 USENIX Work-
shop on Hot Topics in Cloud Computing (2010).

[37] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R. H.,
AND STOICA, I. Improving mapreduce performance in hetero-
geneous environments. In OSDI (2008).

[38] ZHANG, Y., PREKAS, G., FUMAROLA, G. M., FONTOURA,
M., GOIRI, Í., AND BIANCHINI, R. History-based harvesting of
spare cycles and storage in large-scale datacenters. In Proceed-
ings of 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (2016).

USENIX Association 2017 USENIX Annual Technical Conference 263

The RCU-Reader Preemption Problem in VMs

Aravinda Prasad
Indian Institute of Science, Bangalore

K. Gopinath
Indian Institute of Science, Bangalore

Paul E. McKenney
IBM Linux Technology Center, Beaverton

Abstract

When synchronization primitives such as locking and
read-copy update (RCU) execute within virtual ma-
chines (VMs), preemption can cause multi-second la-
tency spikes, increasing peak memory footprint and frag-
mentation inside VMs, which in turn may trigger swap-
ping or VM ballooning. The resulting CPU utilization
and memory footprint increases can negate the server-
consolidation benefits of virtualization. Although pre-
emption of lock holders in VMs has been well-studied,
the corresponding solutions do not apply to RCU due to
its exceedingly lightweight read-side primitives.

This paper presents the first evaluation of RCU-reader
preemption in a virtualized environment. Our evaluation
shows 50% increase in the peak memory footprint and
155% increase in fragmentation for a microbenchmark,
23.71% increase in average kernel CPU utilization, 2.9×
increase in the CPU time to compute a grace period and
2.18× increase in the average grace period duration for
the Postmark benchmark.

1 Introduction

Virtualization brings server-consolidation benefits to the
cloud environment by multiplexing physical resources
across virtual machines (VMs), but can lead to prob-
lematic preemption. For example, preemption of the
virtual CPU (vCPU) holding a lock can cause latency
spikes [18] because other vCPUs continue spinning to
acquire the lock until the lock-holder vCPU resumes.

Well-known solutions to lock-holder preemption in-
clude priority inheritance [16, 8], and more recent work
proposes solutions for the preemption of vCPUs hold-
ing locks [18, 14, 17, 2, 20, 23, 21]. Unfortunately, the
heavyweight solutions proposed for lock-holder vCPU
preemption, such as priority inheritance, do not apply to
RCU because (1) RCU’s read-side primitives must be ex-
ceedingly lightweight, and (2) preemption of RCU read-

ers provokes different failure modes such as increased
memory footprint. Nevertheless, preemption of vCPUs
executing RCU readers has received little attention.

To the best of our knowledge, this is the first evaluation
of vCPU preemption within RCU readers.

2 The RCU synchronization technique

Read-Copy-Update (RCU) [9, 12, 13] is a highly
scalable structured-deferral [11] synchronization tech-
nique. RCU read-side critical sections are bounded by
rcu read lock() and rcu read unlock(), which are
bounded population-oblivious wait-free primitives that
need not directly synchronize with writers. In conse-
quence, each writer must guarantee that all data struc-
tures may be safely traversed by readers at all times.

For example, a writer deleting an object from
a linked list first removes the object, then uses
synchronize rcu() to wait for all pre-existing readers
to finish. Because new readers cannot gain a reference
to the newly removed object, once all pre-existing read-
ers complete, only the writer will have a reference to that
object, which can then be safely freed. This writer-wait
time period is called an RCU grace period (GP). Writers
that cannot block may instead use call rcu(), which
posts an RCU callback that invokes a specified function
with a specified argument after the completion of a sub-
sequent GP. Although GPs can be expensive, batching
optimizations allow thousands of synchronize rcu()

and call rcu() requests to share a single GP [15], re-
sulting in extremely low per-request GP overhead.

While the RCU-reader preemption problem is appli-
cable across all RCU variants, this paper focuses on the
“classic” RCU used by server builds of the Linux kernel.
The “classic” RCU prohibits readers from executing any
sort of context switch, as is also prohibited for spinlock
holders. Therefore, any time interval during which all
CPUs execute a context switch is by definition an RCU
GP, as illustrated by Figure 1 [9, 12].

USENIX Association 2017 USENIX Annual Technical Conference 265

Time
vCPU 1

vCPU 2

vCPU 4

vCPU 3

rcu_read_lock() rcu_read_unlock()

context
switch

GP start GP end

object deferred
for freeing

object actually
freed

GP duration

Figure 1: Linux-kernel grace period (GP). Red critical
sections marked might hold references to the deferred
object.

3 The RCU-reader preemption problem

RCU GPs cannot complete while a vCPU is preempted
within an RCU read-side critical section. Thus, calls to
synchronize rcu() cannot return, and although calls
to call rcu() continue to return immediately, their
callbacks cannot be invoked. Linux-kernel code can
therefore continuously invoke call rcu(), resulting in
an unbounded quantity of memory that cannot be reused
until the GP completes.

For example, consider an RCU-protected hash table
that is searched incessantly and updated frequently, with
deletions invoking call rcu() to safely free old hash-
table elements after a GP has elapsed. Suppose that just
one vCPU is preempted within an RCU read-side criti-
cal section, but that the other vCPUs continue execution
unhindered. These other vCPUs will continue their reads
and updates, but because GPs cannot complete, elements
deleted from the hash table cannot be freed until the pre-
empted vCPU resumes its execution. This will increase
memory footprint, which can in turn increase CPU uti-
lization, for example, due to increased numbers of cache
and TLB misses. CPU utilization can also increase be-
cause RCU takes increasingly aggressive measures in an
attempt to force the preempted vCPU to execute the con-
text switch needed to allow GP to complete. Unfortu-
nately, these measures are futile because the vCPU itself
has been preempted.

The RCU-reader preemption vs lock-holder preemp-
tion: While the usual symptom of lock-holder preemp-
tion is to hang all or part of the system, RCU-reader pre-
emption instead bloats memory footprints.

Techniques to handle lock-holder preemption such as
preemption-aware scheduling [23, 21] make the hyper-
visor aware of lock contention within the guest, and can
be augmented by hardware support [20]. For instance,
Intel’s hardware-based Pause-Loop Exiting feature can
detect a vCPU spinning on a lock. However, these tech-

niques cannot be applied directly to RCU because RCU’s
server-build read-side primitives do not make any state
change detectable by hypervisor or hardware (in fact
the RCU’s server-build read-side primitives are a no-
op [10]). Although read-side primitives could make such
a state change, doing so is problematic for two reasons.
First, RCU’s primary goal is zero or low-overhead read-
side primitives, so RCU must push such overheads to
writers. Second, state-change overheads are unaccept-
able for read-only or read-mostly data structures track-
ing the systems hardware configuration (e.g., active disks
and online CPUs) where the read-to-write ratio (e.g., ac-
cessing a disk to replacing a disk) is well in excess of ten
to the ninth power.

Therefore, alternative approaches are required to han-
dle the RCU-reader preemption problem.

4 Impact of RCU-reader preemption

In this section we discuss both primary and secondary
impacts due to the RCU-reader preemption problem.

Latency: Guest OSes invoking synchronize rcu()

can incur latency spikes of several seconds on overcom-
mitted hosts. These spikes’ durations depend directly on
the vCPU preemption time.

Transient memory spikes: As discussed earlier, when
using call rcu(), GP delay due to vCPU preemption
can cause transient memory-footprint spikes, which can
in turn increase peak memory footprint.

Fragmentation inside VMs: Frequent transient
memory-footprint spikes can scatter the kernel pages
throughout the system, which can increase external
memory fragmentation [4]. This fragmentation can
cause premature memory-allocation failure, especially
for hugepage allocations.

Swapping and Ballooning: Cloud environments often
provision memory on an as-needed basis in order to re-
duce memory costs. Increased peak-memory footprint
can trigger swapping, degrading performance and gen-
erating additional I/O load.

Furthermore, some cloud service providers oversub-
scribe memory because VMs do not always consume
all their memory [22]. The combination of memory-
footprint spikes and oversubscription can cause balloon
drivers [19] to be frequently invoked as the hypervisor
reacts to these spikes, further increasing overhead.

CPU utilization: The above issues can increase CPU uti-
lization. For example, fragmentation might trigger com-
paction, which can consume significant CPU time while
scanning and migrating memory.

266 2017 USENIX Annual Technical Conference USENIX Association

VM density and consolidation: Increased peak-
memory footprint require VMs to be provisioned with
more memory, degrading VM density and consolidation,
in turn increasing costs and energy utilization.

5 Factors influencing the impact of RCU-
reader preemption

vCPU preemption time: GP-completion delays depend
on vCPU preemption duration, which in turn depends on
the hypervisor’s CPU overcommit factor; higher over-
commit factors increase vCPU preemption frequency
which increases GP-completion delays.

RCU read-side critical section length: GP duration de-
pends on read-side critical-section duration which, in the
non-preemptible kernels this paper focuses on, depends
on the time between voluntary context switches. As a
rule of thumb, the longer this time, the greater the proba-
bility of preemption, and thus the greater the probability
of GP-completion delays.

Objects allocation and defer free rate: Given vCPUs
being preempted within RCU read-side critical sec-
tions, workloads that invoke call rcu() frequently
will see larger memory-footprint spikes than workloads
that instead use synchronize rcu(). Of the workloads
that invoke call rcu() frequently, those that allocate
larger blocks of memory will see correspondingly larger
memory-footprint spikes.

Total kernel time: Compute-intensive workloads spend
little time in the kernel, which in turn means a given
vCPU spends little time executing in-kernel RCU read-
side critical sections. Therefore, RCU-reader preemption
has a smaller effect on these workloads.

6 Evaluation

We evaluate a mail server benchmark, a memory-
allocator intensive microbenchmark and a namespace
cloning microbenchmark to understand the RCU-reader
preemption impact under different stress conditions.

6.1 Benchmarks

Postmark [5] simulates a mail server’s file create, delete,
read and write operations. We run the benchmark on an
in-memory filesystem starting with 128K files.

Memory microbenchmark, implemented as a kernel
module, allocates an object of size 1K followed by a call
to call rcu() to reclaim the object after a GP.

Clone microbenchmark measures how quickly a new
namespace can be cloned by calling the clone() system
call in a loop from a user space program. Namespace
cloning, for example, is employed by chroot jailing to
create filesystem-isolated processes [6] and also in web
server security that places the per user worker process
into an isolated network [1].

6.2 Test setup
The host is an Intel Xeon E5-4640 processor having 64
CPUs (4 CPU sockets, 8 cores per socket and two-way
hyper-threading) and 236 GB of physical memory. The
host uses KVM [7] virtualization under Linux kernel
4.5.0 for both host and guests. Baseline measurements
boot only the VM running the benchmark.

Experiment 1:

Instance vCPUs CPU Affinity Memory
VM1 32 0–31 8 GB
VM2 32 32–63 8 GB
VM3 8 0–31 4 GB
VM4 8 32–63 4 GB

VM1 runs Postmark benchmark with 32 instances. VM2
runs memory microbenchmark with 32 parallel kernel
threads. Both VM3 and VM4 run a bursty workload with
8 user space process. The bursty workload randomly ex-
ecutes 0.1 to 10 million arithmetic operations followed
by randomly sleeping for 1 to 200 milliseconds.

Experiment 2:

Instance vCPUs CPU Affinity Memory
VM1 64 0–63 8 GB
VM2 16 0–31 8 GB

VM1 runs the clone microbenchmark and VM2 runs 16
CPU-hogging user processes on 32 vCPUs.

6.3 Results

Postmark: The file create and delete operations issued
by the Postmark benchmark allocate filesystem objects
such as inode and dentry (directory entry), and delete
the objects by invoking call rcu(). While the reclama-
tion of the deferred objects’ memory is delayed due to
longer GPs, other benchmark threads continue perform-
ing file creation and deletion resulting in increased mem-
ory footprint.

Figure 2 reveals memory-footprint spikes in overcom-
mit scenario due to delayed reclamation of inode and
dentry objects. The vCPU preemption induces longer
GPs which in turn delays the reclamation of deferred ob-
jects. There are no spikes in the baseline scenario be-
cause timely GP completion results in timely reclamation
of memory.

USENIX Association 2017 USENIX Annual Technical Conference 267

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

(a) Baseline (b) Overcommit

Figure 2: Memory trace and GP durations for the first 100 seconds of the Postmark benchmark execution

Description Baseline Overcommit
Mean GP duration (ms) 57.6 (± 10.8) 125.9 (± 114.3)
Max GP duration (ms) 89.93 2372.12
Min GP duration (ms) 5.62 4.32
90th %-tile (ms) 60.05 251.36
50th %-tile (ms) 59.99 80.18
CPU consumed per GP (µs) 633.85 1833.54

Table 1: GP statistics for the Postmark benchmark

Table 1 shows a 2.18× increase in the average GP
duration due to 6.33× increase in the number of RCU-
reader preemption events extending GP duration. RCU’s
aggressive context-switch forcing results in a 2.9× in-
crease in GP-computation time and further contributes to
a 23.71% increase in kernel CPU utilization on overcom-
mitted hosts.

Scattering of kernel pages due to frequent memory-
footprint spikes results in a 32.5% increase in external
fragmentation (computed using the debugfs “unusable
free space index” for huge page allocations [3]) during
benchmark execution when the host is overcommitted.

The above factors contribute to a 66.73% decrease in
the throughput of the Postmark benchmark. However,
the throughput is also affected by other factors includ-
ing increased context-switch rates, preemption of vCPU
holding a spinlock and reduction in number of vCPU
assigned to the VM during host overcommit. We are
currently investigating how much of this throughput de-
crease is due to RCU-reader preemption.

Memory microbenchmark: We run a memory-
allocator-intensive benchmark to evaluate and under-
stand the impact of RCU-reader preemption on GP dura-
tions and memory-footprint spikes. The microbenchmark
issues 2.5K pairs of allocations and call rcu() invoca-
tions per second per CPU. It also invokes the scheduler

Description Baseline Overcommit
Mean GP duration (ms) 53.27 (± 13.4) 69.39 (± 30.4)
Max GP duration (ms) 87.66 317.59
Min GP duration (ms) 8.88 9.13
90th %-tile (ms) 60.18 109.98
50th %-tile (ms) 59.94 60.32
CPU consumed per GP (µs) 860.26 1095.72

Table 2: GP statistics for the memory microbenchmark

after every ten allocation-call rcu() pairs to limit the
duration of the resulting RCU read-side critical sections.

Figure 3 shows memory-footprint spikes of several
hundred MBs due to longer GPs when the host is over-
committed. The resulting RCU-reader preemption re-
sults in a 50% increase in the peak memory footprint
(and an 842 MB increase in peak memory footprint), a
30.26% increase in the average GP duration (Table 2)
and a 155.32% increase in external fragmentation.

This microbenchmark shows a significant memory-
footprint sensitivity to GP duration: A short 100-
millisecond GP delay results in spikes of several hundred
MBs in the memory footprint. In contrast, the Postmark
benchmark, with its lower call rcu() frequency, has
a smaller memory-footprint sensitivity to GP duration,
so that a longer 400-millisecond GP delay results in a
memory-footprint spike of only about 50-100 MB.

Clone microbenchmark: The clone system call allo-
cates several kernel objects during namespace cloning
which are passed to call rcu() when the last process
exits that namespace. The clone microbenchmark there-
fore repeatedly invokes clone in a loop.

Figure 4 reveals occasional spikes in GP duration in-
side the VM running clone microbenchmark, even when
the host’s average CPU utilization is 28%. Such spikes
depend on the vCPU preemption timing and result in

268 2017 USENIX Annual Technical Conference USENIX Association

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100 120 140

M
e
m

o
ry

 (
M

B
s)

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100 120 140

M
e
m

o
ry

 (
M

B
s)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

(a) Baseline (b) Overcommit

Figure 3: Memory trace and GP durations for the first 150 seconds of the memory microbenchmark execution

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
s)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 100 200 300 400 500 600

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

Figure 4: Memory trace and GP duration for the clone
microbenchmark when the host is overcommitted

1 GB memory-footprint spikes persisting for several sec-
onds. This result means that adding VMs (thus increas-
ing the rate of clone invocations) can have the counter-
productive effect of disproportionately increasing mem-
ory footprint due to increased RCU-reader preemption.

7 Discussion

RCU-reader preemption on an overcommitted host can
result in latency spikes, increasing peak memory foot-
print and fragmentation within VMs. These increases
can in turn increase CPU utilization due to increases in
cache and TLB misses and due to additional memory-
compaction operations. This increase in CPU utilization
can reduce or even negate the cost and energy-efficiency
benefits of server consolidation.

Cloud service providers and VM users should consider
host overcommit ratios and workload sensitivities to de-
layed GPs while provisioning VM resources. Although
GP-sensitive workloads can be identified via kernel pro-

filing of call rcu() and synchronize rcu() invoca-
tions, it is currently difficult to determine the required
changes to per-VM resource provisioning.

Furthermore, given systems with CPU overcommit, a
CPU-consumption spike in one VM might cause a GP-
duration spike in another VM. This sort of cross-VM in-
teraction poses significant challenges for VM resource
provisioning, which further motivates an effective so-
lution to the problem of preemption of vCPUs running
RCU read-side critical sections.

We are therefore currently investigating a holistic so-
lution for the RCU-reader preemption problem that com-
bines changes to the Linux-kernel RCU implementation,
the guest-OS memory allocator, the hypervisor scheduler
and the subsystems using RCU. The solution aims to re-
duce the GP duration on overcommitted hosts.

8 Conclusion

This paper introduces the RCU-reader vCPU preemption
problem and demonstrates that it has significant and far-
reaching performance impacts. We are investigating po-
tential solutions to this problem.

9 Acknowledgments

We thank our shepherd, Eddie Kohler, and the anony-
mous reviewers for their helpful comments.

Disclaimer: The views in the article are solely of the au-
thors and not of their employers.

References
[1] EDGE, J. Namespaces in operation, part 7: Network namespaces.

https://lwn.net/Articles/580893/, 2014.

USENIX Association 2017 USENIX Annual Technical Conference 269

[2] FRIEBEL, T., AND BIEMUELLER, S. How to deal with lock
holder preemption. Xen Summit North America (2008).

[3] GORMAN, M. mm: Export unusable free space index via de-
bugfs. https://lkml.org/lkml/2010/4/20/307, 2010.

[4] GORMAN, M., AND WHITCROFT, A. The what, the why and
the where to of anti-fragmentation. In Ottawa Linux Symposium
(2006), vol. 1, Citeseer, pp. 369–384.

[5] KATCHER, J. Postmark: A new filesystem benchmark. Tech.
rep., Technical Report TR3022, Network Appliance, 1997.

[6] KERRISK, M. Namespaces in operation, part 1: namespaces
overview. https://lwn.net/Articles/531114/, 2013.

[7] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the linux virtual machine monitor. In Pro-
ceedings of the Linux symposium (2007), vol. 1, pp. 225–230.

[8] MCKENNEY, P. Priority-Boosting RCU Read-Side Critical Sec-
tions. https://lwn.net/Articles/220677, 2007.

[9] MCKENNEY, P. E. Exploiting Deferred Destructions: An Anal-
ysis of Read-Copy-Update Techniques in Operating System ker-
nels. PhD thesis, Oregon Health & Science University, 2004.

[10] MCKENNEY, P. E. What is RCU? Part 2: Usage. http://lwn.
net/Articles/263130/, 2007.

[11] MCKENNEY, P. E. Structured deferral: synchronization via pro-
crastination. Commun. ACM 56, 7 (July 2013), 40–49.

[12] MCKENNEY, P. E., APPAVOO, J., KLEEN, A., KRIEGER, O.,
RUSSELL, R., SARMA, D., AND SONI, M. Read-Copy Update.
In AUUG Conference Proceedings (2001), AUUG, Inc., p. 175.

[13] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Paral-
lel and Distributed Computing and Systems (1998), pp. 509–518.

[14] OUYANG, J., AND LANGE, J. R. Preemptable ticket spinlocks:
Improving consolidated performance in the cloud. In ACM SIG-
PLAN Notices (2013), vol. 48, ACM, pp. 191–200.

[15] SARMA, D., AND MCKENNEY, P. E. Making RCU safe for deep
sub-millisecond response realtime applications. In Proceedings
of the 2004 USENIX Annual Technical Conference (FREENIX
Track) (2004), pp. 182–191.

[16] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inher-
itance protocols: An approach to real-time synchronization. IEEE
Transactions on Computers 39, 9 (1990), 1175–1185.

[17] SUKWONG, O., AND KIM, H. S. Is co-scheduling too expen-
sive for SMP VMs? In Proceedings of the Sixth Conference on
Computer Systems (2011), ACM, pp. 257–272.

[18] UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DAN-
NOWSKI, U. Towards scalable multiprocessor virtual machines.
In Virtual Machine Research and Technology Symposium (2004),
pp. 43–56.

[19] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems Review
36, SI (2002), 181–194.

[20] WELLS, P. M., CHAKRABORTY, K., AND SOHI, G. S. Hard-
ware support for spin management in overcommitted virtual ma-
chines. In Proceedings of the 15th International Conference
on Parallel Architectures and Compilation Techniques (2006),
ACM, pp. 124–133.

[21] WENG, C., LIU, Q., YU, L., AND LI, M. Dynamic adaptive
scheduling for virtual machines. In Proceedings of the 20th In-
ternational Symposium on High Performance Distributed Com-
puting (2011), ACM, pp. 239–250.

[22] WILLIAMS, D., JAMJOOM, H., LIU, Y.-H., AND WEATHER-
SPOON, H. Overdriver: Handling memory overload in an over-
subscribed cloud. In ACM SIGPLAN Notices (2011), vol. 46,
ACM, pp. 205–216.

[23] ZHANG, L., CHEN, Y., DONG, Y., AND LIU, C. Lock-visor: An
efficient transitory co-scheduling for MP guest. In Proceedings
of the 2012 41st International Conference on Parallel Processing
(Washington, DC, USA, 2012), ICPP ’12, IEEE Computer Soci-
ety, pp. 88–97.

270 2017 USENIX Annual Technical Conference USENIX Association

BUNSHIN: Compositing Security Mechanisms through Diversification

Meng Xu, Kangjie Lu, Taesoo Kim, Wenke Lee
Georgia Institute of Technology

Abstract
A number of security mechanisms have been proposed
to harden programs written in unsafe languages, each
of which mitigates a specific type of memory error. In-
tuitively, enforcing multiple security mechanisms on a
target program will improve its overall security. However,
this is not yet a viable approach in practice because the ex-
ecution slowdown caused by various security mechanisms
is often non-linearly accumulated, making the combined
protection prohibitively expensive; further, most security
mechanisms are designed for independent or isolated uses
and thus are often in conflict with each other, making it
impossible to fuse them in a straightforward way.

In this paper, we present BUNSHIN, an N-version-
based system that enables different and even conflicting
security mechanisms to be combined to secure a program
while at the same time reducing the execution slowdown.
In particular, we propose an automated mechanism to
distribute runtime security checks in multiple program
variants in such a way that conflicts between security
checks are inherently eliminated and execution slowdown
is minimized with parallel execution. We also present
an N-version execution engine to seamlessly synchronize
these variants so that all distributed security checks work
together to guarantee the security of a target program.

1 Introduction
Memory errors in programs written in unsafe languages
(e.g., C/C++) have been continuously exploited by attack-
ers [14]. To defeat such attacks, the security community
has deployed many security mechanisms such as widely
deployed W⊕X, which prevents code injection attacks
by making Writable memory not eXecutable, and ASLR,
which prevents attacks (e.g., code reuse) by making the
address of target code/data unpredictable. However, re-
cent attacks [34, 35] have shown that these mechanisms
are not difficult to bypass. As such, more advanced tech-
niques have been proposed. For example, SoftBound [28],
CETS [29], and AddressSanitizer [33] (ASan) provide a
high memory safety guarantee, CFI [1] and CPI [25]
effectively mitigate control flow hijacking attacks, Mem-
orySanitizer [36] (MSan) can mitigate information leaks
caused by uninitialized read, and UndefinedBehaviorSan-
itizer [27] (UBSan) can detect the causes of undefined
behaviors (e.g., null pointer dereference).

However, despite the large number of software harden-
ing techniques proposed, few of them actually get adopted
in practice. One reason is that the slowdown imposed by
these mechanisms erases the performance gains that come

from low-level languages. Another reason is that each
proposed technique tends to fix only specific issues while
leaving the program vulnerable to other attacks. Compre-
hensive security protection is often demanded by mission-
critical services such as web servers or cyber-physical
systems in which a single unblocked attack could lead to
disastrous consequences (e.g., heartbleed [16]).

In order to achieve comprehensive program protection,
an intuitive method is to combine several techniques and
enforce them together in a target program. Unfortunately,
this is often not viable in practice for two reasons: 1) Run-
time slowdown increases unpredictably after fusing dif-
ferent techniques. For instance, in an already highly opti-
mized build [29], combining Softbound and CETS yields
a 110% slowdown–almost the sum of each technique
individually; 2) Implementation conflicts prevent direct
combination because most techniques are not designed
with compatibility in mind. For instance, MSan makes the
lower protected area inaccessible, while ASan reserves
the lower memory as shadow memory. Re-implementing
these techniques for better compatibility requires signifi-
cant engineering effort if it is even possible.

In the meantime, hardware is becoming cheaper and
more powerful. The increasing number of CPU cores
combined with larger cache and memory size keeps boost-
ing the level of parallelism, making it practical to improve
software security through a technique known as N-version
programming [5, 9, 20, 44]. As part of this trend, the
N-version scheme is particularly suitable to multi-core
architectures because replicas can run on cores in parallel.

An N-version system typically requires careful con-
struction of N variants that are both functionally similar
in normal situations and behaviorally different when un-
der attacks. Hence, although each program version may
be vulnerable to certain types of attacks, the security of
the whole system relies on the notion that an attacker
has to simultaneously succeed in attacking all variants in
order to compromise the whole system. This property of
the N-version system gives us insight on how to provide
strong security to a program and yet not significantly de-
grade its end-to-end performance. That is, by distributing
the intended security to N program variants and synchro-
nizing their execution in parallel, we can achieve the same
level of security with only a portion of its running time
plus an overhead for synchronization. Hence, the chal-
lenges lie in how to produce the program variants in a
principled way and how to synchronize and monitor their
executions efficiently and correctly.

USENIX Association 2017 USENIX Annual Technical Conference 271

In this paper, we introduce BUNSHIN, an N-version-
based approach to both minimize the slowdown caused
by security mechanisms and seamlessly unify multiple
security mechanisms without re-engineering efforts to
any individual mechanism. In short, BUNSHIN splits the
checks required by security mechanisms and distributes
them to multiple variants of a program in automated and
principled ways to minimize execution slowdown. By
synchronizing the execution of these variants, BUNSHIN
guarantees comprehensive security for the target program.

While the N-version mechanism has been well studied
primarily for fault-tolerance [5, 9, 21], BUNSHIN aims at
improving a program’s security and enabling the composi-
tion of multiple security mechanisms with automated pro-
tection distribution mechanisms. In addition, BUNSHIN is
a practical system as it does not require extra modification
to the system or compilation toolchain. BUNSHIN sup-
ports state-of-the-art mechanisms like ASan, MSan, UB-
San, Softbound, and CETS. We have tested it on a number
of C/C++ programs, including SPEC2006, SPLASH-2x,
PARSEC benchmarks, Nginx, and Lighttpd web servers.
Through three case studies, we show that 1) the slowdown
for ASan can be reduced from 107% to 65.6% and 47.1%
by distributing the sanity checks to two and three variants,
respectively; 2) the slowdown for UBSan can be reduced
from 228% to 129.5% and 94.5% by distributing the sub-
sanitizers to two and three variants, respectively; and 3)
the time overhead for unifying ASan, MSan, and UBSan
with BUNSHIN is only 4.99% more than the highest over-
head of enforcing any of the three sanitizers alone. In
summary, our work makes the following contributions:

• We propose an N-version approach to enable differ-
ent or even conflicting protection techniques to be
fused for comprehensive security with efficiency.

• We present an improved NXE design in terms of
syscall hooking, multithreading support, and execu-
tion optimization.

• We have implemented BUNSHIN and validated the
effectiveness of BUNSHIN’s NXE and the protection
distribution mechanisms in amortizing the slowdown
caused by state-of-the-art security mechanisms.

The rest of the paper provides background informa-
tion and compares BUNSHIN with related works (§2),
describes the design and implementation of BUNSHIN
(§3, §4), presents evaluation results (§5), discusses its
limitations and improvements (§6), and concludes (§7).

2 Background & Related Work
2.1 Memory Errors vs. Sanity Checks
Memory errors occur when the memory is accessed in
an unintended manner [37]. The number of reported
memory errors is still increasing [14] and severe attacks
(e.g., heartbleed [16]) exploiting memory errors emerge
from time to time. We provide a taxonomy in Table 1

Memory Error Main Causes Defenses

Out-of-bound r/w lack of length check SoftBound [28]
format string bug ASan [33]
integer overflow
bad type casting

Use-after-free dangling pointer CETS [29]
double free ASan [33]

Uninitialized read lack of initialization MSan [36]
data structure alignment
subword copying

Undef behavior pointer misalignment UBSan [27]
divide-by-zero
null pointer dereference

Table 1: A taxonomy of memory errors. We assume the pro-
gram is not malware. This taxonomy is mainly derived from
two systematic survey papers [37, 38].

to summarize the errors. In particular, any vulnerability
that may change a pointer unintentionally can be used
to achieve out-of-bound reads/writes. Use-after-free and
uninitialized read are usually caused by logic bugs (e.g.,
double-free and use-before-initialization) or compiler fea-
tures (e.g., padding for alignment). Undefined behaviors
can be triggered by various software bugs, such as divide-
by-zero and null-pointer dereferences.

How to defend a program against memory errors has
been extensively studied in recent years. For each cat-
egory in Table 1, we are able to find corresponding de-
fenses. In this paper, we are particularly interested in
the sanitizer-style techniques because they thoroughly en-
force sanity checks in the program to immediately catch
memory errors before they are exploited.
2.2 N-version System
The concept of the N-version system was initially intro-
duced as a software fault-tolerance technique [9] and was
later applied in enhancing software security [5, 20, 39, 44].
In general, the benefit of the N-version system is that an
attacker is required to simultaneously compromise all
variants with the same input in order to take down the
whole system. To achieve this benefit, an N-version sys-
tem should have at least two components: 1) a variant
producer that generates diversified variants based on pre-
defined principles and 2) an execution engine (NXE) that
synchronizes and monitors the execution of all program
variants. We differentiate BUNSHIN with related works
along these two lines of work.
Diversification. Diversification techniques represent the
intended protection goal of an N-version system, for ex-
ample, using complementary scheduling algorithms to sur-
vive concurrency errors [39]; using dynamic control-flow
diversity and noise injection to thwart cache side-channel
attacks [11]; randomizing sensitive data to mitigate pri-
vacy leaks [8, 45]; running multiple versions to survive
update bugs [20]; using different browser implementa-
tions to survive vendor-specific attacks [44]. Diversifica-

272 2017 USENIX Annual Technical Conference USENIX Association

tion can also be done in load/run time such as running
program variants in disjoint memory layouts to mitigate
code reuse attacks [7, 10, 41].

Differently, BUNSHIN aims to reduce the execution
slowdown and conflicts of security mechanisms. To
achieve this goal, two protection distribution mechanisms
are proposed. Partial DA checking [31] also attempted
to improve the performance of dynamic analysis with the
N-version approach. However, it does not provide any pro-
tection distribution mechanism; instead it just insecurely
skips checking some syscalls to improve performance.
In addition, attacks can be completed by exploiting the
vanilla variant before other protected variants find out. In
contrast, BUNSHIN proposes two principled diversifica-
tion techniques to achieve this goal and also presents a
more robust NXE with thorough evaluation.

NXE. Depending on how the program variants are gen-
erated, an NXE is designed to synchronize variants at
different levels, such as instruction/function level [39],
syscall level [7, 10, 21, 24, 32, 42] or, file/socket IO
level [44]. BUNSHIN shares some common features with
other syscall-based NXE systems, including syscall diver-
gence comparison (both sequence and arguments), virtual
syscall and signal handling, and a leader-follower exe-
cution pattern backed by a ring-buffer-based data struc-
ture for efficient event streaming [21, 24, 42]. However,
BUNSHIN differs from these works in the following ways:

Syscall hooking. Prior works hook syscalls using a
customized kernel [10], which jeopardizes its deploya-
bility; using the Linux ptrace mechanism, which causes
high synchronization overhead due to multiple context
switches per each syscall [7, 10, 32, 42]; or binary-
rewriting the program to redirect a syscall to a trampo-
line [21], which may break the semantics of the program
when replacing an instruction with fewer bytes with one
with more bytes. MvArmor [24] leverages Dune [3] and
Intel VT-x. However, it incurs a high overhead for syscalls
that needs passthrough and is also subject to the limita-
tions of Dune (e.g., signal and threading). To tackle these
issues, BUNSHIN hooks syscalls by temporarily patching
the syscall table with a loadable kernel module.

Multithreading support. Multithreading support varies
in proposed NXEs, such as allowing only processes to
be forked, not threads [10]; enforcing syscall-ordering
across the threads [21, 24, 32], which can easily cause de-
viations, as not all threading primitives involves syscalls
(e.g., pthread_mutex_lock); and using CPU page fault ex-
ception to synchronize all memory operations [7], which
leads to high overhead. None of these works are evaluated
on multithreading benchmarks like PARSEC or SPLASH-
2x. ReMon [42] seems to have a similar level of support
for multithreading as BUNSHIN—race-free programs by
injecting synchronization agents into the compiled binary,

as discussed in [40]. BUNSHIN borrows the weak de-
terminism concept from the deterministic multithreading
(DMT) domain and fully describes its design and imple-
mentation details to support it. BUNSHIN also identifies
its limitations and potential solutions.
2.3 Security/performance Trade-offs
Another approach to fit security into the performance bud-
get is to devise a subset of protections from a full-fledged
technique. Compared with Softbound [28], which handles
both code and data pointers, CPI [25] only instruments
code pointers, which are less prevalent but more critical
to code-reuse attacks [34]. Since the number of sanity
checks inserted is dramatically reduced, CPI reduces the
performance overhead from about 70% to 8.4%. Sim-
ilarly, ASAP [43] keeps less commonly executed (i.e.,
less costly) checks and removes hot checks. However,
selective protections sacrifice security. The assumption
that security is proportional to sanity check coverage is
not valid in many cases. More specifically, say a program
contains two exploitable buffer overflow vulnerabilities;
eliminating only one does not actually improve the se-
curity, as one bug is enough for the adversary to launch
the attack. Unlike CPI and ASAP, BUNSHIN is a novel
concept to reduce the slowdown caused by security mech-
anisms without sacrificing any security.

3 Design
In a typical N-version system, program variants are exe-
cuted in parallel and synchronized by an execution engine
to detect any behavior divergence. The whole system
terminates only when all variants have terminated. There-
fore, the overall runtime of an N-version system can be
decomposed into two parts: 1) the time required to exe-
cute the slowest variant, and 2) any additional time used
for variant synchronization and monitoring.
3.1 Protection Distribution Principle
BUNSHIN’s protection distribution applies to sanitizer-
style techniques, which have three properties: 1) They en-
force security via instrumenting the program with runtime
checks; 2) All the checks instrumented are independent of
each other in terms of correctness; and 3) A sanity check
alters control flow when and only when the check fails,
i.e., the program behaves normally when no memory er-
rors or attacks are present. The majority of memory error
prevention techniques are sanitizer-style, including stack
cookies, CFI, CPI, SAFECode, ASan, MSan, UBSan,
Softbound, and CETS, which is also the foundation of
profiling-guided security retrofitting such as ASAP [43]
and Multicompiler [19].

These properties allow BUNSHIN to 1) measure run-
time overhead imposed by the sanitizer as well as remove
sanity checks; 2) split the program to allow only portions
of the program to be instrumented with sanity checks; 3)
split the set of security techniques to allow only selected

USENIX Association 2017 USENIX Annual Technical Conference 273

checks to be enforced; and 4) produce functionally simi-
lar program variants such that BUNSHIN can synchronize
their executions and reason about behavior divergences.
BUNSHIN distributes checks with two principles.

Check distribution takes a single security technique
(e.g., ASan) as it is and distributes its runtime checks on a
program over N program variants. Specifically, BUNSHIN
first splits the program into several disjoint portions and
then generates a set of variants, each with only one portion
of the program instrumented by the technique. Since only
a fraction of the code is instrumented with security checks,
the slowdown for each variant is smaller compared with a
fully instrumented program. And given that all portions
of the target program are covered through the collection
of the variants, the security protection is the same as if
the security mechanism is applied to the whole program.

In the example of ASan, the splitting unit is every func-
tion in the program and for a 3-variant split, after check
distribution, each variant has 1⁄3 functions instrumented
with sanity checks and the other 2⁄3 uninstrumented, while
collectively, all functions are covered.

It is worth noting that instrumentations added by sani-
tizers fall into two categories: metadata maintenance (e.g.,
bound and alias information in the example of ASan or
SoftBound) and sanity checks. BUNSHIN does not re-
move instructions related to metadata maintenance, as
removing them will break the correctness of a sanitizer.

Sanitizer distribution takes multiple security tech-
niques and distributes them over N variants. Specifi-
cally, BUNSHIN first splits these security mechanisms
into several disjoint groups whereby each group contains
security mechanisms that are collectively enforceable to
the program, i.e., they do not conflict with each other.
Since only a subset of the intended protections is en-
forced on each variant, the slowdown for each variant
is smaller compared with the case when all protection
techniques are enforced on the same program (if ever pos-
sible). Another important benefit of sanitizer distribution
is that by distributing security mechanisms to multiple
program variants, any conflicts between them (e.g., ASan
and MSan) can be avoided without re-engineering these
security mechanisms. Since all intended protections are
enforced through the collection of variants, the overall
protection is the same as if all mechanisms are applied to
the whole program.

In the example of UBSan, the splitting unit is every
sub-sanitizer in UBSan, such as integer-overflow and
divide-by-zero. For a 3-variant split, after check distri-
bution, each variant has a disjoint set of sub-sanitizers (i.e.,
integer-overflow appears in only one variant), while
collectively, all sub-sanitizers are covered.

Due to space constraints, interested readers may find
a formal modeling of BUNSHIN’s protection distribution
principles at http://arxiv.org/abs/1705.09165.

Costs
profiling

Security
mechanisms

Variant
compiling

Variant
generator

Source code

Variants
Overhead

distribution
(e.g., ASan, MSan, UBSan)

opt.

opt.

w/ ASanw/ UBSan

w/ MSan w/ ASan

...

full

selective

...

Figure 1: Variant generator workflow

3.2 Automated Variant Generator
Figure 1 illustrates the high-level workflow of the variant
generator. The generator first compiles the target program
without any security mechanisms enforced and runs it
with the profiling tool to get a baseline profile. In the
check distribution case, the generator then compiles and
profiles the program with the intended security mecha-
nism. In the sanitizer distribution case, the generator
compiles and profiles the program multiple times, each
time with one of the intended security mechanisms. The
overhead profile is derived by comparing the security-
enforced profiles with the baseline profile. In the next
step, the generator runs the overhead distribution algo-
rithm with the intended number of splits (the N value)
and creates N build configurations for the compilers, each
corresponding to one program variant. The goal is to dis-
tribute the overhead measured by the profiling step fairly
to each variants such that all variants finish execution
at approximately the same time. Finally, the generator
compiles the program N times, each with a different build
configuration, to get N program variants.

Profiling. BUNSHIN relies on profiling to obtain the
runtime slowdown numbers as the inputs to the overhead
distribution algorithm. We choose to explicitly rely on
profiling because it is a reliable way to obtain the actual
cost of a particular sanity check without making assump-
tions about the nature of the program or the sanitizer.
It also takes in the effect of not only extra CPU cycles
required to run the check, but also the side effects on
cache-line usage, register pressure, or memory alloca-
tions. However, the profiling approach does require an
adequate and representative workload to simulate the us-
age patterns in a production environment. Fortunately,
for many projects, such a workload is often available in
a form of test suites, which can be directly used to build
a profile. More sophisticated profiling tools [2, 15] are
orthogonal to BUNSHIN and can be leveraged to improve
the overhead profiling if necessary. After profiling, the
sanity checks are distributed to N variants in a way that
the sum of overhead in each variant is almost the same.

Variant compiling. Variant compiling for check distri-
bution is essentially a "de-instrumentation" process that
involves deleting the instructions that are only used for

274 2017 USENIX Annual Technical Conference USENIX Association

http://arxiv.org/abs/1705.09165

Userspace

Kernel syscall id
arg1, arg2, ...

syscall id'
arg1', arg2', ...

return value
buf1, buf2, ...

①
②

③
④

⑤ ➋

➌

Variants
w/ ASanw/ UBSan w/ MSan w/ ASan

v1 v2 v3 v4

$ bunshin --leader v1 --followers v2,v3,v4

➊
Sync Slot

Ring
Buffer

return value
buf1, buf2, ...

Figure 2: General synchronization procedure. The synchro-
nization is triggered when the syscall is trapped into kernel, as
denoted by 1 1 in both the leader and follower path. The
leader then checks-in the syscall arguments to the shared slot
(2), executes the syscall (3), and turns-in the execution re-
sults in the shared slot (4). A follower first checks whether the
syscall arguments stored in the slot match its own arguments (2
) and if they match, directly fetches the results from sync slot
(3) without actually performing the syscall. The difference
between lockstep mode and ring-buffer mode lies in whether
step 3 for the leader can be performed before step 2 for all
followers is completed.

sanity checks instrumented by sanitizers. In order to col-
lect such instructions for deletion, BUNSHIN uses data
and control dependence information maintained during
the compilation process and performs backward slicing
to automatically collect sanity check-related instructions
and discard them. Variant compiling for sanitizer distri-
bution is trivial, as it can be done by simply compiling
the program with the compilation settings a user would
normally use for those sanitizers, as long as the sanitizers
used to harden the program are collectively enforceable.

3.3 N-version Execution Engine
BUNSHIN’s NXE synchronizes the executions of N pro-
gram variants and makes them appear as a single instance
to any external entity. We present and justify various
design efforts to improve BUNSHIN’s NXE in efficiency
and robustness.

Strict- and selective- lockstep. To synchronize the
leader and the follower instances, a lockstep at syscalls is
required. BUNSHIN provides two lockstep modes: strict-
lockstep and selective-lockstep. In strict-lockstep mode,
the leader executes the syscall only if all followers have
arrived and agreed on the syscall sequence and arguments.
This ensures the security guarantee—the attack cannot
complete in either instance. The downside is that variants
are frequently scheduled in and out of the CPU due to the
necessary waiting, leading to higher runtime slowdown.

We observed that many attacks always trigger certain
syscalls before the actual damages are caused. For exam-
ple, with ASLR enabled, attacks (e.g., ROP) generally
leak an address first via I/O write syscalls and then use
the leaked address to construct subsequent attack pay-

loads. Based on this observation, BUNSHIN also provides
the selective-lockstep so that users can choose to pre-
vent the attacks with higher performance. Specifically,
BUNSHIN uses the ring-buffer mechanism to synchro-
nize instances—the leader executes at near full speed and
keeps dumping the syscall arguments and results into the
shared ring buffer without waiting, unless the buffer is
full. The followers consume the syscall arguments and
results at their own speed. Meanwhile, lockstep is still
enforced for the selected syscalls (e.g., write related), as
illustrated in Figure 2. Our evaluation §5.2, shows that
selective-lockstep reduces the synchronization overhead
by 0.3%-6.3% compared with the strict-lockstep mode.

In short, strict-lockstep should perfectly preserve the
security guarantee of the underlying sanitizer, while
selective-lockstep is an option we provide when ASLR is
enabled, as any remote code-reuse attacks (e.g., return-to-
libc and ROP) will have to first leak code/data pointers
to bypass ASLR. Selective-lockstep is able to stop such
attacks by catching the leaks at I/O writes. In fact, any
information leak attempt that involves a pointer will be
detected at I/O writes. A detailed analysis of the security
guarantees provided by BUNSHIN is evaluated in §5.3.
Multi-threading. BUNSHIN supports multi-
process/thread programs by assigning each group of
leader-follower processes to the same execution group,
and each execution group has its own shared buffers. The
starting processes of leader and follower variants form
the first execution group, and when the leader forks a
child, the child automatically becomes the leader in the
new execution group. The child of a follower variant
automatically becomes a follower in the new execution
group. In fact, for daemon-like programs, (e.g., Apache,
Nginx, sshd), simply separating parent and children pro-
cesses into different execution groups can be sufficient
to eliminate syscall sequence variations caused by non-
deterministic schedulers because for those programs, each
thread/process is highly independent of the others and
hardly ever or never updates shared data.

However, for general-purpose multi-thread programs,
synchronizing shared memory accesses is necessary to
ensure that the leader and followers have consistent views
on shared data. This can be achieved by enforcing all fol-
lowers to follow exactly the same order of shared memory
accesses as the leader (strong determinism), which can
hardly be achieved without a high performance penalty, as
evidenced in the deterministic multi-threading (DMT) do-
main [4, 30]. As a compromise, inspired by Kendo [30],
BUNSHIN ensures only that all followers follow exactly
the same order of all lock acquisitions as the leader (weak
determinism). For example, if thread 1 in the leader ac-
quires a mutex before thread 2 passes a barrier, the same
order will be enforced in all followers. For programs with-
out data races, strong determinism and weak determinism

USENIX Association 2017 USENIX Annual Technical Conference 275

offer equivalent guarantees [30]. BUNSHIN achieves this
with an additional 8.5% overhead on SPLASH-2x and
PARSEC benchmarks (§5.2).

We argue that ensuring weak determinism is sufficient
for the majority of multi-thread programs, as race-free
programming is encouraged and tools have been proposed
to help developers eliminate data races [17, 18]. However,
should this becomes a problem in the future, BUNSHIN is
capable of plugging in sophisticated DMT solutions such
as DThreads [26] with minor adjustments.
Sanitizer-introduced syscalls. Memory safety tech-
niques generally issue additional syscalls during program
execution to facilitate sanity checks. With all sanitizers
we tested, i.e., ASan, MSan, UBSan, Softbound, CETS,
CPI, and SAFECode, all introduced syscalls can be cate-
gorized into three classes: 1) pre-launch data collection,
2) in-execution memory management, and 3) post-exit
report generation. To illustrate, before executing the main
function, ASan goes through a data collection phase by
reading various files in /proc/self directory (on Linux
system). During program execution, ASan issues addi-
tional memory-related syscalls for metadata management.
Upon program exit, ASan might invoke external programs
to generate human readable reports.

Given that variants instrumented with different sanity
checks are expected to have diverged syscall sequences,
BUNSHIN needs to address this issue to avoid false alerts.
In achieving this, BUNSHIN 1) starts synchronization only
when a program enters its main function; 2) ignores all
the memory management-related syscalls; and 3) stops
synchronization by registering as the first exit handler.

We verified that all the syscall divergences caused by
the aforementioned sanitizers are successfully resolved.
Although this is only an empirical verification, we believe
this can be a general solution because any practical se-
curity mechanism should not alter program semantics in
normal execution states, which, reflected to the outside
entities, are syscall sequences and arguments.

4 Implementation
4.1 Automated Variant Generator
Profiling. To obtain overhead data for check distri-
bution, BUNSHIN instruments the program with perfor-
mance counters based on how the underlying sanitizer
works. As a prototype system, BUNSHIN currently mea-
sures the execution time of all program functions based
on the observation that the majority of memory-related
security checks (as discussed in §2.1) operate at function
level. We discuss how to perform profiling instrumenta-
tion in a generic way in §6. Obtaining profiling data for
sanitizer distribution is easy, as no extra instrumentation
is needed. BUNSHIN runs the program with each security
mechanism individually enforced and obtains the overall
execution time.

Check removal. BUNSHIN removes sanity checks at
function level and the process consists of two steps:

In the discovery step, BUNSHIN compiles a baseline
version and an instrumented version of the same program
and then uses an analysis pass to dump the added/modified
basic blocks per function. Among these basic blocks,
BUNSHIN considers a basic block that 1) is a branch
target, 2) contains one of the known sanity check han-
dler functions (e.g., in the case of ASan, functions pre-
fixed with __asan_report_), and 3) ends with the special
LLVM unreachable instruction as a sink point for secu-
rity checks. This is based on the properties of sanitizers,
as a sanity check should preserve program semantics,
i.e., special procedures are only invoked when a sanity
check fails. Instrumentations for metadata maintenance
involves neither sanity check functions nor unreachable
instructions and hence are filtered out in this step.

In the removal step, BUNSHIN automatically recon-
structs sanity checks based on the observation that sanity
checks are instructions that branch to the sink points found
in discovery step. After identifying the branching points
and the corresponding condition variables, BUNSHIN per-
forms a recursive backward trace to variables and instruc-
tions that lead to the derivation of the condition variable
and marks these instructions during tracing. The back-
ward trace stops when it encounters a variable that is not
only used in deriving the value of the condition variable
but also used elsewhere in the program, an indication that
it does not belong to the sanity check. Removing the
sanity check is achieved by removing all marked instruc-
tions found in the above process. This functionality is
implemented as an LLVM pass.

4.2 N-version Execution Engine

Pthreads locking primitives. BUNSHIN enforces weak
determinism discussed in §3.3 by re-implementing the
full range of synchronization operations supported by
pthreads API, including locks, condition variables, and
barriers. BUNSHIN introduces a new syscall, synccall,
specifically for this purpose. synccall is exposed to pro-
cesses under synchronization by hooking an unimple-
mented syscall in an x86-64 Linux kernel (tuxcall). In
the kernel module, BUNSHIN maintains an order_list
to record the total ordering of locking primitive exe-
cutions. When a leader thread hits a primitive, e.g.,
pthread_mutex_lock, it calls synccall to atomically put
its execution group id (EGID) in the order_list and wake
up any follower threads waiting on its EGID before exe-
cuting the primitive. When a follower thread hits a primi-
tive, the call to synccall will first check whether it is the
thread’s turn to proceed by comparing its EGID and the
next EGID in the order_list. The thread will proceed if
it matches; otherwise, it puts itself into a variant-specific
waitqueue. If the primitive may cause the thread to sleep

276 2017 USENIX Annual Technical Conference USENIX Association

(such as a mutex), the thread wakes up its next sibling in
the waitqueue, if there are any, before sleeping.

Hooking pthreads’ locking primitives is done by plac-
ing the patched primitives in a shared library, which is
guaranteed to be loaded earlier than libpthread.

The drawbacks of this implementation are also obvious:
1) BUNSHIN is unable to handle multi-thread programs
that are built with other threading libraries or that use non-
standard synchronization primitives (e.g., using futex
directly); 2) The performance overhead of BUNSHIN in-
creases linearly with the usage frequency of these primi-
tive operations. Fortunately, the majority of multi-thread
programs are compatible with pthreads and locking prim-
itives are only used to guard critical sections, which rep-
resent only a small fraction of execution.
Shared memory access. Similar to the approach used
by MSan to trace uninitialized memory accesses, when-
ever BUNSHIN detects mapping of shared memory into
the variant’s address space (by the indication of mmap
syscall with specific flag combinations), it creates shadow
memory copies of the same size and then marks them as
"poisoned" state HWPOISON whereby any access attempts
to the mapped memory will also lead to an access attempt
to the shadow copy, which eventually triggers a signal
(SIGBUS). Upon capturing the signal, memory access is
synchronized in the normal way syscalls are handled, i.e.,
compare and copy content of the accessed address from
the leader’s mapping to the followers mapping.
Workflow. BUNSHIN can be started with the path to
each variant and the program arguments. BUNSHIN first
informs the kernel module to patch the syscall table and
then sets the LD_PRELOAD environment variable to the
library containing patched virtual syscalls and pthread
locking primitives. It then forks N times and launches
one program variant in each child process. After that,
BUNSHIN pauses and waits for status change of the vari-
ants. If any of the variant process is killed due to behavior
divergences, BUNSHIN alerts and aborts all variants. Oth-
erwise, it exits when all variants terminate.

5 Evaluation
In this section, we first evaluate BUNSHIN’s NXE in
terms of robustness and efficiency. In particular, we run
BUNSHIN on various programs and empirically show that
BUNSHIN is capable of handling the majority of them
with low overhead and no false alarms. We also empiri-
cally test whether BUNSHIN can provide the same level
of security guarantee as the underlying sanitizers, in other
words, whether BUNSHIN might compromise the security
by partitioning the program or splitting the sanitizers.

We then showcase how to accelerate ASan-hardened
programs with check distribution and UBSan-hardened
programs with sanitizer distribution. We use another case
study – combining ASan, MSan, and UBSan – to show

that BUNSHIN is capable of unifying security mechanisms
that have conflicted implementations.

We also evaluate BUNSHIN in terms of hardware re-
source consumption, which could limit BUNSHIN’s appli-
cability, and report the performance of BUNSHIN under
various levels of system load.
Experiment setup. The experiments are primarily con-
ducted on a machine with Intel Xeon E5-1620 CPU (4
cores) and 64GB RAM running 64-bit Ubuntu 14.04
LTS, except the experiment on scalability, which is done
with Intel Xeon E5-2658 (12 cores), and the experiment
on RIPE benchmark, which is done on a 32-bit virtual
machine. For evaluations on web servers, we dedicate
another machine to launch requests and measure server
response time. The client machine is connected to the
experiment machine with a direct network cable. The
associated network card permits 1000Mb/s bandwidth.
Unless stated otherwise, the NXE is configured to run in
strict-lockstep mode for stronger security guarantee.
5.1 NXE Robustness
We use a mixed sample of CPU-intensive and IO-intensive
programs for experiments, including SPEC2006 bench-
mark representing single-thread programs, PARSEC, and
SPLASH-2x benchmark for multi-threaded programs,
and Nginx and Lighttpd as representative server pro-
grams. For each sample program, we compile it with the
LLVM compiler framework and run the same binary on
BUNSHIN’s NXE, i.e., BUNSHIN will synchronize identi-
cal N binaries. This is to (empirically) verify the robust-
ness of BUNSHIN’s NXE design.

We do not observe false positives in any experiments
on SPEC, SPLASH-2x, Nginx, and Lighttpd. How-
ever, BUNSHIN is only able to run on six out of 13
programs in the PARSEC benchmark. raytrace would
not build under clang with -flto enabled. canneal,
facesim, ferret, and x264 intentionally allow for data
races. fluidanimate uses ad-hoc synchronization and
hence, bypassing pthreads APIs and freqmine does not
use pthreads for threading. These represent the limitation
of BUNSHIN’s NXE: enforcing only weak determinism
on pthreads APIs.
5.2 NXE Efficiency & Scalability
Figure 3 and Figure 4 show the efficiency evaluation of
the NXE under both strict- and selective-lockstep modes
when synchronizing 3 variants. For the SPEC2006 bench-
mark, the average slowdowns for the two modes are 8.1%
and 5.3%, respectively. The overhead is sightly higher on
multi-threaded benchmarks (SPLASH-2x and PARSEC) –
15.7% and 13.8%. This is due to the additional overhead
for recording and enforcing the total order of locking prim-
itive acquisitions. The selective-lockstep mode reduces
the overhead by 0.3%-6.3% in the benchmark programs.

We further evaluate the efficiency of BUNSHIN’s NXE

USENIX Association 2017 USENIX Annual Technical Conference 277

perlbench

bzip2

gcc

m
cf

m
ilc

nam
d

gobm
k

dealII

soplex

povray

hm
m

er

sjeng

libquantum

h264ref

lbm

om
netpp

astar

sphinx3

xalancbm
k

A
verage

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Strict Selective

Figure 3: Evaluation of BUNSHIN’ NXE efficiency with
SPEC2006.

barnes

cholesky

fft

fm
m

lu(cb)

lu(ncb)

ocean(cp)

ocean(ncp)

radix

radiosity

volrend

w
ater(ns)

w
ater(s)

blackscholes

bodytrack

dedup

stream
cluster

sw
aptions

vips

A
verage

0%

5%

10%

15%

20%

25%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Strict Selective

Figure 4: Evaluation of BUNSHIN’s NXE efficiency with
SPLASH-2x and PARSEC (number of threads = 4).

on two server programs, lighttpd, representing single-
thread servers, and nginx, representing multi-threaded
servers. We synchronize 3 variants and for nginx, we run
4 worker threads, the default value after installation. We
simulate various workload situations by using 64 (light),
512 (heavy), and 1024 (saturated) concurrent connections
and simulate HTTP requests to files of 1KB and 1MB.

The results are shown in Table 2. A noticeable dif-
ference is that the percentage overhead when requesting
small files (e.g., 1KB), is significantly larger compared
with requesting large files (e.g., 1MB). The reason is that,
while the absolute value of overhead is comparable in
both situations, it can be better amortized into the net-
working time of a large file, therefore leading to smaller
relative overhead. We believe that in real-world settings
when the servers are connected to LANs and WANs, even
the overhead for smaller files can be amortized in the
networking time, leading to unnoticeable overhead.

Figure 5 shows the scalability of BUNSHIN’s NXE in
terms of total number of variants synchronized. We use
a 12-core machine for this experiment as the number of
variants should not exceed the number of cores available.
As the number of variants goes from 2 to 8, the overhead
increases from 0.9% to 21% accordingly. The primary
reason for overhead increase is the LLC cache pressure,
as the cache miss rates increase exponentially when more
variants are executed in parallel. Recently added CPU
features such as Intel Cache Allocation Technology [22]
might help to mitigate this problem.
5.3 Security Guarantee
BUNSHIN does not remove any sanity checks, but only
distributes them into multiple variants. In strict-lockstep
mode, BUNSHIN should not compromise the intended se-
curity guarantee, as no variant can proceed with a syscall
without the arrival of other variants. Conceptually, the
only way to compromise all variants is to launch an at-
tack that is out of the protection scope of the underlying

Config Conn Base Strict Selective

lighttpd 64 10.3 11.9 15.3% 11.8 14.6%
1 Process 512 8.71 10.5 20.5% 10.1 15.7%
1K File 1024 8.48 10.4 22.6% 10.1 19.3%

lighttpd 64 974 994 2.05% 992 1.85%
1 Process 512 959 972 1.35% 970 1.15%
1M File 1024 955 964 0.91% 961 0.63%

nginx 64 9.81 11.6 18.7% 11.2 14.3%
4 Threads 512 8.46 10.3 21.9% 9.88 16.8%
1K File 1024 8.20 10.2 24.4% 9.63 17.4%

nginx 64 950 967 1.79% 964 1.47%
4 Threads 512 985 999 1.40% 996 1.12%
1M File 1024 979 998 1.94% 995 1.63%

Ave. (1KB) 20.56% 16.4%
Ave. (1MB) 1.57% 1.31%

Table 2: Performance of lighttpd and nginx under BUNSHIN’s
NXE, Performance measured as the processing time per request
(unit. µs). We use apachebench as test driver and run each
experiment 1000 times to reduce the effect of network noise.

sanitizer. Given that there is no attack window between
variants, if an input sequentially compromises all variants
without causing a divergence, it means the input bypasses
all sanity checks. In this case, the attack will also succeed
even if all checks are enforced in one variant (i.e., no
BUNSHIN). In other words, the attack is essentially not
in the protection scope of the underlying sanitizers and
hence will not be in the scope of BUNSHIN.

On the other hand, the selective-lockstep mode might
introduce an attack window between the variants that al-
low an attacker to potentially compromise them one by
one. However, BUNSHIN remains effective if the window
is small enough. To quantify the attack window, we mea-
sure the syscall distance between the leader and the slow-
est follower during our experiments. For CPU-intensive
programs (SPEC2006, PARSEC, and SPLASH-2x), the
average number of syscall gap is 5 while for IO-intensive
programs (lighttpd and nginx), the average number of
syscall gap is only 1. The gap is small because even in
selective-lockstep mode, the variants are still strictly syn-
chronized at IO-related syscalls. We believe that this is a
small enough time frame to thwart attackers.

To empirically confirm that real-world attacks can be
thwarted even in selective-lockstep mode, we first evalu-
ated BUNSHIN on the RIPE benchmark with check distri-
bution on ASan. In particular, in compiling the programs
generated by the RIPE benchmark, we go through the nor-
mal check distribution procedure to produce two variants,
and then launch and synchronize them with our NXE.
The results in Table 3 confirm that BUNSHIN does not
compromise the intended security guarantee of ASan.

To further verify this, we applied BUNSHIN to five
real-world programs, nginx, cpython, php, openssl, and
httpd, which contain known vulnerabilities that can be
detected by ASan (to evaluate check distribution) and
UBSan (to evaluate sanitizer distribution). Similar to
the RIPE benchmark case, we apply BUNSHIN on these
vulnerable programs to produce two variants and later

278 2017 USENIX Annual Technical Conference USENIX Association

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk Average
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

2 variants 4 variants 6 variants 8 variants

Figure 5: Scalability of BUNSHIN in terms of synchronizing 2 to 8 variants. For each program, we show the synchronization
overhead over the baseline execution. On average, the overhead almost doubled with 2 more variants synchronized. Different
programs show slightly different patterns in overhead growth. One of the reasons could be their differences in cache sensitivity [23].

Config Succeed Probabilistic Failed Not possible

Default 114 16 720 2990
ASan 8 0 842 2990

BUNSHIN 8 0 842 2990

Table 3: We first run the RIPE benchmark on vanilla 32-bit
Ubuntu 14.04 OS, and 114 exploits always succeed and 16
succeed probabilistically. After adding ASan in the compilation,
only 8 exploits succeed. After applying check distribution on
the programs, still the same 8 exploits succeed.

Program CVE Exploits Sanitizer Detect

nginx-1.4.0 2013-2028 blind ROP ASan Yes
cpython-2.7.10 2016-5636 int. overflow ASan Yes

php-5.6.6 2015-4602 type confusion ASan Yes
openssl-1.0.1a 2014-0160 heartbleed ASan Yes
httpd-2.4.10 2014-3581 null deref. UBSan Yes

Table 4: Empirically test BUNSHIN’s security guarantee with
real-world programs and CVEs.

launch and synchronize them with our NXE. We then use
the same exploit that triggered the warnings from ASan or
UBSan to drive the program under BUNSHIN and check
to see whether the same warnings are raised. The result
show that all exploitation attempts are detected (Table 4).

For a concrete example, we applied BUNSHIN to
nginx-1.4.0, which contains bug CVE-2013-2028 that
can be detected by ASan. We use check distribution to
produce two variants, A and B and use three published
exploits [6, 12, 13] to test whether they can succeed in ex-
ploiting the vulnerable nginx protected under BUNSHIN.
The result shows that, when the overflow is triggered, vari-
ant A issues a write syscall (trying to write to stderr)
due to ASan’s reporting, while B does not. A further
investigation on the protection distribution report shows
that the vulnerable function ngx_http_parse_chunked is
instructed to be protected by variant A, which explains
why variant A issues the write syscall.
Attacking BUNSHIN. Given the attack window in
selective-lockstep mode, an attacker might be able to com-
plete some simple attacks before detection, such as killing
child threads/processes, closing file/sockets, or exhaust-
ing resources by allocating large chunks of memory, etc.,
provided that the attacker can inject shellcode or reuse
program code to invoke the call and place the arguments
of syscall in correct addresses. An attacker might also
launch denial-of-service attacks by sending compromised
variants into infinite loops that do not involve synchronize
syscalls (in both modes) or sleep/pause indefinitely (in

selective-lockstep mode).
Another attack vector is BUNSHIN’s variant moni-

tor. For example, an attacker might intentionally crash
BUNSHIN with unhandled non-deterministic sources such
as uninitialized data (e.g., some encryption libraries in-
tentionally use uninitialized data as a source of entropy,
although such a practice is discouraged). In addition, al-
though we take care to keep the variant monitor simple
and secure, it is not guaranteed to be bug-free. Therefore,
if an attacker compromises the variant monitor, he/she
might be able to circumvent syscall synchronization.

5.4 Check Distribution on ASan
We show the effectiveness of check distribution in accel-
erating the performance of programs instrumented with
ASan. The reason we choose ASan for the case study is
twofold: 1) ASan is representative of how memory error
detection techniques are generally enforced – introduc-
ing runtime sanity checks. In addition, the majority of
checks placed in the program are independent of each
other and hence satisfy the assumption of check distri-
bution. 2) ASan provides a relatively high coverage on
memory safety and hence is appealing for long-living
processes (like server programs) to thwart attackers at
runtime. However, the slowdown by enforcing ASan to
the whole program is the main obstacle in making it use-
ful in production. We hope this experiment will provide
insights on how to use ASan through BUNSHIN.

The case study is done with the SPEC2006 bench-
mark programs using the train dataset for profiling and
reference dataset for the actual performance measure-
ment. On average, the runtime slowdown caused by ASan
is reduced from 107% (enforced to the whole program) to
65.6% (2 variants) and 47.1% (3 variants), respectively,
about 11% more than 1⁄2 and 1⁄3 of the original slowdown.
Due to space constraints, we show only results for the
more complex case (3 variants) in Figure 6.

However, we also observed two outliers that do not
show overhead distribution: hmmer and lbm. After inves-
tigating their execution profile, we observe that there is
a single function that accounts for over 95% of the ex-
ecution time and the slowdown caused by ASan. Since
BUNSHIN performs sanity check distribution at the func-
tion level, the overhead is inevitably distributed to one
variant, causing that variant to be the bottleneck of the en-
tire system. However, concentrating functionalities in one

USENIX Association 2017 USENIX Annual Technical Conference 279

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray sjeng libquantum h264ref omnetpp astar sphinx3 xalancbmk hmmer lbm Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

Whole program 3-variants (per variant) 3-variants (overall)

Figure 6: Effectiveness of check distribution on ASan with three variants. For each program, we show the total overhead if ASan is
applied to the whole program as well as per-variant overhead and BUNSHIN overall overhead. The two programs on the right are
outliers that do not show overhead distribution.

perlbench bzip2 gcc mcf milc namd gobmk dealII* soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk* Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

All UBSan checks 3-variants (per variant) 3-variants (overall)

Figure 7: Effectiveness of sanitizer distribution on UBSan with three variants. For each program, we show the total overhead if
all checks of UBSan are enforced as well as per-variant overhead and BUNSHIN overall overhead. For dealII and xalancbmk, the
overhead number is 4x larger than what is shown in the figure.

single function is rarely seen in the real-world software
we tested, including Python, Perl, PHP Apache httpd,
OrzHttpd, and OpenSSL; hence, we do not believe these
outliers impair the practicality of BUNSHIN.
5.5 Sanitizer Distribution on UBSan
UBSan is a representative example to illustrate why col-
lectively enforcing lightweight sanity checks might lead
to significant overall slowdown. UBSan contains 19
sub-sanitizers, each with overhead no more than 40%.
However, adding them leads to over 228% overhead on
SPEC2006 benchmarks, making UBSan a perfect exam-
ple to exercise sanitizer distribution.

Similar to the ASan case study, the test case is done
with SPEC2006 programs using train dataset for profil-
ing and reference dataset for experimentation. On aver-
age, the runtime caused by UBSan is reduced from 228%
(enforced all checks) to 129% (2 variants) and 94.5% (3
variants), respectively, about 15% more than 1⁄2 and 1⁄3 of
the original slowdown. Due to space constraints, we show
only the results for the more complex case (3 variants)
in Figure 7. This deviation from the theoretical optimum
is a bit larger compared with the ASan case study because
we only have 19 elements in the set and hence are less
likely to get balanced partitions across variants. However,
it still shows the effectiveness of sanitizer distribution in
accelerating the overall performance.
5.6 Unifying LLVM Sanitizers
In theory, BUNSHIN is capable of unifying any security
mechanism that falls in the sanitizers definition in §3.1.
The reason we choose LLVM sanitizers (ASan, MSan,
UBSan) for the case study is mainly because: collectively,
they provide almost full protection against memory error,
which we have not seen in any other work. Unifying
them through BUNSHIN might give some insight on how
to achieve full memory error protection without any re-
engineering effort to these sanitizers.

In this case study, each variant is simply the program
compiled with one of the sanitizers with the default com-
pilation settings. We measure the execution time of each
program variant when running by itself and also the total
execution time of BUNSHIN. The result is reported in Fig-
ure 8. On average, the total slowdown of combining these
sanitizers is 278%, with only 4.99% more compared with
merely enforcing the slowest sanitizer among the three. In
other words, paying a little slowdown for synchronization
helps bring additional protection provided by the other
two sanitizers.

5.7 Hardware Resource Consumption

Memory. Since all variants are loaded into memory for
parallel execution, the basic memory usage is almost lin-
ear to the number of variants. This is an inherent trade-off
for execution time. In addition, whether check distribu-
tion helps to split memory overhead caused by a sanitizer
depends on the sanitizer’ internal working, In the case
study of ASan, although each variant executes only a
portion of the sanity checks, it still needs to shadow the
whole memory space as required by ASan. Therefore, the
memory overhead of ASan still applies to each variant.
However, the memory overhead can be distributed for
shadow stack-based techniques. By definition, sanitizer
distribution can be used to distribute memory overhead
to multiple variants. In the UBSan case study, the mem-
ory overhead of each variant is the sum of all enforced
sub-sanitizers’ overhead.

CPU cycles. BUNSHIN’s NXE utilizes spare cycles
in a multi-core CPU for efficient variant synchroniza-
tion. If the CPU does not provide sufficient parallelism,
BUNSHIN will not be able to improve the performance;
instead, it will only introduce more performance over-
head. An evaluation on C/C++ programs in the SPEC2006
benchmark shows that the average synchronization over-
head is 103.1% when running BUNSHIN on a single core.

280 2017 USENIX Annual Technical Conference USENIX Association

perlbench bzip2 gcc* mcf milc namd gobmk dealII* soplex povray hmmer sjeng libquantum h264ref lbm astar omnetpp sphinx3 xalancbmk* Average
0%

50%

100%

150%

200%

250%

300%

O
ve

rh
ea

d
re

la
tiv

e
to

ba
se

lin
e

ASan MSan UBSan All combined

Figure 8: Performance result of each LLVM sanitizer respectively as well as the overall performance overhead when unified under
BUNSHIN. gcc cannot run with MSan, therefore, we exclude the evaluation on it. For dealII and xalancbmk the overhead number is
4x larger than what is shown in the figure.

perlbench bzip2 gcc mcf milc namd gobmk dealII soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk Average
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
un

tim
e

re
la

tiv
e

to
ba

se
lin

e

2% base 2% sync 50% base 50% sync 99% base 99% sync

Figure 9: Evaluation of BUNSHIN execution engine under various workload levels. The experiment is done with the configuration
of synchronizing 2 variants. We use the system-stressing tool stress-ng to add background workloads including CPU tasks, cache
thrashing, and memory allocations and deallocations. We maintain the background load level at 50% and 99%, respectively. The 2%
load for the baseline case is due to the kernel and OS background services.

Although BUNSHIN is not suitable for devices with
a single core, it does not mean that BUNSHIN requires
exclusive cores to work. In fact, due to OS-level task
scheduling, BUNSHIN can exploit free cycles in the CPU
as long as not all cores are fully utilized. Figure 9 shows
that BUNSHIN’s performance is stable under various load
levels. The average slowdown due to synchronization is
10.23% and 13.46%, respectively, when the CPU is half
and fully loaded, slightly higher than the case when the
load is small (8.1%). The results prove that the perfor-
mance of BUNSHIN is stable across various load levels.

6 Discussion
Trading-off resources for time. There is no doubt
that BUNSHIN’s parallelism consumes more hardware
resources; hence BUNSHIN is not suitable for cases where
hardware resources are scarce. In fact, BUNSHIN’s design
is inspired by the popularity of multi-core processors
and large-size cache and memory, and trade-off resource
usages for execution time. BUNSHIN empowers users to
make use of available hardware resources to improve both
security and runtime performance and sheds lights on
how to solve a difficult problem —speeding up hardened
programs without sacrificing security —with simply more
hardware resources, which are easy to obtain.
Sanitizer integration. BUNSHIN currently has no in-
tegration with the sanitizers, i.e., it does not require de-
tailed knowledge of how a sanitizer works in order to
"de-instrument" the sanity checks. Although this gives
BUNSHIN great flexibility, it also prevents BUNSHIN
from further optimization. For example, ASan still shad-
ows the whole memory space even when only a subset of
sanity checks is performed per program variant, thus lead-
ing to increased memory usage in every variant. To solve
this, we could modify ASan’s logic in a way such that
only a portion of the memory space is shadowed in each

variant; in other words, we can distribute the memory
overhead to all program variants as well.

Finer-grained sanity check distribution. As shown in
the case of hmmer and lbm, sanity check distribution at
the function level might be too coarse grained if one or
a few functions dominate the total execution. Therefore,
to enable finer-grained overhead distribution, we plan to
look into performing both profiling and check removal at
the basic block level.

7 Conclusion
We presented BUNSHIN, an N-version system that seam-
lessly unifies different and even conflicting protection
techniques while at same time reducing execution slow-
down. BUNSHIN achieves this with two automated vari-
ant generation strategies (check distribution and sanitizer
distribution) for distributing security checks to variants
and an efficient parallel execution engine that synchro-
nizes and monitors the behaviors of these variants. Our
experiment results show that BUNSHIN is a practical sys-
tem that can significantly reduce slowdown of sanitizers
(e.g., 107% to 47.1% for ASan, 228% to 94.5% for UB-
San) and collectively enforce ASan, MSan, and UBSan
without conflicts with only 4.99% incremental overhead.

8 Acknowledgment
We thank our shepherd, Ittay Eyal, and the anonymous re-
viewers for their helpful feedback. This research was
supported by NSF under award DGE-1500084, CNS-
1563848, CRI-1629851, CNS-1017265, CNS-0831300,
and CNS-1149051, ONR under grant N000140911042
and N000141512162, DHS under contract No. N66001-
12-C-0133, United States Air Force under contract No.
FA8650-10-C-7025, DARPA under contract No. DARPA
FA8650-15-C-7556, and DARPA HR0011-16-C-0059,
and ETRI MSIP/IITP[B0101-15-0644].

USENIX Association 2017 USENIX Annual Technical Conference 281

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

Control-flow integrity. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS), Alexan-
dria, VA, November 2005.

[2] Matthew Arnold and Barbara G. Ryder. A framework for reducing
the cost of instrumented code. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, June 2001.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazieres, and Christos Kozyrakis. Dune: Safe user-level access
to privileged CPU features. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implementation (OSDI),
Hollywood, CA, October 2012.

[4] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and
Dan Grossman. Coredet: A compiler and runtime system for
deterministic multithreaded execution. In Proceedings of the 15th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Pittsburgh,
PA, March 2010.

[5] Philippe Bergheaud, Dinesh Subhraveti, and Marc Vertes. Fault
tolerance in multiprocessor systems via application cloning. In
Proceedings of the 27th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Toronto, Canada, June
2007.

[6] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres,
and Dan Boneh. Blind return oriented programming (brop), 2014.
http://www.scs.stanford.edu/brop.

[7] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Diver-
sified process replicÃę for defeating memory error exploits. In
Proceedings of the 2007 International Performance, Computing,
and Communications Conference (IPCCC), New Orleans, LA,
April 2007.

[8] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and
A. Prasad Sistla. Preventing information leaks through shadow
executions. In Proceedings of the 2008 International Conference
on Software Engineering (ICSE), Anaheim, CA, December 2008.

[9] Liming Chen and Algirdas Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operation. In
Fault-Tolerant Computing, 1995, Jun. 1995.

[10] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and
Jason Hiser. N-variant systems: A secretless framework for secu-
rity through diversity. In Proceedings of the 15th Usenix Security
Symposium (Security), Vancouver, Canada, July 2006.

[11] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen,
and Michael Franz. Thwarting cache side-channel attacks through
dynamic software diversity. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2015.

[12] Exploit Database. nginx 1.3.9-1.4.0 - dos poc, 2013. https:
//www.exploit-db.com/exploits/25499.

[13] Exploit Database. nginx 1.3.9/1.4.0 x86 - brute force exploit, 2013.
https://www.exploit-db.com/exploits/26737.

[14] CVE Details. Vulnerabilities By Date, 2016. http://www.
cvedetails.com/browse-by-date.php.

[15] Evelyn Duesterwald and Vasanth Bala. Software profiling for
hot path prediction: less is more. ACM SIGARCH Computer
Architecture News, December 2000.

[16] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halder-
man, Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann,
Jethro Beekman, Mathias Payer, and Vern Paxson. The matter of
heartbleed. In Proceedings of the 2014 Conference on Internet

Measurement Conference, IMC ’14, 2014.

[17] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman,
and Hans-J. Boehm. Ifrit: interference-free regions for dynamic
data-race detection. In Proceedings of the 23th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Tucson, AZ, October 2012.

[18] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In Proceedings
of the 31st ACM Symposium on Principles of Programming Lan-
guages (PoPL), Venice, Italy, January 2004.

[19] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler,
and Michael Franz. Profile-guided Automated Software Diversity.
In Proceedings of the 2013 International Symposium on Code
Generation and Optimization (CGO), Shenzhen, China, February
2013.

[20] Petr Hosek and Cristian Cadar. Safe software updates via multi-
version execution. In Proceedings of the 35th International Con-
ference on Software Engineering (ICSE), San Francisco, CA, May
2013.

[21] Petr Hosek and Cristian Cadar. Varan the unbelievable, an efficient
n-version execution framework. In Proceedings of the 20th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Istanbul, Turkey,
March 2015.

[22] Intel. Improving real-time performance by utilizing cache allo-
cation technology, 2015. http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

[23] Aamer Jaleel. Memory characterization of workloads using
instrumentation-driven simulation, 2010. http://www.jaleels.
org/ajaleel/publications/SPECanalysis.pdf.

[24] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and
efficient multi-variant execution using hardware-assisted process
virtualization. In Proceedings of the 46th International Conference
on Dependable Systems and Networks (DSN), Toulouse, France,
June 2016.

[25] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George
Candea, R. Sekar, and Down Song. Code pointer integrity. In
Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI), Broomfield, Colorado, October 2014.

[26] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads:
Efficient and deterministic multithreading. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, October 2011.

[27] LLVM. UndefinedBehaviorSanitizer (UBSan) is a fast undefined
behavior detector, Feb. 2015. http://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[28] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and
Steve Zdancewic. SoftBound: Highly compatible and complete
spatial memory safety for C. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Dublin, Ireland, June 2009.

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler enforced temporal safety for C. In
Proceedings of the 2010 International Symposium on Memory
Management (ISMM), Toronto, Canada, June 2010.

[30] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In Proceedings
of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Washington, DC, March 2009.

[31] Luis Pina and Cristian Cadar. Towards deployment-time dynamic
analysis of server applications. In Proceedings of the 13th Inter-

282 2017 USENIX Annual Technical Conference USENIX Association

http://www.scs.stanford.edu/brop
https://www.exploit-db.com/exploits/25499
https://www.exploit-db.com/exploits/25499
https://www.exploit-db.com/exploits/26737
http://www.cvedetails.com/browse-by-date.php
http://www.cvedetails.com/browse-by-date.php
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

national Workshop on Dynamic Analysis (WODA), Pittsburgh, PA,
October 2015.

[32] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz.
Orchestra: Intrusion detection using parallel execution and mon-
itoring of program variants in user-space. In Proceedings of the
ACM EuroSys Conference, Nuremberg, Germany, March 2009.

[33] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitry Vyukov. AddressSanitizer: A fast address sanity
checker. In Proceedings of the 2012 ATC Annual Technical Con-
ference (ATC), Boston, MA, June 2012.

[34] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS), Alexandria, VA, October–November 2007.

[35] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS), Washington, DC,
October 2004.

[36] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer:
fast detector of uninitialized memory use in C++. In Proceedings
of the 2015 International Symposium on Code Generation and
Optimization (CGO), San Francisco, CA, February 2015.

[37] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal war in memory. In Proceedings of the 34th IEEE Sympo-
sium on Security and Privacy (Oakland), San Francisco, CA, May
2013.

[38] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. Memory errors: The past, the present, and the
future. In Proceedings of the 15th International Conference on
Research in Attacks, Intrusions, and Defenses (RAID), Amsterdam,
Netherlands, September 2012.

[39] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Detecting and surviving data races using comple-
mentary schedules. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, Octo-
ber 2011.

[40] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Boss-
chere, Per Larsen, and Michael Franz. Taming Parallelism in a
Multi-Variant Execution Environment. In Proceedings of the ACM
EuroSys Conference, Belgrade, Serbia, April 2017.

[41] Stijn Volckaert, Bart Coppens, and Bjorn De Sutte. Cloning your
gadgets: Complete ROP attack immunity with multi-variant exe-
cution. IEEE Transactions on Dependable and Secure Computing,
13(4):437–450, July 2016.

[42] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei
Homescu, Per Larsen, Bjorn De Sutter, and Michael Franz. Secure
and efficient application monitoring and replication. In Proceed-
ings of the 2016 ATC Annual Technical Conference (ATC), Denver,
CO, June 2016.

[43] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Jo-
hannes Kinder. High system-code security with low overhead. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[44] Hui Xue, Nathan Dautenhahn, and Samuel T. King. Using repli-
cated execution for a more secure and reliable web browser. In
Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2012.

[45] Aydan Yumerefendi, Benjamin Mickle, and Landon P. Cox.
Tightlip: Keeping applications from spilling the beans. In Pro-
ceedings of the 4th Symposium on Networked Systems Design and
Implementation (NSDI), Cambridge, MA, April 2007.

USENIX Association 2017 USENIX Annual Technical Conference 283

Glamdring: Automatic Application Partitioning for Intel SGX

Joshua Lind
Imperial College London

Christian Priebe
Imperial College London

Divya Muthukumaran
Imperial College London

Dan O’Keeffe
Imperial College London

Pierre-Louis Aublin
Imperial College London

Florian Kelbert
Imperial College London

Tobias Reiher
TU Dresden

David Goltzsche
TU Braunschweig

David Eyers
University of Otago

Rüdiger Kapitza
TU Braunschweig

Christof Fetzer
TU Dresden

Peter Pietzuch
Imperial College London

Abstract
Trusted execution support in modern CPUs, as offered by
Intel SGX enclaves, can protect applications in untrusted
environments. While prior work has shown that legacy
applications can run in their entirety inside enclaves, this
results in a large trusted computing base (TCB). Instead,
we explore an approach in which we partition an applica-
tion and use an enclave to protect only security-sensitive
data and functions, thus obtaining a smaller TCB.

We describe Glamdring, the first source-level parti-
tioning framework that secures applications written in
C using Intel SGX. A developer first annotates security-
sensitive application data. Glamdring then automatically
partitions the application into untrusted and enclave
parts: (i) to preserve data confidentiality, Glamdring uses
dataflow analysis to identify functions that may be ex-
posed to sensitive data; (ii) for data integrity, it uses back-
ward slicing to identify functions that may affect sensitive
data. Glamdring then places security-sensitive functions
inside the enclave, and adds runtime checks and crypto-
graphic operations at the enclave boundary to protect it
from attack. Our evaluation of Glamdring with the Mem-
cached store, the LibreSSL library, and the Digital Bitbox
bitcoin wallet shows that it achieves small TCB sizes and
has acceptable performance overheads.

1 Introduction
Applications are increasingly deployed in potentially un-
trusted third-party data centres and public cloud environ-
ments such as Amazon AWS [3] and Microsoft Azure [4].
This has a major impact on application security [1]: ap-
plications must protect sensitive data from attackers with
privileged access to the hardware or software, such as
system administrators. Applications that rely on crypto-
graphic techniques to protect sensitive data [60, 63, 82]
limit the operations that can be carried out; fully homo-
morphic encryption [32] allows arbitrary operations but
adds substantial overhead.

A new direction for securing applications in untrusted

environments is to use trusted execution mechanisms of-
fered by modern CPUs such as Intel’s Software Guard
Extensions (SGX) [42]. With Intel SGX, user code and
data are protected as part of secure enclaves. An enclave
is a separate memory region that is encrypted transpar-
ently by the hardware and isolated from the rest of the
system, including higher-privileged system software.

Haven [6], Graphene [55, 81] and SCONE [2] have
demonstrated the feasibility of executing entire applica-
tions inside enclaves by adding sufficient system sup-
port, such as a library OS or the C standard library,
to the enclave. By placing all code inside the enclave,
these approaches, however, have a large trusted comput-
ing base (TCB) that violates the principle of least priv-
ilege [67]: all enclave code executes at a privilege level
that allows it to access sensitive data. An attacker only
needs to exploit one vulnerability in the enclave code
to circumvent the security guarantees of trusted execu-
tion [78]. The number of bugs even in well-engineered
code is proportional to the size of the code [54].

To partially mitigate this problem, proposals for secur-
ing applications with enclaves [68, 72, 73] introduce ad-
ditional checks in enclave code to prevent it from com-
promising the confidentiality or integrity of enclave data.
Such approaches, however, restrict the allowed behaviour
of enclave code, e.g. prohibiting general enclave code
from interacting with memory outside of the enclave [68].
This limits the applicability of trusted execution mecha-
nisms for arbitrary applications.

We want to explore a different design point for se-
curing applications with trusted execution by placing
only security-sensitive functions and data inside the en-
clave. We exploit the observation that only a subset of
all application code is security-sensitive [11, 71, 74], and
ask the question: “what is the minimum functionality
of an application that must be placed inside an en-
clave to protect the confidentiality and integrity of its
security-sensitive data?” Our goal is to develop a princi-
pled approach that (i) partitions applications into security-

USENIX Association 2017 USENIX Annual Technical Conference 285

sensitive enclave and security-insensitive non-enclave
parts; (ii) gives guarantees that the security-sensitive en-
clave code cannot violate the confidentiality or integrity
of sensitive enclave data, even under attack; and (iii) has
an acceptable performance overhead despite the limita-
tions of current SGX implementations [16].

In our approach, we use static program analysis to iden-
tify a security-sensitive subset of the application code.
Being conservative, it allows us to robustly identify the
subset of functions that may be exposed to or modify sen-
sitive data. This analysis is independent of application
input, which may be controlled by an attacker, and thus is
resilient against attacks on the enclave interface, as long
as the assumptions made by the static analysis are en-
forced at runtime.

We describe Glamdring, a new framework for secur-
ing C applications using Intel SGX. Glamdring parti-
tions applications at the source code level, minimising
the amount of code placed inside an enclave. To parti-
tion an application, a developer first annotates input and
output variables in the source code that contain sensitive
data and whose confidentiality and integrity should be
protected. Glamdring then performs the following steps:
(1) Static dataflow analysis. To prevent disclosure of
sensitive data, functions that may potentially access sen-
sitive data must be placed inside the enclave. Glamdring
performs static dataflow analysis [65] to detect all func-
tions that access sensitive data or data derived from it. It
tracks the propagation of sensitive data through the appli-
cation, starting with the annotated inputs.
(2) Static backward slicing. To prevent an attacker from
compromising the integrity of sensitive output data, func-
tions that update sensitive data must be placed inside
the enclave. Here Glamdring uses static backward slic-
ing [84], starting from the set of annotated output vari-
ables, to identify functions that can affect the integrity of
this data. It creates a backward slice with all source code
that the sensitive output variables depend on.
(3) Application partitioning. Glamdring now partitions
the application by placing all of the security-sensitive
functions identified above inside the enclave. This creates
an enclave boundary interface that constitutes all parame-
ters passed to enclave functions and accesses to untrusted
global variables. Any sensitive data that crosses the en-
clave interface is transparently encrypted and signed by
the enclave code or trusted remote client, respectively. For
performance reasons, some security-insensitive functions
may be moved inside the enclave.
(4) Source code generation. Finally, Glamdring trans-
forms the application using a source-to-source compiler
based on the LLVM/Clang compiler toolchain [14, 49].
It (i) generates appropriate entry/exit points at the en-
clave boundary with the required cryptographic opera-
tions; (ii) ensures that memory allocations for data struc-

tures are performed inside or outside of the enclave de-
pending on the nature of the data; and (iii) adds runtime
checks at the enclave boundary to ensure that the invari-
ants required for the soundness of the static analysis hold.
The output of this phase is an untrusted binary and a
trusted shared library that executes inside the enclave.

We evaluate the security and performance properties of
Glamdring by applying it to three applications: the Mem-
cached key/value store [24], the LibreSSL library [7], and
the Digital Bitbox bitcoin wallet [70]. Our experiments
show that Glamdring creates partitioned versions of these
applications with TCBs that contain 22%–40% of the
lines of code of the applications. Despite their strong secu-
rity guarantees, the partitioned applications execute with
between 0.3×–0.8× of the performance of the original
versions.

2 Background
Protecting application data is crucial. Past incidents
have shown that data breaches [41] and integrity viola-
tions [75] can have a major impact on users [30] and the
reputation of application providers [59].

Today applications are deployed frequently in un-
trusted environments such as public clouds, controlled by
third-party providers. In addition to the application being
vulnerable, the underlying infrastructure (i.e. the operat-
ing system (OS) and hypervisor) may be untrusted by the
application owner, and software-based solutions imple-
mented as part of the OS [17,46] or hypervisor [13,20,39]
cannot protect application data.

New hardware security features, such as Intel SGX,
offer a solution through a trusted execution model. It
supports memory and execution isolation of application
code and data from the rest of the environment, including
higher-privileged system software. In this work, we ad-
dress the problem of how developers can protect only the
security-sensitive code and data of an application using
trusted execution.

2.1 Threat model
We consider code to be security-sensitive if it accesses
sensitive data directly or can impact the confidentiality
or integrity of data indirectly. For example, in the Mem-
cached [24] store, assuming that key/value pairs are sen-
sitive, functions that store key/value pairs are security-
sensitive, while ones for network handling are not.

The adversary’s goal is to either disclose confidential
data or damage its integrity. We consider a powerful and
active adversary, such as a malicious system administra-
tor, who has control over the hardware and software of the
machine executing the application. The adversary may
therefore (i) access or modify any data in memory or disk;
(ii) view or modify the application code; and (iii) modify
the OS or other system software.

We do not consider denial-of-service (DoS) attacks—

286 2017 USENIX Annual Technical Conference USENIX Association

an adversary with full control over the machine can de-
cide to not run the application. Such attacks can be de-
tected and potentially mitigated using replication [21].
Similar to other work, we also ignore side-channel attacks
that exploit timing effects [83] or page faults [86], but
there exist dedicated mitigation strategies [10, 19].

2.2 Trusted execution with Intel SGX
Intel’s Software Guard Extensions (SGX) [42] allow ap-
plications to protect the confidentiality and integrity of
code and data, even when an attacker has control over all
software (OS, hypervisor and BIOS) and physical access
to the machine, including the memory and system bus.

SGX provides applications with a trusted execution
mechanism in the form of secure enclaves. Enclave code
and data reside in a region of protected memory called
the enclave page cache (EPC). Only application code
executing inside the enclave is permitted to access the
EPC. Enclave code can access the memory outside the
enclave. An on-chip memory encryption engine encrypts
and decrypts cache lines in the EPC that are written to
and fetched from memory. As enclave code is always ex-
ecuted in user mode, any interaction with the OS through
system calls, e.g. for network or disk I/O, must execute
outside of the enclave.

Using Intel’s SGX SDK [43], developers can create
enclave libraries that are loaded into an enclave and ex-
ecuted by a CPU with SGX support. A developer de-
fines the interface between the enclave code and other,
untrusted application code: (i) a call into the enclave is re-
ferred to as an enclave entry call (ecall). For each defined
ecall, the SDK adds instructions to marshal parameters
outside, unmarshal the parameters inside the enclave and
execute the function; and (ii) outside calls (ocalls) al-
low enclave functions to call untrusted functions outside.
Added SDK code leaves the enclave, unmarshals the pa-
rameters, calls the function, and re-enters the enclave.

Any ecalls and ocalls introduce a performance over-
head because the hardware must perform certain actions
to maintain the security guarantees of SGX. Enclave code
must also verify the integrity of accessed data, such as pa-
rameters of ecalls, return values of ocalls, and data read
from untrusted memory.

2.3 Security with trusted execution
Next we explore the design space for securing application
data using trusted execution and discuss the trade-offs
with respect to (i) the size of the TCB; (ii) the complexity
of the enclave interface; (iii) the development effort; and
(iv) the generality of the approach.

With Intel SGX, the TCB consists of the enclave code
and the trusted hardware. Following the principle of least
privilege [67], only the parts of an application that re-
quire access to sensitive data should be executed within
an enclave. As studies have shown [54,69], the number of

Enclave
Application

Standard libraries

Library OS

Host OS

System/
Hyper calls

Sensitive
app code

Non-sensitive
app code

Non-sensitive
app data

Sensitive
app data

(a) Complete
enclave interface

Enclave
Application logic

Host OS

Read/
Write

Trusted shim library

Sensitive
app code

Sensitive
app data

(b) Predefined
enclave interface

Enclave
Application

Application

Host OS

Standard libraries

Trusted shim library

Function
calls

Sensitive
app code

Non-sensitive
app code

Non-sensitive
app data

Sensitive
app data

Untrusted
memory
accesses

(c) Application-
specific interface

Figure 1: Design alternatives for the use of enclaves

software bugs, and thus potential security vulnerabilities,
increases proportionally with the code size. This makes
it important to minimise the size of the TCB.

The complexity of the enclave interface, however, im-
pacts the security of enclave code and data. For exam-
ple, security-sensitive application code inside the en-
clave must still interact with the untrusted environment
to perform I/O. Return values from system calls must
be checked to protect against Iago attacks [12], in which
an attacker compromises the OS kernel to force enclave
code to disclose or modify sensitive enclave data. Creat-
ing a principled enclave interface makes it easier to reason
about the infeasibility of particular attacks.

Important factors that determine the adoption of a
given approach for securing applications with secure en-
claves are the development effort and whether it is gen-
erally applicable to any application. Fig. 1 shows three
design alternatives for protecting applications using se-
cure enclaves:
Complete enclave interface. As shown in Fig. 1a, the ap-
proach adopted by systems such as Haven [6], SCONE [2]
and Graphene [55,81] provides isolation at a coarse gran-
ularity by executing a complete application inside an en-
clave. Haven runs unmodified Windows applications us-
ing the Drawbridge library OS [61]; Graphene uses a
library OS in the enclave to run Linux applications; and
SCONE places a modified version of the standard C li-
brary in the enclave for supporting recompiled Linux ap-
plications. Both security-sensitive and insensitive appli-
cation code and data reside within the enclave, increasing
the TCB size.

The enclave interface supports a complete set of sys-
tem/hyper calls, which cannot be handled inside the en-
clave. The interface is application-independent, but its
complexity (in terms of number of distinct calls and their
input parameters) depends on the adopted system abstrac-
tion. The required system support within the enclave fur-
ther adds to the TCB size.

While this approach incurs low development effort,

USENIX Association 2017 USENIX Annual Technical Conference 287

Secure enclave
library

Untrusted
app code

Code
annotation Annotated code

Static dataflow
analysis

Static backward
slicing

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition specification
for confidentiality

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition specification
for integrity

Creation of
partition spec.

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition
specification

(PS)

Source-to-source
transformation

Enclave
library

Interface
hardening

Code Analysis2

App
source
code

User input provided

Automated step

Code Generation41 Code Annotation Code Partitioning3

Static program
analysis PDG

Figure 2: Overview of the Glamdring framework

as it can execute mostly unmodified applications, and is
generic across applications, it cannot mask fundamental
limitations of SGX when trying to provide a complete
enclave interface. For example, SCONE cannot support
applications that use the fork() system call.
Predefined enclave interface. Fig. 1b shows an ap-
proach in which applications must adhere to a prede-
fined restricted enclave interface [68, 72, 73]. For exam-
ple, VC3 [68] protects map/reduce jobs using enclaves
and forces map/reduce tasks to interact with the untrusted
environment only through a particular interface. The en-
clave contains a small trusted shim library, resulting in a
smaller TCB compared to the previous approach.

This approach results in a minimal enclave interface—
VC3’s interface consists of only two calls, one to read
encrypted key/value pairs and another to write them as
the job output. This limited interaction of the enclave
with the outside simplifies protection: it is possible to
add dynamic checks that enforce security invariants [72],
e.g. preventing enclave code from accessing untrusted
memory except through the enclave interface.

The security benefits of this approach are offset by its
limited applicability. Given the predefined enclave inter-
face, the approach can only be used with applications that
interact with the untrusted environment in specific ways,
such as map/reduce tasks.
Application-specific enclave interface. We explore an-
other design point. We exploit the fact that, for many ap-
plications, only a subset of code handles sensitive data,
while other code is not security-sensitive and does not
need protection [9, 71, 74]. As shown in Fig. 1c, this
makes it possible to partition the application to reduce
the TCB size, leaving code and data that is not security-
sensitive outside the enclave.

Past work has shown that partitioning can be done by
hand so that complex applications can exploit enclaves [9,
58]. Instead, we want to explore the hypothesis that it is
feasible to use principled techniques, such as program
analysis, to partition applications for secure enclaves, and
provide security guarantees about the enclave code and
its interface to the untrusted environment.

With this approach, the enclave interface now becomes
application-specific: a set of ecalls and ocalls is required
between trusted and untrusted application code. In con-
trast to a complete enclave interface, fewer system calls
need ocalls because application code that is placed out-

side the enclave can issue system calls directly.
Since application data now also exists outside the en-

clave, enclave code must be allowed to access untrusted
memory. This means that it is no longer possible to pro-
hibit all memory accesses, as with the predefined enclave
interface [72]. Instead, it is important to give security
guarantees that, despite the richer application-specific en-
clave interface, the untrusted environment cannot disclose
sensitive enclave data or compromise its integrity.

3 Glamdring Design
We present Glamdring, a framework for protecting exist-
ing C applications by executing security-sensitive code in
an Intel SGX enclave. Glamdring targets the following re-
quirements: it must protect the confidentiality of sensitive
input data and the integrity of sensitive output data (R1);
apply the principle of least privilege, minimising the code
that can access sensitive data (R2); automate changes to
the application code (R3); and impose an acceptable per-
formance overhead (R4). To achieve these requirements,
Glamdring operates in four phases (see Fig. 2):
(1) Code annotation: Glamdring must know which ap-
plication data is sensitive (R1). The developer provides
information about the sources (inputs) and sinks (outputs)
of security-sensitive data by annotating variables whose
values must be protected in terms of confidentiality and
integrity (§3.1).
(2) Code analysis: Based on the annotated source code,
Glamdring identifies a subset of code that is security-
sensitive (R2). It uses automatic static program analy-
sis (R3) to find control and data dependencies on security-
sensitive data. Glamdring thus obtains the minimal set of
statements that either handle confidential data or affects
its integrity (R1/R2) (§3.2).
(3) Code partitioning: Next Glamdring creates a parti-
tion specification (PS) that defines which parts of the code
must be protected by the enclave. The PS enumerates the
functions, memory allocations and global variables that
are security-sensitive based on the program analysis. This
defines the enclave boundary interface of the partitioned
application, which includes ecalls, ocalls, and direct ac-
cesses to untrusted memory (§3.3).
(4) Code generation: Finally, Glamdring uses a source-
to-source compiler that, based on the PS, partitions the
code into a secure enclave library and untrusted code.
The enclave boundary interface is hardened with runtime

288 2017 USENIX Annual Technical Conference USENIX Association

checks that enforce invariants on the program state (§4).

3.1 Code annotation phase
The security-sensitive data that must be protected is
application-dependent. To identify it, a developer must
therefore annotate the source code. Glamdring relies on
the fact that security-sensitive data is protected when it
is exchanged between a trusted client and the application.
For example, if data is received via the network, Glam-
dring requires the client to encrypt and sign the data. Both
the client and the enclave code use symmetric AES-GCM
encryption [22]; the key is established upon enclave cre-
ation.

When encrypted security-sensitive data reaches the ap-
plication through a source, such as an I/O channel, or
leaves the application through a sink, a developer must
annotate the corresponding variable using a compiler
pragma. The annotation sensitive-source identifies a
variable at a given source code location where security-
sensitive data enters the application; analogously, the an-
notation sensitive-sink indicates a variable at which
security-sensitive data leaves the application.

For example, for Memcached we assume that the
security-sensitive data is the type of command submitted
by the client (get/set) and its associated key/value data.
This data is encrypted and signed by the trusted client
when sent to the application. Using Glamdring, Mem-
cached then requires two annotations:

1 #pragma glamdring sensitive-source(command)
2 static void process_command(conn *c, char *command) {
3 token_t tokens[MAX_TOK];
4 size_t ntokens;
5 ...
6 ntokens = tokenize_command(command,tokens,MAX_TOK);
7 ...
8 process_update_command(c,tokens,ntokens,comm,false);
9 ...

10 }
11

12 #pragma glamdring sensitive-sink(buf)
13 static int add_iov(conn *c, void *buf, int len) {
14 ...
15 m = &c->msglist[c->msgused - 1];
16 m->msg_iov[m->msg_iovlen].iov_base = (void *)buf;
17 ...
18 }

An obvious location for the sensitive-source annota-
tion might be the socket read() call from which a client
request is received. However, this would be unnecessar-
ily conservative because it would denote all network data
as security-sensitive (and thus encrypted). Instead, the
annotation in line 1 marks the content of the parame-
ter command, which holds the request command and data,
as security-sensitive. The sensitive-sink annotation in
line 12 specifies that the output buffer for the client re-
sponse also contains security-sensitive data.

3.2 Code analysis phase
Next the code analysis phase identifies all security-
sensitive statements in the program that have dependen-

cies on the set of all annotated statements SA. This com-
bines (a) for confidentiality, the set of all statements that
are influenced by the ones in SA; and (b) for integrity, the
set of all statements that influence the ones in SA.

Glamdring uses static program analysis to identify all
security-sensitive statements. Static analysis is workload-
independent and hence makes conservative decisions
about dependencies. To ensure that an attacker cannot
violate the invariants that static analysis infers from the
untrusted code, Glamdring adds runtime checks during
code generation (see §4).

Glamdring’s analysis uses a program dependence
graph (PDG) [23], referred to as P, in which vertices
represent statements, and edges are both data and con-
trol dependencies between statements. PDGs are effec-
tive representations for program slicing [40, 56]. Using
P, Glamdring finds the set of all security-sensitive state-
ments as follows:
(1) Static dataflow analysis for confidentiality. Given
SA and P, Glamdring uses graph-reachability to find a
subgraph Pc of P that contains all statements with a tran-
sitive control/data dependence on statements in SA (i.e.
vertices reachable from statements in SA via edges in P).

For statements in SA that are annotated as a
sensitive-sink, Glamdring encrypts/signs the data be-
fore the statement inside the enclave, making it unneces-
sary to perform dataflow analysis from these statements.
(2) Static backward slicing for integrity. Given SA and
P, Glamdring uses static backward slicing to find a sub-
graph Pi with all statements in P on which statements in
SA have a control/data dependence (i.e. all vertices from
which statements in SA are reachable via P).

For these statements in SA that are annotated as
sensitive-source, Glamdring employs client-side en-
cryption of the data, making it unnecessary to perform
backwards slicing from these statements.

Finally, the set of all security-sensitive statements Ss is
obtained by combining Pc and Pi.

3.3 Code partitioning phase
Although Ss enumerates security-sensitive statements,
Glamdring partitions the application at the granularity
of functions rather than statements. This makes the en-
clave boundary coincide with the application’s function
interface, easing automatic code generation (§4) and min-
imising the required code changes (R3).

Glamdring produces a partition specification (PS)
from Ss with the set of security-sensitive functions, mem-
ory allocations and global variables to protect:

(i) functions: the PS includes all functions whose defi-
nitions contain at least one statement in Ss;

(ii) memory allocations: the PS must identify allo-
cated memory for security-sensitive data. Statements in
Ss with calls to malloc (or similar) are enumerated in the

USENIX Association 2017 USENIX Annual Technical Conference 289

PS, and these allocations are placed inside the enclave;
(iii) global variables: the PS lists all global variables

accessed in statements in Ss, and these are allocated in-
side the enclave. Special accessor ecalls (with checks) are
provided to the untrusted code to access these globals if
needed. The PS specifies if the global was part of Pc or
Pi or both, which determines what type of access (read,
write or none) the outside code has.

Enclave boundary relocation (EBR). Glamdring’s code
analysis phase produces a lower bound on the code that
must be inside the enclave to guarantee security. In prac-
tice, however, a partitioning may prove costly in terms of
performance if program execution must frequently cross
the enclave boundary interface. Glamdring improves per-
formance by moving additional functions into the enclave
in order to reduce the number of enclave crossings. Us-
ing a representative workload and the output of the gcov

runtime profiling tool [28], Glamdring assigns a cost to
each enclave boundary function according to the num-
ber of invocations. Up to a configurable threshold, Glam-
dring adds functions to the enclave. Adding extra func-
tions to the enclave cannot violate the security guarantees
of Glamdring, but it does increase the TCB size.

3.4 Discussion
The security guarantees of Glamdring rely on (a) the
soundness of the static analysis; (b) the modeling of ex-
ternal library calls whose source code is unavailable; and
(c) the correctness of annotations.

Static analysis. To be tractable, static analysis infers in-
variants on program state based on the source code. These
invariants must also hold at runtime, even when the un-
trusted code is under control of an attacker. As we de-
scribe in §4.2, Glamdring ensures this by adding runtime
invariant checks to the enclave boundary.

Static pointer analysis is undecidable for C pro-
grams [64] and thus fundamentally imprecise [33, 38].
The existence of false positives, however, does not com-
promise soundness: the partitioning phase may assign
more functions to the enclave than necessary, but never
excludes security-sensitive functions from the enclave.

Modelling external library calls. Static analyses must
model the behaviour of all invoked functions, including
those in external libraries with unavailable definitions. A
conservative model makes all output parameters depen-
dent on all input parameters and hence upholds the secu-
rity guarantees; more precise models can consider actual
function behaviour to specify dependencies [5, 36].

Annotations. Most static analysis tools for security rely
on developer annotations of sources/sinks of security-
sensitive data [35, 76]. While these are application-
specific, in many cases they are easy to identify, e.g. when
they are well-known library functions for I/O channels.

4 Code Generation and Hardening
The code generation phase produces a source-level par-
titioning of the application based on the partition speci-
fication (PS) (§4.1). In addition, it hardens the enclave
boundary against malicious input, ensuring that the en-
clave upholds the confidentiality and integrity guarantees
for sensitive data (§4.2). The result is a set of enclave and
outside source files, along with an enclave specification,
which can be compiled using the Intel SGX SDK.

4.1 Code transformation
The code transformation must (a) handle calls into and
out of the enclave; and (b) change the allocation, scope
and lifetime of variables and functions in the generated
enclave and non-enclave versions of the code.

Glamdring provides a code generator that relies on the
LLVM/Clang compiler toolchain [14, 49] to rewrite the
preprocessed C source code. It uses the Clang libraries
to parse source code into an abstract syntax tree (AST),
and traverses the AST to analyse and modify the source
code. In addition to the enclave and outside source files,
it produces an interface specification in the enclave def-
inition language (EDL) required by the Intel SDK [43].
The code generation proceeds in three steps:
(i) Moving function definitions into the enclave. For
each source file, the code generator creates an enclave
and an outside version, which contain a copy of the orig-
inal preprocessed input file. From the enclave version, it
removes all functions not listed in the PS; from the out-
side version, it removes all listed enclave functions.
(ii) Generating ecalls and ocalls. Based on the set of
enclave functions, the code generator identifies the ecalls
and ocalls that are part of the enclave boundary interface.
It traverses the direct call expressions in each function:
(a) if the caller is an untrusted function and the callee is
an enclave function, the callee is made an ecall; (b) if the
caller is an enclave function and the callee is an untrusted
function, the callee is made an ocall.1

Adding stubs for encryption/decryption. As mentioned
in §3.1, the security-sensitive data received from (and re-
turned to) clients is encrypted (and integrity-protected)
using a shared AES-GCM key. The code generator adds
code to (a) decrypt security-sensitive data entering the
enclave at locations annotated as sensitive-source, and
(b) encrypt the security-sensitive data leaving the enclave
at locations annotated as sensitive-sink. The applica-
tion client must be modified to handle the corresponding
encryption/decryption operations.
Handling C library functions. Calls to C library functions
are handled separately. A subset is supported by the In-
tel SDK inside the enclave and is handled in a polymor-

1Pointers passed outside the enclave are only deep-copied if data in
enclave-allocated memory needs to be declassified—the programmer
needs to implement this manually.

290 2017 USENIX Annual Technical Conference USENIX Association

phic manner: the enclave and untrusted code call their
respective versions.2 For unsupported library functions,
e.g. those making system calls, the code generator cre-
ates ocalls to the corresponding library function linked to
the outside code. These ocalls violate the enclave bound-
ary identified through static analysis and hence will be
hardened with runtime checks (see §4.2).
Handling function pointers as interface arguments. Func-
tion pointer arguments to ecalls and ocalls are special
cases because the target function may not exist at the
point of invocation of the function pointer. For example,
if an ecall passes a function pointer targeting a function
on the outside, the program will fail when the enclave at-
tempts to call that function pointer directly. Glamdring
employs a static function pinter analysis [89] to iden-
tify the possible target functions of function pointer ar-
guments passed to ecalls and ocalls. The code generator
then creates ecalls or ocalls for the target functions and
uses a trampoline to jump to the correct one, as shown in
the jump to func function:

/* Initialised to func_A and func_B outside */
int (*addrof_func_A)(int); int (*addrof_func_B)(int);

int jump_to_func(int (*fptr)(int), int x) {
if (fptr==addrof_func_A) return ocall_func_A(x);
else if (fptr==addrof_func_B) return ocall_func_B(x);

}

int ecall_enclave_func(int (*fptr)(int),int y) {
return jump_to_func(fptr, y);

}

(iii) Handling memory allocation. The code generator
also uses the PS to decide which memory allocations
must be placed inside the enclave. For the memory allo-
cations listed in the PS, nothing needs to be done because
a malloc call inside the enclave allocates memory inside;
for other memory allocations, a function must allocate
memory outside, and the malloc is replaced by an ocall
to the outside. This arises when placing non-sensitive
code into the enclave when (i) partitioning at the function
instead of statement level; and (ii) moving functions into
the enclave using EBR (see §3.3).

4.2 Code hardening
Next we analyse the attack surface of the enclave bound-
ary interface and describe the protection techniques of the
code generation phase against attacks (R1).
Interface attacks. The security of the enclave code de-
pends on the inputs that it receives from the enclave in-
terface. An attacker may manipulate the parameters to
ecalls, the results of ocalls, and accesses to globals.
Secure by construction: The enclave code is, by construc-
tion, immune to input manipulation attacks. As long as

2Linked calls to the few stateful C library functions (e.g. strtok)
typically do not span multiple functions, making it unlikely that such
calls get partitioned into different regions.

Glamdring’s static analysis is sound, it transitively iden-
tifies all code that can affect the confidentiality and in-
tegrity of security-sensitive data annotated by the devel-
oper, placing it inside the enclave (see §3.2).

However, static analysis infers invariants about the pos-
sible values of program variables at different program
points, permitting it to prune unfeasible program paths
from analysis. The soundness of the static analysis there-
fore depends on these invariants holding at runtime. Any
invariant that relates to untrusted code or data may be
compromised by an attacker. The following code snippet
gives an example of a debug option that is deactivated in
the source code:

/* Outside code*/
int dump_flag = 0; // Can be modified by attacker.

/* Enclave code */
int ecall_enclave_func(int dump_flag) {
char* dump_data = malloc(...);
if(dump_flag == 1)
memcpy(dump_data, sensitive_data);

else
memcpy(dump_data, declassify(sensitive_data));

write_to_untrusted(dump_data);
}

Static analysis infers that the value of dump flag can-
not be 1, making it impossible to take the branch that
does not include the declassify() call. Since the value
of dump flag does not affect the control flow leading to
sensitive data release, Glamdring would allocate it out-
side the enclave. An attacker could set dump flag to any
value at runtime, including 1, to cause data disclosure.
Runtime invariant checks. To prevent such attacks, Glam-
dring enforces the invariants assumed by the static anal-
ysis at runtime. It does this by extracting invariants from
the analysis phase and adding them as runtime checks in
the code generation phase. Glamdring applies checks on
global variables and parameters passed into and out of
ecalls and ocalls. In the above example, Glamdring adds
a check assert(dump flag == 0).

Checks are also applied to pointers. The static analysis
infers the subset of malloc calls that may allocate mem-
ory pointed to by each pointer. Glamdring distinguishes
between two cases: (a) the analysis infers that a pointer
may only point to untrusted memory. A runtime check
upholds this and any other invariants on pointer aliasing;
or (b) the pointer may point to enclave memory. Here,
Glamdring’s invariant checks prevent pointer-swapping
attacks (i.e. a trusted pointer being replaced by another
trusted pointer): Glamdring instruments the malloc calls
inferred for that pointer inside the enclave, storing the ad-
dresses and sizes of allocated memory. When a trusted
pointer is passed to the enclave via an ecall, it is checked
to ensure that it points to a memory region allocated by
one of the statically inferred malloc calls for that pointer.
This upholds the results of the static pointer analysis at
runtime with enclave checks.

USENIX Association 2017 USENIX Annual Technical Conference 291

For checks on global variables allocated outside, be-
fore each use, Glamdring copies the value inside and ap-
plies the check to the local copy.
Enclave call ordering attacks. By construction, Glam-
dring prevents an attacker from subverting the security
guarantees by changing the order in which ecalls are in-
voked. The transitivity of static analysis ensures that all
functions that have a data/control flow dependence rela-
tionship (in either direction) with security-sensitive data
are placed inside the enclave. Therefore, any change in
the ordering of ecalls cannot affect the security guaran-
tees as long as the statically-inferred enclave boundary is
enforced. The EBR operation does change this boundary,
but only by placing extra functions inside, and therefore
cannot violate the security guarantees.
Iago attacks. For applications that use C library func-
tions unavailable in Intel SGX SDK, Glamdring adds
ocalls (see §4.1). The arguments to such ocalls may ex-
pose security-sensitive data or their results may cause in-
tegrity violations, leading to Iago attacks [12]. For these
functions, Glamdring enforces statically inferred invari-
ants on the return values at runtime. Further protection
could be done similar to I/O shields in SCONE [2].
Replay attacks. An attacker may tamper with the pro-
gram state assumed by the enclave by replaying previ-
ously issued ecalls. Glamdring guarantees the freshness
of encrypted sensitive data that is passed to ecalls. The
client affixes a freshness counter to security-sensitive data
as part of its encryption (see §3.3). The enclave stores the
latest freshness counter for each data item, and validates
freshness at ecalls. After an enclave restart, the freshness
counters must be restored to their latest values [77].
Enclave code vulnerabilities. Enclave code may con-
tain vulnerabilities that can be exploited by an attacker.
By reducing the amount of code executed in the en-
clave, Glamdring makes it more feasible to apply exist-
ing techniques to discover and rectify bugs such as buffer-
overflows [37,48], data races [45] and memory leaks [47].

5 Evaluation
We evaluate Glamdring by applying it to the Memcached
key/value store [24], the LibreSSL library [7] and the Dig-
ital Bitbox bitcoin wallet [70]. §5.1 describes the security
objectives, the source code annotations and the resulting
partitioning and its interface. The TCB (LOC) identified
by Glamdring varies between 22% and 40%, and the size
of the interface between 41–171 ecalls and 51–615 ocalls
for the three applications. §5.2 presents performance re-
sults on SGX hardware: the partitioned applications exe-
cute with 0.3×–0.8× of the native performance.
Glamdring implementation. Glamdring uses the Frama-
C Aluminium [25] static analysis framework, with the
“Impact Analysis” [26] and “Slicing” [27] plug-ins and
CodeSurfer 3.0.0 [34]. The Glamdring code generator

uses LLVM/Clang 3.9 and has approx. 5,000 LOC.
Memcached [24] is a distributed key/value store. It sup-
ports several operations: set(k,v), get(k), delete(k),
and increment/decrement(k,i). We apply Glamdring to
Memcached 1.4.25 that includes libevent 1.4.14 [62], an
asynchronous event library. Memcached has 31,100 LOC
and 655 functions.
LibreSSL [7] is a fork of the OpenSSL cryptographic
library [18], with the goal to provide a simpler and
more secure implementation. We apply Glamdring to Li-
breSSL 2.4.2 to secure its functionality when serving as
a certificate authority (CA). LibreSSL has 176,600 LOC
and 5,508 functions, which are divided into three libraries,
libcrypto, libssl and apps/openssl. We compile Li-
breSSL without inline assembly because our static analy-
sis does not support it.
Digital Bitbox [70] is a bitcoin wallet designed for high-
security USB microcontrollers. It supports: (i) hierarchi-
cal deterministic key generation; (ii) transaction signing;
and (iii) encrypted communication. We apply Glamdring
to Digital Bitbox 2.0.0 with Secp256k1 1.0.0, a crypto-
graphic library, and Yajl 2.1.0, a JSON library. Digital
Bitbox has 23,300 LOC and 873 functions.

5.1 Security evaluation
We evaluate the security of the partitioned application in
terms of the TCB size and the exposed enclave interface.
5.1.1 Memcached
Security objectives. We want to protect the integrity and
confidentiality of all key/value pairs in an untrusted Mem-
cached deployment, preventing an attacker from reading
or modifying the stored key/value data. For this, we use
the source code annotations described in §3.1.
Security-sensitive code. Tab. 1 shows that Glamdring
places 40% of LOC, 42% of functions and 68% of global
variables of Memcached inside the enclave. EBR moves
a single additional function into the enclave, reducing the
ocall crossings by an order of magnitude for get and set

operations. We conclude that a large portion of the Mem-
cached codebase (without libevent) is security-sensitive,
as 87% of its functions and 85% of its global variables
are assigned to the enclave.
Partitioned architecture. Glamdring places the follow-
ing Memcached functionality inside the enclave: (i) bina-
ry/ASCII protocol handling functions; (ii) slab and cache
memory management functions that manipulate the data
structures responsible for the internal storage of key/value
pairs; and (iii) the hash functions over key/value pairs.
The functionality placed outside includes: (i) thread ini-
tialization and registration functions; (ii) libevent func-
tions for socket polling and network I/O; and (iii) signal
handlers and string utility functions.
Enclave interface. The enclave interface (see Tab. 1) has
41 ecalls and 146 ocalls. Out of these, 82 ocalls are to C

292 2017 USENIX Annual Technical Conference USENIX Association

Application LOC Functions Global
variables

Security-
sensitive LOC

Security-sensitive
functions

Security-sensitive
global variables

Ecalls Ocalls C lib.
ocalls

App.
ocalls

Ecall crossings per
application request

Ocall crossings per
application request

get set get set

Memcached 31,100 655 119 12,474 (40%) 273 (42%) 81 (68%) 41 146 82 64 1 1 2 2
Memcached w/o EBR 31,100 655 119 272 (42%) 81 (68%) 41 147 82 65 1 1 18 34

Memcached v1.4.25 13,800 247 84 215 (87%) 72 (85%)
libevent v1.4.14 17,300 408 35 57 (14%) 9 (26%)

sign sign

LibreSSL 176,600 5,508 1,034 38,291 (22%) 918 (17%) 163 (16%) 171 613 23 312 6,617 110
LibreSSL w/o EBR 176,600 5,508 1,034 916 (17%) 163 (16%) 171 615 23 314 16,545 8,235

libcrypto v2.4.2 124,800 4,550 833 654 (14%) 91 (11%)
libssl v2.4.2 24,300 628 42 83 (13%) 7 (17%)
apps v2.4.2 27,500 330 159 179 (54%) 65 (41%)

seed sign random seed sign random

Digital Bitbox 23,300 873 105 8,743 (38%) 365 (42%) 55 (52%) 114 51 20 31 23 4 7 4 0 0
Digital Bitbox w/o EBR 23,300 873 105 361 (42%) 55 (52%) 118 55 20 35 3,252 6,937 672 59 12 11

Digital Bitbox v2.0.0 7,900 382 81 195 (51%) 48 (60%)
Secp256k1 v1.0.0 12,900 112 9 52 (46%) 1 (11%)
Yajl v2.1.0 2,500 379 15 114 (30%) 6 (40%)

Table 1: TCB sizes, enclave interfaces and enclave crossings for Glamdring applications (Application requests are:
(i) get, set for Memcached; (ii) sign for LibreSSL; and (iii) seed, sign, random for Digital Bitbox.)

library functions unavailable inside the enclave; 64 ocalls
are to application functions.

To protect the security-sensitive data between the Mem-
cached client and the enclave interface, Glamdring en-
crypts the following parameters at the client for each
request: (i) the operation to perform; (ii) the key; and
(iii) the value. The keys, values and the request outcome
are encrypted in the client response.
5.1.2 LibreSSL
Security objectives. Our goal is to protect the confiden-
tiality of the private key of the root certificate of the Li-
breSSL CA. We annotate the private key as follows:

int ca_main(int argc, char** argv) {
...
#pragma glamdring sensitive-source(pkey)
pkey = load_key(bio, keyfile, keyform, 0, key, "...");
...

}

Security-sensitive code. Tab. 1 shows that Glamdring
places 22% of LOC, 17% of functions and 16% of global
variables inside the enclave. EBR moves 2 functions into
the enclave, thereby: (i) more than halving the number
of ecall crossings; and (ii) reducing the number of ocall
crossings by an order of magnitude for sign requests. The
majority of functions and global variables assigned to the
enclave originate from the libcrypto library, which con-
tains most of the certificate signing logic.
Partitioned architecture. Glamdring places only a sub-
set of LibreSSL into the enclave: (i) the entropy/random
number generator; (ii) the RSA and Big Numbers mod-
ule; and (iii) the X509 module, which stores the certifi-
cates. The functionality placed outside includes: (i) the
TLS/SSL modules for secure communication; (ii) digest
algorithms (MD5, SHA256); and (iii) cryptographic pro-
tocols unrelated to certificate signing (DSA, AES)
Enclave interface. LibreSSL exposes 171 ecalls and
613 ocalls (see Tab. 1). Out of those, only 23 ocalls pro-
vide access to C library functions; 49% of ocalls provide
access to global variables; and the remaining 278 ocalls
are used to execute outside LibreSSL functions.

Glamdring places the private key of the root certificate
and any variables that depend on it inside the enclave.
The communication between the client requesting a cer-
tificate signature and the enclave involves: (i) reading the
certificate to be signed; and (ii) outputting the signature.
We assume that the root certificate and its private key are
given to the enclave during initialisation [44]. Since the
signed certificate is not confidential, no explicit declassi-
fication is needed before writing it to disk via an ocall.
5.1.3 Digital Bitbox
Security objectives. We want to secure Digital Bitbox in
a remote deployment, such as an online bitcoin service.
An attacker must not (i) read/modify the private keys in
the wallet; and (ii) issue commands such as transactions.

We consider three API calls security-sensitive:
(i) seed() to create a new wallet; (ii) sign() to sign a
transaction and return the signature; and (iii) random()

to return a random number. We annotate these API calls
with security annotations. The listing below shows the
annotation added to protect the transaction signature re-
turned to the user for the seed() API call:

int wallet_sign(char *message, char *keypath) {
uint8_t sig[64];
...
ecc_sign_digest(node.private_key, data, sig)
...
#pragma glamdring sensitive-sink(sig)
return commander_fill_signature_array(sig, pub_key);

}

Security-sensitive code. Glamdring places 38% of LOC,
42% of functions and 52% of global variables inside the
enclave (see Tab. 1). EBR increases the TCB by 4 func-
tions, reducing the number of ecall and ocall crossings at
runtime by between 1 and 3 orders of magnitude, for the
seed, sign and random API calls. Only half of the Digital
Bitbox code itself is security-sensitive: 51% of functions
and 60% of global variables.
Partitioned architecture. The Digital Bitbox functional-
ity placed inside the enclave includes: (i) command pro-
cessing functions for specific API calls; (ii) code for gen-
erating seeds (using the SGX-provided hardware random

USENIX Association 2017 USENIX Annual Technical Conference 293

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(a) Read-only workload

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(b) Write-only workload

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(c) Read/write workload

Figure 3: Throughput versus latency for Memcached native, with SCONE and with Glamdring
Secure application approaches LOC Binary Size Throughput

Memcached with Glamdring 42,800 770 kB 160 kreq/s
Security-sensitive Memcached 12,450
Glamdring code generation & hardening 5,662
Intel SGX SDK 24,688

Memcached with SCONE 149,298 3.3 MB 270–330 kreq/s
Memcached 28,807
Musl lib. C 105,885
Stunnel (network encryption) 14,606

Memcached with Graphene 746,716 4.1 MB 65–95 kreq/s
Memcached 28,807
Graphene 693,221
Intel SGX SDK 24,688

Table 2: TCB sizes and performance for Memcached
for Glamdring, SCONE and Graphene

generator); and (iii) elliptic curve operations for transac-
tion signing. The functionality placed outside includes:
(i) wallet management functions for retrieving the pub-
lic key and address formats; (ii) the command interface
for handling API calls and constructing responses; and
(iii) elliptic curve and JSON parsing utility functions.
Enclave interface. Digital Bitbox exposes 114 ecalls and
55 ocalls (see Tab. 1). 36% of ocalls are to C library func-
tions unavailable inside the enclave; 64% are to applica-
tion functions outside the enclave.

To protect the security-sensitive data between the client
and the application, Glamdring encrypts: (i) the command
to execute (seed()/sign()); (ii) the user-provided entropy
for seed(); (iii) the transaction data for sign(); (iv) the
value of seed(); (v) the signature of sign() returned to the
client; and (vi) the generated random number. Performing
data protection at this granularity prevents an attacker
from issuing commands to Digital Bitbox, and permits
Glamdring to move the majority of the JSON parsing
functions outside the enclave, as only a subset of the API
request/response is security-sensitive.
5.1.4 Discussion
Our security evaluation has led to several insights:
First, Glamdring achieves small enclave sizes, protect-
ing security-sensitive functionality for real-world applica-
tions. Tab. 2 compares the TCB for Memcached of Glam-
dring with SCONE [2] and Graphene [55, 81], which
place the whole application inside the enclave. As can
be seen, Glamdring is one-third the size of SCONE, and
one order of magnitude smaller than Graphene in terms
of enclave LOC; around 6,000 LOC are added by Glam-
dring to the TCB through the code generator and enclave
interface hardening. In binary sizes, Glamdring is 4× and
5× smaller than SCONE and Graphene, respectively.

Second, EBR is effective at reducing the number of
ecall and ocall crossings at runtime, despite only moving
a few additional functions into the enclave. In the case
of Digital Bitbox, moving four functions into the enclave
reduces the number of enclave boundary crossings by up
to three orders of magnitude.

5.2 Performance evaluation
We evaluate the performance of the three partitioned ap-
plications in terms of throughput and latency.
Experimental set-up. All experiments are executed on
an SGX-supported 4-core Intel Xeon E3-1280 v5 at
3.70 GHz with 64 GB of RAM, running Ubuntu 14.04
LTS with Linux kernel 3.19 and the Intel SGX SDK 1.7.
We deactivate hyper-threading and compile the applica-
tions using GCC 4.8.4 with -O2 optimisations.
Application benchmarks. We evaluate Memcached with
the YCSB benchmark [15]. Clients run on separate ma-
chines connected via a Gigabit network link. We increase
the number of clients until the server is saturated. Mem-
cached is initialised with the YCSB default of 1000 keys
with 1 KB values. We then vary the percentage of get

(read) and set (write) operations.
For LibreSSL, we measure the throughput and latency

when signing certificates using SHA-256 and a 4096-bit
RSA key. For Digital Bitbox, we observe the performance
for the seed, sign, and random API calls using workloads
from the Digital Bitbox test suite: (i) tests sign seeds a
wallet and signs 64-byte transactions; (ii) tests aes cbc

seeds a wallet with user-provided entropy, sets passwords
and performs encryption/decryption with AES-256; and
(iii) tests random returns random numbers.
Results. We measure the throughput and latency for
Memcached: (i) partitioned by Glamdring; (ii) exe-
cuted by SCONE (without network encryption); (iii) by
Graphene; and (iv) natively, as the request rate is in-
creased. We consider three workloads: read-only, write-
only and 50%/50% read/write.

Fig. 3 shows that all three variants exhibit consistent
behaviour across the workloads. Glamdring shows a
throughput of 160k requests/s; SCONE (without encryp-
tion) achieves between 270k–330k requests/s; Graphene
between 65k–95k requests/s; and the native Memcached
achieves around 530k–600k requests/sec.

The reason for Glamdring’s lower throughput com-

294 2017 USENIX Annual Technical Conference USENIX Association

 1

 1.2

 1.4

 1.6

 1.8

 2

LibreSSL sign

tests_sign
tests_aes_cbc

tests_random

 1

 1.2

 1.4

 1.6

 1.8

 2

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t
o
v
e
rh

e
a
d

R
e
la

ti
v
e
 l
a
te

n
c
y

Throughput overhead
Latency overhead

Figure 4: Throughput and latency overhead for Digital
Bitbox and LibreSSL

pared to SCONE is that SCONE avoids all enclave tran-
sitions; it trades off TCB size for performance (see §2.3)
and requires user-level enclave threading to avoid tran-
sitions. Enclave transitions dominate the cost of pro-
cessing a request; by batching multiple get requests
together using multi-get, Glamdring achieves over
210k requests/sec. However, Glamdring has only a third
of the TCB of SCONE (see Tab. 2). The overhead of a li-
brary OS means that Memcached with Graphene exhibits
worse performance than Glamdring.

Fig. 4 shows the performance of LibreSSL and Digi-
tal Bitbox with Glamdring compared to their native ver-
sions. The throughput of certificate signing in LibreSSL
is 0.6× compared to native execution, decreasing from
63 to 36 signatures per second on each CPU core. The
performance of LibreSSL is limited by a single ecall
(bn sub part words), which is central to the RSA algo-
rithm and accounts for 95% of all enclave transitions. As
for Digital Bitbox, compared to native execution, the rel-
ative throughput is between 0.7× and 0.8×; the relative
latency is between 1.3× and 1.4×.
Effect of EBR. By comparing the performance of parti-
tioned applications before and after applying the EBR op-
timisation, we found that the latter increased the through-
put by 1.6× to 4.0× for the three applications, at the cost
of at most 4 additional functions in the enclave.

6 Related Work
Privilege separation. The attack surface of applications
can be reduced in many ways [11,31,35,51,66,85]. Priv-
Trans [11] performs a least-privilege partitioning of an
application into a privileged monitor and an unprivileged
slave component using static analysis, without consider-
ing the integrity of sensitive data. ProgramCutter [85] and
Wedge [8] rely on dynamic analysis to partition applica-
tions. SeCage [51] combines static and dynamic analysis
to partition applications, and the isolation is enforced us-
ing CPU virtualisation features. In contrast, Glamdring
does not need a trusted OS or hypervisor and respects the
constraints of trusted execution.

SOAAP [35] helps developers to reason about the
potential compartmentalisation of applications based on
source annotations and static analysis. Unlike Glamdring,
it does not support automated code partitioning. Rubinov

et al. [66] propose a partitioning framework for Android
applications. It refactors the source code and adds a set
of privileged instructions. However, it only supports type-
safe Java applications and requires users to re-implement
the security-sensitive functionality in C.
Protecting applications from an untrusted OS. A num-
ber of approaches have been proposed to deal with an un-
trusted OS that spans millions of LOC. NGSCB [57] and
Proxos [79] execute both an untrusted and a trusted OS us-
ing virtualisation, and security-sensitive applications are
managed only by the trusted OS. The TCB, however, still
includes a full OS. In more recent work, Overshadow [13],
SP3 [87], InkTag [39] and Virtual Ghost [20] protect ap-
plication memory from an untrusted OS by extending the
virtual machine monitor (VMM). Such approaches put
trust in the VMM, and cannot protect against attackers
with privileged access, such as system administrators.
Trusted hardware. Use of trusted hardware, such as se-
cure co-processors [50] and trusted platform modules
(TPM) [80], can protect against attackers with physical
access. A TPM can measure system integrity and provide
remote attestation to verify the software stack [29]. Since
the TPM measurement will include the OS and any sys-
tem libraries, the TCB likely comprises millions of LOC.

Flicker [53] reduces the integrity measurement to a
TCB of just 250 LOC, but lacks relevant system support
and suffers from slow TPM operations. TrustVisor [52] is
a special-purpose VMM that uses software-based µTPMs
for application integrity checking, but it focuses on small
pieces of application logic and requires a trusted hypervi-
sor. CloudVisor [88] provides integrity and confidential-
ity protection for virtual machines using nested virtuali-
sation, but this leads to VM-sized TCBs.

7 Conclusions
We described Glamdring, the first partitioning framework
that helps developers leverage SGX enclaves for C appli-
cations. Glamdring uses static program analysis to decide
which subset of the application code to protect, and offers
guarantees that the confidentiality and integrity of applica-
tion data cannot be compromised, even when an attacker
has complete control over the machine. Our experimen-
tal evaluation demonstrates that Glamdring is sufficiently
practical to handle real-world applications.

8 Acknowledgements
This work has received funding from the European
Union’s Horizon 2020 programme under grant agree-
ments 645011 (SERECA) and 690111 (SecureCloud),
and from the UK Engineering and Physical Sciences
Research Council (EPSRC) under the CloudSafetyNet
project (EP/K008129) and the EPSRC Centre for Doc-
toral Training in High Performance Embedded and Dis-
tributed Systems (HiPEDS) (EP/L016796/1).

USENIX Association 2017 USENIX Annual Technical Conference 295

References
[1] A R M B R U S T , M . , F O X , A . , G R I F F I T H , R . , J O S E P H ,

A . D . , K AT Z , R . , K O N W I N S K I , A . , L E E , G . , PAT T E R -
S O N , D . , R A B K I N , A . , S T O I C A , I . , A N D Z A H A R I A , M .
A View of Cloud Computing. Commun. ACM (2010).

[2] A R N A U T O V, S . , T R A C H , B . , G R E G O R , F. , K N A U T H ,
T. , M A R T I N , A . , P R I E B E , C . , L I N D , J . , M U T H U K U -
M A R A N , D . , O ’ K E E F F E , D . , S T I L LW E L L , M . L . ,
E T A L . SCONE: Secure Linux Containers with Intel SGX. In
OSDI (2016).

[3] Amazon Web Services. https://aws.amazon.com, 2016.

[4] Microsoft Azure. https://azure.microsoft.com, 2016.

[5] B A U D I N , P. , F I L L I Â T R E , J . - C . , M A R C H É , C . ,
M O N AT E , B . , M O Y, Y. , A N D P R E V O S T O , V. ACSL:
ANSI C Specification Language, 2008.

[6] B A U M A N N , A . , P E I N A D O , M . , A N D H U N T , G . Shield-
ing Applications from an Untrusted Cloud with Haven. In OSDI
(2014).

[7] B E C K , B . LibreSSL–An OpenSSL replacement. The first 30
days, and where we go from here. BSDCAN, 2014.

[8] B I T TA U , A . , M A R C H E N K O , P. , H A N D L E Y, M . , A N D
K A R P, B . Wedge: Splitting applications into reduced-privilege
compartments. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2008), NSDI’08, USENIX Association, pp. 309–322.

[9] B R E N N E R , S . , W U L F , C . , L O R E N Z , M . , W E I C H -
B R O D T , N . , G O LT Z S C H E , D . , F E T Z E R , C . , P I E T-
Z U C H , P. , A N D K A P I T Z A , R . SecureKeeper: Confidential
ZooKeeper using Intel SGX. In Middleware (2016).

[10] B R I C K E L L , E . , G R A U N K E , G . , N E V E , M . , A N D
S E I F E R T , J . - P. Software mitigations to hedge AES against
cache-based software side channel vulnerabilities. IACR
Cryptology ePrint Archive (2006).

[11] B R U M L E Y, D . , A N D S O N G , D . Privtrans: Automatically
Partitioning Programs for Privilege Separation. In USENIX Secu-
rity (2004).

[12] C H E C K O WAY, S . , A N D S H A C H A M , H . Iago Attacks: Why
the System Call API is a Bad Untrusted RPC Interface. In ASP-
LOS (2013).

[13] C H E N , X . , G A R F I N K E L , T. , L E W I S , E . C . , S U B R A H -
M A N YA M , P. , WA L D S P U R G E R , C . A . , B O N E H , D . ,
D W O S K I N , J . , A N D P O R T S , D . R . Overshadow: A
Virtualization-based Approach to Retrofitting Protection in Com-
modity Operating Systems. In ASPLOS (2008).

[14] clang: a C language family frontend for LLVM. http://clang.
llvm.org, 2016.

[15] C O O P E R , B . F. , S I L B E R S T E I N , A . , TA M , E . , R A -
M A K R I S H N A N , R . , A N D S E A R S , R . Benchmarking Cloud
Serving Systems with YCSB. In SoCC (2010).

[16] C O S TA N , V. , A N D D E VA D A S , S . Intel SGX Explained.
Tech. rep., Cryptology ePrint Archive, 2016.

[17] C O WA N , C . , B E AT T I E , S . , K R O A H - H A R T M A N , G . ,
P U , C . , WA G L E , P. , A N D G L I G O R , V. SubDomain: Parsi-
monious Server Security. In LISA (2000).

[18] C O X , M . , E N G E L S C H A L L , R . , H E N S O N , S . , L A U R I E ,
B . , E T A L . The OpenSSL Project. https://www.openssl.
org/, 2002.

[19] C R A N E , S . , H O M E S C U , A . , B R U N T H A L E R , S . ,
L A R S E N , P. , A N D F R A N Z , M . Thwarting Cache Side-
Channel Attacks Through Dynamic Software Diversity. In NDSS
(2015).

[20] C R I S W E L L , J . , D A U T E N H A H N , N . , A N D A D V E , V. Vir-
tual Ghost: Protecting Applications from Hostile Operating Sys-
tems. In ASPLOS (2014).

[21] D O U L I G E R I S , C . , A N D M I T R O K O T S A , A . DDoS At-
tacks and Defense Mechanisms: Classification and State-of-the-
art. Comput. Netw. (2004).

[22] D W O R K I N , M . Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep.,
National Institute of Standards and Technology (NIST), 2007.

[23] F E R R A N T E , J . , O T T E N S T E I N , K . J . , A N D WA R R E N ,
J . D . The Program Dependence Graph and Its Use in Optimiza-
tion. Trans. Program. Lang. Syst. (1987).

[24] F I T Z PAT R I C K , B . Distributed Caching with Memcached.
Linux Journal (2004).

[25] Frama-C Software Analyzers. http://frama-c.com/what is.
html, 2016.

[26] Frama-C Impact analysis plug-in. http://frama-c.com/
impact.html, 2016.

[27] Frama-C Slicing plug-in. http://frama-c.com/slicing.html,
2016.

[28] F R E E S O F T WA R E F O U N D AT I O N , I N C . Gcov - Using
the GNU Compiler Collection (GCC). https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html#Gcov, 2017.

[29] G A R F I N K E L , T. , P F A F F , B . , C H O W, J . , R O S E N B L U M ,
M . , A N D B O N E H , D . Terra: A Virtual Machine-based Plat-
form for Trusted Computing. In SOSP (2003).

[30] G E M A LT O N V. No One is Immune to Breaches
as 183 Million Accounts Compromised in Q3 2014.
https://safenet.gemalto.com/news/2014/q3-data-
breaches-compromise-183-million-customer-accounts,
2014.

[31] G E N E I ATA K I S , D . , P O R T O K A L I D I S , G . , K E M E R L I S ,
V. P. , A N D K E R O M Y T I S , A . D . Adaptive Defenses for
Commodity Software Through Virtual Application Partitioning.
In CCS (2012).

[32] G E N T RY, C . Fully Homomorphic Encryption Using Ideal Lat-
tices. In STOC (2009).

[33] G H A R AT , P. M . , K H E D K E R , U . P. , A N D M Y C R O F T , A .
Flow-and Context-Sensitive Points-To Analysis Using General-
ized Points-To Graphs. In SAS (2016).

[34] G R A M M AT E C H , I N C . CodeSurfer. https://www.
grammatech.com/products/codesurfer, 2016.

[35] G U D K A , K . , WAT S O N , R . N . , A N D E R S O N , J . , C H I S -
N A L L , D . , D AV I S , B . , L A U R I E , B . , M A R I N O S , I . ,
N E U M A N N , P. G . , A N D R I C H A R D S O N , A . Clean Ap-
plication Compartmentalization with SOAAP. In CCS (2015).

[36] G U T TA G , J . V. , A N D H O R N I N G , J . J . Larch: Languages
and Tools for Formal Specification. Springer Science & Business
Media, 2012.

[37] H A L L E R , I . , S L O W I N S K A , A . , N E U G S C H WA N D T N E R ,
M . , A N D B O S , H . Dowsing for Overflows: A Guided Fuzzer
to Find Buffer Boundary Violations. In USENIX Security (2013).

[38] H A R D E K O P F , B . , A N D L I N , C . Flow-sensitive Pointer Anal-
ysis for Millions of Lines of Code. In CGO (2011).

[39] H O F M A N N , O . S . , K I M , S . , D U N N , A . M . , L E E ,
M . Z . , A N D W I T C H E L , E . InkTag: Secure Applications on
an Untrusted Operating System. In ASPLOS (2013).

[40] H O R W I T Z , S . , R E P S , T. , A N D B I N K L E Y, D . Interproce-
dural Slicing Using Dependence Graphs. In PLDI (1988).

296 2017 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com
https://azure.microsoft.com
http://clang.llvm.org
http://clang.llvm.org
https://www.openssl.org/
https://www.openssl.org/
http://frama-c.com/what_is.html
http://frama-c.com/what_is.html
http://frama-c.com/impact.html
http://frama-c.com/impact.html
http://frama-c.com/slicing.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://safenet.gemalto.com/news/2014/q3-data-breaches-compromise-183-million-customer-accounts
https://safenet.gemalto.com/news/2014/q3-data-breaches-compromise-183-million-customer-accounts
https://www.grammatech.com/products/codesurfer
https://www.grammatech.com/products/codesurfer

[41] I D E N T I T Y T H E F T R E S O U R C E C E N T E R . 2016 Breach
List. http://www.idtheftcenter.org/images/breach/
ITRCBreachReport 2016.pdf, 2016.

[42] I N T E L C O R P. Software Guard Extensions Programming Ref-
erence, Ref. 329298-002US. https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf,
2014.

[43] I N T E L C O R P. Intel Software Guard Extensions (Intel SGX)
SDK. https://software.intel.com/sgx-sdk, 2016.

[44] J O H N S O N , S I M O N E T A L . Intel® Software Guard Ex-
tensions: EPID Provisioning and Attestation Services. https:
//software.intel.com/en-us/blogs/2016/03/09/intel-
sgx-epid-provisioning-and-attestation-services,
2016.

[45] J U L A , H . , T R A L A M A Z Z A , D . , Z A M F I R , C . , A N D C A N -
D E A , G . Deadlock immunity: Enabling systems to defend
against deadlocks. In OSDI (2008).

[46] K E L B E R T , F. , A N D P R E T S C H N E R , A . A Fully Decentral-
ized Data Usage Control Enforcement Infrastructure. In ACNS
(2015).

[47] K U Z N E T S O V, V. , S Z E K E R E S , L . , PAY E R , M . , C A N -
D E A , G . , S E K A R , R . , A N D S O N G , D . Code-pointer in-
tegrity. In OSDI’14 (2014).

[48] L A R O C H E L L E , D . , A N D E VA N S , D . Statically Detecting
Likely Buffer Overflow Vulnerabilities. In USENIX Security
(2001).

[49] L AT T N E R , C . , A N D A D V E , V. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In
CGO (2004).

[50] L I N D E M A N N , M . , P E R E Z , R . , S A I L E R , R . , VA N
D O O R N , L . , A N D S M I T H , S . Building the IBM 4758 Secure
Coprocessor. Computer (2001).

[51] L I U , Y. , Z H O U , T. , C H E N , K . , C H E N , H . , A N D X I A ,
Y. Thwarting Memory Disclosure with Efficient Hypervisor-
enforced Intra-domain Isolation. In CCS (2015).

[52] M C C U N E , J . M . , L I , Y. , Q U , N . , Z H O U , Z . , D AT TA ,
A . , G L I G O R , V. , A N D P E R R I G , A . TrustVisor: Efficient
TCB Reduction and Attestation. In S&P (2010).

[53] M C C U N E , J . M . , PA R N O , B . J . , P E R R I G , A . , R E I T E R ,
M . K . , A N D I S O Z A K I , H . Flicker: An Execution Infrastruc-
ture for TCB Minimization. In Eurosys (2008).

[54] M I S R A , S . C . , A N D B H AV S A R , V. C . Relationships
Between Selected Software Measures and Latent Bug-Density:
Guidelines for Improving Quality. Springer Berlin Heidelberg,
2003, p. 724732.

[55] O S C A R L A B. Graphene-SGX. https://github.com/
oscarlab/graphene, 2017.

[56] O T T E N S T E I N , K . J . , A N D O T T E N S T E I N , L . M . The pro-
gram dependence graph in a software development environment.
SIGPLAN Not. 19, 5 (Apr. 1984), 177–184.

[57] P E I N A D O , M . , C H E N , Y. , E N G L A N D , P. , A N D M A N -
F E R D E L L I , J . NGSCB: A Trusted Open System. In S&P
(2004).

[58] P I R E S , R . , PA S I N , M . , F E L B E R , P. , A N D F E T Z E R , C .
Secure Content-Based Routing Using Intel Software Guard Ex-
tensions. In Middleware (2016), ACM.

[59] P O N E M O N I N S T I T U T E . The Aftermath of a Mega Data
Breach: Consumer Sentiment, 2014.

[60] P O PA , R . A . , R E D F I E L D , C . M . S . , Z E L D O V I C H , N . ,
A N D B A L A K R I S H N A N , H . CryptDB: Protecting Confiden-
tiality with Encrypted Query Processing. In SOSP (2011).

[61] P O R T E R , D . E . , B O Y D - W I C K I Z E R , S . , H O W E L L , J . ,
O L I N S K Y, R . , A N D H U N T , G . Rethinking the Library OS
from the Top Down. In ASPLOS (2011).

[62] P R O V O S , N . , A N D M AT H E W S O N , N . libevent - An event
notification library. http://libevent.org/, 2003.

[63] P U T TA S WA M Y, K . P. N . , K R U E G E L , C . , A N D Z H A O ,
B . Y. Silverline: Toward Data Confidentiality in Storage-
intensive Cloud Applications. In SOCC (2011).

[64] R A M A L I N G A M , G . The Undecidability of Aliasing. TOPLAS
(1994).

[65] R E P S , T. , H O R W I T Z , S . , A N D S A G I V, M . Precise Inter-
procedural Dataflow Analysis via Graph Reachability. In POPL
(1995).

[66] R U B I N O V, K O N S TA N T I N A N D R O S C U L E T E , L U C I A
A N D M I T R A , T U L I K A A N D R O Y C H O U D H U RY, A B H I K.
Automated Partitioning of Android Applications for Trusted Exe-
cution Environments. In ICSE (2016).

[67] S A LT Z E R , J . H . , A N D S C H R O E D E R , M . D . The protec-
tion of information in computer systems. Proceedings of the IEEE
(1975).

[68] S C H U S T E R , F. , C O S TA , M . , F O U R N E T , C . , G K A N T-
S I D I S , C . , P E I N A D O , M . , M A I N A R - R U I Z , G . , A N D
R U S S I N O V I C H , M . VC3: Trustworthy Data Analytics in the
Cloud Using SGX. In S&P (2015).

[69] S H E N , V. Y. , Y U , T. - J . , T H E B A U T , S . M . , A N D
PA U L S E N , L . R . Identifying Error-Prone softwareAn Empiri-
cal Study. Trans. Softw. Eng. (1985).

[70] S H I F T D E V I C E S AG. Digital Bitbox. https://github.com/
digitalbitbox/mcu, 2016.

[71] S I N G A R AV E L U , L . , P U , C . , H Ä R T I G , H . , A N D H E L -
M U T H , C . Reducing TCB Complexity for Security-sensitive
Applications: Three Case Studies. In EuroSys (2006).

[72] S I N H A , R . , C O S TA , M . , L A L , A . , L O P E S , N . P. , R A J A -
M A N I , S . , S E S H I A , S . A . , A N D VA S WA N I , K . A Design
and Verification Methodology for Secure Isolated Regions. In
PLDI (2016).

[73] S I N H A , R . , R A J A M A N I , S . , S E S H I A , S . , A N D
VA S WA N I , K . Moat: Verifying Confidentiality of Enclave
Programs. In CCS (2015).

[74] S M I T H , S . F. , A N D T H O B E R , M . Refactoring Programs to
Secure Information Flows. In PLAS (2006).

[75] S O F T P E D I A . Hackers Modify Water Treatment Parameters
by Accident. http://news.softpedia.com/news/hackers-
modify-water-treatment-parameters-by-accident-
502043.shtml, 2016.

[76] S T E F A N , D . , YA N G , E . Z . , M A R C H E N K O , P. , R U S S O ,
A . , H E R M A N , D . , K A R P, B . , A N D M A Z I È R E S , D . Pro-
tecting Users by Confining JavaScript with COWL. In Proceed-
ings of the 11th USENIX Conference on Operating Systems De-
sign and Implementation (2014), OSDI’14, USENIX Association,
pp. 131–146.

[77] S T R A C K X , R . , A N D P I E S S E N S , F. Ariadne: A Minimal
Approach to State Continuity. In USENIX Security (2016).

[78] S Y N O P S Y S , I N C. Coverity Scan - Open Source Report
2014. http://go.coverity.com/rs/157-LQW-289/images/
2014-Coverity-Scan-Report.pdf, 2014.

[79] TA - M I N , R . , L I T T Y, L . , A N D L I E , D . Splitting Interfaces:
Making Trust Between Applications and Operating Systems Con-
figurable. In OSDI (2006).

[80] T R U S T E D C O M P U T I N G G R O U P. TPM Main Specifica-
tion v1.2, rev 116 . http://www.trustedcomputinggroup.org/
tpm-main-specification/, 2011.

USENIX Association 2017 USENIX Annual Technical Conference 297

http://www.idtheftcenter.org/images/breach/ITRCBreachReport_2016.pdf
http://www.idtheftcenter.org/images/breach/ITRCBreachReport_2016.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sgx-sdk
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://github.com/oscarlab/graphene
https://github.com/oscarlab/graphene
http://libevent.org/
https://github.com/digitalbitbox/mcu
https://github.com/digitalbitbox/mcu
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://www.trustedcomputinggroup.org/tpm-main-specification/
http://www.trustedcomputinggroup.org/tpm-main-specification/

[81] T S A I , C . - C . , A R O R A , K . S . , B A N D I , N . , JA I N , B . ,
JA N N E N , W. , J O H N , J . , K A L O D N E R , H . A . , K U L K A -
R N I , V. , O L I V E I R A , D . , A N D P O R T E R , D . E . Cooper-
ation and security isolation of library oses for multi-process ap-
plications. In Proceedings of the Ninth European Conference on
Computer Systems (2014), ACM, p. 9.

[82] T U , S . , K A A S H O E K , M . F. , M A D D E N , S . , A N D Z E L -
D O V I C H , N . Processing Analytical Queries over Encrypted
Data. Proc. VLDB Endow. (2013).

[83] W E I C H B R O D T , N . , K U R M U S , A . , P I E T Z U C H , P. , A N D
K A P I T Z A , R . AsyncShock: Exploiting Synchronisation Bugs
in Intel SGX Enclaves. In ESORICS (2016).

[84] W E I S E R , M . Program Slicing. In ICSE (1981).

[85] W U , Y. , S U N , J . , L I U , Y. , A N D D O N G , J . S . Automat-
ically Partition Software into Least Privilege Components Using
Dynamic Data Dependency Analysis. In ASE (2013).

[86] X U , Y. , C U I , W. , A N D P E I N A D O , M . Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In S&P (2015).

[87] YA N G , J . , A N D S H I N , K . G . Using Hypervisor to Provide
Data Secrecy for User Applications on a Per-page Basis. In VEE
(2008).

[88] Z H A N G , F. , C H E N , J . , C H E N , H . , A N D Z A N G , B .
CloudVisor: Retrofitting Protection of Virtual Machines in Multi-
tenant Cloud with Nested Virtualization. In SOSP (2011).

[89] Z H A N G , W. , A N D Z H A N G , Y. Lightweight Function Pointer
Analysis. Springer International Publishing, 2015, p. 439453.

298 2017 USENIX Annual Technical Conference USENIX Association

High-Resolution Side Channels for Untrusted Operating Systems

Marcus Hähnel ∗, †

TU Dresden
mhaehnel@tudos.org

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Abstract
Feature-rich mass-market operating systems have large
trusted computing bases (TCBs) and a long history of
vulnerabilities. Systems like Overshadow, InkTag or
Haven attempt to remove the operating system (OS) from
the TCB of applications while retaining its functionality.
However, the untrusted OS’s control of most physical
resources puts it in a much better position to launch side-
channel attacks than traditional unprivileged side-channel
attackers. Initial attacks focused on the page-fault chan-
nel, demonstrating significant information leakage for
three legacy applications.

We present two new side channels for an untrusted OS
which use timer interrupts and cache misses to achieve
higher temporal and spatial resolution than the page-fault
channel. We leverage the untrusted OS’s control over
hardware to reduce noise in the side channels to enable
successful attacks in just a single run of the target. We
demonstrate that our side channels enable attacks against
new SGX applications such as VC3 that were designed
not to trust the OS. We also show a new attack against
libjpeg that extracts images with two orders of magni-
tude more information than the page-fault channel attack.

1 Introduction
Traditionally, the operating system (OS) protects the

integrity and confidentiality of application data and is
considered part of the trusted computed base (TCB) of
an application. However, decades of experience have
shown that it is extremely hard to protect large, feature-
rich and widely deployed commodity operating systems.
The emergence of cloud hosting services has added the
new threat of adversarial cloud operators.

Recently, systems like Overshadow [14], InkTag [27]
and Haven [9] were proposed to change the protection
paradigm by excluding the OS from the TCB and directly
protecting applications. These systems use a trusted hy-
pervisor or hardware to provide applications with mem-
ory that is protected from the untrusted OS and with a
controlled mechanism for transferring control between
applications and the untrusted OS. Haven can also protect
applications from Iago attacks [13].

∗Work done in part during an internship at Microsoft Research.
†Supported in part by the German Research Foundation (DFG)

within the CRC 912 - HAEC.

However, Xu et al. [44] demonstrate that an adversarial
OS can launch deterministic side-channel attacks against
protected applications running on SGX. Their attacks can
steal documents and outlines of JPEG images from single
runs of three legacy applications protected by Haven and
InkTag. The attacks are more powerful than traditional
side-channel attacks by unprivileged attackers because
the untrusted OS retains control of most of the hardware.
They exploit the fact that some memory accesses of an
application depend on secret data. An adversarial OS
observes these accesses by making pages inaccessible in
the page table. Each resulting page fault interrupts the
application at the moment of the access and reveals the
page address to the OS, allowing the adversary to infer
secrets that influence the sequence of memory accesses.

Functions within a single code page (e.g., tight loop
in strlen) and data accesses within a single page (e.g.,
indexing into small arrays) cannot be observed, as the
granularity of the page-fault channel is limited by the
4 KB page size. This imposes a fundamental limit on
the temporal and spatial resolution of page-fault based
attacks.

In this paper, we present two new side channels that sig-
nificantly improve the temporal and spatial resolution of
attacks launched from an adversarial OS. We demonstrate
that new attacks can be launched against applications
that are immune to attacks based solely on the page-fault
channel. To improve temporal resolution, we use a high-
precision timer to approximate single stepping. We use
a cache side channel to improve the spatial resolution
from 4 KB to 64 byte cache lines. Our cache side channel
has much higher accuracy than the traditional cache side
channel controlled by an unprivileged attacker because
the OS controls the hardware. The OS can break into an
application right before and after the memory access of
interest and reduce cache pollution through its control
over scheduling.

To demonstrate the power of our new side channels,
we build new attacks against VC3 [39] and libjpeg [1].
VC3 is a secure MapReduce framework that protects the
confidentiality of distributed MapReduce computations
by running them inside SGX enclaves [29]. The unmodi-
fied legacy applications attacked in [44] had been written
under the assumption that the OS was trusted. However,

USENIX Association 2017 USENIX Annual Technical Conference 299

Unprotected memory

Monitor

Protected
application memory

Protected
application memory

Untrusted Operating System

Protected
Application

Protected
Application

Regular Application

Figure 1: System model: A monitor constrains the OS and
prevents it from accessing the protected applications’ memory.

VC3 is new code designed to have a small trusted comput-
ing base and to run in an SGX enclave on an adversarial
OS. Our attack on VC3 is a sequence of attacks that ex-
tract various pieces of information from different parts
of the VC3 code. None of the individual attacks could
have been performed using only the page-fault channel.
Our attack on VC3 recovers almost two thirds of the input
documents of the WordCount application. Compared to
the earlier attack against libjpeg [44], our new attack can
extract two orders of magnitude more information and
recover images with richer detail.

This paper makes the following contributions: We
demonstrate
• two new high-resolution side channels for an un-

trusted OS to attack protected applications;
• a significantly improved attack against libjpeg and

a new attack against VC3;
• the increased significance of side-channel attacks for

untrusted operating systems.

2 System Model
As outlined in Figure 1, the system consists of one or

more applications portected by a monitor that constrains
the untrusted OS.

The Monitor can be a hypervisor or a part of the CPU. It
imposes the following constraints on the OS:

1. It guarantees safe memory to a trusted application.
The OS cannot read or write such memory.

2. It controls transitions between an application and the
OS, ensuring that the OS can invoke protected code
only at well defined entry points. This also allows the
monitor to protect the application from leaking CPU
state during the transition. On unexpected transitions
(traps, interrupts), the monitor saves and scrubs CPU
registers.

3. The monitor takes anti side-channel provisions.
We assume the following list of anti side-channel mea-
sures. It is based on SGX [28], which, at this time, is the
only technology that takes serious measures against side
channels.
• The bottom twelve bits of page fault addresses

(which specify the offset within the page) are hidden
from the OS.

• Hardware debugging facilities (e.g., debug registers,
single stepping) are disabled.

• Hardware performance counters are disabled.

The Untrusted OS is considered adversarial—either as
a result of malware or because it is under the control
of an adversarial administrator. Within the constraints
imposed by the monitor, it can take any action to corrupt
the application or extract information from it. It has access
to all hardware on the system, except as prohibited by the
monitor. This includes all unprotected memory, page
tables and system devices such as timers.

Applications are protected by the monitor. We target
native applications that process secret information and
display memory access patterns that depend on the secret
information. We assume that at least some parts of the
application binaries are public, either because they belong
to unmodified legacy applications [9,14,27,44] or because
they are a part of a public application platform [39].

3 Background
We describe SGX [29], the page-fault channel [44], and

prime-and-probe cache side-channel attacks [36].

3.1 Intel SGX

Intel SGX [6, 26, 29, 34] is a CPU technology recently
introduced by Intel. SGX allows the construction of iso-
lated memory regions for applications (enclaves) that are
protected by the CPU from all other software running
on the system, including the OS. In terms of our system
model, SGX constitutes a monitor. Enclaves are restricted
to running in user mode, but are constructed by the un-
trusted OS using new privileged instructions. Remote
attestation ensures that the owner of the application can
detect tampering by the OS before revealing any secrets.

SGX leaves the hardware interface for the OS largely
unchanged, enabling compatibility with legacy operat-
ing systems, but also providing the OS with a large tool
chest for building side channels, such as the page-fault
channel [44].

However, SGX includes a number of anti side-channel
measures. SGX makes it impossible to use the following
CPU features against enclaves: Hardware breakpoint reg-
isters (DR0-DR3), single stepping (RFLAGS.TF), Last
Branch Record (LBR), Precise Event-Based Sampling
(PEBS), and hardware performance counters. Upon an ex-
ception or fault inside an enclave, SGX masks the twelve
least-significant bits of the faulting address. Thus, the un-
trusted OS only receives page-granular fault information.

3.2 The Page-Fault Channel

Xu et al. describe side-channel attacks based on page
faults [44].The attacks take advantage of input-dependent

300 2017 USENIX Annual Technical Conference USENIX Association

s i z e t s t r l e n (char∗ s t r) {
s i z e t l e n = 0 ;
wh i l e (∗ s t r++ != ’\0 ’) l e n++;
r e t u r n l e n ;

}
(a) strlen

char∗ agentNames [] = {”James R . C lappe r ” , ”John Doe” ,
/∗ 510 more e n t r i e s ∗/ } ;

char∗ getAgentName (i n t agentCode) {
r e t u r n agentNames [agentCode] ;

}
(b) Array Access

Figure 2: The secret-dependent memory access does not leak
information if the attacker can only observe at page granularity.

memory accesses to infer an application’s secret input.
For instance, if a global variable is incremented for each
user login, an adversary can count the number of accesses
to this variable to infer the number of logins. To detect
that the global variable is accessed, the adversary can
make the page where it resides inaccessible. Any access
to the page will trigger a page fault.

In the simplest case, the adversary can use the fault
address to decide if the application tried to access the
global variable of interest. However, since the offset in
the fault address is hidden, the adversary has to infer it.
Xu et al. propose using page fault sequences that can
uniquely identify a data access or control transfer.

Attacks based on page-fault sequences still face a fun-
damental limit: Page faults only work at page granularity.
The following two examples are immune to attacks via
the page-fault channel.
Temporal Limit: Figure 2a shows a simple strlen im-

plementation. Assume the binary code is on a single
code page and the string str is on a single data page.
The len variable is usually in a register for optimization
and thus not usable by an adversary. One instruction in
strlen reads a character of str from the data page. To
execute it, the attacker must make both code and data
page accessible. But after this, strlen execution will
not cause further page faults, preventing the adversary
from counting the number of iterations and inferring
the length of the string.

Spatial Limit: Assume table agentNames in Figure 2b is
on a single data page. Since the offset of the page-fault
address is hidden, an adversary cannot use an access to
the table to infer the value of the variable agentCode.

3.3 Prime-and-Probe Cache Side-Channel Attacks

Small, fast caches in CPUs are used to mitigate the per-
formance impact of memory accesses. Upon a memory
access, the CPU copies the memory contents into the
cache. Subsequent accesses to the same address can be
serviced from the cache at a much lower cost. This copy-
ing takes place at the granularity of 64 byte cache lines.

A memory location is mapped to a small group of cache

lines based on some of its address bits (bits 6-11 for the
Intel L1 data cache used in this paper). The Intel L1
cache uses groups of 8 cache lines (8-way set associative).
Upon a memory access not currently in the cache, one
line in the group must be evicted to make space for the
new contents.

Caches are typically shared by all code running on a
core or even the entire CPU package. An attacker may
make a sequence of memory accesses loading the contents
into the cache and filling it completely. A subsequent
memory access by another program will also cause data
to be loaded into the cache, evicting one of the attacker’s
cache lines.

The attacker can measure the time it takes to access the
memory locations he previously loaded into the cache to
detect such evictions. Increased access times indicate an
eviction, telling the attacker not only that an access took
place, but also revealing bits 6-11 of the address of the
access.

This procedure is known as prime and probe [36]. Fill-
ing the cache with the attacker’s content is called the
prime step. Measuring the memory access times is called
the probe step.

4 Design
This section describes our techniques for performing

synchronous, high-resolution side-channel attacks. Ab-
stractly, the attacker has two capabilities: break, to set
conditional breakpoints on the application and observe, to
inspect artifacts of its execution (e.g., memory accesses).
A technique may also provide both capabilities. Making
a page inaccessible [44] allows breaking (page fault) and
observing (page fault address).

We introduce two new techniques to overcome the lim-
itations of the page-fault channel (Section 3.2) and signif-
icantly broaden the class of application code subject to
side-channel attacks:

• A technique to single-step protected applications.
• A cache side channel to observe memory accesses at

cache-line granularity.
Both techniques work even if the attacker can observe
only a single application run. Thus, any protected appli-
cation is a potential target for the attack.

We use page-fault sequences to infer memory accesses
when possible, allowing us to deploy high-overhead at-
tacks only during the short times they are required.

4.1 Noise reduction

The techniques require a very low level of system noise.
We use the OS’s control over hardware to reduce noise by
disabling interference sources (turbo-boost, prefetching,
power management) and preventing preemption of the

USENIX Association 2017 USENIX Annual Technical Conference 301

victim application. These adjustments can also be made
by a compromised OS or a malicious admin.

Like page-fault based attacks [44], our attacks rely on
exceptions and interrupts to provide the break mechanism.
Handlers run on a victims’s core to gain access to the
private resources (e.g., caches) of the core for observation.

4.2 Single Stepping

In our system model (and under SGX), the monitor pre-
vents the OS from using the single stepping features of
the hardware. However, the OS can approximate such
functionality using hardware timers.

For this work, we use the x86 local APIC timer, due
to its high resolution and easy programmability. We use
the timer in single-shot mode at the highest available fre-
quency (divider=1). In this mode, the OS writes a target
value x into a register. The timer triggers an interrupt
x timer ticks after the register write. The timer tick fre-
quency is significantly lower than the TSC frequency. On
the Skylake system used in the evaluation, the former is
24 MHz, while the latter is 167 times higher. While this
means we can only trigger an interrupt every 167 CPU
cycles, we know at which TSC value the interrupt will
arrive, allowing us to wait an appropriate time should the
desired TSC value be too soon.

Assume we have interrupted the application and want
to single-step forward to the next instruction. This may
not be easy for all instructions. Here, we focus on instruc-
tions with memory operands, which is sufficient for our
attacks. The goal is to have the next interrupt arrive during
the execution of the next such instruction. If the interrupt
arrives during the right time window, the processor will
delay the interrupt until execution of the instruction is
complete. During regular execution, this time window is
extremely short. However, the attacker has an array of
tools that can make the instruction very slow and, thus, ex-
pand the time window to hundreds of cycles. We only rely
on a TLB flush, which causes instructions with memory
operands to incur a page-table walk. Additional options
include flushing the cache to force page-table walks to
incur the full memory latency, manipulating the memory
clock to increase memory latency or disabling the cache
completely to make all subsequent instructions slow.

The time between starting the timer (writing to the
timer register) and executing the victim’s next instruction
includes the interrupt return path (privilege level change)
and the re-entry path of the protected application (cross-
ing the trust boundary, restoring registers). While CPU
specific, this time can be measured using a protected appli-
cation on the attacker-controlled target system. Based on
this measurement, we determine the number of timer ticks
x. This estimate can only be sufficiently precise if jitter

is low, making the noise reduction techniques described
above vital.

This mechanism can be used to implement any
conditional breakpoint that depends only on attacker-
observable information. Single stepping and observing
the system after each step allow the attacker to perform a
detailed analysis of the system’s behavior. While possible
for the whole application, it is also quite slow, as each
instruction causes at least one interrupt. The overhead
can be reduced by using a cheaper breakpoint to narrow
down the region of interest (page fault, coarse-grained
timer interrupts) and switch to single-stepping there.

We synchronize our single steps with observations
about the memory accesses made by the application. For
example, the strlen code in Figure 2a accesses the string
exactly once per iteration. Observing an access to str af-
ter a single step informs us that the application must be at
(close to) the instruction following the access. We obtain
the number of loop iterations by counting the number of
str accesses. Memory accesses are observable by reading
the dirty and accessed bits in the page table entries.

4.3 Cache Side-Channel Attack

A cache side-channel allows observations at the gran-
ularity of 64 byte cache lines. It has the potential of
revealing information about accesses to small (sub-page
sized) arrays for which the page-fault channel is inef-
fective. We use a prime-and-probe attack against the
core-local, 32 KB large, 8-way set associative L1 cache.

The key challenge for cache side-channel attacks is
cache pollution caused by other accesses than the ones of
interest during prime and probe. An unprivileged attacker
has little control over when his code will execute. Probing
may observe the results of both the memory accesses
of interest and potentially many unrelated accesses, a
problem exacerbated by the small size of the L1 cache.

Traditional cache side-channel attacks mitigate the
problem by averaging over many prime-and-probe ob-
servations. This technique does not apply to applications
that usually execute over each unique input once. Instead,
we use our control over hardware to tackle the problem.

Our attack proceeds as follows. We break the applica-
tion shortly before the memory access we wish to observe,
prime the L1 cache, and resume the application. We break
again shortly after the access of interest, probe the L1
cache, log the result and resume the application.

Thanks to the OS’s control over hardware, we can use
page faults or single-stepping to break right before and af-
ter the memory access of interest, thus avoiding unrelated
memory accesses during prime and probe. To further re-
duce cache pollution, we prevent other applications from
running on the victim’s physical core.

302 2017 USENIX Annual Technical Conference USENIX Association

Even after applying these mitigation techniques, we
still cannot eliminate cache pollution completely for two
reasons. First, some code is executed between priming
and the resumption of the application and between the
interruption of the application and probing. Any memory
accesses by such code may result in spurious cache evic-
tions. Second, TLB flushes happen when transitioning
into and out of protected applications to protect appli-
cation memory. This leads to page-table walks when
executing subsequent instructions. This in turn causes
one memory access per page-table level.

However, we can predict and to some degree even con-
trol which cache addresses are being polluted and adjust
our evaluation accordingly. Given the 8-way set associa-
tivity of the L1 cache, a polluted cache address will also
not lose all information about the access we are trying to
observe. If the access of interest falls into a cache address
polluted by one extraneous access, we should observe L1
misses for two of the eight ways for that address. This
allows us to observe the access of interest even in the
presence of deterministic cache pollution.

We determine the set of cache lines that will be polluted
deterministically on every prime-probe observation. This
includes the memory accesses made by the page-table
walk for the (known) target page of the access of inter-
est and the (known) page of the page-fault handler, as
well as some known accesses made by the handler itself.
In our analysis, we subtract these L1 misses from our
observations. We call this step deterministic filtering.

When probing, we must measure access times very
precisely, as L2 hits take only a few cycles longer than
L1 hits. We disable interrupts to gain exclusive use of the
core for our measurement code.

5 Attacks
We now describe our attacks against VC3 and libjpeg.

5.1 VC3

VC3 [39] allows users to run MapReduce jobs [18] in the
cloud without exposing their code or data to the provider.
VC3 shields computations from the provider using SGX.
The provider and all his software (OS, hypervisor) are
assumed to be adversarial. Just as in regular MapRe-
duce, the user writes a map and a reduce function. The
functions are encrypted, packaged together with the VC3
framework and sent to the cloud to be run in SGX en-
claves. VC3 is designed to plug into an existing untrusted
MapReduce framework such as Hadoop [7]. A VC3 job
will begin with encrypted input splits that the untrusted
MapReduce framework feeds into mapper enclaves. In-
side a mapper enclave, the VC3 framework decrypts the
input and the user’s map function, and invokes it. The

HashMap
...

h(keya)

h(keyb)
...

Key1 Key2

Value1

Value2
...

...

Figure 3: Layout of the hash map used in the VC3 reducers

VC3 framework encrypts intermediate key-value pairs
produced by the map function and feeds them into the
untrusted MapReduce framework, which distributes them
to reducer enclaves.

VC3 provides tamper detection for the untrusted com-
munication channel (e.g., removal or duplication of inter-
mediate key-value pairs). Randomized encyption prevents
frequency analysis on intermediate key-value pairs. But
it also stops the untrusted MapReduce framework from
grouping them. Since grouping is required by the interme-
diate key-value rule [18, Sec. 2] VC3 has to implement it
inside the reducer enclaves.

The grouping implementation is hash-map based (Fig-
ure 3). Each hash key is mapped to an index in an array
of 8-byte pointers. Hash collisions are resolved through a
linked list of colliding keys for each array index. As the
array is 64-byte aligned, eight consecutive 8-byte pointers
fill up a cache line. Conversely, observation of a cache
line access identifies the corresponding eight array slots.
This grouping operation is the only part of VC3 whose
memory accesses depend on user data, because most map-
pers use user data to compute intermediate keys.

5.1.1 Attack Overview

Our attack targets MapReduce applications that have one
or more English documents as the input and words in
the documents as the intermediate keys. WordCount and
Inverted Index are such applications [18, Section 2]. Our
goal is to recover as much of the document as possible.

Following the VC3 model, we consider the user’s map
and reduce functions to be secret, but the VC3 framework
to be public, and thus only attack the latter. It would
negate the value proposition of VC3 if users were forced
to admit code into their TCB that they cannot inspect.

The high-level idea of our attack works as follows. We
use our single stepping and cache side channel techniques
to infer the length and the (approximate) hash array index
for each input word (i.e., intermediate key). We also track
words through the various stages of processing in MapRe-
duce to remember their positions in the input document.
Finally, we use an English language model that contains a
dictionary of words (unigrams) and word pairs (bigrams)
as well as their weights (measured by their popularity)

USENIX Association 2017 USENIX Annual Technical Conference 303

to recover the input document based on the length, hash
array index and position of each word.

5.1.2 Word Length

VC3 hashes all intermediate keys (i.e., input words) to
insert the key-value pairs into the hash map. The hash
function loops over the characters of the key until it finds
a null character. The length of the input word is obtained
by breaking on the hash function and observing the num-
ber of loop iterations it performs using the technique of
Section 4.2.

5.1.3 Cache Line Address

We use the cache side channel of Section 4.3 to observe
for each word the cache line of the hash array slot into
which it is inserted. We break right before the array
lookup by making the array pages inaccessible. Upon the
page fault, we log the page number, make the page acces-
sible, make the reducer’s stack inaccessible and prime the
cache. After resuming execution, VC3 accesses the array
and, immediately after that, page faults when trying to
access its stack. We probe and log the cache state, resolve
the page fault, make the array page inaccessible again and
resume execution.

5.1.4 Word Position

As input words move through the mappers and reducers,
we must keep track of their positions in the input docu-
ment. Our English language model relies on word order
and, more generally, the output of the attack appears much
more useful if it presents the words in the correct order.

If there is only a single mapper and a single reducer,
the problem is trivial because the words arrive at the re-
ducer (where we observe word lengths and hash slots)
in input order. However, multiple mappers and reduc-
ers will be sending and receiving intermediate key-value
pairs concurrently. Furthermore, VC3 mappers internally
determine the reducer for each word, buffer the word and
only send buffers containing many words to each of the
reducers.

The first problem (concurrency) is easily solved by
observing that the attacker controls the communication
channel between all mapper and reducer enclaves. In par-
ticular, the attacker can observe the order of all messages
sent from mappers to reducers. The second problem is
more complex. Using the page-fault channel to monitor
the mappers, we track for each input word the buffer into
which the mapper inserts it and its position in the buffer
(details omitted due to space constraints). This informa-
tion allows us to recover the original word positions when
a reducer finally processes the words from the buffer; i.e.,
when we extract the length and hash slot for each word

from the buffer.

5.1.5 Word Recovery

We can represent the information recovered so far as a
version of the input document in which each word has
been replaced by its length and its hash slot (covering 8
array indices). It remains to map this information back to
the original words.

As a first step, we group the words in our language
model by length and hash slot. The result is a candidate
list for each length, hash slot combination and, thus, for
each position in our input document. Next, we refine the
candidate list for each input word with the help of context:
the bigrams from our language model. For each candidate
word at a position, if there is no candidate word in the
subsequent position to construct a word pair (bigram)
that is contained in our language model, we eliminate
the candidate word. We repeat this pruning step on all
candidate words iteratively until no candidate words can
be removed. Finally, we sort all remaining candidate
words for each position based on their weights.

5.2 JPEG

JPEG is one of the most widely used image compression
standards. JPEG compression cuts the image into blocks
of 8 by 8 pixels and performs a discrete cosine transform
(DCT) on each block, followed by other compression
steps. JPEG decompression reverses these steps, perform-
ing an inverse DCT as one of the last steps. In our attack,
we target the libjpeg library [1], the most widely used
JPEG implementation. Specifically, we exploit the last
stage of the inverse DCT function which computes the
final values of the 8 by 8 output matrix by means of array
lookups. The array has 1024 single byte entries and lies
typically on a single page, which makes page-granular
observation useless. The final output values are the values
read from the array.

Our attack strategy is to observe the cache line accessed
in each of the array lookups. However, even at cache-line
granularity, we are unable to distinguish between the 64
adjacent array indices that fall into each cache line. For
example, if the array is 64 byte aligned, array slots 0 to
63 fall into the same cache line, and our observations do
not let us distinguish among them. If the array was filled
with random numbers, observing cache lines would be
unlikely to reveal useful information.

Fortunately, the array values are either constant or lin-
early increasing over large ranges. Thus, the average
over all array values that lie in the same cache line con-
tains useful information. For cache lines that cover array
regions where the values increase linearly, the avarage
contains the two most-significant bits of the 8-bit array

304 2017 USENIX Annual Technical Conference USENIX Association

values, as we are losing the 6 (= log2(64)) least signifi-
cant bits due to 64-bit cache-line resolution. For cache
lines that cover constant regions, the average contains the
same information as the individual array values.

Upon observing an array access at a particular cache
line, we use the average over all array values that are
covered by that cache line as our inferred output value. We
feed these recovered values directly into the last phases
of JPEG decompression to obtain the final image. We
recover the image dimensions and the color space using
the method described in [44].

6 Implementation
This section describes how we implemented the attacks

and the target applications. Our prototype was designed
for x86-64 PCs running Windows and using Intel SGX as
the monitor. The choice of Windows was not essential. A
dedicated attacker might choose to write a special attack
OS or even build special hardware that gives him easy
access to the required functionality. We used the shortcut
of adding attack functionality to an existing OS by means
of a kernel driver. We chose SGX as the monitor for
three reasons. (1) VC3 only runs on SGX. (2) SGX has a
detailed, public specification. (3) SGX includes defenses
against side-channels, making it a more interesting target.

6.1 Implementation on Windows

We used a Windows driver to implement the techniques
from Section 4 and the page fault channel in approxi-
mately 1,200 lines of C++ code and 250 lines of assembly
code. All binaries were compiled with the Microsoft
C/C++ compiler version 18.00.21005.1 with full opti-
mization (/Ox) and inlining (/Ob2).

The driver hooks the timer handler and the page fault
handler in the interrupt descriptor table (IDT). This causes
the processor to invoke our handlers, rather than the OS’s.
Our driver processes all events intended for it and for-
wards all others to the Windows handlers.

We pinned the target application to a single core and
set its scheduling priority to REALTIME in order to mini-
mize interference from other OS activity. The core still
receives interrupts and other system events which are a
source of residual noise. For ease of implementation, we
disabled hyper-threading, turbo-boost, pre-fetching and
power management in the BIOS. The same can be done
in code by the OS.

6.2 SGX

We used the SGX simulator that was used in the evaluation
of VC3 [39]. The simulator tries to faithfully implement
the essential functionality of SGX in software. For the
purposes of our attacks, only the SGX behavior on tran-
sitions into and out of enclaves is relevant. In particular,

0 8 16 24 32 40 48 56 63
0

5

10

15

AssociativitySet

W
or

d

0 2 4 6 8

Figure 4: Results of prime-probe observations for 20 distinct
words (rows). Darker fields indicate more evicted ways within
an 8-way associativity set. Vertical lines identify cache ad-
dresses evicted in every observation.

the simulator adds TLB flushes and delay cycles on all
transitions. We simulated the saving of the register state
by SGX by saving all the registers to a memory page and
putting them in a defined state. An equivalent alternative
would have been to use the OpenSGX simulator [31].1

6.3 Single Stepping

As Windows uses the local APIC timer as its system timer
we had to share it. We programed the timer, such that it
continues to trigger the relatively low-frequency periodic
interrupts Windows expects. When single stepping, we
set up the timer for single-shot mode with a divider of
one.

6.4 Cache Side-Channel Attacks

At initialization, we allocate a page-aligned 32 KB buffer
consisting of eight 4KB pages, which correspond to the
eight ways of the L1 data cache. Our prime procedure
loops over the buffer and performs one write operation
for each cache line, thus filling the entire L1 data cache.

Our probe procedure also iterates over the cache lines
covered by our buffer. For each cache line, it times the
corresponding memory read using rdtsc using serializing
and fence instructions to prevent reordering. Accesses
that take at most 10 cycles are considered L1 hits.

Our IDT hooks let us control all code executed when
transitioning into and out of the victim application. The
separation of the L1 cache into an instruction cache and
a data cache ensures that code execution by itself does
not pollute the L1 data cache. We carefully chose all
assembly instructions in our fault handler to control its
data memory accesses.

Figure 4 shows the results of 20 prime-probe observa-
tions. Each row shows a cache fingerprint for a different

1Intel has released an SGX SDK, which only allows enclaves to run
in debug mode. This mode disables most protections, thus providing
limited additional value over the existing simulator.

USENIX Association 2017 USENIX Annual Technical Conference 305

word. Thus, we would expect each row to only differ in
one gray dot for the accessed cache line. This does not
explain all observed differences between the rows. The
vertical lines (e.g., at index 32) stem from deterministic
cache pollution since they are evicted in every prime-
probe observation. We are uncertain as to the exact cause
of the noise patterns between rows 5 and 10.

While the pollution is not constant across observations,
there appears to be a relatively small number of pollu-
tion patterns. For example, lines 6, 7, 9 and 10 have
roughly the same pollution pattern. Our strategy was to
group our observations by their pollution patterns and
to remove cache misses that are common within each
group from each of the observations in the group. For
this, we computed for each group the average number of
observed misses for each cache line and subtracted these
averages from our observations, setting negative results
to zero. This noise filtering removed most of the pollu-
tion, significantly reducing the number of candidate cache
lines.

6.5 VC3

We used the original VC3 code [39], implemented Word-
Count [18, Sec. 2.1] in 100 lines of C, and used the VC3
packing tool to generate the binary that is loaded into the
enclaves. This tool encrypts the binary containing the
mapper and reducer functions and embeds it into a second
(plaintext) binary containing the trusted VC3 framework
which is later loaded into the enclaves. We used the VC3
preprocessing tool to convert the input document into
encrypted input splits for the mappers.

Rather than using Hadoop, we wrote a small program to
send inputs into the mappers and reducers and to receive
their outputs. This implementation shortcut is valid, since
Hadoop is considered untrusted and under attacker control
in the VC3 security model. For simplicity, our program
runs the mappers and reducers sequentially, storing the
intermediate key-value pairs of each mapper on disk.

6.6 JPEG

We built a self-contained application around libjpeg that
can be run inside an SGX enclave and that decodes an
image. We had to provide a small runtime library to
satisfy the external dependencies of libjpeg (memory
allocation, file I/O). We reused the memory allocator from
the VC3 runtime and provided just enough file I/O to read
the input JPEG file from enclave RAM.

We compiled the unmodified source code of libjpeg
version 9a, the runtime and the main function into a sin-
gle Windows PE binary without external dependencies.
We constructed an enclave consisting of this binary, an
encrypted JPEG file (loaded into enclave memory) and

cntr. increase 0 1 > 1
mean 64,393,418 204,040,806 1,231
CV 0.1 0.03 0.73

Figure 5: Single stepping experiment: interrupt count by ob-
served counter increase. The mean is taken over 20 repetitions.
CV is the coefficient of variation (mean divided by standard
deviation).

heap memory. Upon invocation of the enclave, the main

function decrypts the file in enclave memory, initializes
the runtime and calls libjpeg to decompress the image.

7 Evaluation
We ran the experiments on a Windows 10 system based

on an MSI Z170A motherboard with a 4.0 GHz quadcore
Intel i7-6700K Skylake CPU, 8 GB of RAM and a 128 GB
SanDisk X300 SSD. We disabled several unnecessary
devices (DVD drive, audio, dedicated graphics card).

7.1 Single Stepping

We ran the following microbenchmark to evaluate the
effectiveness of single stepping. We set up a victim ap-
plication that increments an in-memory counter in a tight
loop. The compiled loop code consists of three instruc-
tions: add [rdi],1 (increment the counter in memory),
dec rax (decrement the loop variable) and jne -9 (con-
ditional jump to the first instruction).

We shared the counter variable with the interrupt han-
dler in our driver and made it record its value at each
interrupt. This allowed us to observe the number of loop
iterations that the victim had executed between consec-
utive interrupts. The driver also recorded the address of
the interrupted instruction. Before returning, the interrupt
handler restarted the timer and flushed the TLB. This ex-
periment requires careful tuning. Space limitations force
us to omit many details.

We ran the experiment until 228 ≈ 268 million inter-
rupts had occurred. We repeated the experiment 20 times
for a total of more than 5 billion observations. The re-
sults are displayed in Fig. 5. About 24% of the interrupts
occurred before the next counter increment. They waste
cycles, but do not affect accuracy, as we can detect this
case in real attacks. More than 99.9993% of the remain-
ing interrupts break into the loop at consecutive iterations.
This level of accuracy is more than sufficient for our at-
tacks.

In most cases, the interrupt occurred directly after the
add [rdi],1 instruction. The delay due to the page-
table walk for the memory operand (caused by the TLB
flush) appears sufficient to absorb most of the timer jit-
ter. We repeated the experiment, but invalidated only the
application’s TLB mapping to the counter instead of the
entire TLB. This change did not have a significant im-

306 2017 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4 5 6 > 6

0 %
20 %
40 %
60 %
80 %

5.
07

%

87
.3

6%

3.
52

%

0.
26

%

0.
42

%

1.
05

%

0.
29

%

2.
03

%

2.
85

% 71
.4

3%

18
.7

1%

3.
03

%

0.
19

%

0.
4%

1.
04

%

2.
35

%

Cacheline candidates

filtering
no filtering

Figure 6: Accuracy of the cache observations of random array
accesses with and without deterministic filtering.

0 1 2 3 4 5 6 > 6
0 %

20 %
40 %
60 %

9.
45

%

62
.8

5%

11
.9

9%

4.
24

%

2.
67

%

1.
65

%

1.
08

%

6.
07

%

Index of correct candidate
Figure 7: Position of the correct word in the ranked candidate
list. Zero means the correct word was not in the candidate list

pact on the results, providing further evidence that the
memory operand and its TLB mapping are the keys to the
experiment.

7.2 Cache Side Channel

We evaluated the effectiveness of the cache side channel
using a microbenchmark application that repeatedly ac-
cesses a 4 KB page-aligned array at random indices. We
executed the application in an enclave and ran our driver
to observe the cache lines of the array accesses.

Figure 6 shows the distribution of the number of cache
line candidates returned by the attack over 35,000 ac-
cesses with and without applying deterministic filtering
(Section 4.3). Both cases use noise filtering (Section 6.4).

With deterministic filtering, we obtained a unique cache
line candidate in 87% of the observations, where 99.4% of
these unique candidates identified the correct cache line.
This level of accuracy is considerable, given that each
observations is based on only a single memory access
by the victim. The number also reveals the noticable
presence of residual noise. As we will show next, this
noise degrades the results of our attacks only moderately.

7.3 VC3

We used 20 English books from Project Gutenberg [2]
and an English language model with 124,758 unigrams
and 912,125 bigrams to evaluate our attack on VC3.

Effectiveness We ran our WordCount application on VC3
inside an enclave for each of the 20 books. We used our
driver to perform the attack steps specified in Section 5.
The driver produced a log file containing its observations,
which we processed as described in Section 5.1.5.

THE WONDERFUL WIZARDOFOZ
The Cyclone
Dorothy lived in the midstof the greatKansas prairieswithUncleHenry
who was a farmer and Aunt Em who was the Their house was small for
the lumber to build it had to be carried by wagon many There were four
walls a floor and a roof which made one and this room contained a rusty
lookingcookstoveacupboardfor the dishesa table threeor four chairsand
theUncleHenryandAunt Emhad a bigbed in onecornerandDorothya
littlebed in another There was nogarret at all andno a smallholedug in
the ground called a cyclone cellar where the family could go in case one
of thosegreatwhirlwindsarosemighty enoughtocrushanybuilding in its

Figure 8: A Sample of the text recovered by the attack: white
background: 1st candidate; light-grey background: 2nd candi-
date; dark-grey background: 3rd candidate; black background:
4th or higher; solid black: word not in candidate list

We evaluated the accuracy of the resulting candidate
lists by looking up where each word from the input docu-
ment appeared in its candidate list. Figure 7 summarizes
the results for one book [8] totaling 35,718 words. It
shows the position of the correct word in each word’s
candidate list. For almost two thirds of the words (63%),
the first candidate in the list is exactly the word in the
document.

Figure 8 displays a sample of the recovered text. While
recovery is not perfect, most of the words have been re-
covered uniquely or nearly uniquely. Overall, the content
of the input text is revealed and comprehensible, in spite
of our crude lanugage model which lacks explicit gram-
mar rules. A better model is bound to help recover even
more of the input.

Performance The end-to-end attacks slow down the ap-
plications’ execution significantly. Following the ap-
proach of [44], our goal is to keep this slowdown at a level
that can plausibly be explained by network and scheduling
delays and various other cloud and internet glitches.

The runtime for our example book [8] incresases from
0.33 s to 123.5 s when deploying our attack, a 374x over-
head similar to the previous attack [44]. The delay can
be reduced by extracting only part of the document or by
running several mappers and reducers in parallel. Word-
length recovery (single stepping 560,128 times) and ob-
serving the hash slots (cache side channel) each take
slightly less than half of the overhead (57 s and 54.7 s
respectively), while 11.6 s are spent handling page faults.

7.4 JPEG

We used 20 images from Wikipedia [5] to evaluate the
attack on libjpeg. Our test set included some of the
images used in an earlier attack on libjpeg [44].

Effectiveness Figure 9 shows the result for an image from
the earlier attack. The image recovered by our attack
shows two expected artifact types. First, loss of detail
due to cache-line granular observations. Second, noise,

USENIX Association 2017 USENIX Annual Technical Conference 307

Figure 9: Example of a JPEG image recovered by the attack. top left: the original image; top right: recovered by the full attack;
bottom left: recovered through the page fault channel [44, Figure 11]; bottom right: recovered by our attack, sampling 1 to 64.

full 1:8 1:64 page fault
0
1
2
3

·103

3,
53

2

85
4

94 20
9.

7

ov
er

he
ad

[f
ac

to
r]

Figure 10: Overhead over baseline of various versions of the
attack on libjpeg on the image in Figure 9.

resulting from incorrect cacheline observations. Despite
these artifacts, the image recovered by our attack (Figure 9
top right) shows far more detail and looks much more like
the original (Figure 9 top left) than the image recovered
by the earlier attack (Figure 9 bottom left).2

Performance The attack incurs a substantial overhead
due to the large number of prime-probe observations (up
to three per pixel) and their relatively high cost. Our full
attack on the image in Figure 9 incurs a 3,532x overhead
(219 s vs. 62 ms), which is substantially higher than the
209.6x-354.9x for the page-fault channel [44, Fig.14].

However, the attacker can easily trade off overhead
against accuracy by performing prime-probe observations
only for a subset of the application’s array lookups. We
implemented this sampling strategy by allowing the at-

2Full resolution and additional images at tudos.org/˜mhaehnel/SGX/

tacker to specify how many values should be sampled in
each 8x8 block. We repeated the attack sampling eight
times per block and once per block, corresponding to
1:8 and 1:64 sampling ratios, and summarize the over-
heads in Figure 10. We show the median overhead for
ten measurements. The standard deviation was less than
5% of the mean in all cases. The page-fault value is the
209.6x value reported for the previous page-fault channel
attack [44, Fig.14].

The two bottom-row images in Figure 9 show clearly
that even the image recovered at a 1:64 sampling ratio
contains significantly more detail than the image recov-
ered in [44], despite our significantly smaller overhead.

The overheads for the other images in our test set are
similar to those of Figure 10, ranging from 2,595x to
3,532x for the full attack and 72x-94x for 1:64 sampling.
The attack delays range from less than 10 s to about 4 min
for the full attack, and 1.8 s-6 s for 1:64 sampling.

8 Mitigations
Cache side channels have been known for a long time,

and a variety of defenses has been designed against
them [15, 17, 19, 21, 32, 43, 47], working at the hardware,
hypervisor, OS or compiler level. One approach is to
partition caches so that the cache assigned to a sensitive

308 2017 USENIX Annual Technical Conference USENIX Association

application cannot be accessed by a malicious program
(e.g., [19, 32]). The other approach is to introduce noise
so that a malicious program cannot tell if a cache miss is
due to a real or random memory access (e.g., [21, 47]).

None of these defenses appears to be widely used
or deployed, possibly due to their cost. In addition,
traditional cache side channels have been targeting al-
most exclusively a small collection of cryptographic al-
gorithms. These have been protected by eliminating all
secret-dependent memory accesses from their implemen-
tations, thus obviating the need for more general defenses.
However, attacks such as those presented in this paper
demonstrate that a much broader class of code is poten-
tially subject to cache side-channel attacks when the oper-
ating system is the adversary, and general defenses like
those listed above may be required.

Shih et al. [41] propose a technique called T-SGX to
disable side channels based on page-faults and interrupts.
T-SGX is a compiler-based approach that automatically
wraps computations in Intel TSX transactions. Since
TSX [16] aborts transactions upon interrupts and excep-
tions, T-SGX can use the frequency of such aborts to
detect side-channel attacks. T-SGX appears effective, but
requires the application source code and incurs a notice-
able overhead.

9 Related Work
Untrusted OSs Using feature-rich commodity OSs while
removing them from applications’ TCB has attracted con-
siderable attention in research and industry. Hardware
such as the Trusted Platform Module [3], Intel Trusted
Execution Technology [22] or ARM TrustZone [4] as well
as software hypervisors have long formed the basis for
such systems. Some require applications to be specifically
written for the new environment [20], others have the am-
bitious goal of securing legacy applications [14, 27].

Recently, the goal of protecting user applications in
the cloud from the hosting provider’s privileged software
together with the introduction of Intel SGX have resulted
in renewed activity in this area [6, 9, 26, 29, 34, 39].

Xu et al. [44] recognized the OS to be significantly
more powerful than the traditional unprivileged attacker
assumed by most side channel attacks. Their page-fault
channel attack extracts complete text documents and out-
lines of JPEG images from a single run of the victim.

The channels presented in this paper offer much higher
spatial and temporal resolution than the page-fault chan-
nel. This is significant because it shows that the collec-
tion of vulnerable application code is far broader than
suggested by the page-fault channel.

Cache side channels Cache-based timing and trace-
driven attacks are closely related to our work [11, 36, 37].

They generally assume an attacker with low privilege such
as an unprivileged process [37], a virtual machine attack-
ing its neighbors [38] or an attacker measuring server
response time across the network [11]. Our attack is trace-
driven, as the attacker can observe the victim’s memory
accesses. Trace-driven attacks typically reveal more fine-
grained information than timing attacks. Most trace-based
attacks are based on one of two techniques: prime-and-
probe [36] and flush-and-reload [24].

The prime-and-probe technique has been used in syn-
chronous [36] and asynchronous attacks [30,33], targeting
the L1 cache [37] and well as the LLC [30, 33]. This line
of work typically assumes an unprivileged attacker who
has little control over code running between the prime
and the probe step. In contrast, control over scheduling
and the ability to break into the victim at will let our at-
tacker observe individual memory accesses at high time
resolution. Several recent papers study cache side chan-
nels for enclaves using techniques that are different from
ours and focusing primarily on crypto targets [12, 23, 40].
While preparing the camera-ready version of this paper,
we became aware of recent, unpublished work that uses
techniques similar to ours to attack crypto code [35].

Recently, the flush-and-reload method has enabled an
array of stronger attacks [10, 25, 42, 45, 46]. Flush-and-
reload can be used if the attacker and the victim share
memory such as read-only code pages. While applica-
ble in traditional cloud scenarios or with memory de-
duplication, our security model (and SGX) prevent such
sharing. Furthermore our attacks are not limited to shared
read-only code and data pages.

10 Conclusion
We have described two general techniques that can

be combined to build high-resolution side channels for
untrusted OSs, overcoming the main limitations of the
page-fault channel.

This work shows that a much wider range of application
code than suggested by the page-fault channel is subject
to side-channel attacks. We demonstrate this with attacks
against application code that cannot be attacked using
only the page-fault channel. Whereas previous attacks
have focused on unmodified legacy code, our main attack
successfully targets an application that was designed not
to trust the OS. This work highlights the increased impor-
tance of side-channels for privileged attacker scenarios.
It takes us closer to understanding the full scope of the
side-channel problem for untrusted OSs and highlights
the need for robust mitigations.

Acknowledgments
We would like to thank our shepherd Nadav Amit and

the anonymous reviewers for their valuable input.

USENIX Association 2017 USENIX Annual Technical Conference 309

References
[1] libjpeg. http://libjpeg.sourceforge.net/.

[2] Project Gutenberg. http://www.gutenberg.

org/.

[3] Trusted Platform Module (TPM). http://www.

trustedcomputinggroup.org/.

[4] TrustZone. http://www.arm.com/products/

processors / technologies / trustzone /

index.php.

[5] Wikipedia. http://www.wikipedia.org/.

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vin-
cent Scarlata. Innovative technology for cpu based
attestation and sealing. In Workshop on Hardware
and Architectural Support for Security and Privacy
(HASP 2013), June 2013.

[7] Apache Software Foundation. Hadoop. http://

wiki.apache.org/hadoop/, 2011.

[8] L Frank Baum. The wonderful wizard of Oz.

[9] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Untrusted
Cloud with Haven. In USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2014.

[10] Naomi Benger, Joop van de Pol, Nigel Smart, and
Yuval Yarom. “Ooh aah. . . just a little bit”: A small
amount of side channel can go a long way. In Work-
shop on Cryptographic Hardware and Embedded
Systems (CHES), 2014.

[11] Daniel J. Bernstein. Cache-timing attacks on AES.
Available at: http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf, 2005.

[12] Ferdinand Brasser, Urs Müller, Alexandra
Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. Software grand
exposure: SGX cache attacks are practical.
https://arxiv.org/abs/1702.07521, Febru-
ary 2017.

[13] Stephen Checkoway and Hovav Shacham. Iago at-
tacks: Why the system call API is a bad untrusted
RPC interface. In International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems (ASPLOS), 2013.

[14] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R. K. Ports.
Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating sys-
tems. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[15] Bart Coppens, Ingrid Verbauwhede, Koen De Boss-
chere, and Bjorn De Sutter. Practical mitigations
for timing-based side-channel attacks on modern
x86 processors. In Proceedings of the 2009 IEEE
Symposium on Security and Privacy, pages 45–60,
2009.

[16] Intel Corporation. Intel 64 and ia-32 architectures
software developer’s manual.

[17] Stephen Crane, Andrei Homescu, Stefan Brunthaler,
Per Larsen, and Michael Franz. Thwarting cache
side-channel attacks through dynamic software di-
versity. In Proceedings of the 2015 Network and Dis-
tributed System Security Symposium (NDSS 2015),
2015.

[18] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In Pro-
ceedings of the 6th USENIX Symposium on Operat-
ing System Design and Implementation (OSDI’04),
December 2004.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Non-
monopolizable caches: Low-complexity mitigation
of cache side channel attacks. ACM Transactions
on Architecture and Code Optimization, 8(4):35:1–
35:21, January 2012.

[20] Paul England, Butler Lampson, John Manferdelli,
Marcus Peinado, and Bryan Willman. A trusted
open platform. Computer, 36(7):55–62, 2003.

[21] Adi Fuchs and Ruby B. Lee. Disruptive Prefetching:
Impact on Side-Channel Attacks and Cache Designs.
In Proceedings of the 8th ACM International Sys-
tems and Storage Conference, May 2015.

[22] Matthew Gillespie. Intel trusted execution technol-
ogy: A primer. https://software.intel.com/
en-us/articles/intel-trusted-execution-

technology-a-primer/.

[23] Johannes Götzfried, Moritz Eckert, Sebastian
Schinzel, and Tilo Müller. Cache atacks on SGX.

310 2017 USENIX Annual Technical Conference USENIX Association

http://libjpeg.sourceforge.net/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.wikipedia.org/
http://wiki.apache.org/hadoop/
http://wiki.apache.org/hadoop/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://arxiv.org/abs/1702.07521
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/

In 2017 European Workshop on Systems Security
(EuroSec’17).

[24] David Gullasch, Endre Bangerter, and Stephan
Krenn. Cache Games – bringing access-based cache
attacks on AES to practice. In Proceedings of the
2011 IEEE Symposium on Security and Privacy,
pages 490 –505, May 2011.

[25] Berk Gülmezoglu, Mehmet Sinan Inci, Gorka Irazo-
qui, Thomas Eisenbarth, and Berk Sunar. A faster
and more realistic flush+reload attack on AES. In
Proceedings of Constructive Side-Channel Analysis
and Secure Design COSADE (2015), 2015.

[26] Matthew Hoekstra, Reshma Lal, Pradeep Pap-
pachan, Carlos Rozas, Vinay Phegade, and Juan
del Cuvillo. Using innovative instructions to cre-
ate trustworthy software solutions. In Workshop on
Hardware and Architectural Support for Security
and Privacy (HASP 2013), June 2013.

[27] Owen S. Hofmann, Alan M. Dunn, Sangman Kim,
Michael Z. Lee, and Emmett Witchel. InkTag: Se-
cure applications on an untrusted operating system.
In International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS), 2013.

[28] Intel Corp. Software Guard Extensions Program-
ming Reference, September 2013. Ref. #329298-
001 http://software.intel.com/sites/

default/files/329298-001.pdf.

[29] Intel Corp. Software Guard Extensions Program-
ming Reference, October 2014. Ref. #329298-
002US https://software.intel.com/sites/

default/files/managed/48/88/329298-002.

pdf.

[30] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A shared cache attack that works across cores
and defies vm sandboxingand its application to AES.
In Proceedings of the 36th IEEE Symposium on
Security and Privacy, 2015.

[31] Prerit Jain, Soham Desai, Seongmin Kim, Ming-
Wei Shih, JaeHyuk Lee, Changho Choi, Youjung
Shin, Taesoo Kim, Brent B. Kang, and Dongsu Han.
Opensgx: An open platform for sgx research. In
Proceedings of the 2016 Network and Distributed
System Security Symposium (NDSS 2016), 2016.

[32] Taesoo Kim, Marcus Peinado, and Gloria Mainar-
Ruiz. STEALTHMEM: System-Level Protection

Against Cache-Based Side Channel Attacks in the
Cloud. In USENIX Security Symposium, 2012.

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee. Last-level cache side-channel
attacks are practical. In Proceedings of the 36th
IEEE Symposium on Security and Privacy, 2015.

[34] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon,
Carlos Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday Savagaonkar. Innovative instructions and
software model for isolated execution. In Workshop
on Hardware and Architectural Support for Security
and Privacy (HASP 2013), June 2013.

[35] Ahmad Moghimi, Gorka Irazoqui, and Thomas
Eisenbarth. Cachezoom: How SGX amplifies the
power of cache attacks. https://arxiv.org/

abs/1703.06986, March 2017.

[36] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of aes.
In Topics in Cryptology–CT-RSA 2006, pages 1–20.
Springer, 2006.

[37] Colin Percival. Cache missing for fun and profit. In
BSDCan 2005, Ottawa, 2005.

[38] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party com-
pute clouds. In ACM Conference on Computer and
Communications Security (CCS), 2009.

[39] Felix Schuster, Manuel Costa, Cedric Fournet,
Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. Vc3: Trust-
worthy data analytics in the cloud using sgx. In 36th
IEEE Symposium on Security and Privacy. IEEE In-
stitute of Electrical and Electronics Engineers, May
2015.

[40] Michael Schwarz, Samuel Weiser, Daniel Gruss,
Clémentine Maurice, and Stefan Mangard. Mal-
ware guard extension: Using SGX to conceal cache
attacks. In 14th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA’17), 2017.

[41] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and
Marcus Peinado. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. In
Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS), San
Diego, CA, February 2017.

USENIX Association 2017 USENIX Annual Technical Conference 311

http://software.intel.com/sites/default/files/329298-001.pdf
http://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986

[42] Joop van de Pol, Nigel Smart, and Yuval Yarom.
Just a little bit more. In CT-RSA, 2015.

[43] Zhenghong Wang and Ruby B. Lee. New cache de-
signs for thwarting software cache-based side chan-
nel attacks. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture,
ISCA ’07, pages 494–505, 2007.

[44] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In Proceedings
of the 2015 IEEE Symposium on Security and Pri-
vacy, 2015.

[45] Yuval Yarom and Katrina Falkner.
FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In USENIX
Security Symposium, 2014.

[46] Yinqian Zhang, Ari Juels, Michael Reiter, and
Thomas Ristenpart. Cross-tenant side-channel at-
tacks in PaaS clouds. In ACM Conference on Com-
puter and Communications Security (CCS), 2014.

[47] Yinqian Zhang and Michael K Reiter. Düppel:
Retrofitting commodity operating systems to mit-
igate cache side channels in the cloud. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2013.

312 2017 USENIX Annual Technical Conference USENIX Association

Understanding Security Implications of Using Containers in the Cloud

Byungchul Tak†, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda, James Doran
†Kyungpook National University IBM TJ Watson Research Center

Daegu, Republic of Korea Yorktown Heights, NY USA

Abstract
Container technology is being adopted as a mainstream
platform for IT solutions because of high degree of
agility, reusability and portability it offers. However,
there are challenges to be addressed for successful adop-
tion. First, it is difficult to establish the full pedigree
of images downloaded from public registries. Some
might have vulnerabilities introduced unintentionally
through rounds of updates by different users. Second,
non-conformance to the immutable software deployment
policies, such as those promoted by the DevOps prin-
ciples, introduces vulnerabilities and the loss of control
over deployed software. In this study, we investigate
containers deployed in a production cloud to derive a
set of recommended approaches to address these chal-
lenges. Our analysis reveals evidences that (i), images
of unresolved pedigree have introduced vulnerabilities
to containers belonging to third parties; (ii), updates to
live public containers are common, defying the tenet that
deployed software is immutable; and (iii), scanning con-
tainers or images alone is insufficient to eradicate vul-
nerabilities from public containers. We advocate for bet-
ter systems support for tracking image provenance and
resolving disruptive changes to containers, and propose
practices that container users should adopt to limit the
vulnerability of their containers.

1 Introduction
Containers are expanding their adoption in the IT
arena rapidly as evidenced by recent launches of IBM
Bluemix [20], Amazon ECS [10], Azure Container Ser-
vice [13] and Google Container Engine [16]. Reasons
are plentiful. The motto of ‘Build, Ship and Run’, easy
reusability of images, easy distribution of code, and sim-
plicity of pick and run all align well with the agility,
portability, visibility goals of modern software develop-
ment and DevOps principles [14, 26, 30]. Ultimately the
goal is to shorten the release cycles, and thus time-to-
market, as much as possible.

However, with mainstream adoption of containers,
new challenges emerge. Among them, we focus on the
following two that we believe are the most critical. First,
the ease of distribution and reuse of containers make it
difficult to fully understand the origin and pedigree of
images we use. Consider this scenario where two benign
development actions can lead to a serious security expo-
sure. A developer builds an image with the password-
based authentication enabled and pushes it to an image
registry. Another developer, unaware of this, pulls this
image and builds a database application on top, where
the database application adds a default user ID and a
password during its installation. This new image is now
pushed back to the registry. As a result of these indepen-
dent actions we end up with an image of a high-risk secu-
rity exposure that is ready to be pulled and deployed by
many unsuspecting users. Anyone can freely use this im-
age to deploy the same database application in the cloud,
and it could be one of yours as well. Unintended vul-
nerabilities could be introduced this way to an image and
can quickly spread in the cloud [8, 19].

A second challenge arises where the expectations from
the employed DevOps practices do not match reality with
containerized application deployments. Modern DevOps
practices advocate an “immutable architecture” model,
where all software, system and infrastructure require-
ments of an application are expressed as code. This gives
developers the ability to re-create the infrastructure and
applications in a repeatable and agile way. Containers,
with their ability to package all system and software re-
quirements, are a key enabler for this immutable archi-
tecture model. However, there is a commonly observed
mismatch, or drift, between the declared architecture and
the actually deployed application instances in the cloud.
This deviation stems from several factors such as in-
place updates (e.g., manual configuration change), dy-
namic configuration and application updates. Such drift
can introduce unexpected exposures and side effects on
deployed applications and can go unnoticed for a long

USENIX Association 2017 USENIX Annual Technical Conference 313

time with only the image-centric validation processes.
In this paper we present real examples to these chal-

lenges based on our experiences with an internal, pro-
duction cloud. We demonstrate an actual case study on
the image provenance and its implications. We present
a detailed data analysis on the extent of the observed
drift in cloud, its root causes and mitigation techniques.
We demonstrate the value of automated and system-
atic scanning of container images and live instances to
address these challenges for emerging solutions in this
space [1, 9, 11, 12, 17, 18, 21, 29, 31]. We present key
insights derived from observing aggregate cloud data on
security, provenance and drift. Our analysis shows that
drift exists in less than 5% of our scanned containers, it
has diverse causes, and in some cases can lead to sig-
nificant vulnerabilities. Our analysis shows that image-
centric security solutions are insufficient, and continu-
ous scanning of images and live containers, coupled with
good DevOps practices are required to ensure high level
of cloud security.

Overall, our contribution can be summarized as: (i)
Sharing of our experiences of analyzing the security
states of containers and images from a production-level
container cloud, (ii) Detailed drift analysis to understand
to what extent it occurs in the production cloud and what
the common characteristics are. Based on the analysis,
we describe comprehensive list of causes of drift, (iii)
Lessons and suggestions of approaches we should take
to continue to improve the safety of the container cloud.

2 Image & Container Checking
Our security scanning mechanism is fully integrated into
a production-level container cloud used internally. It is
automatically triggered upon new image pushes and new
container launches. It extracts various features such as
list of files with attributes, list of installed packages, OS
information, docker inspect, and docker history as pre-
sented in [22]. It then feeds the extracted features to
compliance and package vulnerability checkers, and per-
sists the output of these checkers into store for aggre-
gate and historical analysis. Images that users push come
from various sources. One major source is the public
docker hub. Another is the IBM’s official container im-
ages. Users may also choose to create their own images
from scratch and push them to the registry.

Compliance Checking: Compliance rules used in our
analysis are based on set of best practices recommended
by IBM internally to minimize the chances of compro-
mise. Complete list of rules we use in the scan is de-
scribed in Table 1. Rules are largely categorized into (i)
password restrictions (Rules 2B-D), (ii) file system in-
tegrity and (iii) remote access packages (Rules 9A-G).
Of particular interest is SSH-related rules - 9A, 9E, 9F
and 9G. For us these are considered critical rules because

ID Rules

1A Each UID must be used only once.
2B Maximum password age must be set to 90 days.
2C Minimum password length must be 8.

2D Minimum days that must elapse between user-
initiated password changes should be 1.

5A,B RD/WR access of root/.rhosts,.netrc only by root
5D,E Permission of /usr,/etc must be r-x or more restrictive.

5F The file /etc/security/opasswd must exist and the
permission must be rw——- or more restrictive.

5J Permission settings of /var for other
must be r-x or more restrictive.

5K Permission of /var/tmp must be rwxrwxrwt.

5L Permission setting of /var/log for other
must be r-x or more restrictive.

5M Permission check of /var/log/faillog
5N Permission check of /var/log/tallylog
5S Permission check of snmpd.conf

6D,E,F wtmp/faillog/tallylog must file exist.
8O no hosts equiv must be present
9A SSH server must not have been installed.
9B Telnet server must not have been installed.
9C Rsh server must not have been installed.
9D Ftp server must not have been installed.
9E SSH server must not be enabled.
9F SSH password authentication should not be enabled.
9G All passwords must not be weak.

Table 1: List of home-grown compliance rules.

SSH can often be an easy entry point for an attack. If
sshd runs on a container that has any user ID with weak
password, which is not uncommon, such container could
be cracked even with simple dictionary-based attacks.

Package Vulnerability Checking: Vulnerabilities in
software are announced via the National Vulnerability
Database (NVD) [24]. Each vulnerability is assigned
a unique id known as Common Vulnerability Exposure
(CVE) ID [15], and given a score to communicate the im-
pact of the vulnerability. In addition, it also lists specific
versions of the products affected by the given vulnerabil-
ity. Our vulnerability checker uses above information to
determine vulnerability status of images and containers.
Container images and running instances are scanned pe-
riodically to determine their vulnerabilities status. One
of the consequences of repeated scanning is an image
that has no vulnerabilities in a given scan, but may turn
out to be vulnerable later.

3 Image Security: Unsafe Pedigree
The foremost challenge of adopting the container cloud
identified earlier is the difficulty with grasping the full
history of what updates have been applied to the image
to be in current state. This means that the base image you
pull may contain unidentified vulnerabilities whether it
was crafted or inadvertent. Even worse, multiple series
of modifications and re-push by different users, includ-
ing yours, may jointly create unexpected vulnerabilities.
Thus, it is naive to expect that images would stay clean
even if users strictly follow best practice guidelines. In
this section we make a case for the importance of system-
atic and automated image scan to deal with such issues.
We drive our discussion using one actual scenario we en-
countered.

314 2017 USENIX Annual Technical Conference USENIX Association

Image Registry

IMG

Pull

Update

IMG’

Push

Advertise IMG’

Pull

Launch

Launch

Launch

Container

Container

Container

Pull

Pull

Figure 1: Scenario of vulnerability spread

Case Study: Recently we have come across a puzzling
pattern in one of the analytics data. We were look-
ing at the list of about 50 containers that were classi-
fied as ‘high-risk’ that violated SSH-related rules 9A, 9F
and 9G. They all had SSH server running, password-
authentication enabled and the an ID with weak pass-
word. What was most peculiar was that the source im-
age names of all of them had common part, say “myapp-
srv” 1, as if they were all created by one owner. But all
of them belonged to different users. How can we explain
this phenomenon in which all different users launched
containers whose images seemed to have derived from
the same source at the same time?

To find an answer we started with searching the
Docker Hub for the image that contained “myappsrv”.
We found a candidate, but lacked description. The
‘docker inspect’ output had the postgres start up com-
mands as the entry point. And, several ports (tcp 22,
5432, 7276, 7286, 9080, 9443) were open. List of pack-
ages installed in the image also indicated that it was a
postgresql database with SSH server. With further inves-
tigation we eventually learned that this image was used
in an online course. Students were instructed to pull, cus-
tomize and launch a container from it.

Figure 1 illustrates the spread process. The instructor
pulls the image that already had a postgres server with
a default ID of ‘postgres’ with weak password. Without
knowing the existence of this ID, he installs SSH server
packages. This image is pushed to the registry and ad-
vertised to all the online students. Students pull it and
launch containers of their own, resulting in large number
of high-risk containers. The instructor was unaware that
the original image had an ID with weak password. Also,
when installing the SSH server, the intention was to al-
low only the key-based authentication. In the config file,
this line was commented out as this.

P a s s w o r d A u t h e n t i c a t i o n yes

However, if it is commented out the default behavior of
sshd is to enable it. It is easy to be misled to believe that
the password authentication is disabled. As a result of all
of these, high-risk containers came to life.

1Actual name not revealed for a security reason.

image v2 image v3

image lifespan

container lifespan

scan rescan rescan rescan scan

scan scan scan scan

container
drift comparison

ti

tj

tk

th

time

1st image

scan

push push push

instantiated
using image

based on these two

Figure 2: Our definition of drift

Discussion: It is worthwhile making a few points from
this case study. First, vulnerabilities can creep in through
accumulation of innocuous updates and it is difficult to
foresee. Second, we started out with noticing a common
pattern in image names across group of vulnerable con-
tainers. This exemplifies the advantage of analyzing the
aggregate data as a whole which may lead to useful in-
formation that eventually reveals the root cause. Based
on the observation we make the following statement. En-
suring the safety of the container cloud should not solely
be dependent on users behaving in responsible manner.
We must rely on the automated solutions that perform se-
curity scans frequently and analyze the data as a whole.

4 Container Security: Drift Analysis
Here, we analyze the data collected from production-
level container cloud, used internally, to understand the
drift behavior. The data is collected from two instances
of the container cloud operating independently of each
other for about two week period in Oct, 2016.

The questions we are interested in are: Does drift ex-
ist? If so, how many containers exhibit the drift? Be-
tween the compliance and vulnerability, which is the
cause of drift? In compliance, which rules in specific are
causing the drift? Does drift always increase, or is there
a case where it decreases as well and what are they?

4.1 Definition of Drift
We specifically consider the drift in terms of the com-
pliance violations and vulnerabilities found. The drift
in compliance is defined as the difference between the
number of compliance rules violated in a running con-
tainer and in its corresponding image. Likewise the drift
in vulnerability is defined as the difference of the num-
ber of vulnerable packages. Other tools (such as Salt [2]
and Puppet [3]) may use the drift to mean specifically the
configuration changes between two states.

Figure 2 illustrates the time aspect of comparison in
determining the drift. The upper horizontal arrow indi-
cates the life span of an image. From the moment it is
pushed, it is scanned for the compliance and vulnerabil-
ity. A push of newer version also triggers a new scan.

USENIX Association 2017 USENIX Annual Technical Conference 315

(a) Site A (b) Site B

D
ri
ft

D
ri
ft
 980

(4.9%)
613

(3.0%)

19179
(95.1%)

19656
(97.0%)

No Drift
No Drift

Figure 3: Proportion of containers having drifts.

43 124 93
186

844
303

0

200

400

600

800

1000

1200

1 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2

Both

co
m
p
lia
n
ce

d
ri
ft

vu
ln
er
ab
ili
ty

d
ri
ft

Both

86.1%

9.5%
4.4%

49.4%

30.3%

20.2%
Both

Both

Site A Site B Site A Site B
(a) By absolute number of drifts (b) By percentage of drifts

co
m
p
lia
n
ce

d
ri
ft

vu
ln
er
ab
ili
ty

d
ri
ft

100%

80%

60%

40%

20%

0%

1.2K

1.0K

800

600

400

200

0

Figure 4: Drift break-down into compliance and vulnerability.

There are scans, labeled as ‘rescan’, that are not trig-
gered by a push. Rescans are to ensure that results are
up-to-date with respect to the updated compliance rules
and vulnerable package definitions. The lower horizontal
arrow represents the lifespan of a container.

We compare the scan results between ti and t j to obtain
the drift, denoted as D(ti, t j). D(tk, t j) is dismissed be-
cause tk might contain new updates that are independent
of the container and, thus, making it difficult to identify
true divergence of states. Also, D(th, t j) is inappropriate
since it may miss D(ti, th) that occurs at the launch time.

4.2 Analysis and Highlights of Findings
We find that drifts do exist in the production containers
and the magnitude is less than 5%. As shown in Figure 3,
4.9% and 3.0% of the containers exhibit drifts in both
Site A and B, respectively. The existence of drifts, even
as small as 5%, is intriguing because ideally the drift is
not expected to occur. One harmless cause of the drifts
would be the increased number of vulnerable packages
in containers not because they actually increased, but be-
cause the list of known vulnerable packages grew over
time. This raises a question as to how many drifts fall
under such category. Also, the site difference of 1.9%
seems to be meaningful to deserve a closer look. To find
the explanation, we look at the break-down of drift.

Figure 4 is the diagram of drifts broken down into
compliance and vulnerability. The existence of compli-
ance drifts tells us that there are other types of drifts
than the ones due to the growing definition of vulnera-
ble packages. What is common for both sites is that vul-
nerability drifts dominates. However, the proportion of
vulnerability vs. compliance drifts shows notable differ-
ence. Site A has much smaller ratio of compliance drifts
(13.9%) than the Site B (50.5%). This may be the indi-
cation that the characteristics of the containers from both

Site A Site B

Vulnerability Increased 913 93.2% 295 48.1%
Decreased 24 2.4% 194 31.6%

Compliance
Increased 72 7.3% 223 36.4%

Unchanged 2 0.2% 13 2.1%
Decreased 62 6.3% 74 12.1%

Table 2: Drift categorization in terms of the direction of
changes. Percentage is based on the total drifts per site.

Site A Site B
Rule Count Pct Rule Count Pct
9A 34 47.2% 1A 134 60.1%
1A 25 34.7% 2B 95 42.6%
9F 24 33.3% 2C 90 40.4%
2B 18 25.0% 2D 50 22.4%
2C 18 25.0% 9A 19 8.5%
2D 6 8.3% 5L 11 4.9%
9G 4 5.6% 9F 8 3.6%
5S 1 1.4% 5S 1 0.4%

9G 1 0.4%

Table 3: Compliance rules violated in drift cases. Refer to
Table 1 for the description of rule codes.

are intrinsically different in regard to compliance rules.
Also, it is interesting that the absolute number of vulner-
ability drifts at Site A is twice as many as that of Site B.
Note that it does not necessarily imply that containers at
Site B are more secure. This means that the vulnerability
status does not change across the instantiation as much
irrespective of how secure the images and containers are.

Table 2 provides the break-down of drifts in terms of
whether the drift count increases or decreases. One ex-
ample of a decrease is when the user logs in and man-
ually patches vulnerable packages in the container. Ac-
cording to the Table 2, significant portion (31.6%) of the
vulnerability drift at Site B is in the ‘Decreased’ cat-
egory. This contrasts with Site A’s number which has
only 24 (2.4%). In case of the compliance drift, the pro-
portion of the ‘Increased’ category for Site B is much
larger than that of Site A. Table 3 explains the cause of
the difference. It is because of the high proportion of
violations of rule 1A (60.1%) which is twice as large
in proportion compared to Site A(34.7%). In addition,
password-related rules, 2B-D, rank high in the table for
Site B whereas SSH-related rules, 9A and 9F, are towards
top of the list for Site A. It is interesting to see that, at Site
B, violations of password rules occur more than the vio-
lation of SSH rules to the running containers. Similarly,
the reverse holds for the Site A. Table 4 also shows the
composition of rules that are fixed. We can see that there
is a tendency of fixing SSH-related violation within con-
tainers at Site B. Although site differences exist, majority
of the drifts are due to the changes of vulnerability status.
Also, data shows that ‘in-place’ updates to the contain-
ers, both benign and disruptive, are taking place.

Focus on SSH rules: In this part we specifically study
the drift of SSH related rules among the rules in Table 1.
Compliance to the SSH related rules is of particular in-
terest because it is one of the most exploited vulnerabil-
ities [4, 5, 6, 7]. Once compromised, the consequence

316 2017 USENIX Annual Technical Conference USENIX Association

Site A Site B
Rule Count Pct Rule Count Pct
2C 28 45.2% 9A 33 44.6%
9G 26 41.9% 9F 32 43.2%
2B 26 41.9% 9G 30 40.5%
9F 19 30.6% 2D 25 33.8%
9A 8 12.9% 2B 12 16.2%
5B 1 1.6% 2C 11 14.9%

5S 1 1.4%

Table 4: Non-compliances fixed in drifts. (Rules in Table 1)
Category Site A Site B

No SSH, Password become weak 1 1.3% 1 1.2%
SSH installed 31 39.2% 19 23.5%
SSH installed with weak password 3 3.8%
Password become weak 1 1.3%
Sum 36 45.6% 20 24.7%
Password become strong 21 26.6% 26 32.1%
Password Auth disabled 13 16.5% 2 2.5%
No SSH, password become strong 1 1.3%
SSH gets removed 8 10.1% 33 40.7%
Sum 43 54.4% 61 75.3%
Total 79 100% 81 100%

Table 5: Classification of SSH-related compliance rule drifts.

could be deadly. But, in many cases this vulnerability is
exposed out of neglect, and most of the attacks can be
prevented even with small awareness.

Table 5 summarizes the findings related to the SSH
rules. It classifies the SSH-related drifts into 8 cate-
gories and presents the statistics. Proportion of contain-
ers with drifts of SSH rules are about 0.4% for both Site
A (79/20K) and Site B (81/20K). The upper half of the ta-
ble represents drift categories that negatively impacts the
SSH vulnerabilities. The lower half shows the drifts that
strengthen it. Although magnitude differs, there exist
drifts that increase the SSH vulnerabilities in both sites.
The risk becomes the highest when all three SSH rules
are violated whether it was through manual human ac-
tions or automated scripts. Our data do not contain direct
information of how these SSH-related drifts happened.
But, we strongly suspect that many are due to manual
install or password change via SSH login. Overall, our
study suggests that the security scanning of images only
is insufficient to eliminate the vulnerabilities. Since se-
curity status changes while containers are running, it’s
critical that containers be scanned periodically.

4.3 Discussion
Why does disruptive drift happen? While indus-
try thinking coalesces around the belief that containers
should be immutable [25], our findings have shown that
containers deployed in a cloud drift from their original
configuration. Drift occurs for several reasons.
• Update via Remote Shell Access: Users of Docker con-
tainers are able to login into their containers and exe-
cute local commands that alter the state of the contain-
ers. Containers offer two shell access modalities: native
Docker daemon commands (e.g., exec, attach) and user
installed remote shell servers (e.g., SSH login).
• Automated Software Update: Owing to a long history
of bug and vulnerability discovery in software long after

they ship, software often install with default options to
automatically install updates as they become available.
As developers build container images they often neglect
to changing such defaults.
• Software configured at runtime: To aid with usability,
popular server applications offer Web admin front ends
that allow novice and expert users alike to change their
configurations long after they have been deployed.

What can we do about drift? Both the systems and
container user communities must work together to re-
alize the promise of an immutable infrastructure. Sys-
tems must provide better mechanisms to version and
track changes and automate detection of drift from de-
sired container state. Container users must also adopt
practices that lead to immutability.
• Systems support: Disallowing changes altogether on
containers is untenable. Applications, even if stateless,
often write cache data or logs to the local file system.
First we should track all changes made to containers and
give users visibility into these changes [23]. Second, sys-
tems must recognize benign changes to the container file
systems and memory from undesired changes.
• Best practices: Users must adopt practices that con-
tribute to immutable infrastructures. The first step is to
discontinue bad habits from the time-sharing era of log-
ging in to manually effect changes. DevOps practices
require changes to exist as versioned code that is sys-
temically validated before delivery to production envi-
ronments. Delivery is the replacement of the live con-
tainer with a new instance containing versioned code.

Some configurations are bound to the application at
run time and cannot be built into the container image.
One such example is environment specific variables such
as the hostname of a service that the container software
depends on. For these configurations, developers must
rely on configuration management systems that track
changes rather than manually feeding the container with
arguments in an ad-hoc manner [27, 28]

5 Conclusion
In this paper, we first established the importance of
DevOps as a standard software delivery practice for
container-based micro-service architecture. And as an
underlying principle DevOps requires security assurance
over the pedigree of images along with operational im-
mutability for containers instantiated from these images.
To substantiate the extent to which these principles are
currently violated, we presented our study on analysis
of images and containers in production-level container
cloud. We also discussed common characteristics and
causes of drifts. Thus, there is an increasing need to have
a regulatory protocol and enforcement engine in the plat-
form to curb such non-conformity to ensure security and
success of DevOps.

USENIX Association 2017 USENIX Annual Technical Conference 317

References

[1] Docker Bench for Security. https://github.

com/docker/docker-bench-security.

[2] Managing configuration drift with Salt and Snap-
per. https://www.suse.com/communities/blog/
managing-configuration-drift-salt-snapper/.

[3] Maximizing IT Security with Configuration
Management. https://puppet.com/resources/
whitepaper/maximizing-it-security-configuration-
management.

[4] Poorly managed SSH keys pose serious risks for
most companies. http://www.computerworld.com/
article/2488012/ malware-vulnerabilities/poorly-
managed-ssh-keys-pose-serious-risks
-for-most-companies.html.

[5] Securing your SSH Server. https://blog.

rackspace.com/securing-your-ssh-server.

[6] Security Guide: How to Protect Your In-
frastructure Against the Basic Attacker.
http://blog.mailgun.com/security-guide-basic-
infrastructure-security/.

[7] Security Notice: OpenSSH Pass-
words. http://authy.com/blog/

openssh-passwords-vulnerable/.

[8] Someone said that 30vulnerabilities.
https://jpetazzo.github.io/2015/05/

27/docker-images-vulnerabilities/.

[9] Understanding Docker Security And Best
Practices. https://blog.docker.com/2015/05/
understanding-docker-security-and-best-practices/.

[10] AMAZON EC2 CONTAINER SERVICE. https://
aws.amazon.com/ecs/.

[11] AMAZON INSPECTOR. https://aws.amazon.

com/inspector/.

[12] AQUA. https://www.aquasec.com/.

[13] AZURE CONTAINER SERVICE. https:

//azure.microsoft.com/en-us/services/

container-service/.

[14] CALLANAN, M., AND SPILLANE, A. Devops:
Making it easy to do the right thing. IEEE Software
33, 3 (May 2016), 53–59.

[15] COMMON VULNERABILITIES AND EXPOSURES.
https://cve.mitre.org/.

[16] CONTAINER ENGINE. https://cloud.google.
com/container-engine/.

[17] COREOS CLAIR. https://coreos.com/blog/

vulnerability-analysis-for-containers.

html.

[18] DOCKER SECURITY SCANNING. https:

//docs.docker.com/docker-cloud/builds/

image-scan/.

[19] GUMMARAJU, JAYANTH AND DESIKAN,TARUN
AND TURNER, YOSHIO. Over 30% of Official Im-
ages in Docker Hub Contain High Priority Security
Vulnerabilities. https://www.banyanops.com/

blog/analyzing-docker-hub/.

[20] IBM BLUEMIX. https://console.ng.

bluemix.net/.

[21] IBM VULNERABILITY ADVISOR. https:

//www.ibm.com/blogs/bluemix/tag/

ibm-vulnerability-advisor/.

[22] KOLLER, R., ISCI, C., SUNEJA, S., AND
DE LARA, E. Unified monitoring and analytics in
the cloud. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15) (Santa Clara,
CA, 2015), USENIX Association.

[23] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S.,
REDDI, V. J., AND HAZELWOOD, K. Pin: Build-
ing customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (New York, NY,
USA, 2005), PLDI ’05, ACM, pp. 190–200.

[24] NATIONAL VULNERABILITY DATABASE. https:
//nvd.nist.gov/.

[25] RAFAEL BENEVIDES. 10 things to
avoid in docker containers. https://

developers.redhat.com/blog/2016/02/24/

10-things-to-avoid-in-docker-containers/.

[26] ROCHE, J. Adopting devops practices in quality
assurance. Commun. ACM 56, 11 (Nov. 2013), 38–
43.

[27] SHERMAN, A., LISIECKI, P. A., BERKHEIMER,
A., AND WEIN, J. Acms: The akamai configu-
ration management system. In Proceedings of the
2Nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2 (Berke-
ley, CA, USA, 2005), NSDI’05, USENIX Associa-
tion, pp. 245–258.

318 2017 USENIX Annual Technical Conference USENIX Association

[28] TANG, C., KOOBURAT, T., VENKATACHALAM,
P., CHANDER, A., WEN, Z., NARAYANAN, A.,
DOWELL, P., AND KARL, R. Holistic configura-
tion management at facebook. In Proceedings of
the 25th Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2015), SOSP ’15, ACM,
pp. 328–343.

[29] TWISTLOCK. https://www.twistlock.com/.

[30] WETTINGER, J., ANDRIKOPOULOS, V., AND
LEYMANN, F. Automated capturing and system-
atic usage of devops knowledge for cloud applica-
tions. In 2015 IEEE International Conference on
Cloud Engineering (March 2015), pp. 60–65.

[31] WINKEL, S. Security Assurance of Docker
Container. In SANS Institute Whitepaper (Oc-
tober 2016). https://www.sans.org/reading-
room/whitepapers/assurance/security-assurance-
docker-containers-37432.

USENIX Association 2017 USENIX Annual Technical Conference 319

Memshare: a Dynamic Multi-tenant Key-value Cache

Asaf Cidon⋆, Daniel Rushton†, Stephen M. Rumble‡, Ryan Stutsman†

⋆Stanford University, †University of Utah, ‡Google Inc.

Abstract

Web application performance heavily relies on the hit rate

of DRAM key-value caches. Current DRAM caches stati-

cally partition memory across applications that share the

cache. This results in under utilization and limits cache hit

rates. We present Memshare, a DRAM key-value cache

that dynamically manages memory across applications.

Memshare provides a resource sharing model that guar-

antees reserved memory to different applications while

dynamically pooling and sharing the remaining memory

to optimize overall hit rate.

Key-value caches are typically memory capacity bound,

which leaves cache server CPU and memory bandwidth

idle. Memshare leverages these resources with a log-

structured design that allows it to provide better hit rates

than conventional caches by dynamically re-partitioning

memory among applications. We implemented Memshare

and ran it on a week-long trace from a commercial mem-

cached provider. Memshare increases the combined hit

rate of the applications in the trace from 84.7% to 90.8%,

and it reduces the total number of misses by 39.7% with-

out significantly affecting cache throughput or latency.

Even for single-tenant applications, Memshare increases

the average hit rate of the state-of-the-art key-value cache

by an additional 2.7%.

1 Introduction

DRAM key-value caches are essential for reducing ap-

plication latency and absorbing massive database re-

quest loads in web applications. For example, Face-

book has dozens of applications that access hundreds

of terabytes of data stored in memcached [24] in-memory

caches [41]. Smaller companies use outsourced multi-

tenant in-memory caches to cost-effectively boost SQL

database performance.

High access rates and slow backend database perfor-

mance mean reducing cache miss rates directly translates

to end-to-end application performance. For example, one

Facebook memcached pool achieves a 98.2% hit rate [9].

With an average cache latency of 100 µs and MySQL ac-

cess times of 10 ms, increasing the hit rate by 1% reduces

latency by 36% (from 278 µs to 179 µs) and reduces

database read load by 2.3×.

Today, operators statically divide memory across appli-

cations. For example, Facebook, which manages its own

data centers and cache clusters [9, 39], has an engineer

that is tasked to manually partition machines into separate

cache pools for isolation. Similarly, Memcachier [4, 18],

a cache-as-a-service for hundreds of tenants, requires cus-

tomers to purchase a fixed amount of memory.

Static partitioning is inefficient, especially under chang-

ing application loads; some applications habitually under

utilize their memory while others are short of resources.

Worse, it is difficult for cache operators to decide how

much memory should be allocated to each application.

This manual partitioning requires constant tuning over

time. Ideally, a web cache should automatically learn and

assign the optimal memory partitions for each application

based on their changing working sets; if an application

needs a short term boost in cache capacity, it should be

able to borrow memory from one that needs it less, with-

out any human intervention.

To this end, we designed Memshare, a multi-tenant

DRAM cache that improves cache hit rates by automat-

ically sharing pooled and idle memory resources while

providing performance isolation guarantees. To facili-

tate dynamic partitioning of memory among applications,

Memshare stores each application’s items in a segmented

in-memory log. Memshare uses an arbiter to dynami-

cally decide which applications require more memory

and which applications are over-provisioned, and it uses a

cleaner to evict items based on their rank and to compact

memory to eliminate fragmentation.

This paper makes two main contributions:

1. Memshare is the first multi-tenant web memory

cache that optimally shares memory across applica-

tions to maximize hit rates, while providing isolation

guarantees. Memshare does this with novel dynamic

and automatic profiling and adaptive memory reallo-

cation that boost overall hit rate.

2. Memshare uniquely enforces isolation through a log-

structured design with application-aware cleaning

that enables fungibility of memory among applica-

tions that have items of different sizes. Due to its

memory-efficient design, Memshare achieves sig-

nificantly higher hit rates than the state-of-the-art

memory cache, both in multi-tenant environments

and in single-tenant environments.

In Memshare, each application specifies a minimum

amount of reserved memory; the remaining pooled mem-

ory is used flexibly to maximize hit rate. Inspired by

USENIX Association 2017 USENIX Annual Technical Conference 321

Cliffhanger [19], Memshare optimizes hit rates by esti-

mating hit rate gradients; it extends this approach to track

a gradient for each application, and it awards memory to

the applications that can benefit the most from it. This

enables cache providers to increase hit rates with fewer

memory resources while insulating individual applica-

tions from slowdowns due to sharing. Even when all

memory is reserved for specific applications, Memshare

can increase overall system efficiency without affecting

performance isolation by allowing idle memory to be

reused between applications. Memshare also lets each

application specify its own eviction policy (e.g., LRU,

LFU, Segmented LRU) as a ranking function [11]. For

example, to implement LRU, items are ranked based on

the timestamp of their last access; to implement LFU,

items are ranked based on their access frequency.

Existing memory caches cannot support these proper-

ties; they typically use a slab allocator [3, 18, 19], where

items of different sizes are assigned to slab classes and

eviction is done independently on a class-by-class basis.

This limits their ability to reassign memory between dif-

ferent applications and between items of different sizes.

Memshare replaces slab allocation with a new log-

structured allocator that makes memory fungible between

items of different sizes and applications. The drawback of

the log-structured allocator is that it continuously repacks

memory contents to reassign memory, which increases

CPU and memory bandwidth use. However, increasing

hit rates in exchange for higher CPU and memory band-

width use is attractive, since key-value caches are typi-

cally memory capacity bound and not CPU bound. In a

week-long trace from Memcachier, cache inserts induce

less than 0.0001% memory bandwidth utilization and

similarly negligible CPU overhead. CPU and memory

bandwidth should be viewed as under utilized resources

that can be used to increase the cache efficiency, which

motivates the log-structured approach for memory caches.

Nathan Bronson from the data infrastructure team at

Facebook echoes this observation: “Memcached shares a

RAM-heavy server configuration with other services that

have more demanding CPU requirements, so in practice

memcached is never CPU-bound in our data centers. In-

creasing CPU to improve the hit rate would be a good

trade off.” [16]. Even under high CPU load, Memshare’s

cleaner can dynamically shed load by giving up evic-

tion policy accuracy, but, in practice, it strongly enforces

global eviction policies like LRU with minimal CPU load.

We implement Memshare and analyze its performance

by running a week-long trace from Memcachier, a multi-

tenant memcached service [18]. We show that Memshare

adds 6.1% to the overall cache hit rate compared to mem-

cached. We demonstrate that Memshare’s added over-

heads do not affect client-observed performance for real

workloads, since CPU and memory bandwidth are sig-

nificantly under utilized. Our experiments show that

Memshare achieves its superior hit rates and consumes

less than 10 MB/s of memory bandwidth, even under

aggressive settings. This represents only about 0.01%

of the memory bandwidth of a single CPU socket. We

demonstrate that in the case of a single-tenant application

running in the cache, Memshare increases the number

of hits by an extra 2.37% compared to Cliffhanger [19],

the state-of-the-art single-tenant cache. To the best of

our knowledge, Memshare achieves significantly higher

average hit rates than any other memory cache both for

multi-tenant and single-tenant workloads.

2 Motivation

DRAM key-value caches are an essential part of web ap-

plication infrastructure. Facebook, Twitter, Dropbox, and

Box maintain clusters of thousands of dedicated servers

that run web caches like memcached [24] that serve a wide

variety of real-time and batch applications. Smaller com-

panies use caching-as-a-service providers such as Elas-

tiCache [1], Redis Labs [5] and Memcachier [4]. These

multi-tenant cache providers may split a single server’s

memory among dozens or hundreds of applications.

Today, cache providers partition memory statically

across multiple applications. For example, Facebook,

which manages its own cache clusters, partitions applica-

tions among a handful of pools [9,39]. Each pool is a clus-

ter of memcached servers that cache items with similar

QoS needs. Choosing which applications belong in each

pool is done manually. Caching-as-a-service providers

like Memcachier [4, 18] let customers purchase a cer-

tain amount of memory. Each application is statically

allocated memory on several servers, and these servers

maintain a separate eviction queue for each application.

2.1 Partitioned vs Pooled

We compare two different resource sharing schemes with

memcached using simulation1: the static partitioning used

by Memcachier, and a greedy pooled memory policy, both

using memcached’s slab allocator with LRU. In the static

partitioning, we run applications just as they run in our

commercial Memcachier trace; each is given isolated ac-

cess to the same amount of memory it had in the trace.

In the pooled policy, applications share all memory, and

their items share eviction queues. An incoming item from

any application evicts items from the tail of the shared

per-class eviction queues (§2.2), which are oblivious to

which application the items belong to. We use a moti-

vating example of three different applications (3, 5 and

7) selected from a week-long trace of memcached traffic

running on Memcachier. These applications suffer from

bursts of requests, so they clearly demonstrate the trade

offs between the partitioned and pooled memory policies.

1Source available at http://github.com/utah-scs/lsm-sim/

322 2017 USENIX Annual Technical Conference USENIX Association

http://github.com/utah-scs/lsm-sim/

Hit Rate

App Partitioned Pooled

3 97.6% 96.6%

5 98.8% 99.1%

7 30.1% 39.2%

Combined 87.8% 88.8%

Table 1: Average hit rate of Memcachier’s partitioned and

pooled policy over a week.

Partitioned Slab Pooled Slab

M
is

s
 R

a
te

(F
ra

c
tio

n
 o

f A
c
c
e

s
s
e

s
)

C
a

c
h

e
 O

c
c
u

p
a

n
c
y

(M
B

)

0 24 48 72 96 120 0 24 48 72 96 120

0.0

0.2

0.4

0.6

0.8

0

20

40

60

Time (Hours)

Application 3 5 7

Figure 1: Miss rate and cache occupancy of Memcachier’s

partitioned and pooled policies over time.

Table 1 shows the average hit rates over a week of

the three applications in both configurations. Figure 1

depicts the average miss rate and cache occupancy over

the week. The pooled policy gives a superior overall hit

rate, but application 3’s hit rate drops 1%. This would

result in 42% higher database load and increased latencies

for that application. The figure also shows that the pooled

scheme significantly changes the allocation between the

applications; application 3 loses about half its memory,

while application 7 doubles its share.

2.2 Slab Allocation Limits Multi-tenancy

Ideally, a multi-tenant eviction policy should combine

the best of partitioned and pooled resource sharing. It

should provide performance isolation; it should also al-

low applications to claim unused memory resources when

appropriate, so that an application that has a burst of re-

quests can temporarily acquire resources. This raises two

requirements for the policy. First, it must be able to dy-

namically arbiter which applications can best benefit from

additional memory and which applications will suffer the

least when losing memory. Second, it needs to be able to

dynamically reallocate memory across applications.

Unfortunately, allocators like memcached’s slab allo-

cator greatly limit the ability to move memory between

applications, since items of different sizes are partitioned

in their own slabs. The following example illustrates the

problem. Imagine moving 4 KB of memory from applica-

tion 1 to application 3. In the trace, the median item size

for application 1 and 3 are 56 B and 576 B, respectively.

In Memcachier, each 1 MB slab of memory is assigned

a size class; the slab is divided into fixed sized chunks

according to its class. Classes are in units of 64× 2i up to

1 MB (i.e. 64 B, 128 B, . . ., 1 MB). Each item is stored

in the smallest class that can contain the item. Therefore,

items of 56 B are stored in a 1 MB slab of 64 B chunks,

and 576 B are stored in a 1 MB slab of 1 KB chunks.

There are two problems with moving memory across

applications in a slab allocator. First, even if only a small

amount needs to be moved (4 KB), memory can only be

moved in 1 MB units. So, application 1 would have to

evict 1 MB full of small items, some of which may be hot;

memcached tracks LRU rank via an explicit list, which

doesn’t relate to how items are physically grouped within

slabs. Second, the newly reallocated 1 MB could only

be used for a single item size. So, application 3 could

only use it for items of size 256-512 B or 512-1024 B.

If it needed memory for items of both sizes, it would

need application 1 to evict a second slab. Ideally, the

cache would only evict the bottom ranked items from

application 1, based on application 1’s eviction policy,

which have a total size of 4 KB. This problem occurs

even when assigning memory between different object

sizes within the same application.

This motivates a new design for a multi-tenant cache

memory allocator that can dynamically move variable

amounts of memory among applications (and among dif-

ferent object sizes of the same application) while preserv-

ing applications’ eviction policy and priorities.

3 Design

Memshare is a lookaside cache server that supports

the memcached API. Unlike previous key-value caches,

Memshare stores items of varying sizes and applications

physically together in memory, and uses a cleaner running

in the background to remove dead items. When the cache

is full, it decides which items to evict based on the items’

eviction priorities and how effectively each application

uses its share of the cache.

Memshare is split into two key components. First,

Memshare’s arbiter must determine how much memory

should be assigned to each application (its targetMem).

Second, Memshare’s cleaner implements these assign-

ments by prioritizing eviction from applications that are

using too much cache space.

3.1 The Cleaner and Arbiter

Memshare’s in-memory cleaner fluidly reallocates mem-

ory among applications. The cleaner finds and evicts

the least useful items for any application from anywhere

in memory, and it coalesces the resulting free space for

newly written items. This coalescing also provides fast

allocation and high memory utilization.

USENIX Association 2017 USENIX Annual Technical Conference 323

HeadLog Segments

Hashtable/

Assoc Arbiter

Cleaner

- tracks per app stats

- approximates hit rate gradients

- sets new application allocations

- enforces allocation allotments

- relocates items to compact space

- evicts less useful items to free space

Figure 2: The Memshare design. Incoming items are allocated

from the head of a segmented in-memory log. The hash table

maps keys to their location in the log. The arbiter monitors

operations and sets allocation policy. The cleaner evicts items

according to the arbiter’s policy and compacts free space.

All items in Memshare are stored in a segmented in-

memory log (Figure 2). New items are allocated contigu-

ously from the same active head segment, which starts

empty and fills front-to-back. Once an item has been

appended to the log, the hash table entry for its key is

pointed to its new location in the log. Unlike slab alloca-

tor systems like memcached, Memshare’s segments store

items of all sizes from all applications; they are all freely

intermixed. By default, segments are 1 MB; when the

head segment is full, an empty “free” segment is chosen

as head. This accommodates the largest items accepted

by memcached and limits internal fragmentation.

When the system is running low on free segments

(< 1% of total DRAM), it begins to run the cleaner in the

background, in parallel with handling normal requests.

The cleaner frees space in two steps. First, it evicts items

that belong to an application that is using too much cache

memory. Second, it compacts free space together into

whole free segments by moving items in memory. Keep-

ing a small pool of free segments allows the system to

tolerate bursts of writes without blocking on cleaning.

Memshare relies on its arbiter to choose which items

the cleaner should prefer for eviction. To this end we

define the need of each application as its need for memory:

need(app) =
targetMem(app)

actualMem(app)

Where actualMem is the actual number of bytes cur-

rently storing items belonging to the application, and

targetMem is the number of bytes that the application

is supposed to be allocated. In the case of partitioned

resource allocation targetMem is constant. If the need

of an application is above 1, it means it needs to be allo-

cated more memory. Similarly, if the need is below 1, it

is consuming more memory than it should. The arbiter

ranks applications by their need for memory; the cleaner

prefers to clean from segments that contain more data

from applications that have the lowest need. Items in a

segment being cleaned are considered one-by-one; some

are saved and others are evicted.

Cleaning works in “passes”. Each pass takes n distinct

segments and outputs at most n−1 new segments, freeing

up at least one empty segment. This is done by writing

back the most essential items into the n − 1 output seg-

Algorithm 1 Memory relocation

1: function CLEANMEMORY(segments, n)

2: relocated = 0

3: residual = (n - 1) · segmentSize

4: while segments not empty do

5: app = arbiter.maxNeed()

6: item = maxRank(segments, app)

7: segments.remove(item)

8: if item.size ≤ residual - relocated then

9: relocate(item)

10: relocated = relocated + item.size

11: app.actualMem = app.actualMem + item.size

12: else

13: break

14: end if

15: end while

16: end function

n Segments

Max Need?

Arbiter Cleaner

App 3
Max Rank?

Key 9

Key 5

Rank 0

Key 7

Rank 1

Key 2

Rank 0

Key 9

Rank 2

Key 4

Rank 0

n - 1 Segments

Key 14

Rank 1

Key 10

Rank 1

Key 6

Rank -∞

Key 7

Rank 3

Key 2

Rank 3

Key 7

Rank 1

Key 14

Rank 1

Key 9

Rank 2

App 1 App 2 App 3

Figure 3: Memshare relocates items from n segments to n− 1
segments. The arbiter first chooses the application with the

highest need, and the cleaner relocates the item with the highest

rank among the items of that application.

ments. The writing is contiguous so free space, caused by

obsolete items that were overwritten, is also eliminated. n

is a system parameter that is discussed in Section 6. Note

that multiple passes can run in parallel.

In each pass, Memshare selects a fraction of the seg-

ments for cleaning randomly and a fraction based on

which segments have the most data from applications

with the lowest need. Random selection helps to avoid

pathologies. For example, if segments were only chosen

based on application need, some applications might be

able to remain over provisioned indefinitely so long as

there are worse offenders. Based on experience with the

Memcachier traces, choosing half of the segments ran-

domly avoided pathologies while tightly enforcing arbiter

policies.

Once a set of segments is selected for cleaning, the

cleaner sorts the items in the segments by rank to de-

termine which items should be preserved. Figure 3 and

Algorithm 1 show how this is done in a single cleaning

pass. segments is a list of all the items from the segments

being cleaned in the pass. In order to choose which item to

relocate next, the cleaner first determines the application

that has the highest need (maxNeed). Among the items in

the segments that belong to that application, the cleaner

then chooses the item with the highest rank (maxRank,

e.g. LRU-rank). It relocates the item by copying it and

updating its entry in the hash table. After the item is relo-

cated, the need for that application is recalculated. The

324 2017 USENIX Annual Technical Conference USENIX Association

process is repeated until the n− 1 segments are full or all

items are relocated. The remaining items are evicted by

dropping them from the hash table, and the need for the

applications’ whose items were evicted is adjusted.

Memshare can use any generic ranking function on

items to prioritize them for eviction; in fact, it can be

determined by the application. Memshare supports any

ranking function rank(t, f), that is based on the times-

tamp t of the last access of each item and f the number

of times it has been accessed. For example, to implement

LRU, the ranking function is rank(t) = t; that is, it is

the item’s last access timestamp. LFU is just the number

of accesses to an item: rank(f) = f . Segmented LRU

can be implemented as a combination of the timestamp of

the last access of the item and the number of times it has

been accessed. Throughout the paper, when evaluating

the hit rate of different caches, we use LRU as the default

eviction policy.

A key idea behind Memshare is that memory partition-

ing is enforced by the decision of which items to clean,

while any application can write at any time to the cache.

Consider the case where Memshare is configured for a

static partitioning among applications, and one applica-

tion continuously writes new items to the cache while

other applications do not. Allocations are static, so target-

Mem will remain constant. As the first application inserts

new items, its actualMem will increase until its need

drops below the need of the other applications. When the

memory fills and cleaning starts, the arbiter will choose

to clean data from the application that has the lowest need

and will begin to evict its data. If there are other active

applications competing for memory, this application’s

actualMem will drop, and its need will increase.

3.2 Balancing Eviction Accuracy and Cleaning

The cost of running Memshare is determined by a trade off

between the accuracy of the eviction policy, determined

by the parameter n and the rate of updates to the cache.

The higher the rate of updates, the faster the cleaner must

free up memory to keep up. Section 6.1 evaluates this

cost and finds for the trace the cleaning cost is less than

0.01% utilization for a single CPU socket. Even so, the

cleaner can be made faster and cheaper by decreasing n;

decreasing n reduces the amount of the data the cleaner

will rewrite to reclaim a segment worth of free space.

This also results in the eviction of items that are ranked

higher by their respective applications, so the accuracy

of the eviction policy decreases. In our design, n can be

dynamically adjusted based on the rate of updates to the

cache. Web cache workloads typically have a low update

rate (less than 3%) [39].

The last of the n−1 segments produced by the cleaning

pass may be less than full when there are many dead items

in the original n segments. The new n− 1 segments are

sorted based on need and rank, so one optimization is

to evict the items in last segment if its utilization is low

(< 50%) since it contains low rank and need items.

4 Memshare’s Sharing Model

Memshare allows the operator to fix a reserved amount

of memory for each application. The rest of the cache’s

memory is pooled and dynamically assigned to the ap-

plications whose hit rates would benefit the most from

it. Each application’s reserved memory we call reserved-

Mem; the remaining memory on the server is pooledMem,

shared among the different applications. At each point

in time, Memshare has a target amount of memory it is

trying to allocate to each application, targetMem. In the

case of statically partitioned memory, pooledMem is zero,

and targetMem is always equal to reservedMem for each

application.

targetMem defines an application’s fair share. The

resource allocation policy needs to ensure that each appli-

cation’s targetMem does not drop below its reservedMem,

and that the remaining pooledMem is distributed among

each application in a way that maximizes some perfor-

mance goal such as the maximum overall hit rate.

To maximize the overall hit rate among the applications,

each application’s hit rate curve can be estimated; this

curve indicates the hit rate the application would achieve

for a given amount of memory. Given applications’ hit

rate curves, memory can be reallocated to applications

whose hit rate would benefit the most. However, estimat-

ing hit rate curves for each application in a web cache can

be expensive and inaccurate [18, 19].

Instead, Memshare estimates local hit rate curve gradi-

ents with shadow queues. A shadow queue is an extension

of the cache that only stores item keys and not item values.

Each application has its own shadow queue. Items are

evicted from the cache into the shadow queue. For exam-

ple, imagine an application has 10,000 items stored in the

cache, and it has a shadow queue that stores the keys of

1,000 more items. If a request misses the cache and hits in

the application’s shadow queue, it means that if the appli-

cation had been allocated space for another 1,000 items,

the request would have been a hit. The shadow queue hit

rate gives a local approximation of an application’s hit

rate curve gradient [19]. The application with the highest

rate of hits in its shadow queue would provide the highest

number of hits if its memory was incrementally increased.

Algorithm 2 shows how targetMem is set. Each ap-

plication is initially given a portion of pooledMem. For

each cache request that is a miss, the application’s shadow

queue is checked. If key is present in the shadow queue,

that application is assigned a credit representing the right

to use to a small chunk (e.g., 64 KB) of the pooled mem-

ory. Each assigned credit is taken from another applica-

tion at random (pickRandom above). The cleaner uses

USENIX Association 2017 USENIX Annual Technical Conference 325

Algorithm 2 Pooled memory: set target memory

1: function SETTARGET(request, application)

2: if request 6∈ cache AND

request ∈ application.shadowQueue then

3: candidateApps = {}
4: for app ∈ appList do

5: if app.pooledMem ≥ credit then

6: candidateApps = candidateApps ∪ {app}
7: end if

8: end for

9: pick = pickRandom(candidateApps)

10: application.pooledMem =

application.pooledMem + credit

11: pick.pooledMem = pick.pooledMem - credit

12: end if

13: for app ∈ appList do

14: app.targetMem =

app.reservedMem + app.pooledMem

15: end for

16: end function

Hit Rate

App Partitioned Memshare 50%

3 97.6% 99.4%

5 98.8% 98.8%

7 30.1% 34.5%

Combined 87.8% 89.2%

Table 2: Average hit rate of Memshare with 50% reserved

memory compared to the partitioned policy.

Reserved Memory Total Hit Rate

0% 89.4%

25% 89.4%

50% 89.2%

75% 89.0%

100% 88.8%

Table 3: Comparison of Memshare’s total hit rate with different

amounts of reserved memory for applications 3, 5, and 7.

targetMem to choose which applications to evict items

from. appList is a list of all applications in the cache and

cache is a list of all items in the cache.

Table 2 compares Memshare with the statically parti-

tioned Memcachier scheme. For Memshare, each appli-

cation is configured to use 50% of the memory that was

allocated to it in the original trace as reserved memory

with the rest as pooled memory. Memshare delivers equal

or better hit rates both application-by-application and

overall. Even with 50% of memory reserved, Memshare

also achieves a higher overall hit rate (89.2%) than the

greedy pooled memory scheme (88.8%, Table 1).

Table 3 and Figure 4 further explore the trade off be-

tween overall hit rate and per-application hit rates as we

vary the percentage of memory that is held reserved. The

figure shows that with more memory held reserved, re-

allocation between applications dampens. In addition,

the figure shows Memshare’s cleaner enforces the re-

App Credit Size Hit Rate Credit Size Hit Rate

3 64 KB 99.4% 64 KB 99.5%

5 128 KB 98.5% 64 KB 98.6%

7 192 KB 33.4% 64 KB 32.3%

Table 4: Assigning different credit sizes to each application

allows cache operators to prioritize among applications.

served memory allocation for each application: appli-

cations never fall below their reservations. The figure

also shows how Memshare’s memory allocation reacts

to the rate of shadow queue hits. In the far left graphs,

when the cache has no reserved memory, Memshare al-

locates pooled memory to the applications that have a

high shadow queue hit rate. As Memshare allocates more

memory to the bursty application, its shadow queue hit

rate tempers. In the far right graphs, when the cache is

fully reserved, Memshare cannot allocate any additional

memory to the bursty applications; therefore, the shadow

queue hit rate remains high.

Finally, Table 2 and 3 break down how much of

Memshare’s hit rate improvements come from its allo-

cator and how much come from its sharing model. With

100% reserved memory, Memshare is equivalent to static

partitioning, but it achieves a 88.8% hit rate compared to

87.8% for memcached: a 1% gain strictly due to the allo-

cator. Going from 100% reserved memory to 0% shows

a 0.6% gain. This shows that about 38% of Memshare’s

gains are from memory sharing. Note that effective shar-

ing also requires log-structured allocation.

4.1 Allocation Priority

Cache providers may want to guarantee that when cer-

tain applications have bursts of requests, they would get

a higher priority than other applications. In order to ac-

commodate this requirement, Memshare enables cache

operators to assign different shadow queue credit sizes

to different applications. This guarantees that if a certain

application has a higher credit size than other applications,

when it requires a larger amount of memory due to a burst

of activity, it will be able to expand its memory footprint

faster than other applications.

Table 4 demonstrates how assigning different weights

to different applications affects their overall hit rate. In

this example, application 7 achieves a higher relative hit

rate, since it receives larger credits in the case of a shadow

queue hit.

4.2 Increasing Efficiency for Reserved Memory

Pooled memory works for environments like Facebook’s

where multiple cooperative applications use a shared

caching layer, and the operator wants to provide the best

overall performance while providing minimum guaran-

tees to applications. However, in some environments,

applications are inherently selfish and would like to maxi-

mize their reserved memory, but the cache operator still

326 2017 USENIX Annual Technical Conference USENIX Association

No Minimum Memory 25% Memory Reserved 50% Memory Reserved 75% Memory Reserved All Memory Reserved

0

20

40

60

80

0

2000

4000

6000

8000

O
c
c
u
p
ie

d
 M

e
m

o
ry

(M
B

)
S

h
a
d
o
w

 Q
u
e
u
e

H
it R

a
te

 (h
its

/s
)

0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120

Time (Hours)

Application 3 5 7

Figure 4: Comparison of Memshare’s memory consumption and the rate of shadow queue hits with different amounts of memory

reserved for applications 3, 5 and 7. Memshare assigns more pooled memory to applications with a high shadow queue hit rate.

Algorithm 3 Idle tax: set target memory

1: function SETTARGET(app, taxRate, idleTime)

2: idleMem = 0

3: for item ∈ app do

4: if item.timestamp < currentTime - idleTime then

5: idleMem + = item.size

6: end if

7: end for

8: activeFraction = 1−
idleMem

app.actualMem

9: τ =
1− activeFraction · taxRate

1− taxRate

10: app.targetMem =
app.reservedMem

τ

11: end function

has an incentive to optimize for effective memory utiliza-

tion. If applications are “sitting on” their underutilized

reserved memory, their resources can be reassigned with-

out negatively impacting their performance.

To help with this, Memshare also supports an idle mem-

ory tax that allows memory that has not been accessed for

a period to be reassigned. Memshare implements the tax

with one small change in how the arbiter sets each appli-

cation’s targetMem. Algorithm 3 shows how the arbiter

computes targetMem for each application when the tax

is enabled; taxRate ∈ [0, 1] determines what fraction of

an application’s memory can be reassigned if it is idle.

If taxRate is 1, all of the application’s idle memory can

be reassigned (and its targetMem will be 0). If taxRate

is 0, the idle tax cache policy is identical to partitioned

allocation. Idle memory is any memory that has not been

accessed more recently than idleTime ago. The arbiter

tracks what fraction of each application’s memory is idle,

and it sets targetMem based on the tax rate and the idle

fraction for the application.

In this algorithm, targetMem cannot be greater than

reservedMem. If multiple applications have no idle mem-

ory and are competing for additional memory, it will be

Hit Rate

App Memcachier Partitioned Idle Tax

3 97.6% 99.4%

5 98.8% 98.6%

7 30.1% 31.3%

Combined 87.8% 88.8%

Table 5: Average hit rate of Memshare’s idle tax policy.

allocated to them in proportion to their reservedMem. For

example, if two applications with a targetMem of 5 MB

and 10 MB respectively are contending for 10 MB, the

10 MB will be split in a 1:2 ratio (3.3 MB and 6.7 MB).

Table 5 depicts the hit rate Memshare’s idle tax algo-

rithm using a tax rate of 50% and a 5 hour idle time. In the

three application example, the overall hit rate is increased,

because the idle tax cache policy favors items that have

been accessed recently. Application 5’s hit rate decreases

slightly because some of its idle items were accessed after

more than 5 hours.

5 Implementation

Memshare consists of three major modules written in C++

on top of memcached 1.4.24: the log, the arbiter and the

cleaner. Memshare reuses most of memcached’s units

without change including its hash table, basic transport,

dispatch, and request processing.

5.1 The Log

The log replaces memcached’s slab allocator. It provides a

basic alloc and free interface. On allocation, it returns

a pointer to the requested number of bytes from the current

“head” segment. If the request is too big to fit in the head

segment, the log selects an empty segment as the new

head and allocates from it.

Allocation of space for new items and the change of

a head segment are protected by a spin lock. Contention

is not a concern since both operations are inexpensive:

USENIX Association 2017 USENIX Annual Technical Conference 327

allocation increments an offset in the head segment and

changing a head segment requires popping a new segment

from a free list. If there were no free segments, threads

would block waiting for the cleaner to add new segments

to the free list. In practice, the free list is never empty (we

describe the reason below).

5.2 The Arbiter

The arbiter tracks two key attributes for each applica-

tion: the amount of space it occupies and its shadow LRU

queue of recently evicted items. The SET request han-

dler forwards each successful SET to the arbiter so the

per-application bytes-in-use count can be increased. On

evictions during cleaning passes, the arbiter decreases the

per-application bytes-in-use count and inserts the evicted

items’ into the application’s shadow queue. In practice,

the shadow queue only stores the 64-bit hash of each

key and the length of each item that it contains, which

makes it small and efficient. Hash collisions are almost

non-existent and do no harm; they simply result in slight

over-counting of shadow queue hits.

5.3 The Cleaner

The cleaner always tries to keep some free memory avail-

able. By default, when less than 1% of memory is free

the cleaner begins cleaning. It stops when at least 1% is

free again. If the cleaner falls behind the rate at which

service threads perform inserts, then it starts new threads

and cleans in parallel. The cleaner can clean more aggres-

sively, by reducing the number of segments for cleaning

(n) or freeing up more segments in each cleaning pass.

This trades eviction policy accuracy for reduced CPU load

and memory bandwidth.

Cleaning passes must synchronize with each other and

with normal request processing. A spin lock protects the

list of full segments and the list of empty segments. They

are both manipulated briefly at the start and end of each

cleaning pass to choose segments to clean and to acquire

or release free segments. In addition, the cleaner uses

Memcached’s fine-grained bucket locks to synchronize

hash table access. The cleaner accesses the hash table to

determine item liveness, to evict items, and to update item

locations when they are relocated.

The arbiter’s per-app bytes-in-use counts and shadow

queues are protected by a spin lock, since they must be

changed in response to evictions. Each cleaner pass ag-

gregates the total number of bytes evicted from each ap-

plication and it installs the change with a single lock

acquisition to avoid the overhead of acquiring and releas-

ing locks for every evicted item. The shadow queue is

more challenging, since every evicted key needs to be

installed in some application’s shadow queue. Normally,

any GET that results in a miss should check the appli-

cation’s shadow queue. So, blocking operations for the

whole cleaning pass or even just for the whole duration

needed to populate it with evicted keys would be pro-

hibitive. Instead, the shadow queue is protected with a

spin lock while it is being filled, but GET misses use

a tryLock operation. If the tryLock fails, the shadow

queue access is ignored.

The last point of synchronization is between GET op-

erations and the cleaner. The cleaner never modifies the

items that it moves. Therefore, GET operations do not

acquire the lock to the segment list and continue to access

records during the cleaning pass. This could result in a

GET operation finding a reference in the hash table to

a place in a segment that is cleaned before it is actually

accessed. Memshare uses an epoch mechanism to make

this safe. Each request/response cycle is tagged at its start

with an epoch copied from a global epoch number. After

a cleaning pass has removed all of the references from

the hash table, it tags the segments with the global epoch

number and then increments it. A segment is only reused

when all requests in the system are from epochs later than

the one it is tagged with.

5.4 Modularity

Memshare maintains separation between the cleaner and

the arbiter. To do this, after a cleaning pass chooses

segments, it notifies the arbiter which items are being

cleaned. The arbiter ranks them and then calls back to

the cleaner for each item that it wants to keep. If the

relocation is successful, the arbiter updates the item’s

location in the hash table. Once the empty segments have

been filled with relocated items, the arbiter removes the

remaining entries from the hash table and updates per-

application statistics and shadow queues. In this way,

the cleaner is oblivious to applications, ranking, eviction

policy, and the hash table. Its only task is efficient and

parallel item relocation.

6 Evaluation

To understand Memshare’s benefits, we ran two sets of

tests. First, we ran a week-long multi-tenant Memcachier

trace with Memshare to measure hit rate gains and end-

to-end client-observed speedup. Second, we also bench-

marked the implementation with the YCSB [20] workload

to understand the overheads introduced by Memshare’s

online profiling and log cleaning.

Our experiments run on 4-core 3.4 GHz Intel Xeon

E3-1230 v5 (with 8 total hardware threads) and 32 GB

of DDR4 DRAM at 2133 MHz. All experiments are

compiled and run using the stock kernel, compiler, and

libraries on Debian 8.4 AMD64.

6.1 Performance

We tested the performance of Memshare using all the

major applications from the Memcachier trace with the

pooled memory and idle tax policies. Figure 5 presents

328 2017 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Application

H
it
 R

a
te

 (
%

)

Partitioned (Memcachier)

Memshare Pooled Memory

Memshare Idle Tax

Figure 5: Memshare’s pooled memory and idle tax algorithms’ hit rates for top Memcachier applications compared to memcached.

Policy Combined Hit Rate Miss Reduction

memcached 84.66% 0.00%

Cliffhanger 87.73% 20.00%

Memshare Tax 89.92% 34.28%

Memshare Pooled 90.75% 39.69%

Table 6: Combined hit rate of Memshare’s idle tax (50% tax)

and pooled memory policy (75% reserved) compared with

Cliffhanger, which is the state-of-the-art slab-based cache and

Memcached. The miss reduction column compares the miss rate

of the different policies to memcached.

the hit rate results, and Table 6 presents the summary. The

pooled cache policy provides a higher overall combined

hit rate increase, since it tries to maximize for overall

hit rates. On average, Memshare reduces the number

of misses by 39.7%. With an average cache latency of

100 µs and database latency of 10 ms, this would result

in an average application-observed speedup of 1.59×

(average access time of 1,016 µs versus 1,619 µs). In

some cases, such as applications 7, 9, and 19, Memshare

provides more than a 20% hit rate improvement.

Our evaluation uses 1 MB segments and 100 candidate

segments for cleaning, the same as memcached’s default

slab and maximum item size. The number of candidate

segments was chosen experimentally (see Table 7); it

provides the best hit rate and results in less than 0.01%

memory bandwidth use. The pooled policy used 75%

of each application’s original Memcachier memory as

reserved with the rest pooled. Shadow queues were con-

figured to represent 10 MB of items. Idle tax policy was

set to a 50% tax rate with all memory reserved for each

application. For the pooled policy, we experimented with

different credit sizes. When credit sizes are too small,

pooled memory isn’t moved fast enough to maximize hit

rates; when they are too high, memory allocation can

oscillate, causing excessive evictions. We found a credit

size of 64 KB provides a good balance.

Table 7 presents the combined hit rate and cleaner mem-

ory bandwidth consumption of Memshare’s pooled mem-

ory policy when varying n, the number of segments that

participate in each cleaning pass. The table shows that

for the Memcachier traces, there is a diminishing increase

in hit rate beyond n=40. While memory bandwidth use

increases as the number of candidate segments is higher,

Segments (n) Hit Rate Memory Bandwidth (MB/s)

1 89.20% 0.04

10 90.47% 2.14

20 90.58% 2.86

40 90.74% 4.61

60 90.74% 6.17

80 90.75% 7.65

100 90.75% 9.17

Table 7: Combined hit rate and memory bandwidth use of top

20 applications in Memcachier trace using Memshare with the

pooled memory policy with 75% reserved memory and varying

the number of segments in each cleaning pass.

Policy Average Single Tenant Hit Rate

memcached 88.3%

Cliffhanger 93.1%

Memshare 100% Reserved 95.5%

Table 8: Average hit rate of the top 20 applications in the

trace run as a single tenant with Memshare with 100% reserved

memory compared with Cliffhanger and memcached.

near peak hit rates can be achieved for this trace while

consuming less than 0.01% of the memory bandwidth

of a single modern CPU socket. Even at 100 candidate

segments, the memory bandwidth of Memshare is less

than 10 MB/s for the top 20 applications in the trace.

6.1.1 Single Tenant Hit Rate

In addition to providing multi-tenant guarantees,

Memshare’s log structured design significantly improves

hit rates on average for individual applications on a cache

which uses a slab allocator. Table 8 compares the aver-

age hit rates between Memshare and two systems that

utilize slab allocators: memcached and Cliffhanger [19].

Within a single tenant application, Cliffhanger optimizes

the amount of memory allocated to each slab to opti-

mize for its overall hit rate. However, Memshare’s log

structured design provides superior hit rates compared

to Cliffhanger, because it allows memory to be allocated

fluidly for items of different sizes. In contrast, each time

Cliffhanger moves memory from one slab class to another,

it must evict an entire 1 MB of items, including items that

may be hot. On average, Memshare with 100% reserved

memory increases the hit rate by 7.13% compared to

memcached and by 2.37% compared to Cliffhanger.

USENIX Association 2017 USENIX Annual Technical Conference 329

Latency

GET Hit GET Miss SET

memcached 21.44 µs 21.8 µs 29.48 µs

Memshare 22.04 µs 23.0 µs 23.62 µs

Table 9: Memshare and memcached access latency under an

artificial workload that causes high CPU load. Shadow queue

lookups increases latency in the case of GET cache misses.

Get Hits Get Misses Sets

0 200 400 600 0 200 400 600 0 200 400 600

0.000

0.900

0.990

0.999

End−to−end Access Time (µs)

F
ra

c
ti
o
n
 o

f
A

c
c
e
s
s
e
s

System memcached Memshare

Figure 6: Tail latency distribution for Memshare/memcached.

6.2 Microbenchmarks

The Memcachier traces result in a low CPU utilization,

so we also ran microbenchmarks using the YCSB frame-

work [20] to stress CPU and memory bandwidth utiliza-

tion. All of the microbenchmarks use 25 B items with

23 B keys over 100 million operations. Measurements

always include the full cost of cleaning.

6.2.1 Latency

Table 9 shows the average response latency of Memshare

with a full cache and a running cleaner compared to mem-

cached. The clients and cache server are running on one

machine, so the measurements represent a worst case. Ac-

cess times are dominated by the network software stack

and round trip delay [42]. Memshare’s GET hit latency

is 2.8% slower than memcached, and GET misses are

5.5% slower due to the check for the key in the shadow

queue. Shadow queues are naı̈ve LRU queues, so this

could be mitigated. The additional latency on a miss is

hidden, since the application must access the database

which takes tens to hundreds of milliseconds.

Large-scale applications that exploit caches have high

request fan-out and are known to be sensitive to tail la-

tency [21, 39]. Figure 6 compares the tail latency of

Memshare with memcached. Despite Memshare’s slower

average latency, it improves 99th and 99.9th percentile get

hit response times from 91 to 84 µs and 533 to 406 µs,

respectively. Get miss tail latency is nearly identical be-

tween the systems; despite the extra cost of maintaining

the shadow queue, 99th and 99.9th percentile Memshare

response times are 4 µs faster and 9 µs slower than mem-

cached, respectively. 99th and 99.9th percentile set times

show the impact of the cleaner with Memshare showing

times 8 µs faster and 143 µs slower, respectively; most al-

location is faster, but occasionally allocation is delayed by

−3.9%

−2.2%

100% writes

5% writes

0 200 400 600 800

Throughput (Thousands of Operations Per Second)

W
o
rk

lo
a
d

System

Memshare

memcached

Figure 7: Average throughput of Memshare compared to mem-

cached under a YCSB workload with 5% writes and 95% reads

and under a worst case workload with 100% writes.

cleaning. Tail latency is often a concern for systems that

perform garbage collection, like flash solid-state drives;

Memshare is more robust against outliers since its critical

sections are small and it never holds shared resources

like serial channels to flash packages. Cleaning is fully

parallel and effectively non-blocking.

6.2.2 CPU and Throughput

Table 7 compares Memshare throughput with memcached

under a YCSB workload with 95%/5% reads/writes and

one with 100% writes. Memshare is 2.2% slower for the

first workload and 3.9% slower with all writes.

Most of the throughput loss is due to Memshare’s

cleaner. To breakdown the loss, we measured the CPU

time spent on different tasks. In the 5% write workload,

5.1% of the process’s CPU time is spent on cleaning, and

1.1% is spent testing shadow queues on GET misses. Note

that the 100% write workload is unrealistic (such a work-

load does not need a cache). With a 100% write workload

12.8% of the process’s CPU time is spent on cleaning.

The small decrease in Memshare’s throughput is well

justified. In-memory caches are typically capacity-

bound not throughput-bound, and operate under low

loads [16,18]. The Memcachier trace loads are two orders

of magnitude less than the microbenchmark throughput.

Cache contents are often compressed; the gains from

Memshare’s efficient allocation are orthogonal, and the

benefits can be combined since cleaning little CPU.

6.2.3 Memory Overhead and Utilization

Memshare has a small memory overhead. By default,

shadow queues represent 10 MB of items; the overhead

of the queues depends on the size of the items. Assuming

small items on average (128 B), one queue stores 81,920

keys. Queues only keep 8 B key hashes, so key length isn’t

a factor. The default overhead is 81,920 · 8 B = 640 KB

per application. The other structures used by Memshare

have a negligible memory overhead.

Memshare’s cleaner wastes some space by keeping

some segments pre-cleaned; however, this space only rep-

resents about 1% of the total cache in our implementation.

Even with some idle memory, Memshare is still better

than memcached’s slab allocator, since it eliminates the

internal fragmentation that slab allocators suffer from.

For example, in the trace, memcached’s fragmentation

restricts memory utilization to 70%-90%.

330 2017 USENIX Annual Technical Conference USENIX Association

7 Related Work

Memshare builds on work in memory allocation and

caching. Cliffhanger [19] estimated local hit rate curve

gradients to rebalance slabs of items of different sizes.

Memshare estimates local gradients to divide memory

among applications. Memshare’s log-structured allocator

achieves significantly higher hit rates than Cliffhanger

and flexibly moves memory across applications.

ESX Server [53] introduced idle memory taxation and

min-funding revocation [52] in the context of a virtual ma-

chine hypervisor. Ranking functions to determine cache

priorities were introduced by Beckmann et al [11] in the

context of CPU caches. Memshare is the first application

of both of these ideas to DRAM caches.

RAMCloud [45] and MICA [36] apply techniques from

log-structured file systems [15, 37, 44, 47, 48] to DRAM-

based storage. Log-structured caches have appeared in

other contexts, such as a CDN photo cache [51] and mo-

bile device caches [6]. Unlike these systems, Memshare

addresses multi-tenancy. Also, MICA relies on FIFO

eviction which suffers from inferior hit rates. Memshare

enables application developers to apply any eviction pol-

icy using their own ranking functions.

MemC3 [23] and work from Intel [35] improve mem-

cached multicore throughput by removing concurrency

bottlenecks. These systems significantly improve perfor-

mance, but they do not improve hit rates. In the case

of Facebook and Memcachier, memcached is memory

capacity bound, not CPU or throughput bound [16, 18].

Some caches minimize write amplification (WA) on

flash [22, 51]. As presented, Memshare would suffer high

WA on flash: low-need segments must be cleaned first,

resulting in near-random 1 MB overwrites, which are

detrimental for flash. Newer non-volatile media [2] may

work better for Memshare.

Resource Allocation and Sharing. FairRide [43] gives a

general framework for cache memory allocation and fair-

ness when applications share data. Data sharing among

competing applications is not common in key-value web

caches. For both Facebook and Memcachier, applications

each have their own unique key space; they never access

common keys. For applications that do not share data,

FairRide implements a memory partitioning policy in a

distributed setup. Memshare, unlike FairRide, can effi-

ciently use non-reserved and allocated idle memory to

optimize the hit rate of applications and provide them

with a memory boost in case of a burst of requests.

Mimir [46] and Dynacache [18] approximate stack dis-

tance curves of web caches for provisioning and slab class

provisioning, respectively. They do not provide a mecha-

nism for allocating memory among different applications

sharing the same cache.

Efforts on cloud resource allocation, such as

Moirai [50], Pisces [49], DRF [25] and Choosy [26] fo-

cus on performance isolation in terms of requests per

second (throughput), not hit rate which is key in deter-

mining speedup in data center memory caches [16]. Sim-

ilarly, there have been several projects analyzing cache

fairness and sharing in the context of multicore proces-

sors [27, 30, 31]. In the context of multicore, fairness is

viewed as a function of total system performance. Unlike

CPU caches, DRAM-based web caches are typically sepa-

rate from the compute and storage layer, so the end-to-end

performance impact is unknown to the cache.

Ginseng [8] and RaaS [7, 13] are frameworks for mem-

ory pricing and auctioning for outsourced clouds; they

only focus on pricing memory for applications that have

dedicated memory cache servers running on VMs. In con-

trast, Memshare enables applications to share the same

memory cache server, without the need for VM isolation.

This is the preferred deployment model for most web

application providers (e.g., Facebook, Dropbox, Box).

Eviction Policies. Many eviction schemes can be used in

conjunction with Memshare. For example, Greedy-Dual-

Size-Frequency [17] and AdaptSize [14] take into account

request sizes to replace LRU as a cache eviction algorithm

for web proxy caches. Greedy-Dual-Wheel [34] takes

into account how long it takes to process a request in the

database to improve cache eviction. EVA [10, 12] com-

putes the opportunity cost per byte for each item stored in

a cache. ARC [38], LRU-K [40], 2Q [29], LIRS [28] and

LRFU [32, 33], offer a combination of LRU and LFU.

8 Conclusion

This paper demonstrates there is a large opportunity to

improve key-value hit rates in multi-tenant environments,

by utilizing dynamic and fungible memory allocation

across applications. Memshare serves as a foundation

for promising future research of memory sharing in dis-

tributed cache environments. For example, the techniques

introduced in this paper are implemented within a sin-

gle server running multiple applications. Similar tech-

niques can be applied across servers, to determine the

appropriate dynamic resources allocated to each appli-

cation. Finally, key-value caches are being extended to

other storage mediums beyond memory, such as flash and

non-volatile memory. Running multiple applications on a

heterogeneous caching environment creates novel future

research challenges.

Acknowledgments

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1566175.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National

Science Foundation.

USENIX Association 2017 USENIX Annual Technical Conference 331

References

[1] Amazon Elasticache. aws.amazon.com/

elasticache/.

[2] Intel R© OptaneTM Technology. http:

//www.intel.com/content/www/us/

en/architecture-and-technology/

intel-optane-technology.html.

[3] Memcached. code.google.com/p/memcached/.

[4] Memcachier. www.memcachier.com.

[5] Redis Labs. www.redislabs.com.

[6] A. Aghayev and P. Desnoyers. Log-structured cache:

Trading hit-rate for storage performance (and win-

ning) in mobile devices. In Proceedings of the

1st Workshop on Interactions of NVM/FLASH with

Operating Systems and Workloads, INFLOW ’13,

pages 7:1–7:7, New York, NY, USA, 2013. ACM.

[7] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schus-

ter, and D. Tsafrir. The rise of raas: the resource-

as-a-service cloud. Communications of the ACM,

57(7):76–84, 2014.

[8] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda,

A. Schuster, and A. Mu’alem. Ginseng: Market-

driven memory allocation. SIGPLAN Not., 49(7):41–

52, Mar. 2014.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In ACM SIGMETRICS Performance

Evaluation Review, volume 40, pages 53–64. ACM,

2012.

[10] N. Beckmann and D. Sanchez. Bridging theory and

practice in cache replacement. 2015.

[11] N. Beckmann and D. Sanchez. Modeling cache

performance beyond LRU. HPCA-22, 2016.

[12] N. Beckmann and D. Sanchez. Maximizing cache

performance under uncertainty. In High Perfor-

mance Computer Architecture (HPCA), 2017 IEEE

International Symposium on, pages 109–120. IEEE,

2017.

[13] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster,

and D. Tsafrir. The Resource-as-a-Service (RaaS)

cloud. In 4th USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud 12), Boston, MA.

USENIX.

[14] D. S. Berger, R. K. Sitaraman, and M. Harchol-

Balter. AdaptSize: Orchestrating the hot object

memory cache in a content delivery network. In

14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17), pages 483–

498, Boston, MA, 2017. USENIX Association.

[15] T. Blackwell, J. Harris, and M. I. Seltzer. Heuristic

cleaning algorithms in log-structured file systems.

In USENIX, pages 277–288, 1995.

[16] N. Bronson. Personal Communication, 2016.

[17] L. Cherkasova. Improving WWW proxies perfor-

mance with greedy-dual-size-frequency caching pol-

icy. Hewlett-Packard Laboratories, 1998.

[18] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.

Dynacache: Dynamic cloud caching. In 7th USENIX

Workshop on Hot Topics in Cloud Computing (Hot-

Cloud 15), Santa Clara, CA, July 2015. USENIX

Association.

[19] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.

Cliffhanger: Scaling performance cliffs in web mem-

ory caches. In 13th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI

16), pages 379–392, Santa Clara, CA, Mar. 2016.

USENIX Association.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-

nan, and R. Sears. Benchmarking Cloud Serving

Systems with YCSB. In Proceedings of the 1st ACM

Symposium on Cloud Computing, SoCC ’10, pages

143–154, New York, NY, USA, 2010. ACM.

[21] J. Dean and L. A. Barroso. The Tail at Scale. Com-

munications of the ACM, 56:74–80, 2013.

[22] A. Eisenman, A. Cidon, E. Pergament,

O. Haimovich, R. Stutsman, M. Alizadeh,

and S. Katti. Flashield: a key-value cache that

minimizes writes to flash. CoRR, abs/1702.02588,

2017.

[23] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:

Compact and concurrent MemCache with dumber

caching and smarter hashing. In Proceedings of the

10th USENIX Conference on Networked Systems De-

sign and Implementation, NSDI’13, pages 371–384,

Berkeley, CA, USA, 2013. USENIX Association.

[24] B. Fitzpatrick. Distributed caching with Mem-

cached. Linux journal, 2004(124):5, 2004.

[25] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-

ski, S. Shenker, and I. Stoica. Dominant resource

fairness: Fair allocation of multiple resource types.

In Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation,

NSDI’11, pages 323–336, Berkeley, CA, USA,

2011. USENIX Association.

[26] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.

Choosy: Max-min fair sharing for datacenter jobs

with constraints. In Proceedings of the 8th ACM Eu-

ropean Conference on Computer Systems, EuroSys

’13, pages 365–378, New York, NY, USA, 2013.

ACM.

[27] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,

D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt.

QoS policies and architecture for cache/memory

in CMP platforms. In Proceedings of the 2007

ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems,

SIGMETRICS ’07, pages 25–36, New York, NY,

USA, 2007. ACM.

332 2017 USENIX Annual Technical Conference USENIX Association

aws.amazon.com/elasticache/
aws.amazon.com/elasticache/
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
code.google.com/p/memcached/
www.memcachier.com
www.redislabs.com

[28] S. Jiang and X. Zhang. LIRS: An efficient low inter-

reference recency set replacement policy to improve

buffer cache performance. SIGMETRICS Perform.

Eval. Rev., 30(1):31–42, June 2002.

[29] T. Johnson and D. Shasha. 2Q: A low overhead

high performance buffer management replacement

algorithm. In VLDB’94, Proceedings of 20th In-

ternational Conference on Very Large Data Bases,

September 12-15, 1994, Santiago de Chile, Chile,

pages 439–450, 1994.

[30] H. Kasture and D. Sanchez. Ubik: Efficient cache

sharing with strict QoS for latency-critical work-

loads. In Proceedings of the 19th International Con-

ference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14,

pages 729–742, New York, NY, USA, 2014. ACM.

[31] S. Kim, D. Chandra, and Y. Solihin. Fair cache

sharing and partitioning in a chip multiprocessor ar-

chitecture. In Proceedings of the 13th International

Conference on Parallel Architectures and Compila-

tion Techniques, PACT ’04, pages 111–122, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[32] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,

Y. Cho, and C. S. Kim. On the existence of a spec-

trum of policies that subsumes the least recently

used (LRU) and least frequently used (LFU) poli-

cies. In ACM SIGMETRICS Performance Evalu-

ation Review, volume 27, pages 134–143. ACM,

1999.

[33] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,

Y. Cho, and C. S. Kim. LRFU: A spectrum of poli-

cies that subsumes the least recently used and least

frequently used policies. IEEE transactions on Com-

puters, (12):1352–1361, 2001.

[34] C. Li and A. L. Cox. GD-Wheel: a cost-aware

replacement policy for key-value stores. In Proceed-

ings of the Tenth European Conference on Computer

Systems, page 5. ACM, 2015.

[35] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia,

M. Kaminsky, D. G. Andersen, O. Seongil, S. Lee,

and P. Dubey. Architecting to achieve a billion re-

quests per second throughput on a single key-value

store server platform. In Proceedings of the 42nd

Annual International Symposium on Computer Ar-

chitecture, pages 476–488. ACM, 2015.

[36] H. Lim, D. Han, D. G. Andersen, and M. Kamin-

sky. MICA: A holistic approach to fast in-memory

key-value storage. In 11th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 14), pages 429–444, Seattle, WA, Apr. 2014.

USENIX Association.

[37] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.

Wang, and T. E. Anderson. Improving the perfor-

mance of log-structured file systems with adaptive

methods. In Proceedings of the Sixteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’97,

pages 238–251, New York, NY, USA, 1997. ACM.

[38] N. Megiddo and D. S. Modha. Arc: A self-tuning,

low overhead replacement cache. In FAST, volume 3,

pages 115–130, 2003.

[39] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, D. Stafford, T. Tung, and V. Venkatara-

mani. Scaling Memcache at Facebook. In Presented

as part of the 10th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI

13), pages 385–398, Lombard, IL, 2013. USENIX.

[40] E. J. O’neil, P. E. O’neil, and G. Weikum. The

LRU-K page replacement algorithm for database

disk buffering. ACM SIGMOD Record, 22(2):297–

306, 1993.

[41] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-

hout, and M. Rosenblum. Fast Crash Recovery in

RAMCloud. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles,

pages 29–41. ACM, 2011.

[42] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejri-

wal, C. Lee, B. Montazeri, D. Ongaro, S. J. Park,

H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and

S. Yang. The RAMCloud Storage System. ACM

Transactions on Computer Systems, 33(3):7:1–7:55,

Aug. 2015.

[43] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Sto-

ica. FairRide: Near-optimal, fair cache sharing. In

13th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 16), pages 393–406,

Santa Clara, CA, Mar. 2016. USENIX Association.

[44] M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-structured file system.

ACM Transactions on Computer Systems (TOCS),

10(1):26–52, 1992.

[45] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-

structured Memory for DRAM-based Storage. In

FAST, pages 1–16, 2014.

[46] T. Saemundsson, H. Bjornsson, G. Chockler, and

Y. Vigfusson. Dynamic performance profiling of

cloud caches. In Proceedings of the ACM Sympo-

sium on Cloud Computing, SOCC ’14, pages 28:1–

28:14, New York, NY, USA, 2014. ACM.

[47] M. Seltzer, K. Bostic, M. K. McKusick, and

C. Staelin. An implementation of a log-structured

file system for UNIX. In Proceedings of the USENIX

Winter 1993 Conference Proceedings on USENIX

Winter 1993 Conference Proceedings, pages 3–3.

USENIX Association, 1993.

[48] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,

S. McMains, and V. Padmanabhan. File system

logging versus clustering: A performance compari-

USENIX Association 2017 USENIX Annual Technical Conference 333

son. In Proceedings of the USENIX 1995 Technical

Conference Proceedings, pages 21–21. USENIX As-

sociation, 1995.

[49] D. Shue, M. J. Freedman, and A. Shaikh. Perfor-

mance isolation and fairness for multi-tenant cloud

storage. In Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 12), pages 349–362, Hollywood,

CA, 2012. USENIX.

[50] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder,

H. Ballani, T. Karagiannis, A. Rowstron, and

T. Talpey. Software-defined caching: Managing

caches in multi-tenant data centers. In Proceedings

of the Sixth ACM Symposium on Cloud Computing,

pages 174–181. ACM, 2015.

[51] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.

RIPQ: Advanced photo caching on flash for Face-

book. In 13th USENIX Conference on File and

Storage Technologies (FAST 15), pages 373–386,

Santa Clara, CA, Feb. 2015. USENIX Association.

[52] C. A. Waldspurger. Lottery and stride scheduling:

Flexible proportional-share resource management.

Technical report, Cambridge, MA, USA, 1995.

[53] C. A. Waldspurger. Memory resource management

in VMware ESX server. SIGOPS Oper. Syst. Rev.,

36(SI):181–194, Dec. 2002.

334 2017 USENIX Annual Technical Conference USENIX Association

Replication-driven Live Reconfiguration for Fast Distributed Transaction Processing

Xingda Wei, Sijie Shen, Rong Chen, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Contacts: {rongchen, haibochen}@sjtu.edu.cn

ABSTRACT

Recent in-memory database systems leverage advanced

hardware features like RDMA to provide transactional

processing at millions of transactions per second. Dis-

tributed transaction processing systems can scale to even

higher rates, especially for partitionable workloads. Un-

fortunately, these high rates are challenging to sustain

during partition reconfiguration events. In this paper, we

first show that state-of-the-art approaches would cause

notable performance disruption under fast transaction

processing. To this end, this paper presents DrTM+B,

a live reconfiguration approach that seamlessly reparti-

tions data while causing little performance disruption to

running transactions. DrTM+B uses a pre-copy based

mechanism, where excessive data transfer is avoided by

leveraging properties commonly found in recent trans-

actional systems. DrTM+B’s reconfiguration plans re-

duce data movement by preferring existing data repli-

cas, while data is asynchronously copied from multiple

replicas in parallel. It further reuses the log forwarding

mechanism in primary-backup replication to seamlessly

track and forward dirty database tuples, avoiding itera-

tive copying costs. To commit a reconfiguration plan in a

transactionally safe way, DrTM+B designs a cooperative

commit protocol to perform data and state synchroniza-

tions among replicas. Evaluation on a working system

based on DrTM+R with 3-way replication using typical

OLTP workloads like TPC-C and SmallBank shows that

DrTM+B incurs only very small performance degrada-

tion during live reconfiguration. Both the reconfiguration

time and the downtime are also minimal.

1 INTRODUCTION

Many applications like web services, stock exchange and

e-commerce demand low-latency, high-throughput trans-

actions over a large volume of data. Modern transaction

processing systems scale by sharding data across a num-

ber of machines. State-of-the-art transaction processing

systems like H-Store [16] and Silo [27, 30] have achieved

orders of magnitude higher performance than previous

systems. Recent designs like DrTM [29, 5], FaRM [11],

and FaSST [15] further achieved millions of transactions

per second on a small-scale cluster by exploiting novel

hardware features like RDMA.

While sharding essentially distributes the client loads

across multiple machines, it also faces a new challenge

such that an improper data sharding scheme would cause

notable workload imbalance as well as degraded over-

all performance. Work imbalance becomes even more

severe for dynamically skewed workloads where the

hotspot constantly changes over time [7, 3, 19, 17]. For

example, the volume on the New York Stock Exchange

(NYSE) during the first and last ten minutes of the trad-

ing day is an order of magnitude higher than at other

times [24], while the access pattern is indeed skewed.

This not only requires many distributed accesses in trans-

actions but also causes frequent transaction aborts or

stalls due to contended accesses on certain partitions.

For example, our evaluation shows that when moving

the warehouse selection from uniform to a highly skewed

distribution, the transaction throughput degrades by 10X

for TPC-C [26].

Prior approaches tackle this problem through live re-

configuration of the sharding plan [24]. Here, an optimal

reconfiguration plan needs to balance among the follow-

ing key requirements: 1) non-intrusiveness to running

transactions; 2) minimal data movement; 3) balanced

load after reconfiguration. To this end, E-Store [24] first

generates an optimal plan according to current load dis-

tribution by re-assigning database tuples. It then uses

Squall [12] to apply the new physical layout by migrating

tuples online. Specifically, Squall fetches tuples on de-

mand from the source node to reduce downtime. We term

such an approach as a post-copy migration scheme, as an

analogy to the live migration of virtual machines [6].

While post-copy approaches like Squall have been

shown to be effective to quickly balance the load for H-

Store [16], our investigation finds them ineffective for

transaction processing systems with orders of magni-

tude higher throughput like DrTM [29, 5], FaRM [11]

and FaSST [15]. This is due to prohibitive performance

degradation during the lengthy post-copy phase, which

is caused by enormous data transfer costs. Specifi-

cally, we have implemented the Squall-like approach on

DrTM+R [5] and evaluated the effectiveness on TPC-

C [26]. Even under configuration with low skew, there

are near 4 seconds where millions of transactions execute

with extremely low throughput and high latency, which

means tens of millions of transactions were disrupted or

stalled during the live reconfiguration process. This is

prohibitively expensive for a transaction processing sys-

tem demanding sub-millisecond latency and stable per-

USENIX Association 2017 USENIX Annual Technical Conference 335

formance. Consequently, this leaves the system trapped

between two bad options: it can either delay reconfigura-

tion and thus run with somewhat degraded performance

for a long period, or it can reconfigure and thus run with

seriously degraded performance for a short period.

This paper describes DrTM+B, a live reconfiguration

scheme targeting distributed transaction processing with

high throughput and low latency. Unlike prior post-

copy based approaches [13, 12], DrTM+B uses a pre-

copy based approach to reducing disruption to running

transactions. Traditionally, pre-copy mechanisms [9, 10]

would iteratively migrate tuples to the destination node

(pre-copy phase) and only start the live reconfiguration

process (commit phase) when the difference between the

source and the destination nodes drops below a thresh-

old, or the number of iterative copies exceeds a thresh-

old. While such a pre-copy based approach causes little

service disruption time, it may cause a notable downtime

during the commit phase and the number of tuples to be

transferred during the iterative pre-copy phase may still

be non-trivial. To this end, DrTM+B also incorporates

two key optimizations to further reduce data transfer and

disruption to transactions.

First, we propose a novel reuse of fault-tolerant

replicas to accelerate data transfer. This is based on

the observation that state-of-the-art distributed trans-

action systems such as FaRM [11], FaSST [15] and

DrTM+R [5] use primary-backup replication to tolerate

failures. DrTM+B’s reconfiguration plans take this into

account: the new configuration uses previous backup

nodes when possible to avoid physical tuple movement.

This optimization can commonly avoid data copying

in the pre-copy phase. When data copying is neces-

sary, DrTM+B leverages all existing replicas by asyn-

chronously pulling data in parallel. This can shorten

the migration time and reduce disruption to transactions

since the data copying uses one-sided RDMA operations

to bypass the CPU of the source node, which may be

busy with the transaction processing.

Second, data migration with pre-copy usually requires

tracking and copying dirty data, even when the des-

tination has already held a data copy (has a backup

replica). This results in more migration iterations and

lengthy downtime since many dirty tuples may be gen-

erated during the data migration process. To this end,

DrTM+B reuses its fault-tolerance logging mechanism

for tracking and copying dirty tuples. Therefore, no ad-

ditional data copying is needed in the commit phase. Fur-

ther, DrTM+B employs a cooperative commit protocol to

minimize the downtime required to migrate final states,

where the concurrency control protocol is slightly modi-

fied to be aware of the configuration change.

We have implemented DrTM+B by extending

DrTM+R [5]. The extensions include reusing fault toler-

ance mechanism for live reconfiguration and making the

OCC protocol aware of the reconfiguration process.1 To

demonstrate the effectiveness of DrTM+B, we evaluated

it using TPC-C and SmallBank with changing skewness.

Evaluation results show that DrTM+B can complete a

reconfiguration within 40 milliseconds if existing repli-

cas suffice to balance the workload. With data copying,

DrTM+B only takes 3 seconds and 1 second to recon-

figure TPC-C and SmallBank workloads with only 7%

and 3% throughput drop during reconfiguration respec-

tively. There is no observable downtime and DrTM+B

finishes live reconfiguration significantly faster than ex-

isting post-copy approaches.

In summary, this paper makes the below contributions:

• A pre-copy based scheme to reduce downtime of

live reconfiguration. (§3)

• Two key optimizations that further minimize data

transfer, service disruption and downtime. (§4)

• An intensive evaluation that confirms the effective-

ness of DrTM+B. (§6)

2 BACKGROUND AND MOTIVATION

2.1 Fast In-memory Transaction Systems

Recent commoditization of advanced hardware features

like RDMA have stimulated the design and implemen-

tation of fast distributed in-memory transaction systems

like DrTM [29, 5], FaRM [11] and FaSST [15]. These

systems exploit the low-latency transmission of RDMA

to boost distributed transactions, resulting in orders of

magnitude higher throughput compared to previous sys-

tems and reaching millions of transactions per second

even on a small-scale cluster.

To achieve high throughput and low latency, such

systems follow a local execution mode such that each

worker thread will run a transaction to completion. The

request will be routed to the node which contains most

of the tuples the transaction accesses for efficiency. To

scale, these systems continue the practice of H-Store [16]

and others by splitting a large volume of data into multi-

ple partitions spreading across multiple nodes.

To achieve high availability upon failures, a common

approach is to use Vertical Paxos [18] with primary-

backup replication [16, 11, 5, 15]. The primary-backup

replication has been shown to have a lower number of

replicas to tolerate the same number of failures compared

to Paxos [11]. Under primary-backup replication, each

partition is commonly configured to use 3-way replica-

tion (one primary and two backups). The transaction will

write the log at each node with a backup before com-

mitting on the primary. To make backups catch up with

1DrTM+B can coexist with the fault-tolerance mechanisms based

on primary-backup replication [5, 11] since both the pre-copy phase

and the commit phase are applied in a transactionally safe way.

336 2017 USENIX Annual Technical Conference USENIX Association

P0

P1

P2

P3

N0

N1

N2

P1

P0

P2

P4

P3

N0

N1

N2

[0,10)|P0
[10,20)|P1
[20,30)|P2
[30,45)|P3

[0,10)|P0
[10,20)|P1
[20,30)|P2
[30,37)|P3
[37,45)|P4

35%

10%

5%

50%

10%

35%

5%

35%

15%

Imbalance Balance

[0,10) => N1
[37,45) => N1

New Plan

Live Reconfiguration

Fig. 1: An example of reconfiguration.

the primary, each node will periodically apply updates in

logs to the backup replicas in background.

2.2 Skewed Workloads & Live Reconfiguration

While sharding scales out in-memory transactions, it is

hard or even impossible to find a static sharding con-

figuration that works well for all workloads, especially

for those with dynamic changing hotspots and skew-

ness [24]. Actually, prior work on production appli-

cations has shown that hot objects change rapidly over

time [3, 7, 19, 17]. Some e-commerces like daily deals

and flash sales can abruptly and significantly increase the

visits and transactions on particular products, resulting in

order spikes [1].

A change in skewness can cause severe load imbal-

ance, leading to notably degraded overall performance.

Fig. 1 shows a sample database which is partitioned into

4 partitions by the range of key and is initially assigned

to 3 nodes with a balanced workload. However, the pres-

ence of dynamical changes in load may result in skew-

ness, where some of the nodes will become overloaded

while others may be idle. For example, if most accesses

currently focus on the tuples in Partition 1 and 3 (P1 and

P3), Node 0 and 2 (N0 and N2) will be overloaded while

Node 1 (N1) will be underloaded.

To illustrate the performance impact from skewed

workloads on fast distributed transaction systems, we

conducted an initial experiment using DrTM+R [5] for

TPC-C [26] on a 6-node cluster. For this experi-

ment, TPC-C scales by partitioning a 25-million-tuples

database into 192 warehouses (32 per node). We test

different skewed settings (no skew, low skew and high

skew), and report the average throughput and latency of

the system. Additional details of our experimental set-

ting are described in Sec. 6. As shown in Fig. 2(a), the

throughput decreases by 3.3X and 10.0X from no skew

to low skew and high skew respectively. In addition, as

shown in Fig. 2(b), the increases of latency also reach

3.7X and 11.0X for low skew and high skew respectively.

Hence, it is highly desirable for a distributed in-

memory transaction system to support fast and seamless

live reconfiguration to quickly adapt to frequent work-

load changes. As shown in Fig. 1, the current hotspots

on the sample database occur in Partition 1 and 3 (P1

 0
 200
 400
 600
 800

 1000
 1200
 1400

No
Skew

Low
Skew

High
Skew

Th
ro

ug
hp

ut
 (M

 tx
ns

/s
ec

)

 0
 20
 40
 60
 80

 100
 120
 140

No
Skew

Low
Skew

High
Skew

La
te

nc
y

(µ
se

c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

Low
Skew

High
Skew

#I
nf

lu
en

ce
d-

Tr
an

s
(K

)

Fig. 2: (a) The throughput and (b) the latency of DrTM+R,

as well as (c) the number of influenced transactions during

reconfiguration for TPC-C with different workloads.

with 35% and P3 with 50%). A proper reconfiguration

plan is generated to lively migrate the Partition 0 and 4

(P0 and P4) from the overloaded nodes (N0 and N2) to

the underloaded node (N1). To achieve this, some parti-

tion (i.e., P3) may need to be split to achieve fine-grained

elasticity in the reconfiguration plan.

2.3 Disruptiveness of Post-copy Migration

To address the above issues, a recent state-of-the-art sys-

tem called E-Store [24] has provided the live reconfigu-

ration feature by automatically identifying whether a re-

configuration is needed and creating a new plan to bal-

ance the load across nodes. E-Store uses Squall [12] to

execute the plan by lively migrating data among nodes in

a transactionally safe way. Specifically, Squall follows

the post-copy based approach [13], which first applies

the reconfiguration plan and then pulls database tuples in

an on-demand (reactive) way. It further introduces opti-

mizations such as asynchronous migration and splitting

reconfigurations.

Fig. 3 illustrates the timeline of the post-copy ap-

proach adopted by Squall. After receiving a new plan

(migrating P0’s primary from N0 to N1), the reconfigu-

ration manager (RM) starts a reconfiguration by broad-

casting the new plan to all nodes. All nodes then tempo-

rally suspend accesses to P0 and wait for all outstanding

transactions on P0 to finish. After that, RM notifies all

nodes to update the new location of P0’s primary in the

mapping table from partitions to nodes (PN table) and

resume accesses to P0. Afterward, N0 will periodically

migrate the tuples of P0 to N1 in an asynchronous way.

Meanwhile, all transactions involving P0 will also be (re-

)assigned to N1. N1 will examine whether the tuples the

transaction accesses have been migrated. If not, N1 will

block the transaction and send a pull request to reactively

migrate the tuples from N0.

The post-copy scheme aims at reducing the down-

time and avoiding repetitive data transfer. However, this

causes significant disruption to transaction processing

during data migration and a lengthy period of migration

time due to two main reasons. First, transactions will be

blocked due to missing database tuples. The transactions

that access multiple tuples will mostly be blocked, even

by multiple times. This is especially an issue for standard

OLTP applications like TPC-C [26]. Second, migrat-

USENIX Association 2017 USENIX Annual Technical Conference 337

async

NX

RM

downtimestart donedegradation

Update PN

Recfg msg

New plan

P Primary

Send data

Trace data

Send TX

New Plan

P0 => N1

N1

N0

N1

N0

reactive

TX on P0

Fig. 3: The execution flow of post-copy based reconfiguration.

ing data will compete CPU and memory bandwidth with

transaction processing on an already overloaded node,

which may further aggravate the imbalance. The length

and strength of performance degradation would be pro-

hibitive for ultra-fast OLTP systems [5, 11, 15] that pro-

cess millions of transactions per second with tens of mi-

crosecond latency.

To illustrate this, we implemented a post-copy based

live reconfiguration on DrTM+R [5] with all optimiza-

tions in Squall [12], and conducted an experiment for

TPC-C [26] with various workloads. Fig. 2(c) shows

that the post-copy approach will disrupt several millions

of transactions. Worse even, the throughput of DrTM+R

degrades to nearly zero for more than 4 seconds when re-

configuring a TPC-C workload with low skew, as shown

in Fig. 4. This is because the transactions in TPC-C re-

quire accessing multiple tuples, where fetching database

tuples on demand would easily cause lengthy stalls and

even aborts of transactions. Even worse, the length

of performance degradation in the post-copy approach

will proportionately increase with the growth of data

size and the number of tuple accesses in a transaction.

This becomes an even more serious issue for rapidly

changing workloads that require frequent live reconfig-

uration [3, 7, 19, 17].

3 OVERVIEW OF DRTM+B

DrTM+B is designed to support live reconfiguration for

fast distributed in-memory transaction systems (§2.1).

Like E-Store [24], DrTM+B contains two cooperative

parts: Monitor and Planner. The monitor detects load

imbalance and identifies the tuples causing it, and the

planner decides whether there is a need to reorganize

the tuples and generate the corresponding reconfigura-

tion plan.

Unlike Squall [12], DrTM+B adopts a pre-copy based

approach to migrating tuples, like those widely used in

the live migration of virtual machines [6]. Fig. 5 il-

lustrates a typical pre-copy mechanism which contains

two consecutive phases: iterative pre-copy and commit.

In the iterative pre-copy phase, the involved data is first

copied from the source node to the destination node (i.e.,

DATA-COPY), then the dirty data is iteratively copied to

the destination (i.e., DIFF-COPY). When the amount of

dirty data is small enough or the number of iterations ex-

 0

 200

 400

 600

 800

 1000

-2 0 2 4 6 8 0

 15

 30

 45

 60

 75

Th
pt

 (K
 tx

ns
/s

ec
)

La
te

nc
y

(µ
se

c)

Time (sec)

Throughput
Latency

Fig. 4: The throughput and median latency timeline of Squall

live reconfiguration on DrTM+R for TPC-C with low skew.

ceeds a threshold, the commit phase starts where it per-

forms final data synchronization (i.e., DATA-SYNC) to

transfer remaining dirty data, and state synchronization

(i.e., STATE-SYNC) to (re-)assign transactions according

to the new reconfiguration plan.

Issues with pre-copy. While the pre-copy based ap-

proach can minimize service disruption during data mi-

gration, there are two main issues limit its effectiveness

in fast in-memory transaction systems. First, the pre-

copy phase may be lengthy with large data transfer and

may even hard to converge, since the high frequency of

transaction processing will produce a huge amount of

dirty tuples. Second, it is hard to find an efficient way to

track the dirty tuples during migration and synchronize

such tuples to destination nodes.

Observation. To address the above issues, we exploit

two observations in fast in-memory transaction systems

with high availability [11, 5, 15], where the primary-

backup replication is used to tolerate failures. First, as

the backup replicas contain nearly the same content as

the primaries, it is possible to reuse the fault-tolerant

replicas to avoid most data transfer in the pre-copy

phase. Second, these systems typically use log forward-

ing to synchronize data between primaries and backups.

It opens an opportunity to freely track and synchronize

the updates on tuples during data migration.

Our approach. In the pre-copy phase (§4.2), DrTM+B

prefers to reuse the fault-tolerant replicas to skip the

DATA-COPY by a replication-aware reconfiguration plan

(§5). Note that DrTM+B may split a partition when

its granularity is not small enough to balance the work-

load (e.g., P3 in Fig. 1). For extremely rare cases

where all nodes holding the replicas of a hot partition

are also overloaded, DrTM+B will create a new replica

for the hot partition at a spare node. Furthermore, since

the source node holding the hot partition is busy with

transaction processing, DrTM+B uses one-sided RDMA

READ on the destination node to asynchronously pull

tuples from all replicas in parallel. For the DIFF-COPY,

DrTM+B seamlessly reuses the log forwarding mecha-

nism in replication systems to freely track and synchro-

nize the new updates on migrated tuples (i.e., dirty),

since the log essentially contains the changes of each

338 2017 USENIX Annual Technical Conference USENIX Association

DIFF-COPYDATA-COPY

Iterative Pre-copy Commit

STATE-SYNC

DATA-SYNC

suspend resume

Fig. 5: The execution flow of pre-copy live reconfiguration.

committed transaction. Further, DrTM+B can concur-

rently execute DATA-COPY and DIFF-COPY.

In the commit phase (§4.3), DrTM+B supports the

DATA-SYNC by draining updates in logs to the backup

replica. When the amount of logs is too much and thus

may cause a notable downtime, DrTM+B uses a cooper-

ative commit protocol where a primary continues to com-

mit transactions while the backup is applying logs. Yet,

the transaction commit protocol (e.g., OCC) is modified

such that the log versions of involved transactions are

forwarded to the primary. Next, when the backup has ap-

plied all previous logs, it can quickly apply the remaining

logs only synchronizing with the primary. In DrTM+B,

the STATE-SYNC usually takes little time since it only

needs to update a few state tables (e.g., PN table). Fi-

nally, one-sided RDMA READ is used to actively watch

the state of the node holding the new primary, which

helps timely resume the execution on migrated data.

4 REPLICATION-DRIVEN LIVE RECON-

FIGURATION

Our goals are to minimize service disruption and down-

time while completing a reconfiguration as fast as pos-

sible. This section presents the detailed design on how

DrTM+B optimizes both the pre-copy and the commit

phases by a novel reuse of primary-backup replication.

4.1 Basic Data Structure

Database tuples in DrTM+B are assigned to multiple

disjoint partitions, which are further distributed across

multiple nodes. For brevity, this paper uses range parti-

tioning as an example.2 DrTM+B maintains a few data

structures to support fine-grained live reconfiguration, as

shown in Fig. 6. The first one is a mapping table from

key to partition (KP table), which makes it possible to

provide fine-grained reconfiguration at the tuple level.

The second one is a mapping table from partition to node

(PN table), which maintains the type (i.e., primary (P) or

backup (B)) and the state (i.e., whether the transaction

is executable (E) or not (N)) of each replica. Both KP

and PN tables are replicated and individually changed on

each node. A reconfiguration will change the two tables

to reflect the new plan.3

2A two-tiered partitioning [24] can be used to fully support fine-

grained planning and live reconfiguration at the tuple level.
3Each node updates the local tables atomically via an RCU-like

mechanism during live reconfiguration and after all worker threads

have executed at least one transaction.

state

P0 P1 P2

P2P0 P3

P3P1

[0,10)|P0
[10,20)|P1
[20,30)|P2
[30,45)|P3

P0|N0|P|E
P0|N1|B|N
. . .

P2|N0|B|N
P3|N2|P|E
P3|N1|B|N

KP Table PN Table

node
type

partition

key-range

N0

N1

N2

P1 P2

P0 P2

P1

P3 P4

P3

Split:
[30,37) => P3
[37,45) => P4

Reconfig:
P0 => N1
P4 => N1

[0,10)|P0
[10,20)|P1
[20,30)|P2
[30,37)|P3
[37,45)|P4

P0|N0|B|N
P0|N1|P|E
. . .

P2|N0|B|N
P3|N2|P|E
P3|N1|B|N
P4|N1|P|E
P4|N2|B|N

KP Table PN Table

N0

N1

N2

KP

PN

KP

PN

KP

PN

KP

PN

KP

PN

KP

PN

backupprimary

P4

New Plan

P0

Live Reconfiguration

Fig. 6: An overview of live reconfiguration on DrTM+B. In

PN table, P and B stand for “Primary” and “Backup”, which

mean the type of the partition. E and N stand for “Executable”

and “Non-executable”, which mean the state of the partition.

C and X stand for “Create” and “eXchange”, which are used

for creating partition and notifying transactions to enter ex-

change mode (see Fig. 7,8, 9, and 10).

4.2 Pre-copy Phase

Generally, DrTM+B prefers to reuse existing replicas for

fault tolerance to support live reconfiguration such that

data transfer can be avoided. The underloaded nodes

holding backup replicas are superior candidates to take

over the workload from the overloaded nodes. How-

ever, for some highly skewed workloads, performing

data migration at a partition granularity may not be able

to achieve an optimal balance. Further, a spare node

with the backup for the partition cannot always be found.

DrTM+B addresses these two issues through partition

splitting and asynchronous replication accordingly.

Partition splitting. To support fine-grained migration

at tuple level, DrTM+B allows to split a single partition

into multiple ones and can reconfigure these new parti-

tions individually. For example, in Fig. 6, P3 is split into

two new partitions (i.e., P3 and P4), and one of them (P4)

is migrated from N2 to N1 in the commit phase.

Splitting a partition has minimal impact on outstand-

ing transactions since there is no real data movement in-

volved at this stage. Yet, we cannot naively split one par-

tition. Consider the example in Fig. 6, where keys from

[37,45) are being re-assigned from P3 to P4. If some

transaction updates the key 40 in P3 on N2, while the

key has been assigned to P4 at backup replica on N1,

this replica may miss this update which causes incon-

sistency. It is vital to split the partition among all nodes

synchronously. Moreover, all previous logs of committed

transactions should be applied on all backups in advance.

Consequently, DrTM+B defers the commit of splitting

partitions to the commit phase (§4.3), which can syn-

chronously change the configuration to the entire cluster.

USENIX Association 2017 USENIX Annual Technical Conference 339

Update PN

NX

N1

RM
start done

Recfg msg

New plan

Primary

Backup

P0|N0|P|E
P0|NX|B|N

P0|N0|P|E
P0|NX|B|N
P0|N1|B|C

PN PN PN

New Plan

P0: +N1

Fetch data

P0|N0|P|E
P0|NX|B|N
P0|N1|B|N

RDMA READ

N0

N1

N

N

NX

N0

Fig. 7: The execution flow of asynchronous replication. A new

backup replica of P0 is created on N1.

Asynchronous replication. The number of replicas

for fault tolerance depends on the requirement of degrees

for availability. For 3-way replication, there are two can-

didate nodes that can be considered when reconfiguration

without data movement. However, in some rare cases,

the planner cannot find an optimal reconfiguration plan

under current distribution of replicas. DrTM+B also al-

lows to asynchronously create a new backup replica for

some tuples in hot partitions on a spare node and then

migrate the workload to that node.

To avoid adding new workload to hot nodes, DrTM+B

adopts a pull-based approach, which leverages one-sided

RDMA READ on the spare node to fetch tuples of the

partition. To ensure the new backup replica receives the

updates from running transactions, the reconfiguration

manager (RM) will first acknowledge every node to add

a new backup replica entry to its PN table. Consequently,

subsequent transactions will write logs to the node which

will hold the newly created replica. The spare node will

start to fetch tuples from the primary of the partition af-

ter the notification from RM, which avoids missing some

updates on the primary. Note that the spare node may

fetch the tuples updated by transactions when creating

the new replica. Yet, DrTM+B can still guarantee the

consistency of the new backup even though the updates

are duplicated in logs. Since each update has a version,

the updates with an out-of-date version in the log or from

the primary will be simply skipped. Finally, all nodes

will receive the notification of the completion of asyn-

chronous replication, and the new replica can be treated

as a normal backup of the partition.

An example of asynchronous replication is shown in

Fig. 7 where another copy of P0 is created on N1. For

simplicity, we just create the whole P0 on N1 without

losing generality. The process starts when RM sends the

new plan to all nodes in the cluster. A new entry for N1’s

P0 with the state Create (C) is added to PN table when

each node receives the new plan. After that, subsequent

transactions will write logs to N1 after changing some

tuples in P0, while N1 will drain updates in the log to the

newly created backup. Each node replies to RM when

all transactions have noticed the new plan. After all ac-

knowledgments are collected by RM, RM then notifies

N1 to fetch tuples from the primary of P0. At last, N1

Update PN

start done

Recfg msg

New plan

Primary

Backup

Log offset

P0|N0|P|E
P0|NX|B|N

P0|N0|P|E
P0|NX|B|N
P0|N1|B|C

PN PN PN

New Plan

P0: +N1

Fetch data

P0|N0|P|E
P0|NX|B|N
P0|N1|B|N

RDMA READ

NX

N1

RM

N0

N1

N

N

N0

NX

Fig. 8: The optimized execution flow of asynchronous replica-

tion. A new backup replica of P0 is created on N1.

will notify all nodes to update the state of N1’s P0 to

Non-executable (N) in their PN tables.

Parallel data fetching. While asynchronous replica-

tion has no interference with the execution of transac-

tions, it may still delay the reconfiguration and increase

the degree of imbalance. Since data fetching domi-

nates the execution time of asynchronous replication,

DrTM+B optimizes this by splitting the migrated data

into multiple disjoint ranges and fetching them from mul-

tiple replicas in parallel. However, the backup replicas

may be stale since some logs have not been drained.

Hence, the RM must collect the latest log versions (i.e.,

log offsets) before changing PN table on all nodes4 first,

and then informs each backup to apply its logs beyond

such versions. After that, the backups can allow the spare

node to fetch data from them.

As shown in Fig. 8, the log offset of P0 on each node is

piggybacked to the acknowledgment message to the RM,

and the RM sends the collected log offsets to every node

with the backup replica of P0 (NX in this example). After

NX’s logs have been drained according to the collected

log offsets, NX sends an explicit message to N1 to invite

it to fetch P0’s data from its backup replica.

4.3 Commit Phase

The pre-copy phase guarantees that a destination node

has already possessed a backup replica with the migrated

tuples, and new updates to these tuples are being for-

warded through the primary-backup logs. However, to

commit a new configuration, it is necessary to atomically

promote the backup to the new primary and demote the

previous primary to the backup. Moreover, before ex-

changing the roles, DrTM+B must ensure that all updates

in the log of the backup have been applied so that the

primary and the backup are equivalent. Unfortunately,

in common concurrency control protocols [11, 5], each

transaction individually writes logs to all backup repli-

cas of modified tuples. This means that each node con-

tains the updates from all nodes and is not fully aware of

which transaction wrote the updates and when.

4Each transaction will individually write the logs to all backups,

such that each backup contains the logs from all nodes [11, 5, 15].

340 2017 USENIX Annual Technical Conference USENIX Association

Update PN

NX

N1

N0

RM
start done

Recfg msg

New plan

N

N

Primary

Backup

Log offset

P0|N0|P|E
P0|N1|B|N

P0|N0|P|N
P0|N1|B|N

P0|N0|B|N
P0|N1|P|E

downtime

PN PN PN

New Plan

P0 => N1

1
2

3

N1

N0

Fig. 9: The execution flow of basic commit protocol.

Basic Commit Protocol. The basic commit protocol

will first suspend all involved transactions on every node,

and then apply the logs to candidate backup replicas.

Finally, all nodes will resume the involved transactions

with new configuration. Fig. 9 shows the timeline of the

basic commit protocol, where DrTM+B attempts to ex-

change the roles of P0’s replicas on N0 (source) and N1

(destination) by executing the following steps:

1. Suspend. The RM will inform all nodes the new

plan, and they first suspend all involved transactions on

P0 by updating the state of P0’s primary in PN table from

Executable (E) to Non-executable (N).

2. Collect. Every node will send its log offset to the

RM. The RM waits for all responses and informs the des-

tination node to drain its logs according to the offsets.

3. Resume. After draining the logs, the destination

node will inform the RM that the commit phase has done,

and notify other nodes to resume the execution of in-

volved transactions by updating their PN tables again.

Each node will exchange the roles (i.e., primary and

backup) of replicas and change the state of new primary

from Non-executable (N) to Executable (E).

Note that the logs are continuously applied in back-

ground on each node. Hence, the logs on the destination

node may have been applied beyond the log offsets be-

fore receiving the notification from the RM.

Cooperative Commit Protocol The downtime of the

basic commit protocol highly depends on the number of

updates in logs to be applied. Since the logs from the

same node are stored together to be efficiently appended

using one-sided RDMA WRITE, it is hard and not cost-

effective to apply logs for a certain backup. Conse-

quently, the destination node has to apply all logs from

all nodes, which may result in a lengthy downtime of the

commit phase when facing massive transactions.

Further, in DrTM+B and other systems [11, 5] which

leverage RDMA primitives for log forwarding, the log

versions are scattered over all nodes. Thus the log offsets

must be collected from all nodes in the cluster to indicate

the latest state of migrated tuples in the backup. Hence,

the exchange of roles must be carried with a global coor-

dination. Moreover, the destination node must notify all

nodes to resume involved transactions after the commit

phase, which may incur non-trivial downtime.

down
time

Update PN

NX

RM
start done

Recfg msg

New plan

Primary

Backup

Log offset

P0|N0|P|E
P0|N1|B|N

P0|N0|P|X
P0|N1|B|N

P0|N0|P|N
P0|N1|B|N

P0|N0|B|N
P0|N1|P|E

Deny TX

Watch PN

New Plan

P0 => N1

PNPNPNPN

1
2

3

4

N1

N0 N0

N1

N

N

Fig. 10: The execution flow of cooperative commit protocol.

To remedy this, DrTM+B optimizes the basic ex-

change protocol to minimize the downtime by adding a

new exchange mode for traditional concurrency control

protocol (e.g., OCC). DrTM+B will ask all nodes run-

ning involved transactions in exchange mode by chang-

ing the state of primary in PN table from Executable (E)

to eXchange (X). Under exchange mode, each node can

still execute involved transactions but need to forward

their log versions to the primary in addition. Then the

primary can initiate the exchange and delivery the log

offsets to the destination. The destination node will ap-

ply the logs and update the configuration in the PN table.

The rest of nodes will watch the state of the new pri-

mary on demand and resume the execution of involved

transactions. Fig. 10 shows the execution flow of the co-

operative commit protocol, where DrTM+B attempts to

exchange the roles of P0’s replicas on N0 (source) and

N1 (destination) by executing the following steps:

1. Prepare. The RM will inform all nodes the new

plan, then every node notifies involved transactions to

enter into the exchange mode by changing the state of

P0’s primary in its PN table from Executable (E) to eX-

change (X). When the transaction executes in the ex-

change mode, it will explicitly inform the primary (N0)

its log version during commitment with message. N0

will abort such transactions if it has already transferred

its ownership.

2. Collect. Every node will send the log offset to the

RM. The RM waits for all responses and informs the des-

tination node to drain its logs according to the offsets.

3. Suspend. After receiving the message from RM,

every node informs involved transactions to leave the ex-

change mode by setting the state of P0’s primary to Non-

executable (N). The primary (N0) starts to transfer P0’s

ownership to N1; it first denies transaction committing

from other nodes and then informs N1 with the further

log offsets collected from transactions running in the ex-

change mode.

4. Resume. To resume the execution on migrated data,

N1 waits for the logs to be drained according to the off-

sets received from N0. Then it updates its PN table to re-

sume involved transactions by exchanging the roles (i.e.,

primary and backup) of replicas and changing the state

of new primary to Executable (E).

Unlike the basic commit protocol, DrTM+B leverages

USENIX Association 2017 USENIX Annual Technical Conference 341

an RDMA-friendly watching mechanism to timely notify

all nodes to resume the execution on migrated data. The

PN table will be allocated in an RDMA memory region

which can be read by all nodes. Each node will lazily

update its PN table until it watches that the partition has

become Executable (E) at the destination node. For ex-

ample, when a transaction on NX touches P0 whose state

in PN table is Non-executable (N), NX will suspend the

transaction and continuously probe N1’s PN table until

the state of P0 become Executable (E). Then NX will

update its PN table to avoid further watching and resume

the transaction.

ALGORITHM 1: Generate a reconfiguration plan.

Data: LN : an array of the workload for each node.

LP: an array of the workload for each partition.

avg loadN : the average load per node.

P: a list of all partitions.

TPN : a mapping table from partitions to host nodes.

(LN , LP and avg loadN are provided by the monitor.)

1: Function GENERATE PLAN

2: new plan← {}

3: Sort P by the descending order in LP

4: for p in P do

5: src = primary in TPN [p]
6: if LN [src] > avg loadN then

7: dst = src, load = LN [src]
8: for backup in TPN [p] do

9: if (LN [backup] < avg loadN) &&

10: (LN [backup] < load) then

11: dst = backup, load = LN [dst]

12: if dst ! = src then

13: new plan← (p, dst)

14: LN [src] -= LP[p], LN [dst] += LP[p]

15: if HAS BALANCED (LN) then

16: return new plan

17: . . . // fine-grained planning of E-Store

5 REPLICATION-AWARE RECONFIGURA-

TION PLAN

DrTM+B follows E-Store [24] to use a two-phase moni-

toring mechanism to detect load imbalance and identify

the tuples causing it, as well as a greedy planning algo-

rithm to generate the reconfiguration plan. To support the

replication-driven live reconfiguration, DrTM+B extends

the algorithm by considering the distribution of replicas.

The extended algorithm will first try to greedily bal-

ance the workload by migrating the partitions to the

nodes that hold their replicas. As shown in Algorithms 1,

the planner will start from the partition p with the high-

est workload LP[p] tracked by the monitor at runtime

(line 3–4). If the node with the primary of partition p

is overloaded (line 5–6), the planner will check whether

the nodes with the backup of partition p are underloaded

(line 7–11). If found, the node with the least workload

will be designated as the destination of partition p in the

reconfiguration plan (line 13). The workload of source

and destination node will be updated (line 14). After it-

erating all partitions, the planner will return the new plan

if the workload has been balanced (line 15–16). Oth-

erwise, DrTM+B will follow the fine-grained planning

algorithm in E-Store to refine the plan by splitting the

partitions and/or creating new replicas, which requires

the knowledge from fine-grained monitoring [24].

6 EVALUATION

6.1 Experimental Setup

The performance evaluation was conducted on a small-

scale cluster with 6 machines. Each machine has two

10-core Intel Xeon E5-2650 v3 processors with 128GB

of DRAM and a ConnectX-3 MCX353A 56Gbps Infini-

Band NIC via PCIe 3.0 x8 connected to a Mellanox

IS5025 40Gbps InfiniBand Switch. All machines run

Ubuntu 14.04 with Mellanox OFED v3.0-2.0.1 stack.

We implemented DrTM+B based on DrTM+R [5]

where 3-way replication is enabled. Each machine ded-

icates one processor to run up to 8 worker threads and

2 auxiliary cleaner threads5, the another processor is as-

signed to clients. To make an apple-to-apple compar-

isons, the state-of-the-art post-copy approach with all

optimizations in Squall [12] was also implemented on

DrTM+R as the baseline. In our experiments, we run all

systems with 10s for warm-up and use a monitoring time

window of 1s [24]. The backup replicas are randomly

assigned to all nodes during database initialization.

We use two standard OLTP benchmarks to evaluate

DrTM+B: TPC-C[26] and SmallBank [25]. TPC-C sim-

ulates principal transactions of an order-entry environ-

ment, which scales by partitioning a database into multi-

ple warehouses spreading across multiple machines. We

use a database with 192 warehouses (32 per node). The

cross-warehouse ratio is set to 1% for the new-order

transactions according to the specification. Similar to

prior work [24], two skewed settings are evaluated. For

low skew, the Zipfian distribution is used where two-

thirds of transaction requests go to one-third of ware-

houses. For high skew, 40% of requests follow the Zip-

fian distribution used in low skew, while the remaining

requests target four warehouses located initially on the

first server.

SmallBank models a simple banking application

where each transaction performs simple reads and writes

on user accounts. SmallBank scales by partitioning user

accounts into multiple partitions spreading across mul-

tiple machines. We use a database with 192 partitions

(100K accounts for each). The default probability of

cross-machine accesses is set to 1%. Again, two differ-

5DrTM+B follows DrTM+R to use auxiliary cleaner threads for ap-

plying updates in the log to the backup replicas periodically.

342 2017 USENIX Annual Technical Conference USENIX Association

 0

 200

 400

 600

 800

 1000
Th

pt
 (K

 tx
ns

/s
ec

)

post-copy
done: 4.7s

 0

 20

 40

 60

 80

 100

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)

Squall
DrTM+B/copy

DrTM+B

Fig. 11: The perf. timeline for TPC-C with low skew.

 0

 100

 200

 300

 400

 500

Th
pt

 (K
 tx

ns
/s

ec
)

post-copy
done: 7.0s

 0

 30

 60

 90

 120

 150

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)

Squall
DrTM+B/copy

DrTM+B

Fig. 12: The perf. timeline for TPC-C with high skew.

ent skewed settings are evaluated. For low skew, two-

thirds of transaction requests go to 25% of records in the

database. For high skew, 90% transaction requests go to

10% of records.

6.2 Performance for Skewed Workloads

We first evaluate the performance of DrTM+B and Squall

for both benchmarks with various skewed workloads.

The same initial configuration and reconfiguration plan

are enforced to both systems, which ensures the same

behaviors before and after live reconfiguration. In fact,

for a 6-node cluster with 3-way replication, the existing

backup is enough to provide load balance for both low

and high skewed workloads. Therefore, DrTM+B can

skip the data transfer. However, we still provide the per-

formance of DrTM+B/copy as the reference, which en-

forces to migrate data with asynchronous replication to

the destination node without regarding the existing data,

while parallel data fetching and cooperative commit pro-

tocol are enabled by default.

TPC-C: Low skew. Fig. 11 shows the perfor-

mance timeline of live reconfiguration with different

approaches. After reconfiguration, the throughput in-

creases by 2.1X, while the latency decreases by 33%.

Since there is no data movement, DrTM+B has imper-

ceptible downtime due to sub-millisecond commit phase.

 0

 1

 2

 3

 4

 5

Th
pt

 (M
 tx

ns
/s

ec
)

post-copy done: 3.8s

 0
 2
 4
 6
 8

 10
 12

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)

Squall
DrTM+B/copy

DrTM+B

Fig. 13: The perf. timeline for SmallBank with low skew.

 0

 0.5

 1

 1.5

 2

 2.5

Th
pt

 (M
 tx

ns
/s

ec
)

post-copy done: 1.8s

 0

 4

 8

 12

 16

 20

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)

Squall
DrTM+B/copy

DrTM+B

Fig. 14: The perf. timeline for SmallBank with high skew.

Squall needs 4.7s to finish reconfiguration due to reac-

tive data transfer, while DrTM+B/copy only takes about

2.5s thanks to parallel data fetching. The performance

degradation in DrTM+B/copy is also trivial, the average

throughput drops by about 7% and the average latency

increases by about 6% during live reconfiguration. This

is because in DrTM+B/copy all logs are sent concur-

rently and data fetching mostly occupies CPU resources

at spare nodes. For Squall, the throughput drops by

around 99% and the latency increases by 7.7X in this

period (the first 2.5s) due to frequent transaction aborts

and increased contention on CPUs.

High skew. Fig. 12 shows how DrTM+B can im-

prove the performance of TPC-C workload with high

skew. After reconfiguration, the throughput increases

by 3.0X, while the latency decreases by 64%. When

there is no data movement, DrTM+B improves perfor-

mance instantly. It takes about 7.0s for Squall, while

DrTM+B/copy only needs 2.6s. Moreover the through-

put of DrTM+B/copy decreases by about 2% during live

reconfiguration and the latency increases by nearly 3%,

while Squall suffers from 98% throughput degradation in

this period since most workload is focused on hot spots.

SmallBank: Low skew. Fig. 13 shows the perfor-

mance timeline of live reconfiguration with different

approaches. After reconfiguration, the throughput in-

USENIX Association 2017 USENIX Annual Technical Conference 343

0

0.5

1.0

1.5

2.0
Th

pt
 (M

 tx
ns

/s
ec

)
Basic
Split
Copy

 0

 15

 30

 45

 60

 75

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)
Fig. 15: The perf. timeline for SmallBank with a load spike.

creases by 1.7X, while the latency decreases by 42%. As

existing backups are enough to balance, DrTM+B gains

performance increase instantly. The reconfiguration by

Squall requires 3.8s, while DrTM+B/copy only takes

0.7s to finish. Further, the throughput of DrTM+B/copy

drops by only 3% and latency increases by 11% during

live reconfiguration. By contrast, Squall has about 23%

throughput drop and nearly 6.3X latency increase in this

period. The throughput drops less for Squall in Small-

Bank compared with TPC-C since the transactions are

much simpler and less affected by missing data.

High skew. Fig. 14 shows the performance time-

line of SmallBank workload with high skew. After re-

configuration, the throughput increases by 2.4X and the

latency decreases by 69%. Squall takes 1.8s to fin-

ishes while DrTM+B/copy only needs 0.3s. Moreover

DrTM+B/copy has only 6% throughput drop with 8% la-

tency increase without notable downtime, while the num-

bers for Squall are 22% and 3.8X respectively in this

period. Although the performance is improving gradu-

ally during live reconfiguration, it still has non-negligible

costs.

Load spike: We further evaluate DrTM+B with a load

spike for SmallBank where 90% of workloads focus only

on one partition (0.5% of records). In such workload

data movement is necessary for the optimal plan. Fig. 15

shows the performance timeline of DrTM+B with differ-

ent settings. Note that DrTM+B starts one second fine-

grained monitoring after detecting the imbalance at time

0 to generate fine-grained plans for DrTM+B/split and

DrTM+B/copy. This will tentatively increase latency by

17%. DrTM+B only exchanges primary with backup,

which barely changes the performance since the hot data

resides in one partition. DrTM+B/split uses partition

splitting to balance the workload on the hot partition,

which can immediately improve the throughput by 2.1X

and reduce the latency by 54%. DrTM+B/copy further

uses asynchronous replication to create new replicas on

spare nodes, so that the throughput is improved by 5.4X

 0

 200

 400

 600

 800

 1000

-40 -20 0 20 40 60 80 100 0

 20

 40

 60

 80

 100

Th
pt

 (K
 tx

ns
/s

ec
)

La
te

nc
y

(µ
se

c)

Time (msec)

resume: 38ms

suspend: 26ms

Throughput
Latency

Fig. 16: The focus timeline for TPC-C with low skew.

 0

 100

 200

 300

 400

 500

Th
pt

 (K
 tx

ns
/s

ec
)

1 replica (primary)
1 replica (backup)
3 replicas

 0

 30

 60

 90

 120

 150

-2 0 2 4 6 8

La
te

nc
y

(µ
se

c)

Time (sec)
Fig. 17: The perf. timeline using different replication copy

mechanisms for TPC-C with high skew.

while the latency is decreased by 82%. The improvement

is slighted delayed (0.5s) due to data movement.

6.3 Breakdown of Commit Phase

Since the commit phase of the pre-copy approach will

cause service downtime, we further study the time break-

down of DrTM+B’s commit phase using TPC-C work-

load with low skew and illustrate the focus timeline

in Fig. 16. RM issues a new plan at 0ms, suspends

all nodes at 26ms, and resumes the execution at 38ms.

In DrTM+B, all logs are concurrently drained during

the commit phase, therefore the waiting time to acti-

vate the destination partitions is much short. Moreover,

the downtime of DrTM+B is minimized to only 12ms

thanks to the cooperative commit protocol. The through-

put drops slightly by 12% during the commit phase.

6.4 Optimization for Replication Copy

To further study the impact of different optimizations on

the pre-copy phase, we conduct an experiment on balanc-

ing TPC-C workload with high skew. Fig. 17 shows the

performance timeline of live reconfiguration with three

different settings in DrTM+B, which indicate fetching

data directly from the primary, 1 backup replica, or all

of 3 replicas in parallel. When fetching directly from the

primary, it incurs 24% throughput drop and 2.8X latency

increase due to the contention on CPU at the primary.

Data fetching from 1 backup replica has nearly no im-

pact to throughput, and the latency only increases 3%.

This is because the backup node has less load than that

of the primary. Moreover, data fetching from 3 replicas

in parallel can notably shorten the migration time from

344 2017 USENIX Annual Technical Conference USENIX Association

10-3

10-1

101

103

105

2 4 8 12 16

N
et

w
or

k
Tr

af
fic

 (M
B

)

Number of Partitions

Squall
DrTM+B/copy

DrTM+B

101

103

105

107

109

2 4 8 12 16

#I
nf

lu
en

ce
d-

Tr
an

s

Number of Partitions

Squall
DrTM+B/copy
DrTM+B

Fig. 18: A comparison of (a) network traffic and (b) perfor-

mance degradation between DrTM+B and Squall.

3.5 to 2.6 seconds.

6.5 Micro-benchmark

We further use a micro-benchmark based on TPC-C to

study the performance of DrTM+B and Squall, where 24

partitions are deployed on 3 nodes each holds one ware-

house. We measure the metrics by swapping different

numbers of partitions between first two nodes.

Network traffics. Fig. 18(a) shows the log scale data

transferred with the increase of swapping partitions. For

DrTM+B, only 4KB metadata is transferred during the

commit phase since there is no data movement. For

Squall, the network traffic is mainly dominated by the

size of migrated partitions. For DrTM+B/copy, the data

transferred is nearly doubled due to additional logs of the

new backup replica, which can be avoided by removing

one existing backup.

Influenced transactions. Fig. 18(b) presents the log

scale influenced transactions with the increase of swap-

ping partitions. DrTM+B and DrTM+B/copy have al-

most the same amount of influenced transactions, which

only happens during the commit phase. The number of

influenced transactions in DrTM+B is only 2% of Squall

when swapping two partitions.

7 RELATED WORK

Live reconfiguration for shared-storage database:

There have been a few efforts to provide live recon-

figuration features to shared-storage databases. For ex-

ample, Albatross [9, 10] uses a traditional pre-copy ap-

proach to iteratively migrating the database. DrTM+B

also uses a pre-copy approach but overcomes several

limits through a novel reuse of fault-tolerant replicas.

Zephyr [13] uses post-copy to migrate database while

allowing transactions to execute during data migration.

ProRea [20] extends Zephyr’s approach by proactively

migrating hot tuples to reduce service interruption. Elas-

tras [8] decouples data storage nodes from transaction

nodes and provides elasticity by moving or adding par-

titions. Slacker [4] leverages existing database backup

tools to migrate data, and uses stop-and-copy or pre-copy

method to create backups.

Live reconfiguration for partitioned databases:

The importance of providing load balance has stimulated

a few recent designs targeting partitioned databases.

Squall [12] follows Zephyr’s post-copy mechanism to

performing live reconfiguration with the support of fine-

grained tuple level migration. Compared to Zephyr, it in-

troduces some optimizations such as pull prefetching and

range splitting. In this paper, we show that using a post-

copy based approach cause notable service disruption for

fast in-memory transaction processing. DrTM+B makes

a novel reuse and extension of the replication mechanism

to achieve fast and seamless reconfiguration.

Providing elasticity on non-transactional systems:

Spore [14] aims at addressing skewed access patterns

on keys for in-memory caching systems (i.e., mem-

cached). The basic approach is to create replicas of popu-

lar keys, which is similar to the asynchronous replication

in DrTM+B. However, it does not consider the transac-

tional execution on the key/value store. The reconfig-

uration in primary-backup systems has also been stud-

ied in distributed systems [28, 23]. For example, Shraer

et al. [23] proposes a protocol to dynamically configure

Apache Zookeeper without leveraging an extern recon-

figuration service. Similarly, The commit protocol in

DrTM+B incurs no downtime to partitions where their

primaries have not changed during reconfiguration.

Generating reconfiguration plan: E-Store [24] pro-

poses a fine-grained tracking approach and can generate

a new partition plan to migrate data tuples between par-

titions. DrTM+B further extends it to consider the lo-

cation of existing fault-tolerant replicas. Accordion [21]

uses a mechanism to find a better partition plan to re-

duce distributed transactions. A few recent work has pro-

vided a general partitioning service for datacenter appli-

cations [2] or general DBMS schema [22].

8 CONCLUSION

This paper described DrTM+B, a fast and seamless live

reconfiguration framework for fast in-memory transac-

tion systems. It adopted a pre-copy based approach,

which allows minimal interference between live recon-

figuration and normal execution. DrTM+B further made

a novel reuse of replication for fault tolerance in several

ways to accelerate data transfer in pre-copy phase and

minimize the downtime in commit phase. Evaluations

using typical OLTP workloads with different skewed

workloads confirmed the benefits of designs in DrTM+B.

ACKNOWLEDGMENTS

We thank our shepherd Eddie Kohler and the anonymous

reviewers for their insightful suggestions. This work is

supported in part by the National Key Research & Devel-

opment Program (No. 2016YFB1000500), the National

Natural Science Foundation of China (No. 61402284,

61572314, 61525204), the National Youth Top-notch

Talent Support Program of China, and Singapore NRF

(CREATE E2S2).

USENIX Association 2017 USENIX Annual Technical Conference 345

REFERENCES

[1] Daily Deals and Flash Sales: All the

Stats You Need to Know. http://

socialmarketingfella.com/

daily-deals-flash-sales-stats-need-know/,

2016.

[2] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek,

V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri,

J. Hunter, R. Peon, L. Kai, A. Shraer, A. Merchant,

and K. Lev-Ari. Slicer: Auto-sharding for Data-

center Applications. In Proceedings of the USENIX

Conference on Operating Systems Design and Im-

plementation, OSDI’16, pages 739–753, Berkeley,

CA, USA, 2016. USENIX Association.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang,

and M. Paleczny. Workload Analysis of a Large-

scale Key-value Store. In Proceedings of the

ACM SIGMETRICS/PERFORMANCE Joint Inter-

national Conference on Measurement and Model-

ing of Computer Systems, SIGMETRICS’12, pages

53–64, New York, NY, USA, 2012. ACM.

[4] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş,

and P. Shenoy. “Cut Me Some Slack”: Latency-

aware Live Migration for Databases. In Proceed-

ings of the International Conference on Extending

Database Technology, EDBT’12, pages 432–443,

New York, NY, USA, 2012. ACM.

[5] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast

and General Distributed Transactions using RDMA

and HTM. In Proceedings of the European Confer-

ence on Computer Systems, EuroSys’16, page 26.

ACM, 2016.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen,

E. Jul, C. Limpach, I. Pratt, and A. Warfield.

Live migration of virtual machines. In Proceed-

ings of the USENIX Conference on Symposium

on Networked Systems Design & Implementation,

NSDI’05, pages 273–286, Berkeley, CA, USA,

2005. USENIX Association.

[7] C. Curino, E. Jones, Y. Zhang, and S. Madden.

Schism: A Workload-driven Approach to Database

Replication and Partitioning. Proc. VLDB Endow.,

3(1-2):48–57, Sept. 2010.

[8] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS:

An Elastic, Scalable, and Self-managing Trans-

actional Database for the Cloud. ACM Trans.

Database Syst., 38(1):5:1–5:45, Apr. 2013.

[9] S. Das, S. Nishimura, D. Agrawal, and A. El Ab-

badi. Live Database Migration for Elasticity
in a Multitenant Database for Cloud Platforms.

CS, UCSB, Santa Barbara, CA, USA, Tech. Rep,

9:2010, 2010.

[10] S. Das, S. Nishimura, D. Agrawal, and A. El Ab-

badi. Albatross: Lightweight Elasticity in Shared

Storage Databases for the Cloud Using Live Data

Migration. Proc. VLDB Endow., 4(8):494–505,

May 2011.

[11] A. Dragojević, D. Narayanan, E. B. Nightin-

gale, M. Renzelmann, A. Shamis, A. Badam, and

M. Castro. No Compromises: Distributed Trans-

actions with Consistency, Availability, and Perfor-

mance. In Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP’15, pages 54–

70, New York, NY, USA, 2015. ACM.

[12] A. J. Elmore, V. Arora, R. Taft, A. Pavlo,

D. Agrawal, and A. El Abbadi. Squall: Fine-

Grained Live Reconfiguration for Partitioned Main

Memory Databases. In Proceedings of the ACM

SIGMOD International Conference on Manage-

ment of Data, SIGMOD’15, pages 299–313, New

York, NY, USA, 2015. ACM.

[13] A. J. Elmore, S. Das, D. Agrawal, and A. El Ab-

badi. Zephyr: Live Migration in Shared Nothing

Databases for Elastic Cloud Platforms. In Proceed-

ings of the ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD’11, pages

301–312, New York, NY, USA, 2011. ACM.

[14] Y.-J. Hong and M. Thottethodi. Understanding

and mitigating the impact of load imbalance in the

memory caching tier. In Proceedings of the Annual

Symposium on Cloud Computing, SOCC’13, pages

13:1–13:17, New York, NY, USA, 2013. ACM.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen.

FaSST: fast, scalable and simple distributed trans-

actions with two-sided (RDMA) datagram RPCs.

In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation,

OSDI’16, pages 185–201. USENIX Association,

2016.

[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,

A. Rasin, S. Zdonik, E. P. C. Jones, S. Mad-

den, M. Stonebraker, Y. Zhang, J. Hugg, and

D. J. Abadi. H-Store: A High-performance, Dis-

tributed Main Memory Transaction Processing Sys-

tem. Proc. VLDB Endow., 1(2):1496–1499, Aug.

2008.

346 2017 USENIX Annual Technical Conference USENIX Association

http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/

[17] A. Khandelwal, R. Agarwal, and I. Stoica. Blow-

Fish: Dynamic Storage-Performance Tradeoff in

Data Stores. In 13th USENIX Symposium on

Networked Systems Design and Implementation,

NSDI’16, pages 485–500, Santa Clara, CA, Mar.

2016. USENIX Association.

[18] L. Lamport, D. Malkhi, and L. Zhou. Vertical

Paxos and Primary-backup Replication. In Pro-

ceedings of the 28th ACM Symposium on Principles

of Distributed Computing, PODC’09, pages 312–

313, New York, NY, USA, 2009. ACM.

[19] A. Pavlo, C. Curino, and S. Zdonik. Skew-

aware Automatic Database Partitioning in Shared-

nothing, Parallel OLTP Systems. In Proceedings of

the 2012 ACM SIGMOD International Conference

on Management of Data, SIGMOD’12, pages 61–

72, New York, NY, USA, 2012. ACM.

[20] O. Schiller, N. Cipriani, and B. Mitschang. ProRea:

Live Database Migration for Multi-tenant RDBMS

with Snapshot Isolation. In Proceedings of the 16th

International Conference on Extending Database

Technology, EDBT’13, pages 53–64, New York,

NY, USA, 2013. ACM.

[21] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem,

T. Rafiq, and U. F. Minhas. Accordion: Elas-

tic Scalability for Database Systems Supporting

Distributed Transactions. Proc. VLDB Endow.,

7(12):1035–1046, Aug. 2014.

[22] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo,

A. Aboulnaga, and M. Stonebraker. Clay: Fine-

grained Adaptive Partitioning for General Database

Schemas. Proc. VLDB Endow., 10(4):445–456,

Nov. 2016.

[23] A. Shraer, B. Reed, D. Malkhi, and F. P. Jun-

queira. Dynamic Reconfiguration of Prima-

ry/Backup Clusters. In Proceedings of the USENIX

Annual Technical Conference, USENIX ATC’12,

pages 425–437, 2012.

[24] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J.

Elmore, A. Aboulnaga, A. Pavlo, and M. Stone-

braker. E-Store: Fine-grained Elastic Partitioning

for Distributed Transaction Processing Systems.

Proc. VLDB Endow., 8(3):245–256, Nov. 2014.

[25] The H-Store Team. SmallBank Bench-

mark. http://hstore.cs.brown.

edu/documentation/deployment/

benchmarks/smallbank/.

[26] The Transaction Processing Council. TPC-C

Benchmark V5.11. http://www.tpc.org/

tpcc/.

[27] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Mad-

den. Speedy Transactions in Multicore In-memory

Databases. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles,

SOSP’13, pages 18–32. ACM, 2013.

[28] R. Van Renesse and F. B. Schneider. Chain Repli-

cation for Supporting High Throughput and Avail-

ability. In Proceedings of the 6th USENIX Confer-

ence on Operating Systems Design and Implemen-

tation, volume 4 of OSDI’04, pages 91–104, 2004.

[29] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast

In-memory Transaction Processing Using RDMA

and HTM. In Proceedings of the 25th Symposium

on Operating Systems Principles, SOSP’15, pages

87–104, New York, NY, USA, 2015. ACM.

[30] W. Zheng, S. Tu, E. Kohler, and B. Liskov.

Fast Databases with Fast Durability and Recovery

Through Multicore Parallelism. In Proceedings of

the 11th USENIX Conference on Operating Sys-

tems Design and Implementation, OSDI’14, pages

465–477. USENIX Association, 2014.

USENIX Association 2017 USENIX Annual Technical Conference 347

http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

HiKV: A Hybrid Index Key-Value Store for DRAM-NVM Memory Systems

Fei Xia1,2, Dejun Jiang1, Jin Xiong1, and Ninghui Sun1

1SKL Computer Architecture, ICT, CAS 2University of Chinese Academy of Sciences
{xiafei2011,jiangdejun,xiongjin,snh}@ict.ac.cn

Abstract
Hybrid memory systems consisting of DRAM and

Non-Volatile Memory are promising to persist data fast.
The index design of existing key-value stores for hybrid
memory fails to utilize its specific performance charac-
teristics: fast writes in DRAM, slow writes in NVM, and
similar reads in DRAM and NVM. This paper presents
HiKV, a persistent key-value store with the central idea
of constructing a hybrid index in hybrid memory. To
support rich key-value operations efficiently, HiKV ex-
ploits the distinct merits of hash index and B+-Tree in-
dex. HiKV builds and persists the hash index in NVM to
retain its inherent ability of fast index searching. HiKV
builds the B+-Tree index in DRAM to support range
scan and avoids long NVM writes for maintaining con-
sistency of the two indexes. Furthermore, HiKV applies
differential concurrency schemes to hybrid index and
adopts ordered-write consistency to ensure crash consis-
tency. For single-threaded performance, HiKV outper-
forms the state-of-the-art NVM-based key-value stores
by reducing latency up to 86.6%, and for multi-threaded
performance, HiKV increases the throughput by up to
6.4x under YCSB workloads.

1 Introduction
Emerging Non-Volatile Memory (NVM) technolo-

gies, such as PCM [1], ReRAM [2], and the recent 3D
XPoint [3], are drawing substantial attentions from both
academia and industry. One potential opportunity of
NVM is to act as a fast persistent memory sitting on
the memory bus, leading to hybrid DRAM-NVM mem-
ory systems [4, 5, 6]. Building storage systems, such as
key-value stores, towards hybrid memory allows one to
exploit fast memory access to achieve improved perfor-
mance compared to basing on traditional hard disks or
flash-based solid state drives (SSDs).

Persistent key-value stores (KV stores) have become
an important part of storage infrastructure in data cen-
ters. They are widely deployed in large-scale production
environments to serve search engine [7, 8], e-commerce
platforms [9], social networking [10, 11], photo stores
[12, 13], and more. In the past decade, there has been
a large body of research on KV store design and opti-
mization, on topics such as reducing write amplification

to SSDs [14, 15, 16], reducing memory usage of index-
ing [17, 18, 19], and improving concurrency to achieve
high scalability [11, 20, 21, 22]. Conventional KV stores
are not suitable for hybrid memory systems because they
are designed for the performance characteristics of hard
disks or SSDs. For instance, many of existing stud-
ies adopt Log-Structured Merge Tree as the indexing
structure [8, 11, 14, 15, 16], which avoids small random
writes to hard disks or SSDs. Differing from hard disks
and SSDs, hybrid memory systems are byte-addressable,
and provide similar performance for sequential and ran-
dom access. Maintaining sequential writes in large gran-
ularity instead introduces write amplification to NVM
when designing KV stores for hybrid memory systems.

Indexing is a fundamental issue in designing key-
value stores. The efficiency of supporting rich KV op-
erations, such as Put, Get, Update, Delete, and Scan, is
largely decided by the operational efficiency of indexing
structure. For instance, searching B+-Tree index is usu-
ally more costly than searching hash index. As we will
show in Section 2.2, the operational efficiencies of dif-
ferent indexing structures are largely varied. Recently,
a number of optimizations on B+-Tree index are pro-
posed for NVM memory systems [23, 24, 25, 26, 27,
28, 29, 30]. However, these techniques mainly focus on
reducing consistency cost when directly persisting B+-
Tree index in NVM. On the other hand, the scalability
of key-value stores is limited by the scalability of the
indexing structure. For instance, partitioning the hash
index allows one to scale the indexing structure to mul-
tiple threads, but partitioning the B+-Tree index incurs
expensive data movement when splitting large partitions
or merging small ones. Thus, we argue that the choice
of indexing structure for designing KV stores on hybrid
memory is still open.

In this paper, we propose HiKV, a Hybrid index Key-
Value store to run on hybrid memory. The central idea
behind HiKV is the adoption of hybrid index: a hash in-
dex placed and persisted in NVM, and while a B+-Tree
index placed in volatile but fast DRAM without being
persisted. The hybrid index fully exploits the distinct
merits of the two indexes. It retains the inherent effi-
ciency of hash operations to support single-key opera-
tions (Get/Put/Update/Delete). Moreover, it efficiently

USENIX Association 2017 USENIX Annual Technical Conference 349

accelerates Scan using the sorted indexing in B+-Tree.
Adopting hybrid index introduces a number of chal-

lenges. First, when serving certain KV operations, in-
cluding Put, Update, and Delete, the latency can be in-
creased as HiKV needs to update two indexes to keep
them consistent. HiKV solves this by placing the slow
B+-Tree index in fast DRAM and the fast hash index
in slow NVM. In addition, HiKV updates the B+-Tree
index asynchronously to further hide its latency. Sec-
ond, the scalability of the hybrid index requires careful
design. Partitioning the hash index provides good scala-
bility, while partitioning the B+-Tree index suffers from
high cost due to data migration. HiKV thus adopts parti-
tioned hash indexes and a global B+-Tree index. HiKV
applies Hardware Transactional Memory (HTM) for the
concurrency control of B+-Tree index, and fine-grained
locking to support concurrent accesses within individual
hash index partitions. Finally, guaranteeing crash con-
sistency of the hybrid index incurs expensive writes to
NVM. HiKV adopts selective consistency that only en-
sures the consistency of hash index and key-value items
by ordered-write. HiKV keeps the B+-Tree index in
DRAM and rebuilds it after system failure.

We implement HiKV and the state-of-the-art NVM-
based key-value stores NVStore [28] and FPTree [30].
We evaluate the three KV stores using both micro-
benchmarks and the widely used YCSB. For micro-
benchmarks, HiKV can reduce latency by 54.5% to
83.2% and 28.3% to 86.6% compared with NVStore and
FPTree, respectively. For YCSB workloads, HiKV out-
performs NVStore by 1.7x to 5.3x, and FPTree by 24.2%
to 6.4x in throughput.

This paper makes the following contributions:
1. We propose a hybrid index consisting of a hash in-

dex in NVM and a B+-Tree index in DRAM to
fully exploit the performance characteristics of hy-
brid memory to efficiently support rich KV opera-
tions.

2. We carefully design different concurrency schemes
for the hybrid index to achieve high scalability with
partitioned hash indexes and single global B+-Tree
index.

3. We propose ordered-write consistency and specific
hash index design allowing atomic writes to ensure
the crash consistency with reduced NVM writes.

4. We implement HiKV on top of the hybrid index.
We conduct extensive evaluations to show the effi-
ciency of the design choices of HiKV.

2 Background and Motivation
2.1 Non-Volatile Memory

Emerging Non-Volatile Memory (NVM) technolo-
gies, such as Phase Change Memory (PCM) [1] and Re-

Table 1: Characteristics comparison of different memory
technologies [28, 31, 32, 33, 34]

Category Read
latency

Write
latency

Write
Endurance

Random
accessing

DRAM 60ns 60ns 1016 High
PCM 50∼70ns 150∼1000ns 109 High

ReRAM 25ns 500ns 1012 High
NAND Flash 35us 350us 105 Low

sistive Memory (ReRAM) [2], can provide faster persis-
tence than traditional Disk and Flash. Table 1 shows the
performance characteristics of different memory tech-
nologies. NVM provides similar read latency to DRAM,
while its write latency is apparently longer than DRAM.
Similar to NAND Flash, the write endurance of NVM
is limited, especially for PCM. Thus, reducing writes
to NVM is critical for software system design. At last,
NVM has high performance for random accessing like
DRAM, which is different from traditional Flash.

2.2 KV operations and indexing efficiency
The Put, Get, Update, and Delete are basic operations

for KV stores. Besides, the Scan (short name for Range
Scan) becomes important as required by today’s appli-
cations. For instance, Facebook has replaced the storage
engine of MySQL with a KV store MyRocks [35]. Scan
turns out to be an important operation to serve range
query of MySQL. Local file systems (i.e. TableFS [36])
and distributed file systems (i.e. CephFS [37]), use KV
stores to store metadata. Scan is the core operation to
support the second most prevalent metadata operation
readdir [38]. Thus, efficiently supporting rich KV op-
erations is significant for building key-value stores.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Put Get Update Delete Scan

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Hash
SkipList
B+-Tree

Figure 1: Throughput of different indexes

However, neither the hash indexing nor the sorted
indexing can efficiently support all these operations.
We use micro-benchmarks to quantify the efficiency of
three widely used in-memory indexes: hash, skiplist,
and B+-Tree, to support the five KV operations. Fig-
ure 1 shows the in-memory throughput results with 50M
key-values. For Put/Get/Update/Delete, hash index per-
forms the most efficiently compared to the other two in-

350 2017 USENIX Annual Technical Conference USENIX Association

dexes. Hash index usually involves less memory oper-
ations than skiplist and B+-Tree, which requires multi-
ple levels searching. However, as a non-sorted index-
ing, hash index provides extremely low throughput for
Scan due to the cost of scanning the whole index space.
Current NVM-based KV stores follow the widely adop-
tion of B+-Tree as the indexing structure. However, the
above results motivate us to propose hybrid index to ex-
ploit distinguished merits of different indexes.

3 HiKV Design and Implementation
In this section, we present the system design and im-

plementation of HiKV. We first present the design of
the hybrid index. We then describe design issues when
adopting hybrid index, including index updating, con-
currency control, and crash consistency guaranteeing.
Following that, we present the recovery of HiKV. At last,
we describe the implementation of HiKV.

3.1 Hybrid index
Basic key-value operations include Put, Get, Update,

Delete, and Scan1. To locate the requested key-value
item, the single-key operations (Put/Get/Update/Delete)
first take exactly one key to search the index. Once
the KV item is located, Get directly returns the data,
and while the write operations (Put/Update/Delete) re-
quire to persist updated index entry and new KV item
if provided. Thus, the efficiency of index searching and
data persisting is significant for these operations. Hash
indexing inherently supports highly-efficient searching.
Besides, regarding NVM reads perform similarly as in
DRAM, placing a hash index in NVM as part of the hy-
brid index is a reasonable design choice. This design
not only retains fast searching of hash index, but also
allows persisting index in NVM directly without extra
data copy from DRAM to NVM.

On the other hand, Scan takes a start key and count
(or a start key and an end key) as input, which can bene-
fit from sorted indexing. To efficiently support Scan, the
hybrid index employs the widely used B+-Tree index in
main-memory systems [39, 40]. To maintain a consis-
tent hybrid index, updating both hash index and B+-Tree
index for KV writes is fundamentally required. Updat-
ing B+-Tree index involves many writes due to sorting
as well as splitting/merging of leaf nodes. We thus place
the B+-Tree index in fast DRAM to avoid slow NVM
writes in hybrid memory.

Figure 2 shows the architecture of hybrid index in hy-
brid memory. We discuss the issue of hybrid index up-
dating in Section 3.2. Furthermore, to serve concurrent

1Existing KV stores (i.e. Redis) support batch operations, such as
MutiPut and MultiGet. HiKV can be extended to support such batch
operations, which we leave as our future work.

kv_item ...

DRAM NVM
Hash index Partition 0

(lock)

kv_item ...

Hash index

kv_item ...

Hash index

...

Global
B+-Tree index

(HTM)

Consistency
not guaranteed Consistency guranteed

Partition 1
(lock)

Partition N
(lock)

Figure 2: Architecture of hybrid index

requests, the hash index is divided into multiple parti-
tions. The B+-Tree index is instead designed as a global
one to indexes all KV items. We explain the differential
concurrency schemes in Section 3.3. HiKV only guar-
antees the consistency of KV items and the hash index
for improved performance. We present the ordered-write
consistency mechanism in Section 3.4.

3.2 Index updating
3.2.1 Asynchronous updates

When serving KV writes (Put/Update/Delete), HiKV
needs to update both the hash index and the B+-Tree
index to keep them in a consistent state. One intuitive
solution is to synchronously update both indexes. Due
to the costly tree structure-specific operations, such as
searching, sorting, splitting and merging, synchronous
updates for the B+-Tree index add extra latency to KV
writes. Thus, HiKV employs asynchronous updates for
hybrid index. In other words, HiKV retains synchronous
updates to KV items and the hash index in NVM. For
the B+-Tree index in DRAM, HiKV asynchronously up-
dates it in the background to hide the extra latency.

Figure 3 shows the procedure of HiKV to serve dif-
ferent KV operations. Taking Put as an example. HiKV
first uses a serving thread to serve the incoming request.
The serving thread is responsible for writing KV items
to NVM (step1), and then writing the newly-added in-
dex entry to the hash index (step2). At last, the serv-
ing thread inserts the Put request to an updating queue
(step3) and then returns. An asynchronous thread (called
backend thread) gets requests from the updating queue
and operates the B+-Tree index in the background. In
case of failing to update the B+-Tree index due to sys-
tem crash, HiKV can recover the B+-Tree index from
the hash index as presented in Section 3.5. In such do-
ing, the observed latency of KV writes can be reduced.

However, a Scan request faces an inconsistent state of
the B+-Tree index as long as there exists requests in the
updating queue when it arrives. Directly serving the scan
request would retrieve old or invalid data. HiKV solves
this by temporally blocking subsequent writes to enter
into the updating queue once a scan is received. The

USENIX Association 2017 USENIX Annual Technical Conference 351

KV data

B+-Tree index

DRAM NVM

Put/Get/Update/DeleteScan

updating queue

step3

async

kv_item ...

step2

Hash index

step1

thread 0

Threadpool

... thread Mthread 1

backend threads

thread 0 ... thread Nthread 1

serving threads

Figure 3: Procedure to serve KV operations

scan and subsequent writes wait until when all existing
requests in the updating queue are processed. Once the
updating queue becomes empty, it starts to receive fur-
ther requests, and meanwhile the scan is served. Then,
the concurrency control among the scan and subsequent
writes on the B+-Tree index are provided by Hardware
Transactional Memory (HTM). We limit the length of
the updating queue (i.e., holding 4096 requests in this
paper) to avoid excessive waiting.

3.2.2 Dynamic threads adaption
To serve highly-concurrent requests, HiKV needs to

increase the number of serving threads. For read-write
mixed workloads, this can rapidly fill the updating queue
as many serving threads put write requests into the
queue. If the backend threads fall behind the serving
threads, the updating queue becomes full and further
blocks serving subsequent requests. Thus, HiKV needs
to dynamically adapt the backend threads according to
the change of serving threads.

We usually set a fix-sized thread pool to run both serv-
ing threads and backend threads. The dynamic threads
adaption scheme is to decide the numbers of serving
threads (Nsthd) and backend threads (Nbthd). Basically,
we need to match the average processing rate of the
backend threads on the updating queue with the average
queue filling rate of the serving threads. The process-
ing rate and filling rate are determined by a number of
factors, such as KV operation complexity, ratio of dif-
ferent KV operations, and DRAM/NVM performance.
To decide Nsthd and Nbthd at runtime, we sample the
numbers of different KV operations as well as their av-
erage operational latencies. Based on our observation,
the operational latency of Scan is 14 times than that of
Get, and the latency gap among Put, Update, and Delete
is less than 2x. For simplicity, we do not distinguish
Put/Update/Delete when sampling but sample Scan and
Get operations separately. Within each sampling win-
dow, assuming the number of writes is normalized to 1,
the number of Get is Ng and the number of Scan is Ns.
The average latencies of Get and Scan are Lg and Ls.
The average write latencies of backend thread and serv-

ing thread are Lbw and Lsw, respectively. Then, Nsthd

and Nbthd should satisfy the following two equations, in
which Nthd is the total size of the thread pool. In such
doing, the average processing latency of backend threads
matches the one of serving threads.

(Ng ·Lg +Ns ·Ls +1 ·Lsw)/Nsthd = (1 ·Lbw)/Nbthd

(1)
Nsthd +Nbthd = Nthd (2)

3.3 Differential concurrency
Concurrency control is a key issue for improving the

scalability of KV stores in the multi-core era. In this
section, we present the differential concurrency schemes
applied to the hybrid index.

Partitioning is shown to achieve high throughput and
scalability for balanced workloads [40]. Thus, HiKV
adopts the widely-used keyhash-based partitioning [41,
37, 42] for the hash index. All KV items are distributed
to multiple partitions according to the hash value of the
key, and each partition uses a hash index as Figure 2
shows. HiKV allows concurrent accessing to a parti-
tion by multiple threads to handle skewed workloads. It
uses fine-grained locking for concurrency control inside
each partition. HiKV uses an atomic write to update the
hash index entry as illustrated in Section 3.4. As a re-
sult, HiKV can read an index entry when another thread
is updating it without locking.

Partitioning the B+-Tree index results in either un-
ordered multi-B+-Tree indexes as in Cassandra [43] and
Megastore[44] using keyhash-based approach, or or-
dered multi-B+-Tree indexes as in SLIK [45] using range
partition. However, we argue that none can efficiently
support Scan due to extra efforts. With unordered multi-
B+-Tree indexes, we need to issue the scan request to all
indexes, and then return the matching key-values from
the result. Such approach increases the concurrency
overhead. With ordered multi-B+-Tree indexes, the scan
request can be only issued to indexes that contain corre-
sponding KV items. However, such approach needs to
migrate index entries when an index becomes too large
or too small, which degrades system performance. Thus,
HiKV adopts a global B+-Tree index for all KV items in
NVM. HiKV adopts HTM to handle concurrency control
of the global B+-Tree index.

3.4 Ordered-write consistency
Guaranteeing crash consistency is a fundamental re-

quirement for persistent KV stores. Since NVM has long
write latency, HiKV needs to reduce NVM writes when
guaranteeing consistency. We first apply selective con-
sistency to HiKV to only ensure the consistency of hash
index and KV items, but not guarantee consistency for
the B+-Tree index to avoid expensive data copy from

352 2017 USENIX Annual Technical Conference USENIX Association

DRAM to NVM. Upon a system failure, HiKV recovers
the B+-Tree index as presented in Section 3.5.

Secondly, we apply ordered-write to ensure the con-
sistency of the hash index and KV items. Conventional
logging and copy-on-write incur two writes when guar-
anteeing consistency. The ordered-write consistency
first updates the KV item out-of-place. Then, it up-
dates the hash index in-place using an atomic write.
A KV item is not visible until the atomic write is fin-
ished. In such doing, crash consistency is guaranteed
without introducing extra writes. We then describe the
specific hash index design for supporting atomic write
and present the consistency algorithms.

3.4.1 Hash index design
Modern processors support 8B atomic writes natively

and 16B atomic writes using cmpxchg16b instruction
(with LOCK prefix) [46, 47]. However, the key size of
KV stores is usually 16B [13, 48]. Directly placing the
original key and the position of KV item in a hash index
entry makes it impossible to apply atomic writes.

index_entry

kv_poskey_signature

Hash
index

kv_item

kv_length key value

KV items

16B

bucket0

bucket1

Figure 4: Hash index and key-value data layout

The position of key-values needs 48bits in modern
processors. If the index entry is designed to be 8B, then
the key signature can only occupy 16 bits. There exists
many signature conflicts as 16 bits signature can only
distinguish 65536 keys. Thus, HiKV adopts 16B in-
dex entry that can also be updated atomically. Figure 4
shows the design of the hash index and KV items. A
16B index entry consists of a 64bits key signature and
a 64bits position to refer the position of KV item. A
hash bucket contains multiple 16B index entries. To sup-
port varied-length key and value, each KV item stores a
32bit kv length, key and value. Key signature may still
be conflicted among different keys. Thus, HiKV checks
corresponding KV item if the key signature in index en-
try equals to the signature of specified key.

3.4.2 Consistency algorithm
In this subsection, we present the consistency algo-

rithms of different HiKV operations. Note that, mem-
ory writes may be reordered due to the caching of CPU
or the scheduling of memory controller. HiKV uses
the sequence of sfence, clflush, sfence instruction (re-

ferred to persist) to enforce the ordering and persis-
tency of memory writes based on existing hardware
[24, 27, 28, 49, 50]. The clflush can be replaced with the
latest CLWB instruction [51] if the hardware supports it.

Put. Algorithm 1 presents the pseudo-code of Put. It
first finds an empty index entry (line 1). Then the al-
gorithm allocates free space to store the KV item (line
2). Next, it sets the KV item (line 3), and persists the
KV item to NVM (line 4). At last, it performs an atomic
write to set the index entry(line 5), and persists the index
entry (line 6).

Algorithm 1 HiKV PUT(op, key, value)
1: index entry = find empty entry(key);
2: new kv item = alloc space(sizeof(kv item));
3: set new kv item according to key and value;
4: persist(new kv item, sizeof(kv item));
5: AtomicWrite(index entry, new entry);
6: persist(index entry, sizeof(index entry));

Update. Algorithm 2 presents the pseudo-code of Up-
date. The algorithm finds the original index entry ac-
cording to the key (line 1), and uses the index entry to
find the original KV item in NVM (line 2). Since HiKV
adopts out-of-place update for KV item, it needs to allo-
cate free space to store new KV item (line 3). Then, it
sets the KV item, persists it, atomically updates the in-
dex entry, and persists it like Put (line 4-7). At last, it
deallocates the space of original KV item (line 8).

Algorithm 2 HiKV UPDATE(op, key, value)
1: index entry = find index entry(key);
2: orig kv item = get original item(index entry);
3: new kv item = alloc space(sizeof(kv item));
4: set new kv item according to key and value;
5: persist(new kv item, sizeof(kv item));
6: AtomicWrite(index entry, new entry);
7: persist(index entry, sizeof(index entry));
8: free space(orig kv item);

Delete. Algorithm 3 presents the pseudo-code of the
Delete operation. The algorithm first finds the original
index entry and KV item (line 1, 2). It invalids the in-
dex entry by setting it to 0 using an atomic write (line
3), and then persists the index entry (line 4). At last, it
deallocates the space of original KV item (line 5).

Algorithm 3 HiKV DELETE(op, key)
1: index entry = find index entry(key);
2: orig kv item = get original item(index entry);
3: AtomicWrite(index entry, 0);
4: persist(index entry, sizeof(index entry));
5: free space(orig kv item);

USENIX Association 2017 USENIX Annual Technical Conference 353

The validity of a KV item is identified by correspond-
ing index entry. Since the index entry is atomically up-
dated at last, crashes happened in any step of the three
algorithms do not destroy consistency.

Note that, HiKV faces the challenge of memory leak
when a crash occurs after allocating a free NVM space.
Solving memory leak thoroughly relies on the support
of underlying libraries and operating system. We leave
it as our future work.

3.5 Recovery
In this section, we describe the recovery of HiKV after

normal shutdown and system failure.
Recovery after a normal shutdown. On a normal

shutdown, HiKV persists the B+-Tree index in contin-
uous NVM space. Then, HiKV saves the start address
of this space to a reserved position in NVM and atomi-
cally writes a flag indicating a normal shutdown. HiKV
checks the flag when it recovers the index. If the flag
indicates a normal shutdown, then HiKV reads the B+-
Tree index stored in NVM and recovers it to DRAM.
Otherwise, HiKV executes the following recovery.

Recovery after a system failure. In case of a system
failure, HiKV must rebuild the B+-Tree index from the
consistent hash index and key-value items in NVM by
only scanning all hash indexes. For each index entry in
every hash index, if its value is not zero, the recovery
thread inserts the key and the position of correspond-
ing KV item to the B+-Tree index. Otherwise, the in-
dex entry is invalid.

3.6 Implementation
We implement HiKV on top of the hybrid in-

dex. HiKV utilizes the lossless hash index design in
MICA [42]. A hash bucket contains multiple succes-
sive index entries. HiKV sequentially searches next in-
dex entry in the hash bucket when a hash collision oc-
curs. Each index entry in the leaf nodes of B+-Tree
contains a whole key and the position of corresponding
KV item in NVM. We implement multiple lock-free up-
dating queues to reduce contention when serving highly
concurrent requests. All backend threads poll updating
queues as the cost of thread synchronization is high.

4 Evaluation
In this section, we evaluate the performance of HiKV.

We first describe the experimental setup and then evalu-
ate HiKV using micro- and macro-benchmarks.

4.1 Experimental Setup
We conduct all experiments on a server equipped with

two Intel Xeon E5-2620 v4 processors. Each one run-
ning at 2.1 GHz has 8 cores, a shared 20MB last level
cache. The memory size in the server is 256GB.

NVM emulation
As real NVM DIMMs are not available for us yet, we

emulate NVM using the DRAM similar to prior works
[49, 52, 6]. The access latency of DRAM is about 60 ns
[49], and the write latency of the latest 3D-XPoint is ten
times of DRAM [3]. Thus, we set the NVM write la-
tency to 600 ns. We add extra write latency only once
for each persist operation as described in Section 3.4.2.
We add the long write latency of NVM using the x86
RDTSCP instruction. We use the instruction to read the
processor timestamp counter and spin until the counter
reaches the configured latency. We do not add extra
read latency for NVM as it has similar read latency with
DRAM [28, 31]. The impact of longer NVM read la-
tency is evaluated in Subsection 4.6.

Workloads
We use five micro-benchmarks to evaluate the perfor-

mance of single KV operations, namely Put, Get, Up-
date, Delete, and Scan. The randomly generated scan
count is less than 100 like YCSB [53]. For each micro-
benchmark, we first warm up KV stores with 50M key-
values. Then, we execute 50M operations with randomly
selected key-values. All our micro-benchmarks gener-
ate KV data following the uniform distribution. We use
the widely used macro-benchmark YCSB to evaluate the
performance of mixed operations. We also execute 50M
key-value operations. We use the default configuration
of YCSB that is zipfian distribution with 99% skewness.

For both micro- and macro- benchmarks, we always
use a key size of 16B, which is a typical size in produc-
tion environment [13, 48]. In Facebook, over 90% value
sizes of Memcached are close but less than 500B [48].
Thus, we set the value size to 256B basically.

Compared systems
We compare HiKV with the state-of-the-art NVM KV

store NVStore [28] and hybrid memory KV store FPTree
[30]. We do not compare HiKV with disk-based KV
stores, such as RocksDB [11]. This is because HiKV
is designed for byte-addressable NVM, and its I/O stack
is quite different from that of RocksDB. We also do not
evaluate KV stores that periodically persist data, such as
Echo [54] and Masstree [39]. These KV stores cannot
guarantee the consistency of every KV operation.

We re-implement NVStore and FPTree as faithfully
as possible according to the descriptions in their papers.
The index of NVStore is an optimized B+-Tree, called
NVTree, which keeps entries in leaf nodes unsorted to
reduce NVM writes. To be fair, we place inner nodes
of NVTree in the DRAM as the way HiKV uses the
DRAM. FPTree also uses a variation of B+-Tree, which
adds a bitmap and fingerprints in each unsorted leaf node
to accelerate searching.

A typical usage of DRAM for hybrid memory systems
is using DRAM as a cache of NVM, besides placing a

354 2017 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

Get Put Update Delete Scan

N
o
rm

a
liz

e
d

 l
a
te

n
cy

NVStore
FPTree
FPTree_C
HiKV

Figure 5: Normalized latency of KV ops

 0

 1

 2

 3

 4

 5

 6

Get Put Update Delete Scan

N
o
rm

a
liz

e
d

 t
h
ro

u
g

h
p

u
t

NVStore
FPTree
FPTree_C
HiKV

Figure 6: Normalized throughput of KV ops

part of index in DRAM. For 16B keys and 256B values,
HiKV’s ratio of DRAM consumption to NVM is 15.4%
larger than FPTree (details in Subsection 4.7). Thus, we
use the extra DRAM as a cache of FPTree, called FP-
Tree C in our evaluation. FPTree C uses hash index and
LRU replacement policy to manage the cache.

4.2 Single-threaded performance
We first evaluate the single-threaded performance of

HiKV using micro-benchmarks. For benchmarks that
only read data, including Get and Scan, all four KV
stores use one thread. Note that, HiKV is designed
to adopt serving threads accompanied with backend
threads to operate the B+-Tree index when serving write
requests. Thus, for Put, Update, and Delete, HiKV is
configured to use one serving thread and one backend
thread. For fair comparison, both NVStore, FPTree, and
FPTree C are configured with two threads.

4.2.1 Latency reduction
Figure 5 shows the latency reduction of HiKV. For

Get, HiKV can reduce latency by 83.2% and 86.6% than
NVStore and FPTree, respectively. HiKV only needs to
lookup the fast hash index. However, both NVStore and
FPTree not only need to lookup the tree index, but also
need to sequentially lookup a leaf node as keys in the leaf
node are unsorted. For Put/Update/Delete, HiKV can re-
duce latency by 54.5%/58.4%/65.3% than NVStore, and
68.8%/59.1%/45.0% than FPTree, respectively. This is
because searching the hash index is fast and HiKV uses
asynchronous mechanism to hide the latency of B+-Tree
index. For Put and Update, FPTree needs to persist data
three times (bitmap, fingerprints and key-value), while
NVStore only needs to persist data twice (key-value and
leaf.number). As a result, the Put and Update laten-
cies of FPTree are higher than those of NVStore. For
Delete, HiKV only needs to invalid the corresponding
index entry and persist it to NVM. However, NVStore
needs to insert the key-value with an invalid flag and up-
date the leaf number, which persists data to NVM twice.
Although FPTree only needs to invalid bitmap and per-
sist once for Delete, its latency is still larger than that of

HiKV due to inefficient searching of tree index.
For Scan, HiKV can reduce latency by 77.7% and

28.3% than NVStore and FPTree, respectively. When
putting a key-value, NVStore does not check whether
the key-value has existed in the leaf node. As a result,
it must check whether a key-value is valid or not when
scanning a leaf node. Thus, the Scan latency of NVS-
tore is apparently larger than that of HiKV. FPTree uses
a bitmap per leaf node to identify the validity of key-
value entries in the leaf node. Thus, the Scan latency
of FPTree is lower than that of NVStore, while it is still
larger than that of HiKV.

FPTree C performs worse than FPTree for single-key
operations. This is because the micro-benchmarks have
uniform distribution, which results in low cache hit ra-
tio. FPTree C incurs extra performance overhead for the
cache replacement.

4.2.2 Throughput improvement
Figure 6 shows the throughput improvement of HiKV.

HiKV can improve throughput by 5.0x/3.8x than NV-
Store, and 6.4x/41.2% than FPTree for Get/Scan, re-
spectively. For Put/Update, HiKV outperforms NVStore
and FPTree by 10.4%/19.6%, and 55.9%/19.6%, respec-
tively. The Delete throughput of HiKV is 43.2% higher
than that of NVStore, and 10.0% lower than that of FP-
Tree. The throughput improvement of HiKV is lower
in Put/Update/Delete than in Get/Scan. This is because
NVStore and FPTree use two threads to run these write
requests, while HiKV only uses one serving thread. For
read requests, these three KV stores use one thread. FP-
Tree C achieves lower throughput than FPTree due to
the overhead of DRAM cache management.

4.3 Scalability
We then evaluate the scalability of HiKV using the

macro-benchmark YCSB. We do not use the original
YCSB framework with client-server mode due to its
long latency of network stack. Here, we use a lo-
cal YCSB workload generator following the default
YCSB configurations like MICA [42]. HiKV dynam-
ically adapts the number of serving threads and back-

USENIX Association 2017 USENIX Annual Technical Conference 355

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(a) YCSB-A: 50% Get - 50% Update

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(b) YCSB-B: 95% Get - 5% Update

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(c) YCSB-C: 100% Get

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(d) YCSB-D: 95% Get - 5% Put

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(e) YCSB-E: 95% Scan - 5% Put

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

2 4 8 16 24 32

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Number of threads

NVStore
FPTree
FPTree_C
HiKV

(f) YCSB-F: 50% Get - 50% ReadModify-
Write

Figure 7: Scalability on YCSB workloads

end threads according to different workloads. To be fair,
we configure NVStore, FPTree, and FPTree C to use
the same total number of threads as HiKV in all eval-
uations. We run these benchmarks at most 32 threads as
the server we used has 16 cores.

Figure 7 presents the throughputs of YCSB work-
loads as the number of threads varies from 2 to 32.
The performance of HiKV with 32 threads is increased
by a factor of 13.6/15.5/10.5/15.4/4.3/18.3 for YCSB-
A/B/C/D/E/F against the two-threaded execution, re-
spectively. For the same scalability evaluation, the scal-
ing factors for NVStore, FPTree, and FPTree C are
5.5/7.6/8.2/8.2/4.6/5.5, and 10.0/7.5/7.5/7.7/3.4/10.1,
and 7.9/8.2/8.8/7.8/3.5/8.8, respectively. In summary,
HiKV achieves better scalability than NVStore and FP-
Tree. The Get ratio is 95%, 95%, and 75% for YCSB-
B, YCSB-D, and YCSB-F, respectively. HiKV provides
more than 20 serving threads with 32-threaded execution
due to the dynamic threads adaption. However, HiKV
only has one serving thread with 2-threaded execution.
As a result, HiKV executed with 32 threads can improve
throughput by large than 15x than 2-threaded execution
for YCSB-B/D/F.

With 32-threaded execution, HiKV outperforms NV-
Store by 1.7x to 5.3x, FPTree by 24.2% to 6.3x, and
FPTree C by 24.1% to 3.5x. For read-intensive and
skewed workloads, such as YCSB-B/C, FPTree C per-
forms better than FPTree for as the cache hit ratio is
high. For YCSB-E, HiKV can scale to 8 threads almost
linearly and keeps stable with more threads. This is be-
cause HiKV must lock all updating queues temporally
before serving Scan, which would block the Put of other
threads. NVStore, FPTree and FPTree C can scale to

16 threads for YCSB-E. Even so, HiKV still improves
throughput by 1.7x, 24.2%, and 24.1% than NVStore,
FPTree and FPTree C, respectively.

4.4 Sensitivity analysis

In this section, we conduct sensitivity analysis to
HiKV considering NVM write latency and workload
dataset size. We use 16 threads for all the experiments.

4.4.1 Sensitivity to NVM write latency

The write latencies are different among various NVM
devices. Thus, we evaluate the impact of NVM write la-
tency on the performance. Figure 8 shows the through-
put results when we vary NVM write latency from 50 ns
to 1400 ns. The Get and Scan performance have no re-
lation with the write latency. Thus, we only show the
results of Put, Update, and Delete. We do not show the
results of FPTree C as it performs worse than FPTree for
uniform distributed workloads.

We find that the throughput decreases as NVM write
latency increases for NVStore and FPTree. This is
due to the increase of persist latency. For Delete, the
throughput of HiKV remains stable when the write la-
tency is lower than 1400 ns. This is because the con-
current deletion latency of B+-Tree index is still longer
than that of the hash index even though the write la-
tency increases to 1000 ns. Compared to NVStore and
FPTree, HiKV still improves the throughput of Delete
by 17.6%/80.0%/39.9%, and 32.9%/38.4%/24.6% for
Put/Update/Delete, respectively even if the write latency
of NVM reaches 1400 ns.

356 2017 USENIX Annual Technical Conference USENIX Association

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(a) Put

 0

 1

 2

 3

 4

 5

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(b) Update

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

50 200 600 1000 1400Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

NVM write latency (ns)

NVStore FPTree HiKV

(c) Delete

Figure 8: Impact of NVM write latency

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(a) Put

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(b) Update

0.0

1.0

2.0

3.0

4.0

5.0

10 50 100 250Th
ro

ug
hp

ut
 (M

 o
ps

/s
)

Number of KVs (M)

NVStore FPTree HiKV

(c) Delete

Figure 9: Impact of dataset size

4.4.2 Sensitivity to dataset size
HiKV adopts a global B+-Tree index to support Scan.

A doubt is whether the B+-Tree index limits the scal-
ability of HiKV as the dataset size increases. Figure 9
shows the throughput as the number of key-values in-
creases from 10M to 250M. The Put throughput of NVS-
tore is not available for 250M key-values as they run out
of our server memory due to the sharply increased size
of the NVTree index. The total number of key-values is
500M for Put as we first warm up with 250M key-values.

The throughput of HiKV remains unchanged for Up-
date, while the throughput of NVStore and FPTree de-
creases by 19.3% and 13.1%, respectively. When the
number of key-values increases 25 times, the through-
put of HiKV, NVStore, and FPTree decreases by 14.6%
/22.4%, NA/15.6%, and 7.2%/16.3% for Put and Delete,
respectively. The performance degradation is due to the
increased searching latency with increased dataset size.
The update throughput of HiKV is determined by serv-
ing threads under such configuration. Thus, we can con-
clude that the global B+-Tree index does not limit the
scalability compared to NVStore and FPTree.

4.5 Performance breakdown
In this section, we first analyze the effectiveness

of asynchronous updates, differential concurrency, and
ordered-write consistency of HiKV. HiKV sync updates
the hash index and B+-Tree synchronously within one
thread. HiKV par adopts partitioning-based concur-
rency control for B+-Tree index, which has ordered

multi-B+-Tree indexes. HiKV wal uses the traditional
Write-Ahead Log to guarantee consistency.

Figure 10 shows the average latency of Put as the
NVM write latency increases from 50 ns to 1400 ns.
Compared with HiKV sync, HiKV can reduce latency
by 46.7% to 57.8%. This is due to the asynchronous
updates of HiKV that the critical path only contains op-
erating the hash index. HiKV can reduce latency by
11.2% to 17.4% compared to HiKV par. The perfor-
mance degradation of HiKV par is caused by the two
reasons. First, migrating index entries among B+-Tree
indexes blocks normal put operations. Second, the mi-
gration thread preempts CPU resources in 16-threaded
execution. HiKV wal stores key and value position (in-
dex entry) in hash index. To guarantee consistency,
HiKV wal first writes key-value in log area, then write
value to NVM and writes the index entry in hash in-
dex for Put. Writing value and index entry in hash ta-
ble without logging will result in inconsistency. This is
because the index entry and value in HiKV wal can not
be update atomically. We can find that HiKV wal needs
to persist data to NVM three times although HiKV wal
does not need to guarantee the order of writing value
and index entry to NVM. However, HiKV only needs to
persist data to NVM twice due to the order-writing. The
evaluation result shows that HiKV can reduce latency
than HiKV wal by up to 27.4% when the NVM write
latency reaches 1400 ns.

Secondly, we evaluate the effectiveness of dy-
namic threads adaption in HiKV. We first warmup
50M key-values, then we execute back-to-back YCSB-

USENIX Association 2017 USENIX Annual Technical Conference 357

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 200 600 1000 1400

A
v
e
ra

g
e
 l
a
te

n
cy

 o
f

P
u
t

(u
s)

NVM write latency (ns)

HiKV_sync
HiKV_par
HiKV_wal
HiKV

Figure 10: Effectiveness of asynchronous updates, dif-
ferential concurrency, and order-writing consistency

A/B/C/D/E/F. The percentages of Put/Get/Update/Scan
are varied in these workloads. Each workload is ex-
ecuted by 60 sec. The total number of threads is
16. HiKV-8-8 and HiKV-12-4 represents executing with
static 8 serving threads and 8 backend threads, and 12
serving threads and 4 backend threads, respectively.

Figure 11 shows the throughputs as the workload
changes from YCSB-A to YCSB-F. HiKV can achieve
the highest throughput except for YCSB-A. For YCSB-
B/C/D/E/F, HiKV outperforms HiKV-8-8 and HiKV-12-
4 by 10.5% to 1.0x and 10.4% to 37.5%, respectively.
For YCSB-A, the throughput of HiKV is same through-
put with HiKV-8-8, and slightly lower than HiKV-12-
4 by 1.6%. HiKV dynamically adapts the number of
serving threads and backend threads, such as 8 and 8 for
YCSB-A, 13 and 3 for YCSB-B, 9 and 7 for YCSB-F.
For read-intensive workloads, increasing the number of
serving threads can improve throughput of HiKV.

 0

 5

 10

 15

 20

 25

 30

 35

 40

20 40 60 80 100
120

140
160

180
200

220
240

260
280

300
320

340
360

T
h
ro

u
g
h
p
u
t

(M
 o

p
s/

s)

Time (sec)

HiKV-8-8
HiKV-12-4
HiKV

Figure 11: Effectiveness of dynamic threads adaption.
0-60s:YCSB-A. 60-120s:YCSB-B. 120-180s:YCSB-C.
180-240s:YCSB-D. 240-300s:YCSB-E. 300-360s:YCSB-
F.

4.6 Impact of NVM read latency
A few researches indicate that the read of NVM is

longer than that of DRAM [47, 55]. Thus, we evaluate
the impact of NVM read latency on system performance.
We emulate the longer read latency similar to emulating
write latency. We set the NVM read latency to 120 ns,
which is twice as that of DRAM [55].

Figure 12 shows that the average serving latency in-

creases as NVM read latency does. This is because
HiKV spends more time to search hash index. However,
NVStore and FPTree also takes more time when search-
ing unsorted leaf nodes and splitting/merging leaf nodes.
Thus, HiKV can still apparently reduce latency than NV-
Store and FPTree. For example, HiKV can reduce la-
tency by 80.0%/61.8% than NVStore, and 82.3%/13.0%
than FPTree for Get/Scan with doubled read latency, re-
spectively.

 0

 5

 10

 15

 20

 25

Get Put Update Delete Scan

A
ve

ra
ge

 la
te

nc
y

(u
s)

NVStore-SL
NVStore-DL
FPTree-SL
FPTree-DL
HiKV-SL
HiKV-DL

Figure 12: Impact of NVM read latency. (SL and DL
represent same latency and doubled latency as DRAM.)

4.7 Memory consumption
Figure 13 shows the DRAM and NVM consumptions

after randomly putting 50M key-values to different KV
stores. The value size varies from 64B to 1KB. The
curves show the ratio of DRAM consumption to NVM
consumption. Since DRAM is used to store the indexes
of key-values, the DRAM consumptions are related to
the number of key-values and keep constant with varied
value sizes for both KV stores. On the contrary, in both
KV stores, NVM is used to store data items and its con-
sumption increases as the value size increases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

64 128 256 512 1024
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
R

A
M

 a
n

d
 N

V
M

 c
o
n

su
m

p
ti

o
n

 (
G

B
)

R
a
ti

o
 o

f
D

R
A

M
 t

o
 N

V
M

Value size (B)

NVStore-DRAM
NVStore-NVM
FPTree-DRAM

FPTree-NVM
HiKV-DRAM
HiKV-NVM

NVStore-ratio
FPTree-ratio
HiKV-ratio

Figure 13: DRAM consumption

We observe that NVStore consumes DRAM as high
as 38.27 GB. This is mainly because NVStore creates
one parent-leaf-node per leaf node when rebuilding the
contiguous inner nodes of NVTree. The index size of
NVTree increases exponentially as the tree height in-
creases. HiKV always consumes 2.21 GB DRAM to
store B+-Tree index, which is larger than FPTree. This

358 2017 USENIX Annual Technical Conference USENIX Association

is because the fine-grained B+-Tree of HiKV must index
every unsorted key-value in NVM, while FPTree only
stores its inner nodes in DRAM. However, the HiKV-
ratio decreases from 40% to 4% as the value size in-
creases from 64B to 1KB. For 256B value, the HiKV-
ratio is 15.8%. Our evaluation shows that even though
the extra DRAM space is used as a cache of FPTree
(namely FPTree C), HiKV still achieves higher perfor-
mance than FPTree C. Reducing the DRAM consump-
tion of B+-Tree, such as migrating part of leaf nodes to
NVM, is our future work.

4.8 Recovery time
We finally evaluate the recovery performance of

HiKV, NVStore, and FPTree. NVStore and FPTree takes
11.03s and 1.74s to recover 50M key-values, respec-
tively. NVStore takes more time than FPTree as it al-
locates much larger contiguous inner nodes for tree in-
dex and insert keys more randomly than FPTree. Since
the hash index is unsorted, HiKV needs to read valid
index entry in NVM and insert corresponding key and
key-value position to the B+-Tree index one by one.
Thus, HiKV takes 88.24s to recover 50M key-values
with one thread. However, increasing recovery threads
allows to reduce the recovery time. For instance, HiKV
takes 6.28s to recover 50M key-values with 16 threads.

5 Related Work
In this section, we discuss related works from three

aspects: indexing structure, concurrency control, and
NVM consistency guaranteeing.

Indexing Structure. Several distributed KV stores,
such as Cassandra [43], Megastore [44], and SLIK [45],
construct multiple indexes for multi-key-value data,
such as secondary index for non primary key query.
However, HiKV constructs a hybrid index according to a
single key, and focuses on reducing the latency of updat-
ing hybrid index. SILT [18] and dual-stage index [19]
construct multiple indexes to reduce DRAM consump-
tion of indexes. These two techniques are orthogonal to
HiKV to reduce the DRAM consumption of B+-Tree.

NVM, especially PCM, suffers from limited write en-
durance. Thus, a number of research efforts are made
to optimize the indexing structure for NVM to reduce
writes to NVM [23, 25, 56, 57]. For example, Chen
et al. [23] propose the unsorted leaf nodes of B+-Tree
to writes caused by sorting. Instead of focusing on re-
ducing NVM writes, HiKV mainly optimizes indexing
structure to support rich KV operations.

Concurrency Control. Concurrency control for
multi-core processor has been widely studied in KV
stores. Echo [54] and NVStore [28] use the MVCC
for concurrency control. Chronos [58] and MICA [42]
uses partitioning for concurrency control of hash tables.

PALM [59] is lock-free concurrent B+-Tree. FPTree
adopts HTM to handle the concurrency of inner nodes,
and fine-grained locks for the concurrency access of leaf
nodes[30]. HiKV adopts similar techniques according
to the features of hybrid index, which are partitioning
for hash tables and HTM for B+-Tree index.

NVM consistency guaranteeing. Recent research
works propose techniques to reduce the cost of consis-
tency guaranteeing. A few research works [60, 61, 62]
use the differential logging [63] to only record modified
bytes of a block on journal to reduce NVM writes. How-
ever, differential logging cannot avoid twice writes. Sev-
eral works propose a combination of multiple techniques
to reduce consistency cost according to data granular-
ity. Atomic-write is used to update file system meta-
data, whose granularity is usually small such as 8B or
16B [5, 47, 64]. For large-granularity data, write-ahead
logging and copy-on-write are used [5, 47]. NVStore
[28], FPTree [30] also use ordered-write to guarantee
consistency. However, HiKV adopts ordered-write ac-
companied with atomic-write to hash index, which can
always achieve the minimum count of persists for differ-
ent KV write operations.

6 Conclusion
Persistent key-value stores are widely deployed in

real-world applications. Hybrid memory consisting
of DRAM and NVM allows storage systems to per-
sist data directly in the memory. Building KV
stores towards hybrid memory can exploit its perfor-
mance characteristic. Supporting rich KV operations
(Put/Get/Update/Delete/Scan) efficiently is highly re-
quired by today’s applications. However, either hash in-
dex or B+-Tree index employed by existing KV stores
cannot efficiently support all these operations. In this
paper, we propose hybrid index to adopt a hash index
in NVM for fast searching and directly persisting, and a
B+-Tree index in DRAM for fast updating and support-
ing range scan. On top of the hybrid index, we build
HiKV, a hybrid index based key-value store with the
well-performed scalability and crash consistency guar-
anteeing. Extensive experiments show that HiKV out-
performs the state-of-the-art NVM-based KV stores.

7 Acknowledgments
We would like to thank the anonymous reviewers and

our shepherd, Donald E. Porter, for their helpful com-
ments. We also thank Ismail Oukid and Jun Yang for
their help in figuring out the details of FPTree and NVS-
tore, respectively. We thank Wenlong Ma for useful dis-
cussions. This work is supported by National Key Re-
search and Development Program of China under grant
No. 2016YFB1000302 , National Science Foundation of
China under grant No. 61502448 and No. 61379042.

USENIX Association 2017 USENIX Annual Technical Conference 359

References
[1] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg,

B. Rajendran, M. Asheghi, and K. Goodson, “Phase
change memory,” Proceedings of the IEEE, vol. 98,
pp. 2201–2227, 2010.

[2] I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh,
J. Park, S. Park, H. Kim, and I. Yoo, “Highly scalable
nonvolatile resistive memory using simple binary ox-
ide driven by asymmetric unipolar voltage pulses,” in
2004 IEEE International on Electron Devices Meeting,
IEDM’04, pp. 587–590, 2004.

[3] “Intel and Micron produce breakthrough mem-
ory technology.” https://newsroom.
intel.com/news-releases/intel-and-
micron-produce-breakthrough\-memory-
technology/.

[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
high performance main memory system using phase-
change memory technology,” in Proceedings of the 36th
annual international symposium on Computer architec-
ture, ISCA ’09, pp. 24–33, 2009.

[5] X. Jian and S. Steven, “NOVA: A log-structured file sys-
tem for hybrid volatile/non-volatile main memories,” in
Proceedings of the 14th USENIX Conference on File and
Storage Technologies, FAST’16, pp. 323–338, 2016.

[6] J. Ou, J. Shu, and Y. Lu, “A high performance file sys-
tem for non-volatile main memory,” in Proceedings of the
Eleventh European Conference on Computer Systems,
EuroSys ’16, pp. 12:1–12:16, 2016.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber, “Bigtable: A distributed storage system for struc-
tured data,” in Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’06, pp. 15–15, 2006.

[8] S. Ghemawat and J. Dean, “LevelDB.” https://
leveldb.org.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pp. 205–220, 2007.

[10] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. So-
man, and S. Shah, “Serving large-scale batch computed
data with project voldemort,” in Proceedings of the 10th
USENIX conference on File and Storage Technologies,
FAST’12, pp. 18–18, 2012.

[11] Facebook, “RocksDB.” https://rocksdb.org.
[12] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel,

“Finding a needle in haystack: Facebook’s photo stor-
age.,” in Proceedings of the 9th Symposium on Operating
Systems Design and Implementation, OSDI’10, pp. 1–8,
2010.

[13] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui,
and J. Cong, “Atlas: Baidu’s key-value storage system
for cloud data,” in Proceedings of the 31st Symposium

on Mass Storage Systems and Technologies, MSST’15,
pp. 1–14, IEEE, 2015.

[14] P. Shetty, R. P. Spillane, R. Malpani, B. An-
drews, J. Seyster, and E. Zadok, “Building workload-
independent storage with VT-trees,” in Proceedings of
the 11th USENIX Conference on File and Storage Tech-
nologies, FAST’13, pp. 17–30, 2013.

[15] L. Marmol, S. Sundararaman, N. Talagala, and R. Ran-
gaswami, “NVMKV: A scalable, lightweight, ftl-aware
key-value store,” in Proceedings of the 2015 USENIX An-
nual Technical Conference, USENIX ATC’15, pp. 207–
219, 2015.

[16] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Wisckey: Separating keys from values
in SSD-conscious storage,” in Proceedings of the 14th
USENIX Conference on File and Storage Technologies,
FAST’16, pp. 133–148, Feb. 2016.

[17] B. Debnath, S. Sengupta, and J. Li, “Flashstore: High
throughput persistent key-value store,” Proceedings of
the VLDB Endowment, vol. 3, pp. 1414–1425, Sept.
2010.

[18] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky,
“SILT: A memory-efficient, high-performance key-value
store,” in Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, pp. 1–
13, 2011.

[19] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky,
L. Ma, and R. Shen, “Reducing the storage overhead
of main-memory oltp databases with hybrid indexes,”
in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pp. 1567–1581,
2016.

[20] J. Levandoski, D. Lomet, and S. Sengupta, “The Bw-
Tree: A b-tree for new hardware platforms,” in Proceed-
ings of the IEEE 29th International Conference on Data
Engineering, ICDE’13, pp. 302–313, 2013.

[21] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar,
“Scaling concurrent log-structured data stores,” in Pro-
ceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pp. 32:1–32:14, 2015.

[22] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang,
and J. Cong, “An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd,” in
Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pp. 16:1–16:14, 2014.

[23] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking
database algorithms for phase change memory,” in Pro-
ceedings of the 5th Biennial Conference on Innovative
Data Systems Research, CIDR’11, pp. 21–31, 2011.

[24] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell, “Consistent and durable data structures for
non-volatile byte-addressable memory,” in Proceedings
of the 9th USENIX conference on File and stroage tech-
nologies, FAST’11, pp. 5–5, 2011.

[25] J. Ni, W. Hu, G. Li, K. Tan, and D. Sun, “Bp-tree: A
predictive b+-tree for reducing writes on phase change
memory,” IEEE Transactions on Knowledge and Data
Engineering, vol. PP, no. 99, pp. 1–1, 2014.

360 2017 USENIX Annual Technical Conference USENIX Association

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough \ -memory-technology/
https://leveldb.org
https://leveldb.org
https://rocksdb.org

[26] P. Chi, W.-C. Lee, and Y. Xie, “Making b+-tree efficient
in pcm-based main memory,” in Proceedings of the 2014
International Symposium on Low Power Electronics and
Design, ISLPED ’14, pp. 69–74, 2014.

[27] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile
main memory,” Proceedings of the VLDB Endowment,
vol. 8, pp. 786–797, Feb. 2015.

[28] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He, “NV-Tree: Reducing consistency cost for nvm-
based single level systems,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies,
FAST’15, pp. 167–181, 2015.

[29] G. S. Choi, B. W. On, and I. Lee, “Pb+-tree: Pcm-aware
b+-tree,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 27, no. 9, pp. 2466–2479, 2015.

[30] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner, “FPTree: A hybrid scm-dram persistent and
concurrent b-tree for storage class memory,” in Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, pp. 371–386, 2016.

[31] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Archi-
tecting phase change memory as a scalable dram alter-
native,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pp. 2–
13, 2009.

[32] K. Suzuki and S. Swanson, “The non-volatile memory
technology database (NVMDB),” Tech. Rep. CS2015-
1011, Department of Computer Science & Engineering,
University of California, San Diego, 2015.

[33] M. F. Chang, J. J. Wu, T. F. Chien, Y. C. Liu, T. C.
Yang, W. C. Shen, Y. C. King, C. J. Lin, K. F. Lin,
Y. D. Chih, S. Natarajan, and J. Chang, “19.4 embed-
ded 1mb reram in 28nm cmos with 0.27-to-1v read using
swing-sample-and-couple sense amplifier and self-boost-
write-termination scheme,” in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Pa-
pers, ISSCC’14, pp. 332–333, Feb 2014.

[34] Micron, “SLC NAND flash products.” http:
//www.micron.com/products/nand-
flash/slc-nand#fullPart,Dec.2014.

[35] “MyRocks: A space- and write-optimized mysql
database.” https://code.facebook.com/
posts/190251048047090/myrocks-a-
space-and-write-optimized-mysql-
database/.

[36] K. Ren and G. Gibson, “TABLEFS: Enhancing metadata
efficiency in the local file system,” in Proceedings of the
2013 USENIX Annual Technical Conference, USENIX
ATC’13, pp. 145–156, 2013.

[37] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” in Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’06, pp. 307–320, 2006.

[38] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS:
Scaling file system metadata performance with stateless
caching and bulk insertion,” in Proceedings of the 2014

International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’14, pp. 237–
248, 2014.

[39] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness
for fast multicore key-value storage,” in Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, pp. 183–196, 2012.

[40] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden,
“Speedy transactions in multicore in-memory databases,”
in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pp. 18–32,
2013.

[41] “Memcached.” https://memcached.org.

[42] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“MICA: A holistic approach to fast in-memory key-value
storage,” in Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI’14, pp. 429–444, 2014.

[43] A. Lakshman and P. Malik, “Cassandra: a decentral-
ized structured storage system,” ACM SIGOPS Operat-
ing Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[44] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage
for interactive services,” in Proceedings of the 5th Con-
ference on Innovative Data system Research, CIDR’11,
pp. 223–234, 2011.

[45] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and
J. Ousterhout, “SLIK: Scalable low-latency indexes for
a key-value store,” in Proceedings of the 2016 USENIX
Annual Technical Conference, USENIX ATC’16, pp. 57–
70, 2016.

[46] “Intel64 software developers manual (vol 2, ch 3.2),”
2013.

[47] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System software
for persistent memory,” in Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14,
pp. 15:1–15:15, ACM, 2014.

[48] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-
value store,” in Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE joint international confer-
ence on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’12, pp. 53–64, 2012.

[49] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
lightweight persistent memory,” in Proceedings of the
sixteenth international conference on Architectural sup-
port for programming languages and operating systems,
ASPLOS ’11, pp. 91–104, 2011.

[50] X. Wu and A. L. N. Reddy, “Scmfs: a file system for stor-
age class memory,” in Proceedings of 2011 International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, pp. 39:1–39:11, 2011.

[51] “Intel architecture instruction set extensions program-
ming reference.” https://software.intel.

USENIX Association 2017 USENIX Annual Technical Conference 361

http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
http://www.micron.com/products/nand-flash/slc-nand#fullPart, Dec. 2014.
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database/
https://memcached.org
https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf

com/sites/default/files/managed/69/
78/319433-025.pdf.

[52] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-
aware logging in transaction systems,” Proceedings of the
VLDB Endowment, vol. 8, no. 4, pp. 389–400, 2014.

[53] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with
ycsb,” in Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pp. 143–154, 2010.

[54] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and
H. M. Levy, “Exploring storage class memory with key
value stores,” in Proceedings of the 1st Workshop on In-
teractions of NVM/FLASH with Operating Systems and
Workloads, INFLOW ’13, pp. 4:1–4:8, 2013.

[55] Y. Zhang and S. Swanson, “A study of application per-
formance with non-volatile main memory,” in Proceed-
ings of the 31st Symposium on Mass Storage Systems and
Technologies, MSST’15, pp. 1–10, IEEE, 2015.

[56] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and
C. Ungureanu, “Revisiting hash table design for phase
change memory,” ACM SIGOPS Operating System Re-
view, vol. 49, pp. 18–26, Jan 2016.

[57] P. Zuo and Y. Hua, “A write-friendly hashing scheme
for non-volatile memory systems,” in Proceedings of the
33st Symposium on Mass Storage Systems and Technolo-
gies, MSST’17, pp. 1–10, 2017.

[58] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat, “Chronos: Predictable low latency for data
center applications,” in Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pp. 9:1–
9:14, 2012.

[59] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey,
“PALM: Parallel architecture-friendly latch-free modifi-
cations to b+ trees on many-core processors,” Procedings
of the VLDB Endowment, vol. 4, no. 11, pp. 795–806,
2011.

[60] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn, “Shortcut-jfs:
A write efficient journaling file system for phase change
memory,” in Proceedings of the IEEE 28th Symposium
on Mass Storage Systems and Technologies, MSST’12,
pp. 1–6, 2012.

[61] J. Chen, Q. Wei, C. Chen, and L. Wu, “FSMAC: A file
system metadata accelerator with non-volatile memory,”
in Proceedings of the IEEE 29th Symposium on Mass
Storage Systems and Technologies, MSST’13, pp. 1–11,
IEEE, 2013.

[62] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won,
“Nvwal: Exploiting nvram in write-ahead logging,” in
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’16, pp. 385–
398, 2016.

[63] J. Lee, K. Kim, and S. K. Cha, “Differential logging: A
commutative and associative logging scheme for highly
parallel main memory database,” in Proceedings of the
17th International Conference on Data Engineering,
ICDE’01, pp. 173–182, IEEE, 2001.

[64] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better I/O through byte-
addressable, persistent memory,” in Proceedings of the
Twenty-Second ACM Symposium on Operating Systems
Principles, SOSP ’09, pp. 133–146, 2009.

362 2017 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf
https://software.intel.com/sites/default/files/managed/69/78/319433-025.pdf

TRIAD: Creating Synergies Between Memory, Disk and Log
in Log Structured Key-Value Stores

Oana Balmau
EPFL

Diego Didona
EPFL

Rachid Guerraoui
EPFL

Willy Zwaenepoel
EPFL

Huapeng Yuan
Nutanix

Aashray Arora
Nutanix

Karan Gupta
Nutanix

Pavan Konka
Nutanix

Abstract
We present TRIAD, a new persistent key-value (KV)
store based on Log-Structured Merge (LSM) trees.
TRIAD improves LSM KV throughput by reducing the
write amplification arising in the maintenance of the
LSM tree structure. Although occurring in the back-
ground, write amplification consumes significant CPU
and I/O resources. By reducing write amplification,
TRIAD allows these resources to be used instead to im-
prove user-facing throughput.

TRIAD uses a holistic combination of three tech-
niques. At the LSM memory component level, TRIAD
leverages skew in data popularity to avoid frequent I/O
operations on the most popular keys. At the storage
level, TRIAD amortizes management costs by deferring
and batching multiple I/O operations. At the commit log
level, TRIAD avoids duplicate writes to storage.

We implement TRIAD as an extension of Facebook’s
RocksDB and evaluate it with production and synthetic
workloads. With these workloads, TRIAD yields up to
193% improvement in throughput. It reduces write am-
plification by a factor of up to 4x, and decreases the
amount of I/O by an order of magnitude.

1 Introduction

Key-value (KV) stores [1, 3, 4, 12, 29, 35, 38, 39, 47] are
nowadays a widespread solution for handling large-scale
data in cloud-based applications. They have several ad-
vantages over traditional DBMSs, including simplicity,
scalability, and high throughput. KV store applications
include, among others, messaging [12, 18], online shop-
ping [25], search indexing [22] and advertising [12, 22].
At Nutanix, we use KV stores for storing the metadata
for our core enterprise platform, which serves thousands
of customers with petabytes of storage capacity [21].

KV store systems are available for workloads that fit
entirely in memory (e.g., Mica [36], Redis [3], and Mem-

cached [2]), as well as for workloads that require persis-
tent storage (e.g., LevelDB [4], RocksDB [12]). Log-
Structured Merge trees (LSMs) [41, 40] are a popular
design choice for the latter category. LSMs achieve high
write throughput at the expense of a small decrease in
read throughput. They are today employed in a wide
range of KV stores such as LevelDB [4], RocksDB [12],
Cassandra [1], cLSM [29], and bLSM [44].

Broadly speaking, LSMs are organized in two com-
ponents: a memory component and a disk component.
The memory component seeks to absorb updates. For
applications that do not tolerate data loss in the case of
failure, the updates may be temporarily backed up in a
commit log stored on disk. When the memory compo-
nent becomes full, it is flushed to persistent storage, and
a new one is installed. The disk component is organized
into levels, each level containing a number of sorted files,
called SSTables. The levels closer to the memory compo-
nent hold the fresher information. When level Li is full,
one or more selected files from level Li are compacted
into files at level Li+1, discarding stale values. This com-
paction operation occurs in the background.

Compaction and flushing are key operations, respon-
sible for maintaining the LSM structure and its proper-
ties. Unfortunately, they take up a significant amount of
the available resources. For instance, for our production
workloads at Nutanix, our measurements indicate that,
at peak times, compaction can consume up to 45% of the
CPU. Moreover, per cluster, an average of 2.5 hours per
day is spent on compaction operations for the maps stor-
ing the metadata. Clearly, compaction and flushing pose
an important performance challenge, even though they
occur outside the critical path of user-facing operations.

We propose three new complementary techniques to
close this gap. Our techniques reduce both the time and
space taken by the compaction and flushing operations,
leading to increased throughput. The first technique de-
creases compaction overhead for skewed workloads. We
keep KV pairs that are updated frequently (i.e., hot en-

USENIX Association 2017 USENIX Annual Technical Conference 363

tries) in the memory component, and we only flush the
cold entries. This separation eliminates frequent com-
pactions triggered by different versions of the same hot
entry. The main idea of the second technique is to defer
file compaction until the overlap between files becomes
large enough, so as to merge a high number of dupli-
cate keys. Finally, our third technique avoids flushing the
memory component altogether, by changing the role the
commit logs play in LSMs and using them in a manner
similar to SSTables.

Combined, our three techniques form TRIAD, a new
LSM KV store we build on top of RocksDB. We exten-
sively compare TRIAD against the original version of
RocksDB on various synthetic workloads, with a focus
on skewed workloads, as well as on Nutanix production
workloads. TRIAD achieves up to 193% higher through-
put than RocksDB. This improvement is the result of an
order of magnitude decrease in I/O due to compaction
and flushing, up to 4x lower write amplification and 77%
less time spent compacting and flushing, on average.

To summarize, this paper makes the following key
contributions: (1) the design of TRIAD, a system com-
bining three complementary techniques for reducing
compaction work in LSMs, each interesting in its own
right, (2) a publicly available implementation of TRIAD
as an extension of RocksDB, one of the most popular
state-of-the-art LSM KV stores, and (3) an evaluation of
its benefits in comparison to RocksDB.

Roadmap. The rest of the paper is structured as follows.
Section 2 gives an overview of the LSM tree. Section
3 presents the background I/O overheads in LSM KV
stores. Section 4 presents our three techniques for re-
ducing the impact of the compaction and flushing opera-
tions on performance. Section 5 describes our evaluation
results. Section 6 discusses related work. Section 7 con-
cludes the paper.

2 Background on LSM

We provide an overview of the LSM structure, its user-
facing operations and the flushing and compaction pro-
cesses that take place in the background.

LSM Structure. The high-level view of a typical
LSM-based KV store is shown in Figure 1. The system
has three main components, which we briefly describe.
▷Memory Component. The memory component Cm is

a sorted data structure residing in main memory. Its pur-
pose is to temporarily absorb the updates performed on
the KV store. The size of the memory component is typ-
ically small, ranging from a few MBs to tens of MBs.
When the memory component fills up, it is replaced by a
new, empty component. The old memory component is
then flushed as is to level 0 (L0) of the LSM disk compo-

L0
L1
...
Ln

Cm

2	

read	

Cdisk
SSD

RAM

update	

Commit	Log	

Figure 1: High-level view of a typical LSM KV store.

nent. L0 is a special level of the disk component hierar-
chy, described below.
▷Disk Component. The disk component Cdisk is struc-

tured into multiple levels (L0, L1, . . .), with increasing
sizes. Each level contains multiple sorted files, called
SSTables. The memory component Cm is flushed to the
first level, L0. Because of this, the SSTables in L0 have
overlapping key ranges. SSTables on levels Li (i ̸= 0)
have disjoint key ranges. The choice of the number of
levels in Cdisk is an interesting aspect of the LSM struc-
ture. From a correctness perspective, it would suffice to
have only two levels on disk: one to flush memory com-
ponents and one in which we compact. However, there
is an I/O disadvantage to this approach. When we merge
L0 SSTables into L1, we identify all the L1 SSTables that
have overlapping key ranges with the L0 SSTable that is
being compacted (the SSTables from L0 cover the entire
key range, because they are directly flushed from mem-
ory). If L1 files are large, then fewer files would have
overlapping key ranges, but we would have to re-write
large files, leading to overhead in the compaction work
and a penalty in terms of of memory use. If L1 files are
small, then a large number of files would have overlap-
ping key ranges with the L0 file. These files would need
to be opened and rewritten, creating large overhead in the
compaction work. The leveled structure allows LSMs
to amortize the compaction work, as the updates trickle
down the levels.
▷Commit Log. The commit log is a file residing on

disk. Its purpose is to temporarily log the updates that
are made to Cm (in small batches), if the application re-
quires that the data is not lost in case of a failure. All up-
dates performed on Cm are also appended to the commit
log. Typically, the size of the commit log is kept small in
order to provide fast recovery in case the operations need
to be replayed to recover from a failure. A typical value
for the size of the commit log is on the order of hundreds
of MB.

User-facing operations. The main user-facing oper-
ations in LSM-based KV stores are reads (Get(k)) and

364 2017 USENIX Annual Technical Conference USENIX Association

updates (Update(k,v)). Update(k,v) associates value v
to key k. Updates are absorbed in Cm and possibly
appended to the commit log. Hence, LSM KV stores
achieve high write throughput. Get(k) returns the most
recent value of k. As illustrated in Figure 1, the read first
goes to Cm; if k is not found in Cm, the read continues to
L0, checking all the files. If k is not found in L0, the read
goes to L1,. . . Ln, until k is found. Apart from L0, only
one file is checked for the rest of Cdisk’s levels, because
of the non-overlapping key ranges property.

Flushing. LSM KV stores have two main background
operations: flushing and compaction. Flushing is the op-
eration that writes Cm to L0, once Cm becomes full. In
case a commit log is used, the flush can also be triggered
by the commit log getting full, even if there is still room
in the memory component.

Compaction. Compaction is the background oper-
ation that merges files in disk component Li into files
with overlapping key ranges in disk component Li+1,
discarding older values in the process. Leveled com-
paction is a popular strategy for compaction in LSM KV
stores [5, 14]. When the size of Li exceeds its target size,
a file F in Li is picked and merged into the files from
Li+1 that have overlapping key ranges with F , in a way
similar to a merge sort. Therefore, in the case of lev-
eled LSM trees, each KV pair might be eventually prop-
agated down to the component on the last level. Hence,
some KV pairs could be rewritten once for every level
during compaction. RocksDB and TRIAD employ lev-
eled compaction. The techniques proposed by TRIAD
could, however, easily be adapted to size-tiered [22] ap-
proaches.

3 Motivation

Despite I/O operations not being in the critical path of
user-facing operations, flushing, logging and compaction
still consume computational resources. The amount of
CPU cycles spent to coordinate these operations trans-
lates into a commensurate amount of processing power
that cannot be used to serve the user-generated workload.
Hence, the frequency and the length of the I/O opera-
tions have a significant impact on the final performance
perceived by the user.

We provide experimental evidence of this claim by
measuring the extent of the performance reduction due to
I/O operations. We consider two workloads that exhibit
different levels of skew in the data popularity (skewed/u-
niform) and two read/write mixes (write dominated and
balanced).

We run these workloads on RocksDB and on a version
of RocksDB in which we disable background I/O opera-
tions (i.e., flushing and compaction; logging was enabled
for both experiments). We pin all of the system activity

0	
50	
100	
150	
200	
250	
300	

Uniform	
50r-50w	

Uniform	
10r-90w	

Skewed	
50r-50w	

Skewed	
10r-90w	

K	
O
pe

ra
9o

ns
/s
	 RocksDB			

RocksDB	No	BG	I/O	

Figure 2: Background I/O impact on throughput.

(i.e., 8 worker threads and all threads created by the KV
store) to 8 cores. The LSM structures of the two sys-
tems are pre-populated with an identical value for every
key accessed during the experiment. This ensures that
every read operation can be served, possibly by travers-
ing the on-disk LSM tree. In the RocksdDB version with
no background I/O, when a memory component is full,
we discard it instead of persisting it, serving requests
only from the pre-populated data store. We compare the
throughput achieved by the two systems and report it in
Figure 2. The plot shows that, for all workloads, back-
ground I/O represents a major performance bottleneck,
yielding up to a 3x in throughput loss with respect to the
ideal case.

Driven by these results, we investigate the causes that
trigger frequent and intensive I/O operations. We iden-
tify three main sources of expensive I/O operations, one
for each of the three main components of the LSM tree
architecture, namely (1) data-skew unawareness, at the
memory component level; (2) premature and iterative
compaction, at the LSM tree level; (3) duplicated writes
at the logging level.

1. Data skew unawareness. Many KV store work-
loads exhibit skewed data popularity, in which a few hot
keys have a much higher probability of being updated
than cold keys [16]. As we show in Section 5, some Nu-
tanix production workloads also exhibit similar skew.

Data skew causes the commit log to grow more rapidly
than Cm, because updates to the same keys are appended
to the log but absorbed in-place by Cm. This triggers fre-
quent flushes of Cm before it reaches its maximum size.
Not only does this increase the frequency of flushing, but
because the size of the flushed Cm is often smaller than
the maximum, the fixed cost of opening and storing a file
in L0 is not amortized by the actual writing of data in it.

Data skew also has a negative impact on the extent
of the compaction process. In fact, it is highly likely
that a copy of a hot key is present in many levels of the
LSM tree structure. This results in frequent compaction
operations that easily trickle down the LSM tree struc-
ture, causing long cascading compaction phases at Li that
likely result into spilling new data to Li+1.

USENIX Association 2017 USENIX Annual Technical Conference 365

Cm
cold

hot
CL

Move cold entries
to SSTables

free

Keep hot KV pairs in new memtable and
Write them in new commit log

SSTable
1

... SSTable
n

Figure 3: TRIAD-MEM: Before hot-cold key separation.

2. Premature and iterative compaction. Existing
LSM KV systems exhibit a two-fold limitation in the
compaction process. Some LSM KV stores keep only
one file in L0 to avoid looking up several SSTables in L0
when reading [5]. As a result, every time the memory
component is flushed, a compaction from L0 to the un-
derlying levels is triggered. This choice leads to frequent
compactions of the LSM tree.

Other LSM schemes [4, 12, 14] keep several files in
L0. This approach leads to the second limitation of exist-
ing LSM KV stores. The issue lies in how LSMs com-
pact L0 to L1 when several SSTables are present in L0.
In fact, files in L0 are compacted to higher levels one at
a time, resulting in several consecutive compaction oper-
ations. If two files in L0 share a common key, this key
is compacted twice in the underlying LSM tree. Data
skew exacerbates this problem, because it increases the
probability that multiple L0 files contain the same set of
hot keys. Clearly, the higher the load on the system, the
higher is the probability of this event happening.

This phenomenon can also arise in systems that keep a
single file in L0. Indeed, during the compaction, the sys-
tem continues serving user operations, thus potentially
triggering multiple flushes of the memory component to
L0. As a result, when a compaction finishes, it is possible
that multiple files reside in L0.

3. Duplicate writes. When Cm is flushed to L0, the
corresponding commit log is discarded because flushing
already ensures the durability of the data. Each KV pair
in the new file in L0, however, corresponds to the last
version of a key written in the memory component and,
hence, appended to the commit log. Therefore, when
flushing the memory component to disk in L0, the system
is actually replaying I/O that it has already performed
when populating the commit log.

4 TRIAD

We now provide a detailed description of TRIAD’s tech-
niques. The pseudocode for the main parts of TRIAD’s

Figure 4: TRIAD-MEM: After hot-cold key separation
and flush.

algorithms are shown in Algorithm 1 and Algorithm 2.
The approach we use to tackle the I/O overhead is three-
fold, each solution addressing one of the challenges high-
lighted in the previous section:
(1) TRIAD-MEM tackles the data skew unawareness

issue at the memory component level.
(2) TRIAD-DISK tackles the premature and iterative

compaction issue by judiciously choosing to defer
and batch compaction at the disk component level.

(3) TRIAD-LOG tackles the duplicated writes issue,
bypassing new file creation during flushes, at the
commit log level.

The three techniques complement each other and tar-
get the main components of LSM KV stores. Even if
they work best together, they are stand-alone techniques
and generally applicable to LSM-based KV stores.

4.1 TRIAD-MEM

The goal of TRIAD-MEM is to leverage the skew ex-
hibited by many workloads [16] to reduce flushing and,
hence, reduce the frequency of compactions. To this end,
TRIAD-MEM only flushes cold keys to disk, while keep-
ing hot keys in memory. This avoids the numerous com-
pactions triggered to ensure non-overlapping key ranges
in the LSM disk structure.

TRIAD-MEM separates entries that are updated often
(i.e., hot entries) from entries which are rarely updated
(i.e., cold entries) upon flushing Cm to L0. The hot en-
tries are kept in the new Cm and only the cold entries are
written to disk. This way, the hot entries are updated just
in-memory and do not trigger a high number of com-
pactions on disk. The hot-cold key separation during a
flush to L0 is shown in Figure 3 and Figure 4.

The separation between hot and cold keys is shown
in the separateKeys function in Algorithm 2. The top-K
entries of the old Cm are selected, where K is a param-
eter of the system. Ideally, K should be high enough to
accommodate all the hot keys, but low enough to avoid
a high memory overhead for Cm. Thus, properly set-
ting K requires some a priori knowledge about the work-
load. TRIAD, however, is designed to deliver high per-

366 2017 USENIX Annual Technical Conference USENIX Association

Algorithm 1 Update and Flush.
1: function UPDATE(Key k, Val v)
2: Entry e =mem.getEntry(k)
3: CommitLog log =getCommitLog()
4: if (e ̸= NULL) then
5: e.val = v; e.updates++
6: CLUpdateOffset(log,&e) ▷ Update CL name and offset in entry e
7: else
8: e = new Entry(k, v); e.updates = 1
9: CLUpdateOffset(log,&e) ▷ Update CL name and offset in entry e

10: mem.add(e)
11: end if
12: end function

13: function FLUSH(Memtable mem)
14: if (mem.getSize() < FLUSH_T H) then ▷ Do not flush if mem too small
15: CommitLog newLog = new CommitLog()
16: populateLog(nwLog, mem)
17: CommitLog log = getCommitLog()
18: setCurrentCommitLog(newLog)
19: discardCommigLog(log)
20: CLUpdateOffset(newLog, mem)
21: else
22: Memtable hotMem = new Memtable()
23: Memtable coldMem = new Memtable()
24: separateKeys(mem, hotMem, coldMem)
25: setCurrentMemtable(hotMem)
26: CommitLog log = getCommitLog()
27: CommitLog newLog = new CommitLog()

▷ Write back hotMem entries to the new log
28: populateLog(newLog, hotMem)
29: setCurrentCommitLog(newLog)

▷ Update hotMem with offsets from new CL
30: CLUpdateOffset(newLog, hotMem)

▷ Extract index corresponding to cold keys
31: CLIndex index = getKeysAndOffsets(coldMem)

▷ Flush only index and link it to old CL
32: flushToDisk(index, log)
33: end if
34: end function

formance with no information about the workload. In our
current implementation, K is a constant. We will show in
Section 5 that thanks to its holistic multi-level approach,
TRIAD is robust against settings of K that correspond to
not storing all the hot keys in memory. We are also cur-
rently investigating techniques to automatically set K de-
pending on the runtime workload, for example by means
of hill climbing [43].

The entries that are preserved in the new memory com-
ponent and not sent to disk are written to the commit log
associated to the new memory component, as shown in
Figure 3. This write-back is necessary in order to not lose
information. A final optimization when separating the
hot and cold keys is not flushing at all if Cm’s size is not
larger than a certain threshold (denoted FLUSH_T H in
Algorithm 1). Indeed, in the case of very skewed work-
loads, a flush might be triggered not because Cm is full,
but because the commit log becomes full. To avoid hav-
ing a large number of small files, we keep all entries in
memory, discard the old commit log, and create a new
commit log, with only the freshest values of Cm entries.

We experiment with several methods for hot-cold key
detection, including looking at mean and standard devi-
ation of the update frequencies, and selection according
to quantiles. Simply selecting as hot keys those keys that

Algorithm 2 Key Separation and Deferred Compaction.
1: function SEPARATEKEYS(Memtables mem, hotMem, coldMem)
2: int hotKeyCount = sizeof(Memtable) *

PERC_HOT / sizeof(Entry)
3: Entry[] hotKeys = getTopKHot(mem, hotKeyCount)
4: hotMem.add(hotKeys)
5: for k in hotMem do ▷ Reset hotness
6: k.hotness = 0; k.updates = 0
7: end for
8: coldMem = mem
9: coldMem.remove(hotKeys)

10: end function

11: function DEFERCOMPACTION(())
12: assert(level == 0)
13: int totalKeys = 0
14: HyperLogLog hllVect[]
15: FileMetaData levelFiles[]
16: levelFiles = getLevelFiles(0)
17: for f in levelFiles do
18: totalKeys+= f.hllKeysCount()
19: hllVect.pushBack(f.hllGet())
20: end for
21: int estimated = hhllMergedEstimate(hllVect)
22: double overlapRatio = 1 - (estimated / totalKeys)
23: boolean notEnoughOverlap = overlapRatio < OV ERLAP_RAT IO_T H
24: boolean notEnoughFiles = getLevelFiles(0).size()≤MAX_FILES_L0
25: if notEnoughOverlap ∧ notEnoughFiles then
26: return true ▷ Defer compaction
27: end if
28: return false
29: end function

are updated with higher frequency than the average one
is effective in all workloads.

4.2 TRIAD-DISK

TRIAD-DISK acts at L0 of the LSM disk component. In
a nutshell, TRIAD-DISK delays compaction until there
is enough key overlap in the files that are being com-
pacted. To approximate the key overlap between files,
we use the HyperLogLog (HLL) probabilistic cardinal-
ity estimator [28, 30]. HLL is an algorithm that ap-
proximates the number of distinct elements in a multiset.
To compute the overlap between a set of files, we de-
fine a metric we call the overlap ratio. Assuming we
have n files on L0, the overlap ratio is defined as 1 -
(UniqueKeys(f ile1, f ile2, . . . f ilen)) / sum(Keys(f ilei)),
where Keys(f ilei) is the number of keys of the i-th
SSTable and UniqueKeys is the number of unique keys
after merging the n files. UniqueKeys and Key(f ilei) are
approximated using HLL.

Figure 5 shows an example of how the overlap ratio is
used to defer compaction. In the upper part of the fig-
ure, there is only one file on L0; the L0 file overlaps with
two files on L1. Since the overlap ratio is smaller than the
cutoff threshold in this case, compaction is deferred. The
lower part of the figure shows the system at a time when
L0 contains two files. The overlap ratio is computed be-
tween all the files in L0 and their respective overlapping
files on L1. The overlap ratio is higher than the threshold,

USENIX Association 2017 USENIX Annual Technical Conference 367

2, 15,
19

Level 0 Level 1

1, 2,
5, 10

11, 12,
19, 20

23, 25,
27, 29

overlapRatio = 1 – (9/11) = 0.18; defer compaction
key-range overlap

2, 15,
19

Level 0 Level 1

1, 2,
5, 10

11, 12,
19, 20

23, 25,
27, 29

overlapRatio = 1 – (10/14) = 0.28; compact

key-range overlap

1, 10,
13

Overlap Ratio Threshold: 0.2

Overlap Ratio Threshold: 0.2

Figure 5: Overlap ratio example.

so compaction can proceed, by doing a multi-way merge
between all files in L0 and the overlapping files in L1.

The function deferCompaction in Algorithm 2 shows
the TRIAD-DISK pseudo-code. We associate an HLL
structure to each L0 file in the LSM disk component. Be-
fore each compaction in L0, we calculate the overlap ratio
of all files in L0. If the overlap ratio is below a threshold,
we defer the compaction, unless the number of files in L0
exceeds the maximum allowed number. If the maximum
number of files in L0 is reached, we proceed with the L0
to L1 compaction, regardless of the key overlap.

The use of HLL is not new in the context of LSM com-
paction. So far, however, the way HLL is used is to detect
which files have the most key overlap to be compacted
(for instance in systems such as Cassandra [1]). This
way, the highest number of duplicate keys is discarded
during compaction. RocksDB employs a similar idea,
where the estimation of the key overlap in files at Li and
Li+1 is based on the files’ key ranges and sizes. Our use
of HLL is different. Instead of employing HLL to de-
cide which files to compact, we are using HLL to decide
whether to compact L0 into L1 at the current moment, or
defer it to a later point in time. If the L0 and L1 SSTables
do not have enough key overlap, compaction is delayed
until more L0 SSTables are generated.

Current LSMs trigger the compaction of L0 into L1 as
soon as the number of files on L0 reaches a certain thresh-
old. The larger the threshold, the more files need to be
accessed in L0 by read operations, which increases read
latency. However, since the chance of a key being present
multiple files on L0 is low (otherwise, the large overlap
ratio would trigger compaction), TRIAD-DISK can tol-
erate more files in L0 without hurting read performance,
as we show in Section 5.

4.3 TRIAD-LOG

The main insight of TRIAD-LOG is that the data that is
written to memory and then persisted into L0 SSTables is

already written to disk, in the commit log. The general
idea of TRIAD-LOG is to transform CL into a special
type of L0 SSTable, a CL-SSTable. This way, flushing
from memory to L0 is avoided altogether.

TRIAD-LOG enhances the role played by the commit
log. As Cm is being written to, the commit log plays its
classic role. When flushing is triggered, instead of copy-
ing Cm to disk, we convert the commit log into a CL-
SSTable. As shown in Figure 6, instead of storing copies
of the memory components in L0, we store CL-SSTables.
For readability, we only depict the TRIAD-LOG tech-
nique, and not the integration with our two other tech-
niques.

The advantage of treating the commit logs as L0 SSTa-
bles is that the I/O due to flushing from memory is
avoided. However, unlike SSTables, the commit log is
not sorted. The sorted structure of the classic SSTables
makes it easy to merge SSTables during compaction and
to retrieve information from the files. To avoid scanning
the entire CL-SSTable in order to find an entry in L0 files,
we keep the commit log file offset of the most recent up-
date in Cm, for each KV pair. Once the flush operation is
triggered, only the small index associated to the offsets
in the commit log is written to disk. The index is then
grouped with its corresponding commit log file, thus cre-
ating the new L0 CL-SSTable format.

For instance, consider a commit log with entries of
size 8B, in the format (Key; Value): (1;10), (2;20),
(3;30), (4;40), (3;300). Then, in Cm, TRIAD-LOG keeps
the following entries, in the format (Key; Value; CL off-
set; CL name): (1; 10; 0; CL-name), (2; 20; 8; CL-
name), (3; 300; 32; CL-name), and (4; 40; 24; CL-
name). The CL offset is equal to 32 for Key 3, because
we keep the offset of the most recent update.

TRIAD-LOG offers the greatest benefits when the
workload is more uniform. For such workloads it is rel-
atively rare that the same key appears several times in
the log. The corresponding CL-SSTable therefore con-
tains the most recent values of many distinct keys, and
relatively few older values. For skewed workloads, in
contrast, the log typically contains multiple updates of
the same keys, and the corresponding CL-SSTable there-
fore stores a high number of old values that are no longer
relevant.

The flow of the write operation remains unchanged
by TRIAD-LOG. The writes are performed in Cm and
persisted in the commit log. The only difference is that
apart from the value associated to the key, the commit
log name and offset entries are updated as well. Simi-
larly, the read path is largely unchanged, except for ac-
cessing the files in L0. As before, the reads first look in
Cm, then in all of the L0 files, and then in one file for
each of the lower levels of the disk component. Unlike
before, when a file from L0 is read, the index is searched

368 2017 USENIX Annual Technical Conference USENIX Association

Cm CL
Offsets

L0

L1 – Ln

Flush only CL offsets

SSTable
1

... SSTable
n

CL2
In

d
ex

CL-SSTable2
CL

Figure 6: TRIAD-LOG operation flow.

for the key, and, if found, the CL-SSTable is accessed at
the corresponding offset.

Compaction from L1 to Ln is unchanged, because no
modifications are done to the SSTable format on these
levels. Only the compaction between L0 and L1 is af-
fected by our technique. A new compaction opera-
tion is needed for merging a CL-SSTable with a regu-
lar SSTable. Since the index kept on the CL-SSTable is
sorted, it is still possible to proceed in a merge-sort style
manner. For clarity and brevity of the presentation, we
omit the pseudocode for merging SSTables.

It is straightforward to integrate TRIAD-LOG with
TRIAD-DISK, since TRIAD-DISK affects only the de-
cision to call compaction. The integration with TRIAD-
MEM is done by flushing only the part of the index corre-
sponding to the cold keys, ignoring the offsets of the hot
keys. Then, during compaction, the hot keys are skipped,
similarly to the duplicate updates.

TRIAD Memory Overhead Analysis. TRIAD re-
duces I/O by using additional metadata in memory.
TRIAD-MEM needs an update frequency (4B) field for
each memory component entry. For each (CL-)SSTable
on L0, TRIAD-DISK tracks the HLL structure (4KB per
file). TRIAD-LOG adds two new fields for each mem-
ory component entry: the commit log file ID (4B) and
the offset in the commit log (4B). Finally, TRIAD-LOG
keeps track of the offsets index (8B per entry) for each
CL-SSTable on L0. While the HLLs and offset indexes
could be stored on disk, this would incur a performance
penalty. Since the number of files on L0 is not large,
the memory overhead is not significant. Generally, less
than 10 files are kept on L0. Hence, an upper bound on
TRIAD’s memory overhead is: 12B ∗EntriesCm + 10 ∗
(4KB+EntriesCm ∗8B). In our tests, the memory over-
head is on the order of tens of MB, which is negligible
with respect to the tens of GB of I/O saved.

5 Evaluation

We implement TRIAD as an extension of Facebook’s
popular RocksDB LSM-based KV store. The source

code of our implementation is available at https://github
.com/epfl-labos/TRIAD. We evaluate TRIAD with produc-
tion and synthetic workloads, and we compare it against
RocksDB. We show that:
(1) TRIAD achieves up to 193% higher throughput in

production workloads.
(2) TRIAD effectively reduces I/O by an order of mag-

nitude and spends, on average, 77% less time per-
forming flushing and compaction.

(3) TRIAD’s three techniques work in synergy and en-
able the system to achieve high throughput without
a priori information about the workload (e.g., skew
on data popularity or write intensity).

5.1 Experimental Setup

We compare TRIAD against RocksDB. Unless stated
otherwise, RocksDB is configured to run with its de-
fault parameters, and we do not change the correspond-
ing values in the TRIAD implementation. TRIAD uses
an overlap threshold of 0.4 and a maximum number of
6 L0 files for TRIAD-DISK. In addition, we configure
TRIAD-MEM such that its definition of hot keys corre-
sponds to the top 1 percent of keys in terms of access
frequency.

To evaluate TRIAD, we use four production work-
loads from Nutanix (see Section 5.2). We complement
our evaluation with synthetic benchmarks that allow us
to control key parameters of the workload, such as skew
and write intensity (see Section 5.3). The evaluation is
performed on a 20 core Intel Xeon, with two 10-core 2.8
GHz processors, 256 GB of RAM, 960GB SSD Samsung
843T, running Ubuntu 14.04.

Each synthetic benchmark experiment consists of a
number of threads concurrently performing operations
on the KV store – searching, inserting or deleting keys.
Each operation is chosen at random, according to the
given workload probability distribution, and performed
on a key chosen according to the given workload skew
distribution. Before each experiment, the LSM tree is
initialized with roughly half of the keys in the key range.

We use as evaluation metrics throughput measured in
KOperations/second (KOPS), bytes written to disk, time
spent in background operations (i.e., compaction and
flushing), write amplification (WA), and read amplifica-
tion (RA). WA and RA are established metrics for mea-
suring I/O LSM KV store efficiency [4, 12, 32, 34, 35,
38, 48]. WA is the amount of data written to storage com-
pared to the amount of data that the application writes.
Intuitively, the lower the WA, the less work is done
during compaction. We compute system-wide WA as:
WA = (Bytes f lushed + Bytescompacted)/Bytes f lushed . RA
is the average number of disk accesses per read.

USENIX Association 2017 USENIX Annual Technical Conference 369

https://github.com/epfl-labos/TRIAD
https://github.com/epfl-labos/TRIAD

1e-8

1e-7

1e-6

1e-5

0 1M 2M 3M 4MAc
ce

ss
 p

ro
ba

bi
lit

y
(lo

g)

Key id by decreasing popularity

Workload 3
Workload 4

Workload 1
Workload 2

Figure 7: Production workloads key probability distribu-
tions (Logarithmic scale on y axis).

Wkld.	1	 Wkld.	2	 Wkld.	3		 Wkld.	4	

Updates	 250M	 75M	 200M	 75M	

Keys	 40M	 9M	 30M	 8M	

Figure 8: Production workloads: number of updates and
number of keys.

5.2 Production Workloads

The production workloads used for the evaluation of
TRIAD are internal Nutanix metadata workloads. The
key probability distributions of the workloads are shown
in Figure 7. The data sizes and number of updates are
shown in Figure 8. The production workloads have two
different skew profiles: W2 and W4 have more skew in
their access patterns, W1 and W3 have less skew.

The left-hand side of Figure 9A presents the through-
put comparison between RocksDB and TRIAD, for
the four production workloads. TRIAD outperforms
RocksDB in the four workloads, with a throughput in-
crease of up to 193%. The right-hand side of Figure 9A
shows the corresponding WA for each of the workloads.
TRIAD reduces WA by up to 4x.

As expected [34], in RocksDB the WA is higher for
the less skewed workloads (W1 and W3) and lower for
the more skewed workloads (W2 and W4). There is also
a clear correlation between the throughput and the WA:
throughput is lower in the workloads with higher WA.

For TRIAD WA is uniform across the four workloads,
because TRIAD-MEM converts the skew of the applica-
tion workload into a disk workload that is closer to uni-
form. Hence, the workload skew perceived by the disk
component is more or less the same across the four work-
loads, leading, in turn, to more predictable throughput.
In contrast with RocksDB, TRIAD’s throughput does not
exhibit high fluctuation across workloads. We explore
this connection between throughput and WA further in
the next section.

5.3 Synthetic Workloads

We define three workload skew profiles: (WS1) A highly
skewed workload where 1% of the data is accessed and
updated 99% of the time. This workload reflects the
characteristics of Facebook workloads analyzed in [16].
(WS2) A medium skew workload, where 20% of the data
is accessed and updated 80% of the time. (WS3) A uni-
form workload where all keys have the same popularity.

We use two different read-write ratios: one with 10%
reads and 90% writes, and one with 50% reads and 50%
writes. In all experiments, each key is 8B and each value
is 255B. To shorten our experiments with the synthetic
workloads, we use a small memory component of 4MB
and a dataset of 1M keys, so that compactions happen at
shorter time intervals.

Figure 9B shows the throughput comparison between
TRIAD and RocksDB for the three workload skews
and two read-write ratios. Figure 9C shows the corre-
sponding WA. TRIAD performs up to 2.5x better than
RocksDB for the skewed workloads and up to 2.2x bet-
ter for the uniform workloads.

For WS1 all the hot data fits in memory, allowing
TRIAD to achieve a throughput increase of 50% for
both the write-intensive and the balanced workloads. For
WS2, TRIAD-MEM cannot accommodate all the hot
keys. Nevertheless, TRIAD still achieves a throughput
gain of 51% in the write-intensive workload and 25%
in the balanced workload, because TRIAD-DISK and
TRIAD-LOG act as a safety net against possible un-
dersizing of the data structure tracking hot keys (Sec-
tion 4.1), due to lack of detailed knowledge of the work-
load characteristics. This result showcases the robustness
of TRIAD: It consistently delivers high performance, de-
spite not having any prior knowledge of the incoming
workload.

WA is decreased by up to 4x in the moderately skewed
and uniform workloads. For the highly skewed work-
load, however, the WA does not change, despite the gain
in throughput. This happens because the 1% of the data
that is updated 99% of the time fits entirely in memory.
As a consequence, Cm is only rarely flushed (as we ex-
plain in Section 4), because it takes longer for enough
cold entries to be present in Cm to trigger a flush. There-
fore, even if the total number of bytes is decreased by
an order of magnitude, as Figure 9D shows on the left-
hand side, the proportion between the compacted bytes
and flushed bytes is similar to RocksDB.

Finally, the right-hand side of Figure 9D shows the
time spent in compaction. For the highly skewed work-
load, the time spent in compaction in TRIAD is an or-
der of magnitude lower than RocksDB, for the same rea-
son as explained above. For the moderately skewed and

370 2017 USENIX Annual Technical Conference USENIX Association

Co
m
pa

ct
ed

	G
B	

0.1	

1	

10	

100	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

LoWA	 RocksDB	TRIAD	

0	

50	

100	

150	

200	

250	

300	

350	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

KO
PS
	

RocksDB	 LoWA	

0	

2	

4	

6	

8	

10	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

W
rit
e	
Am

pl
ifi
ca
9o

n	

RocksDB	 LoWA	TRIAD	TRIAD	

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	
KO

PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	
50	
100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	
KO

PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
No	Skew	

LoWA	LSM		

RocksDB		

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	
50	

100	
150	
200	
250	
300	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	20%-80%	

LoWA	LSM		

RocksDB		

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	

KO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

threads	 threads	 threads	

1%-99%	Data	Skew	 20%-80%	Data	Skew	 No	Data	Skew	

10%	read	
90%	write	
WKLD	

50%	read	
50%	write	
WKLD	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	
IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	
IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	
IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	
IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	
IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

threads	

threads	 threads	 threads	

1%-99%	Data	Skew	 20%-80%	Data	Skew	 No	Data	Skew	

10%	read	
90%	write	
WKLD	

50%	read	
50%	write	
WKLD	

0	
2	
4	
6	
8	
10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	
2	
4	
6	
8	
10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	
2	
4	
6	
8	

10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	
2	
4	
6	
8	
10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	
2	
4	
6	
8	

10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	
2	
4	
6	
8	
10	
12	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	No	Skew		

LoWA	LSM		

RocksDB		

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	
WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	20-80	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
rit
e	
Am

pl
ifi
ca
4o

n	

WA	Skew	1-99	

LoWA	LSM		

RocksDB		

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		
0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

1	 2	 4	 8	 12	 16	

IO
PS
	

Throughput	
Skew	1%-99%	

LoWA	LSM		

RocksDB		

TRIAD	

RocksDB	

TRIAD	

RocksDB	

Co
m
pa

ct
ed

	G
B	

0.1	

1	

10	

100	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

LoWA	 RocksDB	TRIAD	

0	

50	

100	

150	

200	

250	

300	

350	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

KO
PS
	

RocksDB	 LoWA	

0	

2	

4	

6	

8	

10	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

W
rit
e	
Am

pl
ifi
ca
9o

n	

RocksDB	 LoWA	TRIAD	TRIAD	

0	

20	

40	

60	

80	

100	

120	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

%
Ti
m
e	
Sp
en

t	
	in
	C
om

pa
c:
on

	

LoWA	 RocksDB	TRIAD	

A.	Produc*on	workload	throughput	and	corresponding	WA.	8	threads.		

B.	Throughput	comparison	for	different	workloads	and	skews	(higher	is	be@er).	

C.	Write	amplifica*on	comparison	for	different	workloads	and	skews	(lower	is	be@er).	

D.	LeF:	Compacted	GB	(Logarithmic	scale).	Right:	Percentage	of	*me	spent	in	compac*on.		
8	threads,	10%reads	–	90%writes.	

Figure 9: TRIAD in production and synthetic workloads.

USENIX Association 2017 USENIX Annual Technical Conference 371

0	

50	

100	

150	

200	

250	

300	

Skew	Awareness	
Only	

Deferred	
Compac;on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

No	Skew	

TRIAD-MEM TRIAD-DISK TRIAD-LOG RocksDB
250	
260	
270	
280	
290	
300	
310	
320	
330	

Skew	Awareness	
Only	

Deferred	
Compac?on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

Skew	1-99	

TRIAD-MEM TRIAD-DISK TRIAD-LOG RocksDB

0	

50	

100	

150	

200	

250	

300	

Skew	Awareness	
Only	

Deferred	
Compac;on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

No	Skew	

TRIAD-MEM	 TRIAD-DISK	 TRIAD-LOG	 RocksDB	
250	
260	
270	
280	
290	
300	
310	
320	
330	

Skew	Awareness	
Only	

Deferred	
Compac?on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

Skew	1-99	

TRIAD-MEM	 TRIAD-DISK	 TRIAD-LOG	 RocksDB	

0	

50	

100	

150	

200	

250	

300	

Skew	Awareness	
Only	

Deferred	
Compac;on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

No	Skew	

TRIAD-MEM	 TRIAD-DISK	 TRIAD-LOG	 RocksDB	
250	
260	
270	
280	
290	
300	
310	
320	
330	

Skew	Awareness	
Only	

Deferred	
Compac?on	Only	

Commit	Log	
Indexing	Only	

RocksDB	

KO
PS
	

Skew	1-99	

TRIAD-MEM	 TRIAD-DISK	 TRIAD-LOG	 RocksDB	

TRIAD
TRIAD

Figure 10: Throughput breakdown for uniform and skewed workloads. 16 threads.

uniform workloads, the time spent in compaction is de-
creased by 48% and 72%, respectively.

5.4 Breakdown of TRIAD’s Benefits

We discuss the contribution of each of TRIAD’s tech-
niques, for different types of workloads, reporting the
throughput achieved by versions of TRIAD where we
only implement one out of the three techniques.

Figure 10 shows the throughput breakdown for each
of the techniques, for synthetic workloads WS3 (left-
hand side) and WS1 (right-hand side), with a 10%–90%
read–write ratio. While all three techniques outperform
RocksDB individually, TRIAD-MEM brings more bene-
fits than TRIAD-DISK and TRIAD-LOG for the highly
skewed workload, and vice-versa for the uniform work-
load. Indeed, TRIAD-MEM alone obtains 97% of the
throughput that TRIAD achieves for the skewed work-
load. For the uniform workload, TRIAD-DISK and
TRIAD-LOG obtain 85% and 97%, respectively.

A similar trend can be noticed in the WA breakdown
in Figure 11. TRIAD-MEM performs best for WS1, but
does not decrease WA as the workload is closer to uni-
form, having close to no effect compared to RocksDB
for the workload with no skew (right-most column).
TRIAD-DISK and TRIAD-LOG are complementary to
TRIAD-MEM, decreasing WA by up to 60% and 40%,
respectively, for the uniform workload.

The lower-right plot in Figure 11 shows the RA break-
down for a uniform workload, with 10% reads. As ex-
pected, TRIAD-MEM lowers RA, because more requests
can be served from memory. TRIAD-DISK, however,
increases RA compared to the baseline, as it keeps more
files in L0, and all these files may have to be accessed on
a read. TRIAD-LOG does not have an impact on read
amplification. Overall, TRIAD has a low overhead over
the baseline, increasing RA by at most 5%.

The breakdown shows tat the three techniques are
complementary: no one alone gives 100% of the ben-
efits across all workload types. Their combination al-
lows TRIAD to achieve high performance for any work-
load, automatically adapting to its characteristics without
a priori knowledge.

6 Related Work

Our work is related to previous designs of LSM-based
KV stores and to various systems that employ optimiza-
tion techniques similar to the ones integrated in TRIAD.
Related LSM-based KV stores. LevelDB [4] is one
of the earliest LSM-based KV stores and employs level-
style compaction. Its single-threaded compaction, along
with the use of a global lock for synchronization at the
memory component level are two of its main bottle-
necks. RocksDB [12] introduces multi-threaded com-
paction and tackles other concurrency issues. LevelDB
and RocksDB expose several tuning knobs, such as the
number and the sizing of levels, and policies for com-
paction [13, 14, 27]. Recent studies, simulations and an-
alytical models show that the efficiency of LSM-based
KV stores is highly dependent on their proper setting,
as well as workload parameters [34, 26] and require-
ments like memory budget [24]. In contrast, TRIAD
presents techniques that cover a large spectrum of work-
loads. Thanks to its holistic approach, TRIAD is able
to deliver high performance without relying on a priori
information about the workload.

bLSM [44] proposes carefully scheduling compaction
to bound write latency. VT-tree [45] uses an extra layer
of indirection to avoid sorting any previously sorted KV
pairs during compaction. HyperlevelDB [9] also ad-
dresses the write and compaction issues in LevelDB,
through improved parallelism and an alternative com-
paction algorithm [7, 8]. HyperLevelDB’s compaction
chooses a set of SSTables which result in the lowest WA
between two levels. TRIAD takes a different approach
to prevent the occurrence of high WA, by using HLL to
decide whether to compact or not at the first level of the
disk component.

LSM-trie [47] proposes a compaction scheme based
on the use of cryptographic functions. This scheme gives
up the sorted order of the entries in the LSM tree to
favor compaction efficiency over performance in range
queries. TRIAD instead preserves the sorted order of the
keys, facilitating support for efficient range queries.

WiscKey [37] separates keys from values and only
stores keys in a sorted LSM tree, allowing it to reduce

372 2017 USENIX Annual Technical Conference USENIX Association

3

3.2

3.4

3.6

3.8

TRIAD-MEM TRIAD-DISK TRIAD-LOG TRIAD RocksDB

Re
ad

	A
m
pl
ifi
ca
tio

n

0	

20	

40	

60	

80	

100	

120	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

%
Ti
m
e	
Sp
en

t	
	in
	C
om

pa
c:
on

	

LoWA	 RocksDB	TRIAD	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
or
m
al
iz
ed

	W
A	

RocksDB	 Commit	Log	Indexing	TRIAD-LOG	

1%	data
99%	time

10%	data
90%	time

20%	data
80%	time No	skew

No
rm

al
ize

d	
W
A TRIAD-LOGRocksDB

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
or
m
al
iz
ed

	W
A	

RocksDB	 Deferred	Compac/on	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
or
m
al
iz
ed

	W
A	

RocksDB	 Skew	Awareness	

TRIAD-DISK	

TRIAD-MEM	

1%	data
99%	time

10%	data
90%	time

20%	data
80%	time No	skew

No
rm

al
ize

d	
W
A TRIAD-MEMRocksDB

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
or
m
al
iz
ed

	W
A	

RocksDB	 Deferred	Compac/on	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
or
m
al
iz
ed

	W
A	

RocksDB	 Skew	Awareness	

TRIAD-DISK	

TRIAD-MEM	

1%	data
99%	time

10%	data
90%	time

20%	data
80%	time No	skew

No
rm

al
ize

d	
W
A RocksDB TRIAD-DISK

Figure 11: Write Amplification and Read Amplification Breakdown. 8 threads.

data movement, and consequently reduce write amplifi-
cation. The techniques proposed in TRIAD are orthogo-
nal to this approach, and can be leveraged in synergy to
it to further enhance I/O efficiency.

Cassandra [1], HBase [11] and BigTable [22] are dis-
tributed LSM KV stores, employing size-tiered com-
paction. In addition, Cassandra also supports the leveled
compaction strategy, based on LevelDB’s compaction
scheme [5, 6]. For both compaction strategies, Cassandra
introduced HyperLogLog (HLL) to estimate the over-
lap between SSTables, before starting the merge [10].
TRIAD also makes use of HLL in its deferred com-
paction scheme. However, instead of using HLL to de-
termine which files to compact, the overlap between files
computed with HLL is used only at L0, to determine
whether we should compact or wait.

Ahmad and Kemme [15] also target a distributed KV
store and propose to offload the compaction phase to ded-
icated servers. In contrast, the techniques proposed in
TRIAD are applied within each single KV store instance
and do not need dedicated resources to be implemented.

Tucana [42], LOCS [46] and FloDB [17] act on other
aspects of the KV store design to improve performance.
Tucana uses an internal structure similar to a B − ε
tree [20] and uses copy-on-write instead of write-ahead
logging. LOCS exploits the knowledge of the underlying
SSD multi-channel architecture to improve performance,
e.g., by load balancing I/O. FloDB inserts an additional
fast in-memory buffer on top of the existing in-memory
component of the LSM tree to achieve better scalability.
TRIAD can integrate some of these features to further
improve its performance.
Systems with similar optimization techniques. The
hot-cold separation technique is employed in SSDs to
improve the efficiency of the garbage collection needed
by the Flash Translation Layer [23, 33]. In TRIAD, in-
stead, it is used at the KV store level to reduce the amount
of data written to disk.

Delaying and batching the execution of updates is used
in B− ε trees and in systems, e.g., file-systems [31],
which use B− ε trees as main building block. This tech-
nique is employed to amortize the cost of updates [19]
and to reduce the cases in which the effect of an update
is immediately undone by a following update [49]. By
contrast, TRIAD defers the compaction of the L0 level
of the LSM tree and batches the compaction of multiple
keys to increase the efficiency of the compaction process.

7 Conclusion

TRIAD is a new LSM KV store aiming to reduce back-
ground I/O operations to disk. TRIAD embraces a holis-
tic approach that operates at different levels of the LSM
KV store architecture. TRIAD increases I/O efficiency
by incorporating data skew awareness, by improving the
compaction process of the LSM tree data structure and
by performing more efficient logging.

We compared TRIAD with Facebook’s RocksDB and
we showed, using production and synthetic workloads,
that TRIAD achieves up to an order of magnitude lower
I/O overhead and up to 193% higher throughput.

Acknowledgements. We would like to thank our shep-
herd, Liuba Shrira, the anonymous reviewers and Dmitri
Bronnikov, Rishi Bhardwaj, Ashvin Goel, and Amitabha
Roy for their feedback that helped us to improve the pa-
per. This work was supported in part by the Swiss Na-
tional Science Foundation through grant No. 166306 and
by a gift from Nutanix, Inc. Part of the work has been
done while Oana Balmau was an intern at Nutanix.

References
[1] Apache Cassandra. http://cassandra.apache.org.

[2] Memcached, an open source, high-performance, distributed
memory object caching system. https://memcached.org/.

USENIX Association 2017 USENIX Annual Technical Conference 373

http://cassandra.apache.org
https://memcached.org/

[3] Redis, an open source, in-memory data structure store. https:
//redis.io/.

[4] LevelDB, a fast and lightweight key/value database library by
Google, 2005. https://github.com/google/leveldb.

[5] Leveled Compaction in Apache Cassandra, 2011.
http://www.datastax.com/dev/blog/leveled-compact
ion-in-apache-cassandra.

[6] When to Use Leveled Compaction, 2012. http://www.datast
ax.com/dev/blog/when-to-use-leveled-compaction.

[7] Hyperleveldb performance benchmarks., 2013. http://hyperd
ex.org/performance/leveldb/.

[8] Inside hyperleveldb., 2013. http://hackingdistributed.com
/2013/06/17/hyperleveldb/.

[9] HyperLevelDB, a fork of LevelDB intended to meet the needs
of HyperDex while remaining compatible with LevelDB., 2014.
https://github.com/rescrv/HyperLevelDB.

[10] Improving compaction in Cassandra with cardinality estimation,
2014. http://www.datastax.com/dev/blog/improving-com
paction-in-cassandra-with-cardinality-estimation.

[11] Apache HBase, a distributed, scalable, big data store, 2016. ht
tp://hbase.apache.org/.

[12] RocksDB, a persistent key-value store for fast storage environ-
ments, 2016. http://rocksdb.org/.

[13] RocksDB options of compaction priority, 2016. http://rocksd
b.org/blog/2016/01/29/compaction_pri.html.

[14] RocksDB tuning guide, 2016. https://github.com/faceboo
k/rocksdb/wiki/RocksDB-Tuning-Guide.

[15] AHMAD, M. Y., AND KEMME, B. Compaction management in
distributed key-value datastores. Proc. VLDB Endow. 8, 8 (Apr.
2015), 850–861.

[16] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review
(2012), vol. 40.

[17] BALMAU, O., GUERRAOUI, R., TRIGONAKIS, V., AND
ZABLOTCHI, I. Flodb: Unlocking memory in persistent key-
value stores. In Proceedings of the Twelfth European Conference
on Computer Systems (New York, NY, USA, 2017), EuroSys ’17,
ACM, pp. 80–94.

[18] BĂSESCU, C., CACHIN, C., EYAL, I., HAAS, R., SORNIOTTI,
A., VUKOLIĆ, M., AND ZACHEVSKY, I. Robust data sharing
with key-value stores. DSN 2012.

[19] BENDER, M. A., FARACH-COLTON, M., JANNEN, W., JOHN-
SON, R., KUSZMAUL, C., B., PORTER, D. E., YUAN, J., AND
ZHAN, Y. An introduction to bε-trees and write-optimization.
login 40, 5 (Oct. 2015).

[20] BRODAL, G. S., AND FAGERBERG, R. Lower bounds for exter-
nal memory dictionaries. In Proceedings of the Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms (Philadel-
phia, PA, USA, 2003), SODA ’03, Society for Industrial and Ap-
plied Mathematics, pp. 546–554.

[21] CANO, I., AIYAR, S., AND KRISHNAMURTHY, A. Characteriz-
ing private clouds: A large-scale empirical analysis of enterprise
clusters. SOCC 2016.

[22] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems 26, 2 (2008).

[23] CHANG, L.-P. On efficient wear leveling for large-scale flash-
memory storage systems. In Proceedings of the 2007 ACM Sym-
posium on Applied Computing (New York, NY, USA, 2007), SAC
’07, ACM, pp. 1126–1130.

[24] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S. Monkey:
Optimal navigable key-value store. In Proceedings of the 2017
ACM International Conference on Management of Data (New
York, NY, USA, 2017), SIGMOD ’17, ACM, pp. 79–94.

[25] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. SOSP 2007.

[26] DONG, S., CALLAGHAN, M., GALANIS, L., BORTHAKUR, D.,
SAVOR, T., AND STRUM, M. Optimizing space amplification
in rocksdb. In CIDR 2017, 8th Biennial Conference on Innova-
tive Data Systems Research, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings (2017).

[27] DONG, S., CALLAGHAN, M., GALANIS, L., BORTHAKUR, D.,
SAVOR, T., AND STUMM, M. Optimizing space amplification in
rocksdb.

[28] FUSY, É., OLIVIER, G., AND MEUNIER, F. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. AofA
2007.

[29] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL, E., AND KEI-
DAR, I. Scaling concurrent log-structured data stores. Eurosys
2015.

[30] HEULE, S., NUNKESSER, M., AND HALL, A. Hyperloglog in
practice: algorithmic engineering of a state of the art cardinality
estimation algorithm. ICDT 2013.

[31] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA, A., ESMET,
J., JIAO, Y., MITTAL, A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., KUSZ-
MAUL, B. C., AND PORTER, D. E. Betrfs: Write-optimization
in a kernel file system. Trans. Storage 11, 4 (Nov. 2015), 18:1–
18:29.

[32] KUSZMAUL, B. A comparison of fractal trees to log-structured
merge (lsm) trees. White Paper (2014).

[33] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND ARVIND, A.
Application-managed flash. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (Berkeley, CA,
USA, 2016), FAST’16, USENIX Association, pp. 339–353.

[34] LIM, H., ANDERSEN, D. G., AND KAMINSKY, M. Towards
accurate and fast evaluation of multi-stage log-structured designs.
FAST 2016.

[35] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY,
M. Silt: A memory-efficient, high-performance key-value store.
SOSP 2011.

[36] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
MICA: A holistic approach to fast in-memory key-value storage.
management 15, 32 (2014).

[37] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from val-
ues in ssd-conscious storage. FAST 2016.

[38] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., AND
RANGASWAMI, R. Nvmkv: A scalable, lightweight, ftl-aware
key-value store. USENIX ATC 2015.

[39] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND
GANESAN, S. Nvmkv: A scalable and lightweight flash aware
key-value store. HotStorage 2014.

[40] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4
(1996).

[41] OUSTERHOUT, J., AND DOUGLIS, F. Beating the I/O bottle-
neck: A case for log-structured file systems. ACM SIGOPS Op-
erating Systems Review 23, 1 (1989).

374 2017 USENIX Annual Technical Conference USENIX Association

https://redis.io/
https://redis.io/
https://github.com/google/leveldb
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://hyperdex.org/performance/leveldb/
http://hyperdex.org/performance/leveldb/
http://hackingdistributed.com/2013/06/17/hyperleveldb/
http://hackingdistributed.com/2013/06/17/hyperleveldb/
https://github.com/rescrv/HyperLevelDB
http://www.datastax.com/dev/blog/improving-compaction-in-cassandra-with-cardinality-estimation
http://www.datastax.com/dev/blog/improving-compaction-in-cassandra-with-cardinality-estimation
http://hbase.apache.org/
http://hbase.apache.org/
http://rocksdb.org/
http://rocksdb.org/blog/2016/01/29/compaction_pri.html
http://rocksdb.org/blog/2016/01/29/compaction_pri.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

[42] PAPAGIANNIS, A., SALOUSTROS, G., GONZÁLEZ-FÉREZ, P.,
AND BILAS, A. Tucana: Design and implementation of a fast
and efficient scale-up key-value store. In Proceedings of the
2016 USENIX Conference on Usenix Annual Technical Confer-
ence (Berkeley, CA, USA, 2016), USENIX ATC ’16, USENIX
Association, pp. 537–550.

[43] RUSSELL, S., AND NORVIG, P. Artificial intelligence: a modern
approach (2nd edition).

[44] SEARS, R., AND RAMAKRISHNAN, R. bLSM: a general purpose
log structured merge tree. SIGMOD/PODS 2012, ACM.

[45] SHETTY, P., SPILLANE, R., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent
storage with vt-trees. FAST 2013.

[46] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S., ZHANG,
C., AND CONG, J. An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd. In Pro-
ceedings of the Ninth European Conference on Computer Sys-
tems (New York, NY, USA, 2014), EuroSys ’14, ACM, pp. 16:1–
16:14.

[47] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie: An
LSM-tree-based ultra-large key-value store for small data items.
USENIX ATC 2015.

[48] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., AND
SUNDARARAMAN, S. Don’t stack your log on my log. INFLOW
2014.

[49] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P., AKSHINTALA,
A., CHANDNANI, K., DEO, P., KASHEFF, Z., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., KUSZ-
MAUL, B. C., AND PORTER, D. E. Optimizing every opera-
tion in a write-optimized file system. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies (Berkeley,
CA, USA, 2016), FAST’16, USENIX Association, pp. 1–14.

USENIX Association 2017 USENIX Annual Technical Conference 375

Engineering Record And Replay For Deployability

Robert O’Callahan∗ Chris Jones∗ Nathan Froyd
Mozilla Corporation

Kyle Huey∗

Albert Noll∗

Swisscom AG
Nimrod Partush∗

Technion

Abstract
The ability to record and replay program executions
with low overhead enables many applications, such
as reverse-execution debugging, debugging of hard-to-
reproduce test failures, and “black box” forensic analy-
sis of failures in deployed systems. Existing record-and-
replay approaches limit deployability by recording an en-
tire virtual machine (heavyweight), modifying the OS
kernel (adding deployment and maintenance costs), re-
quiring pervasive code instrumentation (imposing signif-
icant performance and complexity overhead), or modify-
ing compilers and runtime systems (limiting generality).
We investigated whether it is possible to build a prac-
tical record-and-replay system avoiding all these issues.
The answer turns out to be yes — if the CPU and operat-
ing system meet certain non-obvious constraints. Fortu-
nately modern Intel CPUs, Linux kernels and user-space
frameworks do meet these constraints, although this has
only become true recently. With some novel optimiza-
tions, our system RR records and replays real-world low-
parallelism workloads with low overhead, with an en-
tirely user-space implementation, using stock hardware,
compilers, runtimes and operating systems. RR forms the
basis of an open-source reverse-execution debugger see-
ing significant use in practice. We present the design and
implementation of RR, describe its performance on a va-
riety of workloads, and identify constraints on hardware
and operating system design required to support our ap-
proach.

1 Introduction

The ability to record a program execution with low over-
head and play it back precisely has many applications
[14, 15, 19] and has received significant attention in
the research community. It has even been implemented
in products such as VMware Workstation [28], Simics

∗Majority of work carried out while supported by Mozilla Research.

[20], UndoDB [1] and TotalView [22]. Unfortunately,
deployment of these techniques has been limited, for
various reasons. Some approaches [17, 20, 28] require
recording and replaying an entire virtual machine, which
is heavyweight. Other approaches [6, 14, 26, 29] re-
quire running a modified OS kernel, hindering deploy-
ment and adding security and stability risk to the sys-
tem. Requiring compiler and language runtime changes
[29] also hinders deployment, especially when applica-
tions include their own JIT compilers. Some approaches
[24, 30, 35] require custom hardware not yet available.
Many approaches [1, 7, 22, 34] require pervasive instru-
mentation of code, which adds complexity and overhead,
especially for self-modifying code (commonly used in
polymorphic inline caching [25] and other implemen-
tation techniques in modern just-in-time compilers). A
performant dynamic code instrumentation engine is also
expensive to build and maintain.

We set out to build a system that maximizes deploya-
bility by avoiding all these issues: to record and replay
unmodified user-space applications with stock Linux
kernels, compilers, language runtimes, and x86/x86-64
CPUs, with a fully user-space implementation running
without special privileges, and without using pervasive
code instrumentation. We assume RR should run un-
modified applications, and they will have bugs (includ-
ing data races) that we wish to faithfully record and re-
play, but these applications will not maliciously try to
subvert recording or replay. We combine techniques al-
ready known, but not previously demonstrated working
together in a practical system: primarily, using ptrace
to record and replay system call results and signals,
avoiding non-deterministic data races by running only
one thread at a time, and using CPU hardware perfor-
mance counters to measure application progress so asyn-
chronous signal and context-switch events are delivered
at the right moment [33]. Section 2 describes our ap-
proach in more detail.

With that in place, we discovered the main perfor-

USENIX Association 2017 USENIX Annual Technical Conference 377

mance bottleneck for low-parallelism workloads was
context switching induced by using ptrace to monitor
system calls. We implemented a novel in-process system-
call interception technique to eliminate those context
switches, dramatically reducing recording and replay
overhead on important real-world workloads. This
optimization relies on modern Linux kernel features:
seccomp-bpf to selectively suppress ptrace traps
for certain system calls, and perf context-switch events
to detect recorded threads blocking in the kernel. Sec-
tion 3 describes this work, and Section 4 gives some per-
formance results, showing that on important application
workloads RR recording and replay slowdown is less than
a factor of two.

We rely on hardware and OS features designed for
other goals, so it is surprising that RR works. In fact, it
skirts the edge of feasibility; in particular it cannot be im-
plemented on ARM CPUs. Section 5 summarizes RR’s
hardware and software requirements, which we hope will
influence system designers.

RR is in daily use by many developers as the foun-
dation of an efficient reverse-execution debugger that
works on complex applications such as Samba, Fire-
fox, Chromium, QEMU, LibreOffice and Wine. It is
free software, available at https://github.com/
mozilla/rr. This paper makes the following research
contributions:

• We show that record and replay of user-space pro-
cesses on modern, stock hardware and software
without pervasive code instrumentation is possible
and practical.

• We introduce an in-process system-call interception
technique and show it dramatically reduces over-
head.

• We show that for low-parallelism workloads, RR
recording and replay overhead is reasonably low,
lower than other approaches with comparable de-
ployability.

• We identify hardware and operating system design
constraints required to support our approach.

An extended technical report containing additional
technical details and a retrospective on “lessons learned”
during the development and use of RR is available [32].

2 Design

2.1 Summary
Most low-overhead record-and-replay systems depend
on the observation that CPUs are mostly deterministic.
We identify a boundary around state and computation,

record all sources of nondeterminism within the bound-
ary and all inputs crossing into the boundary, and reex-
ecute the computation within the boundary by replaying
the nondeterminism and inputs. If all inputs and nonde-
terminism have truly been captured, the state and compu-
tation within the boundary during replay will match that
during recording.

To enable record and replay of arbitrary Linux applica-
tions, without requiring kernel modifications or a virtual
machine, RR records and replays the user-space execu-
tion of a group of processes. To simplify invariants, and
to make replay as faithful as possible, replay preserves
almost every detail of user-space execution. In particu-
lar, user-space memory and register values are preserved
exactly, with a few exceptions noted later in the paper.
This implies CPU-level control flow is identical between
recording and replay, as is memory layout.

While replay preserves user-space state and execution,
only a minimal amount of kernel state is reproduced dur-
ing replay. For example, file descriptors are not opened,
signal handlers are not installed, and filesystem opera-
tions are not performed. Instead the recorded user-space-
visible effects of those operations, and future related op-
erations, are replayed. We do create one replay thread
per recorded thread (not strictly necessary), and we cre-
ate one replay address space (i.e. process) per recorded
address space, along with matching memory mappings.

With this design, our recording boundary is the inter-
face between user-space and the kernel. The inputs and
sources of nondeterminism are mainly the results of sys-
tem calls, and the timing of asynchronous events.

2.2 Avoiding Data Races

With threads running on multiple cores, racing read-
write or write-write accesses to the same memory lo-
cation by different threads would be a source of non-
determinism. Therefore we take the common approach
[17, 28, 1, 15] running only one thread at a time. RR
preemptively schedules these threads, so context switch
timing is nondeterminism that must be recorded. Data
race bugs can still be observed if a context switch occurs
at the right point in the execution (though bugs due to
weak memory models cannot be observed).

This approach is much simpler and more deployable
than alternatives [7, 18, 34, 39, 29], avoids assuming
programs are race-free [14, 29], and is efficient for low-
parallelism workloads. There is a large slowdown for
workloads with a consistently high degree of parallelism;
however, even for applications which are potentially
highly parallel, users often apply RR to test workloads
with relatively small datasets and hence limited paral-
lelism.

378 2017 USENIX Annual Technical Conference USENIX Association

https://github.com/mozilla/rr
https://github.com/mozilla/rr

d

Tracee thread T Recorder thread

read(fd, buf, size)

ptrace_notify

sys_read

ptrace_notify

waitpid(T)
redirect arg2 to scratch
ptrace(T, CONT_SYSCALL)

waitpid(T)
N = syscall_result_reg
save N scratch bytes to trace
copy N scratch bytes to buf
ptrace(T, CONT_SYSCALL)

Figure 1: Recording simple system call

2.3 System Calls

System calls return data to user-space by modifying reg-
isters and memory, and these changes must be recorded.
The ptrace system call allows a process to supervise
the execution of other “tracee” processes and threads,
and to be synchronously notified when a tracee thread
enters or exits a system call. When a tracee thread en-
ters the kernel for a system call, it is suspended and RR is
notified. When RR chooses to run that thread again, the
system call will complete, notifying RR again, giving it
a chance to record the system call results. RR contains
a model of most Linux system calls describing the user-
space memory they can modify, given the system call
input parameters and result.

As noted above, RR normally avoids races by schedul-
ing only one thread at a time. However, if a system
call blocks in the kernel, RR must try to schedule an-
other application thread to run while the blocking sys-
tem call completes. It’s possible (albeit unlikely) that
the running thread could access the system call’s output
buffer and race with the kernel’s writes to that buffer. To
avoid this, we redirect system call output buffers to per-
thread temporary “scratch memory” which is otherwise
unused by the application. When we get a ptrace event
for a blocked system call completing, RR copies scratch
buffer contents to the real user-space destination(s) while
no other threads are running, eliminating the race.

Figure 1 illustrates recording a simple read system
call. The gray box represents kernel code.

During replay, when the next event to be replayed is an
intercepted system call, we set a temporary breakpoint at
the address of the system call instruction (recorded in
the trace). We use ptrace to run the tracee thread un-
til it hits the breakpoint, remove the breakpoint, advance
the program counter past the system call instruction, and
apply the recorded register and memory changes. This
approach is simple and minimizes the number of context
switches between RR and the tracee thread. (Occasion-
ally it is unsafe and we fall back to a more complicated
mechanism.)

Some system calls manipulate threads or address

spaces and require special handling during replay. For
example a recorded mmap is replayed with MAP FIXED
to ensure the mapping is created at the correct address.

2.4 Asynchronous Events

We need to support two kinds of asynchronous events:
preemptive context switches and signals. We treat the
former as a special case of the latter, forcing a context
switch by sending a signal to a running tracee thread. We
need to ensure that during replay, a signal is delivered
when the program is in exactly the same state as it was
when the signal was delivered during recording.

As in previous work [17, 33, 10] we measure appli-
cation progress using CPU hardware performance coun-
ters. Ideally we would count retired instructions leading
up to an asynchronous event during recording, and dur-
ing replay program the CPU to fire an interrupt after that
many instructions have been retired — but this approach
needs modifications to work in practice.

2.4.1 Nondeterministic Performance Counters

We require that every execution of a given sequence of
user-space instructions changes the counter value by an
amount that depends only on the instruction sequence,
not system state invisible to user space (e.g. the contents
of caches, the state of page tables, or speculative CPU
state). This property (commonly described as “deter-
minism” [40]) does not hold for most CPU performance
counters in practice [17, 40]. For example it does not
hold for any “instructions retired” counter on any known
x86 CPU model (e.g. because an instruction triggering a
page fault is restarted and counted twice).

Fortunately, modern Intel CPUs have exactly one de-
terministic performance counter: “retired conditional
branches” (“RCB”), so we use that. We cannot just count
the number of RCBs during recording and deliver the sig-
nal after we have executed that number of RCBs dur-
ing replay, because the RCB count does not uniquely
determine the execution point to deliver the signal at.
Therefore we pair the RCB count with the complete
state of general-purpose registers (including the program
counter) to identify an execution point.

In general that still does not uniquely identify an ex-
ecution point (e.g. consider the infinite loop label:
inc [global var]; jmp label;). However, in
practice we have found it works reliably; code that re-
turns to the same instruction with no intervening condi-
tional branch must be very rare, and it only matters to RR
if an asynchronous event occurs at such an instruction —
in which case replay would probably diverge and fail.

USENIX Association 2017 USENIX Annual Technical Conference 379

2.4.2 Late Interrupt Firing

The other major problem is that, although CPUs can be
programmed to fire an interrupt after a specified number
of performance events have been observed, the interrupt
does not fire immediately. In practice we often observe
it firing after dozens more instructions have retired. To
compensate for this, during replay, we program the inter-
rupt to trigger some number of events earlier than the ac-
tual RCB count we are expecting. Then we set a tempo-
rary breakpoint at the program counter value for the state
we’re trying to reach, and repeatedly run to the break-
point until the RCB count and the general-purpose regis-
ter values match their recorded values.

2.5 Shared Memory

By scheduling only one thread at a time, RR avoids issues
with races on shared memory as long as that memory is
written only by tracee threads. It is possible for recorded
processes to share memory with other processes, and
even kernel device drivers, where that non-recorded code
can perform writes that race with accesses by tracee
threads. Fortunately, this is rare for applications run-
ning in common Linux desktop environments, occurring
in only four common cases: applications sharing mem-
ory with the PulseAudio daemon, applications sharing
memory with the X server, applications sharing mem-
ory with kernel graphics drivers and GPUs, and vdso
syscalls. We avoid the first three problems by automat-
ically disabling use of shared memory with PulseAudio
and X (falling back to a socket transport in both cases),
and disabling direct access to the GPU from applications.
vdso syscalls are a Linux optimization that im-

plements some common read-only system calls (e.g.
gettimeofday) entirely in user space, partly by read-
ing memory shared with the kernel and updated asyn-
chronously by the kernel. We disable vdso syscalls by
patching their user-space implementations to perform the
equivalent real system call instead.

Applications could still share memory with non-
recorded processes in problematic ways, though this is
rare in practice and can often be solved just by enlarging
the scope of the group of processes recorded by RR.

2.6 Nondeterministic Instructions

Almost all CPU instructions are deterministic, but some
are not. One common nondeterministic x86 instruction
is RDTSC, which reads a time-stamp counter. This par-
ticular instruction is easy to handle, since the CPU can be
configured to trap on an RDTSC and Linux exposes this
via a prctl API, so we can trap, emulate and record
each RDTSC.

Other relatively recent x86 instructions are harder to
handle. RDRAND generates random numbers and hope-
fully is not deterministic. We have only encountered it
being used in one place in GNU libstdc++, so RR
patches that explicitly. XBEGIN and associated instruc-
tions support hardware transactional memory. These are
nondeterministic from the point of view of user space,
since a hardware transaction can succeed or fail depend-
ing on CPU cache state. Fortunately so far we have only
found these being used by the system pthreads li-
brary, and we dynamically apply custom patches to that
library to disable use of hardware transactions.

The CPUID instruction is mostly deterministic, but
one of its features returns the index of the running core,
which affects behavior deep in glibc and can change as
the kernel migrates a process between cores. We use the
Linux sched setaffinity API to force all tracee
threads to run on a particular fixed core, and also force
them to run on that core during replay.

We could easily avoid most of these issues in well-
behaved programs if we could just trap-and-emulate the
CPUID instruction, since then we could mask off the fea-
ture bits indicating support for RDRAND, hardware trans-
actions, etc. Modern Intel CPUs support this (“CPUID
faulting”); we are in the process of adding an API for
this to Linux.

2.7 Reducing Trace Sizes

For many applications the bulk of their input is memory-
mapped files, mainly executable code. Copying all exe-
cutables and libraries to the recorded trace on every ex-
ecution would impose significant time and space over-
head. RR creates hard links to memory-mapped exe-
cutable files instead of copying them; as long as a system
update or recompile replaces executables with new files,
instead of writing to the existing files, the links retain the
old file data. This works well in practice.

Even better, modern filesystems such as XFS and
Btrfs offer copy-on-write logical copies of files (and even
block ranges within files), ideal for our purposes. When
a mapped file is on the same filesystem as the recorded
trace, and the filesystem supports cloning, RR clones
mapped files into the trace. These clone operations are
essentially free in time and space, until/unless the origi-
nal file is modified or deleted.

RR compresses all trace data, other than cloned files
and blocks, with the zlib “deflate” method.

With these optimizations, in practice trace storage is a
non-issue. Section 4.4 presents some results.

380 2017 USENIX Annual Technical Conference USENIX Association

2.8 Other Details
Apart from those major issues, many other details are re-
quired to build a complete record-and-replay system, too
many to mention here. Some system calls (e.g. execve)
are especially complex to handle. Recording and re-
playing signal delivery are complex, partly because sig-
nal delivery has poorly-documented side effects on user-
space memory. Advanced Linux kernel features such as
unshare (kernel namespaces) and seccomp require
thoughtful handling. Many of these details are interest-
ing, but they do not impact the overall approach.

3 In-process System-call Interception

The approach described in the previous section works,
but overhead is disappointingly high (see Figure 5 be-
low). The core problem is that for every tracee sys-
tem call, as shown in Figure 1 the tracee performs
four context switches: two blocking ptrace notifica-
tions, each requiring a context switch from the tracee
to RR and back. For common system calls such as
gettimeofday or read from cached files, the cost
of even a single context switch dwarfs the cost of the
system call itself. To significantly reduce overhead,
we must avoid context-switches to RR when processing
these common system calls.

Therefore, we inject into the recorded process a library
that intercepts common system calls, performs the sys-
tem call without triggering a ptrace trap, and records
the results to a dedicated buffer shared with RR. RR pe-
riodically flushes the buffer to its trace. The concept is
simple but there are problems to overcome.

3.1 Intercepting System Calls
A common technique for intercepting system calls in-
process is to use dynamic linking to interpose wrapper
functions over the C library functions that make system
calls. In practice, we have found that method to be insuf-
ficient, due to applications making direct system calls,
and fragile, due to variations in C libraries, and applica-
tions that require their own preloading [37, 3]).

Instead, when the tracee makes a system call, RR is
notified via a ptrace trap and it tries to rewrite the
system-call instruction to call into our interception li-
brary. This is tricky because on x86 a system call in-
struction is two bytes long, but we need to replace it
with a five-byte call instruction. In practice, fre-
quently executed system call instructions are followed by
a few known, fixed instruction sequences; for example,
many system call instructions are followed by a cmpl
$0xfffff001,%eax instruction testing the syscall re-
sult. We added five hand-written stubs to our interception

Tracee thread T

read(fd, buf, size)
 syscall_hook()
 redirect arg2 to syscall buffer

 N = syscall_result_reg
 copy N syscall buffer bytes to buf
 write system-call record to syscall buffer

seccomp-bpf filter → ALLOW
sys_read

Figure 2: Recording with system-call interception

library that execute post-system-call instructions before
returning to the patched code. On receipt of a ptrace
system-call notification, RR replaces the system call in-
struction and its following instruction with a call to the
corresponding stub.

We (try to) redirect all system call instructions to the
interception library, but for simplicity it only contains
wrappers for the most common system calls, and for oth-
ers it falls back to doing a regular ptrace-trapping sys-
tem call.

3.2 Selectively Trapping System Calls
ptrace system-call monitoring triggers traps for all
system calls, but our interception library needs to avoid
traps for selected system calls. Fortunately, modern
Linux kernels support selectively generating ptrace
traps: seccomp-bpf. seccomp-bpf was designed
primarily for sandboxing. A process can apply a
seccomp-bpf filter function, expressed in bytecode,
to another process; then, for every system call performed
by the target process, the kernel runs the filter, passing in
incoming user-space register values, including the pro-
gram counter. The filter’s result directs the kernel to ei-
ther allow the system call, fail with a given errno, kill
the target process, or trigger a ptrace trap. Overhead
of filter execution is negligible since filters run directly
in the kernel and are compiled to native code on most
architectures.

Figure 2 illustrates recording a simple read system
call with in-process system-call interception. The solid-
border box represents code in the interception library and
the grey box represents kernel code.

RR injects a special page of memory into every tracee
process at a fixed address (immediately after execve).
That page contains a system call instruction — the “un-
traced instruction”. RR applies a seccomp-bpf filter
to each recorded process that triggers a ptrace trap for
every system call — except when the program counter is
at the untraced instruction, in which case the call is al-
lowed. Whenever the interception library needs to make
an untraced system call, it uses that instruction.

USENIX Association 2017 USENIX Annual Technical Conference 381

Tracee thread T

read(fd, buf, size)
 syscall_hook()
 redirect arg2 to syscall buffer
 enable SWITCHES event

seccomp-bpf → ALLOW
sys_read
 SWITCHES event;
 interruption by signal
ptrace_notify

Recorder thread

waitpid(T)
determine T is blocked
in syscall buffering
T2 = waitpid(-1)
record T2 system call
ptrace(T2,
 CONT_SYSCALL)

Tracee thread T2

futex_wait()
 ptrace_notify

sys_futex
ptrace_notify

Figure 3: Recording a blocking system call

3.3 Detecting Blocked System Calls

Some common system calls sometimes block (e.g. read
on an empty pipe). Because RR runs tracee threads one
at a time, if a thread enters a blocking system call with-
out notifying RR, it will hang and could cause the en-
tire recording to deadlock (e.g. if another tracee thread
is about to write to the pipe). We need the kernel to
notify RR and suspend the tracee thread whenever an un-
traced system call blocks, to ensure we can schedule a
different tracee thread.

We do this using the Linux perf event system to
monitor PERF COUNT SW CONTEXT SWITCHES. The
kernel raises one of these events every time it desched-
ules a thread from a CPU core. The interception library
monitors these events for each thread and requests that
the kernel send a signal to the blocked thread every time
the event occurs. These signals trigger ptrace notifi-
cations to RR while preventing the thread from executing
further. To avoid spurious signals (e.g. when the thread
is descheduled due to normal timeslice expiration), the
event is normally disabled and explicitly enabled during
an untraced system call that might block. Still, spuri-
ous SWITCHES can occur at any point between enabling
and disabling the event; we handle these edge cases with
careful inspection of the tracee state.

Figure 3 illustrates recording a blocking read system
call with system-call interception. The kernel desched-
ules the thread, triggering a perf event which sends
a signal to the thread, rescheduling it, interrupting the
system call, and sending a ptrace notification to the
recorder. The recorder does bookkeeping to note that
an intercepted system call was interrupted in thread T,
then checks whether any tracee threads in blocking sys-
tem calls have progressed to a system-call exit and gen-
erated a ptrace notification. In this example T2 has

completed a (not intercepted) blocking futex system
call, so we resume executing T2.

Resuming an intercepted system call that was inter-
rupted by a signal (e.g. T’s read call in Figure 3) is
more complicated. Explaining that requires understand-
ing Linux system call restart semantics, which are too
complicated to explain in the space available here.

3.4 Handling Replay

Conceptually, during recording we need to copy system
call output buffers to a trace buffer, and during replay
we need to copy results from the trace buffer to system
call output buffers. This is a problem because the inter-
ception library is part of the recording and replay and
therefore should execute the same code in both cases.
(Previous work with user-level system call interception
[11, 36, 21, 29] avoided these problems by having less
strict goals for replay fidelity.)

For this reason (and to avoid races of the sort discussed
in Section 2.3), the interception library redirects system
call outputs to write directly to the trace buffer. After
the system call completes, the interception library copies
the output data from the trace buffer to the original output
buffer(s). During replay the untraced system call instruc-
tion is replaced with a no-op, so the system call does not
occur; the results are already present in the trace buffer
so the post-system-call copy from the trace buffer to the
output buffer(s) does what we need.

During recording, each untraced system call sets a re-
sult register and the interception library writes it to the
trace buffer. Replay must read the result register from the
trace buffer instead. We use a conditional move instruc-
tion so that control flow is perfectly consistent between
recording and replay. The condition is loaded from an
is replay global variable, so the register holding the
condition is different over a very short span of instruc-
tions (and explicity cleared afterwards).

Handling “in-out” system call memory parameters is
tricky. During recording we copy the input buffer to the
trace buffer, pass the system call a pointer to the trace
buffer, then copy the trace buffer contents back to the
input buffer. Performing that first copy during replay
would overwrite the trace buffer values holding the sys-
tem call results, so during replay we turn that copy into a
no-op using a conditional move to set the source address
copy to the destination address.

We could allow replay of the interception library to di-
verge further from its recorded behavior, but that would
have to be done very carefully. We’d have to ensure the
RCB count was identical along both paths, and that regis-
ter values were consistent whenever we exit the intercep-
tion library or trap to RR within the interception library.
It’s simplest to minimize the divergence.

382 2017 USENIX Annual Technical Conference USENIX Association

3.5 Optimizing Reads With Block Cloning

When an input file is on the same filesystem as the
recorded trace and the filesystem supports copy-on-write
cloning of file blocks, for large block-aligned reads
the system call interception code clones the data to a
per-thread “cloned-data” trace file, bypassing the normal
system-call recording logic. This greatly reduces space
and time overhead for file-read-intensive workloads; see
the next section.

This optimization works by cloning the input blocks
and then reading the input data from the original input
file. This opens up a possible race: between the clone
and the read, another process could overwrite the input
file data, in which case the data read during replay would
differ from the data read during recording, causing replay
to fail. However, when a file read races with a write un-
der Linux, the reader can receive an arbitrary mix of old
and new data, so such behavior would almost certainly be
a severe bug, and in practice such bugs do not seem to be
common. The race could be avoided by reading from the
cloned-data file instead of the original input file, but that
performs very poorly because it defeats Linux’s reada-
head optimizations (since the data in the cloned-data file
is never available until just before it’s needed).

4 Results

4.1 Workloads

Benchmarks were chosen to illuminate RR’s strengths
and weaknesses, while also containing representatives of
real-world usage. They were tuned to fit in system mem-
ory (to minimize the impact of I/O on test results), to run
for about 30 seconds each (except for cp where a 30s run
time would require it to not fit in memory).

cp duplicates a git checkout of glibc (revi-
sion 2d02fd07) using cp -a (15200 files constituting
732MB of data, according to du -h). cp is single-
threaded, making intensive use of synchronous reads and
a variety of other filesystem-related system calls.

make builds DynamoRio [8] (version 6.1.0) with
make -j8 (-j8 omitted when restricting to a single
core). This tests potentially-parallel execution of many
short-lived processes.

octane runs the Google Octane benchmark under the
Mozilla Spidermonkey Javascript engine (Mercurial re-
vision 9bd900888753). This illustrates performance on
CPU-intensive code in a complex language runtime.

htmltest runs the Mozilla Firefox HTML forms
tests (Mercurial revision 9bd900888753). The
harness is excluded from recording (using mach
mochitest -f plain --debugger RR

dom/html/test/forms). This is an example

from real-world usage. About 30% of user-space CPU
time is in the harness.

sambatest runs a Samba (git revision
9ee4678b) UDP echo test via make test
TESTS=samba4.echo.udp. This is an exam-
ple from real-world usage.

All tests run on a Dell XPS15 laptop with a quad-core
Intel Skylake CPU (8 SMT threads), 16GB RAM and a
512GB SSD using Btrfs in Fedora Core 23 Linux.

4.2 Overhead
Table 1 shows the wall-clock run time of various config-
urations, normalized to the run time of the baseline con-
figuration. octane is designed to run for a fixed length of
time and report a score, so we report the ratio of the base-
line score to the configuration-under-test score — except
for replay tests, where the reported score will necessarily
be the same as the score during recording. For octane re-
play tests we report the ratio of the baseline score to the
recorded score, multiplied by the ratio of replay run time
to recording run time. Each test was run six times, dis-
carding the first result and reporting the geometric mean
of the other five results. Thus the results represent warm-
cache performance.

“Single core” reports the overhead of just restricting
all threads to a single core using Linux taskset.

“Record no-intercept” and “Replay no-intercept” re-
port overhead with in-process system-call interception
disabled (which also disables block cloning). “Record
no-cloning” reports overhead with just block cloning dis-
abled.

“DynamoRio-null” reports the overhead of running
the tests under the DynamoRio [8] (version 6.1.0) “null
tool”, to estimate a lower bound for the overhead of us-
ing dynamic code instrumentation as an implementation
technique. (DynamoRio is reported to be among the
fastest dynamic code instrumentation engines.)

4.3 Observations
Overhead on make is significantly higher than for the
other workloads. Forcing make onto a single core im-
poses major slowdown. Also, make forks and execs 2430
processes, mostly short-lived. (The next most prolific
workload is sambatest with 89.) In-process system-call
interception only starts working in a process once the in-
terception library has been loaded, but at least 80 system
calls are performed before that completes, so its effec-
tiveness is limited for short-lived processes.

Figure 4 shows the overall recording and replay over-
head for workloads other than make. Error bars in figures
show 95% confidence intervals; these results are highly
stable across runs.

USENIX Association 2017 USENIX Annual Technical Conference 383

Workload
Baseline
duration Record Replay

Single
core

Record
no-intercept

Replay
no-intercept

Record
no-cloning

DynamoRio-
null

cp 1.04s 1.49× 0.72× 0.98× 24.53× 15.39× 3.68× 1.24×
make 20.99s 7.85× 11.93× 3.36× 11.32× 14.36× 7.84× 10.97×
octane 32.73s 1.79× 1.56× 1.36× 2.65× 2.43× 1.80× crash
htmltest 23.74s 1.49× 1.01× 1.07× 4.66× 3.43× 1.50× 14.03×
sambatest 31.75s 1.57× 1.23× 0.95× 2.23× 1.74× 1.57× 1.43×

Table 1: Run-time overhead

Figure 4: Run-time overhead excluding make

Excluding make, RR’s recording slowdown is less than
a factor of two. Excluding make, RR’s replay overhead
is lower than its recording overhead. Replay can even
be faster than normal execution, in cp because system
calls do less work. For interactive applications, not rep-
resented here, replay can take much less time than the
original execution because idle periods are eliminated.

octane is the only workload here other than make mak-
ing significant use of multiple cores, and this accounts for
the majority of RR’s overhead on octane.

Figure 5 shows the impact of system-call intercep-
tion and blocking cloning on recording. The system-call
interception optimization produces a large reduction in
recording (and replay) overhead. Cloning file data blocks
is a major improvement for cp recording but has essen-
tially no effect on the other workloads.

Figure 6 compares RR recording overhead with Dy-
namoRio’s “null tool”, which runs all code through the
DynamoRio instrumentation engine but does not modify
the code beyond whatever is necessary to maintain su-
pervised execution; this represents a minimal-overhead
code instrumentation configuration. DynamoRio crashed
on octane 1. cp executes very little user-space code and

1We reported DynamoRio’s crash on our “octane” work-
load to the developers at https://github.com/DynamoRIO/
dynamorio/issues/1930.

cp make octane htmltest sambatest

Workload

0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 r

e
la

ti
v
e
 t

o
 b

a
se

lin
e

24.53

Record

Record-no-syscallbuf

Record-no-cloning

Figure 5: Impact of optimizations

DynamoRio’s overhead is low on that workload. On
make and sambatest DynamoRio overhead is similar to
RR recording, even though on make DynamoRio can
utilize multiple cores. On htmltest DynamoRio’s over-
head is very high, possibly because that test runs a lot
of Javascript with dynamically generated and modified
machine code. Implementing record-and-replay on top
of dynamic instrumentation would incur significant addi-
tional overhead, so we would expect the resulting system
to have significantly higher overhead than RR.

4.4 Storage Space Usage
RR traces contain three kinds of data: cloned (or hard-
linked) files used for memory-map operations, cloned file
blocks, and all other trace data, especially event metadata
and the results of general system calls.

Memory-mapped files are mostly the executables and
libraries loaded by tracees. While the original files are
not changed or removed, which is usually true in prac-
tice, their clones take no additional space and require no
data writes. RR makes no attempt to consolidate dupli-
cate file clones, so most traces contain many duplicates
and reporting meaningful space usage for these files is
both difficult and unimportant in practice. The same is
true for cloned file blocks.

384 2017 USENIX Annual Technical Conference USENIX Association

https://github.com/DynamoRIO/dynamorio/issues/1930
https://github.com/DynamoRIO/dynamorio/issues/1930

cp make htmltest sambatest

Workload

0

2

4

6

8

10

12

14

16
O

v
e
rh

e
a
d
 r

e
la

ti
v
e
 t

o
 b

a
se

lin
e

Record

DynamoRio-null

Figure 6: Comparison with DynamoRio-null

Workload
Compressed

MB/s
deflate

ratio
Cloned blocks

MB/s
cp 19.03 4.87× 586.14
make 15.82 8.32× 5.50
octane 0.08 8.33× 0.00
htmltest 0.79 5.94× 0.00
sambatest 6.85 21.87× 0.00

Table 2: Storage space usage

Table 2 shows the storage usage of each workload, in
MB/s, for general trace data and cloned file blocks. We
compute the geometric mean of the data usage for each
trace and divide by the run-time of the workload base-
line configuration. Space consumption shows very little
variation between runs.

Different workloads have highly varying space con-
sumption rates, but several MB/s is easy for modern sys-
tems to handle. In real-world usage, trace storage has not
been a concern.

4.5 Memory Usage

Table 3 shows the memory usage of each workload. Ev-
ery 10ms we sum the proportional-set-size (“PSS”) val-
ues of all workload processes (including RR if running);
we determine the peak values for each run and take their
geometric mean. In Linux, each page of memory mapped
into a process’s address space contributes 1/n pages to
that process’s PSS, where n is the number of processes
mapping the page; thus it is meaningful to sum PSS val-
ues over processes which share memory. The same data
are shown in Figure 7. In the figure, the fraction of PSS
used by the RR process is shown in orange. Memory us-
age data was gathered in separate runs from the timing
data shown above, to ensure the overhead of gathering

Workload Baseline Record Replay Single core
cp 0.51 34.54 9.11 0.51
make 510.51 327.19 314.16 288.65
octane 419.47 610.48 588.01 392.95
htmltest 690.81 692.06 324.71 689.75
sambatest 298.68 400.49 428.79 303.03

Table 3: Memory usage (peak PSS MB)

cp make octane htmltest sambatest

Workload

0

200

400

600

800

1000

P
e
a
k

P
S
S
 (

M
B

)

Baseline

Record

Replay

Single core

Supervisor process

Figure 7: Memory usage

memory statistics did not impact those results.
Given these experiments ran on an otherwise unloaded

machine with 16GB RAM and all data fits in cache, none
of these workloads experienced any memory pressure. cp
uses almost no memory. In make, just running on a sin-
gle core reduces peak PSS significantly because not as
many processes run simultaneously. In octane memory
usage is volatile (highly sensitive to small changes in GC
behavior) but recording significantly increases applica-
tion memory usage; recording also increases application
memory usage a small amount in sambatest but slightly
decreases it in htmltest. (We expect a small increase in
application memory usage due to system-call intercep-
tion and scratch buffers.) These effects are difficult to ex-
plain due to the complexity of the applications, but could
be due to changes in timing and/or effects on application
or operating system memory management heuristics.

Replay memory usage is similar to recording except in
htmltest, where it’s dramatically lower because we’re not
replaying the test harness.

RR’s memory overhead is not an issue in practice.

5 Hardware/Software Design Constraints

We summarize the hardware and software features RR
depends on, for system designers who may be interested
in supporting RR-like record-and-replay.

USENIX Association 2017 USENIX Annual Technical Conference 385

5.1 Hardware

As discussed in Section 2.4.1, RR requires a “deter-
minstic” hardware performance counter to measure ap-
plication progress. The ideal performance counter for
our purposes would count the exact number of instruc-
tions retired as observed in user-space (e.g., counting
an interrupted-and-restarted instruction once). Virtual
machines should support reliable performance-counter
virtualization. Currently RR works under KVM and
VMware, but VMware’s VM exit clustering optimization
[4], as implemented, breaks the determinism of the RCB
counter and must be manually disabled.

Some x86 CPU instructions are nondeterministic.
Section 2.6 discusses our current workarounds for this.
Exposing hardware support for trapping CPUID is im-
portant for long-term control over these instructions.

We would like to support record-and-replay of
programs using hardware transactional memory
(XBEGIN/XEND). It would suffice if hardware and the
OS could be configured to raise a signal on any failed
transaction.

Trapping on all other nondetermnistic instructions
(e.g. RDRAND) would be useful.

Porting RR to ARM failed because all ARM
atomic memory operations use the “load-linked/store-
conditional” approach, which is inherently nondetermin-
stic. The conditional store can fail because of non-user-
space-observable activity, e.g. hardware interrupts, so
counts of retired instructions or conditional branches for
code performing atomic memory operations are nonde-
terminstic. These operations are inlined into very many
code locations, so it appears patching them is not feasible
except via pervasive code instrumentation or compiler
changes. On x86(-64), atomic operations (e.g. compare-
and-swap) are deterministic in terms of user-space state,
so there is no such problem.

5.2 Software

As noted in Section 2.5, RR depends on configuring ap-
plications to avoid sharing memory with non-recorded
processes.

We described how RR performance depends on mod-
ern Linux features: seccomp-bpf to selectively trap
system calls, PERF COUNT SW CONTEXT SWITCHES
performance events to handling blocking system calls,
and copy-on-write file and block cloning APIs to reduce
I/O overhead.

Efficient record-and-replay depends on clearly iden-
tifying a boundary within which code is replayed de-
terministically, and recording and replaying the timing
and contents of all inputs into that boundary. In RR,
that boundary is mostly the interface between the ker-

nel and user-space. This suits Linux: most of the Linux
user/kernel interface is stable across OS versions, rel-
atively simple and well-documented, and it’s easy to
count hardware performance events occurring within the
boundary (i.e. all user-space events for a specific pro-
cess). This is less true in other operating systems. For
example, in Windows, the user/kernel interface is not
publicly documented, and is apparently more complex
and less stable than in Linux. Implementing and main-
taining the RR approach for Windows would be consider-
ably more challenging than for Linux, at least for anyone
other than the OS vendor.

6 Related Work

6.1 Whole-System Replay
ReVirt [17] was an early project that recorded and
replayed the execution of an entire virtual machine.
VMware [28] used the same approach to support record-
and-replay debugging in VMware Workstation, for a
time, but discontinued the feature. The full-system sim-
ulator Simics supports reverse-execution debugging via
deterministic reexecution [20]. There have been ef-
forts to add some record-and-replay support to QEMU
[15, 16, 38] and Xen [18, 10]. Whole-system record-
and-replay can be useful, but it is often inconvenient to
hoist the application into a virtual machine. Many appli-
cations of record-and-replay require cheap checkpoint-
ing, and checkpointing a VM image is generally more
expensive than checkpointing one or a few processes.

6.2 Replaying User-Space With Kernel
Support

Scribe [26], dOS [6] and Arnold [14] replay a process
or group of processes by extending the OS kernel with
record-and-replay functionality. Kernel changes make
maintenance and deployment more difficult — unless
record-and-replay is integrated into the base OS. But
adding invasive new features to the kernel has risks, so if
record-and-replay can be well implemented outside the
kernel, moving it into the kernel may not be desirable.

6.3 Pure User-Space Replay
Pure user-space record-and-replay systems have existed
since at least MEC [11], and later Jockey [36] and liblog
[21]. Those systems did not handle asynchronous event
timing and other OS features. PinPlay [34], iDNA [7],
UndoDB [1] and TotalView ReplayEngine [22] use code
instrumentation to record and replay asynchronous event
timing. Unlike UndoDB and RR, PinPlay and iDNA in-
strument all loads, thus supporting parallel recording in

386 2017 USENIX Annual Technical Conference USENIX Association

the presence of data races and avoiding having to com-
pute the effects of system calls, but this gives them higher
overhead than the other systems. Compared to the other
systems that support asynchronous events, RR achieves
lower overhead by avoiding code instrumentation.

6.4 Higher-Level Replay
Record-and-replay features have been integrated into
language-level virtual machines. DejaVu [12] added
record-and-replay capabilities to the Jalapeño Java VM.
Microsoft IntelliTrace [2] instruments CLR bytecode to
record high-level events and the parameters and results
of function calls; it does not produce a full replay. Sys-
tems such as Chronon [13] for Java instrument bytecode
to collect enough data to provide the appearance of re-
playing execution, without actually doing a replay. Do-
los [9] provides record-and-replay for JS applications in
Webkit by recording and replaying nondeterministic in-
puts to the browser. R2 [23] provides record-and-replay
by instrumenting library interfaces; handling data races
or asynchronous events requires user effort to isolate the
nondeterminism. Such systems are all significantly nar-
rower in scope than the ability to replay general user-
space execution.

6.5 Parallel Replay
Recording application threads running concurrently on
multiple cores, with the possibility of data races, with
low overhead, is extremely challenging. PinPlay [34]
and iDNA/Nirvana [7] instrument shared-memory loads
and report high overhead. SMP-ReVirt [18] tracks page
ownership using hardware page protection and reports
high overhead on benchmarks with a lot of sharing. Dou-
blePlay [39] runs two instances of the application and
thus has high overhead when the application alone could
saturate available cores. ODR [5] has low recording
overhead but replay can be extremely expensive and is
not guaranteed to reproduce the same program states.
Castor [29] instruments synchronization code by modi-
fying compilers and runtime systems, which creates bar-
riers to easy deployment, and cannot replay reliably in
the presence of data races.

The best hope for general, low-overhead parallel
recording seems to be hardware support. Projects such
as FDR [41], BugNet [31], Rerun [24], DeLorean [30]
and QuickRec [35] have explored low-overhead parallel
recording hardware.

7 Future Work

RR perturbs execution, especially by forcing all threads
onto a single core, and therefore can fail to reproduce

bugs that manifest outside RR. We have addressed this
problem by introducing a “chaos mode” that intelligently
adds randomness to scheduling decisions, enabling us to
reproduce many more bugs, but that work is beyond the
scope of this paper. There are many more opportunities
to enhance the recorder to find more bugs.

Putting record-and-replay support in the kernel has
performance benefits, e.g. reducing the cost of record-
ing context switches. We may be able to find reusable
primitives that can be added to kernels to improve the
performance of user-space record-and-replay while be-
ing less invasive than a full kernel implementation.

Recording multiple processes running in parallel on
multiple cores seems feasible if they do not share mem-
ory — or, if they share memory, techniques inspired by
SMP-ReVirt [18], dthreads [27] or Castor [29] may work
for some workloads.

The applications of record-and-replay are perhaps
more interesting and important than the base technology.
For example, one can perform high-overhead dynamic
analysis during replay [14, 15, 34], potentially paral-
lelized over multiple segments of the execution. With
RR’s no-instrumentation approach, one could collect per-
formance data such as sampled stacks and performance
counter values during recording, and correlate that data
with rich analysis generated during replay (e.g. cache
simulation). Always-on record-and-replay would make
finding and fixing bugs in the field much easier. Demon-
strating compelling applications for record-and-replay
will build the case for building support into commodity
hardware and software.

8 Conclusions

The current state of Linux on commodity x86 CPUs en-
ables single-core user-space record-and-replay with low
overhead, without pervasive code instrumentation — but
only just. This is fortuitous; we use software and hard-
ware features for purposes they were not designed to
serve. It is also a recent development; five years ago
seccomp-bpf and the Linux file cloning APIs did
not exist, and commodity architectures with a determin-
istic hardware performance counter usable from user-
space had only just appeared (Intel Westmere)2. By
identifying the utility of these features for record-and-
replay, we hope that they will be supported by an increas-
ingly broad range of future systems. By providing an
open-source, easy-to-deploy, production-ready record-
and-replay framework we hope to enable more com-
pelling applications of this technology.

2Performance counters have been usable for kernel-implemented
replay [17, 33] for longer, because kernel code can observe and com-
pensate for events such as interrupts and page faults.

USENIX Association 2017 USENIX Annual Technical Conference 387

References

[1] Reversible debugging tools for C/C++ on Linux &
Android. http://undo-software.com. Ac-
cessed: 2016-04-16.

[2] Understanding IntelliTrace part I: What the @#$%
is IntelliTrace? https://blogs.msdn.
microsoft.com/zainnab/2013/02/12/
understanding-intellitrace-part-
i-what-the-is-intellitrace. Accessed:
2016-04-16.

[3] Wine windows-on-posix framework. https://
www.winehq.org. Accessed: 2016-09-20.

[4] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon.
Software techniques for avoiding hardware virtual-
ization exits. In Proceedings of the 2012 USENIX
Annual Technical Conference, June 2012.

[5] G. Altekar and I. Stoica. ODR: Output-
deterministic replay for multicore debugging. In
Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, October 2009.

[6] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. De-
terministic process groups in dOS. In Proceedings
of the 9th USENIX Symposium on Operating Sys-
tems Design and Implementation, October 2010.

[7] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analy-
sis of program executions. In Proceedings of the
2nd International Conference on Virtual Execution
Environments, June 2006.

[8] D. Bruening, Q. Zhao, and S. Amarasinghe. Trans-
parent dynamic instrumentation. In Proceedings of
the 8th International Conference on Virtual Execu-
tion Environments, March 2012.

[9] B. Burg, R. Bailey, A. Ko, and M. Ernst. Interactive
record/replay for web application debugging. In
Proceedings of the 26th ACM Symposium on User
Interface Software and Technology, October 2013.

[10] A. Burtsev, D. Johnson, M. Hibler, E. Eide, and
J. Regehr. Abstractions for practical virtual ma-
chine replay. In Proceedings of the 12th ACM SIG-
PLAN/SIGOPS International Conference on Vir-
tual Execution Environments, April 2016.

[11] M. E. Chastain. https://lwn.net/1999/
0121/a/mec.html, January 1999. Accessed:
2016-04-16.

[12] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and
J. Vlissides. A perturbation-free replay platform
for cross-optimized multithreaded applications. In
Proceedings of the 15th International Parallel and
Distributed Processing Symposium, April 2001.

[13] P. Deva. http://chrononsystems.com/
blog/design-and-architecture-of-
the-chronon-record-0, December 2010.
Accessed: 2016-04-16.

[14] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M.
Chen. Eidetic systems. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation, October 2014.

[15] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and
R. Whelan. Repeatable reverse engineering with
PANDA. In Proceedings of the 5th Program Pro-
tection and Reverse Engineering Workshop, De-
cember 2015.

[16] P. Dovgalyuk. Deterministic replay of systems ex-
ecution with multi-target QEMU simulator for dy-
namic analysis and reverse debugging. 2012.

[17] G. Dunlap, S. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling intrusion analy-
sis through virtual-machine logging and replay. In
Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation, De-
cember 2002.

[18] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay of multiproces-
sor virtual machines. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, March 2008.

[19] J. Engblom. A review of reverse debugging. In Sys-
tem, Software, SoC and Silicon Debug Conference,
September 2012.

[20] J. Engblom, D. Aarno, and B. Werner. Full-system
simulation from embedded to high-performance
systems. In Processor and System-on-Chip Simu-
lation, 2010.

[21] D. Geels, G. Altekar, S. Shenker, and I. Stoica.
Replay debugging for distributed applications. In
Proceedings of the 2006 USENIX Annual Techni-
cal Conference, June 2006.

[22] C. Gottbrath. Reverse debugging with the To-
talView debugger. In Cray User Group Conference,
May 2008.

388 2017 USENIX Annual Technical Conference USENIX Association

http://undo-software.com
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://blogs.msdn.microsoft.com/zainnab/2013/02/12/understanding-intellitrace-part-i-what-the-is-intellitrace
https://www.winehq.org
https://www.winehq.org
https://lwn.net/1999/0121/a/mec.html
https://lwn.net/1999/0121/a/mec.html
http://chrononsystems.com/blog/design-and-architecture-of-the-chronon-record-0
http://chrononsystems.com/blog/design-and-architecture-of-the-chronon-record-0
http://chrononsystems.com/blog/design-and-architecture-of-the-chronon-record-0

[23] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
M. F. Kaashoek, and Z. Zhang. R2: An application-
level kernel for record and replay. In Proceedings of
the 8th USENIX Symposium on Operating Systems
Design and Implementation, December 2008.

[24] D. Hower and M. Hill. Rerun: Exploiting episodes
for lightweight memory race recording. In Pro-
ceedings of the 35th Annual International Sympo-
sium on Computer Architecture, June 2008.

[25] U. Hlzle, C. Chambers, and D. Ungar. Optimiz-
ing dynamically-typed object-oriented languages
with polymorphic inline caches. In Proceedings of
the 1991 European Conference on Object-Oriented
Programming, July 1991.

[26] O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on com-
modity multiprocessor operating systems. In Pro-
ceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems,
June 2010.

[27] T. Liu, C. Curtsinger, and E. Berger. Dthreads: Effi-
cient deterministic multithreading. In Proceedings
of the ACM SIGOPS 23rd Symposium on Operating
Systems Principles, October 2011.

[28] V. Malyugin, J. Sheldon, G. Venkitachalam,
B. Weissman, and M. Xu. ReTrace: Collecting ex-
ecution trace with virtual machine deterministic re-
play. In Proceedings of the Workshop on Modeling,
Benchmarking and Simulation, June 2007.

[29] A. J. Mashtizadeh, T. Garfinkel, D. Terei,
D. Mazières, and M. Rosenblum. Towards prac-
tical default-on multi-core record/replay. In Pro-
ceedings of the 22nd International Conference on
Architectural Support for Programming Languages
and Operating Systems (to appear), April 2017.

[30] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean:
Recording and deterministically replaying shared-
memory multiprocessor execution efficiently. In
Proceedings of the 35th Annual International Sym-
posium on Computer Architecture, June 2008.

[31] S. Narayanasamy, G. Pokam, and B. Calder.
Bugnet: Continuously recording program execu-
tion for deterministic replay debugging. In Pro-
ceedings of the 32nd Annual International Sympo-
sium on Computer Architecture, June 2005.

[32] R. O’Callahan, C. Jones, N. Froyd, K. Huey,
A. Noll, and N. Partush. Engineering record and
replay for deployability: Extended technical report.
http://arxiv.org/abs/1705.05937.

[33] M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: Efficient deterministic multithreading in
software. In Proceedings of the 14th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, March
2009.

[34] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and
J. Cownie. PinPlay: A framework for deter-
ministic replay and reproducible analysis of par-
allel programs. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Gen-
eration and Optimization, April 2010.

[35] G. Pokam, K. Danne, C. Pereira, R. Kassa,
T. Kranich, S. Hu, J. Gottschlich, N. Honarmand,
N. Dautenhahn, S. King, and J. Torrellas. Quick-
Rec: Prototyping an intel architecture extension for
record and replay of multithreaded programs. In
Proceedings of the 40th Annual International Sym-
posium on Computer Architecture, June 2013.

[36] Y. Saito. Jockey: A user-space library for record-
replay debugging. In Proceedings of the 6th Inter-
national Symposium on Automated Analysis-driven
Debugging, September 2005.

[37] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address san-
ity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference, June 2012.

[38] D. Srinivasan and X. Jiang. Time-traveling foren-
sic analysis of VM-based high-interaction honey-
pots. In Security and Privacy in Communica-
tion Networks: 7th International ICST Conference,
September 2011.

[39] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang,
P. M. Chen, J. Flinn, and S. Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and re-
play. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, March 2011.

[40] V. Weaver, D. Terpstra, and S. Moore. Non-
determinism and overcount on modern hardware
performance counter implementations. In Proceed-
ings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software, April
2013.

[41] M. Xu, R. Bodik, and M. D. Hill. A “flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In Proceedings of the 30th An-
nual International Symposium on Computer Archi-
tecture, June 2003.

USENIX Association 2017 USENIX Annual Technical Conference 389

http://arxiv.org/abs/1705.05937

Improving Storage System Reliability with Proactive Error Prediction

Farzaneh Mahdisoltani

University of Toronto

Ioan Stefanovici

Microsoft Research

Bianca Schroeder

University of Toronto

Abstract

This paper proposes the use of machine learning tech-

niques to make storage systems more reliable in the face

of sector errors. Sector errors are partial drive failures,

where individual sectors on a drive become unavailable,

and occur at a high rate in both hard disk drives and solid

state drives. The data in the affected sectors can only

be recovered through redundancy in the system (e.g. an-

other drive in the same RAID) and is lost if the error

is encountered while the system operates in degraded

mode, e.g. during RAID reconstruction.

In this paper, we explore a range of different machine

learning techniques and show that sector errors can be

predicted ahead of time with high accuracy. Prediction is

robust, even when only little training data or only train-

ing data for a different drive model is available. We also

discuss a number of possible use cases for improving

storage system reliability through the use of sector error

predictors. We evaluate one such use case in detail: We

show that the mean time to detecting errors (and hence

the window of vulnerability to data loss) can be greatly

reduced by adapting the speed of a scrubber based on

error predictions.

1 Introduction

While the storage landscape has changed significantly

over the last decade, with hard disk drives (HDDs) and

solid state drives (SSDs) each accounting for large shares

of the market for persistent storage, one of the key re-

quirements for storage systems has remained the same:

store data reliably.

In addition to whole-drive failure, where a drive stops

functioning in a way that necessitates replacement, a ma-

jor threat to storage reliability are partial drive failures,

where individual sectors on a drive cannot be read. This

happens, for example when data in the affected sector is

too corrupted to be corrected by drive-internal error cor-

recting codes (ECC). For hard disk drives it can also be

due to mechanical damage on the disk surface. The re-

sult is the same in either case: the drive cannot recover

the data previously stored in the sector.

Field studies show that both solid state drives and hard

disk drives experience sector errors at a significant rate.

Recent studies based on data from Facebook and Google

report that 20-57% of solid state drives experience at

least one sector error [15, 22]. A 10-year old study by

Bairavasundaram et al. [4] reports that 5–20% of nearline

hard disk drives in Netapp’s storage systems develop sec-

tor errors over a period of 24 months. Our own analysis

of recent field data in this paper finds two drive models

among the seven most common hard disk models in a

large production installation with 11% and 25% of drives

affected by sector errors, respectively (see Table 1).

Sector errors are a major concern also when looking

into the future. Both SSDs and HDDs continuously grow

in capacity to keep up with consumer demand. As there

are more sectors on a drive, there is a larger chance that

sectors will fail, and as capacity increases, so do drive

densities, which can further increase the chances for bit

corruption. And some data center operators argue that in

order to continue to produce drives at an acceptable price

point and with the desired performance characteristics,

data center drives should be allowed to have higher error

rates and responsibility to deal with those errors should

be shifted to higher layers in the storage system [5].

The nature of sector errors makes them challenging

to protect against, as they are latent errors, i.e. the drive

is not aware of and will not report these errors until the

affected sector is being accessed. That means storage

systems need to proactively periodically read and verify

data (a process called disk scrubbing), in order to avoid

a situation where a sector error is discovered at a time

when it cannot be recovered via redundancy in the

system (e.g. during RAID reconstruction).

In this paper we make the case that storage systems

would be better prepared to handle sector errors, if errors

were predictable. We present techniques for accurately

USENIX Association 2017 USENIX Annual Technical Conference 391

Drives (Drive days) affected by:

Drive model Capacity (TB) #Drives SMART 5 SMART 187 SMART 196 SMART 197

Seagate ST4000DM000 4 36368 1.19% (0.02%) 2.33% (0.01%) N/A 3.37% (0.02%)

Hitachi HDS5C3030ALA630 3 4664 3.58% (0.05%) N/A 2.55% (0.04%) 2.72% (0.01%)

HGST HMS5C4040ALE640 3 7168 0.91% (0.03%) N/A 0.91% (0.03%) 0.59% (0.002%)

Hitachi HDS722020ALA330 2 4774 11.84% (0.12%) N/A 9.76% (0.08%) 6.47% (0.03%)

HGST HMS5C4040BLE640 4 9426 0.24% (0.003%) N/A 0.24% (0.003%) 0.32% (0.002%)

Hitachi HDS5C4040ALE630 4 2719 2.54% (0.03%) N/A 1.62% (0.02%) 1.95% (0.005%)

Seagate ST3000DM001 3 4707 25.15% (1.77%) 30.59% (0.31%) N/A 35.33% (0.29%)

Table 1: Overview of HDD models

predicting errors and show through one specific use case

how these predictors can be used to improve storage

system reliability. More precisely, we are making the

following two contributions:

• We explore a variety of machine learning techniques

and show that machine learning models can be trained

to predict sector errors with high accuracy. Interestingly,

we observe that some of the simplest and easiest to train

machine learning models, random forests, are among the

most accurate predictors. We also find that the training

of predictors is robust, in that even smaller training

data sets are sufficient for successful training, and that

predictors trained on one drive model can be used to

predict errors on a different drive model.

• We propose a number of different use cases for error

predictors and explore one of them in depth: improving

storage system reliability by adjusting scrub rates based

on error prediction. Currently most storage systems run

a background scrubber, which at a slow constant speed

reads and verifies the stored data to proactively detect

errors. Setting the right speed at which to perform scrub-

bing is tricky, as an overly aggressive scrubber can im-

pact the performance of concurrently running foreground

workloads, while a slow scrub speed increases the time

it takes to detect an error, hence increasing the system’s

window of vulnerability to data loss. We propose to ad-

just scrub speed based on an error predictor, scrubbing

faster when errors are predicted and more slowly other-

wise. We show that by adjusting the scrub speed based

on a predictor the window of vulnerability can be short-

ened by nearly a factor of 2X, while using the accelerated

scrub rate for less than 2% of the total time.

2 A Look at the Field Data

We begin with a description of the field data that our

study is based on, including a description of the vari-

ous error modes and some summary statistics on error

frequencies.

2.1 Hard Disk Drives

For our study of errors on hard disk drives and their pre-

diction we use data that has been made publicly available

by Backblaze [3]. The entire dataset covers more than

a dozen different HDD models and more than a billion

device hours, but some models have very small popula-

tions. Table 1 provides some summary statistics on the

seven drive models with the most data.

The data for these drives is based on SMART

(Self-Monitoring, Analysis and Reporting Technology).

SMART is a monitoring system supported by most drives

that reports on various indicators of drive health, includ-

ing various types of errors, but also operational data, such

as drive temperature, and power on hours of the drive.

Backblaze collects for each drive daily snapshots of all

SMART values reported by the drive.

To gauge how frequent sector errors are in the drive

population at Backblaze, we consider the following

SMART parameters that are related to sector errors.

Note that the exact definition and reporting of these

parameters varies between drive models and manufac-

turers, and that not all parameters are reported by all

drive models.

SMART 5: Count of reallocated sectors. When a read or

a write operation on a sector fails, the drive will mark the

sector as bad and remap (reallocate) it to a spare sector

on disk.

SMART 187: The number of read errors that could not

be recovered using hardware ECC.

SMART 196: The total count of attempts to transfer data

from reallocated sectors to a spare area. Unsuccessful

attempts are counted as well as successful.

SMART 197: Count of ”unstable” sectors. Some drives

mark a sector as “unstable” following a failed read, and

remap it only after waiting for a while to see whether the

data can be recovered in a subsequent read or when it

gets overwritten.

We begin by asking how common sector errors are on

the Backblaze drives, since the most recent numbers in

the literature [4] are based on data collected more than

a decade ago. Table 1 shows, for the most common

drive models at Backblaze, the fraction of disk drives and

the fraction of drive days that are affected by any of the

events corresponding to the 5 SMART parameters above.

We observe that the fraction of drives affected by sec-

tor errors is significant: for two of the models 11% and

25%, respectively, of their population have experienced

392 2017 USENIX Annual Technical Conference USENIX Association

Drives (Drive weeks) affected by:

SSD Model #Drives Capacity Lithography (nm) PE cycle limit Avg. PE cycles Uncorrectable Errors Bad Blocks

MLC-A 10115 480GB 50 3,000 730 37.07% (0.63%) 50.35% (0.44%)

MLC-B 10151 480GB 43 3,000 949 65.56% (1.09%) 82.75% (1.59%)

MLC-D 10258 480GB 50 3,000 544 46.72% (0.89%) 55.01% (0.57%)

Table 2: Overview of SSD models

at least one reallocated sector. We also note that these

numbers are significantly higher than the averages re-

ported in previous work [4], which was based on data

collected in 2004-2006 in Netapp storage systems and

saw 3.45% of drives affected by latent sector errors.

However, the numbers we see are in line with those re-

ported for the three nearline drives in the Netapp study,

which ranged from 5–20%.

2.2 Solid State Drives

We have been able to obtain data for a randomly sampled

subset of around 30,000 drives from three of the four

MLC drive models used in a recent field study [22] on

SSD reliability based on drives in Google’s data centers.

We refer to the models as MLC-A, MLC-B, and MLC-D,

keeping the naming consistent with that in [22].

The drives in the dataset are based on commodity

MLC flash chips, but are custom designed using a cus-

tom PCIe interface, firmware and driver. As such, report-

ing and monitoring is also customized (rather than rely-

ing on SMART). For each drive the data contains daily

counts for a variety of different types of errors, as well as

workload statistics, such as the number of read, write and

erase operations during that day. Table 2 summarizes the

key statistics for the drives in our data set.

The two events that we are most interested in are

uncorrectable errors and bad blocks:

Uncorrectable errors (UEs): A read operations encoun-

ters more corrupted bits than the drive-internal ECC can

correct. The drive returns an error.

Bad blocks: The drives at Google declare a block bad

after an uncorrectable read error, a write error or an erase

error, and consequently remap it (i.e. it is removed from

future usage and any data that might still be on it and can

be recovered is remapped to a different block). Unlike

bad blocks for hard disk drives, which refer to disk sec-

tors (typically 512 or 4096 bytes), the blocks here are the

unit at which the SSD performs erase operations. The

size of an erase block varies with the drive model, but is

typically on the order of hundreds of KBs.

3 Predicting Errors

3.1 A Machine Learning Formulation

Our goal is to predict whether a drive will have a sec-

tor error within a given time interval, based on its past

behavior, as captured by the monitoring data that it re-

ported. We formulate the problem of predicting future er-

rors as a classification problem and then use a variety of

methods from machine learning to train classifiers. For

simplicity, we assume in the discussion below that we are

predicting errors one week into the future, i.e. whether

there will be an error within the next 7 days. We create

instances (or observations) to our classifier by dividing

the data into non-overlapping one-week intervals. For

each one-week interval, the response variable (to be pre-

dicted) is binary, set either to error or no-error, depending

on whether a sector error was observed during this week

or not. For explanatory variables (features) we consider

all parameters that the drive reports as candidates. The

explanatory variables, are based on the monitoring data

that the drive produced prior to the prediction interval.

More details on the setup of the machine learning for-

mulation follow below.

3.1.1 The Response Variables

As explained in Section 2.1 there are a number of

SMART parameters related to sector errors; their exact

interpretation can vary between models and not all pa-

rameters are reported by all models. We believe that

SMART 5 (S5) is the most interesting choice as a re-

sponse variable, as it is consistently reported by all drive

models and because it comprises all the different scenar-

ios that might have led to declaring a sector bad (e.g.

independently of how the bad sector was discovered), as

it refers to the total number of sectors that have been re-

allocated. However, we also experiment with training

classifiers to predict S187 (read errors that could not be

recovered using ECC) and S197 (sectors became unsta-

ble).

For the SSD data choosing the response variables is

straightforward, since all drive models use the same cus-

tomized reporting mechanisms. We experiment with two

different response variables: uncorrectable errors and

bad blocks.

3.1.2 The Explanatory Variables

For the HDD data we consider all SMART parameters

reported by a drive as possible candidates for explana-

tory variables. We convert the raw data into explanatory

variables in two ways. The first set of input variables

consists of the most recent raw values of all the parame-

USENIX Association 2017 USENIX Annual Technical Conference 393

ID# Attribute Name

S1 Read Error Rate

S4 Start/Stop Count

S5 Reallocated Sectors Count

S7 Seek Error Rate

S9 Power-On Hours (POH)

S12 Power Cycle Count

S187 Reported Uncorrectable Errors

S193 Load Cycle Count

S194 Temperature

S197 Current Pending Sector Count

S199 UltraDMA CRC Error Count

Table 3: SMART attributes selected as learning features

for HDD devices

ters reported by the drive before the beginning of the one-

week interval. We also add a second set of input variables

based on transformations of some smart parameters. In

particular, some SMART parameters are reported as cu-

mulative counts over a drive’s lifetime (e.g. SMART 189

contains the total number of high fly writes a disk has

ever experienced). However, for predicting errors during

a given time period, it might be more insightful to know

the recent rate of change for this variable, rather than the

cumulative lifetime count. We therefore include for each

cumulative smart parameter a second input variable that

consists of the increase in value that the corresponding

smart parameter experienced during the one-week win-

dow into the past.

As the resulting number of input variables is large, we

perform feature selection before training machine learn-

ing models on the data. We use correlation coefficients

and information gain to determine the features that cor-

relate most with the drive errors and we remove the

SMART attributes that never change for a specific drive

model. Table 3 lists the SMART attributes we used to

build prediction models for HDDs. For a more detailed

explanation of the various fields see an overview of all

SMART parameters [23]. Table 4 provides the attributes

used for SSDs. For a more detailed explanation of the

various fields, see [22].

3.1.3 Training the Classifiers

We experiment with five different machine learning

methods that are commonly used for classification prob-

lems: classification and regression trees (CART), ran-

dom forests, support vector machines, neural networks

and logistic regression. For random forests we experi-

mented with different numbers of trees, and settled on

using 20 trees for the results included in the paper. We

ran experiments with up to 100 trees, but did not see sig-

nificant improvements. For support vector machines, we

experiment with three different kernels: polynomial, lin-

ear and radial basis function (RBF) kernels. We also

experimented with different degrees for the polynomial

kernels. For neural networks, we include results for a

ID# Attribute Name

1 correctable error

2 erase count

3 erase error

4 factory bad block

5 final read error

6 final write error

7 meta error

8 read count

9 read error

10 response error

11 status dead

12 status read only

13 timeout error

14 timestamp usec

15 uncorrectable error

16 write count

17 write error

18 cumulative bad block count fixed

19 weekly bad block count

20 cumulative pe cycle fixed

21 weekly pe cycle

Table 4: Attributes selected as learning features for SSD

devices

network with 3 layers and 100 nodes. Neural networks

with larger numbers of layers are impractical for learn-

ing rare events (such as errors or failures) as they require

massive amounts of training data. We also experimented

with more advanced type of neural networks, such as re-

current neural networks, but didn’t find the results to im-

prove upon standard neural networks, and hence chose

not to include the results. We use the hold-out method

to find the best values to adapt the parameters of neural

networks, including learning rate, momentum and regu-

larization factors. We perform a grid search on these pa-

rameters to find the combination that achieves the highest

performance. For logistic regression we experimented

with different values for regularization and learning rate.

All methods were implemented in Matlab. For SVM we

used the LIBSVM library [6].

As the range of values spanned by different features

varies widely, we employed data normalization using

the feature scaling method to avoid bias towards features

with larger parameter values. Feature scaling transforms

each attribute in the data using the following formula:

X ′ =
X −Xmin

Xmax −Xmin

(1)

where X is the original value of a feature. Xmax and Xmin

are respectively the maximum value and the minimum

value of this feature for the subset of data for each disk

manufacturer and model.

When creating the training data sets, we use majority

class under-sampling, a standard technique to improve

training in the case of very imbalanced classes, which

arises because the original data set has many more in-

394 2017 USENIX Annual Technical Conference USENIX Association

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

0 0.02 0.04 0.06 0.08 0.1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

(a) Hitachi

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

0 0.02 0.04 0.06 0.08 0.1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

(b) Seagate

Figure 1: False positive rates (x-axis) versus false negative rates (y-axis) when predicting sector reallocation (SMART

5) for Hitachi and Seagate HDDs. The bottom row shows a close-up of the false positive range [0;0.1] on the x-axis.

stances of negatives (no error), than positives (error).

E.g. if we randomly selected training instances from the

entire data set, the training set would include only a very

small number of instances with errors and hence bias the

training process towards non-error predictions. Instead

we undersample with different ratios, making sure that

at least a certain fraction of training instances are error

instances. We experimented with different ratios ranging

from 1:1 to 1:10, and found that most ratios, where about

20-60% of all training instances are positives, work well.

We have chosen to include the results for a ratio of 1:3.

When performing the training, we divide the data into

75% training data and 25% testing data for most exper-

iments, as is common practice in the machine learning

community. Later in the paper, we will also show (Sec-

tion 3.3) that much smaller training sets are sufficient.

We used the hold-out method for tuning parameters of

different algorithms, and chose the values which led to

the highest quality predictions.

3.1.4 Metrics

We measure the success of different machine learning

models by reporting two standard measures: the false

positive rate (FPR) and the false negative rate (FNR).

The false positive rate measures the frequency of false

alarms. It is the fraction of time intervals that did not

experience an error, but was falsely predicted to have an

error:

FPR =
#false positives

#false positives+#true negatives

The false negative rate measures what fraction of er-

rors was missed, i.e. the fraction of intervals that had an

error, but was predicted not to have an error:

FNR =
#false negatives

#false negatives+#true positives

3.2 Prediction Results
3.2.1 Prediction Results for HDDs

We train classifiers to predict SMART 5 (sector reallo-

cations) for two of the hard disk drive models, Hitachi’s

HDS722020ALA330 and Seagate’s ST3000DM001. We

chose those two drive models to cover two different man-

ufacturers, because they are among the most common

drives in the HDD dataset and because they are the drive

models with the highest error rates.

The graphs in Figure 1 summarize the quality of the

predictions we obtain using the various machine learning

methods on each of the two device types. The top row

shows results for the entire range of false positive ratios

(x-axis), while the bottom row shows a close-up of the

x-axis range with false positive ratios less than 0.1.

We make several observations. First, errors can be pre-

dicted with a high accuracy. For example, when limiting

the false positive rate (i.e. the rate of false alarms) to

10% we can correctly predict 90% and 95% of all errors

for Hitachi and Seagate, respectively. When limiting the

false positive rate more conservatively to 2% we can still

correctly predict 70-90% of the errors.

USENIX Association 2017 USENIX Annual Technical Conference 395

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

0 0.02 0.04 0.06 0.08 0.1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

(a) MLC-A

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

0 0.02 0.04 0.06 0.08 0.1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

(b) MLC-B

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

0 0.02 0.04 0.06 0.08 0.1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

(c) MLC-D

Figure 2: False positive rates (x-axis) versus false negative rates (y-axis) when predicting uncorrectable errors for the

three SSD models. The bottom row shows a close-up of the false positive range [0;0.1] on the x-axis.

To put those false positive rates into context, recall

that our goal is to use predictions to proactively trigger

light-weight protection mechanisms, such as a data scrub

to proactively detect errors. So, while these false posi-

tive rates would likely be too high in the context of pre-

dicting whole-disk failures and triggering drive replace-

ments, they are acceptable in our context.

Since both drive models report SMART 197 (number

of unstable sectors), one might wonder whether the pre-

dicted sector reallocations are trivial predictions based

on sectors that were already previously known to be un-

stable. We verify that this is not the case by removing

SMART 197 as an input variable, retraining the classi-

fier and still achieving the same results. We also observe

no correlation between the SMART 5 and SMART 197,

based on correlation coefficients.

When comparing different machine learning methods,

we observe that random forests consistently outperform

or match the performance of other classifiers. This is

encouraging for use in practice as random forests are

among the classifiers that are the easiest and fastest to

train, as there are very few parameters to tune. The main

parameter is the number of trees in the forest, and we

find that the results are not very sensitive to this param-

eter. For example, we find that results are the same for

forests with 20, 50, 100 and 200 trees.

On the other hand, some of the other classifiers, in par-

ticular neural networks, support vector machines and lo-

gistic regression required a considerable amount of tun-

ing as part of a lengthy training process. Despite our

extensive efforts in training these models, their perfor-

mance can only barely and only for small false positive

ranges match that of random forests.

Finally, we also repeated training and prediction for

two other SMART parameters, S187 and S197. The re-

sults are included in the appendix. We see similar trends

as for S5, in that random forests match or outperform

other predictors and we find that prediction accuracy is

high, albeit slightly lower than for S5. We hypothesize

that the accuracy for S187 and S197 is slightly lower, be-

cause whether a bad sector will affect the counts for these

two variables will depend on how the bad sector was dis-

covered (e.g. by a read or a write operation), which is a

somewhat random factor that would be hard to predict.

3.2.2 Prediction Results for SSDs

In this section we train classifiers to predict uncorrectable

errors for the three types of SSDs that we have data for.

Figure 2 shows the results. We observe that, as was the

case for HDDs, random forests outperform other classi-

fiers. Sector errors can be predicted with a significant ac-

curacy, albeit somewhat lower accuracy than for HDDs.

At a false positive rate of 10% the random forest classi-

fier catches 50-70% of errors. At a false positive rate of

2% the classifier can still catch 50-60% of errors for two

of the three models.

We also experimented with training classifiers to pre-

dict bad blocks and include the results in the appendix.

396 2017 USENIX Annual Technical Conference USENIX Association

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

ts=10%
ts=20%
ts=30%
ts=40%
ts=50%
ts=60%
ts=70%
ts=80%
ts=90%
ts=100%

Figure 3: Training of the random forest classifier for the

Hitachi drive with only a fraction of the original training

set still leads to nearly identical quality of predictions.

Random forests are again the classifier with the best per-

formance, however prediction accuracy is lower than for

uncorrectable errors. A block can be declared due to an

uncorrectable read on it, or when (even after a number of

retries) write or erase operations fail. Our results seem to

indicate that failing write or erase operations are harder

to predict than uncorrectable errors.

3.3 Robustness of Predictions

Our predictions in the previous section were based on a

relatively large amount of data. One problem in practice

is that an operator might not have access to data sets of

comparable size (e.g. because the system is smaller or

still relatively new, and hence not much data is available

yet). To address this problem, we experimented with two

different approaches. We repeated the training process,

but with significantly smaller amounts of training data.

Figure 3 shows the results, when training random forests

for the Hitachi HDD on only a fraction of the original

training set, ranging from only 10%, to 90% of the train-

ing data that was used in the previous section. We ob-

serve that prediction quality is hardly affected.

We also experimented with solutions to the problem

that no prior data is available when a new type of de-

vice is first deployed. In particular, we ran experiments

where we use a predictor that was trained on one drive

model to make prediction for another drive model. Fig-

ure 4 shows the accuracy of predictions when we use

random forests trained on MLC-B and MLC-D to pre-

dict errors for MLC-A (Figure 4(a)) and we use random

forests trained on the Hitachi drive to predict sector er-

rors on the Seagate drive (Figure 4(b)). We observe that

while prediction accuracy drops, the quality of the result-

ing predictions is still high.

This observation is particularly interesting as the

drives that were used for model building differed in many

important aspects significantly from those we make pre-

dictions for. For example, SSD model MLC-B differs

from MLC-A in manufacturer and lithography and the

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

Forest trained on MLC-A
Forest trained on MLC-B
Forest trained on MLC-D

(a) MLC-A

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

Forest trained on Hitachi
Forest trained on Seagate

(b) Seagate

Figure 4: Results for cross-model prediction: We use

random forests trained on MLC-B and MLC-D to predict

errors for MLC-A in the top figure and we use random

forests trained on the Hitachi drive to predict sector er-

rors on the Seagate drive in the bottom figure.

two drive models have vastly different rates of uncor-

rectable errors. The two hard disk drives differ in their

manufacturer, their capacity and their rate of sector er-

rors. Moreover, the data for the two hard disk drives

is based on SMART reporting, which is inconsistent be-

tween different manufacturers and models. For example,

the Hitachi model does not report all the SMART param-

eters the Seagate model reports.

4 Tuning Scrub Rates based on Predictions

In the previous section we have developed classifiers to

predict future sector errors. In this section, we explore

one particular idea for how such predictions could be

used to improve the reliability of storage systems.

4.1 Idea

Most storage systems employ a data scrubber to protect

against data loss due to sector errors. A scrubber is a

background process that periodically performs full-disk

scans to proactively detect and correct sector errors. For

example, some filesystems, such as ZFS and Btrfs, pro-

vide scrubbing at the filesystem level, RAID controllers

may initiate periodic scrubs at the block level, and com-

mercial storage systems, such as Netapp’s, often support

USENIX Association 2017 USENIX Annual Technical Conference 397

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

3.5

4

Fraction of time spent in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

Hitachi

X=4
X=3
X=2

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

3.5

4

Fraction of time spent in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

Seagate

X=4
X=3
X=2

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

3.5

Fraction of time spent in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

MLC−A

X=4
X=3
X=2

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

Fraction of time spent in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

MLC−B

X=4
X=3
X=2

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

3.5

Fraction of time spent in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

MLC−D

X=4
X=3
X=2

Figure 5: Simulating the adaptive scrubber. The X-axis shows the fraction of time the scrubber spends in accelerated

mode and the Y-axis shows the factor decrease in mean time to error detection. Each line corresponds to a different

factor X of acceleration.

scrubbing at the file and the block level (termed data

scrub versus media scrub, respectively [4]).

The goal of the scrubber is to minimize the time be-

tween the occurrence of an error and its detection (Mean

Time To Detection, MTTD), since during this time the

system is vulnerable to data loss (e.g. if a RAID array

experiences a whole-disk failure(s) before the sector er-

ror is detected and corrected). In addition to minimizing

MTTD, a scrubber must ensure that it does not signif-

icantly affect the performance of foreground workloads

running on the system.

Currently, administrators in practice configure a scrub-

ber to run at a fixed scrub rate, which must balance the

two goals above: Scrubbing at a fast rate will detect er-

rors more quickly, while a slow scrub speed imposes less

load on the system. A common rule of thumb is to com-

plete one full scrub of a drive once a week or bi-weekly.

Instead, we propose to adapt the scrub rate dynami-

cally based on the predicted chance of encountering er-

rors, rather than using one fixed scrub rate throughout.

This is similar to an idea proposed as future work by

Ma et al. [13], who suggest to increase the scrub rate

for drives with higher error rates. We use our methods

from Section 3.2 to predict errors, and whenever an error

is predicted we accelerate the speed at which the sys-

tem scrubs. When no error is predicted we reduce the

scrub speed. Note that errors are rare events, so pro-

vided we choose a predictor with a reasonably low rate

of false positives, the system should rarely trigger accel-

erated scrubs.

4.2 Evaluation Setup

We set up a series of simulations to evaluate the effec-

tiveness of an adaptive scrubber compared to a fixed rate

scrubber. We consider adaptive scrubbers that switch be-

tween two speeds, s1 and s2, where s1 is the slower speed

that is used when no errors are predicted and s2 is the ac-

celerated speed that is used when an error is predicted.

One might also consider a continuous spectrum of scrub

speeds, but we defer this discussion to Section 4.4.

In all simulations, we rely on predictors based on ran-

dom forests, as they tended to provide the highest quality

predictions. The training of a random forest for a given

device type can be configured to achieve different rates of

false positives and false negatives. The rate of false pos-

itives that is acceptable, will be system dependent based

on the system’s sensitivity to added workload. For ex-

ample, for a false positive rate of 2% a system will spend

roughly 2 weeks out of the 52 weeks in a year scrub-

bing at an accelerated rate, without catching any errors.

At a lower false positive rate, the system will spend less

time in accelerated scrub mode, but will also be slower

at catching some errors (as the false negative rate will go

up). We therefore experiment with a range of different

configurations for the random forest.

We set the s1 parameter, the default scrub rate when

no errors are predicted, to one full disk scrub per week,

as this is a common scrub frequency in practice. The

second parameter is s2, i.e. the rate at which the system

scrubs in accelerated mode. Again the choice of this

parameter will depend on the system’s sensitivity to

398 2017 USENIX Annual Technical Conference USENIX Association

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

3.5

4

Fraction of time in accelerated mode

Fa
ct

or
 im

pr
ov

em
en

t i
n

M
TT

D

X=4
X=3
X=2

Figure 6: Results when the adaptive scrubber employs

the classifier trained for the Hitachi drive to predict er-

rors on the Seagate drive (red lines) compared to scrub

results when prediction for Seagate is done on the models

trained on Seagate data (blue lines).

added workload. If we increase the scrub speed by

a factor of X during an accelerated scrub, the MTTD

will on average be reduced by a factor of X , but the

system experiences a higher load. In our simulations,

we therefore experiment with a range of X values. We

perform predictions once a week.

4.3 Results

Figure 5 shows the results when simulating the adaptive

scrubber using random forests. The X-axis shows the

fraction of time the scrubber spends in accelerated mode

and the Y-axis shows the factor decrease in mean time

to error detection. Each line corresponds to a different

factor of acceleration used by the scrubber when an error

is predicted. E.g. a 2X factor of acceleration means that

the scrub rate is doubled, i.e. if the default scrub rate is

to scrub once per week, in accelerated mode the scrubber

will complete two scrubs per week.

We observe that even if we limit the time the system is

spending in the accelerated scrub mode to 2% of the total

time (i.e. we are using predictors with a very low false

positive rate), the factor decrease in mean time to error

detection is significant. For example, in the case of the

hard disk drives when the scrub speed is doubled upon

an error prediction we detect errors on average 1.7-1.8X

faster than a fixed rate scrubber. Even for the SSDs, for

which the classifiers’ predictions were less accurate, the

savings are still significant. E.g. for MLC-A and MLC-D

errors are detected on average 1.4-1.5X faster when the

scrub speed is doubled upon an error prediction, even if

the total time spent in accelerated mode is limited to 2%.

We also consider the case where predictors for a given

drive model are not available, e.g. because the drive

model is new and has just been deployed and where pre-

dictions are obtained by using classifiers trained for a

different drive model. Recall that in Section 3.3 we pre-

dicted errors for the Seagate model based on a classifier

trained for the Hitachi model. Figure 6 shows the re-

sults when the adaptive scrubber adjusts scrub speeds for

the Seagate drive based on predictions from the classifier

trained on the Hitachi drive. We observe that the im-

provements in the mean time to detection are still very

good.

4.4 Refinements and Practical Concerns

While our results provide a proof-of-concept for

prediction-based tuning of scrub rates, the methods could

be further refined. For example, we only considered a

scrubber that alternates between two speeds. One might

further improve results by adjusting scrub speeds on a

continuous spectrum, based on the certainty of an error

prediction. In their raw form forests (and most of the

other methods we considered) produce error probabili-

ties, rather than a binary error versus no-error prediction.

The binary predictions are produced by applying some

thresholds to the produced probabilities. One could in-

stead use the raw probabilities and adjust the scrub speed

along a continuous spectrum based on how large the cur-

rent error probability is, and might do better than in the

simple two-speed scrubber.

One practical concern with accelerating scrub speeds

is the impact that the additional load has on the system.

There are tools available to an administrator to mitigate

possible negative effects on foreground workload. Be-

sides the obvious one of limiting the increase in scrub

speed to some maximum value the administrator deems

tolerable for their system, an administrator could also

put a limit on the maximum amount of time the system

spends in accelerated scrubs. Moreover, there are tech-

niques that have been suggested recently [1] to reduce the

impact of storage maintenance workloads on the system

that can be applied to scrubbing as well.

A secondary concern might be that the additional load

imposed on the system might induce new errors. While

solid state drives are known to wear out faster under

heavy write workloads, scrub operations consist of reads

only, and two recent papers [15, 22] independently show

that there is no correlation between the number of reads

and the number uncorrectable errors in a system. Simi-

larly, for hard disk drives one might expect writes to have

a correlation with sector errors, as an incorrect write (e.g.

a high-fly write) might be the cause of sector errors, but a

study of field data [21] finds no correlation between read

operations and sector errors.

5 Other Use Cases for Error Prediction

This section proposes and discusses the use of error pre-

dictors as adaptive policy-enforcing mechanisms in stor-

age systems. We leave the detailed exploration of these

use cases to future work.

USENIX Association 2017 USENIX Annual Technical Conference 399

5.1 Tuning Drive Internal Mechanisms

5.1.1 Adaptive Error Correcting Codes

There has been some recent work in the flash community

to equip drives with adaptive error correcting codes [7,

10]. The original motivation was that the reliability of

flash cells changes over their lifetime, so one could use a

smaller, less powerful code at the beginning of a drive’s

life and switch to larger, but stronger codes later on, as

the drive ages. Rather than using the age of a drive as an

indicator whether the drive should switch to the stronger

ECC, it would be natural to use an error predictor, and

trigger the switch when predictions indicate that the drive

is more likely to develop uncorrectable errors.

5.1.2 Proactive Retirement of Blocks or Chips

Our predictors only predict whether a drive will experi-

ence sector errors or bad blocks, or not. We do not pre-

dict the location of any future errors (i.e. which block

and which chip), because the field data available to us

does not include location information. However, it is

likely that errors occur at or near those locations that are

responsible for early symptoms of errors (e.g. various

types of prior errors).

It would be interesting to also predict the precise loca-

tion of future errors, and investigate whether these pre-

dictions can be used to proactively retire a block or a

chip. We hope this work will encourage storage manu-

facturers and others to explore making such predictions

using data available inside drives, and exposing this in-

formation to consumers.

5.2 Tuning the Cache Policy in SSD Caches

SSDs are not only used for persistent storage of data,

but also as a caching layer. In the case of write-through

caches, errors do not pose a risk for data loss. They just

translate to higher read latency for data affected by er-

rors, as accessing it will turn into a cache miss. In the

case of write-back caches, errors create the potential for

data loss if they affected dirty data in the cache that has

not yet been flushed to persistent storage. One could

therefore consider a policy where an error predictor is

used to switch the cache policy from write-back to write-

through when a predictor indicates future errors.

5.3 Tuning Filesystem Mechanisms

Many filesystems contain mechanisms to protect against

sector errors. These range from replicating important

data structures (such as a filesystem’s super-block), to

adding checksums for metadata (such as inodes), repli-

cating data as well as metadata, or even RAID-5 or

RAID-6 level data protection in the case of ZFS. An in-

teresting area of future work is to explore which of these

mechanisms could be dynamically enabled using error

predictors. This would be particularly useful if filesys-

tem mechanisms such as metadata replication had some

advance warning about which specific blocks or chips

were likely to fail (as discussed in Section 5.1.2).

6 Related Work

6.1 Predicting Errors in Storage Systems

To the best of our knowledge there is no prior work on

predicting partial drive failures, such as sector errors on

hard disks and uncorrectable errors and bad blocks in

solid state drives. Instead prior work on drive reliability

predictions focuses on predicting complete drive failure

for HDDs [8, 9, 11–13, 16, 24] and SSDs [17].

The motivations and requirements for predicting com-

plete drive failure are very different from our work on

predicting partial drive failures. The goal is to use pre-

dictions of drive failures in order to initiate proactive

drive replacement before the failure occurs. Such predic-

tions require an extremely low false positive rate, since

the unnecessary replacement of healthy drives is associ-

ated with significant costs. In contrast, we are interested

in predicting partial drive failures to guide the system to

take lighter-weight proactive measures, such as increas-

ing the scrub rate. Another difference between our work

and much of the prior work is that training and test in-

stances in prior work were often not drives deployed in

productions systems, but rather drives run in a controlled

environment by the manufacturer [11,16], or the data sets

that were used were of very limited size (e.g. less than

20 faulty drives in [8, 9]).

Finally, our work explores a wide range of modern ma-

chine learning techniques, which subsume most of the

techniques used in prior work. Hamerly et al. [9] use

Bayesian approaches. We applied logistic regression in-

stead, as naive Bayes methods make a strong assumption

on the conditional independence of the input variables.

Hughes et al. [11] use statistical hypothesis tests, but find

in later work that SVMs perform better [16]. Our work

includes SVMs, as well as a number of other techniques

not explored by [11,16]. The work by Pinheiro et al. [20]

does not attempt to predict drive failures, however they

observe a correlation between some SMART parameters

and drive failures. The work by Ma et al. [13] uses a sim-

ple threshold-based prediction. They find that by putting

a threshold on the number of sector reallocations drive

failure can be predicted well. We experimented with this

approach and find that it performs poorly on the hard disk

data, compared to the machine learning techniques, and

is limited to results with very high false negative rates for

the solid state drives.1

1For space reasons we do not include detailed results for threshold-

ing in this work, but instead refer the reader to a tech-report [14].

400 2017 USENIX Annual Technical Conference USENIX Association

We are aware of only three papers that use machine-

learning based techniques on large-scale field data and

again they are predicting whole drive failures [12,17,24].

Two of the papers focus on HDDs and find that CART

models outperform SVMs and neural networks [12, 24].

Narayanan et al. [17] show that random forests can pre-

dict fail-stop events in SSDs (events that lead to server

shut-down and typically drive replacement), albeit accu-

racy is lower than that reported in papers predicting HDD

failure. Our work includes all these methods, among

others, and we find that forests are superior to the other

methods for predicting sector errors.

6.2 Improving Scrubbers

Prior work on scrubbing is mostly focused on minimiz-

ing the impact of scrub operations on foreground traf-

fic, e.g. by trying to submit scrub operations during

idle times [2] or by piggy-backing it on workload oper-

ations [1], or reducing the time to detect errors by mod-

ifying the order in which sectors are scrubbed [18]. The

only work we are aware off that adjusts scrub speeds is

by Paris et al. [19] and proposes to perform an expedited

scrub run after a whole-disk failure in a RAID-6 array.

Our idea of adjusting scrub speed based on error pre-

dictions is similar to Ma’s [13] future work suggestion

of increasing scrub rates for drives with high error rates.

Our work on adjusting scrub speed based on error pre-

dictions is orthogonal to work on minimizing the impact

of scrub operations or the optimal ordering of scrub op-

erations within a scrub and can be used in conjunction

with any of these techniques.

7 Sharing of Data

All the data on hard disk drives used in the paper is al-

ready publicly available on the Backblaze home page,

so all our results are reproducible by other researchers.

The data on solid state drives has been shared with us by

Google, and we are currently working with our collabo-

rators at Google towards sharing this data publicly.

8 Conclusion

This paper explores the use of machine learning to make

storage systems more reliable in the face of latent sector

errors. We experiment with a wide variety of machine

learning techniques and find that sector errors in hard

disk drives and solid state drives can be predicted accu-

rately with classifiers based on random forests, which are

easy to train and to parameterize. We show that training

is robust even for small training sets or when training

data comes from a different drive model than the target

system. We also discuss a number of possible use cases

for improving storage system reliability through the use

of sector error predictors. We evaluate one such use case

in detail: We show that the mean time to detecting errors

(and hence the window of vulnerability to data loss) can

be greatly reduced by adapting the speed of a scrubber

based on error predictions.

Appendix

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 7: Predicting SMART 197 for Hitachi

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 8: Predicting SMART 187 for Seagate

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 9: Predicting SMART 197 for Seagate

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 10: Predicting bad blocks for MLC-A

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 11: Predicting bad blocks for MLC-B

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

CART
NN
LR
SVM
Forests

Figure 12: Predicting bad blocks for MLC-D

USENIX Association 2017 USENIX Annual Technical Conference 401

9 Acknowledgments

We would like to thank the Usenix ATC ’17 anonymous

reviewers, and our shepherd Fred Douglis for the valu-

able feedback and the many good questions they brought

up. While we did not have room to address all of them

in this paper, we refer the reader to an extended version

of our paper, including additional experiments, which ad-

dresses many of these questions [14]. We would also like

to thank Arif Merchant for his continued efforts to make

the Google SSD data available.

References

[1] AMVROSIADIS, G., BROWN, A. D., AND GOEL, A. Oppor-

tunistic storage maintenance. In Proceedings of the 25th Sym-

posium on Operating Systems Principles (New York, NY, USA,

2015), SOSP ’15, ACM, pp. 457–473.

[2] AMVROSIADIS, G., OPREA, A., AND SCHROEDER, B. Prac-

tical scrubbing: Getting to the bad sector at the right time. In

Dependable Systems and Networks (DSN), 2012 42nd Annual

IEEE/IFIP International Conference on (june 2012), pp. 1 – 12.

[3] BACKBLAZE. The backblaze hard drive data and stats.

https://www.backblaze.com/b2/hard-drive-test-data.html, 2016.

[4] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY,

S., AND SCHINDLER, J. An analysis of latent sector errors in

disk drives. In Proceedings of the 2007 ACM SIGMETRICS In-

ternational Conference on Measurement and Modeling of Com-

puter Systems (New York, NY, USA, 2007), SIGMETRICS ’07,

ACM, pp. 289–300.

[5] BREWER, E., YING, L., GREENFIELD, L., CYPHER, R., AND

TS’O, T. FAST’16 Keynote talk: Disks for Data Centers. Tech.

rep., Google, 2016.

[6] CHANG, C.-C., AND LIN, C.-J. The libsvm library for matlab.

https://www.csie.ntu.edu.tw/ cjlin/libsvm, 2017.

[7] CHEN, T.-H., HSIAO, Y.-Y., HSING, Y.-T., AND WU, C.-W.

An adaptive-rate error correction scheme for nand flash memory.

In VLSI Test Symposium, 2009. VTS’09. 27th IEEE (2009), IEEE,

pp. 53–58.

[8] GOLDSZMIDT, M. Finding soon-to-fail disks in a haystack. In

Proceedings of the 4th USENIX Conference on Hot Topics in

Storage and File Systems (Berkeley, CA, USA, 2012), HotStor-

age’12, USENIX Association, pp. 8–8.

[9] HAMERLY, G., ELKAN, C., ET AL. Bayesian approaches to fail-

ure prediction for disk drives. In ICML (2001), vol. 1, Citeseer,

pp. 202–209.

[10] HARATSCH, E. F. Nand flash media management algorithms. In

Flash Memory Summit (2016).

[11] HUGHES, G. F., MURRAY, J. F., KREUTZ-DELGADO, K., AND

ELKAN, C. Improved disk-drive failure warnings. IEEE Trans-

actions on Reliability 51, 3 (2002), 350–357.

[12] LI, J., JI, X., JIA, Y., ZHU, B., WANG, G., LI, Z., AND LIU,

X. Hard drive failure prediction using classification and regres-

sion trees. In 44th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, DSN 2014, Atlanta, GA,

USA, June 23-26, 2014 (2014), pp. 383–394.

[13] MA, A., TRAYLOR, R., DOUGLIS, F., CHAMNESS, M., LU,

G., SAWYER, D., CHANDRA, S., AND HSU, W. Raidshield:

Characterizing, monitoring, and proactively protecting against

disk failures. Trans. Storage 11, 4 (Nov. 2015), 17:1–17:28.

[14] MAHDISOLTANI, F., STEFANOVICI, I., AND SCHROEDER, B.

Improving storage system reliability with proactive error predic-

tion. Tech. Rep. 633, University of Toronto, 2017.

[15] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A large-scale

study of flash memory failures in the field. In Proceedings of the

2015 ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computer Systems (New York, NY, USA,

2015), SIGMETRICS ’15, ACM, pp. 177–190.

[16] MURRAY, J., HUGHES, G., AND KREUTZ-DELGADO,

K. Machine learning methods for predicting failures in hard

drives. Journal of Machine Learning Research (2005).

[17] NARAYANAN, I., WANG, D., JEON, M., SHARMA, B.,

CAULFIELD, L., SIVASUBRAMANIAM, A., CUTLER, B., LIU,

J., KHESSIB, B., AND VAID, K. Ssd failures in datacenters:

What? when? and why? In Proceedings of the 9th ACM Interna-

tional on Systems and Storage Conference (2016), SYSTOR ’16,

ACM, pp. 7:1–7:11.

[18] OPREA, A., AND JUELS, A. A clean-slate look at disk scrub-

bing. In Proceedings of the 8th USENIX Conference on File

and Storage Technologies (Berkeley, CA, USA, 2010), FAST’10,

USENIX Association, pp. 5–5.

[19] PARIS, J.-F., SCHWARZ, T., AMER, A., AND LONG, D. D. E.

Improving disk array reliability through expedited scrubbing. In

Proceedings of the 2010 IEEE Fifth International Conference on

Networking, Architecture, and Storage (Washington, DC, USA,

2010), NAS ’10, IEEE Computer Society, pp. 119–125.

[20] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A. Failure

trends in a large disk drive population. In Proceedings of the 5th

USENIX Conference on File and Storage Technologies (2007),

FAST ’07, USENIX Association.

[21] SCHROEDER, B., DAMOURAS, S., AND GILL, P. Understand-

ing latent sector errors and how to protect against them. In Pro-

ceedings of the 8th USENIX Conference on File and Storage

Technologies (Berkeley, CA, USA, 2010), FAST’10, USENIX

Association.

[22] SCHROEDER, B., LAGISETTY, R., AND MERCHANT, A. Flash

reliability in production: The expected and the unexpected. In

Proceedings of the 14th Usenix Conference on File and Storage

Technologies (Berkeley, CA, USA, 2016), FAST’16, USENIX

Association, pp. 67–80.

[23] WIKIPEDIA. S.m.a.r.t. https://en.wikipedia.org/wiki/S.M.A.R.T.

[24] ZHU, B., WANG, G., LIU, X., HU, D., LIN, S., AND MA, J.

Proactive drive failure prediction for large scale storage systems.

In IEEE 29th Symposium on Mass Storage Systems and Technolo-

gies, MSST 2013, May 6-10, 2013, Long Beach, CA, USA (2013),

pp. 1–5.

402 2017 USENIX Annual Technical Conference USENIX Association

Towards Production-Run Heisenbugs Reproduction
on Commercial Hardware

Shiyou Huang
Texas A&M University

huangsy@tamu.edu

Bowen Cai
Texas A&M University
bowen.cai@tamu.edu

Jeff Huang
Texas A&M University

jeff@cse.tamu.edu

Abstract

We present a new technique, H3, for reproducing
Heisenbugs in production runs on commercial hardware.
H3 integrates the hardware control flow tracing capa-
bility provided in recent Intel processors with symbolic
constraint analysis. Compared to a state-of-the-art so-
lution, CLAP, this integration allows H3 to reproduce
failures with much lower runtime overhead and much
more compact trace. Moreover, it allows us to develop
a highly effective core-based constraint reduction tech-
nique that significantly reduces the complexity of the
generated symbolic constraints. H3 has been imple-
mented for C/C++ and evaluated on both popular bench-
marks and real-world applications. It reproduces real-
world Heisenbugs with overhead ranging between 1.4%-
23.4%, up to 8X more efficient than CLAP, and incurs
only 4.9% runtime overhead on PARSEC benchmarks.

1 Introduction

The ability to reproduce software bugs is crucial for de-
bugging, yet due to the often non-deterministic mem-
ory races among threads, it is notoriously difficult to
reproduce concurrency bugs, i.e., the so-called Heisen-
bugs [15]. Researchers have investigated significant ef-
forts in record & replay (RnR) systems aiming to elimi-
nate the non-determinism. However, it remains challeng-
ing to deploy an RnR system for production runs. Most
existing solutions either are too slow due to the high run-
time overhead incurred by tracing the shared memory
dependencies, introduce the observer effect that makes
the Heisenbugs disappear [17, 20, 31], or require special
hardware that does not exist [16, 25, 26, 28, 33].

CLAP [18] introduces the idea of recording only
thread-local information (i.e., thread-local control flow
paths) and then using offline constraint solving to recon-
struct the shared memory dependencies. It is a promising
solution for reproducing Heisenbugs because it does not

record any cross-thread communication (data or synchro-
nization); hence it requires no synchronizations during
recording, which not only reduces the runtime overhead
but also minimizes the observer effect.

To enable a production-run RnR solution, however,
CLAP is still unsatisfactory due to two important chal-
lenges. First, although CLAP is much faster than con-
ventional solutions, the runtime overhead incurred by
CLAP using software path-recording is as large as 3X,
which is unacceptable for most production environments.
Second, the constraints generated by CLAP can be too
complex to solve. In the worst case, the complexity of
the constraints is exponential in the trace size. Despite
that SMT solvers (e.g., Z3 [14]) are becoming increas-
ingly powerful, in practice, the constraints can become
too large to solve in a reasonable time.

In this paper, we present H3, a new RnR system to
reproduce Heisenbugs by extending CLAP with com-
mercial hardware features. Our key observation is that
both of the aforementioned challenges can be effectively
addressed by hardware-supported control-flow tracing.
As also indicated in the CLAP paper [18], for path
recording, hardware techniques [30] can achieve as low
as 0.6% overhead. In reality, recent Intel processors
(starting from the 5th generation) have provided a new
feature called Processor Tracing (PT) to trace the pro-
gram control flow with very small (less than 5%) run-
time overhead [2]. PT uses highly-compacted packets
(i.e., only one bit for each conditional branch) to cap-
ture branch outcomes, often producing a compact trace
requiring < 1 bit per retired assembly instruction. More-
over, hardware-supported tracing allows us to perform
a significant reduction of the constraints generated by
CLAP, because memory accesses executed on each core
are ordered internally. We develop a core-based con-
straint reduction technique that reduces the complexity
of the constraints from exponential in the trace size to
only exponential in the number of cores.

As illustrated in Figure 1, H3 consists of two phases.

USENIX Association 2017 USENIX Annual Technical Conference 403

core 0 core 1

core 3core 2

T0 Tn...Binary image

Execution recorded
by each core

Packet log Decode

 user end
Symbolic trace
of each thread

1. Constraints formula
2. SMT solver A global

schedule

Recording & Decoding Offline Constraints Construction & Solving

- Path constraints
- Core-based read-write constraints
- Synchronization constraints
- Memory order constraints

- Path profiles
generation

- Symbolic
execution

PT tracing

Figure 1: H3 Overview.

First, users run the target program on a COTS (commer-
cial off-the-shelf) hardware with PT enabled. Once a
failure occurs, the PT trace together with the thread con-
text switch log are sent to the developer for reproducing
the bug. From the PT trace and the binary image of the
target program, H3 generates the instructions executed
on each core. Second, H3 infers the instructions exe-
cuted by each thread based on the thread context switch
log and generates a symbolic trace for each thread. It
then constructs symbolic constraints with the core-based
constraint reduction, and computes a global failure re-
producing schedule with an SMT solver.

Despite a clear design, realizing H3 faces two main
additional technical challenges: 1) How to transform the
low-level hardware trace to a high-level (source or IR)
trace? 2) How to capture the data values (PT does not
trace data values)? To solve the first challenge, we trans-
form the hardware trace into a sequence of IR-level tu-
ples, to identify what basic blocks are executed by each
thread. This is done by matching the low-level assembly
instructions in the per-thread local execution with that in
the IR (i.e., LLVM bitcode). For the second challenge,
we symbolically execute the IR along the sequence of
basic blocks for each thread. The unknown data values
(including all the unknown read values and addresses)
are encoded as symbolic variables, and are computed via
constraint solving.

We implemented H3 for C/C++ programs based on
PT, and evaluated it with a collection of popular perfor-
mance benchmarks and real-world applications contain-
ing known Heisenbugs. Our experimental results show
that H3 incurs only 1.4% to 23.4% runtime overhead
for all the applications and only 4.9% for the PARSEC
benchmarks on average, as much as 8X more efficient
than CLAP. Moreover, H3 reduces the size of the con-
straints in CLAP by 28% to 99%, improving the speed
of constraint solving by 2X-250X in most cases, and en-
abling H3 to reproduce more bugs than CLAP within a
limited time budget.

This paper makes the following contributions:

• To our best knowledge, H3 is the first technique that
integrates hardware control flow tracing with offline
symbolic analysis for reproducing production-run

Heisenbugs on commercial hardware.

• We develop a new core-based constraint reduction
technique that significantly reduces the complexity
of generated symbolic constraints from exponential
in the trace size to exponential in the core counts.

• We implement and evaluate H3 on both popular
benchmarks and real applications. Experiments
show that H3 can reproduce real Heisenbugs in pro-
duction runs with very small overhead.

2 Background

In this section, we first review the CLAP technique and
elaborate its limitations. We then show how hardware
control-flow tracing addresses these limitations.

2.1 CLAP
CLAP can not only reproduce Heisenbugs under sequen-
tial consistency (SC), but also a wide range of weak con-
sistency memory models, including TSO (total store or-
der) and PSO (partial store order) [9]. It has two key
components: I) collecting per-thread control flow infor-
mation via software path-recording (using an extended
Ball-Larus path-recording algorithm [11]), and II) as-
sembling a global schedule by solving symbolic con-
straints constructed over the thread local paths. To as-
semble a global schedule, CLAP has three steps:

1. Along the local path of each thread, it collects all the
critical accesses (read, write or synchronization) to
shared variables.

2. It introduces a fresh symbolic value for each read
access, and collects the path constraints following
the control flow for each thread via symbolic execu-
tion; it introduces an order variable for each critical
access, and generates additional constraints accord-
ing to synchronization, memory-consistency model,
and potential inter-thread memory dependencies.

3. It uses an SMT solver to solve the constraints, to
which the solutions correspond to global sched-
ules that can reproduce the error. In other

404 2017 USENIX Annual Technical Conference USENIX Association

words, the SMT solver computes what inter-thread
memory dependencies would satisfy the memory-
consistency model and enable the recorded local ex-
ecution path.

CLAP contains several components to model a failing
execution as constraints (e.g., failure, path, synchroniza-
tion, read-write, and memory model). We next use an
example in Figure 2 to illustrate these constraints. Sec-
tion 3.3 presents the constraint model in detail.

The program in Figure 2 contains a real Heisenbug
that only manifests under the PSO memory model, which
caused a $12 million financial loss in the real-world [7].
The root cause of the bug is that the write to z (line 5) can
be reordered with the writes to x and y (lines 3-4) under
PSO. The dashed arrow in the figure shows that the satis-
faction of the if condition at line 7 depends on the write
to z at line 5, which always happens after lines 3 and 4
under SC. However, under PSO, the write to z is allowed
to happen before the write to y at line 4. As a result,
when the if condition is satisfied, the value of x+ 1 and
y may be unequal and hence triggering the error. The
error can be triggered by the following PSO schedule:
1-2-3Rx -3Wx -4Ry -5-7-8Rx -8Ry (the subscripts are used to
distinguish different operations from the same line).

The CLAP constraints for reproducing the buggy PSO
schedule are shown in Figure 3. We use the order vari-
able Oi denotes the order of the corresponding access at
line i. The symbolic variable Ri

v denotes the value re-
turned by the read access to the variable v at line i, and
W i

v the value written to v by the write at line i. To dis-
tinguish different operations at the same line, we add the
type of the operation to the order variable. For example,
ORx

3 and OWx
3 represent the orders of the read and write to

x at line 3, respectively.
To manifest the error, CLAP enforces the assertion

to be violated while satisfying the path constraints, i.e.,
true≡ (R7

z = 1∧R8
x +1 6=R8

y). A major part of the CLAP
constraints is the read-write constraints, which are used
to capture the potential inter-thread memory dependen-
cies. Because the order of the memory accesses from
different threads is unknown, the read-write constraints
must encode a schedule for every potential read-write
match, in which the read returns the value written by the
write. For example, the read of z at line 7, R7

z , may be
matched with either the initial value 0, or the value writ-
ten by line 2 or 5. If the former, the read R7

z should hap-
pen before all the writes to z; if the latter, R7

z should be
matched with the corresponding write. For example, if
R7

z returns the value by the write at line 2, the constraint
R7

z =W 2
z ∧O2 < O7∧(O5 < O2∨O7 < O5) is generated.

CLAP Limitations

1. Exponential complexity of read-write constraints.
The read-write constraints generated by CLAP are very

Figure 2: A real PSO bug in an electron microscope soft-
ware [7], which caused a $12 million loss of equipment.

Read-Write	Constraints	
("#$ = 0	 ∧)$ <)+) ∨	

("#$ = .#+ 	∧)+ <)$ ∧ ()/ <)+ ∨)$ <)/)) ∨	
("#$ = .#/ 	∧)/ <)$ ∧ ()+ <)/ ∨)$ <)+))	

Memory	Order	Constraints	
SC	 PSO	

)0 <)+ <)123 <)143 <)523
<)543 <)/ <)6
)$ <)723 <)7

28

)0 <)+)/ <)6	
)123 <)143)523 <)543

)$ <)723 <)7
28

Path	Constraints	 Failure	Constraints	
"#$ = 1	 ":7 + 1! = "=7	

Figure 3: The CLAP constraints for reproducing the
PSO error in Figure 2. To save space, we show the read-
write constraints for z only. Those for x and y are similar.

complicated in practice because there may exist many
writes that a read can be matched with. In the worst
case, the complexity of the read-write constraints (i.e.,
the space of scheduling choices) is exponential in the
number of writes (which typically accounts for a large
percentage of the events in the trace). This is a bottleneck
in CLAP especially for programs with intensive inter-
thread memory dependencies, because the SMT solver
may fail to solve the constraints. We will present a de-
tailed complexity analysis in Section 3.4.
2. Slowdown of software path-recording. CLAP uses

a highly optimized algorithm (i.e., Ball-Larus [11]) to
track the control flow information for each thread. Al-
though it greatly reduces the runtime overhead incurred
by many other RnR solutions, it still incurs 10%-3X per-
formance slowdown on popular benchmarks [18]. For
instance, for the example in Figure 2, when the code is
executed in a loop for 10 million times, CLAP incurs
2.3X program slowdown.
3. Difficulty of code instrumentation. It is difficult

to apply software path-recording in production runs be-
cause it requires code instrumentation. Real-world pro-
grams often rely on external libraries, proprietary code,
and/or are composed from layers of frameworks and ex-
tended by third-party plugins. Tracing the whole pro-

USENIX Association 2017 USENIX Annual Technical Conference 405

Intel CPU
core 0...n

Driver

Packets stream
(per logical CPU)

Binary
Image files

Intel PT
Software
Decoder

Reconstructed
execution

Configure & Enable
Intel PT

Runtime data

Figure 4: Components of Intel Processor Tracing (PT).

gram control flow by code instrumentation is difficult or
impossible. For example, if a failure is caused by a bug
in the uninstrumented external code, the constraints gen-
erated by CLAP may be incomplete and hence fail to
reproduce the bug.

2.2 Hardware Control-Flow Tracing
Tracing control flow at the hardware level opens a door to
apply CLAP in production runs by addressing the afore-
mentioned limitations in three ways. First, hardware-
supported control flow tracing is significantly more ef-
ficient than software-level path-recording. Compared to
the 10%-3X overhead by software path-recording, PT
achieves as low as 5% runtime overhead [2]. Second,
hardware can track the full control flow of the code ex-
ecuted on each core. PT can not only trace the applica-
tion code, but also the whole operating system kernel [2].
Third, tracing the control flow on each core enables a
significant reduction of the complexity of the read-write
constraints, because reads and writes from the same core
are ordered already.

Next, we first review the basics of PT and then show its
performance improvement over software path-recording
on PARSEC 3.0 benchmarks [5].

Intel PT. As depicted in Figure 4, PT consists of two
main components: tracing and decoding. For tracing,
it only records the instructions that are related to the
change of the program control flow and omits everything
that can be deduced from the code (e.g., unconditional
direct jumps). For each conditional branch executed, PT
generates a single bit (1/0) to indicate whether a condi-
tional branch is taken or not taken. As such, PT tracks
the control flow information, such as loops, conditional
branches and function calls of the program, with minimal
perturbation, and outputs a highly compact trace.

For decoding, PT provides a decoding library [1] to
reconstruct the control flow from the recorded raw trace.
It first synchronizes the packet streams with the synchro-
nization packets generated during tracing, and then iter-
ates over the instructions from the binary image to iden-
tify what instructions have been executed. Only when the

Table 1: Runtime and space overhead of PT on PARSEC.

Program
Native PT

time (s) time (s) OH(%) trace
bodytrack 0.557 0.573 2.9% 94M

x264 1.086 1.145 5.4% 88M
vips 1.431 1.642 14.7% 98M

blackscholes 1.51 1.56 9.9% 289M
ferret 1.699 1.769 4.1% 145M

swaptions 2.81 2.98 6.0% 897M
raytrace 3.818 4.036 5.7% 102M
facesim 5.048 5.145 1.9% 110M

fluidanimate 14.8 15.1 1.4% 1240M
freqmine 15.9 17.1 7.5% 2468M

Avg. 4.866 5.105 4.9% 553M

decoder cannot decide the next instruction (e.g., when it
encounters a branch), the raw trace is queried to guide
the decoding process.

PT is configurable via a set of model-specific registers
by the kernel driver. It provides a privilege-level filter-
ing function for developers to decide what code to trace
(i.e. kernel vs. user-space) and a CR3 filtering function
to trace only a single application or process. PT on Intel
Skylake processors also supports filtering by the instruc-
tion pointer (IP) addresses. This feature allows PT to se-
lectively trace code that is only within a certain IP range,
which can further reduce the tracing perturbation.

PT Performance. Table 1 reports the runtime and
space overhead of PT on the PARSEC 3.0 benchmarks.
We report the execution time of the programs without
and with PT tracing (and the trace size), marked as native
and PT respectively. Among the 10 benchmarks, PT in-
curs 1.4% to 14.7% runtime overhead (4.9% on average)
and 88MB to 2.4GB space overhead (0.5GB on average).

3 H3

In this section, we present the technical details of H3.
As we have described in Figure 1, H3 integrates hard-
ware control-flow tracing with offline symbolic con-
straint analysis to reproduce Heisenbugs. Although the
overall flow is easy to understand, there are three techni-
cal challenges in the integration:

1. Absence of the thread information. There is
no thread information from the PT traces. It is
unknown which instruction is executed by which
thread, and hence difficult to construct the inter-
thread synchronization and memory dependency
constraints.

2. Gap between low-level hardware traces and
high-level symbolic traces. The decoded execu-

406 2017 USENIX Annual Technical Conference USENIX Association

tion from PT is in the low-level assembly form.
However, to construct constraints and to reproduce
bugs, we need a high-level symbolic trace contain-
ing shared variable accesses and branch conditions.

3. No data values for memory accesses. PT only
traces control flow information but does not record
any data values of memory accesses. To reconstruct
the shared memory dependencies, we need a way to
match reads with writes without using values.

We present our solutions to these challenges in the
next three subsections. We also present a constraint re-
duction algorithm in Section 3.4 enabled by the partial
order of writes per-core, which significantly reduces the
complexity of the generated constraints.

3.1 Thread Local Execution Generation
We leverage the context-switch software events (gener-
ated by the Linux Perf tool) to distinguish instructions
from different threads. Each context-switch event con-
tains three attributes: TID, CPUID, and TIME (i.e., the
timestamp of the event). Because PT also generates
frequent synchronization packets (including the times-
tamp information) into the packet stream, we can use
the timestamp information to synchronize the context
switch events with the PT packets from the same core
(i.e., CPUID). Because the timestamp clocks local to
each core is precise, the inferred thread identity based
on the timestamp information is also precise. Hence,
we locate the context switch points in the PT packets on
each core by comparing the timestamps, and determine
the thread identity of each instruction as the TID attribute
of the leading context-switch event.

3.2 Symbolic Trace Generation
In CLAP, the symbolic trace of each thread is generated
by symbolic execution along the recorded path profile of
each thread. The path profile for each thread is decoded
(from the Ball-Larus path encoding [11]) as a sequence
of basic block transitions at the LLVM IR level in the
form of (Tid, BasicBlockId). In H3, we also rely on these
high-level per-thread path profiles to collect the symbolic
traces, and we extract the path profiles from the low-level
PT trace as follows. We first instrument all basic blocks
of the target program and assign each a unique identi-
fier. Then we compare the generated assembly code from
the instrumented program with the decoded instructions
from the PT trace to identify which basic blocks are exe-
cuted by each thread.

Algorithm 1 shows the process of generating the path
profiles for each thread. The algorithm takes as input:
(1) the executed instructions and their corresponding line

Algorithm 1 Path profiles generation

Input: L:< line, insn > //execute instructions and #line
Input: B: <line, block id> //basic blocks of the paths
Output: Q: <tid, block id>//path profile of each thread

1: for each tid do //traverse each thread
2: //get the instructions of each thread
3: `= {S⊆ L|∀insn ∈ S.insn,Tid(insn) = tid}
4: for each item ∈ ` do
5: if item.line ∈ B.line then
6: block id = B.get(item.line)
7: Q.add(tid,block id)
8: return Q

number; and (2) the basic blocks of the control-flow of
the program with the BlockId and the line number of
the first instruction of this block. The algorithm first
gets the executed instructions by each thread (line 3) and
then matches the line number of the executed instruc-
tions with that contained in each basic block (line 4-7).
To identify the path profile of a thread, the algorithm iter-
ates over the instructions of each thread to check whether
the instruction is the first one of the block by comparing
the line number (line 5). If so, we add this block into the
path profile as (Tid, BasicBlockId).

3.3 Matching Reads and Writes
To reconstruct the shared memory dependencies without
data values, similar to CLAP, we construct a system of
symbolic constraints over the per-thread symbolic traces.
The basic idea is to introduce an order variable for each
read/write denoting the unknown scheduling order, and
a symbolic variable for each read/address denoting the
unknown read value and address. We symbolically exe-
cute the program following the recorded per-thread con-
trol flow, and constructs constraints over the order and
symbolic variables to determine the inter-thread orders
and values of reads/addresses.

More specifically, we construct a system of SMT
constraints formula, denoted by Φg, over the symbolic
traces. The computed orders/values from solving Φg
then correspond to one or more concrete global sched-
ules that can reproduce the Heisenbugs. We note that
the computed schedules may be different from that in the
failure execution, but any one of them is sufficient to re-
produce the Heisenbugs.

Φg can be decomposed into five parts:

Φg = Φpath∧Φbug∧Φsync∧Φmo∧Φrw

where Φpath denotes the path conditions by each thread;
Φbug the condition for the bug manifestation; Φsync the
interactions between inter-thread synchronizations; Φrw

USENIX Association 2017 USENIX Annual Technical Conference 407

the potential inter-thread memory dependencies; and
Φmo the memory model constraints. The formula con-
tains two types of variables: (1) V - the symbolic value
variables denoting the values returned by reads; and (2)
O - the order variables the order of each operation in the
final global schedule.

Path Constraints (Φpath). The path constraints are
constructed by a conjunction of all the path conditions
of each thread, with each path condition corresponds to
a branch decision by that path. The path conditions are
collected by recording the decision of each branch via
symbolic execution.
Bug Constraints (Φbug). The bug constraints enforce
the conditions for a bug to happen. A bug can be a
crash segfault, an assert violation, a buffer overflow, or
any program state-based property. To construct the bug
constraints, an expression over the symbol values for sat-
isfying the bug conditions is generated. For example, the
violation of an assertion exp can be modeled as !exp.
Synchronization Constraints (Φsync). The synchro-
nization constraints consist of two parts: partial order
constraints and locking constraints. The partial order
constraints model the order between different threads
caused by synchronizations fork/join/signal/wait. For
example, The begin event of a thread t should happen
after the fork event that starts t. A join event for a thread
t should happen after the last event of t. The locking con-
straints ensures that events guarded by the same lock are
mutually exclusive. It is constructed over the ordering
of the lock and unlock events. More specifically, for each
lock, all the lock/unlock pairs of events are extracted, and
the following constraints for each two pairs (l1, u1) and
(l2, u2) are constructed: Ou1 < Ol2 ∨Ou2 < Ol1 .
Memory Order Constraints (Φmo). The memory or-
der constraints enforce orders specified by the underly-
ing memory models. H3 currently supports three mem-
ory models: SC, TSO and PSO. For SC, all the events
by a single thread should happen in the program order.
TSO allows a read to complete before an earlier write to
a different memory location, but maintains a total order
over writes and operations accessing the same memory
location. PSO is similar to TSO, except that it allows
re-ordering writes on different memory locations.
Read-Write Constraints (Φrw). Φrw matches reads
and writes by encoding constraints to enforce the read
to return the value written by the write. Consider a read r
on a variable v and r is matched to a write w on the same
variable; we must construct the following constraints:
the order variables of all the other writes that r can be
matched to are either less than Ow or greater than Or.

As discussed in Section 2.1, Φrw can be complicated
because there may exist many potential matches between
reads and writes. The size of Φrw is cubic in the trace

Figure 5: Core-based constraint reduction.

size and its complexity is exponential in the trace size.
Nevertheless, in next subsection, we show that both the
size and complexity of Φrw can be greatly reduced in H3.

3.4 Core-based Constraints Reduction

Besides the low runtime overhead, another key innova-
tion enabled by PT is that the order of executed events
on each core (either by the same thread or by different
threads) is determined, which can reduce the complex-
ity of Φrw from exponential in the number of writes to
exponential in the core counts.

The key observation of this reduction is that the exe-
cuted memory accesses on each core decoded from PT
trace are already ordered, following the program order.
Once the order of a certain write in the global schedule is
determined, all the writes that happen before or after this
write, on the same core, should occur before or after this
write in the schedule correspondingly. This eliminates
a large number of otherwise necessary read-write con-
straints for capturing the potential inter-thread memory
dependencies.

Consider an example in Figure 5, which has four cores
with each executing four different writes. Suppose there
is a read R that can be potentially matched with all of
these writes, because each of them writes a different
value to the same shared variable read by R. Without
the partial order information of each core, we must in-
clude all writes and their orderings into the constraints.

408 2017 USENIX Annual Technical Conference USENIX Association

For instance, if R reads the value from the write W7 on
Core 2, then R must happen after W7 (i.e., OR > OW7),
and all the other writes must either happen before W7 or
after R. Taking W5 as an example; it must either hap-
pen before W7 or after the read R, resulting in the con-
straint (OR < OW5 ∨OW5 < OW7). In general, if there
are N writes in the trace, the constraints can generate 2N

different ordering choices for these writes. As typically
most accesses in the trace are reads and writes, this expo-
nential search space can be a bottleneck for the technique
to scale.

However, with the per-core partial order information,
the execution order of the writes on each core is already
determined. To prevent other writes from happening be-
tween the considered write and read, we only need to
take the read-write as a whole and insert it to those sorted
writes. Algorithm 2 presents our constraints reduction
algorithm. Following this algorithm, to make R read

Algorithm 2 Core-based constraints reduction

Input: a matched read-write < R,W >
Output: Φrw to make R read from W

1: Initial: Φrw = /0
2: case 1: writes executed on the same core as W
3: Φrw = Φrw ∧ (OW < OR < OW ′) //W ′ happens

right after W on the same core
4: case 2: writes executed on other cores
5: //for any two writes Wi and Wi+1 on the same core
6: Φrw = Φrw ∧ (OR < OWi ∨ (OWi < OW ∧OR <

OWi+1))∨OW > OWi+1
7: return Φrw

from W7, for all the other writes on Core 2, we only re-
quire OW7 < OR < OW8 . Moreover, for the writes on the
other cores, our new constraints encode fewer ordering
choices. For example, for the four writes (W1-W4) on
Core 1, the constraints are written as OR < OW1 ∨(OW1 <
OW7 ∧OR < OW2)∨ (OW2 < OW7 ∧OR < OW3)∨ (OW3 <
OW7 ∧OR < OW4)∨OW4 < OW7). There are only 5 order-
ing choices (compared to 16 in CLAP).

We note that the core-based constraints apply to SC
and TSO, but may not apply to those weak memory mod-
els that allow re-ordering of writes on the same core. The
reason is that if writes are re-ordered, the partial order
witnessed on each core may not reflect the actual buggy
execution order.

Theorem 1 below states the soundness guarantee of the
core-based reduction:

Theorem 1 If a concurrent program runs on an SC or
TSO platform with C cores and there are N writes exe-
cuted, the number of the ordering choices of the read-

write constraints is reduced from 2N to (
N
C
+1)C.

Proof. Consider that a read R returns the value of
a write W . When not knowing the partial order of the
writes on each core, each write either happens before W
or after R. Consequently, there are 2N ordering choices
in total. If the partial order of the writes on each core

is known and each core contains mi =
N
C

writes, the or-
dering on each core has only mi +1 choices. Therefore,
the total number of choices is reduced to ΠC

i=1(mi +1),
which equals to (N

C +1)C.

4 Implementation

We have implemented H3 for Pthreads-based C/C++
programs based on a number of tools, including
CLAP [18], the Linux Perf Tools [3], the PT decoding
library [1], and the Z3 SMT solver [14]. We use Perf
to control Intel PT to collect the packet streams and the
context switch events. We first insert the context switch
events to the packet streams by comparing the times-
tamp information, and then use the PT decoding library
to decode the packets information. As in CLAP, we use
KLEE [12] as the symbolic execution engine to gener-
ate the symbolic traces for each thread, and construct an
SMT constraint formula. We modified CLAP to imple-
ment the core-based constraint reduction algorithm, and
we use Z3 to solve the constraints.

Shared Variable Identification. We first run a static
thread sharing analysis based on the Locksmith [29]
race detector and then manually mark each shared
variable x as symbolic by klee make symbolic(&x,

sizeof(x), "x"), like CLAP. One way to automate
this step is to conservatively consider all variables in the
program as potentially shared and marked them as sym-
bolic. However, this would produce a large amount of
unnecessary constraints. For external function calls that
are not supported by KLEE, we also mark the input and
return variables of the external function calls as sym-
bolic.

Constraint Reduction. For the core-based constraint
reduction, we first extract the writes on the same core
from the PT trace and store these writes in a map (core
Id: w1[line],w2[line]...). When constructing the read-
write constraints, this map is used to determine which
write belongs to which core by comparing the associ-
ated line number information. Because all writes on the
same core occur in the order that they are executed, we
construct a happens-before constraint over these writes.
When matching a read r to a corresponding write w, we
first constrain r to happen after w and happen before the
write that occurs right after w on the same core, and we

USENIX Association 2017 USENIX Annual Technical Conference 409

Table 2: Benchmarks.

Program LOC #Threads #SV
#insns #branches #branches Ratio Symb.

(executed) (total) (app) app/total time
racey 192 4 3 1,229,632 78,117 77,994 99.8% 107s
pfscan 1026 3 13 1,287 237 43 18.1% 2.5s

aget-0.4.1 942 4 30 3,748 313 5 1.6% 117s
pbzip2-0.9.4 1942 5 18 1,844,445 272,453 5 0.0018% 8.7s

bbuf 371 5 11 1,235 257 3 1.2% 5.5s
sbuf 151 2 5 64,993 11,170 290 2.6% 1.6s

httpd-2.2.9 643K 10 22 366,665 63,653 12,916 20.3% 712s
httpd-2.0.48 643K 10 22 366,379 63,809 13,074 20.5% 698s
httpd-2.0.46 643K 10 22 366,271 63,794 12,874 20.2% 643s

then only need to disjunct the order constraints between
w and those writes from a different core.

5 Evaluation

Our evaluation of H3 focuses on answering two sets of
questions:

• How is the runtime performance of H3? How much
runtime improvement is achieved by H3 compared
to CLAP?

• How effective is H3 for reproducing real-world
Heisenbugs? How effective is the core-based con-
straint reduction technique?

5.1 Methodology

We evaluated H3 with a variety of multithreaded C/C++
programs collected from previous studies [18, 35, 6], in-
cluding nine popular real-world applications containing
known Heisenbugs. Table 2 summarizes these bench-
marks. pfscan is a parallel file scanner containing a
known bug; aget-0.4.1 is a parallel ftp/http download-
ing tool containing a deadlock; pbzip2-0.9.4 is a multi-
threaded implementation of bzip with a known order vi-
olation; bbuf is shared bounded buffer and sbuf is a C++
implementation of the JDK1.4 StringBuffer class; httpd-
2.2.9, httpd-2.0.48, httpd-2.0.46 are from the Apache
HTTP Server each containing a known concurrency bug;
We also included racey [6], a special benchmark with
intensive races that are designed for evaluating RnR sys-
tems. We use Apache Bench (ab) to test httpd, which
is set to handle 100 requests with a maximum of 10 re-
quests running concurrently.

We compared the runtime performance of H3 and
CLAP by measuring the time and space overhead caused
by PT tracing and software path-recording. We ran each
benchmark five times and calculated the average. All

experiments were performed on a 4 core 3.5GHz In-
tel i7 6700HQ Skylake CPU with 16 GB RAM running
Ubuntu 14.04.

We evaluated the effectiveness of H3 for reproducing
bugs by checking if H3 can generate a failure reproduc-
ing schedule and by measuring the time taken by offline
constraint solving. We set one hour timeout for Z3 to
solve the constraints.

For most benchmarks, the failures are difficult to man-
ifest because the erroneous schedule for triggering the
Heisenbugs is rare. Similar to CLAP, we inserted timing
delays (sleep functions) at key places in each benchmark
and executed it repeatedly until the failure is produced.
We also added the corresponding assertion to denote the
bug manifestation.

Benchmark Characteristics. Table 2 reports the ex-
ecution characteristics of the benchmarks. Columns 3
and 4 report the number of threads and shared variables,
respectively, contained in the execution. We also pro-
filed the total number of the executed instructions and
branches in the assembly code, and the branches from
the LLVM IR code, as reported in Columns 5-7. Col-
umn 8 reports the ratio of the number of the branches in
the instrumented application code versus the total num-
ber of branches (in both the application code and all the
external libraries). For most benchmarks (except racey),
the ratio is smaller than or around 20%. Column 9 re-
ports the time for constructing the symbolic trace for the
corresponding recorded execution of the benchmark.

5.2 Runtime Performance

Table 3 reports the performance comparison between H3
and CLAP. Column 2 reports the native execution time
of the benchmarks. Columns 3-4 report the execution
time with H3 and CLAP and their runtime overhead.
Column 5 reports the speedup of H3 over CLAP. Col-
umn 6 reports the percentage of branch instructions in
the execution. This number is proportional to the runtime

410 2017 USENIX Annual Technical Conference USENIX Association

Table 3: Performance comparison between H3 and CLAP.

Program
Native Time (s) Branch Space overhead
time (s) CLAP (Overhead) H3 (Overhead) Speedup insts% CLAP H3

racey 0.268 0.768(186.6%) 0.288(7.5%) 65.2% 6.4% 96M 2.68M
pfscan 0.094 0.104(11.0%) 0.116(23.4%) -11.5% 18.4% 3.2K 30K

aget-0.4.1 0.139 0.156 (12.1%) 0.152(9.4%) 2.6% 17.9% 11K 41K
pbzip2-0.9.4 0.102 0.134(31.4%) 0.112(9.8%) 16.4% 14.8% 5.2K 677K

bbuf 0.232 0.696(200%) 0.264(13.8%) 62.1% 20.1% 3.9K 2.7M
sbuf 0.216 0.299(38.5%) 0.256(18.5%) 14.4% 17.2% 6.6K 4.5M

httpd-2.2.9 0.53 0.71(34.0%) 0.57(7.5%) 19.7% 17.4% 7.8M 10.43M
httpd-2.0.48 0.45 0.59(32.1%) 0.51(13.3%) 13.6% 17.4% 8.1M 11.79M
httpd-2.0.46 0.42 0.57(36.2%) 0.50(19.0%) 12.3% 17.4% 7.2M 10.62M

avg. 0.272 0.447(64.3%) 0.307(12.9%) 31.3% 16.3% 13.2M 4.8M

10-5 100 105

trace size (M)

10-2

100

102

ru
n

tim
e

(s
)

(a)

100 105 1010

#branches

10-5

100

105

tra
ce

 s
iz

e
(M

)

(b)

10 15 20
percentage(%)

0

20

40

ru
n-

tim
e

ov
er

he
ad

 (%
) (c)

Figure 6: H3 performance analysis.

overhead of PT. Columns 7-8 report the space overhead
of H3 and CLAP, respectively.

Overall, the runtime overhead of H3 on these bench-
marks ranges between 7.5%-23.4% and 12.9% on av-
erage. Compared to CLAP (11.0%-2X overhead), H3
achieves as much as 8X performance improvement and
reduces its overhead significantly by 2.6%-65.2% and
31.3% on average. The only exception is pfscan. How-
ever, this is just because pfscan contains significantly
more external calls compared to the other benchmarks;
while H3 records all external library calls, the imple-
mentation of CLAP does not (which sacrifices the cor-
rectness). In addition, the short execution time of pfscan
can suffer from noise.

For space overhead, H3 produces 30KB-2.4GB traces
on these benchmarks, whereas CLAP produces 2KB-
2.1GB. Some numbers of CLAP are smaller than that
of H3, because external library calls are not traced by
CLAP.

H3 performance analysis. We note that the perfor-
mance of H3 is dominated by PT for tracking the control
flow events. The additional cost for H3 to track con-
text switching events is almost negligible as compared
to tracing the control flow. We have also evaluated the
runtime performance of H3 on the PARSEC 3.0 bench-
marks and found that H3 incurs only 1.4% to 14.7% run-
time overhead (4.9% on average) and 0.5GB trace size,
the same as that reported in Table 1 for PT.

We further conducted a performance study of H3 on

PARSEC with respect to three impacting factors: the
trace size, the number and percentage of branch instruc-
tions, as shown in Figure 6. Figure 6(a) shows the rela-
tion between the size of the recorded trace and the ex-
ecution time of H3. Figure 6(b) shows the relation be-
tween the number of executed branches and the size of
the recorded trace. Figure 6(c) shows that relation be-
tween the percentage of executed branch instructions and
the runtime overhead of H3. The results indicate that
the performance of H3 is proportional to the percentage
of executed branch instructions in the execution. Recall
Column 8 in Table 2 that the number of branches in the
application code often accounts for a small percentage of
the total number of branches. Hence, in practice, the per-
formance of H3 can be further improved by tracing only
the application code and omitting external library calls.

5.3 Effectiveness of Bug Reproduction
Table 4 reports the results of Heisenbug reproduction.
We successfully evaluated five benchmarks1 with a total
number of seven Heisenbugs. racey1, racey2 and racey3
correspond to the racey benchmark with 500, 1000, and
1500 loop iterations.

Column 2 reports the number of unknown variables
in the constraint formula, corresponding to the number
of read/write/synchronization operations in the symbolic
trace. Columns 3-6 report the results of CLAP, includ-
ing the total size of the generated constraints (in terms
of the number of constraint clauses), the size of read-
write constraints, the constraint solving time by Z3 and
whether Z3 returns a solution before timeout in one hour.
Columns 7-10 report the corresponding results of H3.

Overall, H3 is more efficient and effective than CLAP
in reproducing Heisenbugs. The key difference between
H3 and CLAP is that with the core-based constraint re-
duction, H3 generates a much simpler and smaller con-

1We excluded aget and the httpd benchmarks because the KLEE
symbolic execution failed on them.

USENIX Association 2017 USENIX Annual Technical Conference 411

Table 4: Results of Heisenbug reproduction. (-) means the solver runs timeout in one hour.

Program #Var
CLAP #constraints

solve time success?
H3 #constraints

solve time success?
#Total #RW #Total #RW(Reduction)

bbuf 79 14264 13902 98s Y 10344 9982(28.2%) 52s Y
sbuf 102 438 302 1s Y 344 208(31.1%) 1s Y

pfscan 25 199 60 1s Y 179 40(33.3%) 1s Y
pbzip2 113 5890 1270 2s Y 5460 840(33.9%) 1s Y
racey1 15040 540602 540388 - N 50602 50388(90.7%) 267s Y
racey2 30108 41612000 41607900 - N 201202 200788(99.5%) - N
racey3 67850 1.3×108 1.3×108 - N 451802 451188(99.7%) - N

straint formula than CLAP. H3 reduces the size of the
CLAP constraints by 28%-99%, and is able to reproduce
more bugs than CLAP. Both H3 and CLAP reproduce
the bugs in the four benchmarks bbuf, sbuf, pfscan and
pbzip2. H3 additionally reproduces the bug in racey1,
while CLAP fails because the solver could not solve the
constraints in time. In addition, for bbuf, although both
H3 and CLAP can reproduce the bug, H3 is much faster
(52s vs 98s) than CLAP. H3 fails on racey2 and racey3
because the constraints in these two cases are still too
complex to solve.

6 Limitations and Future Work

Our experimental results show that H3 achieves a signif-
icant performance improvement over CLAP by integrat-
ing hardware control-flow tracing with constraint analy-
sis. Nevertheless, we observe several factors that can be
leveraged to further improve the performance of H3.

Large PT Trace Data. On our current platform, the
size of the PT trace buffer per core is limited to 4MB.
For tracing long running programs, the buffer can get full
quickly (e.g., 0.01s for the PARSEC benchmarks). Cur-
rently, Perf actively monitors the trace buffer and flushes
it to disk once the buffer is full. To avoid overwriting
the buffered data, Perf also needs to disable PT when the
buffer is full, and wakes it up when the data is copied
out. This is a main bottleneck that limits the runtime per-
formance of H3 because the program execution has to
be suspended when PT is off, otherwise the control flow
data may be lost when the buffer data is being copied
out. We also experienced data loss with Perf when using
PT to track long traces. This happens because the speed
of copying data out is not fast enough, causing certain
buffered data overwritten by the new data. We expect
that a larger trace buffer or double buffering in the future
generations of PT will help alleviate this problem.

Data Values. Another limitation of PT is that it only
tracks the control flow of the program but not any data
values or memory addresses. This is the main reason
why symbolic execution is needed in H3 to construct

symbolic traces. Although symbolic execution engines
such as KLEE are becoming increasing powerful, scaling
symbolic execution to long running programs remains a
challenging problem. In addition, limited by KLEE, H3
currently can only reproduce concurrency failures that
occur in the application code, but not external function
calls (though it traces the control flow in all external li-
braries).

For future work, we plan to use hardware watchpoints
(as also used in Gist [19]) to capture the value and ad-
dress of variables along with the PT control flow trac-
ing. With the value information, we can then skip the
symbolic execution part but construct the constraints by
matching the values of reads and writes directly. More-
over, this will further reduce the complexity of the gen-
erated constraints.

Constraint Solving for Long Traces. Although our
constraint reduction is effective, the complexity of the
generated constraints is still exponential in the number
of cores. For long traces, the constraint size can still be
large and solving them remains challenging. For exam-
ple, H3 failed on racey2 and racey3 due to the solver
timeout. For this problem, we plan to improve H3 in
two ways. First, we can perform periodic checkpoints
(e.g., using the snapshot mode of Perf) to save the cur-
rent state of the program, such that when a failure oc-
curs, H3 needs only to generate the constraints from the
last checkpoint to the failure. Second, we can reduce the
amount of the trace by not tracing the control flow in the
external libraries (e.g., using the IP filtering featured sup-
ported by Skylake processors). As shown in our exper-
imental results, the branches from the application code
account for only a small percentage (7-20%) of the to-
tal trace, most of which are from the external libraries.
Skipping tracing the external libraries will greatly reduce
both the trace size and the runtime overhead.

Non-deterministic Program Inputs. Similar to
CLAP, currently H3 does not record the program input
but assumes that all program inputs are fixed. If the pro-
gram input is non-deterministic or certain program inputs
are missed, H3 may fail to reproduce the bug. This prob-

412 2017 USENIX Annual Technical Conference USENIX Association

lem can be addressed by tracking the program input and
enforcing the same input value during the symbolic trace
construction and the bug reproduction. Mozilla RR [4]
is a promising solution to track non-deterministic inputs
in real-world systems, by tracing only system call results
and signals with ptrace. We expect that by integrating
H3 with RR, H3 will be able to reproduce failures re-
sulted from both non-deterministic schedules and inputs.

7 Related Work
Researchers have proposed many different RnR systems,
both at the software level [8, 13, 17, 18, 21, 22, 23, 27,
32, 34, 38] and hardware-level [16, 25, 26, 28, 33]. Most
RnR systems are either order-based [13, 17, 23, 34, 38]
that rely on faithfully recording the shared memory de-
pendencies at runtime, or search-based [8, 18, 21, 22, 32]
that record only partial information at runtime and rely
on powerful search engines such as SMT solvers to re-
construct the memory dependencies.

A central goal of RnR systems is to reduce the run-
time overhead such that they can be used in production
runs. Hardware techniques [16, 25, 26, 28, 33] are often
much more efficient than software-level implementation,
but most previous RnR systems rely on special hardware
that is not available. Intel PT is an exciting hardware
feature that opens a door for RnR systems to be applied
broadly in COTS platforms.

Gist [19] introduces a bug diagnosis technique that
also leverages PT to identify root causes of a failure with
low overhead. Different from H3, Gist assumes the fail-
ure can be reproduced in the first place, but it may fail
to do so. In addition, Gist relies on statistical analysis
to identify failure causes, but it has no guarantee, i.e., it
may miss real causes or report false positives. Compared
to Gist, H3 solves a different problem: reproducing fail-
ures before they can be diagnosed, and H3 is sound: it
guarantees to reproduce the failure as long as the con-
straints can be solved by the solver.

Arulraj et al. [10] use hardware performance counters
for failure diagnosis. This technique leverages the hard-
ware to sample predicates from a large number of suc-
cessful and failing runs and then use the sampled predi-
cates to diagnose the failure via statistical analysis.

ReCBuLC [36] uses hardware clocks that are available
on modern processors to help reproducing Heisenbugs.
The recorded timestamps local to each thread together
with a statistical analysis for calculating the time differ-
ences among local clocks across different cores, are used
to determine the global schedule of shared-resource ac-
cesses. One limitation of this approach is that the statis-
tical analysis may fail to infer a correct global schedule.

The idea of using offline constraint analysis to in-
fer global failure schedules was pioneered by Lee et

al. [21, 22]. The technique uses load-based checkpoints
to search for a global schedule without recording any
shared memory dependencies. However, compared to
PT, the load-based checkpoints are not supported by the
commodity architecture.

Similar to CLAP, both ODR [8] and Symbiosis [24]
rely on symbolic constraint solving to figure out sched-
ules that can satisfy certain conditions. ODR uses con-
straints to reproduce failures, and Symbiosis uses con-
straints for reducing the schedule complexity.

PRES [27] proposes a probabilistic replay technique
that uses an intelligent feedback-based replayer to repro-
duce failures with lightweight recording. PRES may fail
to reproduce the bug in the first attempt due to a recorded
incomplete schedule. However, it can learn from the pre-
vious failing replays to rectify the schedule. Typically af-
ter a few attempts, PRES is able to find a correct schedule
to reproduce the bug.

Both CoreDump [32] and ESD [37] rely on only the
program coredumps to diagnose failures. CoreDump
uses a technique called execution indexing to compare
the differences between coredumps from failing and nor-
mal runs to identify the failing point. ESD uses static
analysis and symbolic execution to synthesize both pro-
gram inputs and schedule to reproduce failures. Using
coredumps is promising for diagnosing real-world fail-
ures since coredumps are often available after the pro-
gram crash. However, since there is no program control
flow information, the technique may be difficult to repro-
duce failures that require complex paths and schedules to
manifest.

8 Conclusion
We have presented H3, a novel technique that reproduces
Heisenbugs by integrating hardware control flow tracing
and symbolic constraint solving. With the efficient con-
trol flow tracing supported by PT, H3 enables for the first
time the ability to efficiently reproduce Heisenbugs in
production runs on commercial hardware. We have also
presented an effective core-based constraint reduction
technique that significantly reduces the size of the sym-
bolic constraints and hence scales H3 to larger programs
compared to the state-of-the-art solutions. Our evalua-
tion on both popular benchmarks and real-world appli-
cations shows that H3 can effectively reproduce Heisen-
bugs in production runs with very small overhead, 4.9%
on average on PARSEC.

Acknowledgement
We would like to thank our shepherd, Gilles Muller, and
the anonymous reviewers for their valuable feedback.
This work was supported by NSF award CCF-1552935.

USENIX Association 2017 USENIX Annual Technical Conference 413

References

[1] Intel processor trace decoder library.
https://github.com/01org/processor-
trace.

[2] Intel PT Micro Tutorial.
https://sites.google.com/site/
intelptmicrotutorial.

[3] Linux perf documentation.
https://github.com/torvalds/linux/tree/
master/tools/perf.

[4] Mozilla rr.
https://github.com/mozilla/rr.

[5] The PARSEC benchmarks.
http://parsec.cs.princeton.edu/.

[6] Racey: A stress test for deterministic execu-
tion. http://pages.cs.wisc.edu/~markhill/
racey.html.

[7] A real-world bug caused by relaxed consistency.
http://stackoverflow.com/questions/
16159203.

[8] G. Altekar and I. Stoica. Odr: Output-deterministic
replay for multicore debugging. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP, 2009.

[9] T. S. architecture manual. Version 9. SPARC Inter-
national, Inc. 1994.

[10] J. Arulraj, P.-C. Chang, G. Jin, and S. Lu.
Production-run software failure diagnosis via hard-
ware performance counters. In Proceedings of the
Eighteenth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS, 2013.

[11] T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of the 29th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO
29, 1996.

[12] C. Cadar, D. Dunbar, and D. Engler. Klee: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceed-
ings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI, 2008.

[13] Y. Chen and H. Chen. Scalable deterministic replay
in a parallel full-system emulator. In Proceedings
of the 18th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP,
2013.

[14] L. De Moura and N. Bjørner. Z3: An efficient
smt solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340.
Springer, 2008.

[15] J. Gray. Why do computers stop and what can be
done about it? In Symposium on Reliability in Dis-
tributed Software and Database Systems, pages 3–
12. IEEE Computer Society, 1986.

[16] D. R. Hower and M. D. Hill. Rerun: Exploiting
episodes for lightweight memory race recording. In
Proceedings of the 35th Annual International Sym-
posium on Computer Architecture, ISCA, 2008.

[17] J. Huang, P. Liu, and C. Zhang. Leap: Lightweight
deterministic multi-processor replay of concurrent
java programs. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE, 2010.

[18] J. Huang, C. Zhang, and J. Dolby. Clap: Recording
local executions to reproduce concurrency failures.
In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation, PLDI, 2013.

[19] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for au-
tomated root cause diagnosis of in-production fail-
ures. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP, 2015.

[20] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy.
Chimera: Hybrid program analysis for determin-
ism. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI, 2012.

[21] D. Lee, M. Said, S. Narayanasamy, and Z. Yang.
Offline symbolic analysis to infer total store order.
In 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, pages
357–358. IEEE, 2011.

[22] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and
C. Pereira. Offline symbolic analysis for multi-
processor execution replay. In Proceedings of the
42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, 2009.

[23] P. Liu, X. Zhang, O. Tripp, and Y. Zheng. Light:
Replay via tightly bounded recording. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
PLDI, 2015.

414 2017 USENIX Annual Technical Conference USENIX Association

[24] N. Machado, D. Quinta, B. Lucia, and L. Ro-
drigues. Concurrency debugging with differen-
tial schedule projections. ACM Trans. Softw. Eng.
Methodol., 25(2), Apr. 2016.

[25] P. Montesinos, L. Ceze, and J. Torrellas. Delorean:
Recording and deterministically replaying shared-
memory multiprocessor execution ef?ciently. In
Proceedings of the 35th Annual International Sym-
posium on Computer Architecture, ISCA, 2008.

[26] S. Narayanasamy, G. Pokam, and B. Calder.
Bugnet: Continuously recording program execu-
tion for deterministic replay debugging. In Pro-
ceedings of the 32Nd Annual International Sympo-
sium on Computer Architecture, ISCA, 2005.

[27] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu. Pres: Probabilistic replay
with execution sketching on multiprocessors. In
Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP, 2009.

[28] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai,
J. Gottschlich, J. Ha, and Y. Wu. Coreracer: A
practical memory race recorder for multicore x86
tso processors. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microar-
chitecture, MICRO-44, 2011.

[29] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith:
Context-sensitive correlation analysis for race de-
tection. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’06, 2006.

[30] K. Vaswani, M. J. Thazhuthaveetil, and Y. N.
Srikant. A programmable hardware path profiler.
In Proceedings of the International Symposium on
Code Generation and Optimization, CGO, 2005.

[31] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang,
P. M. Chen, J. Flinn, and S. Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and re-
play. In Proceedings of the Sixteenth International

Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS,
2011.

[32] D. Weeratunge, X. Zhang, and S. Jagannathan. An-
alyzing multicore dumps to facilitate concurrency
bug reproduction. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS, 2010.

[33] M. Xu, R. Bodik, and M. D. Hill. A” flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In Computer Architecture,
2003. Proceedings. 30th Annual International Sym-
posium on, pages 122–133. IEEE, 2003.

[34] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang.
Order: Object centric deterministic replay for java.
In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, USENIX-
ATC, 2011.

[35] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam.
Maple: A coverage-driven testing tool for multi-
threaded programs. In ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Lan-
guages, and Applications, pages 485–502, 2012.

[36] X. Yuan, C. Wu, Z. Wang, J. Li, P.-C. Yew,
J. Huang, X. Feng, Y. Lan, Y. Chen, and Y. Guan.
Recbulc: Reproducing concurrency bugs using lo-
cal clocks. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1,
ICSE, 2015.

[37] C. Zamfir and G. Candea. Execution synthesis: A
technique for automated software debugging. In
Proceedings of the 5th European Conference on
Computer Systems, EuroSys, 2010.

[38] J. Zhou, X. Xiao, and C. Zhang. Stride: Search-
based deterministic replay in polynomial time via
bounded linkage. In Proceedings of the 34th In-
ternational Conference on Software Engineering,
ICSE, 2012.

USENIX Association 2017 USENIX Annual Technical Conference 415

A DSL Approach to Reconcile Equivalent Divergent Program Executions

Luı́s Pina Daniel Grumberg Anastasios Andronidis Cristian Cadar
Department of Computing

Imperial College London, UK
{l.pina, daniel.grumberg14, a.andronidis15, c.cadar}@imperial.ac.uk

Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-

USENIX Association 2017 USENIX Annual Technical Conference 417

mal effort, requiring only a small number of rules in each
case. In particular, we show the applicability of our ap-
proach with three different MVE scenarios: (1) running
versions of the same application with different configu-
rations (§2.1), where we needed only 7 rules to execute
Redis under multiple configurations (§5.2), e.g., with and
without a persistent store; (2) running different software
revisions (§2.2), where we required only 7 rules to run
versions of Redis which are up to 730 commits apart
(§5.3); and (3) running native versions of an application
in parallel with versions instrumented for dynamic anal-
ysis (§2.3), where we needed only 14 rules to support the
Valgrind tool [24], 3 rules to support Asan [30], 1 rule
to support Msan [33], and 4 rules to support Tsan [31]
(§5.4).

We also provide an empirical evaluation that shows
that simply comparing pairs of strace logs, which list the
sequence of system calls that each version issues when
run in isolation, is enough to write all the DSL rules (§5).
No knowledge about the particular MVE system or the
versions being used is needed to write the DSL rules. In-
spired by how we manually found the rules, we provide
an algorithm to synthesize some of the rules based on
such pairs of strace logs (§4).

In summary, we make the following contributions:

1. The first paper to present a simple solution to the
problem of handling divergent executions in MVE,
which allows MVE to be easily applicable to many
more scenarios, such as running an application con-
currently under different configurations; running dif-
ferent releases of the same program; and running na-
tive versions in parallel with versions instrumented
for dynamic analysis.

2. The design and implementation of a small and expres-
sive DSL that encodes rules to handle divergences,
and our experience using it in the three scenarios de-
scribed above.

3. The design and implementation of an algorithm that
synthesizes part of the DSL rules using pairs of strace
logs, which can be obtained by running each version
in isolation over the same inputs.

4. An empirical evaluation of our prototypes for the
Varan MVE, that shows the applicability of each sce-
nario and provides evidence about the little effort re-
quired to write the rules, and how much this task can
be further automated by the DSL synthesis algorithm.

2 Applicable Scenarios

At a high-level, some program executions can be con-
sidered equivalent even if they do not execute the same
code. As a trivial example, two executions of the same
correct deterministic C program under different memory

allocators can be considered equivalent because their ob-
servable behavior—the sequence of system calls they
issue—is the same. However, there are scenarios in
which it is beneficial to deploy programs with MVE that
issue different sequences of system calls. For instance,
one may increase reliability by deploying two releases of
the same program [18] in which the order of some sys-
tem calls are changed, but without affecting the overall
behavior of the program—e.g., one release may simply
change the order in which two files are opened.

In this paper, we describe a domain specific language
(DSL) designed to easily encode and tolerate such di-
vergences, and thus enable many useful MVE scenarios.
In the rest of this section, we present and motivate three
scenarios that can take full advantage of our DSL.

2.1 Different Configurations

Depending on its configuration parameters, software can
behave differently by enabling or disabling features such
as logging. For instance, Redis1 is an in-memory key-
value store that can optionally dump the store to persis-
tent storage periodically or after every request.

There are three scenarios in which running different
program configurations under MVE can be useful. First,
for increased reliability: Different configurations may
trigger different bugs so running several configurations
in parallel increases the chance of at least one configu-
ration staying alive and providing service. Second, for
increased security: If security is critical, one may choose
to stop as soon as any configuration diverges in its core
execution from the others. The rationale here is that an
attack may succeed in one configuration, but not all, as
different configurations have slightly different memory
layouts, issue different sequences of system calls, etc.
Third, for inexpensive logging and error diagnosis: A
fast configuration (no logging, no debugging info, full
compiler optimizations, etc.) can be deployed at full
speed, as the leader, while slower configurations (with
logging, debugging, etc.) can be deployed in the back-
ground as followers.

Different configurations share the core functionality
of the program, but each implements additional features
such as logging and persistent storage. From the per-
spective of their external behavior, the sequence of sys-
tem calls issued by an expensive configuration is typi-
cally a superset of the base configuration. For instance,
the Redis configuration that adds persistence issues extra
system calls to open the persistent file on disk and write
data into it. In particular, one will see additional calls
as below, interleaved with the core functionality of the
program:

1https://redis.io/

418 2017 USENIX Annual Technical Conference USENIX Association

1 ...
2 open("persistentStore", ...) = 7
3 ...
4 write(7, ...) = 10
5 ..
6 write(7, ...) = 45
7 ...

As we show in §3, our DSL makes it easy to encode
such divergences, allowing MVE systems to run multiple
configurations of the same program concurrently.

2.2 Different Software Releases
MVE is an effective technique to increase the reliability
of software updates [11,18]. Instead of updating the soft-
ware to a new version that becomes available, the idea is
to run both the new and the old version in parallel. If one
version fails, the system can revert to the other version.
This technique mitigates the problem of unreliable soft-
ware updates [14, 28, 36], as the old version is still avail-
able in the background in case the new version crashes.

Mx [18] applied this approach successfully, but it
could deploy only versions that issue the same sequence
of system calls. However, as we show in this paper, tol-
erating certain classes of system call divergences allows
one to handle a much wider range of software updates.

In general, the external behavior of the software is sta-
ble, especially in mature applications. However, small
changes in the sequence of system calls occur even for
mature applications. Examples include: (1) slightly
changing the API used, and (2) changing the order in
which some system calls are performed. As an exam-
ple in the first category, Lighttpd revision 2436 changes
its sequence call sequence from geteuid, geteguid to
geteuid, getuid, getegid, getgid [19]. As an ex-
ample in the second category, Redis version 2.0.1 re-
orders the sequence setsockopt, time, epoll ctl

into setsockopt, epoll ctl, time.
Our DSL makes it easy to express such differences. As

we show in §5.3, we were able to run together Redis ver-
sions up to 730 commits apart while only using a small
number of simple DSL rules.

2.3 Native and Sanitized Versions
Dynamic analysis techniques instrument or interpret the
program under analysis to detect common programming
errors. For instance, Asan [30], the address sanitizer
that ships with modern C compilers, instruments mem-
ory buffers in the program with red zones to detect buffer
overflow errors. Valgrind [25], a dynamic analysis tool
that takes program binaries as input, interprets the pro-
gram and shadows all the memory that the program uses
to detect a large category of bugs, such as buffer over-
flows and invalid uses of uninitialized memory.

Recorded

stat

open

close

. . .

. . .

Replayed

stat

dup

lseek

close

. . .

. . .

DSL1 1

match,match

DSL2 2

nop,exec

DSL3 3

skip,exec

DSL

4
4

match,match

Figure 1: Example of reconciling two divergent se-
quences of system calls: open on the recorded side
matches dup and lseek on the replayed side.

MVE can be used to deploy sanitized versions in the
background [19]. The key idea is to run the native ver-
sion of the program as a leader—this is the version that
interacts with users and runs at full speed. Sanitized ver-
sions are then run as followers, checking the execution
for errors in the background.

One of the main challenges involved is that the sani-
tized versions change the sequence of system calls that
the program under analysis issues. For instance, analy-
ses may use signal SIGSEGV internally (e.g., to allocate
more shadow memory). This signal may also be used
by the program under analysis. In this case, the analysis
technique registers its own signal handler and intercepts
attempts from the program under analysis to register an-
other signal handler, through system call rt sigaction

in 64-bit GNU/Linux, by forwarding signals generated
outside the analysis to the program’s handler. We de-
scribe some of the changes in further detail in §3.1.

As we show in §5.4, our DSL is able to encode the
divergences introduced by real dynamic analysis tech-
niques, such as Asan [30], Msan [33], Tsan [31] and Val-
grind [25], using only a small number of easy-to-write
rules.

3 DSL for Reconciling MVE Divergences

We now propose a simple and expressive domain specific
language (DSL) for describing system call divergences
between two executions. Our design is driven by real-
world examples illustrating the scenarios described in §2.

Figure 1 shows the high-level architecture of the DSL
we propose. The DSL operates between two sequences
of system calls: the recorded and the replayed. At
each step, and for each sequence, the DSL takes as in-
put the next system call and generates as output the ac-

USENIX Association 2017 USENIX Annual Technical Conference 419

1 dsl ::= [#include "file"] [rule]
2 rule ::= [lhs-syscall] => [rhs-syscall]
3 | begin => [rhs-syscall]
4 | group g = { [name ([arg])] }
5 lhs-syscall ::= scall pred lbl | nothing
6 rhs-syscall ::= scall pred callback
7 | scall * | label | nothing
8

9 scall ::= name ([arg]) | g
10 pred ::= { C-code } | ε

11 lbl ::= as label | ε

12 callback ::= -> (ret) { C-code }
13 | -> { C-code } | ε

14 name ::= read | write | ...
15 arg ::= _ | var

Figure 2: Syntax of the DSL. All words in bold and sym-
bols besides |, [, and] are terminals. Square brackets
denote possible empty comma-separated lists. var, ret,
label, file and g are identifiers.

tion to take. For each matching system call between the
recorded and replayed sequences (steps 1 and 4 in Fig-
ure 1), the DSL simply matches both sides through action
MATCH, thus advancing both sequences by one position.
In the example shown, taken from Valgrind, system call
open is rewritten as a sequence of dup and lseek. The
DSL reconciles the divergence in steps 2 and 3 through
actions EXEC on the replayed sequence, to execute those
system calls. In step 2, the recorded sequence is left
unchanged through action NOP, while in step 3 it is ad-
vanced without matching anything on the replayed side
through action SKIP.

3.1 Syntax
The syntax of the DSL is given by the grammar shown in
Figure 2. A DSL input file is a collection of rules. Each
rule defines how a sequence of recorded system calls, on
the left-hand side (LHS) of the rule, matches a different
sequence of replayed system calls, on the right-hand side
(RHS) of that rule.

For instance, Figure 3a shows a rule that tolerates the
divergence presented in Figure 1. The underscore char-
acters allow any values for the respective arguments, so
the rule matches a recorded open with a replayed se-
quence of dup and lseek, regardless of any arguments.
For system calls where all arguments are unconstrained,
we sometimes use a single underscore for brevity.

The RHS of each rule can refer to system calls on the
LHS through labels. For instance, different releases of
Redis register a different number of signal handlers in
different order. The rule in Figure 3b shows how to use
labels to reconcile such divergences.

Valgrind wraps 19 different system calls with the same
three system calls before and three after. The user thus
needs to repeat the same rule for each wrapped system

1 open(_,_,_) => dup(_), lseek(_,_,_)

(a)

2 rt_sigaction(_,_) as segv,
3 rt_sigaction(_,_) as ill,
4 rt_sigaction(_,_) as bus,
5 rt_sigaction(_,_) as fpe =>
6 ill, rt_sigaction(_,_), bus, fpe, segv

(b)

7 group calls = { read(_,_,_), write(_,_,_) }
8

9 calls as self =>
10 gettid(), write(_,_,_), rt_sigprocmask(_),
11 self,
12 rt_sigprocmask(_), gettid(), read(_,_,_)

(c)

13 open(p,_,_) {
14 return !strcmp($(p), "overcommit");
15 } , read(_,_,_), close(_) => nothing

(d)

16 #include "globals.h" // declares ign
17

18 nothing => open("log.txt",_,_)
19 -> (ret) { ign = $(ret); }
20

21 nothing => write(fd,_,_)
22 { return $(fd) == ign; }

(e)

23 write(_,_,_) => write(_,_,count)
24 -> (ret) {$(ret) = $(count)}

(f)

25 begin =>
26 mprotect(_), mprotect(_) * , munmap(_)

(g)

Figure 3: Examples of DSL rules.

call. Instead, the DSL supports groups: syntactic sugar to
repeat the same rule for different system calls. Figure 3c
shows an example, adapted from Valgrind, that groups
all the system calls that use the same rule.

Some rules apply only when particular values are
passed to those system calls at runtime. For instance,
when the memory allocator malloc reaches a certain per-
centage of the available memory, it tunes its behavior
based on the kernel overcommit settings by reading file
/proc/sys/vm/overcommit memory. The analyses
Asan and Tsan increase the virtual memory to a large per-
centage of the whole available addressing space, which
prevents the allocator from ever tuning its behavior. The
rule in Figure 3d reconciles such executions between na-
tive and sanitized versions, through a predicate written
as C code.

420 2017 USENIX Annual Technical Conference USENIX Association

read

write

open

stat

. . .

. . .

gettid

writ
e

rt sigaction

sel
f

rt sigaction

ge
ttid

read

1

2

pred
T

F
read close

dup lseek

stat

End

SKIP, EXEC

SKIP, NOP

NOP, EXEC

MATCH

STORE,NOP

NOP,STORE

Figure 4: Visual representation of the DFAs generated
for the rules in Figures 3c, 3d, and 3a, in that order. Sys-
tem call stat shows the default rule. Dotted and solid
arrows transition on the LHS and RHS system calls, re-
spectively. Node shapes denote actions performed on the
recorded and replayed sequences on each transition.

The rule in Figure 3d also shows how to handle ex-
tra system calls that the replayed side issues without
any correspondent on the recorded side through keyword
nothing on the RHS. Of course, keyword nothing can
also be used on the LHS. For instance, when deploying
two versions of Redis in which the replayed side per-
forms logging that the recorded side does not, we need
a rule to ignore opening and writing to the log file. Fig-
ure 3e shows two such rules for open and write.

The rule in Figure 3e also shows an example of syn-
tactic sugar for the common case of argument variables
being literal strings or numbers. In this case, the DSL
simply expands such a rule to an equivalent rule that uses
predicates, similar to the rule shown in Figure 3d.

Predicates execute before a system call is matched,
and therefore cannot access the results of that system
call. Rules can also have a callback written in C, that ex-
ecutes after matching the system call and can access the
(potentially modified) arguments and the return value.
For instance, the rules shown in Figure 3e save the file
descriptor of the matched open system call in global
variable ign, which the rule for write then uses to dis-
card the appropriate system calls. Note that the DSL al-
lows the inclusion of C header files, which enables the
rules to access libraries.

Predicates and callbacks can modify the arguments
passed to the system call, and callbacks can also modify
the return value. For instance, a version of Redis writes
more bytes due to a protocol change. The rule shown
in Figure 3f tolerates such a divergence by changing the
return of the offending write on the replayed side.

The last part of the DSL, the begin rule, expresses
a pattern that denotes the end of a large divergent pre-
fix on the replayed side. System call matching using the
other rules between both sides only starts after the pat-
tern in the begin rule has been matched (which is empty
by default). For instance, Valgrind sets up its internal
state before starting to execute the program under anal-
ysis. This is when Valgrind sets handlers for interesting
signals such as SIGSEGV, as discussed earlier. Valgrind
finishes its set-up with one or more mprotect calls and
a single munmap call. The rule in Figure 3g tolerates this
large divergence in a compact way. This last example
also shows the usage of the star modifier (*), applied to
the second mprotect, which matches the preceding sys-
tem call zero or more times.

3.2 Semantics

The rules are implemented by a collection of Determin-
istic Finite Automata (DFAs). Figure 4 shows the DFAs
generated for some of the examples discussed in §3.1.

The algorithm starts by matching the current recorded
system call with the first LHS on a rule to select a
DFA. System calls that do not appear on the LHS of
any rule have a default rule to themselves (e.g., rule
stat(,) as self => self shown in Figure 4).

Rules are chosen in the same order in which they are
defined. For instance, Figure 4 defines two rules that ap-
ply to system call open: the rules in Figures 3d and 3a, in
that order. If the predicate is true, the algorithm chooses
the first rule, otherwise it chooses the second one.

With a DFA selected, the algorithm uses it to match
the rest of the sequence of system calls on the LHS of
the rule, if any, with the sequence on the RHS. The DFA
takes each system call to be reconciled, and either ac-
cepts it by moving to the next state, or rejects it. When
the DFA rejects a system call, we say that an irreconcil-
able divergence has occurred because the two executions
have diverged in a way that the DSL cannot reconcile.
The DFA finishes once it accepts the final system call of
a rule. The algorithm then discards the current DFA and
uses the next recorded system call to select the next rule.

Rules that have nothing as the LHS are implemented
as an exception to sequences rejected by the DFA. When
the DFA rejects the first RHS system call of a rule with
a single LHS, the algorithm then looks for a rule with
nothing as the LHS that start with the offending RHS
system call. If found, the algorithm follows that DFA in-
stead of diverging. Otherwise, it diverges as described
above. Rules with nothing on the LHS thus have lower
precedence than all the other rules. Rules that have
nothing as the RHS generate a DFA that only takes
recorded system calls, as shown in Figure 4 for system
call open when the predicate is true.

USENIX Association 2017 USENIX Annual Technical Conference 421

3.3 Interface with the MVE System

We now describe how an MVE system interacts with the
DSL, using the example in Figure 1. Initially, the MVE
system uses function init with the next recorded sys-
tem call (e.g., stat) to choose a DFA. As suggested by
Figure 4, a lookup table maps the first recorded system
call to the DFA that implements the corresponding rule.

The MVE system then uses function reconcile to
pass each recorded and replayed system call to the
DSL. This function takes the current DFA, validates
the next transition, and returns: the next DFA state,
the actions to perform on the recorded and replayed
sides, and some flags. On our running example, call-
ing reconcile(stat, stat) yields actions MATCH
on both sides. The MVE thus matches the two sys-
tem calls and their arguments, copying the results from
the recorded to the replayed side, and advances both se-
quences by one. Note that this behavior is what the MVE
system does during regular operation without our DSL.
This call also returns a flag that signals the end of this
rule, so that the MVE uses function teardown to clean
the resources of the finished DFA.

Following Figure 1, the next recorded call is open.
Again, the MVE system uses function init to select the
next rule. In this case, there is a choice between the rules
in Figures 3d and 3a (defined in this order), depending
on the truth value of the predicate in 3d. Let us assume
that the predicate for 3d returns false, thus selecting the
rule in 3a. At this point, calling reconcile(open,

dup) yields actions NOP and EXEC on the recorded and
replayed sides, respectively. Action NOP does nothing
on the recorded side, while action EXEC executes the re-
played system call without matching it with the recorded
side. The MVE thus allows the replayed side to exe-
cute system call dup directly and calls reconcile with
the same recorded call, open, and the next replayed call,
lseek. Calling reconcile(open, lseek) returns
actions SKIP and EXEC, for the recorded and replayed
side, respectively. Action SKIP advances the recorded
side one position, effectively ignoring the system call.

Let us now consider that the predicate for open returns
true, selecting the rule in Figure 3d. In this case, calling
reconcile(open, read) returns actions STORE and
NOP for the recorded and replayed side, respectively. Ac-
tion NOP on the replayed side means that the MVE sys-
tem calls reconcile with the same replayed call, just as
it does for NOP on the recorded side. Action STORE on
the recorded side is useful for rules with multiple LHS
calls, and prompts the MVE to advance the recorded
side and call reconcile with the next recorded call.
Later MATCH actions may refer to previous calls on the
recorded side on which action STORE was taken, which
means that the MVE needs to save all such recorded

calls. For instance, the rule in Figure 3b returns the fol-
lowing sequence of actions for the recorded side: STORE,
STORE, STORE, MATCH 2, NOP, MATCH 3, MATCH 4,
and MATCH 1. Note that function init implicitly per-
forms action STORE on the recorded side.

Function reconcile returns a special flag when an
irreconcilable divergence occurs. The MVE must handle
such a divergence, by reconciling it in some other way,
stopping execution, or terminating that replayed version.

4 Automatic Synthesis of DSL Rules

When designing the DSL and writing rules for the differ-
ent scenarios, we used strace,2 an utility that logs all the
system calls that a process issues, to generate system call
traces for different program versions. For instance, we
used this approach to compare the sequences of system
calls issued by native and Valgrind versions of the same
application when run on the same inputs.

We then noticed that a simple visual diff tool (vimdiff,
part of VIM3) was able to display the two files side-by-
side with most of the matching system calls aligned. Fig-
ures 5a and 5b show an example of such an aligned diff
result. This provides empirical evidence that the rules are
often easy to identify.

Based on our experience of manually writing the rules,
we decided to create an automatic synthesis algorithm
which targets the most common set of rules that we en-
countered, those of the form shown in Figure 3c, which
wrap a system call with zero or more system calls before
and zero or more system calls after. Ignoring grouping,
61% of the rules needed for Valgrind had this form.

Figure 5c shows the pseudo-code of the rule syn-
thesis algorithm.4 Function synthesize takes as in-
put two system call traces, lhs and rhs, and returns
a set of candidate rules. A candidate rule Cand is
a triple (before, s, after) which defines the rule
s => before s after, where s is a system call, and
before and after are (possibly empty) sequences of
system calls.

The algorithm iterates over each unique system call
s in lhs (line 10). It aligns both sequences on the
next instance of s on line 11, and creates an initial
candidate cand by taking the n system calls around
the aligned s on rhs. For instance, for s=open and
n=6, the algorithm aligns both logs on position 56 and
proposes rule: open as s => access, getpid,

getpid, gettid, write, rt sigprocmask, s,

rt sigprocmask, gettid, read, fstat, mmap,

fstat.
2https://strace.io/
3http://www.vim.org
4For space reasons, the pseudo-code ignores error handling, partic-

ularly when function align fails.

422 2017 USENIX Annual Technical Conference USENIX Association

50 access("ld.so.preload")
51

52

53

54

55

56 open("/etc/ld.so.cache")
57

58

59

60 fstat(3, ...)
61 mmap
62

63

64

65

66 close(3)
67

68

69

70

71

72 open("/lib/libm.so.6")
73

74

75

76

50 access("ld.so.preload")
51 getpid
52 getpid
53 gettid
54 write
55 rt_sigprocmask
56 open("/etc/ld.so.cache")
57 rt_sigprocmask
58 gettid
59 read
60 fstat(3, ...)
61 mmap
62 fstat
63 readlink
64 stat
65 mmap
66 close(3)
67 getpid
68 getpid
69 gettid
70 write
71 rt_sigprocmask
72 open("/lib/libm.so.6")
73 rt_sigprocmask
74 gettid()
75 read
76

1 // Helper functions:
2 // uniqueSCalls([[b,b,s,s,a,a,a] = [a,b,s]
3 // split(s, [b,b,s,s,a,a] = ([b,b], s, [s,a,a])
4 // takeHead([a,b,c,d],3) = [a,b,c]
5 // takeTail([a,b,c,d],3) = [b,c,d]
6 // intersectHead([a,b,c], [a,b,z]) = [a,b]
7 // intersectTail([b,c,d], [z,c,d]) = [c,d]
8

9 synthesize(Trace lhs, Trace rhs, int n) -> [Cand]
10 for s in uniqueSCalls(lhs) :
11 (lhs‘, rhsBefore, rhs‘) = align(s, lhs, rhs)
12 before = takeTail(rhsBefore, n)
13 after = takeHead(rhs‘, n)
14 cand = (before, s, after)
15 cands[s] = refineCand(cand, lhs‘, rhs‘)
16 return cands
17

18 align(SCall s, Trace lhs, Trace rhs)
19 -> (Trace, Trace, Trace)
20 (_, l, lhsAfter) = split(s, lhs)
21 while (rhs != []):
22 (rhsBefore, r, rhsAfter) = split(s, rhs)
23 if (l.args == r.args) :
24 return (lhsAfter, rhsBefore, rhsAfter)
25

26 refineCand(Cand c, Trace lhs, Trace rhs) -> Cand
27 while (lhs != [] and rhs != []):
28 (lhs, rhsBefore, rhs) = align(c.s, lhs, rhs)
29 before = intersectTail(c.before, rhsBefore)
30 after = intesectHead(c.after, rhs)
31 return c

(a) (b) (c)

Figure 5: Example sequences of system calls issued by a native execution (5a) and the same execution under Valgrind
(5b), and pseudo-code for the synthesis algorithm (5c). Matching system calls in 5a and 5b are aligned and highlighted.

Of course, the initial candidate rule is unlikely to
be correct. The algorithm then refines that candidate
using the rest of the logs on line 15 as follows. First, it
finds the next aligned pair of the same system call on
line 28. In our example, this yields position 72 in the
traces. The algorithm then computes the intersection of
the current rule with the system calls that surround the
new matching on lines 29–30. The algorithm repeats
this refinement step for each aligned pair of the same
system call, iteratively discarding system calls that were
captured by accident by the initial candidate. Back to our
example, the algorithm discards positions 50 and 60–62,
thus finding the correct rule: open as s => getpid,

getpid, gettid, write, rt sigprocmask, s,

rt sigprocmask, gettid, read.

In this case, the algorithm found the correct rule in a
single refinement step, but this may not be always the
case. For instance, if position 76 contained system call
fstat, as position 60, then the algorithm would keep
system call fstat as the end of the refined rule, result-
ing in an incorrect rule due to over-capture. The algo-
rithm is prone to over-capture for under-represented sys-
tem calls (e.g., those that only appear once or twice in the
whole log) because the algorithm cannot refine them past
the initial candidate(s). Sorting system calls by their fre-

quency in function uniqueSCalls improves the quality
of the results by leaving under-represented system calls
to the end.

The algorithm is also prone to misalignment, when
it aligns two system calls incorrectly and then gen-
erates the trivial rule syscall as s => s. In our
experience, misalignment happens only due to non-
determinism (e.g., user input timing). Note that the sys-
tem call comparison, in line 23, already handles some
non-determinism. For instance, two write system calls
on the same file descriptor and with the same size are
considered equal, regardless of the contents. Similarly,
two open system calls in directory /tmp are considered
equal, even if the files have different names. This allows
to align executions that print the current time or the pro-
cess ID, and executions that create temporary files with
different names. Note also that a correct MVE system
handles these and other sources of non-determinism that
happen during runtime.

The algorithm also fails when the pattern for reconcil-
ing a given system call changes. This may happen based
on the arguments passed to the system call (e.g., opening
a special file uses a different rule). The DSL provides C
predicates to handle such cases, but the synthesis algo-
rithm cannot generate them.

USENIX Association 2017 USENIX Annual Technical Conference 423

5 Evaluation

This section describes the empirical evaluation of the
DSL we propose for reconciling system call divergences
across program executions. In particular, we evaluate the
DSL for each of the application scenarios that we de-
scribe in §2, using Varan as the underlying MVE sys-
tem [19]. We also describe the empirical evaluation of
the DSL synthesis algorithm in generating rules for the
sanitized versions scenario.

5.1 Implementation
We implemented the DSL parser and the synthesis algo-
rithm in Haskell, with 1388 and 422 LOC, respectively.

We evaluated the DSL with Varan as the MVE system,
whose architecture we presented in the introduction. We
modified Varan to work with the DSL in several ways.
First, Varan builds C files from DSL input files and in-
cludes the generated files during compilation. At run-
time, we added a flag for Varan to load a particular DSL
file for the execution. The DSL-based matching runs on
the followers. In our experiments, we use a single fol-
lower, but in principle we could run multiple followers,
each with its own DSL rules.

We include the generated C files with Varan at build
time for ease of implementation. There is no fundamen-
tal reason to prevent each DSL file to be compiled sepa-
rately (e.g., as a shared object) and loaded dynamically.
This would make Varan easier to extend to other scenar-
ios and we plan to implement this feature in the future.

Currently, we implemented rules with multiple LHS
system calls through several rules with a single LHS,
bound together through predicates that keep track of the
matching sequence. In the future, we plan to implement
this directly in the DSL.

5.2 Different Configurations
We explored the scenario in §2.1 by deploying Redis
3.2.6 with Varan using different configurations. The
leader was configured to keep an in-memory store and
write minimal logs. The follower used one of the fol-
lowing configurations: (1) persistent store,5 (2) verbose
(debug) logs, and (3) both 1 and 2. We required only 7
rules to handle all divergences.

As expected, the sequences of system calls issued in
these three configurations were a superset of those issued
by the leader. Most of the DSL rules simply ignored ex-
tra operations performed over file paths. For instance,
Configuration 1 required a variation of the rule shown
in Figure 3e to ignore manipulating the persistence file.

5appendonly yes and appendfsync always.

Table 1: Redis versions tested, number of commits be-
tween versions, and number of rules needed.

ID Versions Commits Rules
1 1.3.8∗ – 1.3.10 40 0
2 1.3.10 – 1.3.12 105 0
3 1.3.12 – 2.0.0 92 1
4 2.0.0 – 2.0.5 34 1
5 2.0.5 – 2.2.0 730 3
6 2.2.0 – 2.2.15 110 2

* Revision a71f072

We wrote a C library to simplify managing ignored file
paths and associated descriptors to minimize the C code
needed for each rule.

Configuration 1 issues one less gettimeofday call
early in the execution. To reconcile this divergence, we
had to use a long rule that captures context from the
previous 8 system calls. Configuration 2 issues strictly
more gettimeofday to write timestamps on log entries.
A simple rule nothing => gettimeofday(,) suf-
ficed to tolerate such divergences. Configuration 3 sim-
ply required a trivial merge of the DSL files for Con-
figurations 1 and 2. However, we note that in general,
merging DSL files is not guaranteed to tolerate the com-
bination of behaviors that each file tolerates in isolation.

5.3 Software Releases

As discussed in §2.2, the DSL can be used to deploy dif-
ferent program releases. We deployed the pairs of Redis
versions listed in Table 1, by running the old version as
the leader and the new version as the follower. We con-
figured leader and follower to use separate log files, with
a verbose logging level. We then added rules for ignor-
ing log files, with 6 rules totaling 15 lines. These rules
are common to all experiments and are not included in
Table 1. We used the redis-benchmark included in Re-
dis 1.3.8 as our workload, configured with a single client
and performing one request for each operation (we are
interested in functionality rather than performance).

We start with Redis 1.3.8 revision a71f072 so that our
results can be compared with Mx, which could not de-
ploy different versions that change the sequence of sys-
tem calls [18]. Pairs 1 and 2 required no additional rules.

In Pair 3, version 2.0.0 registers one more signal
handler than previous versions (for SIGTERM), which
can be expressed with the simple rule nothing =>

rt sigaction(15, ,). In Pair 4, version 2.0.5

changes the order of a time system call, from before to
after an epoll ctl. We used a rule similar to the rule
shown in Figure 3b to tolerate this divergence.

424 2017 USENIX Annual Technical Conference USENIX Association

Pair 5 had most changes, with 730 commits. How-
ever, all divergences introduced in these commits re-
quired only three rules, similar to those presented before:
ignoring file paths and stat calls on those paths (one
rule); issuing extra time system calls on one side (one
rule); and a write system call that writes more bytes
than previous versions, due to protocol differences, as
we described in detail in §3.1 and Figure 3f (one rule).

Finally, pair 6 required the rule nothing =>

gettimeofday(,) to handle extra system calls, and
a rule to tolerate a change in the order of multiple
rt sigaction system calls, as shown in Figure 3b.

We were able to deploy six pairs with releases up to
730 commits apart with minimal effort (7 rules in total).
Our approach works especially well for applications that
keep backwards-compatibility, such as Redis, which tend
to retain external behavior between releases and newer
versions still support older data formats and protocols.

5.4 Dynamic Analyses

We used Varan to deploy the following existing dynamic
analyses as followers of a native leader: Asan, Msan,
Tsan, and Valgrind (with the memcheck tool). Asan [30],
Msan [33], and Tsan [31] are the address, memory, and
thread sanitizer, respectively, which ship with modern
releases of popular C/C++ compilers Clang and GCC.
We used the ones that ship with Clang version 3.8. Val-
grind [32] checks for uses of invalid memory (i.e. unini-
tialized, unallocated, or freed memory) in C/C++ pro-
grams through heavyweight dynamic instrumentation.
We used Valgrind version 3.11 built from revision 15920
(VEX revision 3233).

We executed Git6 version 2.9.2, a widely-used version
control system, with all the analyses described above
(commands log, blame, diff, and tag). We also exe-
cuted the following applications with Asan and Valgrind:
ssh and ssh-keygen from OpenSSH7 version 7.1, a
suite of utilities used to secure communications by en-
crypting network traffic; HTop8 version 2.0.1, an inter-
active system monitor and process viewer, and VIM ver-
sion 7.4, a screen-oriented text editor.

We manually wrote a DSL file for each analysis, mak-
ing it possible to run all the programs we mentioned with
all the configurations we listed. Msan required the small-
est DSL file, with 1 rule totaling 7 lines; Asan required 3
rules totaling 10 lines, and Tsan required 4 rules totaling
13 lines. The most interesting rule, shared by all these
three analyses, is shown in Figure 3d and described in
§3.1. Other rules ignore the system calls in which the
leader sets up signal handlers for signals that the analy-

6https://git-scm.com/
7http://www.openssh.com/
8http://hisham.hm/htop/

ses already handle, as described in §2.3; and ignore ex-
tra system calls that the analyses issue (nanosleep and
sched getaffinity).

As expected, Valgrind required more effort with 14
rules totaling 104 lines. Valgrind required a begin rule
with 3 lines to ignore its initialization (rule in Figure 3g).
We also grouped 19 system calls that use one of two rules
(one shown in Figure 3c), thus saving implementation ef-
fort and improving the readability of the DSL file.

Handling system call open under Valgrind required
two rules: a general rule, illustrated by positions
51–59 in Figure 5; and a specialized rule for file
/proc/self/cmdline, the one in Figure 3a but with
an appropriate predicate. When a process attempts to
read the command line that launched it, Valgrind hides
the fact that the process is being run under analysis by
treating that open system call in a particular way instead
of interpreting it directly. The specialized rule appears
before the general rule in the file and, as explained in
§3.3, has higher precedence.

We also needed some rules with nothing as the LHS.
For instance, when the application under analysis at-
tempts to mmap a file into memory, Valgrind issues more
system calls to allocate adequate shadow memory for
that file. Given that Varan does not copy the mmap sys-
tem call to the ring buffer, we tolerated the divergence
between positions 61–65 in Figures 5a and 5b with the
following rule:
1 nothing => mmap(_), fstat(_,_,_),
2 readlink(_,_), stat(_,_), mmap(_)

Other rules with nothing as the LHS skip extra work
that Valgrind performs to schedule threads, and when the
program under analysis loads a dynamic library.

5.5 Synthesis Algorithm
All the rules described so far in the experimental eval-
uation were manually written by comparing sequences
of strace logs side-by-side, as shown in Figure 5. We
evaluated the DSL synthesis algorithm by using sim-
ilar strace logs as input, to infer the rules needed to
tolerate divergences between native and Valgrind ex-
ecutions, and comparing them with the ones that we
wrote manually. We used the workloads for Git,
OpenSSH, and VIM described in §5.4. We also used
four GNU/Linux command-line utilities: ls and du from
CoreUtils9 version 8.25, grep10 version 3.0, cal from
util-linux11 version 2.29.2, and the DSL synthesis al-
gorithm itself. The algorithm took under 22 seconds on
a modern laptop to run on each pair of traces.

9https://www.gnu.org/software/coreutils
10https://www.gnu.org/software/grep/
11https://www.kernel.org/pub/linux/utils/

util-linux/

USENIX Association 2017 USENIX Annual Technical Conference 425

Table 2: Rules synthesized from pairs of native and
Valgrind strace logs, including partial and incorrect
rules due to under-represented system calls (a), over-
capture (b), or misalignment (c).

Program Rules Correct Partial Incorrect
git tag 4 4 0 0
git diff 5 4 1a 0
git log 5 5 0 0

ls 6 5 1b 0
grep 5 5 0 0
cal 4 4 0 0
du 5 4 1a 0

keygen 5 4 1b 0
ssh 9 6 1a 2c

synth 6 6 0 0
vim 11 6 2b 3c

Table 2 shows the results for the 19 different rules that
can be synthesized from these traces (this is the number
of rules before any grouping is applied). The total of
column Rules is not 19 because of duplicate rules. For
instance, let us consider that a row lists 2 rules with sys-
tem calls A and B on the LHS; and another row lists 3
rules, for system calls A, C, and D on the LHS. The total
is thus 4 rules, one for each of A, B, C, and D on the LHS.

There are 16 rules generated correctly from at least
one pair of strace logs (column Correct). In two cases,
the algorithm generates rules that have too many system
calls, as described in §4 (column Partial). For instance,
when saving a file, VIM always issues system call utime
(to get the file modification times) before setxattrs (to
set the file attributes). As a result, the synthesized rule for
setxattrs is always (incorrectly) prefixed with system
call utime.

The incorrect rules were all due to misalignment, as
explained in §4. The algorithm generated incorrect rules
only for interactive programs due to their inherent non-
determinism which affects our collection of system call
traces: OpenSSH relies on random data, from both client
and server; and VIM blinks the cursor a different number
of times between executions.

Overall, these results are encouraging: The algorithm
was able to generate most of the rules that it is designed
to synthesize, simplifying the manual effort required.

6 Limitations and Future Extensions

The DSL is already expressive enough to support all the
different scenarios that we present in this document. In
this section, we identify the main limitations that we be-
lieve will need to be addressed to apply the DSL to addi-
tional scenarios.

Greedy rule matching. Currently, rules are matched
greedily. As a result, rules cannot share a prefix of sys-
tem calls on the LHS. We plan to explore alternative se-
mantics to support this case.

Distant system call matching. Rules that match system
calls separated by a large number of uninteresting sys-
tem calls are long and require the DSL to keep all these
system calls in memory. We plan to extend the DSL to
support this scenario better.

Multithreading. In multithreaded programs, our im-
plementation for Varan uses a separate DFA per thread.
However, all DFAs use the same set of rules. Future ver-
sions of the DSL could include ways to map rules to spe-
cific threads.

Composing rules. Code blocks in the DSL cannot be
combined. We plan to explore combining DSL rules and
blocks of code, as the following example shows:
1 R1::{ return fd == 1; } R2::{ return fd == 2; }
2 nothing => write(fd,_,_) R1 || R2

Synthesizing from multiple pairs of traces. The syn-
thesis algorithm struggles with under-represented system
calls. Applying the algorithm to several pairs of traces
would result in a higher count of the rare system calls.

Synthesizing predicated rules. When the pattern for a
system call changes, the synthesis algorithm generates
wrong rules due to misalignment. The algorithm can be
extended by assigning an integer measure of confidence
to each rule, which increases as the rule matches more
system calls. After a threshold, refining yields a new rule
instead of updating the current one.

Synthesizing more rules. The DSL synthesis algorithm
only generates rules involving the original system call
on the RHS. This algorithm can be extended to consider
unmatched portions of the logs surrounded by matched
sequences. For instance, for the divergence between
lines 61–65 in Figures 5a and 5b, the rule presented in
§5.4 can be extracted by considering the surrounding
matched fstat and close in the strace logs.

7 Related Work

In this paper, we propose a DSL approach to recon-
cile system call divergences in the context of the multi-
version execution [8,12,13,18,19,22,29,34,35]. Mx [18]
performs dynamic software updates by running different
program revisions in different versions. However, Mx
can only deploy revisions that issue the same exact se-
quence of system calls; it does not tolerate any diver-
gences. Varan [19] provides limited support for tolerat-
ing system call divergences through BPF filters [23] that
rewrite the sequence of system calls. Varan was thus able

426 2017 USENIX Annual Technical Conference USENIX Association

to deploy program revisions that Mx could not. However,
the BPF filters support only a single system call on the
left-hand side, and the filters are very difficult to write by
someone not familiar with BPF. Tachyon [22] also sup-
ports rewriting the sequence of system calls between two
processes. However, it does not keep state between invo-
cations by design; and it is also limited to a single sys-
tem call on the left-hand side. Both Varan and Tachyon
do not support the reordering of several system calls on
the left to several others on the right, as we do in Fig-
ure 3b. On the other hand, the DSL we propose vastly
improves the support for reconciling divergences, allow-
ing for sophisticated rules that trigger only under certain
conditions, which keep state about the current divergence
being handled, which provide better support for complex
reordering of system calls, and which require less effort
to write given the expressiveness of the DSL.

Each DSL rule is compiled to a DFA, which resembles
how regular expressions are efficiently implemented [1].
In fact, a RHS rule without predicates or callbacks is a
regular expression for an alphabet in which each symbol
is a system call. However, adding predicates to accept
each symbol conditionally and callbacks after each sym-
bol is accepted is an important difference.

Andersen and Lawall [2] propose a DSL and an al-
gorithm for specifying and inferring generic patches to
C programs which capture the collateral evolution of li-
brary call sites when the API changes. Instead, our DSL
and synthesis algorithm operates on system call traces,
which present specific challenges and opportunities.

Bakken et al. [4] propose a DSL for describing how to
combine votes of multiple versions into a single result.
Our DSL focuses on matching, instead of combining, the
two “votes” on the recorded and replayed sides.

Techniques for synthesizing regular expressions from
examples are related to the technique we propose for gen-
erating DSL rules from strace logs. Approaches based on
genetic algorithms designed in the context of text extrac-
tion [6,7,10] are useful for generalizing the observed be-
havior to unseen examples. However, they do not match
our goal of generating rules that exactly match all ob-
served divergences. Regular expressions and DFAs can
be synthesized through techniques that require a set of
positive and negative examples [3, 9, 21, 26]. These ap-
proaches are not directly applicable because part of the
challenge of synthesizing DSL rules is to identify the
positive examples, and the concept of negative examples
does not apply directly to strace logs.

Program synthesis techniques [5,15,16,17,27] are also
related to the technique we propose for generating DSL
rules. The most relevant technique is λ 2 [15], which per-
forms an enumerative search in a loop that generates can-
didates and refines them iteratively. Our technique gen-
erates a single candidate per rule using the first match

and then refines it iteratively using the rest of the strace
log. λ 2 can generate more than one candidate, and it uses
a cost model to guide the program generation to gener-
ate a minimal cost solution. The extension we propose
of adding a metric for the confidence of a candidate and
keeping candidates above a threshold is similar.

8 Conclusion

In this paper, we have presented a simple and expres-
sive domain-specific language (DSL) to write rules to
tolerate expected divergences in the sequences of system
calls issued by different program executions. The DSL
we propose enables the deployment of multi-version ex-
ecution (MVE) systems in a wider range of scenarios. In
particular, we showed its applicability to three scenarios:
(1) running versions of the same program under different
configurations; (2) running different software releases,
and (3) running native programs together with versions
instrumented for dynamic analysis.

We report the results of an experimental evaluation for
all the scenarios by manually writing the required rules
starting from pairs of system call trace logs, obtained for
each version in isolation. In particular, we show that the
user needs no knowledge about the internals of the pro-
grams and analyses being deployed through MVE. We
provide empirical evidence of the low effort required to
identify and write such DSL rules, and we present the
design and evaluation of an algorithm to automatically
extract some of the DSL rules from such pairs of logs.

We believe that the DSL we propose, with its ability
to easily encode divergences in the sequences of system
calls issued by two executions, is an important contri-
bution that will enable exciting new research on multi-
version execution.

9 Acknowledgments

We thank our shepherd Gilles Muller, the anonymous re-
viewers, and Andrea Mattavelli and for their useful feed-
back on the paper. We also thank the EPSRC for spon-
soring this research through an Early-Career Fellowship
and a CDT studentship.

References

[1] AHO, A. V., LAM, M. S., SETHI, R., AND ULL-
MAN, J. D. Compilers: Principles, Techniques,
and Tools, 2nd ed. Addison Wesley, 2006.

[2] ANDERSEN, J., AND LAWALL, J. L. Generic
patch inference. In Proc. of the 23rd IEEE Inter-
national Conference on Automated Software Engi-
neering (ASE’08) (Sept. 2008).

USENIX Association 2017 USENIX Annual Technical Conference 427

[3] ANGLUIN, D. Learning regular sets from queries
and counterexamples. Information and Computa-
tion 75, 2 (Nov. 1987), 87–106.

[4] BAKKEN, D. E., ZHAN, Z., JONES, C. C., AND
KARR, D. A. Middleware support for voting and
data fusion. In Proc. of the 2001 International
Conference on Dependable Systems and Networks
(DSN’01) (July 2001).

[5] BAROWY, D. W., GULWANI, S., HART, T., AND
ZORN, B. Flashrelate: Extracting relational data
from semi-structured spreadsheets using examples.
In Proc. of the Conference on Programing Lan-
guage Design and Implementation (PLDI’15) (June
2015).

[6] BARTOLI, A., DAVANZO, G., DE LORENZO, A.,
MEDVET, E., AND SORIO, E. Automatic synthesis
of regular expressions from examples. Computer
47, 12 (Dec. 2014), 72–80.

[7] BARTOLI, A., DE LORENZO, A., MEDVET, E.,
AND TARLAO, F. Inference of regular expressions
for text extraction from examples. IEEE Transac-
tions on Knowledge and Data Engineering 28, 5
(May 2016), 1217–1230.

[8] BERGER, E. D., AND ZORN, B. G. Diehard:
probabilistic memory safety for unsafe languages.
In Proc. of the Conference on Programing Lan-
guage Design and Implementation (PLDI’06) (June
2006).

[9] BONGARD, J., AND LIPSON, H. Active coevo-
lutionary learning of deterministic finite automata.
Journal of Machine Learning Research 6 (Dec.
2005), 1651–1678.

[10] BRAUER, F., RIEGER, R., MOCAN, A., AND
BARCZYNSKI, W. M. Enabling information ex-
traction by inference of regular expressions from
sample entities. In Proc. of the 22th ACM Interna-
tional Conference on Information and Knowledge
Management (CIKM’11) (Oct. 2011).

[11] CADAR, C., AND HOSEK, P. Multi-version soft-
ware updates. In Proc. of the 4th Workshop on Hot
Topics in Software Upgrades (HotSWUp’12) (June
2012).

[12] CHEN, L., AND AVIZIENIS, A. N-version pro-
gramming: A fault-tolerance approach to reliabil-
ity of software operation. In Proc. of the 8th IEEE
International Symposium on Fault Tolerant Com-
puting (FTCS’78) (June 1978).

[13] COX, B., EVANS, D., FILIPI, A., ROWAN-
HILL, J., HU, W., DAVIDSON, J., KNIGHT,
J., NGUYEN-TUONG, A., AND HISER, J. N-
variant systems: A secretless framework for secu-
rity through diversity. In Proc. of the 15th USENIX
Security Symposium (USENIX Security’06) (July-
Aug. 2006).

[14] CRAMERI, O., KNEZEVIC, N., KOSTIC, D.,
BIANCHINI, R., AND ZWAENEPOEL, W. Staged
deployment in Mirage, an integrated software up-
grade testing and distribution system. In Proc. of
the 21st ACM Symposium on Operating Systems
Principles (SOSP’07) (Oct. 2007).

[15] FESER, J. K., CHAUDHURI, S., AND DILLIG, I.
Synthesizing data structure transformations from
input-output examples. In Proc. of the Conference
on Programing Language Design and Implementa-
tion (PLDI’15) (June 2015).

[16] GULWANI, S. Dimensions in program synthesis.
In Proc. of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Program-
ming (PPDP’10) (July 2010).

[17] GULWANI, S. Automating string processing in
spreadsheets using input-output examples. In Proc.
of the 38th ACM Symposium on the Principles of
Programming Languages (POPL’11) (Jan. 2011).

[18] HOSEK, P., AND CADAR, C. Safe software up-
dates via multi-version execution. In Proc. of the
35th International Conference on Software Engi-
neering (ICSE’13) (May 2013).

[19] HOSEK, P., AND CADAR, C. Varan the Unbeliev-
able: An efficient N-version execution framework.
In Proc. of the 20th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS’15) (Mar. 2015).

[20] KONING, K., BOS, H., AND GIUFFRIDA, C.
Secure and efficient multi-variant execution using
hardware-assisted process virtualization. In Proc.
of the 2016 46th International Conference on De-
pendable Systems and Networks (DSN’16) (June
2016).

[21] LEE, M., SO, S., AND OH, H. Synthesizing regu-
lar expressions from examples for introductory au-
tomata assignments. In Proc. of the 2016 Interna-
tional Conference on Generative Programming and
Component Engineering (GPCE’16) (Oct. 2016).

[22] MAURER, M., AND BRUMLEY, D. TACHYON:
Tandem execution for efficient live patch testing.

428 2017 USENIX Annual Technical Conference USENIX Association

In Proc. of the 21st USENIX Security Symposium
(USENIX Security’12) (Aug. 2012).

[23] MCCANNE, S., AND JACOBSON, V. The BSD
packet filter: A new architecture for user-level
packet capture. In Proc. of the 1993 Winter
USENIX Conference (USENIX Winter’93) (Jan.
1993).

[24] NETHERCOTE, N., AND SEWARD, J. Valgrind: A
program supervision framework. Electronic Notes
in Theoretical Computer Science 89, 2 (2003).

[25] NETHERCOTE, N., AND SEWARD, J. Valgrind:
a framework for heavyweight dynamic binary in-
strumentation. In Proc. of the Conference on
Programing Language Design and Implementation
(PLDI’07) (June 2007).

[26] PAREKH, R., AND HONAVAR, V. G. Learning dfa
from simple examples. Machine Learning 44, 1-2
(July 2001), 9–35.

[27] PERELMAN, D., GULWANI, S., GROSSMAN, D.,
AND PROVOST, P. Test-driven synthesis. In Proc.
of the Conference on Programing Language Design
and Implementation (PLDI’14) (June 2014).

[28] PINA, L., AND HICKS, M. Tedsuto: a gen-
eral framework for testing dynamic software up-
dates. In Proc. of the IEEE International Confer-
ence on Software Testing, Verification, and Valida-
tion (ICST’16) (Apr. 2016).

[29] SALAMAT, B., JACKSON, T., GAL, A., AND
FRANZ, M. Orchestra: intrusion detection using
parallel execution and monitoring of program vari-
ants in user-space. In Proc. of the 4th European
Conference on Computer Systems (EuroSys’09)
(Mar.-Apr. 2009).

[30] SEREBRYANY, K., BRUENING, D., POTAPENKO,
A., AND VYUKOV, D. AddressSanitizer: A fast ad-
dress sanity checker. In Proc. of the 2012 USENIX

Annual Technical Conference (USENIX ATC’12)
(June 2012).

[31] SEREBRYANY, K., AND ISKHODZHANOV, T.
ThreadSanitizer—data race detection in practice. In
Workshop on Binary Instrumentation and Applica-
tions (12 2009).

[32] SEWARD, J., AND NETHERCOTE, N. Using
Valgrind to detect undefined value errors with
bit-precision. In Proc. of the 2005 USENIX
Annual Technical Conference (USENIX ATC’05)
(Apr. 2005).

[33] STEPANOV, E., AND SEREBRYANY, K. Mem-
orySanitizer: fast detector of uninitialized mem-
ory use in C++. In Proc. of the International
Symposium on Code Generation and Optimization
(CGO’15) (Feb. 2015).

[34] VOLCKAERT, S., COPPENS, B., VOULIMENEAS,
A., HOMESCU, A., LARSEN, P., SUTTER, B. D.,
AND FRANZ, M. Secure and efficient application
monitoring and replication. In Proc. of the 2016
USENIX Annual Technical Conference (USENIX
ATC’16) (June 2016).

[35] XUE, H., DAUTENHAHN, N., AND KING, S. T.
Using replicated execution for a more secure and
reliable web browser. In Proc. of the 19th Net-
work and Distributed System Security Symposium
(NDSS’12) (Feb. 2012).

[36] YIN, Z., YUAN, D., ZHOU, Y., PASUPATHY, S.,
AND BAIRAVASUNDARAM, L. How do fixes be-
come bugs? In Proc. of the joint meeting of the Eu-
ropean Software Engineering Conference and the
ACM Symposium on the Foundations of Software
Engineering (ESEC/FSE’11) (Sept. 2011).

USENIX Association 2017 USENIX Annual Technical Conference 429

Titan: Fair Packet Scheduling for Commodity Multiqueue NICs

Brent Stephens, Arjun Singhvi, Aditya Akella, Michael Swift

UW-Madison

Abstract

The performance of an OS’s networking stack can be

measured by its achieved throughput, CPU utilization,

latency, and per-flow fairness. To be able to drive in-

creasing line-rates at 10Gbps and beyond, modern OS

networking stacks rely on a number of important hard-

ware and software optimizations, including but not lim-

ited to using multiple transmit and receive queues and

segmentation offloading. Unfortunately, we have ob-

served that these optimizations lead to substantial flow-

level unfairness.

We describe Titan, an extension to the Linux network-

ing stack that systematically addresses unfairness arising

in different operating conditions. Across both fine and

coarse timescales and when NIC queues are undersub-

scribed and oversubscribed, we find that the Titan can

reduce unfairness by 58% or more when compared with

the best performing Linux configuration. We also find

that improving fairness can lead to a reduction in tail

flow completion times for flows in an all-to-all shuffle

in a cluster of servers.

1 Introduction

Many large organizations today operate data centers

(DCs) with tens to hundreds of thousands of multi-core

servers [37, 35, 20]. These servers run a variety of

applications with different performance needs, ranging

from latency-sensitive applications such as web services,

search, and key-value stores, to throughput-sensitive ap-

plications such as Web indexing and batch analytics.

With the scale and diversity of applications growing, and

with applications becoming more performance hungry,

data center operators are upgrading server network in-

terfaces (NICs) from 1Gbps to 10Gbps and beyond. At

the same time, operators continue to aim for multiplexed

use of their servers across multiple applications to ensure

optimal utilization of their infrastructure.

The main goal of our work is to understand how we

can enable DC applications to drive high-speed server

NICs while ensuring key application performance goals

are met—i.e., throughput is high and latency is low—and

key infrastructure performance objectives are satisfied—

i.e., CPU utilization is low and applications share re-

sources fairly.

Modern end-host network stacks offer a variety

of optimizations and features to help meet these

goals. Foremost, many 10Gbps and faster NICs

provide multiple hardware queues to support multi-

core systems. Recent advances in the network stack

(RPS [7]/RFS [6]/XPS [11]) allow systematic assign-

ment of these queues and the flows using them to CPU

cores to reduce cross-core synchronization and improve

cache locality. In addition, provisions exist both in hard-

ware and in the operating system for offloading the pack-

etization of TCP segments, which vastly reduces CPU

utilization [22]. Likewise, modern OSes and NIC hard-

ware provide a choice of software queuing logics and

configurable queue size limits that improve fairness and

lower latencies by avoiding bufferbloat [19].

The first contribution of this paper is a systematic ex-

ploration of the performance trade-offs imposed by dif-

ferent combinations of optimizations and features for

four key metrics, namely, throughput, latency, CPU uti-

lization, and fairness. We study performance under ex-

tensive controlled experiments between a pair of multi-

core servers with 10G NICs where we vary the level of

oversubscription of queues.

We find that existing configuration options can opti-

mize throughput and CPU utilization. But, we found

that across almost every configuration there is substan-

tial unfairness in the throughput achieved by different

flows using the same NIC: some flows may transmit at

twice the throughput or higher than others, and this can

happen at both fine and coarse time scales. Such unfair-

ness increases tail flow completion times and makes data

transfer times harder to predict. We find that this unfair-

USENIX Association 2017 USENIX Annual Technical Conference 431

ness between flows arises because of three key aspects of

today’s networking stacks:

Foremost, OSes today use a simple hash-based scheme

to assign flows to queues, which can easily lead to

hash collisions even when NIC queues are undersub-

scribed (fewer flows than queues). Even a more op-

timal flow-to-queue assignment can result in flow im-

balance across queues especially under moderate over-

subscription (when the number of flows is only slightly

larger than the number of queues).

Second, NIC schedulers strive for equal throughput

from each transmit queue and thus service packets from

queues in a strict round-robin fashion. Flows that share a

queue as a result receive only a fraction of the throughput

of those that do not. Even over long periods, a flow may

receive half its fair-share throughput or less.

Finally, segmentation offload, which is crucial for low-

ering CPU utilization, exacerbates head-of-line blocking

because a large segment of a flow must be transmitted

before a segment from a different flow can be transmit-

ted out of the same queue. This becomes acute at high

levels of oversubscription, when there may be multiple

segments from different flows in each queue. In this case,

head-of-line blocking is also exacerbated by the number

of queues that are in use. The NIC performs round robin

scheduling of packets from different queues, and the OS

aims to keep the same number of bytes enqueued in each

hardware queue. If a large segment of the same size is in

every queue, a newly arrived packet will have to wait for

every enqueued segment to be sent before it can be sent,

regardless of which queue it uses.

The second contribution of this paper is an extension

to the Linux networking stack called Titan that incorpo-

rates novel ideas to overcome the above fairness issues.

First, Titan uses dynamic queue assignment (DQA) to

evenly distribute flows to queues based on current queue

occupancy. This avoids flows sharing queues in under-

subscribed conditions. Second, Titan adds a new queue

weight abstraction to the NIC driver interface and a dy-

namic queue weight assignment (DQWA) mechanism in

the kernel, which assigns weights to NIC queues based

on current occupancy. In Titan, NICs use deficit round-

robin [36] to ensure queues are serviced according to

computed weights. Third, Titan adds dynamic segmen-

tation offload sizing (DSOS) to dynamically reduce the

segment size and hence reduce head-of-line blocking un-

der over-subscription, which balances improvements to

fairness against increased CPU utilization.

We implement Titan in Linux, and, using experiments

both without and with network congestion, we show

that Titan greatly reduces unfairness in flow throughput

across a range of under- and oversubscription conditions

and both at short and long timescales. In many cases,

there is near zero unfairness, and in the cases where it re-

mains, Titan reduces unfairness by more than 58%. Our

experiments on a cluster of servers show that Titan offers

the most fair flow completion times and decreases flow

completion times at the tail (90th percentile).

Titan can increase CPU utilization and latency. We

have designed Titan so as to try to minimize its impact

on CPU utilization. In our experiments, Titan with DQA

and DQWA often increases CPU utilization by less than

10%, although in the worst case it increases CPU utiliza-

tion by 17% and 27% with and without pinning queues

to cores, respectively. Also, Titan often matches the RTT

latency of unmodified Linux with average latencies rang-

ing from 123–660µs. At most, Titan increases latency

by 134µs, and DSOS often reduces latency by more than

200µs. Still, latency under load still remains higher than

when there is no other traffic using the NIC (32µs).

Current best practices for preventing long-running

bulk data transfers from impacting latency sensitive traf-

fic is to isolate different traffic classes in different priori-

ties [26, 20]. Titan is compatible with DCB, so DCB pri-

orities can still be used to isolate latency-sensitive traffic

from bulk traffic in Titan. At the NIC level, this is ac-

complished by allocating dedicated pools of NIC queues

for each DCB priority.

In the next section we provide background material on

server networking stacks. Section 3 describes the design

of Titan, and Section 4 has information on the imple-

mentation. Sections 5 and 6 describe our methodology

and evaluation. We follow with related work and then

we conclude.

2 Background

Networking in modern OSes is complex. There are mul-

tiple cooperating layers involved, and each layer has its

own optimizations and configurations. Further, there are

multiple different dimensions by which the performance

of a server’s network stack can be measured, and dif-

ferent configurations have subtle performance trade-offs.

Figure 1 shows the different layers involved in a server’s

network stack (server-side networking), and Table 1 lists

the most significant configuration options.

2.1 Server Networking Queue Configura-

tions

We focus on the transmit (TX) side of networking be-

cause choices made when transmitting segments have a

much larger potential to impact fairness: a server has

no control over what packets it receives and complete

control over what segments it transmits. Although the

RX-side of networking is important, TX and RX are

largely independent, so recent improvements to the RX

432 2017 USENIX Annual Technical Conference USENIX Association

NIC

Qdisc

App

TCP/IP Stack

…
..

TXQ-1

Wire

OS

(a)

Queue Assignment

Qdisc-1

App

TCP/IP Stack

…
..

TXQ-1

Qdisc-Q

TXQ-Q

…….

….

NIC Scheduler

Wire

OS

NIC

(b)

CPU N

Queue Assignment

App

TCP Stack

…
..

TXQ

Qdisc-Q

TXQ

…….

….

CPU 2

Queue Assignment

Qdisc-1

App

TCP Stack

…
..

TXQ

Qdisc-Q

TXQ

…….

….

CPU 1

…
…

..

NIC Scheduler

Wire

Queue Assignment

Qdisc-1

App

TCP/IP Stack

…
..

TXQ-1

Qdisc-Q

TXQ-Q

….

OS

NIC

(c)

Figure 1: Different server-side TX networking designs:

(a) Single queue (SQ) TX networking. (b) Multiqueue

(MQ) TX networking. (c) Multicore-partitioned (XPS)

multiqueue TX networking.

side [25, 18, 30] are complementary to improvements to

the TX side.

In an OS, data from application buffers are passed as

a segment (smaller than some maximum segment size)

through many different layers of the network stack as it

travels to the NIC, where it is turned into one or more

packets on the wire. Both the design of each layer that

touches a segment and the interfaces between them can

impact performance.

There are many ways of connecting the layers of a net-

working stack that differ in the number of NIC transmit

queues and the assignment of queues to CPU cores. Fig-

ure 1 illustrates three designs. Figure 1a shows how the

OS interfaces with a single queue NIC (SQ). Figures 1b

and 1c show two different ways for an OS to interface

with a multiqueue NIC. The first (MQ) allows for flows

on any core to use any NIC queue. The second partitions

queues into pools that are dedicated to different cores,

which we refer to by its name in Linux, XPS (transmit

packet steering) [11].

Single Queue (SQ): In this design, segments from mul-

tiple competing applications (and containers/VMs) des-

tined for the same output device are routed by the TCP/IP

stack first to a per-device software queue and then to a

per-device hardware queue (Figure 1a). The software

queue (Qdisc in Linux) may implement any scheduling

policy. The hardware transmit queues are simple FIFOs.

On a multicore system, SQ can lead to increased re-

source contention (locking, cache coherency, etc.). Thus,

SQ has largely been replaced by designs that use multi-

ple independent software and hardware transmit queues.

Nevertheless, SQ offers the OS the most control over

packet scheduling because the NIC will transmit pack-

ets in the exact order chosen by the OS.

Multiqueue (MQ): To avoid SQ’s resource contention

overheads, many 10 Gbps and faster NICs provide mul-

tiple hardware transmit and receive queues (MQ). Most

OSes use multiple partitioned software queues, one for

each hardware queue. Figure 1b illustrates MQ in Linux.

Note that queues are not pinned to individual cores in

this model, although flows may be assigned to queues.

This allows computation to be migrated to idle or under-

utilized cores [32] at the expense of performance isola-

tion provided by dedicating queues to cores. Given a

multiqueue NIC, by default, Linux will use MQ.

The driver that we use (ixgbe) sets the number of

queues to be equal to the number of cores by default.

However, modern NICs typically can provide more hard-

ware queues than cores, and using more queues than

cores can be advantageous.

Moving to a multiqueue NIC requires that the OS im-

plement some mechanism for assigning traffic to queues.

In Linux, queue assignment is determined by RSS hash-

ing for incoming flows and by a per-socket hash for out-

going flows. Because the number of open sockets may be

much larger than both the number of NIC queues and the

number of simultaneously active sockets, hash collisions

would be expected given this approach regardless of the

specific hash algorithm that is used.

In MQ, NICs must implement some algorithm for pro-

cessing traffic from the different queues because they can

only send a single packet at a time on the wire. Both

the Intel 82599 and Mellanox ConnectX-3 NICs perform

round-robin (RR) scheduling across competing queues

of the same priority [2, 31]. Because of this, MQ can

increase HOL blocking latency. If a multi-packet seg-

ment is enqueued in an empty queue, the time to send

this entire segment in MQ will be the transfer time in SQ

multiplied by the number of active queues. For example,

sending a single 64KB segment at 10Gbps line-rate takes

52µs, while sending a 64KB segment from 8 different

queues takes 419µs. Further, if all of the queues are full,

the queueing latency of the NIC for any new segment is

at least equal to the minimum number of bytes enqueued

in a queue times the number of queues.

Multicore-Partitioned Multiqueue (XPS): The third

networking design partitions NIC queues across the

available CPUs, which can reduce or eliminate the inter-

core communication performed for network I/O and im-

prove cache locality. This configuration (transmit packet

steering or XPS [11]) is particularly important for per-

formance isolation because it ensures VMs/containers on

one core do not consume CPU resources on another core

to perform I/O. As in MQ, when a core can use multiple

queues, hashing is used to pick which queue individual

flows are assigned to in Linux.

In Linux, partitioning queues across cores involves

significant configuration. XPS assigns NIC TX queues to

a pool of CPUs. Because many TX queues can share an

interrupt, interrupt affinity must also be configured cor-

rectly for XPS to be effective.

USENIX Association 2017 USENIX Annual Technical Conference 433

Config Purpose Expected Impact

Segmentation offloading (TSO/GSO) Offload or delay segment packetization Increases to segment sizes should reduce CPU utilization, in-

crease latency, and hurt fairness

Choice of software queue (Qdisc) Optimize for different performance goals Varies

Assignment of queues to CPU cores (XPS, etc.) Improve locality and performance isolation Improved assignment should reduce CPU utilization

TCP queue occupancy limits (TCP Small Queues) Avoid bufferbloat Decreasing should reduce CPU utilization and latency up to

a point of starvation.

Hardware queue occupancy limits (BQL) Avoid head-of-line (HOL) blocking Decreasing the byte limit should reduce latency up to a point

of starvation. Further decreases should decrease throughput.

Table 1: A table that lists the different server-side network configurations investigated in this study, their purpose, and

their expected performance impact.

2.2 Optimizations and Queue Configura-

tions

There are many additional configurations and optimiza-

tions that impact network performance. Combined with

the above queue configurations, these options induce key

trade-offs in terms of latency, throughput, fairness and

CPU utilization.

TSO/GSO: Segmentation offloading allows the OS to

pass segments larger than the MTU through the net-

work stack and down to the NIC. This reduces the num-

ber of times the network stack is traversed for a given

bytestream. There are many per-segment operations in

an OS networking stack, so increasing segment sizes re-

duces CPU utilization [28].

Many NICs are capable of packetizing a TCP seg-

ment without CPU involvement, called TCP Segmen-

tation Offloading (TSO). For NICs that do not support

TSO, Generic Segmentation Offloading (GSO) provides

some of the benefit of TSO without hardware support by

passing large segments through the stack and segmenting

only just before passing them to the driver.

TSO/GSO hurts latency and fairness by causing HOL

blocking. Competing traffic must now wait until an en-

tire segment is transmitted. Further, sending large seg-

ments can cause bursts of congestion in the network [24].

To avoid the problems associated with TSO/GSO, Linux

does not always send as large of segments as possible.

Instead, Linux automatically reduces the size of TSO

segments to try to ensure that at least one segment is

sent each millisecond [9]. In effect, this causes Linux to

use smaller segments on slow networks while still using

as large of segments as possible on fast networks. (e.g.

10 Gbps and beyond).

Software Queue Discipline: Before segments are

passed to a hardware queue, they are processed by a soft-

ware queue (Qdisc). By default, the queuing discipline

in Linux is FIFO (pfifo fast), which is sub-optimal

for latency and fairness. Linux implements at least two

other superior policies: (1) The prio policy strictly pri-

oritizes all traffic from a configurable class over all other

traffic, improving latency. (2) The sfq policy imple-

ments Stochastic Fair Queueing (SFQ) using the defi-

cient round robin (DRR) scheduling algorithm [36] to

fairly schedule segments from competing flows regard-

less of differing segment sizes.

TSO Interleaving: Transmitting an entire TSO segment

at once for a given queue can significantly increase la-

tency and harm fairness, even if each queue is serviced

equally. Some NICs address this with TSO interleav-

ing [2, 31], which sends a single MTU sized packet from

each queue in round-robin even if TSO segments are en-

queued. This can lead to fairer packet scheduling as long

as there is only one flow per-queue. HOL blocking can

still occur if there are multiple flows in a queue.

TCP Queue Occupancy Limits: Enqueuing too

many bytes for a flow into software queues causes

bufferbloat [19], which can hurt latency and fairness.

TCP Small Queues (TSQ) [10] limits the number of out-

standing bytes that a flow may have enqueued in either

hardware or software queues to address this problem.

Once the limit is reached (256KB by default in Linux),

the OS waits for the driver to acknowledges that some

segments for that flow have been transmitted before en-

queuing more data. As long as more bytes are enqueued

per-flow than can be transmitted by the NIC before the

next interrupt, TSQ can still drive line-rate while reduc-

ing bufferbloat.

In Linux, the enqueueing of additional data for flows

sharing a queue in TSQ happens in batches. This is a

side-effect of Linux using the freeing of an skbuff as

a signal that it has been transmitted and skbuffs only

being freed by the driver in batches in the TX interrupt

handler.

Hardware queue occupancy limits: Hardware queues

are simple FIFOs, so increasing the bytes enqueued per-

hardware queue directly increases HOL blocking latency.

Byte Queue Limits (BQL) [1] in Linux limits the total

amount of data enqueued in a hardware queue. However,

it is important to enqueue at least as many bytes as can

be sent before the next TX interrupt, otherwise starvation

may ensue. A recent advancement is Dynamic Queue

Limits (DQL) [1], which dynamically adjusts each hard-

ware queue’s BQL independently so as to decrease HOL

blocking while avoiding starvation.

2.3 Configuration Trade-off Study

We studied the impact of the aforementioned config-

urations on server-side performance (CPU utilization,

434 2017 USENIX Annual Technical Conference USENIX Association

Cvanilla: Default Linux networking stack incurs significant latency and unfairness, regardless of how many NIC queues are used, but has

high throughput and low CPU.

C1: No TSQ: TSQ is an important optimization. Disabling can cause significant latency and unfairness.

C2: Improved software

scheduling:

Improving the software scheduler can significantly reduce latency and increase fairness, especially when only a single NIC queue

is used. Comes at the cost of CPU utilization.

C3: No BQL: BQL is an important optimization because disabling it can lead to increased latency and decreased fairness.

C4: 64KB BQL: Setting BQL too small decreases latency but hurts fairness at long timescales with many flows.

C5: No TSO: Disabling segmentation offloading hurts every performance metric because CPUs saturate.

C6: 16KB GSO: Using a smaller GSO size than the default (64KB) improves fairness at short timescales (ms), increases CPU utilization.

Cmax: C2 + 256KB BQL: Dynamic Queue Limits (DQL) leads to a higher queue limit than necessary to avoid starvation. If BQL is manually set smaller, it

is possible to reduce latency and improve fairness.

Table 2: Summary of experimental results for different networking configurations.

throughput, latency, and fairness). Our high-level take-

aways are listed in Table 2. These are synthesized from

the raw results presented for each combination of work-

load, queue configuration, and optimization, which we

detail in a technical report [40]. Table 3 in Section 6

shows the raw results for default Linux (Cvanilla) and

the best performing configuration (Cmax). These results

show that using SFQ for the queuing discipline with TCP

small queues enabled and byte queue limits manually

set to 256KB tend to out-perform all other combinations

across different queue configurations. This is denoted

by Cmax, which we henceforth focus on as the baseline

best-performing MQ/XPS configuration today.

While we find that using multiqueue NICs can gener-

ally offer low CPU utilization and high throughput, we

also find that the current Linux networking stack is un-

able to provide fairness at any time scale across flows

at any subscription level. In the undersubscribed case,

the central problem with MQ in Linux is the assign-

ment of flows to queues. At low oversubscription, un-

fairness is uniformly high at short (1ms) and long (1 sec)

timescales. We find that this largely occurs because some

queues have more flows than others, and flows that share

a queue send half as much data as those that do not. At

high oversubscription, fairness is uniformly worse, as

hashing is not perfect and leads to variable number of

flows per queue, and a flow sharing a queue with 9 other

flows will send much more slowly than one sharing with

5. However, using the best practices, exemplified partic-

ularly by configuration Cmax, can have substantial bene-

fits over vanilla Linux without optimizations (Cvanilla).

2.4 Summary

Multiqueue NICs allow different CPU cores to perform

network I/O independently, which is important for reduc-

ing the CPU load of network I/O caused by locking and

cross-core memory contention. Each core can use inde-

pendent software queueing disciplines feeding indepen-

dent hardware queues. Further, TSO reduces CPU uti-

lization by allowing the OS to treat multiple sequential

packets as a single large segment. However, as a conse-

quence, a packet scheduler in the NIC is now responsi-

ble for deciding which queue is allowed to send packets

out on the wire. Because the NIC performs round-robin

scheduling across competing hardware queues and TSO

segments cause HOL blocking, the NIC will emit an un-

fair packet schedule when the network load is asymmet-

rically partitioned across the NIC’s hardware queues and

when multiple flows share a queue.

3 Titan

This section presents the design of Titan, an OS net-

working stack that that introduces new mechanisms for

improving network fairness with multiqueue NICs. To

improve fairness, Titan dynamically adapts the behavior

of the many different layers of an OS’s network stack to

changes in network load and adds a new abstraction for

programming the packet scheduler of a NIC. Specifically,

Titan comprises the following components: Dynamic

Queue Assignment (DQA), Dynamic Queue Weight As-

signment (DQWA), and Dynamic Segmentation Offload

Sizing (DSOS).

Given a fixed number of NIC queues, we target the

three behavior modes of behavior we previously de-

scribed: undersubscribed, low oversubscription, and

high oversubcription. Titan is designed to improve

server-side networking performance regardless of which

mode a server currently is operating in, and the different

components of Titan are targeted for improving perfor-

mance in each of these different regimes. The rest of this

section discusses the design of these components.

3.1 Dynamic Queue Assignment (DQA)

When it is possible for a segment to be placed in more

than one queue, the OS must implement a queue assign-

ment algorithm. In Linux, a per-socket hash is used to

assign segments to queues. Even when there are fewer

flows than queues (undersubscribed), hash collisions can

lead to unfairness.

Titan uses Dynamic Queue Assignment (DQA) to

avoid the problems caused by hash collisions when there

are fewer flows than queues. Instead of hashing, DQA

chooses the queue for a flow dynamically based on the

current state of the software and hardware queues. DQA

assigns flows to queues based on queue weights that are

internally computed by Titan. In other words, there are

USENIX Association 2017 USENIX Annual Technical Conference 435

two components to DQA: an algorithm for computing

the OS’s internal weight for each queue and an algorithm

for assigning a segment to a queue based on the current

weight of every software/hardware queue that the seg-

ment can use.

Queue weight computation: Titan uses the current traf-

fic that is enqueued in a software/hardware queue pair to

compute a weight for each queue. We assume that the OS

can assign a weight to each network flow based on some

high-level policy. Titan dynamically tracks the sum of

the weights of the flows sharing the same queue: it up-

dates a queue’s weight when a flow is first assigned to a

queue and when a TX interrupt frees the last outstanding

skbuff for the flow.

Queue assignment algorithm: Dynamically tracking

queue occupancy can allow a queue assignment algo-

rithm to avoid hash collisions. Our goals in the design

of a DQA are to avoid packet reordering and provide ac-

curate assignment without incurring excessive CPU uti-

lization overheads. We use a greedy algorithm to assign

flows to queues with the aim of spreading weight evenly

across all queues. This algorithm selects the queue with

the minimum weight.

The main overhead of our current implementation of

DQA is that it reads the weights of every queue a flow

may use. XPS reduces this overhead by reducing the

number of queue weights that need to be read: if a flow is

not allowed to use a queue, DQA will not read its weight.

Although not necessary, our current implementation in-

troduces a lock to serialize queue assignment per XPS

pool. We are currently investigating using a lock-free

priority queue to allow multiple cores to simultaneously

perform queue assignment without reading every queue’s

weight while still avoiding choosing the same queues.

In order to avoid packet reordering, DQA only

changes a flow’s queue assignment when it has no

outstanding bytes enqueued in a software or hardware

queue. This also has the added benefit of reducing the

CPU overheads of queue assignment because it will be

run at most once per TX interrupt/NAPI polling interval

and often only once for as long as a flow has backlogged

data and is allowed to send by TCP. However, this also

implies that unfairness can arise as flows complete be-

cause remaining flows are not rebalanced.

3.2 Dynamic Queue Weight Assignment

(DQWA)

DQA computes queue weights to perform queue assign-

ment. However, these queue weights are only an OS con-

struct. The NIC does not perform scheduling decisions

based on these weights; it services queues based on sim-

ple round-robin instead. During periods of oversubscrip-

tion, this can lead to unfairness.

To solve this problem, Titan modifies NIC drivers

to expose a queue weight abstraction whereby higher

levels of the network stack can cause the NIC sched-

uler to service queues in proportion to the OS’

weights. This is accomplished by introducing the

new ndo set tx weight network device operation

(NDO) for drivers to implement. The OS calls this func-

tion whenever it updates a queue’s weight, which allows

the NIC driver to dynamically program the NIC sched-

uler. We call this Dynamic Queue Weight Assignment

(DQWA). Although simple, this new function allows the

NIC to generate a fair packet schedule provided that the

NIC scheduler is capable of being programmed.

The main overhead of DQWA is that each update gen-

erates a PCIe write. Like DQA, DQWA weights only

need to be changed at most once per TX interrupt/NAPI

polling interval. However, if necessary, the number of

DQWA updates can also be rate limited.

While not all commodity NICs allow weight setting,

it is a small addition to mechanisms already present. A

NIC scheduler must implement a scheduling algorithm

that provides per-queue fairness even if different sized

segments are enqueued. To modify this algorithm to ser-

vice queues in proportion to different weights is simple;

we borrow the classic networking idea of Deficit Round

Robin (DRR) scheduling [36]. Specifically, by allocat-

ing each queue its own pool of credits that are decreased

proportional to the number of bytes sent by the queue,

DRR can provide per-queue fairness. Providing an inter-

face to modify the allocation of credits to queues enables

the NIC to configure DRR to service queues in propor-

tion to different weights.

We implement the ndo set tx weight in the

ixgbe driver by configuring the NIC scheduler’s per-

queue DRR credit allocation.

3.3 Dynamic Segmentation Offload Sizing

(DSOS)

When segments from competing flows share the same

software/hardware queue pair, the size of a GSO seg-

ment becomes the minimum unit of fairness. Under pe-

riods of heavy oversubscription, the GSO size can be-

come the major limiting factor on fairness because of the

HOL blocking problems that large segments cause. Im-

portantly, improving the interleaving of traffic from mul-

tiple different flows at finer granularities can also benefit

network performance [18].

Currently, the only way to improve the fairness of soft-

ware scheduling is by reducing the GSO size. How-

ever, this only improves fairness when multiple flows

share a single queue. Otherwise, TSO interleaving in

the NIC provides per-packet fairness independent of the

436 2017 USENIX Annual Technical Conference USENIX Association

GSO (TSO) size. Reducing the GSO size when the net-

work queues are not oversubscribed only wastes CPU.

Dynamic Segmentation Offload Sizing (DSOS) en-

ables an OS to reduce GSO sizes for improved fairness

under heavy load while avoiding the costs of reducing

GSO sizes when NIC queues are not oversubscribed.

This provides a better CPU utilization trade-off than was

previously available.

In DSOS, packets are segmented from the default GSO

size to a smaller segment size before being enqueued in

the per-queue software queues only if multiple flows are

sharing the same queue. (In our current implementation,

re-segmentation happens in all queues as soon as there

is oversubscription.) Segmentation in DSOS is identi-

cal to the implementation of GSO except that segmen-

tation happens before Qdisc instead of after. Because

the software queue (Qdisc) is responsible for fairly

scheduling traffic from different flows, this enables the

OS to generate a fair packet schedule while still ben-

efiting from using large segments in the TCP/IP stack.

Further, many multiqueue NICs also support passing a

single segment as a scatter/gather list of multiple regions

in memory. This enables a single large segment to be

converted into multiple smaller segments without copy-

ing the payload data. If automatic TSO sizing generates

segments smaller than the DSOS segment size, then no

additional work is done.

4 Implementation

We implemented Titan in Linux 4.4.6 and modified In-

tel’s out-of-tree ixgbe-4.4.6 release [4] to support

the new ndo set tx weight NDO. We were able to

implement this new NDO in this driver from the pub-

lic hardware datasheets [2]. In a similar spirit, Titan

is open source and available at https://github.

com/bestephe/titan.

There is one major limitation in our current ixgbe

driver implementation. We were only able to program

the packet scheduler on the Intel 82599 NIC when it

was configured in VMDq mode. As a side-effect, this

causes the NIC to hash received packets (received side

steering, or RSS) to only four RX queues. This ef-

fectively decreases the NIC’s RX buffering capacity, so

enabling this configuration can increase the number of

packet drops. To try to mitigate the impact of reduc-

ing the receive buffering capacity of the NIC, we modi-

fied the ixgbe-4.4.6 driver to enable a feature of the

82599 NIC that immediately triggers an interrupt when

the number of available RX descriptors drops below a

threshold.

During development, we found a problem with the

standard Linux software queue scheduler. Linux tries to

dequeue packets from software queues in a batch and

enqueue them in their corresponding hardware queue

whenever a segment is sent from any TCP flow. When

multiple ACKs are received in a single interrupt, multi-

ple TCP flows may try to create new skbuffs and en-

queue them. If no bytes are enqueued in the software

queues for two flows, and then ACKs for both flows ar-

rive, the second flow will not have a chance to enqueue

new skbuffs in the software queues before packets are

dequeued from the software queue until the hardware

queue is filled up to the BQL limit. In general, send-

ing segments to the NIC as soon as the first TCP flow

sends a segment may cause later TCP flows to miss an

opportunity to send, leading to unfairness.

In Titan, we improve fairness with TCP Xmit Batch-

ing. With this mechanism, all of the TCP flows that en-

queue segments at the same time in TSQ are allowed to

enqueue packets into their respective software queues be-

fore any packets are dequeued from software queues and

enqueued in the hardware queues. This is accomplished

by changing the per-CPU TSQ tasklet in Linux so en-

queuing a segment returns a pointer to a Qdisc. Pack-

ets are dequeued from the returned Qdiscs only after all

pending segments have been enqueued.

5 Methodology

To evaluate Titan, we perform experiments by sending

data between two servers and within a cluster of servers.

In the two server experiments, we use a cluster of

three servers connected to a dedicated TOR switch via

10 Gbps Ethernet cables. One server is a source, another

a sink, and the third server is for monitoring. The switch

is a Broadcom BCM956846K-02. The first and second

server are the traffic source and sink respectively. Both of

these servers have a 4-core/8-thread Intel Xeon E5-1410

CPU, 24GB of memory, and connect to the TOR with

Intel 82599 10 Gbps NICs [2]. We configure the switch

to use port mirroring to direct all traffic sent by the first

server to the third server. To monitor traffic, this server

uses an Intel NetEffect NE020 NIC [5], which provides

packet timestamps accurate to the microsecond.

We perform two types of two server experiments.

First, we generate traffic using at most one iperf3 [3]

client per core pinned to different CPUs. Each client only

uses a single thread. Because the fairness problems only

arise when load is asymmetric, we distribute the flows

across cores such that half of the cores have twice as

many active flows as the other half of the cores. To mea-

sure latency, we use sockperf [8]. To measure CPU

utilization, we use dstat. To avoid impacting CPU uti-

lization by measuring latency, we measure latency and

CPU utilization in separate experiments. Second, we use

YCSB [12] to request both small and large values from

memcached from different threads. We perform all of

USENIX Association 2017 USENIX Annual Technical Conference 437

https://github.com/bestephe/titan
https://github.com/bestephe/titan

the two server experiments with the NIC configured in

VMDq mode.

In the cluster workloads, we use a cluster of 24 servers

on CloudLab. Each of the servers has 2 10-core In-

tel E5-2660 v2 CPUs and 256GB of memory. All the

servers connect to a Dell Networking S6000 switch via

Intel 82599 NICs. Inspired by shuffle workloads used

in prior work [13, 33, 22], we have all 24 servers simul-

taneously open a connection to every other server and

send 1GB. We measure flow completion times. Because

iperf3 opens up additional control connections that

can impact performance, we use a custom application to

transfer data in this workload.

We compare Titan against two base configurations:

Cvanilla, which is the default Linux configuration, and

Cmax, which uses the MQ configuration system with a

GSO size of 64KB, a TCP small queues limit of 256KB,

and byte queue limits manually set to 256KB. In Cmax,

interrupt coalescing on the NIC is also configured so that

the NIC will use an interrupt interval of 50µs. In other

words, the NIC will wait at least 50µs after raising an

interrupt before it will be raised again. In the 2 server

experiments, the traffic sink always uses configuration

Cmax. Large receive offload (LRO) is disabled in all of

the experiments because it can increase latency. We per-

form all experiments 10 times and report the average.

6 Evaluation

First, we evaluate the performance impact of individ-

ual components of Titan in the absence of any network

congestion. Second, we evaluate Titan on a cluster of

servers. In summary, we find that Titan is able to im-

prove fairness on multiqueue NICs while only having a

small impact on other metrics.

We study the following four metrics:

1. We measure CPU utilization as the sum percent of

the time each core was not idle during a one sec-

ond interval, summed across all cores and averaged

across the duration of the experiment.

2. We measure network throughput as the total number

of bytes that were sent per second across all flows,

averaged across the duration of the experiment.

3. We measure latency with sockperf and report av-

erage latency. When we configure Linux software

queues (Qdiscs), we prioritize the port used by

sockperf above all other traffic.

4. We use a normalized fairness metric inspired by

Shreedhar and Varghese [36]. For every flow i ∈ F ,

there is some configurable quantity fi that expresses

i’s fair share. In all of our experiments, fi is 1. If

sent i(t1, t2) is the total number of bytes sent by flow

i in the interval (t1, t2), then the fairness metric FM

is as follows:

FM(t1, t2) =

max{i, j ∈ F |sent i(t1, t2)/ fi − sent j(t1, t2)/ f j}

In other words, the fairness metric FM(t1, t2) is the in-

stantaneous worst case difference in the normalized bytes

sent by any two competing flows over the time interval.

Ideally, the fairness metric should be a small constant no

matter the size of the time interval [36].

For our experiments, we do not report this ideal FM

but instead use normalized fairness NFM(τ), which is the

fairness metric FM over all intervals of duration τ , nor-

malized to the fair share of data for a flow in the interval.

NFM(τ) = FM(τ)∗
line rate∗ τ

∑ j∈F f j

−1

For example, with 10 flows, a flow’s fair share of a 10

Gbps link over 1 second is 128MB; if the highest FM

over a 1-second interval is 64 MB, then NFM is 0.5.

Note that NFM can exceed 1 when some flows get much

higher performance than others.

6.1 Two Server Performance

There are multiple complementary components to Titan,

and we evaluate the impact of individual components on

performance in the absence of network congestion. Ta-

ble 3 shows the performance of different components

of Titan for each metric. The expected benefit of Titan

is improved fairness, but it is possible for Titan to hurt

throughput, latency, or CPU utilization. These results

show that Titan is able to significantly improve fairness

often without hurting throughput and latency and with a

small increase in CPU utilization (often < 10%)

Dynamic Queue Assignment: DQA ensures that when

there are fewer flows than queues, each flow is assigned

its own queue. The Cmax (hashing) and DQA results

in Figure 2 shows the fairness differences between using

hashing and DQA for assigning flows to queues given

8 hardware queues and a variable number of flows. We

report NFM, the normalized fairness metric.

With hashing, fairness is good with 3 flows as there are

few collisions. However, with more flows, the unfairness

of hashing is high at short and long timescales because

there are often hash collisions. Unfairness is bad because

of HOL blocking while waiting for GSO/TSO-size seg-

ments and hashing leading to uneven numbers of flows

per queue.

In contrast, with DQA there is no unfairness in the

undersubscribed case, as DQA always assigns every flow

its own queue. In the low oversubscription case of 12

flows, there is also unfairness because some flows must

438 2017 USENIX Annual Technical Conference USENIX Association

Config

3 flows, 8 Queue (1 per CPU)

Config

12 flows, 8 Queues (1-per CPU)

TPut CPU Latency NFM NFM TPut CPU Latency NFM NFM

(Gbps) (%) (µs) (1ms) (1s) (Gbps) (%) (µs) (1ms) (1s)

Cvanilla 9.4 64 298 0.33 0.31 Cv: 9.4 58 912 1.83 1.23

Cmax: SFQ/Prio + 256KB BQL 9.4 72 125 0.16 0.15 Cmax: 9.4 55 912 1.79 1.39

Titan1: DQA 9.4 78 123 0.00 0.00 T1: 9.4 66 657 1.17 0.78

Titan2: DQA + DQWA 9.4 77 124 0.00 0.01 T2: 9.4 70 516 1.10 0.12

Titan3: DQA + DQWA + DSOS (16KB) 9.4 82 180 0.02 0.02 T3: 9.4 96 395 0.55 0.17

XPS: Cmax + XPS 9.4 54 130 0.16 0.15 XPS: 9.4 55 526 1.87 1.55

TitanXPS1: DQA 9.4 55 126 0.00 0.00 TX1: 9.4 49 660 1.32 0.87

TitanXPS2: DQA + DQWA 9.4 57 121 0.01 0.00 TX2: 9.4 50 505 0.68 0.11

TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 65 128 0.04 0.01 TX3: 9.4 59 269 0.66 0.23

48 flows, 8 Queue (1 per CPU) 192 flows, 8 Queues (1-per CPU)

Cvanilla 9.4 72 2019 5.01 1.95 Cv: 9.4 98 3881 15 3.32

Cmax: SFQ/Prio + 256KB BQL 9.4 83 653 4.06 1.58 Cmax: 9.1 109 604 6.93 1.39

Titan1: DQA 9.4 89 660 3.83 0.38 T1: 9.5 118 554 8.35 0.54

Titan2: DQA + DQWA 9.4 87 585 3.85 0.46 T2: 9.5 103 509 8.42 0.49

Titan3: DQA + DQWA + DSOS (16KB) 9.3 103 285 2.92 0.80 T3: 9.4 113 342 3.50 0.80

XPS: Cmax + XPS 9.4 53 639 4.37 1.49 XPS: 9.5 119 517 10 2.66

TitanXPS1: DQA 9.4 61 660 5.02 1.58 TX1: 9.5 113 552 8.46 0.76

TitanXPS2: DQA + DQWA 9.4 62 606 3.92 0.50 TX2: 9.5 123 519 8.28 0.57

TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 76 333 1.83 0.53 TX3: 9.4 138 300 3.50 0.81

Table 3: The performance of different OS configurations given 3, 12, 48, and 192 flows spread across 8 cores.

3 6 12 24 48

Number of Flows

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
F

M
 -

 1
m

s

3 6 12 24 48

Number of Flows

0.0

0.5

1.0

1.5

2.0

N
F

M
 -

 1
s

Vanilla (Cmax)
DQA

DQA + DQWA
DQA + DQWA + DSOS (16KB)

(a) No XPS

3 6 12 24 48

Number of Flows

0

1

2

3

4

5

6

N
F

M
 -

 1
m

s

3 6 12 24 48

Number of Flows

0.0

0.5

1.0

1.5

2.0

2.5

N
F

M
 -

 1
s

Vanilla (Cmax)
DQA

DQA + DQWA
DQA + DQWA + DSOS (16KB)

(b) XPS

Figure 2: The impact of the individual aspects of Titan

on short-term and long-term fairness.

share queues, and without DQWA to program weights in

the NIC, all queues are serviced equally. With 48 flows,

DQA has low unfairness over long timescales because it

will place exactly 6 flows in each queue.

Dynamic Queue Weight Assignment: DQWA enables

an OS to pass queue weights, in this case the number of

flows, to the NIC so that queues with more flows receive

more service. Figure 2 shows the fairness of the DQA

queue assignment algorithms when DQWA is enabled.

These results show that over short timescales, DQWA

has little impact as it takes time for queue weights to fix

transient unfairness, and in highly oversubscribed cases

HOL blocking is the major cause of unfairness. Over

longer timescales, DQWA improves the fairness at low

levels of oversubscription because the NIC is able to give

more service to queues with more flows. At high levels of

oversubscription, DQA is able to evenly distribute flow

weights across queues, so DQWA is not able to further

improve fairness.

We note that DQA is a software-only solution that has

the largest impact in undersubcribed cases and helps at

both short and long timescales. DQWA helps most in (i)

oversubscribed cases and (ii) over longer timescales. In

addition, DQWA requires hardware support that, while

minimal, may not be present in all NICs. Also, we evalu-

ated DQWA with hashing instead of DQA, and we found

that DQWA also improves fairness without DQA.

Dynamic Segmentation Offload Sizing: DSOS ad-

dresses HOL blocking by reducing segment size from the

default 64KB to a smaller size dynamically under over-

subscription. We compare DQA and DQWA with and

without DSOS for 16KB DSOS segment sizes. Figure 2

shows that DSOS improves fairness at the 1ms timescale.

In the 3 and 6 flow cases there is no oversubscription, so

DSOS leaves the GSO size at 64KB. For 12, 24, and 48

flows, though, DSOS reduces the segment size to reduce

HOL blocking. At short timescales, this improves fair-

ness. Over longer timescales, DSOS can slightly hurt

fairness. This is because DSOS can increase CPU uti-

lization.

XPS: So far, our evaluation has focused our discus-

sion on the multiqueue NIC configuration (MQ). Trans-

mit packet steering (XPS; Section 2.1) assigns pools

of queues to pools of CPUs and behaves differently

than MQ. To understand these differences, Figure 2 also

shows the fairness of Titan when XPS is configured. For

the most part, this figure shows that XPS has little impact

USENIX Association 2017 USENIX Annual Technical Conference 439

on network fairness in Titan.

The biggest change in Figure 2 is that XPS improves

the fairness of DSOS (with both DQA and DQWA en-

abled) at short timescales during oversubscription. When

there are 48 flows, using a 16KB dynamic segment size

with XPS almost halves NFM at short time scales. The

reason for this is because XPS reduces the CPU over-

heads of DSOS (Table 3). This is because XPS improves

cache locality.

CPU Utilization, Throughput and Latency: While the

goal of Titan is improved fairness, it must not come at the

cost of increased CPU utilization, decreased throughput,

or increased latency. Tables 3 compares the performance

of Titan with Cvanilla and Cmax.

At all subscription levels, throughput is almost always

identical with Titan and standard Linux networking op-

tions. Similarly, CPU utilization is slightly higher with

Titan. It must do more work for queue assignment and

weight-setting. During oversubscription, DSOS must

segment and process smaller segments. Fortunately, en-

abling XPS reduces the CPU utilization of all of the fea-

tures of Titan.

Regardless of the subscription level, Titan can increase

latency. In the absence of any other traffic, the average

baseline latency we observed is 32µs. In the presence of

bulk transfers, the minimum average latency we observe

is 121µs, and the highest average latency we observe is

3.9ms. This high latency is because the HOL blocking

latency of the NIC (for a given priority) is at least equal

to the minimum number of bytes enqueued in any queue

multiplied by the number of active queues. Although we

find that latency in general is high, we observe that Ti-

tan does not significantly hurt latency. The latency of

Titan is often near that of Cmax, and at most Titan in-

creases latency by 134µs. When NIC queues are over-

subscribed, we observe that DSOS can reduce latency by

over 200µs. Further, we also looked at tail latency and

found that the 90th percentile latency for Titan is never

more than 200µs higher than the average.

Currently, the best practice for addressing this prob-

lem is to use DCB priorities to isolate high priority traffic

onto independent pools of NIC queues that are serviced

with higher priority by the NIC hardware. Traffic in one

DCB priority is not able to increase the latency of traffic

in a higher DCB priority.

In summary, we find that overall Titan greatly im-

proves fairness across a wide range of subscription lev-

els, often at no or negligible throughput or latency over-

heads. Titan can cause a small increase in CPU utiliza-

tion, often less than 10%. At most, this increase is 17%

and 27% with and without XPS, respectively.

Finally, we have also performed experiments to evalu-

ate the impact of Titan on average and tail request com-

pletion times in memcached. These experiments use

0.0 0.5 1.0 1.5 2.0 2.5

Unfairness in FCT (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(a) 6 servers

0 1 2 3 4 5 6

Unfairness in FCT (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(b) 12 servers

0 2 4 6 8 10 12

Unfairness in FCT (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(c) 24 servers

Vanilla Vanilla (Cmax) Titan

Figure 3: The impact of Titan on fairness on a cluster of

servers performing a shuffle.

2.5 3.0 3.5 4.0 4.5 5.0 5.5

Flow Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

(a) 6 servers

4 5 6 7 8 9 101112

Flow Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

(b) 12 servers

10 12 14 16 18 20 22 24

Flow Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

(c) 24 servers

Vanilla Vanilla (Cmax) Titan

Figure 4: The impact of Titan on flow completion times

(FCT) on a cluster of servers performing a shuffle.

YCSB with 7 request threads, 6 of which request 512KB

values, while the remaining thread requests small objects

(2–64KB). We find that Titan is able to reduce the aver-

age and 99th percentile completion times for the small

objects by 3.2–10.6% and 7.3–32%, respectively. This

is because Titan is able to avoid HOL blocking latency

through dynamic queue assignment.

6.2 Cluster Performance

In order to evaluate the cluster performance of Titan,

we measure the impact of improving the fairness of the

packet stream emitted by a server when there is net-

work congestion and when there are more communicat-

ing servers. To do so, we perform an all-to-all shuffle

for different cluster sizes where each server simultane-

ously opens connections to every other server and trans-

fers 1GB of data. This workload is inspired by the shuffle

phase of Map/Reduce jobs.

Figure 3 shows the impact of Titan on network per-

formance in a cluster of 6, 12, and 24 servers. We plot

a CDF of the difference in the completion time of the

earliest completing flow and that of the last completing

flow. First, Figure 3 confirms that without Titan flow

fairness is a problem in a cluster of servers. Both the

default Linux configuration (Cvanilla) and an optimized

Linux configuration (Cmax) behave similarly and show

substantial variation in completion times. In contrast,

with Titan unfairness substantially improves at all three

subscription levels and is consistently much better than

Cvanilla and Cmax.

Further, we find that Titan is not only able to improve

fairness, but that improving fairness also reduces the tail

440 2017 USENIX Annual Technical Conference USENIX Association

flow completion times (>80th percentile) for the flows in

the shuffle as well. To show why, Figure 4 shows a CDF

of the flow completion times across all the flows in the

shuffle for different cluster sizes. This figure shows that

Titan provides more consistent flow completion times.

Because of this, the fastest flows (<20th percentile) in

Cvanilla and Cmax complete faster. However, this comes

at the expense of tail flow completion times. Figure 4

shows that Titan can reduce the tail of the flow comple-

tion time distribution (>80th percentile).

Finally, for this test, DQA (without DQWA or DSOS)

is enough to get most of the fairness benefit of Titan. At

small cluster sizes, we found that DQWA can still further

improve fairness. Unfortunately, we discovered that con-

figuring our NICs into VMDq mode reduces RX buffer-

ing capacity and hurts completion times. Because our

implementation of DQWA requires VMDq mode to pro-

gram queue weights, we cannot evaluate DQWA’s benefit

for large clusters.

7 Related Work

Titan is closely related to SENIC [31] and Silo [23]1.

SENIC argues that NICs in the future will be able to pro-

vide enough queues such that two flows will never have

to share the same queue. In contrast, Silo builds a system

for fairly scheduling traffic from competing VMs using

a single transmit queue (SQ) because of the control it

gives to the OS. Titan introduces a middle ground that

can achieve some of the benefits of both designs.

Many projects in addition to Silo have used the SQ

model. In particular, the SQ model is popular for emulat-

ing new hardware features not yet provided by the under-

lying hardware [31, 21, 25]. This is because it provides

the OS with the most control over packet scheduling.

Similar to Titan, PSPAT [34] performs per-packet

scheduling in a dedicated kernel thread that is separated

from applications and device drivers with two sets of

lock-free queues. Making per-packet scheduling deci-

sions in PSPAT instead of per-segment decisions in Titan

can significantly improve fairness and latency, and Titan

can cause PCIe contention that is avoided in PSPAT by

only issuing PCIe writes from a single core. If PSPAT

were extended to use multiple independent scheduling

threads to drive independent NIC queues, then program-

ming the NIC scheduler with DQWA in Titan would be

complementary.

There has been recent work on building networks that

provide programmable packet scheduling [38, 29, 16],

allowing flows to fairly compete [15, 41, 39], and per-

forming traffic engineering in the network [13, 22, 17,

1The Titan Missile Museum is located in a silo. We imagine it is

scenic.

33, 14, 18]. Titan is motivated by similar concerns and

is complementary. If the packet schedule emitted by a

server is not fair, then the end-server can become the

main limiting factor on fairness, not the network. Thus,

Titan can improve the efficacy of the aforementioned

techniques.

Affinity-Accept [30] improves connection locality on

multicore processors, and Fastsocket [27] improves the

multicore scalability of the Linux stack when a server

handles many short-lived network connections. Titan is

complementary to both of these designs. Titan bene-

fits from their improvements in connection setup, while

these designs can benefit from improved flow fairness in

Titan.

8 Conclusions

With increasing datacenter (DC) server line rates it be-

comes important to understand how best to ensure that

DC applications can saturate high speed links, while also

ensuring low latency, low CPU utilization, and per-flow

fairness. While modern NICs and OS’s support a va-

riety of interesting features, it is unclear how best to

use them towards meeting these goals. Using an exten-

sive measurement study, we find that certain multi-queue

NIC configurations are crucial to ensuring good latency,

throughput and CPU utilization, but substantial unfair-

ness remains. To this end, we designed Titan, an exten-

sion to the Linux network stack that incorporates three

main ideas – dynamic queue assignment, dynamic queue

weights, and dynamic segmentation resizing. Our eval-

uation using both experiments between two servers on

an uncongested network and between a cluster of servers

shows that Titan can reduce unfairness across a range of

conditions while minimally impacting the other metrics.

Titan is complementary with a variety of other

DC host networking optimizations, such as DCB and

receive-side network optimizations. Titan’s sender-side

fairness guarantees are crucial to ensure the efficacy of

in-network fair-sharing mechanisms. Finally, the three

main ideas in Titan can be employed alongside other sys-

tems, e.g., those for DC-wide traffic scheduling and other

existing systems optimized for short-lived connections.

9 Acknowledgements

We would like to thank our shepherd Michio Honda

and the anonymous reviewers for their help and insight-

ful feedback. This work is supported by the National

Science Foundation grants CNS-1654843 and CNS-

1551745.

USENIX Association 2017 USENIX Annual Technical Conference 441

References

[1] bql: Byte queue limits. https://lwn.net/

Articles/469652/.

[2] Intel 82599 10 GbE controller datasheet. http:

//www.intel.com/content/dam/www/

public/us/en/documents/datasheets/

82599-10-gbe-controller-datasheet.

pdf.

[3] iperf3: Documentation. http://software.

es.net/iperf/.

[4] ixgbe-4.4.6. https://sourceforge.

net/projects/e1000/files/ixgbe%

20stable/4.4.6/.

[5] Neteffect server cluster adapters.

http://www.intel.com/content/

dam/doc/product-brief/

neteffect-server-cluster-adapter-brief.

pdf.

[6] rfs: Receive flow steering. http://lwn.net/

Articles/381955/.

[7] rps: Receive packet steering. http://lwn.

net/Articles/361440/.

[8] sockperf: Network benchmarking utility. https:

//github.com/Mellanox/sockperf.

[9] tcp: TSO packets automatic sizing. https://

lwn.net/Articles/564979/.

[10] tsq: Tcp small queues. https://lwn.net/

Articles/506237/.

[11] xps: Transmit packet steering. https://lwn.

net/Articles/412062/.

[12] Yahoo! Cloud Serving Benchmark. https:

//github.com/brianfrankcooper/

YCSB/wiki.

[13] AL-FARES, M., RADHAKRISHNAN, S., RAGHA-

VAN, B., HUANG, N., AND VAHDAT, A. Hed-

era: Dynamic flow scheduling for data center net-

works. In Proceedings of the 7th USENIX Confer-

ence on Networked Systems Design and Implemen-

tation (2010), NSDI ’10.

[14] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR,

S., VAIDYANATHAN, R., CHU, K., FINGERHUT,

A., LAM, V. T., MATUS, F., PAN, R., YADAV,

N., AND VARGHESE, G. CONGA: Distributed

congestion-aware load balancing for datacenters.

In Proceedings of the 2014 ACM Conference on

Special Interest Group on Data Communication

(2014), SIGCOMM ’14.

[15] ALIZADEH, M., GREENBERG, A., MALTZ,

D. A., PADHYE, J., PATEL, P., PRABHAKAR, B.,

SENGUPTA, S., AND SRIDHARAN, M. Data cen-

ter TCP (DCTCP). In Proceedings of the 2010

ACM Conference on Special Interest Group on

Data Communication (2010), SIGCOMM ’10.

[16] ALIZADEH, M., YANG, S., SHARIF, M., KATTI,

S., MCKEOWN, N., PRABHAKAR, B., AND

SHENKER, S. pFabric: Minimal near-optimal dat-

acenter transport. In Proceedings of the 2013 ACM

Conference on Special Interest Group on Data

Communication (2013), SIGCOMM ’13.

[17] BENSON, T., ANAND, A., AKELLA, A., AND

ZHANG, M. MicroTE: Fine grained traffic engi-

neering for data centers. In Proceedings of the

Seventh ACM Conference on Emerging Networking

Experiments and Technologies (2011), CoNEXT

’11.

[18] GENG, Y., JEYAKUMAR, V., KABBANI, A., AND

ALIZADEH, M. Juggler: A practical reordering re-

silient network stack for datacenters. In Proceed-

ings of the Eleventh ACM European Conference on

Computer Systems (2016), EuroSys ’16.

[19] GETTYS, J., AND NICHOLS, K. Bufferbloat: Dark

buffers in the internet. Queue 9, 11 (Nov. 2011),

40:40–40:54.

[20] GUO, C., YUAN, L., XIANG, D., DANG, Y.,

HUANG, R., MALTZ, D., LIU, Z., WANG, V.,

PANG, B., CHEN, H., LIN, Z.-W., AND KURIEN,

V. Pingmesh: A large-scale system for data center

network latency measurement and analysis. In Pro-

ceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication (2015),

SIGCOMM ’15.

[21] HAN, S., JANG, K., PANDA, A., PALKAR, S.,

HAN, D., AND RATNASAMY, S. Softnic: A

software nic to augment hardware. Tech. Rep.

UCB/EECS-2015-155, EECS Department, Univer-

sity of California, Berkeley, May 2015.

[22] HE, K., ROZNER, E., AGARWAL, K., FELTER,

W., CARTER, J. B., AND AKELLA, A. Presto:

Edge-based load balancing for fast datacenter net-

works. In Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communi-

cation (2015), SIGCOMM ’15.

442 2017 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/469652/
https://lwn.net/Articles/469652/
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://software.es.net/iperf/
http://software.es.net/iperf/
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/4.4.6/
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/4.4.6/
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/4.4.6/
http://www.intel.com/content/dam/doc/product-brief/neteffect-server-cluster-adapter-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/neteffect-server-cluster-adapter-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/neteffect-server-cluster-adapter-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/neteffect-server-cluster-adapter-brief.pdf
http://lwn.net/Articles/381955/
http://lwn.net/Articles/381955/
http://lwn.net/Articles/361440/
http://lwn.net/Articles/361440/
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://lwn.net/Articles/564979/
https://lwn.net/Articles/564979/
https://lwn.net/Articles/506237/
https://lwn.net/Articles/506237/
https://lwn.net/Articles/412062/
https://lwn.net/Articles/412062/
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki

[23] JANG, K., SHERRY, J., BALLANI, H., AND MON-

CASTER, T. Silo: Predictable message latency in

the cloud. In Proceedings of the 2015 ACM Con-

ference on Special Interest Group on Data Commu-

nication (2015), SIGCOMM ’15.

[24] KAPOOR, R., SNOEREN, A. C., VOELKER,

G. M., , AND PORTER, G. Bullet trains: a study

of NIC burst behavior at microsecond timescales.

In Proceedings of the Ninth ACM Conference on

Emerging Networking Experiments and Technolo-

gies (2013), CoNEXT ’13.

[25] KAUFMANN, A., PETER, S., SHARMA, N. K.,

ANDERSON, T., AND KRISHNAMURTHY, A. High

performance packet processing with FlexNIC. In

Proceedings of the Twenty-First ACM International

Conference on Architectural Support for Program-

ming Languages and Operating Systems (2016),

ASPLOS ’16.

[26] KUMAR, A., JAIN, S., NAIK, U., KASINADHUNI,

N., ZERMENO, E. C., GUNN, C. S., AI, J., CAR-

LIN, B., AMARANDEI-STAVILA, M., ROBIN, M.,

SIGANPORIA, A., STUART, S., AND VAHDAT,

A. BwE: Flexible, hierarchical bandwidth alloca-

tion for WAN distributed computing. In Proceed-

ings of the 2015 ACM Conference on Special In-

terest Group on Data Communication (2015), SIG-

COMM ’15.

[27] LIN, X., CHEN, Y., LI, X., MAO, J., HE, J.,

XU, W., AND SHI, Y. Scalable kernel TCP design

and implementation for short-lived connections. In

Proceedings of the Twenty-First ACM International

Conference on Architectural Support for Program-

ming Languages and Operating Systems (2016),

ASPLOS ’16.

[28] MENON, A., AND ZWAENEPOEL, W. Optimiz-

ing TCP receive performance. In Proceedings of

the 2008 USENIX Conference on Annual Technical

Conference (2008), USENIX ATC ’08.

[29] MITTAL, R., AGARWAL, R., RATNASAMY, S.,

AND SHENKER, S. Universal packet scheduling.

In Proceedings of the 14th ACM Workshop on Hot

Topics in Networks (2015), HotNets-XIV.

[30] PESTEREV, A., STRAUSS, J., ZELDOVICH, N.,

AND MORRIS, R. T. Improving network connec-

tion locality on multicore systems. In Proceedings

of the Seventh ACM European Conference on Com-

puter Systems (2012), EuroSys ’12.

[31] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR,

V., KABBANI, A., PORTER, G., AND VAHDAT,

A. SENIC: Scalable NIC for end-host rate limit-

ing. In Proceedings of the 11th USENIX Confer-

ence on Networked Systems Design and Implemen-

tation (2014), NSDI ’14.

[32] RAM, K. K., COX, A. L., CHADHA, M., AND

RIXNER, S. Hyper-switch: A scalable software

virtual switching architecture. In Proceedings of

the 2013 USENIX Conference on Annual Technical

Conference (2013), USENIX ATC ’13.

[33] RASLEY, J., STEPHENS, B., DIXON, C.,

ROZNER, E., FELTER, W., AGARWAL, K.,

CARTER, J., AND FONSECA, R. Planck:

Millisecond-scale monitoring and control for com-

modity networks. In Proceedings of the 2014 ACM

Conference on Special Interest Group on Data

Communication (2014), SIGCOMM ’14.

[34] RIZZO, L., VALENTE, P., LETTIERI, G., AND

MAFFIONE, V. PSPAT: Software packet schedul-

ing at hardware speed. http://info.iet.

unipi.it/˜luigi/pspat/. Preprint; ac-

cessed May 31 2017.

[35] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,

AND SNOEREN, A. C. Inside the social net-

work’s (datacenter) network. In Proceedings of the

2015 ACM Conference on Special Interest Group

on Data Communication (2015), SIGCOMM ’15.

[36] SHREEDHAR, M., AND VARGHESE, G. Efficient

fair queueing using deficit round robin. In Proceed-

ings of the 1995 ACM Conference on Special In-

terest Group on Data Communication (1995), SIG-

COMM ’95.

[37] SINGH, A., ONG, J., AGARWAL, A., ANDER-

SON, G., ARMISTEAD, A., BANNON, R., BOV-

ING, S., DESAI, G., FELDERMAN, B., GER-

MANO, P., KANAGALA, A., PROVOST, J., SIM-

MONS, J., TANDA, E., WANDERER, J., HÖLZLE,

U., STUART, S., AND VAHDAT, A. Jupiter rising:

A decade of clos topologies and centralized con-

trol in Google’s datacenter network. In Proceed-

ings of the 2015 ACM Conference on Special In-

terest Group on Data Communication (2015), SIG-

COMM ’15.

[38] SIVARAMAN, A., SUBRAMANIAN, S., AL-

IZADEH, M., CHOLE, S., CHUANG, S.-T.,

AGRAWAL, A., BALAKRISHNAN, H., EDSALL,

T., KATTI, S., AND MCKEOWN, N. Pro-

grammable packet scheduling at line rate. In Pro-

ceedings of the 2016 ACM Conference on Special

Interest Group on Data Communication (2016),

SIGCOMM ’16.

USENIX Association 2017 USENIX Annual Technical Conference 443

http://info.iet.unipi.it/~luigi/pspat/
http://info.iet.unipi.it/~luigi/pspat/

[39] STEPHENS, B., COX, A. L., SINGLA, A.,

CARTER, J. B., DIXON, C., AND FELTER, W.

Practical DCB for improved data center networks.

In Proceedings of the 33rd Annual IEEE Interna-

tional Conference on Computer Communications

(2014), INFOCOM ’14.

[40] STEPHENS, B., SINGHVI, A., AKELLA, A.,

AND SWIFT, M. Titan: Fair packet schedul-

ing for commodity multiqueue NICs. Tech.

Rep. TR1840, University of Winconsin-Madison,

Department of Computer Sciences, February

2017. http://digital.library.wisc.

edu/1793/75739.

[41] VAMANAN, B., HASAN, J., AND VIJAYKUMAR,

T. Deadline-aware datacenter tcp (D2TCP). In Pro-

ceedings of the 2012 ACM Conference on Special

Interest Group on Data Communication (2012),

SIGCOMM ’12.

444 2017 USENIX Annual Technical Conference USENIX Association

http://digital.library.wisc.edu/1793/75739
http://digital.library.wisc.edu/1793/75739

MopEye: Opportunistic Monitoring of Per-app Mobile Network
Performance

Daoyuan Wu1⇤, Rocky K. C. Chang2, Weichao Li2, Eric K. T. Cheng2, and Debin Gao1

1Singapore Management University
2The Hong Kong Polytechnic University

https://mopeye.github.io

†

Abstract
Crowdsourcing mobile user’s network performance

has become an effective way of understanding and im-
proving mobile network performance and user quality-
of-experience. However, the current measurement
method is still based on the landline measurement
paradigm in which a measurement app measures the path
to fixed (measurement or web) servers. In this work, we
introduce a new paradigm of measuring per-app mobile
network performance. We design and implement Mop-
Eye, an Android app to measure network round-trip de-
lay for each app whenever there is app traffic. This op-
portunistic measurement can be conducted automatically
without user intervention. Therefore, it can facilitate a
large-scale and long-term crowdsourcing of mobile net-
work performance. In the course of implementing Mop-
Eye, we have overcome a suite of challenges to make
the continuous latency monitoring lightweight and ac-
curate. We have deployed MopEye to Google Play for
an IRB-approved crowdsourcing study in a period of ten
months, which obtains over five million measurements
from 6,266 Android apps on 2,351 smartphones. The
analysis reveals a number of new findings on the per-app
network performance and mobile DNS performance.

1 Introduction
In recent years, a number of crowdsourcing platforms
using smartphone apps are deployed to measure mobile
network performance. MobiPerf [5] and Netalyzr [7] on
Android, for example, enable users to measure a num-
ber of network performance metrics between their smart-

⇤Half of the work by this author was performed at The Hong Kong
Polytechnic University.

†We thank Dr. Ada Gavrilovska for shepherding our paper and
the anonymous reviewers for their valuable comments. This work
is partially supported by a grant (ref. no. G-YBAK) from The
Hong Kong Polytechnic University, a grant (ref. no. H-ZL17) from
the Joint Universities Computer Centre of Hong Kong, and the Sin-
gapore National Research Foundation under NCR Award Number
NRF2014NCR-NCR001-012.

phones and remote endpoints. Using these uncoordi-
nated network measurement performed by end users to
obtain accurate and meaningful insights is still under ac-
tive research [40]. Related to that, a number of speedtest
services are provided for Android [13, 16], iOS [14, 15],
and Windows Phone users [8, 17].

The existing mobile measurement apps, however, are
still based on the landline measurement paradigm. They
actively send probe packets to user-specified remote end-
points or measurement servers (e.g., M-Lab servers).
Due to the diverse locations of various servers and user
mobility, such landline measurement will not correlate
well with the user’s experience. In this paper, we pro-
pose to measure mobile network performance for each
app (i.e., from user’s smartphone to the app server). The
per-app measurement not only reflects user’s experience
with the app but also helps diagnose application-specific
problems. An effective approach to per-app measure-
ment is to perform the measurement only when there is
app traffic. Since this opportunistic measurement can be
conducted automatically without user’s intervention, it
can facilitate a large-scale and long-term crowdsourcing
of mobile network performance.

In this paper, we utilize the VpnService API avail-
able on Android 4.0+ [20] to implement opportunistic
measurement of per-app network performance in Mop-
Eye (MObile Performance Eye), our Android measure-
ment app. Figure 1 shows the two main interfaces in
MopEye. With the VpnService interface, MopEye can
passively capture the traffic initiated by all apps and for-
ward them actively to the remote app servers using socket
calls. Based on the connect() socket calls, it can es-
timate the round-trip time (RTT) for each app. There-
fore, the measurement incurs zero network overhead, and
the RTT can accurately reflect the network delay experi-
enced by each app. Moreover, MopEye can be deployed
easily, because it does not need the root privilege which
is required for tcpdump-based passive measurement. It
is also very easy to operate. Users are only required to

USENIX Association 2017 USENIX Annual Technical Conference 445

(a) An all-app view. (b) An individual-app view.

Figure 1: MopEye’s two major user interfaces.

consent to enabling MopEye’s VPN interface once. Af-
ter that, MopEye performs the measurement opportunis-
tically and autonomously.

The main challenge in the design and implementa-
tion of MopEye is to mitigate the impact on other apps
by performing fast packet relaying. However, our de-
sign choices are constrained by two important restric-
tions: no relaying using a remote VPN server and no
raw sockets which require the root privilege. To sat-
isfy the constraints, we build our own user-space TCP/IP
stack to perform packet relaying between the VPN tunnel
packets and those in the socket connections. In particu-
lar, we have identified and overcome a number of seri-
ous performance degradation issues in the entire packet-
relaying process. Another challenge is to obtain high
measurement accuracy. Based on our evaluation, Mop-
Eye’s mean RTT measurement deviates from tcpdump’s
results by at most 1ms. Besides that, our evaluation
also shows that MopEye incurs very low overhead on the
throughput, battery consumption, and CPU usage.

We have deployed MopEye to Google Play [6] for an
IRB-approved crowdsourcing study since May 2016. We
have so far1 attracted 4,014 user installs from 126 coun-
tries and collected the first large-scale per-app measure-
ment dataset comprising 5,252,758 RTT measurements
from 6,266 Android apps on 2,351 smartphones2. An
analysis of these crowdsourced data reveals a number of
new findings on the per-app and DNS network perfor-
mance experienced by real users under different network
types and ISPs in the wild. We also perform several case
studies to diagnose the performance issues in Whatsapp,
India’s largest 4G ISP, and two American cellular ISPs.

2 Design of MopEye
In this section, we present an overview of MopEye and
its main components. We defer the implementation de-
tails and performance enhancement to the next section.

1By the time of our submission on 7 February 2017.
2Note that many users use daily apps such as Facebook and What-

sapp. Thus, there is a large common app space among different phones.

Apps

Tunnel

Notes: TCP state
machine

Socket
instance

Virtual
network
interface

MopEye
TCP/UDP client n

....

TCP/UDP client 1

....
relay

Servers

internal connections external connections

packet parsing
and mapping

(raw IP packets) (socket channels)

measurement
points

....

Figure 2: An overview of MopEye.

2.1 MopEye Overview
Figure 2 presents a high-level design of MopEye. There
are three main steps for MopEye to use an app’s traffic
to opportunistically measure the network RTT. For the
outgoing traffic, MopEye first captures an app’s pack-
ets through a tunnel, relays the captured packet to an
external TCP connection or UDP association with a re-
mote server, and sends the packets to the server. In the
last step, MopEye calculates the time between the app’s
SYN and SYN/ACK packets to measure the RTT. The
RTT measurement for UDP apps is similar (i.e., between
query and response messages). In the following we de-
scribe each step in more details.

2.2 Packet Capturing, Parsing, and Map-
ping

We leverage Android’s VpnService APIs to build a vir-
tual network interface (green box in Figure 2) to inter-
cept all traffic initiated from any app on the smartphone.
It also receives server-initiated traffic, but for the sake of
simplicity we do not discuss this traffic direction in this
paper.

Android’s VpnService APIs leverage the TUN

virtual network device (/dev/tun on Android or
/dev/net/tun on some UNIX systems) to capture
packets. Figure 3 illustrates MopEye’s packet captur-
ing and relaying mechanisms for the incoming and out-
going traffic. Once MopEye builds a TUN interface
(i.e., mInterface in the figure), the TUN device driver
will capture and deliver all outgoing app packets to
this interface. MopEye then obtains these packets us-
ing mInterface’s input stream. It is worth noting that
the packets captured here are all IP packets, because a
TUN device is essentially a virtual point-to-point IP link.
MopEye parses the captured packets to obtain the IP ad-
dresses and port numbers for packet relaying.

To support per-app measurement, MopEye must also
determine to which app a captured packet belongs. Al-
though there is no API support for this socket-to-app
mapping function, we find that four pseudo files in the

446 2017 USENIX Annual Technical Conference USENIX Association

Air Media

The TUN virtual
network device

(/dev/tun)

TCP/IP Stack

MopEye Other Apps

mInterface

User
Space

Kernel
Space

Network
Hardware Driver

1

1 3
2

3

3

1 2

Figure 3: MopEye’s packet capturing and relaying for incom-
ing flow (red) and outgoing flow (blue). The black link repre-
sents a bi-directional flow.
proc filesystem (/proc/net/tcp6|tcp|udp|udp6)
store each TCP/UDP connection’s local and remote IP
addresses and ports, as well as the corresponding app’s
UID which is a unique ID for each installed app. More-
over, using Android’s PackageManager APIs, MopEye
obtains the app’s name from its UID. To reduce the over-
head of this procedure, MopEye performs this opera-
tion only for the SYN packets, and the resolved names
and socket addresses are cached for the subsequent data
packets. Furthermore, we will present in §3.3 a new
mechanism to significantly minimize the mapping over-
head even for SYN packets. As for UDP packets, Mop-
Eye currently supports only DNS measurement (though
it relays all UDP packets). Since DNS is system-wide,
MopEye does not need to map UDP packets for now.

2.3 Packet Relaying
Relaying packets between apps and their servers effi-
ciently is the most challenging task in the design and im-
plementation of MopEye. Our solution to this problem is
shaped by the three main considerations below.
• Measurement objective Since our goal is to mea-

sure the RTT between a user’s smartphone and the
app servers, we cannot rely on a remote VPN server
to relay the application packets to their servers.
Therefore, we require MopEye to relay packets
within the smartphone.

• Running on unrooted phones Our another objec-
tive is to run MopEye on unrooted phones. Using
raw sockets to relay packets to the servers is there-
fore not an option. Instead, MopEye must relay
packets via the regular TCP/UDP sockets for the ex-
ternal connections. We have implemented both TCP
and UDP packet relays. Due to the page limit, we
describe only the TCP relay from now on.

• User-space TCP stack As a result of using reg-
ular TCP socket, MopEye will not be able to ac-
cess the information in the TCB (Transmission Con-
trol Block [11]), such as the TCP sequence and ac-
knowledgement numbers, from the external connec-
tions. Therefore, MopEye must create its own user-

space TCP stack (in the form of TCP state machine)
for the internal connections. We refer the packets
transmitted in the internal and external connections
to as tunnel packets and socket packets, respectively.

Splicing the two connections To relay packets in a TCP
connection, MopEye “splices” the internal connection
terminated by MopEye’s TCP state machine and the ex-
ternal connection initiated by MopEye’s TCP socket.
Our approach is to link the state machine and the socket
with two-way referencing. That is, we create a TCP
client object that wraps the socket instance and include
a reference to the state machine. The state machine also
maintains a reference to the corresponding TCP client.
Processing tunnel packets MopEye processes the tun-
nel packets according to RFC 793 [11]. The processing
logics for different TCP packets are summarized as fol-
lows.

• TCP SYN: Upon receiving a SYN packet, MopEye
creates a TCP client object and uses its socket in-
stance to perform handshake with the remote server.
Only after establishing the external connection can
MopEye complete the handshake with the app.

• TCP Data: MopEye places the data from tunnel
packets to a socket write buffer and triggers a socket
write event for the socket instance to handle.

• Pure ACK: MopEye discards pure ACK packets, be-
cause there is no need to relay them to the socket
channel.

• TCP FIN: MopEye updates the TCP state to half
closed and generates an ACK packet to the app.
Meanwhile, it triggers a half-close write event for
the socket instance to handle.

• TCP RST: MopEye closes the external socket con-
nection and removes the corresponding TCP client
object from the cached TCP client list.

Processing socket packets To handle concurrent socket
instances, MopEye uses non-blocking SocketChannel

APIs to communicate with the remote app servers. In
particular, it uses a socket selector [32] to listen for read
and write events, and handles them as follows.

• Socket Read: Upon detecting a read event, Mop-
Eye retrieves the incoming data from the read buffer
and constructs data packets for the internal connec-
tion. In §3.4, we propose a method to improve
the performance of this step. However, if this read
event is for a socket close/reset, MopEye generates
a FIN/RESET packet for the internal connection.

• Socket Write: Upon detecting a write event, the
socket instance sends all the data in the write buffer
to the remote server and instructs the correspond-
ing TCP state machine to generate an ACK packet
to the app. However, if this write event is for half-
close, MopEye closes the external connection and
generates a FIN packet to the app.

USENIX Association 2017 USENIX Annual Technical Conference 447

2.4 Measurement Methods
Obtaining accurate per-app RTT measurement using
MopEye faces more challenges than that using the tra-
ditional active measurement apps, such as MobiPerf [5]
and Ookla Speedtest [16]. There are two main chal-
lenges.
C1: Since MopEye has no control on the relayed pack-

ets, it cannot execute pre-negotiated measurement
logic as in active measurement apps. This challenge
is further exacerbated due to the lack of TCB infor-
mation for correlating packets for measurement.

C2: Unlike other apps that have a relatively “clean”
measurement environment, the performance and ac-
curacy of MopEye can be easily affected by mea-
surement noises, because it has to relay packets for
all applications in the phone.

To address challenge C1, we identify and correlate
the correct packets for computing the RTT. Among the
four types of TCP socket calls (i.e., connect(), read(),
write(), and close()), our evaluation using tcpdump

shows that the connect() call always accurately corre-
sponds to a single round of packets, i.e., the SYN and
SYN-ACK pair. That is, invoking a connect() call will
immediately send out a SYN packet, and the call returns
just after receiving a SYN-ACK packet. In contrast, a
read()/write() call may involve multiple rounds of
packet exchanges, and a close() call may not always
elicit an ACK packet from the server.

However, it is difficult for MopEye to obtain the post-
connect() timestamp accurately due to C2. Since Mop-
Eye uses non-blocking SocketChannel APIs to relay
packets, it has to wait for the system’s notification for a
received ACK. This event-based notification can intro-
duce an additional delay up to several milliseconds if
there are other pending socket events (e.g., read/write
or VpnService’s incoming packets). We resolve this
inaccuracy problem by temporarily setting the socket
into blocking mode for each connect() call. That is,
MopEye runs a connect() call in a temporary new
thread, which we call socket-connect thread. Once
the connection is established, MopEye resumes the non-
blocking mode and switches back to the main thread lis-
tening for read and write events. As a result, MopEye
can obtain an accurate post-connect() timestamp for
the RTT measurement and, at the same time, provides
efficient packet relaying. As will be explained in §3, the
temporary socket-connect threads also give us several
other benefits for optimizing MopEye’s performance.

Besides the TCP-based measurement, MopEye also
supports DNS. Measuring the RTT for DNS is quite
straightforward. We can obtain it by measuring the
time between send() and receive() UDP socket calls,
which correspond to DNS query and reply, respectively.
However, obtaining an accurate post-receive() times-

tamp is still difficult because of C2. We adopt a sim-
ilar solution by setting up a temporary thread for a
blocking-mode measurement, except that this time we
run the whole DNS processing, including DNS parsing
and socket initialization, in the temporary thread (instead
of just doing so for the connect() call as in the TCP
measurement). This is because DNS is an application-
layer protocol built upon UDP, and processing it should
not block the main thread of VpnService.

3 Implementation and Enhancements
We have implemented MopEye in 11,786 LOC and de-
ployed it to Google Play [6] on 16 May 2016 for a crowd-
sourcing measurement study3. Figure 4 presents the ar-
chitecture of MopEye. It has three major components
or core threads (created by our MopEyeService that ex-
tends the Android VpnService class). The TunReader

and TunWriter threads handle read/write for the VPN
tunnel, whereas the MainWorker thread is responsible
for all the packet processing (i.e., packet parsing, map-
ping, and relaying) and RTT measurement.

In this section, we will detail how we solve the chal-
lenges of implementing TunReader, TunWriter, and
MainWorker, particularly our methods of enhancing
MopEye’s performance. For better reading and quick
reference, we include the subsection numbers in the cor-
responding components in Figure 4. Among them, §3.1
and §3.5.2 present solutions generic to all VPN-based
apps on Android, whereas the rest can benefit various
VPN-based traffic inspection systems on different OSes.

3.1 Zero-delay Packet Retrieval from the
VPN Tunnel

Reading packets from the VPN tunnel is straightforward,
but it is very challenging to fast-retrieve the packets un-
der the existing Android VPN programming paradigm.
To illustrate this problem, we use a code snippet from
ToyVpn [19], a representative VPN client in the official
Android SDK sample code. The code4 shows a 100ms
sleep before executing each read() call. The purpose
of this sleep is to reduce CPU cycles for data reading.
Therefore, the sleep period is determined by the tradeoff
between CPU consumption and packet retrieval delay.

We are not aware of any solution addressing this de-
layed VPN read problem. The ToyVpn example [19] im-
plements an “intelligent” sleeping algorithm to partially
mitigate this problem. The basic idea is to stop sleep-
ing when detecting consecutive packet reads. The re-
cently proposed Haystack [42] adopts a similar idea, but
the system performance is not acceptable, e.g., achieving

3IRB approval was obtained from Singapore Management Univer-
sity on 9 October 2015 under application IRB-15-093-A077(1015).

4Due to the page limit, we skip the code here and refer interested
readers to http://tinyurl.com/ToyVPN.

448 2017 USENIX Annual Technical Conference USENIX Association

Read
Queue

Selector

Parsed
packets

SYN
Data
- - -

UDP
FIN

Socket
Read/Write

Events

listen

parse

Tunnel

Input

Tunnel
Read

Thread

TunReader

3.1

MainWorker

Socket Packets

socket
data

3.5.2

look
up

client

3.3

TCP/UDP client n

TCP/UDP client 1

3.4

Tunnel
Write

Thread
TunWriter

3.5.1 Output

Tunnel
packets packets

Write
Queue

pkt-app
map

Socket
Instance

TCP SM

TCP SM

Socket
Instance

3.2
listen

Figure 4: The architecture of MopEye.

only 17.2Mbps throughput from a 73Mbps upload link.
PrivacyGuard [46], another system using VpnService,
simply sets the sleep interval to 20ms.

We propose to fundamentally solve this problem by
putting the VPN read() API into a blocking mode. That
is, each in.read() call will be blocked until a packet is
retrieved from the tunnel. This will effectively relieve the
CPU from checking for data continuously. As a result,
we must run the VPN read() API in a dedicated thread,
i.e., TunReader in MopEye, and the retrieved packets
will be put in a read queue shown in Figure 4.

Unfortunately, there is no API provided for setting
the blocking mode of the VPN interface’s file descrip-
tor until Android 5.0. To implement our idea also for
Android 4.0 to 4.4, we propose the following two so-
lutions. First, at the native code level, we can invoke
the fcntl() API with the F SETFL command to set the
blocking mode. Second, we can leverage Java reflection
to invoke a non-API function called setBlocking in the
unexported libcore.io.IoUtils class. We verify that
this private function exists on Android from its inception.

Although we can achieve zero-delay packet retrieval,
there is a side effect of not being able to timely stop the
TunReader thread in a blocking mode. We have tried
the Thread.interrupt() API, but it does not work be-
cause in the absence of incoming packets the read() call
will be blocked. To address this issue, we send a dummy
packet to the VPN tunnel to release the blocked read()

call. The dummy packet can be sent by MopEye itself for
Android versions below 5.0. For Android 5.0+, however,
MopEye no longer has the capability of letting its own
packets go through the VPN tunnel due to the need of
calling addDisallowedApplication(mopeye) to im-
prove the performance (see §3.5.2). The only solution is
to trigger a network request from other apps. After care-
ful consideration, we use Android DownloadManager
APIs [3] to stably trigger dummy download requests.

3.2 Monitoring Selector and Read Queue
As shown in Figure 4, we use a socket selector to lis-
ten for non-blocking read/write events from each socket
instance and a read queue for receiving tunnel packets

from TunReader. Being implemented as a single thread,
MainWorker, however, cannot monitor both the socket
selector and the tunnel read queue at the same time.
To circumvent this problem, we leverage the existing
select() waiting point to also monitor the read queue.
That is, TunReader will issue a Selector.wakeup()

event whenever it adds a new packet to the read queue.
As a result, when the selector is woken up, MopEye will
check for both socket and tunnel events, because either
could have activated the selector. Moreover, to process
the events timely, we interleave the code for checking
these two types of events.

3.3 Lazy Packet-to-App Mapping
As presented in §2.2, MopEye performs a packet-to-app
mapping for SYN packets in order to obtain per-app
network performance. Our evaluation, however, shows
that such mapping is expensive. Figure 5(a) shows the
cumulative distribution function (CDF) of the overhead
for parsing /proc/net/tcp6|tcp for each SYN packet.
The experiment was performed on a Nexus 6 phone, con-
taining 196 samples, and in the experiment we browsed
a list of websites using the Chrome app. Over 75% of
the samples required more than 5ms for the parsing; over
10% of them needed even more than 15ms. Furthermore,
the overhead will increase with the number of active con-
nections in the system.

Overhead (ms)
0 10 20 30

C
D

F

0

0.5

1

(a) Before the lazy mapping.

Overhead (ms)
0 10 20 30

C
D

F

0

0.5

1

(b) After the lazy mapping.
Figure 5: CDF plots of packet-to-app overhead per packet.

We propose a lazy mapping mechanism to address this
problem. First, we defer the mapping from the main
thread to each temporary socket-connect thread men-
tioned in §2.4. Moreover, the mapping is performed

USENIX Association 2017 USENIX Annual Technical Conference 449

only after the connection is established or failed, thus
not affecting the timely TCP handshake on the appli-
cation side. Second and more importantly, we develop
an efficient mapping algorithm that performs less proc
file parsing. Our mapping algorithm is based on the ob-
servation that for multiple concurrent socket-connect
threads, it is sufficient to let only one thread perform
the parsing. Other threads just check and/or sleep to
wait for the working thread to retrieve the mappings for
them. We choose the sleep period of 50ms which is
sufficiently large when compared with the parsing over-
head in Figure 5(a). The evaluation results show that
such a lazy mapping algorithm is very useful for sce-
narios like web browsing. For a total of 481 temporary
socket-connect threads in a web browsing scenario,
only 155 of them need to perform parsing. Moreover,
the algorithm helps avoid the mapping overhead in the
other 326 threads, i.e., achieving 67.8% mitigation rate
as shown in Figure 5(b). Besides improving the mapping
performance, it also helps reduce the CPU overhead.

Haystack [42] briefly mentions that they use cache to
minimize the mapping overhead. However, cache-based
mechanism could cause inaccurate packet-to-app map-
ping results. For example, both the Facebook app and
accessing Facebook by Chrome may use the same server
IP and port, but their mappings are different. This prob-
lem is more noticeable for advertisement modules since
the same library may be embedded in many different mo-
bile apps. Therefore, in order to obtain an accurate map-
ping, we use our own lazy mapping mechanism instead
of the traditional cache-based mechanism.

3.4 Tuning TCP Performance
Besides implementing the basic user-space TCP/IP stack
presented in §2.3, we have identified and tuned the fol-
lowing performance issues for fast packet relaying.
Maximum segment size (MSS) To maximize the
throughput of the internal connections, MopEye sets the
MSS option to 1460 bytes in the SYN/ACK packet and
sends 1500-byte IP packets to the apps.
Receive window size Another factor affecting TCP
throughput is the TCP receive window. MopEye assigns
the maximum of 65,535 bytes to each MopEye’s socket
write and read buffer. We could also use the TCP window
scale option [10] to further increase the throughput but
have not done so, because the existing receive window is
already big enough for achieving good performance and
a bigger window size will increase the buffer memory.
No congestion and flow control Since no packet loss
and reordering is expected in the VPN tunnel, MopEye
forwards the data packets continuously to the app with-
out waiting for the ACKs. Moreover, upon receiving a
FIN/RST packet, MopEye stops the packet forwarding
immediately.

Minimizing the use of expensive calls We try to min-
imize the use of expensive calls during the packet pro-
cessing. For example, we discover that the register()
call [1] for registering the socket selector can sometimes
be very expensive. MopEye therefore executes this call
in the socket-connect thread only after completing the
handshaking for the internal connection. Other examples
include never performing database operations in the main
thread and always avoiding the debug log output.

3.5 Fast Dispatching of Tunnel and Socket
Packets

3.5.1 Dispatching Packets to the VPN Tunnel
We observe that writing packets to the tunnel is not
always fast, partially because multiple writing threads
(e.g., MainWorker and individual socket-connect

thread) share only one tunnel. We use the experimen-
tal results obtained from two writing schemes in Table 1
to illustrate this problem.

• directWrite: Writing is performed whenever there
are packets to be sent to the tunnel.

• queueWrite: As illustrated in Figure 4, the packets
are first put in a queue. A separate writing thread is
used to output the packets. This scheme is currently
adopted by MopEye.

directWrite queueWrite oldPut newPut
Total 1,244 2,161 810 5,321

0⇠1ms 1,202 2,147 763 5,317
1⇠2ms 30 12 39 1
2⇠5ms 7 2 7 1
5⇠10ms 3 0 1 2
>10ms 2 0 0 0

Table 1: Delay of writing packets to the VPN tunnel un-
der four different writing schemes.

According to Table 1, the queueWrite scheme per-
forms much better than the directWrite scheme. Among
a total of 1,244 samples in the directWrite testing, we en-
counter 42 large writing overheads (i.e., those larger than
1ms). The corresponding result for the queueWrite test-
ing is only 14 out of 2,161 samples. In particular, there
are five extremely large overheads (i.e., those larger than
5ms) in the directWrite samples, two of which are even
over 20ms. While there are still 14 overheads of 1⇠5ms
for queueWrite, they do not affect the performance of
MainWorker, because they are performed by the dedi-
cated TunWriter thread.

Although the queueWrite scheme significantly re-
duces the writing overhead, it introduces the overhead
of packet enqueuing. We find that a traditional enqueu-
ing scheme, denoted by oldPut, has large overheads.
Among the 810 oldPut samples in Table 1, 47 have
an overhead larger than 1ms. Our testing shows that
most of the overheads between 1⇠5ms are due to the

450 2017 USENIX Annual Technical Conference USENIX Association

queue’s wait-notify delay. When there are no pack-
ets in the queue, TunWriter goes to sleep by calling
queue.wait() and is woken up by queue.notify().
We design a new enqueuing algorithm, denoted by new-
Put, to mitigate such delays. The basic idea is to let
TunWriter perform more rounds of queue checking be-
fore going to wait(). Specifically, we design a sleep
counter to systemize this process:
• The counter is initialized to 0 and is reset to 0 each

time being woken up from wait().
• When there are no packets in the queue, the counter

increments for every round of checking and decre-
ments (e.g., dividing by 2) whenever detecting a
nonempty queue.

• TunWriter sleeps only when the counter reaches a
threshold.

The newPut column in Table 1 shows the effectiveness
of our algorithm. Out of the 5,321 samples, only four
contain 1⇠5ms overheads. Compared with the oldPut
scheme, the percentage of large overheads drops from
5.69% to only 0.075%. It is worth noting that the re-
maining two large overheads of 5⇠10ms are likely due
to thread competition. We also observe that such compe-
tition effect is significantly reduced, because the enqueu-
ing operation (at the microsecond level) is much faster
than tunnel writing (at the 0.1ms level).
3.5.2 Dispatching of Socket Packets
When MopEye relays packets to the external connection,
a delay overhead which could be up to several millisec-
onds comes from the VpnService.protect(socket)

method [18]. Before establishing socket connec-
tions with remote app servers, MopEye must call the
protect(socket) method to ensure that the socket
packets will be sent directly to the underlying network.
Without this method, the socket packets will be directed
back to the VPN tunnel, thus creating a data loop.

Our solution is to replace the socket-wide
protect() API with the application-wide
addDisallowedApplication() API. By adding
MopEye into the list of VPN-disallowed applications,
we do not need to invoke protect(socket) for each
socket client. Moreover, since MopEye just needs to
call addDisallowedApplication(mopeye) once, the
call is best invoked during the initialization of MopEye
to avoid impact on MainWorker. The limitation of this
solution is that addDisallowedApplication() is
newly introduced in Android 5.0. For older versions,
MopEye still has to call protect(socket). Our
mitigation method is to put protect(socket) in
each socket-connect thread. In this way, only the
performance of the SYN packet will be affected but
not the subsequent data. Furthermore, this issue will
be of less importance as more devices are upgraded to
Android 5.0+, currently with over 60% of devices [2].

4 Evaluation
In this section, we present two sets of evaluation results.
The first is on the measurement accuracy and overhead
of MopEye, and the second is a set of crowdsourcing
measurement results from 2,351 active users over nine
months.

4.1 Measurement Accuracy and Overhead
4.1.1 Measurement Accuracy

The first evaluation we perform is on the accuracy of
RTT measurement of MopEye. In addition to the stan-
dalone measurement, we also compare MopEye with
MobiPerf v3.4.0 (the latest version at the time of our
evaluation), which makes active network measurements
using the state-of-the-art Mobilyzer library [40]. For a
fair comparison, we use MobiPerf’s HTTP ping mea-
surement [37] because, like MopEye, it also uses SYN-
ACK for the RTT measurement. For each destination,
we use its raw IP address instead of the domain name so
that MobiPerf’s accuracy will not be interfered by DNS
queries. Moreover, each result is presented by the mean
of ten independent runs (MobiPerf does not provide de-
tailed results of each run). We also run tcpdump to pro-
vide the reference measurement results.

Destinations
MopEye (mean, in ms) MobiPerf (mean, in ms)
tcp Mop d tcp Mobi d
dump Eye* dump Perf

Google 4.26 4 0 4.29 16.4 12.11

(216.58.221.132) 4.47 5.5 1.03 4.35 18.5 14.15
5.32 5 0 4.85 18 13.15

Facebook 36.55 37 0.45 36.39 59.5 23.11

(31.13.79.251) 36.55 37 0.45 36.72 55.2 18.48
38.54 38.5 0 46.10 63.2 17.10

Dropbox 284.85 284.5 0 361.76 409.7 47.94

(108.160.166.126) 390.94 391 0.06 388.94 411.5 22.56
513.78 513.5 0 395.87 475.2 79.33

* We round MopEye’s µs-level results to ms-level, e.g., 4.135ms to 4ms.
Table 2: Measurement accuracy of MopEye and MobiPerf.

Table 2 presents three sets of results for Google, Face-
book, and Dropbox, which experience RTTs on different
scales. The differences between the RTT measurement
of MopEye/MobiPerf and that of tcpdump are denoted
by d . The results clearly show that MopEye has a much
better accuracy than MobiPerf—MopEye’s measurement
deviates from that of tcpdump by at most 1ms, whereas
MobiPerf’s deviations range from 12ms to 79ms. By as-
sessing MobiPerf’s code5, we identify three factors re-
sponsible for MopEye’s higher accuracy, including using
the low-level socket call and the nanosecond-level times-
tamp method, and most importantly, putting the timing
function just before and after the socket call. We refer
interested readers to our previous poster version [48] for
more details.

5
http://tinyurl.com/PingTask, where HTTP ping starts from

the line 438.

USENIX Association 2017 USENIX Annual Technical Conference 451

Throughput Baseline MopEye D Haystack D
Download 24.47 24.01 0.46 20.19 4.28

Upload 25.97 25.08 0.89 6.79 19.18
Table 3: The download and upload throughput overhead of
MopEye and Haystack.

4.1.2 Measurement Overhead
To measure the overhead introduced by MopEye, we first
measure the additional delay introduced to the connec-
tion establishment and data transmission in other apps
when MopEye is running. For the connection time, we
implement a simple tool that invokes connect() to mea-
sure the time taken with and without MopEye. For data
packets, we use the popular Ookla Speedtest app [16] to
measure the latency. Both experiments are repeatedly ex-
ecuted on a Nexus 4 running Android 5.0. With a 95%
confidence interval, the mean delay overhead of a round
of SYN and SYN/ACK packets is 3.26⇠4.27ms and that
of data packets is 1.22⇠2.18ms. Considering that the
median of all 714,675 LTE RTTs in our dataset is 76ms,
the delay overhead is acceptable.

Another important metric is the download and up-
load throughput overhead. We compare MopEye with
Haystack [42] v1.0.0.8 (the latest version at the time of
our evaluation), which uses the VpnService API to de-
tect privacy leaks in app traffic. For a fair comparison,
we do not enable Haystack’s TLS traffic analysis for all
its experiments. We use the Ookla Speedtest app as the
reference tool to measure the throughput with and with-
out MopEye/Haystack. All three experiments are repeat-
edly conducted in a dedicated WiFi network which pro-
vides very strong signal strength and stable throughput at
around 25Mbps for both download and upload links.

Table 3 presents the throughput results with D denot-
ing the difference from our baseline using Speedtest.
The results clearly show that MopEye achieves a much
better throughput performance than Haystack. Mop-
Eye’s throughput deviates from the baseline by less than
1Mbps, whereas that for Haystack ranges from 4Mbps
(for the download link) to 19Mbps (for the upload link).
In particular, we find that Haystack’s throughput de-
grades significantly (e.g., 11.63Mbps for the download
and 3.74Mbps for the upload) if we do not restart it for
the next run. Therefore, in order to obtain the Haystack
results in Table 3, we reset Haystack’s VPN interface be-
fore each test. We attribute our superior results to the
major challenges addressed in §3.

4.1.3 Resource Consumption Overhead
We now summarize the resource consumption overhead
of MopEye and Haystack with a Nexus 6 playing a high-
definition YouTube video for around one hour. Accord-
ing to Table 4, MopEye’s resource consumption over-
head is lower than that of Haystack in terms of CPU, bat-
tery, and memory. In particular, the CPU overhead with
Haystack is over 9%, mainly because Haystack has to

Scenario Resource Overhead
MopEye Haystack

Playing a 58-minute CPU 2.74% 9.56%
high-definition (1080p) Battery 1% 2%

YouTube video Memory 12MB 148MB
Table 4: The resource overhead of MopEye and Haystack.

(a) By user. (b) By app.
Figure 6: Number of measurements performed by each
user/app that contribute to at least 100 measurements.

keep executing the VPN read() regardless there are app
packets to be relayed or not. Moreover, we argue that the
1% battery overhead of MopEye is not contributed only
by MopEye, because, with MopEye enabled, YouTube is
no longer considered using the network interface by the
system battery benchmark.

4.2 Crowdsourcing Measurement Results
Our MopEye deployment on Google Play has attracted
4,014 user installs from 126 countries since May 2016.
In this section, we first describe the dataset used in
this paper and then present our measurement analysis to
underline the value of MopEye’s opportunistic per-app
measurement.
4.2.1 Dataset Statistics
By deploying MopEye for over ten months, to the best
of our knowledge, we have collected the first large-scale
per-app measurement dataset. Our analysis in this paper
is based on the MopEye data received between its launch
on 25 May 2016 and 3 January 2017. Our dataset cov-
ers a wide spectrum of devices, countries, and apps, and
includes over 5 million RTT measurements.
User/Device coverage: The dataset includes a total of

2,351 devices that performed at least one measure-
ment. Figure 6(a) shows the number of measure-
ments performed by 1,037 devices each of which
conducted at least 100 measurements. Although
most of them are in the range of 100–1K, 462
of them (45%) contribute from 1K to more than
10K measurements each. This shows a signifi-
cant number of consistently active users. More-
over, these user devices cover 922 different phone
models, manufactueres of which include Samsung,
HTC, LG, Motorola, Huawei, XiaoMi, and others.
This evidences that MopEye can support a wide
range of Android phones in the market.

452 2017 USENIX Annual Technical Conference USENIX Association

Figure 7: Distribution of the top 20 MopEye user countries.

 0° 45° E 90° E 135° E 180° E 225° E 270° E 315° E 360° E

 90° S

 45° S

 0°

 45° N

 90° N

Figure 8: Locations of conducting the MopEye measurement.

Country distribution: Users in our dataset come from
114 countries worldwide. Figure 7 shows the distri-
bution of the top 20 user countries, including the
United States (790 users), United Kingdom (116
users), India (70 users), and Italy (68 users). More-
over, Figure 8 plots 6,987 geographical locations
where the MopEye measurements were conducted.
The figure visually shows that our dataset covers a
large populated area, notably the North America,
Europe, India, coastal regions of South America,
Southeast Asia, and the Pacific Rim.

Applications measured: This dataset includes mea-
surement on 6,266 apps. Figure 6(b) shows the dis-
tribution of the number of RTT measurements per-
formed by each app that contributes at least 100
measurements, with a total of such 1,549 apps. Sim-
ilar to Figure 6(a), most of them contribute 100–1K
measurements, and 424 of them have between 1K
and more than 10K measurements. The most pop-
ular (in terms of the number of times being mea-
sured) apps include social networking apps such
as Facebook, Instagram, and WeChat, and system
built-in apps such as YouTube and Google Play.

Measurements collected: The dataset contains a total
number of 5,252,758 RTT measurements. Among
them, 3,576,931 are measurements for TCP connec-
tions used by the apps, and the remaining 1,675,827
are for DNS measurements. Altogether they cover
106,182 destination IP addresses, 35,351 destina-
tion server domains, 2,427 destination server ports,
and 943+ DNS servers. The most accessed do-
main is graph.facebook.com with 142,873 con-
nections.

(a) All apps’ raw RTTs. (b) Top 424 apps’ median RTTs.
Figure 9: CDF plots of apps’ raw RTTs and median RTTs.

4.2.2 Per-app Measurement Analysis
We now present the 3,576,931 per-app measurement re-
sults, which characterize the network performance expe-
rienced by different apps under different network types
and ISPs in the wild. We envision ways of using the anal-
ysis results to improve the mobile network performance.
For example, we reported our measurement results of
WeChat to help Tencent (developer of the WeChat app)
solve a misconfiguration problem [48].

Overall results. We first present the overall app per-
formance in our dataset by plotting the distribution of
apps’ raw and median RTTs in Figure 9. Figure 9(a)
shows the CDF plot of all 6,266 apps’ raw RTTs, in
which we further distinguish between WiFi and cellu-
lar access. Overall, the performance experienced by mo-
bile users is good with a median RTT of 65ms (i.e., the
value at the 0.5 line in Figure 9(a)). Moreover, ⇠40%
of the RTTs are below 50ms and ⇠60% of the RTTs
are below 100ms. However, we can still observe ⇠20%
of them suffering from relatively long RTTs (>200ms),
and ⇠10% at exceedingly long RTT (>400ms). In this
dataset, WiFi shows superior performance than that on
cellular networks. The median RTTs for WiFi, cellular
networks (including 2G, 3G, and LTE), and LTE alone
are 58ms, 84ms, and 76ms, respectively.

Figure 9(b) plots the median RTT distribution of 424
apps that have more than 1K measurements each (see
Figure 6(b)). We choose the median over the mean
value because the median is less affected by RTT out-
liers. The dataset also has enough measurements for each
app, making the median a reliable measure. The figure
shows that more than 70% of the apps experience less
than 100ms in their RTTs. However, there are ⇠10% of
the apps suffering from more than 200ms of RTT.

Representative apps’ performance. We next study
the network performance of representative apps that are
frequently used in our daily life. Table 5 lists 16 such
apps in five categories. For each app, we present its to-
tal number of RTT measurements and the median RTT.
Most of these apps exhibit very good network perfor-
mance. For example, Instagram, WeChat, Google Play
Store, YouTube, and Amazon have a median RTT below
60ms. We also notice that the median RTT of Whatsapp
is larger than 100ms. Next we present two case studies
in more depth.

USENIX Association 2017 USENIX Annual Technical Conference 453

Category Apps # RTT Median RTT

Social

Facebook 215,769 61ms
Instagram 38,640 50.5ms

Weibo 28,905 43ms
Twitter 11,407 56ms
WeChat 61,804 36ms

Commu- Facebook Messenger 42,408 42ms
nication Whatsapp 32,372 133ms

Skype 16,264 76ms

Google

Google Play Store 100,115 48ms
Google Play services 60,805 37ms

Google Search 35,858 45ms
Google Map 19,996 38ms

Video YouTube 99,895 32ms
Netflix 28,302 33ms

Shopping Amazon 18,313 59ms
Ebay 16,114 70ms

Table 5: Network performance of 16 representative apps.

Case 1: The vast majority of *.whatsapp.net do-
mains do not perform well in many networks. What-
sapp employs a total of 334 whatsapp.net domains as
its server domains, but the median RTT of all these do-
main traffic is as high as 261ms. Specifically, the me-
dian RTTs for all, except three, are larger than 200ms.
The median RTTs for those three domains (starting with
mme, mmg, or pps) are less than 100ms. According to
our analysis, the three domains are deployed in the Face-
book CDN, whereas the other 331 domains are with
SoftLayer Technologies, a server hosting provider. Fur-
thermore, we analyze the median RTTs on these 331
whatsapp.net domains in 20 most accessed networks
(11 WiFi and 9 LTE networks) that have at least 100 mea-
surements each. The results show that only two networks
can achieve less than 100ms of RTT (77.5ms for a WiFi
network and 56ms for the Verizon 4G network), six net-
works in the 100–200ms interval, eight networks in be-
tween 200ms and 300ms, and four networks with RTTs
over 300ms. Moreover, our manual Ping tests from Sin-
gapore and Hong Kong to those domains report a latency
of ⇠250ms. All of the above show that there is much
room for Whatsapp to improve their whatsapp.net net-
work performance.

Case 2: Jio, India’s largest 4G ISP, fails to provide
acceptable performance to many app domains. In the
course of analyzing the Whatsapp case, we find that Jio
provides poor performance to many app server domains.
Among all the ten 4G ISPs with more than 10K mea-
surements, Jio is the only one that has a median RTT
larger than 100ms. The median RTT of its 76,717 RTT
measurements is as high as 281ms. Considering that the
median RTT of its DNS measurements is only 59ms,
the root cause lies very likely in its LTE core network.
Moreover, our analysis of 115 domains (that have 100+
measurements each) in Jio finds that only 19 domains’
median RTTs are less than 100ms, whereas the median
RTTs of 67 domains are over 200ms, 57 domains over
300ms, and 24 domains even over 400ms. We further
confirm that Jio’s poor performance is not due to the per-
formance of the app servers. It is because out of the 71

(a) All results. (b) Cellular results.
Figure 10: CDF plots of DNS measurement results.

domains that have 100+ measurements each in both Jio
and non-Jio LTE networks, 63 of them have much bet-
ter latency (138ms less than Jio on average) with non-Jio
LTE networks.

4.2.3 DNS Measurement Analysis
Next we analyze the 1,675,827 DNS measurements re-
ceived from 943+ WiFi and cellular DNS servers.

Overall results. Figure 10(a) shows the CDF plot of
all measured DNS RTTs. According to the overall distri-
bution, the DNS performance for mobile networks in the
wild is good with a median of 42ms, and around 80% of
DNS RTTs are less than 100ms. The DNS RTTs are in
fact much better than the per-app performance by com-
paring Figure 10(a) with Figure 9(a). For example, 80%
of per-app RTTs are less than 200ms, two times higher
than DNS. This is probably because ISPs usually deploy
local DNS servers. Additionally, we notice that WiFi’s
DNS RTTs are consistently lower than the overall results
with a median of only 33ms; whereas that of cellular net-
works is 61ms. This indicates that the first-hop perfor-
mance of WiFi is generally better than cellular networks.

We plot the detailed results for 2G, 3G, and 4G cel-
lular networks in Figure 10(b). The CDF plots show
clearly the performance difference among the three.
More specifically, the median DNS RTT of 4G is 56ms;
whereas that of 3G and 2G are as high as 105ms and
755ms, respectively. Most of the devices in our measure-
ment use 4G—around 80% of DNS RTTs come from 4G.
This also explains why the CDF plot for 4G DNS RTTs
is close to that of all cellular RTTs.

Major 4G ISPs’ DNS performance. We now take a
closer look at the DNS performance of major 4G ISPs.
Table 6 lists the performance of 15 LTE operators that
have most DNS RTTs in our dataset. First, we notice
that there is no clear correlation between the country
and DNS performance. For example, the performance
of most American ISPs, three Hong Kong ISPs, and two
Malaysia ISPs are similar. Second, the majority of 4G
ISPs provide good DNS performance with the median
RTTs in 40-60ms. The only three outliers are the good-
performer Singtel, and the poor-performers Cricket and
U.S. Cellular. To gain a better understanding, we further
study these three ISPs along with Verizon, a representa-
tive of other ISPs.

454 2017 USENIX Annual Technical Conference USENIX Association

ISP Name Country # RTT Median RTT
Verizon America 80,227 46ms
Jio 4G India 52,397 59ms
AT&T America 51,421 53ms
Singtel Singapore 34,609 27ms

Boost Mobile America 21,854 50ms
Sprint America 20,878 51ms

3 HK (China) 14,354 53ms
MetroPCS America 13,282 60ms
T-Mobile America 9,084 45ms
CMHK HK (China) 5,820 50ms
Celcom Malaysia 4,120 56ms

CSL HK (China) 3,099 61ms
Cricket America 2,822 93ms
Maxis Malaysia 2,419 40ms

U.S. Cellular America 1,988 76ms

Table 6: DNS performance of 15 LTE 4G operators.

Figure 11: CDF plots for DNS performance of four LTE ISPs.

Figure 11 presents the DNS RTT distribution of the
four selected ISPs with the Verizon plot as the base-
line. The plots show that Singtel has an outstanding first-
hop performance with 5,084 DNS RTTs less than 10ms
(14.7% of its total RTTs), whereas Verizon has less than
1% of its DNS RTTs below 10ms. This is mainly because
Singtel has deployed the latest upgrade of LTE, Tri-band
4G+ [21], countrywide [12]. On the other hand, the DNS
performance of Cricket and U.S. Cellular clearly is worse
than the baseline. In particular, the minimum RTTs of
Cricket and U.S. Cellular are around 43ms, much higher
than the best performance of Singtel and Verizon. They
are probably using the pre-4G or near-4G implementa-
tions, because we find that around half of their DNS
RTTs (64% of Cricket and 45% of U.S. Cellular) are still
from non-LTE networks.

Key Takeaway: MopEye enables a large-scale deploy-
ment of per-app measurements in the wild, which help
understand and diagnose the network quality of app
providers and mobile networks at different granularity.

5 Related Work
Many measurement tools have been proposed to under-
stand mobile network performance. They could be clas-
sified into crowdsourcing measurement apps (e.g., [30,
28, 25, 40]) and controlled testbeds (e.g., [47, 35, 24]).
They study 3G/4G networks’ RRC (Radio Resource
Control) state dynamics [41, 28, 44], analyze the behav-
iors of cellular networks [27, 49, 33, 29], measure mobile
network performance and reliability [40, 35, 22, 23, 45],
and perform other measurements [37, 38]. MopEye be-
longs to the domain of crowdsourcing measurements.
Using the VpnService API to perform passive network

measurement, MopEye is the first app that provides per-
app network performance on unrooted phones without
user intervention. With MopEye, we also provide the
first report of large-scale per-app network measurements.

Recently, researchers are interested in utilizing the
VpnService API for different purposes. Nearly all of
them focus on detecting privacy leakage [26] by relaying
and intercepting mobile apps’ traffic either in the smart-
phone [46, 42] or at a remote VPN server [36, 43]. Two
recent works [34, 39] use a remote VPN server to iden-
tify traffic differentiation and optimize traffic volume in
cellular networks. MopEye is different from all these
related works in that we leverage the VpnService API
for per-app network performance measurement. Indeed,
MopEye is the first and the only one on the market that
provides per-app measurement for end users. Moreover,
our solutions for tackling the delayed VPN read problem
(§3.1) and mitigating the VPN protect() delay (§3.5.2)
can benefit all VPN-based apps, such as OpenVPN [9].

Due to the traffic-interception capability of Vpn-

Service APIs, it is important for VPN-based apps to
preserve users’ privacy in their design. Unfortunately,
many VPN apps on the market fail to do so according
to a recent study [31]. The majority of them use re-
mote VPN servers for traffic relay, but not always in a
secure fashion (e.g., no encryption for the tunnel to VPN
servers, or no tunneling for DNS traffic). In contrast, our
MopEye adopts the local phone-side traffic forwarding
scheme, without additional risks associated with VPN
servers, such as leaking user traffic. Further, unlike Pri-
vacyGuard [46] and Haystack that perform traffic content
inspection, MopEye makes no such attempt, let alone the
TLS interception performed by those two. This may be
an important factor contributing to a much higher num-
ber of MopEye installs than Haystack, which reached
only 1.5K installs by the end of March in 2017 [4].

6 Conclusion
In this paper we proposed MopEye, a novel measure-
ment app to monitor per-app network performance on
unrooted smartphones. By leveraging the VpnService

API on Android to intercept all network traffic, MopEye
was able to opportunistically measure each app for its
network RTT without network overhead and user inter-
vention. We overcame a number of challenges to achieve
a fast packet relaying and an accurate measurement in
MopEye. We have deployed MopEye to Google Play
for an IRB-approved crowdsourcing study for over ten
months. By collecting and analyzing the first large-scale
per-app measurement dataset, we discovered a number
of new findings on the per-app and DNS network perfor-
mance experienced by real users in the wild. We plan to
further improve MopEye (e.g., supporting more metrics
beyond RTT), and release more analysis results for app
developers and ISPs to optimize their performance.

USENIX Association 2017 USENIX Annual Technical Conference 455

References

[1] AbstractSelectableChannel selector() — An-
droid Developers. http://developer.

android.com/reference/java/nio/channels/

spi/AbstractSelectableChannel.html#

register(java.nio.channels.Selector,int,

java.lang.Object).

[2] Dashboards — Android Developers. https:

//developer.android.com/about/dashboards/

index.html.

[3] DownloadManager — Android Developers.
https://developer.android.com/reference/

android/app/DownloadManager.html.

[4] Lumen Privacy Monitor has reached 1.5K installs on
Google Play! https://twitter.com/lumen_app/

status/845230899226689537.

[5] MobiPerf on Google Play. https://play.google.

com/store/apps/details?id=com.mobiperf.

[6] MopEye on Google Play. https://play.google.com/
store/apps/details?id=com.mopeye.

[7] Netalyzr on Google Play. https://play.google.

com/store/apps/details?id=edu.berkeley.

icsi.netalyzr.android.

[8] Network Speed Test on Windows Store. http:

//www.windowsphone.com/en-us/store/app/

network-speed-test/9b9ae06b-2961-41ef-

987d-b09567cffe70.

[9] OpenVPN - Open Source VPN. https://openvpn.

net/.

[10] RFC 1323 - TCP Extensions for High Performance.
http://tools.ietf.org/html/rfc1323.

[11] RFC 793 - Transmission Control Protocol. https://

tools.ietf.org/html/rfc793.

[12] Singtel’s 4G Network Deployment History. https://

www.singtel.com/personal/i/4g/why-singtel.

[13] SpeedChecker on Google Play. https://play.

google.com/store/apps/details?id=uk.co.

broadbandspeedchecker.

[14] Speedtest X HD WiFi & Mobile Speed Test on
App Store. https://itunes.apple.com/us/app/

speedtest-x-hd-wifi-mobile/id366593092.

[15] Speedtest.net on App Store. https://itunes.

apple.com/us/app/speedtest.net-mobile-

speed/id300704847.

[16] Speedtest.net on Google Play. https://play.

google.com/store/apps/details?id=org.

zwanoo.android.speedtest.

[17] Speedtest.net on Windows Store. http://www.

windowsphone.com/en-us/store/app/speedtest-

net/4fcd4de1-050b-44dc-b123-a786808eb49b.

[18] The protect() API in VpnService — Android Develop-
ers. http://developer.android.com/reference/

android/net/VpnService.html#protect(int).

[19] ToyVpn. https://github.com/android/platform_

development/tree/master/samples/ToyVpn.
[20] VpnService — Android Developers. http:

//developer.android.com/reference/android/

net/VpnService.html.
[21] What are 4G, 4G+ and Tri-band 4G+? https://www.

singtel.com/personal/i/4g/support.
[22] BALTRUNAS, D., ELMOKASHFI, A., AND KVALBEIN,

A. Measuring the reliability of mobile broadband net-
works. In Proc. ACM IMC (2014).

[23] BALTRUNAS, D., ELMOKASHFI, A., AND KVALBEIN,
A. Dissecting packet loss in mobile broadband networks
from the edge. In Proc. IEEE INFOCOM (2015).

[24] CHEN, Q., LUO, H., ROSEN, S., MAO, Z., IYER, K.,
HUI, J., SONTINENI, K., AND LAU, K. QoE Doctor:
Diagnosing mobile app QoE with automated UI control
and cross-layer analysis. In Proc. ACM IMC (2014).

[25] DENG, S., NETRAVALI, R., SIVARAMAN, A., AND
BALAKRISHNAN, H. WiFi, LTE, or both?: Measur-
ing multi-homed wireless Internet performance. In Proc.
ACM IMC (2014).

[26] ENCK, W., GILBERT, P., CHUN, B., COX, L., JUNG,
J., MCDANIEL, P., AND SHETH, A. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proc. Usenix OSDI
(2010).

[27] FALAKI, H., LYMBEROPOULOS, D., MAHAJAN, R.,
KANDULA, S., AND ESTRIN, D. A first look at traffic
on smartphones. In Proc. ACM IMC (2010).

[28] HUANG, J., QIAN, F., GERBER, A., MAO, Z., SEN, S.,
AND SPATSCHECK, O. A close examination of perfor-
mance and power characteristics of 4G LTE networks. In
Proc. ACM MobiSys (2012).

[29] HUANG, J., QIAN, F., GUO, Y., ZHOU, Y., XU, Q.,
MAO, Z., SEN, S., AND SPATSCHECK, O. An in-depth
study of LTE: Effect of network protocol and applica-
tion behavior on performance. In Proc. ACM SIGCOMM
(2013).

[30] HUANG, J., XU, Q., TIWANA, B., MAO, Z., ZHANG,
M., AND BAHL, P. Anatomizing application perfor-
mance differences on smartphones. In Proc. ACM Mo-
biSys (2010).

[31] IKRAM, M., VALLINA-RODRIGUEZ, N., SENEVI-
RATNE, S., KAAFAR, M. A., AND PAXSON, V. An
analysis of the privacy and security risks of Android VPN
permission-enabled apps. In Proc. ACM IMC (2016).

[32] JENKOV, J. Java NIO Selector. http://tutorials.

jenkov.com/java-nio/selectors.html.
[33] JIANG, H., LIU, Z., WANG, Y., LEE, K., AND RHEE, I.

Understanding bufferbloat in cellular networks. In Proc.
ACM CellNet (2011).

[34] KAKHKI, A., RAZAGHPANAH, A., LI, A., KOO, H.,
GOLANI, R., CHOFFNES, D., GILL, P., AND MISLOVE,
A. Identifying traffic differentiation in mobile networks.
In Proc. ACM IMC (2015).

456 2017 USENIX Annual Technical Conference USENIX Association

[35] KVALBEIN, A., BALTRUNAS, D., EVENSEN, K., XI-
ANG, J., ELMOKASHFI, A., AND OLIVEIRA, S. The
Nornet Edge platform for mobile broadband measure-
ments. In Computer Networks (2014).

[36] LE, A., VARMARKEN, J., LANGHOFF, S., SHUBA, A.,
GJOKA, M., AND MARKOPOULOU, A. AntMonitor: A
system for monitoring from mobile devices. In ACM SIG-
COMM Workshop on Crowdsourcing and Crowdsharing
of Big Internet Data (C2BID) (2015).

[37] LI, W., MOK, R., WU, D., AND CHANG, R. On the
accuracy of smartphone-based mobile network measure-
ment. In Proc. IEEE INFOCOM (2015).

[38] LI, W., WU, D., CHANG, R., AND MOK, R.
K. P. Demystifying and puncturing the inflated delay in
smartphone-based WiFi network measurement. In Proc.
ACM CoNEXT (2016).

[39] LI, Z., WANG, W., XU, T., ZHONG, X., LI, X.-Y., LIU,
Y., WILSON, C., AND ZHAO, B. Y. Exploring cross-
application cellular traffic optimization with Baidu Traf-
ficGuard. In Proc. USENIX NSDI (2016).

[40] NIKRAVESH, A., YAO, H., XU, S., CHOFFNES, D.,
AND MAO, Z. Mobilyzer: An open platform for con-
trollable mobile network measurements. In Proc. ACM
MobiSys (2015).

[41] QIAN, F., WANG, Z., GERBER, A., MAO, Z., SEN, S.,
AND SPATSCHECK, O. Characterizing radio resource al-
location for 3G networks. In Proc. ACM IMC (2010).

[42] RAZAGHPANAH, A., VALLINA-RODRIGUEZ, N., SUN-
DARESAN, S., KREIBICH, C., GILL, P., ALLMAN, M.,

AND PAXSON, V. Haystack: In situ mobile traffic analy-
sis in user space. CoRR abs/1510.01419 (2015).

[43] REN, J., RAO, A., LINDORFER, M., LEGOUT, A., AND
CHOFFNES, D. R. ReCon: Revealing and controlling PII
leaks in mobile network traffic. In Proc. ACM MobiSys
(2016).

[44] ROSEN, S., LUO, H., CHEN, Q., MAO, Z., HUI, J.,
DRAKE, A., AND LAU, K. Discovering fine-grained
RRC state dynamics and performance impacts in cellular
networks. In Proc. ACM MobiCom (2014).

[45] RULA, J. P., AND BUSTAMANTE, F. E. Behind the cur-
tain: Cellular DNS and content replica selection. In Proc.
ACM IMC (2014).

[46] SONG, Y., AND HENGARTNER, U. PrivacyGuard: A
VPN-based platform to detect information leakage on
Android devices. In ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM)
(2015).

[47] WEI, X., GOMEZ, L., NEAMTIU, I., AND FALOUTSOS,
M. ProfileDroid: multi-layer profiling of Android appli-
cations. In Proc. ACM MobiCom (2012).

[48] WU, D., LI, W., CHANG, R., AND GAO, D. MopEye:
Monitoring per-app network performance with zero mea-
surement traffic. In Proc. ACM CoNEXT Student Work-
shop (2015).

[49] XU, Q., ERMAN, J., GERBER, A., MAO, Z., PANG, J.,
AND VENKATARAMAN, S. Identifying diverse usage be-

haviors of smartphone apps. In Proc. ACM IMC (2011).

USENIX Association 2017 USENIX Annual Technical Conference 457

Emu: Rapid Prototyping of Networking Services

Nik Sultana†, Salvator Galea†, David Greaves†, Marcin Wójcik†, Jonny Shipton†,
Richard G. Clegg‡, Luo Mai§, Pietro Bressana∗, Robert Soulé∗, Richard Mortier†,

Paolo Costa], Peter Pietzuch§, Jon Crowcroft†, Andrew W. Moore†, Noa Zilberman†

†University of Cambridge, ‡Queen Mary University of London,
§Imperial College London, ∗University of Lugano,]Microsoft Research

Abstract

Due to their performance and flexibility, FPGAs are an
attractive platform for the execution of network func-
tions. It has been a challenge for a long time though
to make FPGA programming accessible to a large audi-
ence of developers. An appealing solution is to compile
code from a general-purpose language to hardware using
high-level synthesis. Unfortunately, current approaches
to implement rich network functionality are insufficient
because they lack: (i) libraries with abstractions for com-
mon network operations and data structures, (ii) bindings
to the underlying “substrate” on the FPGA, and (iii) de-
bugging and profiling support.

This paper describes Emu, a new standard library for
an FPGA hardware compiler that enables developers to
rapidly create and deploy network functionality. Emu al-
lows for high-performance designs without being bound
to particular packet processing paradigms. Furthermore,
it supports running the same programs on CPUs, in
Mininet, and on FPGAs, providing a better develop-
ment environment that includes advanced debugging ca-
pabilities. We demonstrate that network functions im-
plemented using Emu have only negligible resource and
performance overheads compared with natively-written
hardware versions.

1 Introduction
FPGAs are an attractive platform for implementing net-
work functions. They combine the flexibility of software
with the performance and predictability of hardware.
Major cloud service providers, such as Microsoft, Baidu,
and Amazon, already deploy FPGAs in their data centers
to accelerate internal and third-party workloads [36, 40],
and implement custom network services [8, 34].

Consequently, there has been significant interest in de-
veloping tools and techniques to simplify FPGA pro-

gramming and making FPGAs accessible to a larger frac-
tion of developers. A common approach is to use high-
level synthesis (HLS), which allows developers to pro-
gram FPGAs using a general-purpose language (GPL)
such as C, which is then compiled to a hardware descrip-
tion language (HDL), such as Verilog or VHDL.

Unfortunately, while high-level synthesis undoubtedly
simplifies FPGA development, HLS alone is not suffi-
cient to implement rich network functionality. Notably,
developers who wish to target FPGAs lack three key
components. First, they need library support compara-
ble to that in normal software programming, i.e., they
need access to re-usable modules and libraries that pro-
vide abstractions for common functions and data struc-
tures. Second, they require a binding to the underlying
“substrate” on the hardware. Unlike CPUs, on an FPGA,
there are usually no operating system (OS) and drivers
mediating access to hardware. Finally, they need support
for fine-grained debugging capabilities, akin to what is
available to software developers today.

We present Emu, a framework for network functions
on FPGAs. Emu builds on the Kiwi compiler [43] that
allows computational scientists to program FPGAs with
.NET code. The relationship with Emu to .NET/Kiwi
is roughly analogous to that of the stdlib to C/GCC—
Emu provides the implementation for essential network
functionality. Emu and HLS thus result in a powerful
substrate for developers to rapidly implement and deploy
network functions using a high-level language.

Moreover, Emu virtualizes the hardware context of the
network pipeline, allowing developers to write code that
is portable across different heterogeneous targets. Our
current implementation supports CPUs, simulation envi-
ronments, and FPGAs. Using Emu, developers can run
their network functions as normal processes, using vir-
tual or real NICs, and using network simulators, simpli-

USENIX Association 2017 USENIX Annual Technical Conference 459

fying debugging and testing. Emu also offers debugging
and profiling tools that enable developers to inspect the
behavior of the application at runtime.

While simplifying development is important, most
network operators are not willing to sacrifice perfor-
mance for ease-of-development. With Emu, develop-
ers can have both: Emu supports designs with differ-
ent performance metrics such as bandwidth, latency, or
operations-per-second.

Using Emu, we have created various prototype imple-
mentations of networking services, ranging from an L2
switch to a high-performance Memcached server [17].
Each service is expressed in C#, which can be trans-
formed to host or FPGA instantiations. The FPGA-
centered code, created from the C# compiler output and
transformed into Verilog executes, for our prototype, on
a NetFPGA SUME card [49].

Domain-specific languages such as P4 [5] or
ClickNP [26] are too low-level and are designed to sup-
port only specific tasks, e.g., packet processing. In con-
trast, Emu enables the development of a broader set of
services, leveraging its support for general-purpose pro-
gramming.

We compare the performance of Emu against
software-only and native Verilog implementations (§5).
Our results show that Emu-generated code significantly
outperforms software-only versions in terms of latency,
latency variance, and throughput, while having a negligi-
ble overhead compared to native implementations.

Overall, this paper makes the following contributions:
1. a “standard library” for network services, which

allows hardware network functions that go beyond
header processing to be written in C#. This enables
dynamic, conditional processing for network services
such as DNS and Memcached. The framework can be
customized for different performance metrics, and we
illustrate the tradeoffs involved;

2. an execution environment that supports running a sin-
gle codebase over heterogeneous targets, including
CPUs, network simulators, and FPGAs; and

3. debugging support that translates high-level idioms
for debugging, profiling, and monitoring into a low-
level language for controlling runtime program state.
Emu and all datasets used in this paper are publicly

available [15], and our FPGA designs will be contributed
to the NetFPGA community.

2 Motivation
The goal of Emu is to make it easy for software devel-
opers with no expertise in hardware languages to quickly
develop, test, and deploy network services on an FPGA.

Using Emu, application developers can offload network
logic to hardware with only modest effort.

The main reason for moving network services from
the CPU to FPGAs is increased performance, as demon-
strated by existing applications [24, 46, 47]. Mov-
ing network functions to hardware also saves CPU cy-
cles, which would otherwise be spent in polling the
network interface card (NIC), as typically done in
high-performance packet-processing frameworks such as
DPDK [52] or netmap [37].

Different data center services, however, have different
performance goals. Some applications are throughput-
sensitive, e.g., a streaming service, while for others la-
tency is the primary concern [11]. Further, in some cases,
latency can be an indirect contributor to low application
performance [21]. For example, in Memcached, even
tens of microseconds are sufficient to drop the number
of queries-per-second significantly [50]. By providing
a set of suitable abstractions and APIs, Emu allows de-
velopers to optimize towards their preferred performance
metric such as ease-of-coding, throughput, or latency.

Our approach can be seen as an example of network
paravirtualization: it allows high-level network primi-
tives to be compiled to the paravirtualized hardware (e.g.,
FPGA or CPU) via the Emu framework. This has the po-
tential to foster innovation at the NIC level, with ven-
dors adding custom logic to natively support some of
our high-level APIs. Our library can then be extended
to map API calls such as those communicating packets,
or doing novel data manipulation (e.g., match-action ta-
ble processing such as longest-prefix matching, hash and
checksum computation, and other conditional operations
at line-rate) to custom hardware blocks when available
and to rely on paravirtualization, otherwise.

While many consider the translation from a general-
purpose language to a hardware language to be the main
challenge, there is another important obstacle, namely
providing support for debugging an application. Debug-
ging FPGA programs requires the use of hardware-level
simulators [32, 42] or probing tools [12], and most net-
work service developers are unfamiliar with these tools.
Emu addresses this problem on two levels: (i) it allows
application code to be run in a x86 runtime environment.
This enables developers to verify and debug the func-
tionality of their code, speeding up the development pro-
cess; (ii) it provides debugging, monitoring, and profiling
tools for the application while running on the hardware.
It does this by offering familiar GPL-like abstractions,
fitting application developers’ capabilities.

Previous work tried to address only a subset of these
challenges, as we summarize in Table 1. Past solu-

460 2017 USENIX Annual Technical Conference USENIX Association

Solution What is it? Target Processing Language Performance Debug Compiler to
Applications Paradigm Metric Environment1 Verilog

Emu “Standard Networking Any .NET User defined x86, Mininet Kiwi
library” applications (see §3.2) and Emu env.

Kiwi Compiler and Scientific Any .NET Execution x86 Kiwi
libraries applications time/area

Vivado Compiler and Scientific Any C, C++, Throughput C simulation Vivado
HLS libraries applications System C HLS
SDNet Programming Networking Packet PX/P4 Throughput C++ simulation SDNet

environment applications processing
P4 Programming Networking Packet P4 Throughput P4 behavioral P4 compiler, then

language applications processing simulator, Mininet P4FPGA/SDNet.
ClickNP Programming Networking Packet ClickNP Throughput Undefined ClickNP, then

language/model applications processing Altera OpenCL
or Vivado HLS

1Excluding RTL simulators, accessible on the HDL level to all solutions

Table 1: Comparison between different representative solutions for enabling networking services in hardware

tions either focus on packet processing applications ex-
clusively (e.g., P4 [5] and ClickNP [26]) or target sci-
entific applications only without providing abstractions
appropriate for networking (e.g., Kiwi and Vivado HLS).
Emu tackles both challenges, while combining additional
advantages: supporting a heterogeneous debug environ-
ment, as well as user-defined optimizations for perfor-
mance.

Interestingly, while Vivado HLS specifies latency as a
performance metric, this refers to increasing parallelism
within the design, rather than network latency metrics.
An example showing how increasing parallelism adds to
latency is given in §5.3.

3 Emu framework
With Emu, developers can use a general-purpose lan-
guage to implement high-performance network functions
that run on FPGAs. The Emu runtime provides an ab-
stract target environment, and a library of functionality
that can execute on both CPUs and FPGAs, simplifying
debugging and deployment. Moreover, Emu provides an
interface to intellectual property (IP) blocks, i.e., spe-
cialized modules that take advantage of hardware fea-
tures (§3.4). This further abstracts away the details of
hardware development. Next, we present an overview of
the Emu framework, and describe a typical workflow.

3.1 Background

Emu combines and extends several existing components,
including the Kiwi compiler for HLS, and NetFPGA [49]

as a hardware target. Note that Emu is not strictly de-
pendent on these specific components—one could use a
different HLS compiler or network-attached FPGA.

Kiwi. Originally designed to support scientific comput-
ing applications, the Kiwi compiler transforms the target
language of .NET compilers, i.e., the common interme-
diate language (CIL), into a register-transfer level (RTL)
description of hardware in Verilog [43]. The Verilog out-
put can then be used to configure FPGAs. We apply Kiwi
to the domain of network services and extend it to sup-
port networking operations. Emu provides a library to
facilitate the development of network functions, and in-
cludes some improvements to Kiwi as described in §3.2.

NetFPGA SUME [49] is the latest generation in the
NetFPGA family, and provides a low-cost, FPGA-
centered PCIe hardware platform for research and ed-
ucation. Alongside several packet-centered reference
projects (e.g., an IPv4 router, Ethernet switch, and
NIC), NetFPGA has provided the base platform to pro-
totype a variety of high-performance hardware designs
for network-centered applications, the best example be-
ing prototype hardware for OpenFlow SDN [33].

3.2 Kiwi extensions
Emu provides the following functionality on top of Kiwi:
(i) we add support for IP blocks, as defined in §3.4. Al-
though Emu readily generates instances of various com-
ponents, such as RAMs, ALUs and format converters,
we add new support for easily instantiating other IP
blocks; (ii) the second extension is needed to mix hard

USENIX Association 2017 USENIX Annual Technical Conference 461

Software development workflow

(C#)

(Verilog)

(.NET CIL)A2 Compile

(Bitstream)

B2 Simulate

B3 Synthesis

Hardware development workflow

A2 : Mono
B1 : Kiwi
B3 : Xilinx Vivado

Compiler Legend

A1 Write A3 Run A4 Test

B1 Compile

C1 Run C2 Test

Figure 1: Components of the Emu framework

and soft timing. Kiwi is designed for scientific acceler-
ation, giving it complete freedom over the schedule of
operations, which is especially important for multi-cycle
floating-point ALU operations. To support the hard tim-
ing, cycle-accurate, requirements of network services,
Kiwi’s scheduler is adapted and paused in parts of the
design; (iii) a third extension is the support for casting
a byte or a word array into a struct, so that various bit
fields take on names and types. C# supports this in the
unsafe dialect, but the KiwiC version used by Emu only
accepts the strongly-typed safe subset of C#; (iv) finally,
the largest primitive datatype in C# is the 64-bit word.
To achieve higher performance, we require wider I/O
busses. Emu defines user types for larger words and pro-
vides overloads for all of the arithmetic operators needed.

3.3 Emu overview
Figure 1 shows the main components of the Emu frame-
work, which include: (i) a library tailored to network
functions; (ii) runtime support for running C#-coded net-
work programs on a CPU; and (iii) library support for
developing and debugging programs. Steps A1, A2,
A3 and A4 show the standard C# compilation to byte-
code and running/testing on a CPU. B1 uses Kiwi (and
Emu extensions) to compile from .NET CIL to Verilog.
Steps B2 and B3 (using the NetFPGA framework and the
Xilinx compiler) output a bitstream that can be executed
on NetFPGA, and this is run and tested in hardware in
steps C1 and C2.

Emu extends Kiwi by offering library support cus-
tomized to the networking domain. Kiwi also provides
a “substrate” to support programs that it compiles—the
substrate serves as a runtime library for those programs
and Emu extends this substrate.

Developers describe a network service in terms of
what it does to packets sent and received through net-

1 // If the frame does not contain an IPv4 packet then we do
not set its output port; this implicitly drops the
frame.

2 if (dataplane.tdata.EtherType_Is(EtherTypes.IPv4))
3 {
4 // Configure the metadata such that if we have a hit

then set the appropriate output port in the
metadata, otherwise broadcast.

5 if (dstmac_lut_hit) {
6 NetFPGA.Set_Output_Port(ref dataplane, lut_element_op)

;
7 } else {
8 NetFPGA.Broadcast(ref dataplane);
9 }

10 }
11 Kiwi.Pause();
12

13 // Add source MAC to our LUT if it's not already there,
thus the switch "learns".

14 if (!srcmac_lut_exist)
15 {
16 LUT[free] = srcmac_port;
17 free = (free > (LUT_SIZE - 1)) ? 0 : free++;
18 }

Figure 2: Part of a switch implementation, showing use
of our API for protocols (Line 2) and NetFPGA (Line 6)

work logical ports, which are attached at runtime to net-
work interfaces made available by the OS. The interfaces
may be physical or virtual (e.g., a tap device). Emu pro-
vides a library and runtime support so developers can
quickly test prototypes of network functions written in
high-level languages. Layers of abstraction between the
.NET runtime and the OS provide virtual/physical net-
work interfaces. By using virtual interfaces, developers
can test network functions in a simulator.

3.4 Library features

Basic usage. Emu extends the C# code that can be com-
piled by Kiwi with a library of functions that provide
convenience (e.g., by defining frequently-used protocol
formats) and performance (e.g, by providing access to
carefully crafted IP blocks, see below). Thus any C#
code that can be compiled by Kiwi can be used in Emu.
An example snippet from our implementation of a switch
is provided in Figure 2. Most of the code is standard C#,
except for line 11, which controls Kiwi’s scheduling (see
below), and lines 2 and 6, which use utility functions.

Protocol parsing. Parsers for commonly-used packet
formats are available for reuse. As an example, Figure 3
shows the code to instantiate some of the parsers used in
the NAT implementation (§4.4). All parsers that may be
needed during runtime are instantiated on loading, and,
as the snippet shows, it can handle TCP over IPv4 over
Ethernet, as well as ARP over Ethernet.

Writing new parsers for custom protocols is straight-

462 2017 USENIX Annual Technical Conference USENIX Association

1 var eth = new EthernetWrapper(dataplane.tdata);
2 var ip = new IPv4Wrapper(dataplane.tdata);
3 var tcp = new TCPWrapper(dataplane.tdata);
4 var arp = new ARPWrapper(dataplane.tdata);

Figure 3: Parsers for different protocol formats
1 public uint DestinationIPAddress
2 { get { return BitUtil.Get32(ips, 0); }
3 set { BitUtil.Set32(ref ips, 0, value); } }
4

5 public uint SourceIPAddress
6 { get { return BitUtil.Get32(ips, 4); }
7 set { BitUtil.Set32(ref ips, 4, value); } }

Figure 4: Parsing IPv4 headers

forward. Figure 4 shows how two IPv4 fields are manip-
ulated using standard C# programming style as well the
utility functions BitUtil.Get32 and BitUtil.Set32.

Using IP blocks. While C# provides an easy develop-
ment environment, to maximize the performance of a
design, it is sometime recommended to use specialized
IP blocks that take advantage of the hardware capabil-
ities, such content addressable memory (CAM) used in
some of our implementations. These blocks are accessi-
ble through the facilities of Kiwi, as mentioned in §3.2.

An example use of an IP block is a hashing mod-
ule. Figure 5 shows the C# implementation of the pro-
tocol required to seed a value (when the hash is used
in streaming mode). The protocol involves two sig-
nals, init_hash_ready and init_hash_enable, used
for handshaking, and a bundle of eight signals data_in
used for sending a byte to the core. We can implement
the handling of arbitrary protocols in C#, and this enables
us to interface with any IP block.

Multi-threading and scheduling control. Kiwi rein-
terprets concurrency primitives that are used when pro-
gramming software to improve its hardware generation.
It provides a thread-based concurrency library with two
type of semantics: (i) software semantics reduces to con-
currency primitives provided by .NET, while (ii) hard-
ware semantics forms logical circuits in which parallel
threads may be wired into parallel logical sub-circuits.

Using these types of semantics, .NET programs may
be executed on general-purpose x86 CPUs by using the
software semantics, or on FPGAs by using the logical
circuit semantics. In the latter case, Kiwi produces de-
scriptions with much finer parallelism than what is pos-
sible on software platforms, whose parallelism is at most
instruction-level. We take advantage of this and further
refine it to achieve maximal pipelining of projects.

For high performance, developers can also aid Kiwi in
scheduling computations across time using annotations,

1 public static void Seed(byte data_in)
2 {
3 while (init_hash_ready) { Kiwi.Pause(); }
4 PearsonHash.data_in = data_in;
5 init_hash_enable = true;
6 Kiwi.Pause();
7 while (!init_hash_ready) { Kiwi.Pause(); }
8 Kiwi.Pause();
9 init_hash_enable = false;

10 Kiwi.Pause();
11 }

Figure 5: Part of the wrapper for our hashing module
1 // Extract the frame from NetFPGA_Data into a byte array.
2 public static void Get_Frame (NetFPGA_Data src, ref byte[]

dst)
3 ...
4

5 // Move the contents of a byte array into the frame field
in NetFPGA_Data.

6 public static void Set_Frame (byte[] src, ref NetFPGA_Data
dst)

7 ...
8

9 // Read the input port (i.e., port on which we received the
frame).

10 public static uint Read_Input_Port (NetFPGA_Data dataplane)
11 ...
12

13 // Set the output port to a specific value. (i.e., the port
to which we are forwarding the frame.)

14 public static void Set_Output_Port (ref NetFPGA_Data
dataplane, ulong value)

15 ...

Figure 6: Utility functions for interacting with the FPGA
dataplane

as shown in line 11 in Figure 2. This breaks up compu-
tation and allows Kiwi to schedule a suitable amount of
computation in a single clock cycle by providing a cycle-
accurate notion where needed. If Kiwi schedules too lit-
tle computation, it is inefficient; if it schedules too much
computation, the implementation on the target FPGA de-
vice fails. Currently, Kiwi is target oblivious, i.e., it does
not have information about clock rates.

Utility functions. In addition to the purpose-specific
APIs described in previous sections, Emu also includes
general utility functions. These form a library of C#
code and are intended to help abstract unnecessary de-
tails, such as the functions listed in Figure 6 for inter-
acting with the FPGA target. One could have different
sets of such functions for different targets, e.g., without
changing the code for protocol parsing or IP blocks.

3.5 Debug-related features

Emu produces a debug environment by the systematic
extension of programs to interpret direction commands
at runtime to enable debugging, monitoring and profil-

USENIX Association 2017 USENIX Annual Technical Conference 463

1 if V_trace_idx < max_trace_idx then
2 V_trace_buf[V_trace_idx] := V;
3 inc V_trace_idx;
4 continue
5 else
6 inc V_trace_overflow;
7 break

Figure 7: Code that implements the direction command
“traceX max_trace_idx” (If the buffer is not full, the new
value of X is logged, the index incremented, and control
is returned to the program that hosts this code; otherwise,
it indicates depletion of the associated buffer resource
and break the program’s execution.)

ing. This design came about after we found ourselves
extending our ad hoc debugging and monitoring code to
support additional features. It is inspired by the com-
mands found in profilers and debuggers such as gdb.

Emu uses a language of direction com-
mands [44]. Figure 7 describes one such command,
“traceV max_trace_idx”, and shows how to express this
high-level direction command as a program executable
by a controller, with which Emu programs are extended
(see Figure 8).

Table 2 lists other supported high-level direction com-
mands. Commands are translated into programs that ex-
ecute on a simple controller embedded in the program.
We model the controller as a counters, arrays, and stored
procedures (CASP) machine, which refers to the con-
stituents of the machine’s memory.

Extending a C# program to support direction com-
mands involves inserting (i) named extension points
with runtime-modifiable code in a computationally weak
language (no recursion); and (ii) state used for book-
keeping by that code to implement direction features.

Debugging can also be conducted using direction
packets. Direction packets are network packets in a cus-
tom and simple packet format, whose payload consists
of (i) code to be executed by the controller; or (ii) sta-
tus replies from the controller to the director. It enables
us to remotely direct a running program, similar to gdb’s
“remote serial protocol” [18].

Emu minimizes the overhead that these features intro-
duce at runtime by extending a program (before compi-
lation) to support the precise set of required debugging
or profiling features. This frugality does not come at
the cost of inflexibility, however, because the extension
points at runtime can be reconfigured to perform differ-
ent debugging or profiling functions.

Controller DirectorProgram(Normal interaction
with external world)

Original program behaviour Hosted directability

Figure 8: Controller embedded into the program, acting
as the agent of the director (The director and controller
exchange commands and their outputs.)

3.6 Limitations
The main limitation of Emu when compared to HDLs is
the lack of low-level control over hardware designs, and
here Emu is partly limited by Kiwi’s capabilities. Kiwi
does not yet allow one to internalize instances of an HDL
module, and this forces Emu to interface with such mod-
ules instead of instantiating them.

In addition, Emu currently supports only a limited
number of protocols, but developers can extend the li-
brary to support more protocols (see Figure 4).

Finally, depending on the required performance, de-
velopers must be aware of the hardware that the design
is deployed on, or is interfacing with. For example, for a
given throughput, a wider I/O bus may be required.

4 Use cases
We have implemented different networking services to
demonstrate the benefits of Emu. These include forward-
ing (§4.1), measurement and monitoring (§4.2), perfor-
mance sensitive applications (§4.3), and more complex
applications such as NAT and caching (§4.4). The use
cases cover a range of network services, and can include
bespoke features, e.g., encryption schemes. The use case
implementations are available under an open-source li-
cense [15]. Some of the applications are also available as
contributed projects to the NetFPGA community, start-
ing with NetFPGA SUME release 1.4.0.

4.1 Packet forwarding

Learning switch. We implement a standard layer-2
learning switch, similar in functionality to the NetFPGA
SUME reference switch [45]. Beyond header process-
ing, which is a basic networking function, it provides an
example of how content addressable memory (CAM) is
implemented in Emu, and how a native FPGA IP CAM
block can be used. While the first option does not bur-
den developers with implementation details, the latter
provides better resource usage and timing performance.
A simplified version of our implementation is shown in
Figure 2. The full version is around 150 lines of C#, and
the resulting Verilog is around 500 lines.

464 2017 USENIX Annual Technical Conference USENIX Association

Command Behaviour

print X Print the value of variable X from the source program.
break L 〈B〉 Activate a (conditional) breakpoint at the position of label L.
unbreak L Deactivate a breakpoint.
backtrace 〈$〉 Print the “function call stack”.
watch X 〈B〉 Break when X is updated and satisfies a given condition.
unwatch X Cancel the effect of the “watch” command.

count

 reads X 〈B〉 〈$〉
writes X 〈B〉 〈$〉
calls fname 〈B〉 〈$〉

 Count the reads or writes to a variable X , or the calls to a function fname.

trace

start X 〈B〉 〈$〉
stop X
clear X
print X
full X

Trace a variable, subject to a satisfied condition, and up to some length.
Stop tracing a variable.
Clear a variable’s trace buffer.
Print the contents of a variable’s trace buffer.
Check if a variable’s trace buffer is full.

Table 2: Directing commands (Note that count has similar subcommands to those of trace.)

L3–L4 filter. We provide a tool that emulates the
command-line parameter interface of IP tables [35]. In-
stead of modifying a Linux server’s filters, it generates
code that slots into our learning switch. This turns the
switch into a L3 filter over sets of IP addresses or proto-
cols (ICMP, UDP, and TCP), or an L4 filter over ranges
of TCP or UDP ports.

4.2 Measurement and monitoring

ICMP echo. We have implemented an ICMP echo server
to obtain two baselines: (i) a qualitative baseline on the
difficulty of implementing a simple network server, and
(ii) a quantitative baseline on how much time is saved by
avoiding the system bus, CPU, OS, and network stack.

TCP ping. Sometimes the network handles ICMP traf-
fic differently to the protocols used by applications such
as TCP and HTTP. For example, a faulty configuration
of the network may discard packets on some TCP ports
on a machine, but without affecting the reachability of
that machine through ICMP [22]. TCP ping involves a
simple reachability test by using the first two steps of the
three-way connection setup handshake. It is thus a more
complex extension of ICMP echo. Our implementation
is around 700 lines of C#, and the resulting Verilog is
around 1,200 lines.

4.3 Performance-sensitive applications

DNS. We provide a simple DNS server that supports
non-recursive queries. Our prototype supports resolution
queries from names (of length at most 26 bytes) to IPv4

addresses, but these constraints can be relaxed to handle
longer names and IPv6. If the queried name is absent
from the resolution table, the server informs the client
that it cannot resolve the name. Our implementation is
around 700 lines of C#, and the resulting Verilog around
1,200 lines. 1

Memcached [17] is a well-known distributed in-memory
key/value store that caches read results in memory to
quickly respond to queries. Its protocol uses a number
of basic commands such as GET (to retrieve a value asso-
ciated with the provided key), SET (to store a key/value
pair) and DELETE (to remove a key/value pair), and sup-
ports both ASCII and binary protocols.

Memcached is sensitive to latency, and even an extra
20 µs are enough to lose 25% throughput [50]. Our ini-
tial Memcached implementation with Emu focussed on
latency only and therefore supported only a limited ver-
sion of the protocol, allowing only GET/SET/DELETE us-
ing the binary protocol over UDP, with 6-byte keys and
8-byte values. We later experimented with different ex-
tensions of this design, adding support for the ASCII pro-
tocol, larger key/value sizes, and for the use of DRAM
and multiple CPU cores. These features introduce dif-
ferent trade-offs with respect to latency, throughput, and
functionality.

4.4 Other applications

NAT. We provide a network address translation (NAT)
service, supporting both UDP and TCP, which was im-

1It is a coincidence that the code length is the same as for the TCP
ping use case.

USENIX Association 2017 USENIX Annual Technical Conference 465

1 public class Data {
2 public bool matched = false;
3 public ulong result = 0;
4 }
5 public class LRU {
6 public static Data Lookup(ulong key_in) {
7 Data res = new Data();
8 ulong idx = HashCAM.Read(key_in);
9 if (HashCAM.matched) {

10 res.matched = HashCAM.matched;
11 res.result = NaughtyQ.Read(idx);
12 NaughtyQ.BackOfQ(idx);
13 }
14 return res;
15 }
16 public static void Cache(ulong key_in, ulong value_in) {
17 ulong idx = NaughtyQ.Enlist(value_in);
18 HashCAM.Write(key_in, idx);
19 }
20 }

Figure 9: Least-recently-used (LRU) cache in Emu

plemented by a second-year undergraduate student. The
implementation is written entirely in C#, without the use
of Verilog-based cores, and has less than 1,000 lines.

One of the advantages of Emu is that the same code
can run on multiple platforms, enabling a better develop-
ment cycle. We use the NAT service as a test case, com-
piling it to three different targets: software, Mininet [31],
and hardware.

Caching. One potential application that can benefit
from offloading to hardware is caching. For example,
SwitchKV [27] uses SDN-enabled switches to dynami-
cally route read requests to a cache if content is available.
This idea can be extended to directly implement a cache
in the data plane, reducing load on storage servers. Im-
plementing a cache in a DSL such as P4, however, would
be difficult, because the eviction logic must be managed
by the control plane. In contrast, with Emu, one can eas-
ily implement a look-aside, least-recently-used (LRU)
cache in a few lines, as shown in Figure 9.

5 Evaluation
Our evaluation of Emu has the following aims: (a) pro-
vide evidence that using Emu is beneficial in terms of
resources and performance, compared with other solu-
tions; and (b) explore if Emu can be used to implement
high-performance network services.

5.1 FPGA hardware
At the core of the NetFPGA SUME board is a Xilinx
Virtex-7 690T FPGA device. The memory subsystem
combines both static random access memory (SRAM)
and dynamic random access memory (DRAM). It sup-
ports up to 32 GB of RAM, and can run as a stand

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Input
Arbiter

Output
Queues

Main Logical Core

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Figure 10: NetFPGA reference pipeline (The input ar-
biter, logical core, and output queues form the data
plane.)

alone computing unit [23]. NetFPGA SUME’s native
frequency is 200 MHz.

The NetFPGA reference designs share a generic
FPGA architecture, shown in Figure 10, with multiple
physical interfaces surrounding a logical data-path. Emu
capitalizes on this generic NetFPGA design: we target
only the main logical core and build upon all other com-
ponents to be shared between services, thus requiring no
hardware expertise.

5.2 Experimental setup
Our experiments are conducted using a server with a sin-
gle 3.5 GHz Intel Xeon E5-2637 v4 CPU with 64 GB
DDR4 memory and a SuperMicro X10-DRG-Q mother-
board. The machine runs Ubuntu Linux 14.04 LTS with
the kernel version 3.13.0-106-generic. It has a dual port
10 GbE NIC (Intel 82599ES). The machine also includes
a NetFPGA SUME board for the performance compari-
son. We use an Endace DAG 9.2X2 card for accurate la-
tency measurements. All traffic is captured by the DAG
card and used to measure the latency of the device-under-
test (DUT) alone. The latency of the setup itself is mea-
sured first and deducted from all subsequent measure-
ments. For latency measurements, the server runs the
service pinned to a single CPU core with a warm cache.

For our throughput measurements, we use the Open
Source Network Tester (OSNT) [1] as the traffic source.
OSNT replays real traffic traces while modifying traf-
fic rate to find the maximum throughput (e.g. queries
per second). When testing, the server is configured to
achieve maximum throughput (e.g. using multiple CPU
cores), and this configuration changes between tests.

5.3 Comparison against hardware services
Next, we evaluate the immediate overheads of using Emu
and show that the resulting implementations are compa-
rable with native HDL designs.

466 2017 USENIX Annual Technical Conference USENIX Association

Emu NetFPGA P4FPGA
reference

Logic resources 3509 2836 24161
Memory resources 118 87 236
Module latency 8 cycles 6 cycles 85 cycles
Throughput (Mpps) 59.52 59.52 53

Table 3: Comparison between Emu switch (C#),
NetFPGA reference switch (Verilog), and P4FPGA
switch (P4), using 64 byte packets

We compare the Emu learning switch, written in C#
and compiled using Kiwi, with the NetFPGA SUME ref-
erence switch written directly in Verilog. We further ex-
tend this comparison to a similar design, written in P4
and compiled to NetFPGA SUME [47]. We do not com-
pare with SDNet [39], as done by Dang et al. [10], be-
cause P4FPGA has better reported performance. As pre-
vious work [47], we use 256-entry tables.

Table 3 shows the resources consumed by the main
logical core in each design. These results confirm that the
resource overhead is minimal, making Emu an attractive
solution. Furthermore, out of the reported resources con-
sumed by Emu core, 85% are used by the CAM, which
is an IP block, and only 15% by the C# generated logic.
We note that, in all our use cases, the FPGA resources
are never exhausted, and consume less than 33% of the
logic resources, including the debug controller.

In terms of latency, Emu has only a minor overhead
over the main logical core in the NetFPGA SUME ref-
erence switch design. In comparison to P4FPGA, Emu
provides much lower latency than the compared design,
mostly because Emu is not bounded by the match/ac-
tion paradigm. In terms of throughput, instead, while
P4FPGA achieves 53 Mpps for 64 byte packets using a
250 MHz clock, and a header parser for every port, Emu
achieves full line rate (59.52 Mpps) using a 200 MHz
clock and a single header parser.

Unfortunately, the authors of ClickNP [26] do not
provide enough information, such as the FPGA clock
rate, which would allow for a fair comparison with Emu.
However, their reported packet-processing rate for simi-
lar applications (e.g., a firewall with 56 Mpps) is on par
with Emu, as is the latency (e.g., 11 cycles for L4 Parser).
In terms of resource usage, ClickNP has a resource uti-
lization of 0.9× compared with the NetFPGA reference
design’s header parser (resp. 3.2× for a multi-threaded
design). Emu’s resource utilization, instead, is 0.7×with
a single-thread design (1.2× with a multi-thread design).

5.4 Comparison against software services

In the previous section, we compared against equiva-
lent implementations running on FPGAs. Now, we ex-
plore the performance of the different use cases from §4
against software-based, Linux native counterparts.

Setup. ICMP Echo and TCP Ping are used to evaluate
the performance of a simple networking operation. We
measure the round-trip time (RTT) required to reply to
a request of the DUT alone. Latency measurements are
performed for 100K packets. We configure NAT as a
gateway to/from the local network, and measure the la-
tency between an input interface from the external net-
work and an output interface to the local one.

The Memcached evaluation uses the memaslap bench-
mark [30], configured to use a mix of 90% GET and
10% SET requests with random keys. The Emu Mem-
cached implementation uses UDP and the ASCII pro-
tocol. We compare against a Linux Memcached server
with 4 threads and 64 MB of memory, also running the
UDP and ASCII protocols.

Results. We show the latency and throughput results
in Table 4. Across all use cases, Emu achieves a re-
duction in latency from one to three orders of magni-
tude. Most importantly, unlike the host-based implemen-
tations, Emu’s services exhibit a very short tail latency.
This is particularly important as in distributed applica-
tions the application performance is often bound by the
tail latency [11]. This means that not only Emu yields
very low latency but it also guarantees predictable per-
formance. In contrast, host-based implementations suf-
fer from unpredictable delays and interrupts across the
stack and exhibit a much higher variability with the tail-
to-average ratio variying from 1.09 to 2.98 (resp. from
1.02 to 1.04 for Emu).

Emu also significantly outperforms host-based solu-
tion in term of throughput with improvements ranging
from a factor of 2.1 up to a factor of 5.2. Interest-
ingly, these results were obtained using a single-threaded
Emu’s configuration and could be further improved by
instantiating multiple Emu cores. For example, in the
Memcached usecase, using four Emu cores (one per port)
further increases by 3.7× when considering a workload
of 90% GET and 10% SET requests. SET requests must
be applied to all instances, thus their relative ratio in per-
formance cannot improve. The downside is that such an
approach requires changes to the main logical core wrap-
per in NetFPGA SUME.

Optimizations. Further extending the above use cases
can be done in different ways. For Memcached, it is pos-
sible to increase the memory available to Emu, using ei-

USENIX Association 2017 USENIX Annual Technical Conference 467

Network Emu Host
service Average 99th-perc. Throughput Average 99th-perc. Throughput

latency (µs) latency (µs) (million queries/s) latency (µs) latency (µs) (million queries/s)

ICMP Echo 1.09 1.11 3.226 12.28 22.63 1.068
TCP Ping 1.27 1.29 2.105 21.79 65.00 1.012
DNS 1.82 1.86 1.176 126.46 138.33 0.226
NAT 1.32 1.34 2.439 2444.76 6185.27 1.037
Memcached 1.21 1.26 1.932 24.29 28.65 0.876

Table 4: Comparison between services running on a host and Emu-based services (C#)

ther on-board or on-chip memory. On-board memory,
e.g., using the DDR3 DRAM memory modules on NetF-
PGA SUME, has a size advantage, but the disadvantage
of increased and variable latency (e.g., due to DRAM re-
freshes); on-chip memory has the benefit of low, con-
stant latency, but is of smaller size. While NetFPGA
SUME has 51 MB of on-chip memory, devices such as
Xilinx Ultrascale+ have up to 65 Gbit on-chip, providing
a solution at much larger scale. Further scaling can be
achieved by using the Emu-based design as a (large) L1
cache, bounded to a few GBs, where cache misses are
sent to a host [46] and implemented using the NetFPGA.

5.5 Debugging
We extend the DNS and Memcached use cases in two
ways: (i) adding code to check if a received packet is
a direction packet intended for the controller (see Fig-
ure 11), in which case the controller (and not the origi-
nal program) processes the packet; (ii) adding an exten-
sion point in the body of the (DNS or Memcached) main
loop, allowing us to influence and observe the program
from that point onwards. We form an enumerated type
that corresponds to the program variables whose values
the controller may access and change. The code for each
value of the enumerated type refers to the program value,
e.g., instructing the controller to increment it.

We evaluate Emu’s debug environment by carrying out
a quantitative analysis of the impact that the controller
has on the program in which it is embedded. We mea-
sure this impact in terms of utilization of resources on
the FPGA and the performance of the host program.

Table 5 shows the utilization and performance for
DNS and Memcached, respectively, extended with dif-
ferent controller features: reading, writing, and incre-
menting a variable. The impact on utilization and perfor-
mance is small, and dominated by the controller logic,
rather than specific-purpose and runtime-programmable
registers. Utilization improvements are due to the op-

Program
Packet in

Packet out
Controller

Program

Figure 11: Transformation of the program to include a
controller (Normal packets are handled without change,
but direction packet are passed to the controller. Pink
dots represent extension points, one of which is added
within the control flow of the original program.)

timization process during the place-and-route state in
hardware generation; occasionally this results in more
utilization-efficient allocations.

An example of using directed packets is the debug
process of our Memcached implementation. The Mem-
cached service running on hardware replied with an error
message, while no problem was detected in simulation.
Using directed packets, we examined the Memcached
service: directing the packets to report the checksum cal-
culated within Emu revealed a bug in the checksum im-
plementation and simulation environment.

5.6 Summary

Our evaluation demonstrates the advantages of Emu:
(i) hardware resource usage is significantly lower than
that of other approaches, adding only modest overhead
when compared with bespoke HDL-only designs; (ii) the
latency overhead is small compared to HDL designs and
is similar to or better than that of other baselines; (iii) the
overhead from the debug extensions is negligible, mak-
ing Emu an attractive debug environment.

Our results also show an important advantage of Emu
over host-based solutions: while absolute performance
always depends on the CPU cores, memory bandwidth
and frequency, FPGAs enjoy the benefit of predictability.

468 2017 USENIX Annual Technical Conference USENIX Association

Artefact Utilization (%) Performance (%)

Logic
Latency Queries-

per-sec

DNS 100.0 100.0 100.0
+R 103.4 100.0 100.0

+W 115.1 99.5 100.0
+I 109.8 99.5 100.0

Memcached 100.0 100.0 100.0
+R 99.2 100.0 100.0

+W 99.8 100.5 100.0
+I 100.6 100.0 100.0

Table 5: Profile of utilization and performance (Read,
Write, and Increment are instructions supported by the
controller. Latency is compared at the 99th percentile.)

The median latency of our designs is both 10× lower
than the median of the host-based solutions, with a small
variance. While the difference between the median and
99th percentile is less than 200 ns for Emu, for host-based
designs the variance is in the order of microseconds to
tens of microseconds. This not only improves RTT and
flow-completion times, but it also enables users to better
schedule resources as they know when a reply is due.

6 Related work

FPGAs are increasingly deployed inside data centers,
and their performance is getting closer to specialized
hardware [51]. Recently there has been a large body
of work on how to offload critical network and applica-
tion services to FPGAs [2, 13, 14, 16, 24, 25, 36, 41, 48].
All of these proposals, however, leverage HDLs, making
them unsuitable for the majority of developers who lack
hardware skills. Emu addresses this issue by removing
most of the challenges related to hardware programming
and making FPGAs accessible to non-hardware experts,
while retaining high performance.

We are not the first to target this goal and in the past
there have been many efforts to make programming FP-
GAs easier, e.g., using a DSL [6, 7, 9, 38, 39], including
network-specific ones [3, 5, 26]. These DSLs typically
have a narrow scope and limit the performance or abil-
ity to implement certain network services. For example,
P4 [5] is a popular DSL for packet processing that sup-
ports compilation to hardware including FPGAs. How-
ever, it is only applicable to tasks that can be processed
by parse-match-action style systems. LINQits [9] pro-
poses a tool chain that compiles an embedded query lan-
guage (LINQ) into various platforms, including FPGAs,
but it is specialized for answering queries and would
require considerable adaptation to perform networking

tasks. In contrast, Emu does not restrict the set of net-
work services that can be implemented and offers a more
general programming environment.

High-level synthesis (HLS) tools [28] generate HDL
from high-level languages such as Scala, or Java (using
Lime [4]), but they do not offer specific support for net-
work programming. One exception is the Maxeler MPC-
N system [29], which provides a “dataflow engine” to
offload network computations to hardware. The engine
runs kernels that are programmed using a subset of Java,
and proprietary tooling. This approach, however, targets
a proprietary hardware platform and lacks the ability to
run seamlessly on both CPU and FPGAs. Conversely,
Emu makes few assumptions about the underlying hard-
ware and can be ported to different FPGAs. In addition,
Emu’s support for executing programs on a CPU and
in simulation, combined with its advanced monitoring
and profiling capabilities, greatly simplifies debugging
of network programs.

The work in this paper is based on Kiwi [20, 43]. In
previous work, Kiwi was used to distribute an application
across network-connected hosts [19], but the network-
related code was simple and had to be written from the
ground up, because it lacked the “standard library” ab-
stractions and debugging support provided by Emu.

7 Conclusion
Although the performance and availability of pro-
grammable network hardware has increased, making ef-
fective use of it remains beyond the reach of most devel-
opers. We have presented Emu, a framework that en-
ables application developers to write network services
in a high-level language (C#) and have them automati-
cally compiled to execute across a number of platforms,
including traditional CPUs (x86), simulation environ-
ments (Mininet), and an FPGA platform (NetFPGA),
without compromising on performance.

We showed that the performance of Emu-based net-
work services exceeds software-based solutions and is on
par with native HDL implementations. Implementations
on Emu permits services to run on different targets, sup-
port better debug capabilities and allow for easier transi-
tion of workloads among targets.

Acknowledgements. We thank Gordon Brebner, Han Wang,
Matthew P. Grosvenor, the anonymous reviewers, and our shep-
herd, Christopher Rossbach. We acknowledge the support from
the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) (EP/K032968/1, EP/K034723/1, EP/K031724/2,
and an UROP grant), Leverhulme Trust (ECF-2016-289) and
Newton Trust, EU H2020 SSICLOPS (644866), SNF (166132)
and a Google Faculty Research Award.

USENIX Association 2017 USENIX Annual Technical Conference 469

References
[1] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa

Zilberman, Adam Covington, Marc Bruyere, Nick McKe-
own, Nick Feamster, Bob Felderman, Michaela Blott, An-
drew W. Moore, and Philippe Owezarski. OSNT: Open
source network tester. IEEE Network, 28(5):6–12, 2014.

[2] Shadi Atalla, Andrea Bianco, Robert Birke, and Lucado
Giraudo. NetFPGA-based load balancer for a multi-stage
router architecture. In World Congress on Computer Ap-
plications and Information Systems, pages 1–6. IEEE, Jan
2014.

[3] Michael Attig and Gordon Brebner. 400 Gb/s Pro-
grammable Packet Parsing on a Single FPGA. In Sym-
posium on Architectures for Networking and Communi-
cations Systems, pages 12–23. IEEE Computer Society,
2011.

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Ro-
dric Rabbah. Lime: A Java-compatible and Synthesiz-
able Language for Heterogeneous Architectures. In Ob-
ject Oriented Programming Systems Languages and Ap-
plications, pages 89–108. ACM, 2010.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Ta-
layco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

[6] Gordon Brebner and Weirong Jiang. High-speed packet
processing using reconfigurable computing. IEEE Micro,
34(1):8–18, 2014.

[7] Kevin J Brown, Arvind K Sujeeth, HyoukJoong Lee,
Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. A heterogeneous parallel framework for
domain-specific languages. In Parallel Architectures and
Compilation Techniques, pages 89–100. IEEE, Oct 2011.

[8] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari
Angepat, Jeremy Fowers, Michael Haselman, Stephen
Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael
Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,
and Doug Burger. A Cloud-Scale Acceleration Architec-
ture. In International Symposium on Microarchitecture.
IEEE, Oct 2016.

[9] Eric S. Chung, John D. Davis, and Jaewon Lee. Lin-
qits: Big data on little clients. SIGARCH Comput. Archit.
News, 41(3):261–272, June 2013.

[10] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki-Suh
Lee, Hakim Weatherspoon, Marco Canini, Fernando Pe-
done, and Robert Soulé. Network hardware-accelerated
consensus. CoRR, abs/1605.05619, 2016. URL: http:
//arxiv.org/abs/1605.05619.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, February 2013.

[12] Vivado Hardware Debug. https://www.xilinx.com/
products/design-tools/vivado/debug.html.

[13] Ken Eguro. Automated Dynamic Reconfiguration for
High-Performance Regular Expression Searching. In In-
ternational Conference on Field-Programmable Technol-
ogy. IEEE, Dec 2009.

[14] Ken Eguro and Ramarathnam Venkatesan. FPGAs for
trusted cloud computing. In International Conference on
Field-Programmable Logic and Applications. IEEE, Aug
2012.

[15] Emu Project. http://www.cl.cam.ac.uk/research/
srg/netos/projects/emu/.

[16] Felix Engelmann, Thomas Lukaseder, Benjamin Erb,
Rens van der Heijden, and Frank Kargl. Dynamic packet-
filtering in high-speed networks using NetFPGAs. In Int.
Conf. on Future Generation Communication Technolo-
gies, pages 55–59. IEEE, Aug 2014.

[17] Brad Fitzpatrick. Distributed caching with memcached.
Linux Journal, 2004(124), 2004.

[18] GDB Remote Serial Protocol. http:
//www.embecosm.com/appnotes/ean4/
embecosm-howto-rsp-server-ean4-issue-2.html.

[19] David Greaves and Satnam Singh. Distributing C# meth-
ods and threads over Ethernet-connected FPGAs using
Kiwi. In International Conference on Formal Methods
and Models for Codesign, pages 1–9. IEEE, July 2011.

[20] David J. Greaves and Satnam Singh. Designing appli-
cation specific circuits with concurrent C# programs. In
Formal Methods and Models for Codesign, pages 21–30.
IEEE, July 2010.

[21] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In Symposium on Networked Systems Design
and Implementation, pages 1–14. USENIX Association,
2015.

[22] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis. SIGCOMM
Computer Communication Review, 45(4):139–152, Au-
gust 2015.

[23] Jong Hun Han, Noa Zilberman, Bjoern A. Zeeb, An-
dreas Fiessler, and Andrew W. Moore. Prototyping RISC
based, reconfigurable networking applications in open
source. CoRR, abs/1612.05547, 2016. URL: http:
//arxiv.org/abs/1612.05547.

[24] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Symposium on Networked Systems De-
sign and Implementation, pages 425–438. USENIX As-
sociation, 2016.

470 2017 USENIX Annual Technical Conference USENIX Association

[25] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High Per-
formance Packet Processing with FlexNIC. In Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 67–81. ACM, 2016.

[26] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. ClickNP: Highly Flexible and High
Performance Network Processing with Reconfigurable
Hardware. In SIGCOMM, pages 1–14. ACM, 2016.

[27] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G.
Andersen, and Michael J. Freedman. Be fast, cheap and in
control with switchkv. In Symposium on Networked Sys-
tems Design and Implementation, pages 31–44. USENIX
Association, March 2016.

[28] Grant Martin and Gary Smith. High-Level Synthesis:
Past, Present, and Future. IEEE Design Test of Comput-
ers, 26(4):18–25, July 2009.

[29] Maxeler MPC-N Series. https://www.maxeler.com/
products/mpc-nseries/.

[30] memaslap - Load testing and benchmarking a server.
http://docs.libmemcached.org/bin/memaslap.
html.

[31] Mininet. http://mininet.org/.

[32] ModelSim. https://www.mentor.com/products/fv/
modelsim/.

[33] Jad Naous, David Erickson, Adam Covington, Guido Ap-
penzeller, and Nick McKeown. Implementing an Open-
Flow switch on the NetFPGA platform. In Symposium on
Networked Systems Design and Implementation, pages 1–
9. ACM, 2008.

[34] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu,
and Song Jiang. SDA: Software-defined accelerator for
large-scale DNN systems. In Hot Chips Symposium,
pages 1–23. IEEE, Aug 2014.

[35] Gregor N Purdy. Linux iptables Pocket Reference.
O’Reilly Media, 2004.

[36] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,
Jan Gray, et al. A reconfigurable fabric for accelerating
large-scale datacenter services. In Int. Symp. on Com-
puter Architecture, pages 13–24. IEEE, Jun 2014.

[37] Luigi Rizzo. Netmap: A Novel Framework for Fast
Packet I/O. In USENIX Annual Technical Conference.
USENIX Association, 2012.

[38] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: a Com-
piler and Runtime for Heterogeneous Systems. In Sym-
posium on Operating Systems Principles. ACM, 2013.

[39] SDNet. https://www.xilinx.com/products/
design-tools/software-zone/sdnet.html.

[40] Amazon Web Services. EC2 Instances (F1) with Pro-
grammable Hardware. https://goo.gl/fmEQPK.

[41] David Sidler, Gustavo Alonso, Michaela Blott, Kimon
Karras, Kees Vissers, and Raymond Carley. Scal-
able 10Gbps TCP/IP stack architecture for reconfigurable
hardware. In Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 36–
43. IEEE, 2015.

[42] Vivado Simulator. https://www.xilinx.com/
products/design-tools/vivado/simulator.html.

[43] Satnam Singh and David J. Greaves. Kiwi: Synthe-
sis of FPGA Circuits from Parallel Programs. In Field-
Programmable Custom Computing Machines, pages 3–
12. IEEE, April 2008.

[44] Nik Sultana, Salvator Galea, David Greaves, Marcin Wój-
cik, Noa Zilberman, Richard Clegg, Luo Mai, Richard
Mortier, Peter Pietzuch, Jon Crowcroft, and Andrew W.
Moore. Extending programs with debug-related fea-
tures, with application to hardware development. CoRR,
abs/1705.09902, 2017. URL: http://arxiv.org/abs/
1705.09902.

[45] NetFPGA SUME Reference Switch. https:
//github.com/NetFPGA/NetFPGA-SUME-public/
wiki/NetFPGA-SUME-Reference-Learning-Switch.

[46] Yuta Tokusashi and Hiroki Matsutani. A Multilevel
NOSQL Cache Design Combining In-NIC and In-Kernel
Caches. In Symposium on High-Performance Intercon-
nects, pages 60–67. IEEE, Aug 2016.

[47] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee,
Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon.
P4FPGA : A Rapid Prototyping Framework for P4. In
Proceedings of the Symposium on SDN Research, pages
122–135. ACM, April 2017.

[48] Louis Woods, Jens Teubner, and Gustavo Alonso. Com-
plex Event Detection at Wire Speed with FPGAs. VLDB
Endow., 3(1-2):660–669, September 2010.

[49] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as Research Commodity. IEEE Micro, 34(5):32–
41, Sept 2014.

[50] Noa Zilberman, Matthew P Grosvenor, Diana Popescu,
Neelakandan Manihatty-Bojan, Gianni Antichi, Marcin
Wójcik, and Andrew W Moore. Where has my time
gone? In Passive and Active Measurement, pages 201–
214. Springer, March 2017.

[51] Noa Zilberman, Philip M. Watts, Charalampos Rotsos,
and Andrew W. Moore. Reconfigurable Network Sys-
tems and Software-Defined Networking. Proceedings of
the IEEE, 103(7):1102–1124, July 2015.

[52] Data Plane Development Kit. http://dpdk.org/.

USENIX Association 2017 USENIX Annual Technical Conference 471

Protego: Cloud-Scale Multitenant IPsec Gateway

Jeongseok Son†�, Yongqiang Xiong�, Kun Tan‡, Paul Wang�, Ze Gan�, Sue Moon†

�Microsoft Research, †KAIST, ‡Huawei

Abstract
Virtual cloud network services let users have their own
private networks in the public cloud. IPsec gateways are
growing in importance accordingly as they provide VPN
connections for customers to remotely access these pri-
vate networks. Major cloud providers offer IPsec gate-
way functions to tenants using virtual machines (VMs)
running a software IPsec gateway inside. However, ded-
icating individual IPsec gateway VMs to each tenant re-
sults in significant resource waste due to the strong iso-
lation mechanism of VMs.

In this paper, we design Protego, a distributed IPsec
gateway service designed for multitenancy. By sepa-
rating the control plane and the data plane of an IPsec
gateway, Protego achieves high availability with active
redundancy. Furthermore, Protego elastically scales in
and out by seamlessly migrating IPsec tunnels between
the data nodes without compromising their throughput.
Our evaluation and simulation based on production data
show that Protego together with a simple resource provi-
sioning algorithm saves more than 80% of the resources
compared with allocating independent VMs.

1 Introduction
Major cloud providers offer virtual networks as a ser-
vice to customers so that they can setup their own private
network topology in the cloud [1, 8, 4]. Tenants create
virtual networks and connect applications running inside
virtual machines (VMs) to operate their own distributed
services. The ease of management, flexibility and elas-
ticity of a virtual network has driven enterprise customers
to extend their existing networks using cloud service in
lieu of physical network [29].

To seamlessly incorporate remote virtual networks
into existing on-premises networks, tenants establish
site-to-site VPN connections between the gateways. For
site-to-site VPN connections, IPsec is typically used to
have secure communication between on-premises and
cloud networks. Hence, cloud providers provide tenants
with IPsec gateways in addition to the virtual network
service. IPsec gateways in on-premise networks peer
with them to initiate IPsec tunnels [9].

It is thus crucial for cloud providers to have a flexible
and scalable way to provide IPsec gateway functional-
ity to tenants. The current state of the art is shipping

software IPsec gateway to tenants using VMs following
the trend of Network Function Virtualization (NFV) [29].
Once a tenant makes a request to create an IPsec gate-
way, an IPsec gateway VM is dedicated to the tenant. It
is a natural approach as VMs are basic resource alloca-
tion blocks in cloud environments and provide inherent
isolation mechanism.

However, dedicating IPsec gateway VMs to tenants
results in significant waste of resource for two reasons.
First, VMs exclusively occupy a fixed amount of re-
source. Hence, cloud providers should over-provision
the VMs for peak VPN traffic demand. If a tenant does
not utilize all the allocated resource of VMs, the unused
portion of it is just wasted. Second, each independent
gateway VM needs a high availability (HA) setup, which
requires additional redundancy. Since VM startup takes
several minutes in the cloud due to resource allocation
and data copy [38], a passive standby node is typically
introduced for fast failover [6]. If every IPsec gateway
requires HA, they capture twice as much resource as they
actually need.

These limitations have led us to devise a new IPsec
gateway architecture to serve multiple tenants with
shared resources. To this end, we propose Protego, a
cloud-scale software IPsec gateway. We design Protego
with the following properties: (1) multitenancy to serve
multiple tenants without violating the bandwidth require-
ment of each tenant, (2) elasticity to seamlessly scale in
and out according to the aggregated traffic demand across
tenants, and (3) high availability to provide reliable ser-
vice to users without reserving a passive standby for ev-
ery active VM.

To achieve both high availability and elasticity, Pro-
tego separates the control plane from the data plane. For
high availability, the relatively long-lived control plane
states are saved to a centralized control node. On the
other hand, the data plane state is costly to preserve in
the same way since it changes every packet sent and re-
ceived. Hence, Protego saves it locally in data nodes and
quickly reconstruct it via the alive control node in case
of failure. Protego migrates tunnels between the data
nodes without tearing down an old tunnel through rekey-
ing process. This enables Protego to elastically allocate
and de-allocate VMs according to varying IPsec traffic
of tenants.

USENIX Association 2017 USENIX Annual Technical Conference 473

Our evaluation using the prototype implementation
presents that Protego can migrate IPsec tunnels even
without a transient bandwidth degradation. Based on this
seamless tunnel migration, we design a provisioning al-
gorithm to autonomously adjust the amount of resource
it subscribes. We show that it is possible to save more
than 80% of the resources compared with allocating in-
dependent VMs to tenants while meeting the bandwidth
guarantee to tenants.

To summarize, we make the following contributions:
(1) We present a new architecture of distributed IPsec
gateway for the cloud which enables high availability
with active redundancy. (2) We devise an IPsec tunnel
migration scheme that does not compromise the band-
width of a tunnel during the migration for elastic re-
source provisioning. (3) We demonstrate Protego with
a simple provisioning algorithm indeed saves significant
resources through our evaluation and simulation based
on production data.

2 Background and Motivation
We first describe why and how IPsec gateways are de-
ployed in cloud environments. Then we identify the ne-
cessity of cloud-scale IPsec gateway by showing the re-
source usage of the IPsec gateways deployed in our data
centers. We finally enumerate the requirements of an
IPsec gateway for the cloud and challenges of accom-
plishing it.

2.1 Virtual network and site-to-site VPN
The majority of users who purchase the virtual cloud net-
works are enterprise customers [29]. They use the virtual
network services to extend their on-premises network
into the cloud. Since virtual networks provide customers
with private IP address space, they can seamlessly move
their corporate network to the cloud to take advantage of
the flexibility of cloud environments.

To connect a virtual network in the cloud to an existing
on-premises network, site-to-site VPN is typically used.
Site-to-site VPN remotely connects the entire networks
from one another over the public Internet. The VPN
connection is established between two VPN gateways.
Then they encapsulate outbound traffic and decapsulate
inbound traffic rather than individual hosts do so.

2.2 IPsec gateway
IPsec is a de-facto standard for site-to-site VPN connec-
tions. IPsec ensures secure communication between the
peers by authenticating and encrypting IP packets. For
site-to-site VPN, an IPsec gateway encapsulates the en-
tire packet to create a virtual hop, an IPsec tunnel, be-
tween the peer gateways.

IPsec primarily consists of two protocols: Internet
Key Exchange (IKE) and Encapsulating Security Pay-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

CD
F

Normalized peak IPsec throughput
Figure 1: CDF of the peak IPsec throughput of data cen-
ters

load (ESP)1. The main purpose of IKE is to authenticate
the peer and setup the shared attributes between the peers
for secure communication. A set of those attributes is
called a security association (SA). IKE protocol is used
to settle those SAs. ESP protocol encrypts packets to
provide confidentiality, integrity and data origin authen-
ticity using negotiated symmetric keys.

When an IPsec tunnel is established, initial message
exchanges first generate an IKE SA for the peers, which
contains a shared key and a cipher suite used to encrypt
bidirectional IKE traffic. The shared attributes for ESP
encryption and decryption, called CHILD SA, are ne-
gotiated securely via further IKE message exchanges.
CHILD SAs are unidirectional so the inbound and out-
bound ESP traffic are encrypted with a different SA.

2.3 Motivation: Inefficient resource usage
of IPsec gateway VMs

A prevalent way for cloud providers to deploy IPsec gate-
ways is using VMs running the software implementation
of it inside [29]. VMs let them make the best use of
their existing commodity server resources and VM man-
agement system without installing additional hardware
middleboxes. VMs also provide isolated performance for
each tenant and can easily scale by dynamically creating
or destroying instances.

However, we found that VMs allocated per tunnel un-
derutilizes resources significantly for the following two
reasons.

Exclusive resource allocation. Once a VM is allocated
to a tenant, the resources of the VM becomes exclusively
dedicated to the tenant. Thus, even when a tenant does
not fully utilize the capacity of an IPsec gateway, the re-
maining resources of it cannot be used for serving other
tenants’ demand.

Figure 1 shows the cumulative distribution of the peak
aggregated throughput of all IPsec gateways in each of
our data centers. The actual bandwidth values are nor-
malized by the maximum bandwidth that a single IPsec
gateway supports. In each data center, there are as many

1Authentication Header (AH) is an alternative protocol, but ESP is
dominantly used for VPN because only ESP provides confidentiality.

474 2017 USENIX Annual Technical Conference USENIX Association

IPsec gateway VMs as there are IPsec tunnels established
by tenants. However, the daily peak IPsec bandwidth is
less than a single gateway VM capacity in approximately
90% of the data centers. It indicates that most IPsec gate-
ways handle far less traffic than its maximum capacity
most of the time.

Even though IPsec gateway VMs have considerable
amount of idle resources, there is no easy way to take
away the unused resources of VMs for other use. Over-
subscribing physical machines with VM consolidation
and live migration has been studied as a solution [47,
16, 51]. However, live migration consumes high net-
work bandwidth and easily takes tens of seconds since
the whole memory of a VM is iteratively transferred via
network [19]. These drawbacks prevent cloud providers
from using live migration frequently for flexible resource
reallocation.

Passive standby for high availability. IPsec gateways
should be highly available since the failure directly re-
sults in the downtime of the entire virtual network ser-
vice. High availability (HA) is generally achieved by us-
ing more than one nodes to form a cluster. When one
node fails, another node in the cluster quickly takes the
role of the failed one. Existing hardware and software
IPsec gateways form an active/passive cluster, or 1 + 1
redundancy for HA [12, 2]. The cluster synchronizes the
IKE state of an active node with a passive node so that
the passive node can keep doing stateful processing after
failover.

Although adding a passive standby is a straightforward
way to achieve HA, passive backups do not participate
in processing IPsec traffic. The resources allocated to
passive backups are thus just wasted for HA. In the worse
case, 50% of resources is devoted for high availability if
every gateway VM has a redundant passive standby.

2.4 Requirements
To overcome the limitations brought up above, Protego
should have the following features:

Elastic and scalable capacity adjustment. Protego
should be able to save resources without compromising
the quality of service of IPsec traffic. It should adjust
its capacity by dynamically capturing and releasing re-
sources according to the varying demand of tenants.

High availability with active redundancy. High avail-
ability is an essential characteristic to meet service level
agreement (SLA). For better resource utilization, Protego
should achieve HA with active nodes which process the
online traffic rather than with passive standby nodes.

Tunnel performance isolation and guarantee. To
make tenants share a single IPsec gateway service, Pro-
tego needs to isolate the performance of each IPsec tun-
nel of tenants so that aggressive users cannot affect the

other ones.

2.5 Challenges
A straightforward approach for elasticity and active re-
dundancy is to form a cluster of nodes. Instead of dedi-
cating individual gateway to a tenant, a cloud provider
may install the cluster which consists of software or
hardware IPsec gateways behind a load balancer and let
it process IPsec traffic of multiple tenants. However, the
stateful processing of IPsec gateways raises challenges
of meeting the requirements in § 2.4 using existing IPsec
gateways.
Migrating tunnels without throughput degradation.
To elastically adjust the cluster size, a cloud provider
should have a means to move the workload between the
gateways. A strawman approach is to simply tearing
down an existing IPsec tunnel and establish a new one
in another gateway. However, this approach leads to sig-
nificant throughput degradation since the gateways can-
not process traffic during the tunnel setup, which requires
several sequential round trips of packets. To avoid or al-
leviate this issue, we should determine how to migrate
or share state associated with a tunnel between gateways
and when to redirect the packets belong to a tunnel.
Deciding on the right amount of resources to reserve.
We need to carefully decide on the amount of resources
to reserve due to the latency of spinning up new VMs,
which takes several minutes in the major cloud ser-
vices [38]. Protego would easily violate the performance
guarantee until new VMs are added, if it reserves too lit-
tle resources to save them. On the other hand, it would
waste resources if it subscribes too much. Therefore, we
should devise a way to determine the proper amount of
resources to subscribe in order to save resources while
meeting the bandwidth requirement of tenants.
Optimizing the packet processing performance.
IPsec packet processing is computationally intensive
since it involves encryption and decryption of the pay-
load. To maximize the throughput of Protego, it is cru-
cial to parallelize packet processing using multiple cores.
However, IPsec gateways maintain ESP packet counters
to include a sequence number in ESP packets for the anti-
replay feature [33]. In order to ensure that the sequence
number is not reused, a simple method is to make packet
processing threads share a global packet counter for each
tunnel and update it every packet sent. This approach re-
quires locking, however, which decreases parallelism in
packet processing significantly. Hence, it is unsuitable to
achieve multiple Gbps per-tunnel throughput we aim to
offer.

3 Protego Core Ideas
Protego meets the requirements of a cloud-scale IPsec
gateway described in the previous section based on the

USENIX Association 2017 USENIX Annual Technical Conference 475

following key ideas.

3.1 Separation of control and data planes
In traditional software IPsec gateway implementations,
IKE, ESP modules and pertinent state are consolidated
into a single node. Each member of IPsec gateway clus-
ter thus has separate IKE module and state.

We propose a separate control node which incorpo-
rates the signaling plane of gateways into a single node.
The control node deals with traffic steering and dynamic
provisioning of the data plane. The data plane of Pro-
tego consists of a cluster of VMs and focus on packet
encryption and decryption process. By this separation,
each plane manages its state to deal with different access
patterns and focuses on ensuring different properties.

Keeping control plane state in a central node. Re-
covering IKE state is costly since re-negotiating an IKE
SA takes several sequential round trip of messages [32].
On the other hand, it is updated infrequently, every tens
of seconds or every couple of minutes, when it receives
heartbeat messages from a peer gateway.

Protego saves control plane state to a centralized con-
trol node exploiting this relaxed update frequency. By
saving the state to a centralized store every time it is up-
dated, Protego achieves tunnel migration without stop-
ping processing traffic.

Quick recovery of data plane state. ESP data nodes
handle data packets to encrypt and decrypt them. An ESP
packet counter is updated per-packet basis, which makes
it infeasible to store ESP state separately as Protego does
for IKE state. However, ESP SA can be initiated in 1
RTT if the IKE SA is alive. Hence, The Protego control
plane just re-negotiates the ESP state during failover.

3.2 Seamless tunnel migration by rekeying
The key enabler of elasticity is seamless migration of
workload. Protego is able to migrate existing IPsec
tunnels from one ESP node to another one leveraging
rekeying process of IPsec [32] without impairing their
throughput.

IPsec gateways use keys for a limited amount of time.
Before a SA expires, a gateway negotiates a new key with
its peer. This process is referred to as rekeying. Rekey-
ing is done in parallel without collapsing the old SA. Be-
cause Protego has a global signaling plane, it can insert a
new key to any data node which will receive a migrated
tunnel. Protego seamlessly steers the traffic using soft-
ware load balancers tailored to IPsec protocol.

3.3 Elastic provisioning algorithm
VM live migration requires operators to apply complex
modeling and prediction techniques [36, 15, 50, 17, 49]
to minimize the high overhead of live migration. In con-
trast, we devise a straightforward resource provisioning

Figure 2: Protego architecture and data flow overview

algorithm leveraging the light-weight and instant migra-
tion scheme of Protego. We model the IPsec tunnel
placement as a one-dimensional bin packing problem.
Solving this problem is not sufficient, however, since
we still have to consider the long latency of spinning up
VMs. To precisely estimate the amount of resources to
subscribe in advance, Protego keeps track of the resource
usage distribution of IPsec tunnels and calculate the con-
volution of these distributions. We will describe those
algorithms together in detail in § 5.

4 System Design
We present how we design Protego with the core ideas in
§ 3 to satisfy the requirements enumerated in § 2.4

4.1 Architecture Overview
Protego has separate control plane and data plane. The
control plane consists of Gateway Management Node
(GMN), a controller which handles IKE traffic and de-
cides the amount of resources to reserve. It also steers
ESP traffic by inserting forwarding rules. The data plane
consists of a set of Gateway Processing Node (GPN)
which processes ESP packets. Gateway Ingress Node
(GIN) or Gateway Egress Node (GEN), which are soft-
ware load balancers tailored for Protego, exposes exter-
nal virtual IP addresses (VIP) and forward the traffic des-
tined to VIPs to an appropriate node. It also limits the
bandwidth of each tunnel for performance isolation. Fig-
ure 2 shows the overall architecture of Protego.

4.2 Control Plane: Gateway Management
Node

IKE packet processing. GMN processes the IKE traf-
fic of IPsec tunnels. As we discussed above, the main
role of IKE is to negotiate SAs that include a cipher suite,
and materials to generate symmetric keys with its peer
gateway. We do not elaborate on the protocol details,
which can be found at RFC5996 [32].

Once a shared symmetric key for ESP encryption is
created, GMN distributes this key to one of the nodes
in the data plane. Then it adds a rewrite rule to a
GIN(Gateway Ingress Node) and GEN(Gateway Egress

476 2017 USENIX Annual Technical Conference USENIX Association

Node) to steer the corresponding ESP traffic to a GPN.
Whenever GMN processes a packet, it saves updated

IKE SAs to the standby GMN. In case of failure, the
standby node takes over the role of the active GMN node.
GIN is responsible for detecting the failure of GMN by
monitoring heartbeat messages and steering IKE packets
to the standby node after a failover.

Resource management. Another important role of
GMN is adjusting the number of GPNs in the data plane.
When the traffic increases, GMN adds more VMs to the
ESP node pool and move some existing tunnels to the
new ESP node and vice versa. GMN monitors the CPU
utilization of every GPN periodically. When a GPN
sends a tunnel migration request to balance the load,
GMN selects an appropriate node which can receive the
tunnels. If there is no nodes that can receive the tunnels,
GMN requests additional VMs to the resource manager
of a cloud provider. All request and response packets
for the resource management are sent and received using
TCP for reliable transmission.

Traffic steering. When an IPsec tunnel is migrated,
GMN inserts appropriate forwarding rules to a GEN and
a GIN. This process includes the selection of a GPN
which receives an IPsec tunnel to be migrated.

4.3 Gateway Ingress and Egress Node
GIN and GEN are analogous to software load balancers,
but provide additional features necessary to Protego. We
added the following functionalities to Ananta [42], which
is a scalable software load balancer with high availabil-
ity.

Traffic forwarding. The major role of GIN and GEN
in Protego is directing packets. They rewrite the destina-
tion address to the address of a GPN which is selected to
process the traffic. GIN exposes an external VIP which
the inbound traffic is destined to. For the inbound traf-
fic, GIN should be able to distinguish different tunnel
traffic destined to the same IP in order to distribute ESP
packets across different GPNs. GIN matches the Secu-
rity Parameter Index (SPI) of ESP packets for this. For
the outbound traffic, GEN simply uses the traffic selec-
tor, an ACL (Access Control List)-like filter exchanged
when GMN negotiates CHILD SAs.

Rate limiting. Another important role of GINs and
GENs is limiting the bandwidth of tunnels. One of the
requirements of Protego is enforcing per-tunnel perfor-
mance isolation. Protego achieves this by limiting the
rate of tunnels to the maximum bandwidth that cloud
provider promise to support to tenants.

GPN failure detection. As long as GMN is alive,
a peer gateway cannot detect the failure of GPN since
GMN keeps transmitting IKE heartbeat messages. GIN
and GEN are responsible for detecting the failures. In-

Figure 3: GPN design and packet processing flow

troducing heartbeat messages is a common technique for
this. However, the heartbeat messages with a tiny inter-
val overload the internal network and the detector as the
number of nodes grow. Instead of the fixed interval, we
want the heartbeat interval of GPNs with higher through-
put to be shorter to detect failure more quickly. To do so,
GIN/GEN uniformly sample and tag packets to trigger
heartbeat messages from GPNs. We describe this pro-
cess in more detail in § 6.

4.4 Data Plane: Gateway Processing Node
GPNs handle encryption and decryption of all tunnels.
GMN decides on the mapping between tunnels and
GPNs, and inserts forwarding rules to GIN/GEN accord-
ingly. Each GPN also monitors and reports its resource
utilization (CPU, bandwidth, etc.) to GMN periodically.
When the utilization exceeds a certain threshold, it sends
a tunnel migration request to GMN to change the map-
ping for load balancing.

To optimize the performance of Protego while guar-
anteeing the uniqueness of sequence number, we avoid
using locks with the design depicted in Figure 3. We pin
a worker thread to each core for all packet processing
tasks and make those worker threads run independently
from one another. One special worker thread, dispatcher,
enforces packet ordering within a tunnel and distributes
packet processing tasks across multiple cores. Another
special type of worker thread, sender, is responsible for
sending processed packets in batch.

Note that the dispatcher and sender are also worker
threads. They are not completely dedicated to the task
dispatching and sending. When all the task queue of
other workers are full, the dispatcher puts the task to
its own queue and performs encryption or decryption.
A worker thread becomes a sender only when its send
queue has some enqueued send requests. This de-
sign choice is for maximizing encryption and decryption
performance by fully utilizing CPU cores under heavy
workloads.

4.5 Tunnel migration
IPsec tunnel migration is an essential operation for elas-
ticity. Protego leverages rekeying process of IKE to mi-

USENIX Association 2017 USENIX Annual Technical Conference 477

Figure 4: Tunnel migration process

grate a tunnel from one GPN to another one. Following is
the detailed tunnel migration steps depicted in Figure 4.

1. GMN sends the CREATE CHILD SA request with
a new Diffie-Hellman (DH) value2 and a nonce.

2. GMN receives the CREATE CHILD SA response
which include the DH value and the nonce of a
responder. GPN generates two new child SAs us-
ing those information for the inbound and outbound
tunnels.

3. GMN hands the new SAs over to a GPN which
would receive the tunnel to migrate. GMN also
adds a corresponding steering rule to GIN and GEN
using the SPI and the traffic selector of new SAs
known by the CREATE CHILD SA exchange.

4. GPN starts to use the new outbound SA. Once the
peer gateway receives this traffic of new inbound
SA, it starts to use its new outbound SA.

5. GIN steers the ESP packets destined to new inbound
SA of Protego to the new GPN. The old inbound SA
is no longer used.

The old SAs are not destructed during the migration pro-
cess, so Protego can seamlessly migrate tunnels without
affecting the performance.

5 Elastic Resource Provisioning
We present an algorithm to dynamically provision and
de-provision the data plane.

5.1 Objectives
Our algorithm has two conflicting goals. One is to min-
imize the resource usage for better efficiency, and the
other one is satisfying the throughput requirement of ten-
ants.

Therefore, it is critical for Protego to gauge the mini-
mum amount of resources, or the number of VMs needed
to reserve to ensure the per-tunnel performance to ten-
ants. We precisely model the resource requirements and
use a bin packing algorithm to figure it out.

2The Diffie-Hellman value can be excluded complying with the
IKEv2 specification. We added it just for stronger guarantees of for-
ward secrecy.

Notation Explanation
σi Maximum CPU usage of a tunnel i
αi Current CPU usage of a tunnel i
β j Current CPU utilization of a node j
Ui Probability distribution of the CPU uti-

lization of a tunnel i
ε Throughput guarantee violation toler-

ance
Y Probability distribution of aggregated

tunnel CPU utilization
C Number of VMs reserved for Protego
TH CPU utilization threshold for hotspot

detection

Table 1: Variables used in the algorithm description

5.2 Model

Hierarchy of virtual machine. VM states are classi-
fied into roughly three categories in the cloud. Active
VMs are booted VMs actively used by a service. Shut-
down VMs are not yet booted and not under control of
any one. In addition to those typical states, Inactive
VMs [45] are booted and under control of a service but
reserved for scaling out the service capacity. By intro-
ducing the inactive state, cloud providers are allowed to
reduce the resources allocated for those inactive VMs.

Each VM group has a different latency to be added to
the ESP node pool. Normally, active and inactive VMs
are added almost instantly since they are controlled by
a service, but shutdown VMs take at least several min-
utes to be active. If the service does not reserve enough
active and inactive VMs, tenants may experience severe
performance issue.

Node capacity. In IPsec gateways, the CPU resource
of nodes is the bottleneck that determines the through-
put of IPsec tunnels. We assume that every node has the
same CPU resource, and regard all nodes have normal-
ized CPU capacity 1.

Maximum resource usage. The maximum CPU usage
of tunnels is bounded in our case since we limit the band-
width of tunnels. We express the maximum limit of the
tunnel CPU utilization as a real number σi. (0 < σi < 1)

Current resource usage of a tunnel and utilization of
a node. The CPU usage of a tunnel is periodically cal-
culated with the interval of τ . Let αi is the current CPU
usage of a tunnel at specific times. Then the CPU uti-

lization of a node is defined as β j =
k
∑

i=1
αi, where k is the

number of tunnels in the node.

Resource usage distribution of a tunnel. The CPU
usage of a tunnel varies over time. The usage distribution
of a tunnel Ui takes this into account. Ui(x)(0< x<αi) is
the probability density function of the CPU usage, which

478 2017 USENIX Annual Technical Conference USENIX Association

shows the likelihood of how much CPU resource a tunnel
would consume at a certain time.
Violation tolerance. The violation tolerance ε ex-
presses how tolerable the system is on the throughput
guarantee violation. If the traffic of a tunnel during a cer-
tain time interval is not fully served due to the insufficient
resources of a GPN, the tunnel fails to achieve demanded
throughput of a tenant as packets get dropped. The sum
of the time intervals of such time should account for less
than ε of the total available time of Protego.

5.3 Minimum number of VMs for per-
tunnel throughput guarantee

Based on the model described in § 5.2, we figure out the
minimum number of VMs that Protego should reserve to
satisfy the IPsec tunnel throughput guarantee to tenants.

Aggregated traffic distribution. Let Y =
n
∑

i=1
Ui, where

n is the number of all tunnels. Y denotes the probability
distribution of aggregated CPU usage of all tunnels in the
system. Since U is a discrete probability distribution, we
can calculate the convolution of any two resource usage
distributions using the following formula.

Y (z) =
1
∑

k=0
U(k)U(z− k)

We use the formula to sum up n resource usage distri-
butions inductively to the Y . We assume that the tunnel
resource usage distributions are independent from one
another.
Minimum number of VMs for the throughput guar-
antee. The throughput guarantee constraint is formally
expressed with Y and ε:

Pr(Y >C)≤ ε

where C is the total resource of the system. In our case,
C is the number of active and inactive VMs because all
VMs have the normalized CPU capacity 1. ε is a given
constant and Y is derived from Ui. Hence, we can figure
out C, the number of VMs that Protego needs to reserve
to guarantee the throughput.

Protego should keep its number of active and inactive
VMs above C so that the probability of the violation is
maintained below ε . In a real deployment, however, we
need to take the TH into account since it incurs a small
resource waste. Thus, the number of VMs it reserves
should be higher than C/TH . We assume the degree of
external fragmentation of the capacity of GPNs is negli-
gible here.

5.4 Load balancing and tunnel consolida-
tion

Protego detects nodes which the demand of assigned tun-
nels exceeds its capacity and balance the workload by

migrating the tunnels to other relatively idle nodes. At
the same time, Protego periodically consolidates tunnels
to minimize the number of active VMs.

Hotspot node detection. GMN should detect nodes of
which the demand of tunnels exceeds its capacity. We
set a CPU utilization threshold TH > max αi and regard
a node as hotspot if β j > TH . TH should be large enough
to ensure high utilization of nodes.

Tunnel migration. Once the hotspot node is detected,
a subset of the tunnels in the node should be migrated
to lower β j below TH . To minimize the number of mi-
gration, the tunnels are sorted in decreasing order of αi,

and largest k tunnels where
k
∑

i=1
αi > β j −TH are chosen

and migrated in that order. The same Best Fit algorithm
is used to choose a node to place each tunnel. The sys-
tem adds an inactive VM to the active pool if none of the
nodes are not able to receive the tunnel.

Tunnel consolidation. Protego periodically decides
new tunnel allocation based on Best Fit Decreasing
(BFD) algorithm, which guarantees to use no more than
11/9 bins of the optimal solution [25]. Protego periodi-
cally sorts all tunnels in decreasing order of αi, and use
BFD to figure out a new placement of the tunnels. After
every consolidation, Protego makes empty active VMs
inactive to minimize the number of active VMs.

6 Implementation
6.1 GIN & GEN
GIN and GEN are both based on our packet filtering
driver based on Windows NDIS Lightweight filter (LWS)
driver. The main task of GIN and GEN are modifying
the destination IP address of the packets to forward them
to a right GPN which possesses the shared keys for the
inbound and outbound traffic of a tunnel that packets be-
long to. For this purpose, GIN and GEN maintain the
mappings between SPI and GPN IP addresses, and traf-
fic selectors and GPN IP addresses.

Another important role of GIN and GEN is detecting
the failure of GPNs. GIN and GEN manipulate the last
bit of TOS field in outer IP header of ESP packets for
tagging. They sample a part of packets and set the last
bit of TOS to 1. Once a GPN detects the bit is set, it
mirrors the packet with the reversed source and destina-
tion addresses and empty payload back to GIN/GEN as a
heartbeat. When there is no reply within a certain period,
the packet is regarded as dropped. After three consecu-
tive drops, GIN or GEN concludes that a corresponding
GPN fails.

6.2 GMN
We implement GMN based on the existing IPsec ser-
vice module in the Routing and Remote Access Service

USENIX Association 2017 USENIX Annual Technical Conference 479

(RRAS) [14]. We add the state backup and recovery
logic to the implementation of Remote Access service in
Windows Server 2012 R2. Our modified RRAS captures
state modification by wrapping global variables with set-
ter functions. Also, public interface is added to expose
states and save the changed ones to an external IKE
module of the passive GMN. These interfaces are imple-
mented based on asynchronous RPC (Remote Procedure
Call) already implemented in Windows Server [10].

6.3 GPN
We implement our own filter driver to catch packet re-
ceive notifications from NIC and return the address of
a free buffer in the Free Buffer Queue. NIC copies re-
ceived packet data to the buffer, then the filter driver
pushes the pointer to the receive queue exposed to user
space.

Dispatcher thread maintains an array of buffers to hold
the encrypted or decrypted packets to be sent in a batch.
It pushes the request to one of the Task Queue of worker
threads and a worker encrypts or decrypts the packet data
in turn. The worker writes back the process packet to the
array of buffer at the assigned index, and increases the
processing counter. Once the processing counter reaches
the total size of the array size, the sender thread starts
to send out the whole buffer. Upon receiving the send
completion notification, the buffers are returned to Free
Buffer Queue maintained by our filter driver so that it can
be reused.

Note that GIN, GEN, GMN and GPN can be imple-
mented independently on top of different platforms al-
though we implemented all of them in Windows servers
in our local test bed. They can be built and combined
on public clouds by third-party as well if an enterprise
tenant wants to deploy their own VPN service.

7 Evaluation
The test bed has the same networking and configura-
tion as our real production IPsec gateway environment.
The experimental setup consists of 32 servers with 16-
core Intel Xeon E5-2650 v2 CPU working at 2.6Ghz and
Mellanox Connect-3 Pro 40Gbps NIC. We use Windows
Server 2012 R2 and Hyper-V.

Figure 5 shows the topology of the experiment. We
use a WAN emulator to emulate latency and packet loss.

7.1 Failover
To evaluate the impact of failures in Protego, we es-
tablish an IPsec tunnel between Protego and the IPsec
gateway in the user network in our experimental topol-
ogy. The client sends 300 Mbps of TCP traffic to the
server machine. While the client is sending the traffic,
we power off GPN and GMN one by one and monitor
the throughput at the server side. We set the sampling

IPSEC-GW1

Clients

GPN-1

Servers

GPN-2

GMN

Cloud
Network

User
Network

GEN
GIN

IPSEC-GW1

Clients

GPN-1

Servers

GPN-2

GMN

Cloud
Network

User
Network

GEN
GINWAN Emulator

Figure 5: Experiment topology

rate of GIN and GPN for failure detection to 1/1000 and
the minimum sampling interval to 10 ms.

We powered off GPN at around 18 second. In Fig-
ure 6, the throughput drops slightly as some packets are
dropped during the failover period. Once a new ESP key
is negotiated and inserted to a new GPN, the through-
put recovers to the original value after the TCP slow-
start phase. In the GMN failure case, the throughput of
the tunnel is not degraded as shown in Figure 6, since
CHILD SAs are alive and used for ESP packet process-
ing, and GMN is restored almost instantly.

Figure 8 shows the latency of failover and IKE state
update, which we measured running the operations 20
times. It takes 0.28 seconds in total for the failover. The
round trip time between peer gateways for re-negotiating
a new CHILD SA accounts for 68% of the total failover
time. The latency of updating an IKE SA in a passive
GMN is 89 ms, which is quick enough to handle IKE
heartbeat messages sent every few seconds.

7.2 Tunnel migration overhead
We created two GPNs as described in Figure 5 to see
the throughput change of an IPsec tunnel during migra-
tion. We measured the throughput of a TCP stream in the
server.

Figure 7 shows the throughput of the IPsec tunnel over
time. We exposed the tunnel migration API to manually
initiate the process via command line of GMN. The mi-
gration process is started at approximately 18 seconds.
The tunnel performance is maintained during the migra-
tion process according to the figure. The time it takes
to migrate a tunnel is the same as the sum of the rekey
and ESP state insertion time mentioned in the failover
section.

7.3 GPN performance

Multi-core throughput. In order to measure the per-
formance and multi-core scalability of GPN, we estab-
lish a single IPsec tunnel between the IPsec gateway in
the user network and one of the GPNs of Protego. To
measure the encapsulation performance, the server sends

480 2017 USENIX Annual Technical Conference USENIX Association

0
50

100
150
200
250
300

0 5 10 15 20 25 30

Ba
nd

w
id

th
(M

bp
s)

Time (s)

Tunnel Migration

Figure 6: Impact of failure on tunnel throughput

0
50

100
150
200
250
300

0 5 10 15 20 25 30

Ba
nd

w
id

th
(M

bp
s)

Time (s)

GPN Failure
GMN Failure

Figure 7: Impact of migration on tunnel throughput

0

50

100

150

200

GPN
Failover

Ti
m

e
(m

s)

Failure Detection
CHILD SA Rekey
ESP State Insertion

0

200

400

GMN
Update

IKE SA Update
IKE SA Create

Figure 8: Failover and state update la-
tency breakdown

0
3
6
9

12
15
18

0 2 4 6 8 10 12 14

Th
ro

ug
hp

ut
 (G

bp
s)

of CPU cores

AES256
-SHA1
AES256
-SHA2

Figure 9: Single node throughput

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200

CD
F

Latency (us)

Plain
Encrypted

Figure 10: CDF of latency per packet

TCP traffic to a client. The TCP packet length is 1400
bytes. We used a number of TCP connections to fully
saturate the CPU resource of the GPN.

Figure 9 shows the throughput of an IPsec tunnel mea-
sured in the server using the aggregated TCP throughput.
As the number of CPU cores increases, the throughput
of a single tunnel performance of a single GPN increases
linearly. Protego can provide 10 Gbps of the throughput
with 8 cores when AES256-CBC is used for encryption
and SHA1 is used for integrity. When SHA2 is used for
integrity, more than 12 cores is required to achieve 10
Gbps in our evaluation setup.
Packet processing latency. We also measured latency
added by GPN node. To quantify the latency incurred by
a GPN node, we measure the latency of packets which
only pass through GIN and skip GPN, and then that
of packets processed by a GPN to encrypt them with
AES256CBC-SHA1. A client sends 1400 bytes TCP
packets of which payload contains timestamp value. A
server which receives the packet prints out the latency
based on the embedded timestamp. We turned off WAN
emulator in this evaluation and place all VMs in the same
rack.

We sampled 1,000 packets to draw CDF graph in Fig-
ure 10. The deviation of latency distribution is quite
small as they are connected by a single ToR. The me-
dian value of the case when GPN is not involved is 61
us, and is 1094 us when GPN is involved. The latency
overhead of Protego is around 1 ms. It is negligible com-
pared with RTT of WAN, which is tens or hundreds of

ms in general.

7.4 Resource provisioning simulation
We evaluate the algorithm elaborated in § 5 by doing a
large-scale simulation. We use the throughput data of
IPsec tunnels in our data centers to figure out how much
resource is saved by Protego compared with the existing
VM allocation based system. We collected the hourly
average throughput of IPsec tunnels for 24 hours. We di-
vide the actual tunnel throughput values by the maximum
capacity of deployed IPsec gateways. Then we multi-
ply the resulting ratio by an arbitrary maximum tunnel
throughput we choose for simulation.

Resource saving. We collected the 1-day through-
put data of IPsec gateways in one of our data centers.
The average throughput of the tunnels is measured every
minute. We assume that all GPNs have the same pro-
cessing capacity, and all ESP packets with the same size
consume the same amount of CPU resource when pro-
cessed.

The throughput trace of 170 tunnels was collected and
used in our simulation. We normalized the maximum
tunnel throughput to 1.5 Gbps, which is the maximum
tunnel throughput supported by major cloud providers [3,
5]. The GPN capacity is set to 5 Gbps. (σi = 0.3) The
hotspot threshold TH = 0.90 and the throughput measure-
ment interval is 1 minute. Also, the violation tolerance
ε = 0.95.

Figure 11 displays illustrates the aggregated IPsec
throughput of all tunnels and the total capacity of active

USENIX Association 2017 USENIX Annual Technical Conference 481

0

40

80

120

0 50 100 150

Ca
pa

cit
y(

G
bp

s)

Time (m)
Tunnel bandwidth Active capacity (10m)
Reserved capacity Active Capacity (30m)

Figure 11: Resource provisioning efficiency

VMs used as GPNs. The reserved capacity represents
the total resource of all VMs that Protego reserves by
figuring out the minimum number of VMs it needs for
bandwidth guarantee based on the formula explained in
§ 5.3. In this simulation, the reserved capacity is 110
Gbps since Protego subscribes 22 VMs.

The consolidation interval is set to 10 minutes and 30
minutes respectively. The number of active VMs grows
between the consolidation points since Protego balances
the IPsec workload by migrating the tunnels as their
throughput are fluctuating. The number of active VMs
shrinks every consolidation interval.

It is trivial from the figure that the smaller the consol-
idation interval is, the less active VMs the Protego uti-
lizes. The average provisioned capacity of active VMs
is 65.38, 74.75 Gbps, and 88.17 Gbps for the 5-minute,
10-minute, and 30-minute consolidation intervals respec-
tively. The average total throughput of the tunnels is
57.49 Gbps. The trade off of finer consolidation inter-
val is investigated using the result in the next subsection.

Throughput guarantee. Another important require-
ment of a resource provisioning algorithm is to meet
the throughput guarantee. We introduce daily bandwidth
guarantee to measure how much time Protego actually
provisions enough resources in a similar way as avail-
ability SLAs are defined.

DailyBandwidthGuarantee(%)

=
TotalAvailableMinutes−MinutesO fViolation

TotalAvailableMinutes

The violation happens when the sum of the demand
bandwidths of IPsec tunnels, which are rate limited, ex-
ceeds the capacity of a GPN. We assume that the packet
scheduler of GPNs is completely fair so the bandwidth
guarantee is violated only when its bandwidth demand is
larger than its fair share. In public clouds, only the avail-
ability of VPN services are guaranteed [7, 13]. Cloud
providers seldom guarantee the bandwidth in the SLA in
any form [39]. We suggest the bandwidth guarantee to
briefly show the trade-off between the utilization and the
QoS with different consolidation intervals. We do not
determine the optimal parameters of our algorithm here,

Consolidation
Intervals 3 min 5 min 10 min 30 min 60 min

Active VM
Capacity (Gbps) 61.23 66.17 73.97 88.34 93.22

99th-percentile
Guarantee (%) 90.21 93.07 96.84 98.24 98.63

Resource
Saving (%) 88.00 87.03 85.50 82.68 81.72

Table 2: Bandwidth guarantee and resource saving
achieved with different consolidation intervals

which will be different depending on the internal perfor-
mance indicators of each cloud provider.

Table 2 contains the detailed numbers we get from the
simulation. The resource saving is calculated by divid-
ing the capacity of active VMs by the total capacity of
VM assuming that one VM is dedicated to each tunnel.
Since there are 170 tunnels of which maximum band-
width is 1.5 Gbps, the total capacity is 255 Gbps to pro-
vision for peak demands. Moreover, the high availabil-
ity requirement doubles the number of necessary VMs.
Therefore we figure out the total capacity required for
the old system is 510 Gbps. When the consolidation in-
terval is 10 minutes, Protego can save around 85.50% of
VM resource while meeting the bandwidth guarantee of
99 % of the tunnels for 96.84 % of the total available
time of Protego.

8 Discussion
Security implication. One may argue that the secu-
rity of the overall system is weakened due to the risk
of placing secret keys in a shared VM, GMN. However,
the VMs of Protego are not leased to tenants but are un-
der control of cloud providers. They can block external
network access to those control nodes as they normally
do for their internal servers. Note that Protego performs
complete IPsec protocol as it is. Rekeying process for
migration may incur some overhead but does not com-
promise security.
Keeping occasionally changed state in a centralized
node. We make Protego keep the IKE state in a central-
ized node. Likewise, the same approach could be applied
to other NFs to make the data plane stateless. For exam-
ple, asset monitoring systems such as PRADS [11] em-
ploy fingerprints to identify clients. Since they are rarely
changed, storing them in a centralized node would be a
good way to build a scalable monitoring system.

9 Related Work
Software NFs for the cloud. Flexible and easy to man-
age software NFs are becoming more prevalent in data
centers these days [42, 21, 23, 24, 22]. Especially, soft-
ware load balancers are deployed and replacing hardware
ones. Ananta [42] is the first software load balancer spe-
cially designed for cloud environments. Ananta has a

482 2017 USENIX Annual Technical Conference USENIX Association

separate control plane and data plane. Yoda [23] de-
couples the flow state from load balancers and stores it
in a persistent storage for high availability. Ananta and
Yoda have influenced the design of Protego. Maglev [21]
is a software load balancer, further optimized for the
throughput of a single machine. Maglev employs a for-
warder thread which calculates the 5-tuple hash of the
packets and put them into the receiving queue of a ded-
icated packet rewriter thread. The dispatcher thread of
Protego plays a similar role to the forwarder and steering
thread. However, the data plane design of Protego is dif-
ferent from Maglev and other packet processing frame-
works [20, 30, 34, 35, 28] in that it is specially designed
for IPsec. Protego takes the state dependency between
ESP packets into account and enables even the pack-
ets belong to the same tunnel distributed across multiple
worker threads.

NFV Frameworks for scalability and availability.
OpenNF [27] controller manages both the forwarding
rules of SDN controller and the internal state of NFs to
migrate flows from one NF instance to another. OpenNF
controller buffers the packets of the flow in migration
until the corresponding per-flow state is moved, which
adds hundreds of milliseconds of per-packet latency.
U-HAUL [37] selectively apply the OpenNF migration
scheme to elephant flows to optimize the migration per-
formance. Unlike these controllers, Protego achieves
loss-free migration without migrating the per-tunnel state
by leveraging the rekeying feature of IKE protocol.

E2 [40], Stratos [26], and OpenBox [18] are frame-
works that provide high-level means of developing, plac-
ing and scaling NFs by introducing an NF-agnostic con-
troller. We want to point out that employing an NF-
specific controller is often necessary and efficient as we
have shown. StatelessNF [31] uses a low-latency data
store to make NFs stateless for scalability and high avail-
ability. Protego has a similarity to StatelessNF in that it
stores state in a centralized node, but Protego maintains
the frequently changing state locally. NetBricks [41] is a
framework built on Rust to ensure safe memory isolation
in user-level for NFs without VMs. Unlike NetBricks,
we still use VMs for cloud providers to leverage exist-
ing resource allocation and management system based on
virtualization platforms. FTMB [44] and Pico Replica-
tion [43] leverage VM checkpoint or snapshot to ensure
high availability of middleboxes. We avoid checkpoint-
based approaches since VM restore time in the cloud eas-
ily takes several minutes [38], which is too long to meet
the tight availability SLA of cloud providers.

We want to emphasize that the efficiency improvement
has been achieved by taking multitenancy into account
when designing our system. The NFs for cloud environ-
ments should have a means to seamlessly and quickly
migrate workloads and resource allocation/deallocation

policy to elastically adapt to varying demand of tenants.

Resource provisioning in shared environment. De-
ciding the right amount of resources to provision in a
shared environment has been a long-standing problem.
Urgaonkar et al. [46] shows the gain of oversubscribing
the resource in a shared hosting platform. They profile
the resource usage of applications offline with realistic
workloads. Based on those resource usage distributions,
the system decides the capacity of resources. We have
adopted the resource usage model of them to decide the
minimum number of VMs to reserve.

In the context of cloud computing, VM placement and
migration is one of the most widely studied areas. Sand-
piper [49] leverages VM live migration to balance the
workload of overloaded physical machines. Bobroff et
al. [17] takes SLA into account and design a forecasting
technique to minimize SLA violation. Verma et al. [47]
considers dynamic VM resizing to efficiently consolidate
VMs with less frequent migration. Though there has
been a large volume of literature along this line, the high
network bandwidth consumption of live migration and
long migration time of hotspot VMs [48] hinder the wide
deployment of it. Protego provides a migration scheme
which is far more lightweight and quicker than VM live
migration. In addition, it provides the finer granularity of
load balancing by migrating tunnels instead of an entire
VM. Therefore, it has a better potential for real produc-
tion use.

10 Conclusion
We have described Protego, a software IPsec gateway
specifically designed for cloud environments. Protego
serves multiple tenants using shared resources for statis-
tical multiplexing. It separates the control plane from
existing IPsec gateways and preserves its state for high
availability. We leverage IKE rekeying feature to seam-
lessly migrate tunnels without impairing their through-
put. We devise a resource provisioning algorithm and
demonstrate that Protego can save more than 80% of the
resources comparing with existing approach, while guar-
anteeing the IPsec throughput for higher than 90% of up-
time.

Acknowledgements
We thank our shepherd Ittay Eyal and the anonymous re-
viewers for their helpful feedback. We are also grateful
to Shinae Woo and Bojie Li for their thoughtful com-
ments on the drafts, and Joongi Kim for providing his
figure templates. This work was supported in part by
the MISP (Ministry of Science, ICT & Future Planning),
Korea, under the National Program for Excellence in
SW (2016-0-00018) supervised by the IITP (Institute for
Information & communications Technology Promotion)
(2016-0-00018).

USENIX Association 2017 USENIX Annual Technical Conference 483

References
[1] Amazon Web Service - Virtual Private Cloud

(VPC). https://aws.amazon.com/vpc/.

[2] Cisco - IPSec Stateful Failover (VPN High Avail-
ability) Feature Module. http://www.cisco.

com/c/en/us/td/docs/ios/12_2/12_2y/12_

2yx11/feature/guide/ft_vpnha.html.

[3] Google - VPN throughput. https://cloud.

google.com/compute/docs/vpn/advanced.

[4] Google Cloud Platform - Virtual Network. https:
//cloud.google.com/virtual-network/.

[5] Microsoft Azure - About VPN Gate-
way. https://docs.microsoft.

com/en-us/azure/vpn-gateway/

vpn-gateway-about-vpngateways.

[6] Microsoft Azure - Planning and design for
VPN Gateway. https://azure.microsoft.

com/en-us/documentation/articles/

vpn-gateway-plan-design/.

[7] Microsoft Azure - SLA for VPN Gateway.
https://azure.microsoft.com/en-us/

support/legal/sla/vpn-gateway/.

[8] Microsoft Azure - Virtual Network. https:

//azure.microsoft.com/en-us/services/

virtual-network.

[9] Microsoft Azure - VPN Gateway. https:

//azure.microsoft.com/en-us/services/

vpn-gateway/.

[10] Microsoft Remote Procedure Call. https:

//msdn.microsoft.com/en-us/library/

windows/desktop/aa378651(v=vs.85).aspx.

[11] PRADS - Passive Real-time Asset Detection Sys-
tem.

[12] strongSwan - High Availability. https:

//wiki.strongswan.org/projects/

strongswan/wiki/HighAvailability.

[13] VPN Service Level Agreement (SLA). https://

cloud.google.com/vpn/sla.

[14] Windows Remote Access Service. https:

//technet.microsoft.com/en-us/library/

dn636119(v=ws.11).aspx.

[15] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and
A. Hopper. Predicting the Performance of Virtual
Machine Migration. In MASCOTS, 2010. IEEE.

[16] S. A. Baset, L. Wang, and C. Tang. Towards an Un-
derstanding of Oversubscription in Cloud. In Hot-
ICE, 2012. USENIX.

[17] N. Bobroff, A. Kochut, and K. Beaty. Dynamic
Placement of Virtual Machines for Managing SLA
Violations. In INM, 2007. IEEE.

[18] A. Bremler-Barr, Y. Harchol, and D. Hay. Open-
Box: A Software-Defined Framework for Develop-
ing, Deploying, and Managing Network Functions.
In SIGCOMM, 2016. ACM.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migra-
tion of Virtual Machines. In NSDI, 2005. USENIX.

[20] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism
to Scale Software Routers. In SOSP, 2009. ACM.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A Fast and Reliable Software Network Load Bal-
ancer. In NSDI, 2016. USENIX.

[22] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey.
Bohatei: Flexible and Elastic DDoS Defense. In
USENIX Security, 2015. USENIX.

[23] R. Gandhi, Y. C. Hu, and M. Zhang. Yoda: A
Highly Available Layer-7 Load Balancer. In Eu-
roSys, 2016. ACM.

[24] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud Scale Load
Balancing with Hardware and Software. In SIG-
COMM, 2014. ACM.

[25] M. R. Garey, R. L. Graham, and J. D. Ullman.
Worst-case Analysis of Memory Allocation Algo-
rithms. In STOC, 1972. ACM.

[26] A. Gember, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar. Stratos: A Network-Aware Orchestra-
tion Layer for Middleboxes in the Cloud. In CoRR,
2013.

[27] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Function
Control. In SIGCOMM, 2014. ACM.

[28] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and
K. Park. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator. In NSDI, 2017. USENIX.

484 2017 USENIX Annual Technical Conference USENIX Association

[29] A. Greenberg. Windows Azure: Scaling SDN in the
Public Cloud. Open Networking Summit (ONS)
2014.

[30] S. Han, K. Jang, K. Park, and S. Moon. Packet-
Shader: A GPU-accelerated Software Router. In
SIGCOMM, 2010. ACM.

[31] M. Kablan, A. Alsudais, E. Keller, and F. Le. State-
less network functions: Breaking the tight coupling
of state and processing. In NSDI, 2017. USENIX.

[32] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. In-
ternet Key Exchange Protocol Version 2 (IKEv2).
RFC 5996, RFC Editor, 2010.

[33] S. Kent. IP Encapsulating Security Payload (ESP).
RFC 4303, RFC Editor, 2005. http://www.

rfc-editor.org/rfc/rfc4303.txt.

[34] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and
S. Moon. NBA (Network Balancing Act): A
High-performance Packet Processing Framework
for Heterogeneous Processors. In EuroSys, 2015.
ACM.

[35] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly
Flexible and High Performance Network Process-
ing with Reconfigurable Hardware. In SIGCOMM,
2016. ACM.

[36] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao. Per-
formance and Energy Modeling for Live Migration
of Virtual Machines. In HPDC, 2011. ACM.

[37] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han. U-
HAUL: Efficient State Migration in NFV. In AP-
Sys, 2016. ACM.

[38] M. Mao and M. Humphrey. A Performance Study
on the VM Startup Time in the Cloud. In CLOUD,
2012. IEEE.

[39] J. C. Mogul and L. Popa. What We Talk About
when We Talk About Cloud Network Performance.
In SIGCOMM CCR, 2012. ACM.

[40] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Frame-
work for NFV Applications. In SOSP, 2015. ACM.

[41] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. NetBricks: Taking the V out of
NFV. In OSDI, 2016. USENIX.

[42] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud Scale
Load Balancing. In SIGCOMM, 2013. ACM.

[43] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
Replication: A High Availability Framework for
Middleboxes. In SoCC, 2013. ACM.

[44] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krish-
namurthy, C. Maciocco, M. Manesh, J. a. Martins,
S. Ratnasamy, L. Rizzo, and S. Shenker. Rollback-
Recovery for Middleboxes. In SIGCOMM, 2015.
ACM.

[45] R. P. Singh, T. Brecht, and S. Keshav. Towards VM
Consolidation Using a Hierarchy of Idle States. In
VEE, 2015. ACM.

[46] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared
Hosting Platforms. In OSDI, 2002. USENIX.

[47] A. Verma, J. Bagrodia, and V. Jaiswal. Virtual Ma-
chine Consolidation in the Wild. In Middleware,
2014. ACM.

[48] W. Voorsluys, J. Broberg, S. Venugopal, and
R. Buyya. Cost of Virtual Machine Live Migration
in Clouds: A Performance Evaluation. In Cloud-
Com, 2009. Springer-Verlag.

[49] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and Gray-box Strategies for Vir-
tual Machine Migration. In NSDI, 2007. USENIX.

[50] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang.
Live Migration of Multiple Virtual Machines with
Resource Reservation in Cloud Computing Envi-
ronments. In CLOUD, 2011. IEEE.

[51] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom.
Virtual Machine Migration in an Over-committed
Cloud. In NOMS, 2012. IEEE.

USENIX Association 2017 USENIX Annual Technical Conference 485

Cache Modeling and Optimization using Miniature Simulations

Carl A. Waldspurger
CachePhysics, Inc.
carl@cachephysics.com

Trausti Saemundson
CachePhysics, Inc.

trauzti@gmail.com

Irfan Ahmad
CachePhysics, Inc.
irfan@cachephysics.com

Nohhyun Park
Datos IO, Inc.

nohhyun.park@datos.io

Abstract

Recent approximation algorithms (e.g., CounterStacks,
SHARDS and AET) make lightweight, continuously-
updated miss ratio curves (MRCs) practical for online
modeling and control of LRU caches. For more complex
cache-replacement policies, scaled-down simulation, in-
troduced with SHARDS, offers a general method for em-
ulating a given cache size by using a miniature cache pro-
cessing a small spatially-hashed sample of requests.

We present the first detailed study evaluating the ef-
fectiveness of this approach for modeling non-LRU al-
gorithms, including ARC, LIRS and OPT. Experiments
with over a hundred real-world traces demonstrate that
scaled-down MRCs are extremely accurate while requir-
ing dramatically less space and time than full simulation.

We propose an efficient, generic framework for dy-
namic optimization using multiple scaled-down simula-
tions to explore candidate cache configurations simulta-
neously. Experiments demonstrate significant improve-
ments from automatic adaptation of parameters includ-
ing the stack size limit in LIRS, and queue sizes in 2Q.

Finally, we introduce SLIDE, a new approach inspired
by Talus that uses scaled-down MRCs to remove per-
formance cliffs automatically. SLIDE performs shadow
partitioning transparently within a single unified cache,
avoiding the problem of migrating state between distinct
caches when partition boundaries change. Experiments
demonstrate that SLIDE improves miss ratios for many
cache policies, with large gains in the presence of cliffs.

1 Introduction

Caches are ubiquitous in modern computing systems,
improving system performance by exploiting locality to
reduce access latency and offload work from contended
storage systems and interconnects. However, caches are
notoriously difficult to model. It is well-known that per-
formance is non-linear in cache size, due to complex
effects that vary enormously by workload. Techniques
for accurate and efficient cache modeling are especially
valuable to inform cache allocation and partitioning de-
cisions, optimize cache parameters, and support goals in-
cluding performance, isolation, and quality of service.

�

���

���

���

���

���

���

���

���

� �� �� �� �� �� �� �� ��

�
��
�
�
��
��

����� ���� ����

Figure 1: Example MRC. Miss-ratio curve for a production
disk block trace using ARC cache algorithm. The ratio of cache
misses to total references is plotted as a function of cache size.

1.1 Cache Modeling
Cache utility curves plot a performance metric as a func-
tion of cache size. Figure 1 shows an example miss-ratio
curve (MRC), which plots the ratio of cache misses to
total references for a workload (y-axis) as a function of
cache size (x-axis). The miss ratio generally decreases as
cache size increases, although complex algorithms such
as ARC [14] and LIRS [9] can exhibit non-monotonic
behavior due to imperfect dynamic adaptation.

MRCs are valuable for analyzing cache behavior. As-
suming a workload exhibits reasonable stationarity at the
time scale of interest, its MRC can also predict future
performance. Thus, MRCs are powerful tools for op-
timizing cache allocations to improve performance and
achieve service-level objectives [3, 11, 18, 22, 27, 28].

1.2 MRC Construction
Before the seminal paper by Mattson et al. [13], studies
of memory and storage caching required running sepa-
rate experiments for each cache size. Their key insight
was that many replacement policies exhibit an inclusion
property: given a cache C of size S, C(S) ✓ C(S + 1).
Such policies, which include LRU, LFU, and MRU, are
referred to as stack algorithms. Mattson et al. introduced
a method for such algorithms that constructs the entire
MRC for all cache sizes in a single pass over a trace.

For a trace of length N containing M unique blocks,
Mattson’s algorithm takes O(NM) time and O(M) space.
Efficient modern implementations of this algorithm have

USENIX Association 2017 USENIX Annual Technical Conference 487

an asymptotic cost of O(N logM) time and O(M) space,
employing a balanced tree to compute reuse distances
and a hash table to accelerate lookups into this tree [16].

Recent advances [7, 20, 23, 26] have produced approx-
imate methods that construct accurate MRCs with dra-
matically lower costs than exact methods. In particular,
SHARDS [23] and AET [7] require only O(N) time and
O(1) space, with a tiny footprint of approximately 1 MB.

Previously relegated to offline modeling, MRCs for
stack algorithms can now be computed so inexpensively
that they are practical for dynamic, online cache manage-
ment, even in the most demanding environments. How-
ever, for more complex non-stack algorithms, such as
ARC and LIRS, there are no known single-pass meth-
ods. As a result, separate runs are required for each cache
size, similar to pre-Mattson modeling of LRU caches.

1.3 Cache Optimization
Low-cost online modeling of cache behavior using
MRCs has many practical applications. Whereas a single
cache instance runs with a single policy and a single set
of configuration parameters, the ability to efficiently in-
stantiate multiple concurrent models with different cache
configurations offers a powerful generic framework for
dynamic optimization. By simulating candidate cache
configurations simultaneously, a system can quantify the
impact of hypothetical parameter changes, so that the
best settings can be applied to the actual cache.

This approach has the potential to overcome a key
challenge in designing cache software today: policy and
parameter tweaking is typically performed only at design
time, considering a small number of benchmarks. Since
no single configuration is best for all workloads, there
is a significant optimization opportunity to instead adapt
parameters automatically in live deployments.

A multi-model approach can help select the best gen-
eral options, such as cache block size, write policy, or
even replacement policy. The same method supports dy-
namic tuning of algorithm-specific parameters, such as
queue sizes for 2Q [10] or LIRS [9].

Lightweight MRCs can be futher leveraged to guide
efficient cache sizing, allocation, and partitioning for
both individual workloads and complex multi-workload
environments. For example, Talus shadow partition-
ing [3], which requires an MRC as input, can remove
performance cliffs within a single workload, and improve
cache partitioning across workloads.

1.4 Contributions
We make several key contributions over prior research in
the areas of cache modeling and optimization:

Evaluate scaled-down simulation for complex policies
To the best of our knowledge, scaled-down simulation is

the only general approach capable of fast and accurate
modeling of complex caching algorithms. We present
the first detailed evaluation with non-LRU caching al-
gorithms, including ARC, LIRS, and OPT. Our results
indicate that sampling rates as low as 0.1% yield accu-
rate MRCs with approximate miss ratio errors averaging
much less than 0.01, at extremely low overhead.
New optimization framework We introduce a pow-
erful new framework for optimizing cache performance
dynamically by leveraging miniature cache simulations.
Transparent cliff removal We highlight challenges
with Talus shadow partitioning for non-stack algorithms,
and introduce SLIDE, a new approach that removes per-
formance cliffs from such algorithms automatically and
transparently – the first practical application of cliff re-
moval techniques to complex cache algorithms.
New LIRS observations We describe previously-
unreported parameter sensitivity and non-monotonic be-
havior with LIRS, and present a useful new optimization.

Although we focus on block-based storage systems,
our techniques are broadly applicable to nearly any form
of caching, including memory management in operating
systems and hypervisors, application-level caches, key-
value stores, and even hardware cache implementations.

The next section provides some background on non-
stack caching algorithms. Section 3 describes our core
scaled-down cache modeling technique, and presents
a detailed evaluation of its accuracy and performance.
Scaled-down caches are leveraged to optimize LIRS and
2Q by adapting algorithm parameters in Section 4. Sec-
tion 5 introduces SLIDE, a new approach for removing
performance cliffs, and demonstrates improvements with
several cache policies. Related work is discussed in Sec-
tion 6. Finally, we summarize our conclusions and high-
light opportunities for future work in Section 7.

2 Non-stack Algorithms

Many modern caching algorithms outperform LRU on a
wide range of workloads. Several, such as ARC, LIRS,
and 2Q, treat blocks that have recently been seen only
once differently from those that have been seen at least
twice. Many policies employ ghosts – small metadata-
only entries containing block identifiers, but not actual
data. Some, like ARC, adapt to changes in workload pat-
terns automatically. It is not surprising that such sophis-
ticated policies are non-stack algorithms that violate the
stack inclusion property. All caching algorithms aspire to
close the gap with OPT, the unrealizable optimal policy.
2Q Inspired by LRU-K [17], Johnson and Shasha de-
veloped the 2Q algorithm [10]. As its name suggests,
2Q uses two queues: A1 for blocks seen once and Am
for blocks seen more than once. A1 is split into A1in

488 2017 USENIX Annual Technical Conference USENIX Association

and A1out, where A1out is a metadata-only ghost exten-
sion of A1in. 2Q promotes a block to Am only on a hit
in A1out, so A1in behaves as a FIFO. The algorithm has
two tunable parameters – the size of A1in relative to Am,
and the size of A1out relative to the cache size.

ARC Megiddo and Modha introduced ARC, the adap-
tive replacement cache policy [14]. ARC is a self-
tuning algorithm that manages both recently-used and
frequently-used blocks in separate LRU lists: T1 for
blocks seen once, T2 for blocks seen more than once, and
their corresponding ghost extensions, B1 and B2, which
track metadata for recently-evicted blocks. Queue sizes
change adaptively based on which gets more cache hits;
there are no tunable parameters. ARC has been deployed
widely in production systems, and is considered by many
to be the “gold standard” for storage caching.

LIRS Jiang and Zhang developed LIRS, the low inter-
reference recency set algorithm [9]. LIRS uses recency
to estimate reuse distance when making replacement de-
cisions. Blocks are categorized into high reuse-distance
(HIR) and low reuse-distance (LIR) sets. All LIR blocks
are resident but HIR blocks can be resident or ghosts. A
block changes from HIR to LIR when its reuse distance
is low compared to the current LIR set.

LIRS employs two LRU lists, called the S and Q
stacks. Q contains all resident HIR blocks, and S con-
tains LIR blocks as well as some resident HIR blocks
and HIR ghosts. LIRS has two tunable parameters – the
ratio of resident HIR and LIR blocks (the authors suggest
1% HIR), and the maximum size of S, which effectively
bounds the number of ghosts. LIRS has been adopted by
several production systems, including MySQL [25].

OPT Belady first described OPT, the theoretically op-
timal algorithm, also known as MIN [4, 1, 13]. OPT is a
“clairvoyant” algorithm, since it relies on knowledge of
future references to evict the block that will be reused the
farthest in the future. Although OPT is actually a stack
algorithm [21], it cannot be used to implement online
eviction. Instead, OPT provides a bound on the perfor-
mance of realizable algorithms.

3 Scaled-down Modeling

SHARDS [23] introduced single-pass techniques for
constructing approximate MRCs based on randomized
spatial sampling. References to representative locations
are selected dynamically based on a function of their
hash values. The “scaled down” reference stream is pro-
vided as input to a conventional single-pass MRC con-
struction algorithm [13, 16] and the reuse distances it
outputs are “scaled up” to adjust for the sampling rate.

While this approach works extremely well for stack
algorithms such as LRU, there is no known single-pass

method for non-stack caching algorithms. For such poli-
cies, a discretized MRC must be constructed by running
separate simulations at many different cache sizes.

To support efficient modeling of any caching algo-
rithm, the SHARDS authors proposed emulating a given
cache size using a miniature cache running the full, un-
modified algorithm over a small spatially-hashed sam-
ple of requests. Although a proof-of-concept experiment
yielded promising results [23], there has been no detailed
study of this approach. We present the first comprehen-
sive evaluation of scaled-down simulation for modeling
the sophisticated ARC, LIRS and OPT algorithms.

3.1 Miniature Simulations
A miniature simulation can emulate a cache with any
specified size by scaling down both the actual cache size
and its input reference stream. For example, consider
modeling a cache with size S using a sampling rate R.
A miniature simulation may emulate a cache of size S
by scaling down the cache size to R ·S and scaling down
the reference stream using a hash-based spatial filter with
sampling rate R. In practice, sampling rates on the or-
der of R = 0.01 or R = 0.001 yield very accurate results,
achieving huge reductions in space and time compared
to a conventional full-size simulation.

More generally, scaled-down simulation need not use
the same scaling factor for both the miniature cache
size and its reference stream, although such configura-
tions were not discussed when the technique was origi-
nally proposed [23]. The emulated cache size Se, mini-
cache size Sm, and input sampling rate R are related by
Se = Sm/R. Thus, Se may be emulated by specifying a
fixed rate R, and using a mini-cache with size Sm = R ·Se,
or by specifying a fixed mini-cache size Sm, and sam-
pling its input with rate R = Sm/Se. In practice, it is
useful to enforce reasonable constraints on the minimum
mini-cache size (e.g., Sm � 100) and sampling rate (e.g.,
R � 0.001) to ensure sufficient cache space and enough
sampled references to simulate meaningful behavior.

3.1.1 Error Reduction
Like SHARDS, we apply a simple adjustment to re-
duce sampling error when computing the miss ratio for
a miniature simulation. We have observed that when the
number of sampled references, Ns, differs from the ex-
pected number, E[Ns] = N ·R, the sample set typically
contains the wrong proportion of frequently-accessed
blocks. To correct for this bias we divide the number
of misses m by the expected number of references, in-
stead of the actual number of references; i.e., m/E[Ns] is
a better approximation of the true miss ratio than m/Ns.

3.1.2 Caches with Integrated Modeling
We have experimented with an alternative “unified” ap-
proach that integrates MRC construction into a live pro-

USENIX Association 2017 USENIX Annual Technical Conference 489

duction cache, without running separate simulations.
Spatial hashing shards requests across a set of cache par-
titions, all serving actual requests. Several small par-
titions serve as monitoring shards, emulating multiple
cache sizes within a small fraction of the overall cache.

An MRC can be generated on demand by simply ac-
cessing the miss ratios associated with each monitoring
shard. Although integrated monitoring avoids additional
simulation costs, we found that it typically degrades
overall cache performance slightly, since most monitor-
ing shards will not have efficient operating points.

3.2 Scaled-down MRCs
For non-stack algorithms, there are no known methods
capable of constructing an entire MRC in a single pass
over a trace. Instead, MRC construction requires a sep-
arate run for each point on the MRC, corresponding to
multiple discrete cache sizes. Fortunately, we can lever-
age miniature caches to emulate each size efficiently.

We evaluate the accuracy and performance of our ap-
proach with three diverse non-LRU cache replacement
policies: ARC, LIRS, and OPT. We developed efficient
implementations of each in C, and validated their cor-
rectness against existing implementations [6, 8, 19].

We use a collection of 137 real-world storage block
trace files, similar to those used in the SHARDS eval-
uation. These represent 120 week-long virtual disk
traces from production VMware environments collected
by CloudPhysics [23], 12 week-long enterprise server
traces collected by Microsoft Research Cambridge [15],
and 5 day-long server traces collected by FIU [12].

For our experiments, we use a 16 KB cache block size,
and misses are read from storage in aligned, fixed-size
16 KB units. Reads and writes are treated identically,
effectively modeling a simple write-back caching policy.
We have also experimented with 4 KB blocks, model-
ing different write policies, and processing only read re-
quests, all with similar results.

3.2.1 Accuracy
For each trace, we compute MRCs at 100 discrete cache
sizes, spaced uniformly between zero and a maximum
cache size. To ensure these points are meaningful, the
maximum cache size is calculated as the aggregate size
of all unique blocks referenced by the trace. This value
was estimated during a separate, one-time pre-processing
step for each trace, using fixed-size SHARDS [23].

To quantify accuracy, we compute the difference be-
tween the approximate and exact miss ratios at each dis-
crete point on the MRC, and aggregate these into a mean
absolute error (MAE) metric, as in related work [26, 23,
7]. The box plots1 in Figure 2 show the MAE distri-

1The top and the bottom of each box represent the first and third
quartiles. The thin whiskers show the min and max, excluding outliers.

●●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ARC LIRS OPT
Cache Algorithms

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Sampling Rate (R)

0.001
0.01

Figure 2: Error Analysis. Distribution of mean absolute er-
ror for all 137 traces with three algorithms (ARC, LIRS, OPT)
at two different sampling rates (R = 0.01, R = 0.001).

butions for ARC, LIRS, and OPT with sampling rates
R = 0.01 and R = 0.001. The average error is surpris-
ingly small in all cases. For R = 0.001, the median MAE
for each algorithm is below 0.005, with a maximum of
0.033. With R = 0.01, the median MAE for each algo-
rithm is below 0.002, with a maximum of 0.012.

Since the minimum cache size for LIRS is 200 blocks
(to support the default 1% allocation to HIR), the LIRS
MAE was calculated using this minimum size for some
miss ratios, implying a higher sampling rate. Excluding
these min-size runs, the median MAE for R = 0.001 is
below 0.003, with a maximum of 0.025; for R = 0.01,
the median is below 0.002, with a maximum of 0.009.2

Figure 3 contains 35 small plots that illustrate the ac-
curacy of approximate MRCs with R = 0.001 on exam-
ple traces with diverse MRC shapes and sizes. In most
cases, the approximate and exact curves are nearly indis-
tinguishable. The plots in Figure 4 show this accuracy
with much greater detail for two example MSR traces.
In all cases, miniature simulations model cache behavior
accurately, including complex non-monotonic behavior
by ARC and LIRS. These compelling results with such
diverse algorithms and workloads suggest that scaled-
down simulation is an extremely general technique ca-
pable of modeling nearly any caching algorithm.

3.2.2 Performance
For our performance evaluation, we used a platform con-
figured with a six-core 3.3 GHz Intel Core i7-5820K pro-
cessor and 32 GB RAM, running Ubuntu 14.04 (Linux
kernel 4.4). Experiments compare traditional exact sim-
ulation with our lightweight scaled-down approach.

Resource consumption was measured using our five
largest traces. We simulated three cache algorithms at

2The reduced MAE may seem counter-intuitive. However, accuracy
generally improves as the size of the scaled-down cache increases, and
the excluded points were the smaller, less-accurate cache sizes.

490 2017 USENIX Annual Technical Conference USENIX Association

t25 t26 t27 t28 t29 t30 t31

t18 t19 t20 t21 t22 t23 t24

t11 t12 t13 t14 t15 t16 t17

t04 t05 t06 t07 t08 t09 t10

msr_mds msr_proj msr_src1 t00 t01 t02 t03

0 5 10 0 30 60 0 20 400 20 40 0 300 600 0 100 200 300 0 7 14

0 100 200 0 200 400 0 300 600 0 200 400 0 300 600 0 200 400 0 20 40

0 20 40 0 20 40 600 30 60 0 100 200 300 0 200 400 0 20 40 0 40 80

0 30 60 0 9 18 0 50 100 0 20 40 0 300 600 0 60 120 0 20 40

0 40 80 0 500 1000 0 100 200 300 0 20 40 0 200 400 0 60 120 0 20
0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

Cache Size (GB)

M
is

s
R

at
io

ARC LIRS OPT Sampled (R=0.001) Exact (unsampled)

Figure 3: Diverse MRCs: Exact vs. Miniature. Exact and approximate MRCs for 35 representative traces: three named
MSR workloads [15], and the CloudPhysics workloads labeled t00–t31 in the SHARDS evaluation [23]. Approximate MRCs are
constructed using scaled-down simulation with sampling rate R = 0.001. Each color represents a different cache algorithm.

five emulated sizes Se (8 GB, 16 GB, 32 GB, 64 GB and
128 GB), using multiple sampling rates R (1, 0.1, 0.01
and 0.001) for a total of 60 experiments per trace. We
repeated each run five times, and report average values.

Unsurprisingly, the memory footprint3 for cache simu-
lation is a simple linear function consisting of fixed over-
head (for policy code, libraries, etc.) plus variable space.
For ARC and LIRS, the variable component is propor-
tional to the cache size, R · Se. For OPT, which must
track all future references, it is proportional to the num-
ber of sampled references, R ·N. Table 1 reports the fixed
and variable components of the memory overhead deter-
mined by linear regression (r2 > 0.99). As expected, ac-
curate results with R = 0.001 require 1000⇥ less space
than full simulation, excluding the fixed overhead.

We also measured the CPU usage4 consumed by our
single-threaded cache implementations with both exact
and scaled-down simulations for ARC, LIRS and OPT.
As shown in Figure 5, runtime consists of two main
components: cache simulation time, which is roughly
linear in R, and the sampling overhead involving hash-

3The peak resident set size was obtained from the Linux procfs node
/proc/<pid>/status immediately before terminating.

4CPU time was obtained by adding the user and system time com-
ponents reported by /usr/bin/time.

Linear Function Example Trace (t22)
Policy Fixed Variable R=0.001 R=1
ARC 1.37 MB 71 B 1.57 MB 284 MB
LIRS 1.59 MB 75 B 1.80 MB 301 MB
OPT 7.10 MB 37 B 19.55 MB 18,519 MB

Table 1: Memory Footprint. Memory usage for ARC and
LIRS is linear in the cache size, R · Se, while for OPT, it is
linear in the number of sampled references, R ·N. Measured
values are shown for CloudPhysics trace t22 with Se = 64 GB.

ing and trace file I/O, which is roughly constant; Mur-
murHash [2] is invoked for each reference to determine
if it should be sampled. The total runtime from each ex-
periment was decomposed by running a corresponding
experiment with a pre-sampled trace file, removing the
overhead of hashing and most I/O costs.

Overall, scaled-down simulation with R = 0.001 re-
quires about 10⇥ less CPU time than full simulation, and
achieves throughput exceeding 53 million references per
second for ARC and LIRS, and 39 million references per
second for OPT. Fortunately, for multi-model optimiza-
tion, hash-based sampling costs are incurred only once,
not for each mini-cache. In an actual production cache,
the cost of data copying would dwarf the hashing over-
head, which represents a larger fraction of the fast cache
simulation operations that manipulate only metadata.

USENIX Association 2017 USENIX Annual Technical Conference 491

(a) msr_src1 (b) msr_web

0 100 200 300 0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (GB)

M
is

s
R

at
io

Sampling Rate (R)

0.001
0.01
Exact MRC

Cache Algorithm

LIRS
ARC
OPT

Figure 4: Detailed MRCs. Approximate MRCs for two enterprise storage traces [15] with three different algorithms. Miniature
simulations capture cache behavior accurately, including complex non-monotonicity. All MAEs for R = 0.001 are less than 0.011.

ARC LIRS OPT

10.10.010.001 10.10.010.001 10.10.010.001

0

1
2
34

10
20
30
40

100

200
300
400

Sampling Rate (R)

Se
co

nd
s

pe
r B

ill
io

n
R

ef
s

Sampling Simulation

Figure 5: Runtime. Time to process one billion references as
a function of R. Sampling represents time spent selecting refer-
ences to simulate; Simulation is time spent actually executing
the cache policy.

4 Adapting Cache Parameters

Our generic multi-model optimization framework lever-
ages miniature simulations to adapt cache parameters dy-
namically. The impact of multiple candidate parameter
values is evaluated periodically, and the best setting is
applied to the actual cache. We present example opti-
mizations that adapt cache parameters automatically for
two well-known replacement algorithms: LIRS and 2Q.

While MRCs are typically stable over short time peri-
ods, they frequently vary over longer intervals. To adapt
dynamically to changing workload behavior, we divide
the input reference stream into a series of epochs. Our
experiments use epochs consisting of one million ref-
erences, although many alternative definitions based on
wall-clock time, evictions, or other metrics are possible.

After each epoch, we calculate an exponentially-
weighted moving average (EWMA) of the miss ratio for

each mini-cache, to balance historical and current cache
behavior. Our experiments use an EWMA weight of 0.2
for the current epoch. The parameter value associated
with the mini-cache exhibiting the lowest smoothed miss
ratio is applied to the actual cache for the next epoch.

4.1 LIRS Adaptation
As discussed in Section 2, the LIRS S stack is LRU-
ordered and contains a mix of LIR blocks, resident HIR
blocks and non-resident HIR blocks (ghosts). This queue
tracks the internal stack-distance ordering between HIR
and LIR blocks. A HIR block is reclassified as LIR if
it is referenced when it has a stack distance lower than
that of the oldest LIR block. During this “status switch”,
the oldest LIR block is changed to HIR, evicted from S,
and inserted into Q. After the status switch, a pruning
operation removes all HIR blocks from the tail of S.

The default LIRS algorithm allows S to grow without
bound on a sequence of misses. To address this issue,
the authors suggest limiting the size of S; to enforce that
limit, the oldest HIR ghost is evicted from S once the size
exceeds the limit. We denote5 this bound by f , relative
to the cache size c; the total size of S is limited to c · f .
The LIRS paper experimented with a few values of f
and reported that even low values such as f = 2 work
well. Our evaluation of scaled-down modeling accuracy
in Section 3.2 uses f = 2, so that LIRS tracks roughly
the same number of ghost entries as ARC.
Code Optimization We started our work on LIRS with
a C implementation obtained from the authors [8]. How-
ever, this code enforced the S size limit by always search-
ing for the oldest HIR ghost starting from the tail of
S. Since this caused excessive overhead with our large
traces, we developed a simple optimization that stores

5This limit was not explicitly named in the LIRS paper.

492 2017 USENIX Annual Technical Conference USENIX Association

 0.24% / 0.27%

−0.98% / 0.69%

 0.23% / 1.21%

 1.61% / 2.43%

−0.46% / 0.15%

 0.86% / 2.17%

 2.66% / 2.74%

 1.51% / 1.81%

2Q [msr_web] LIRS [msr_web]

2Q [msr_src2] LIRS [msr_src2]

2Q [msr_src1] LIRS [msr_src1]

2Q [msr_proj] LIRS [msr_proj]

0 30 60 0 30 60

0 20 40 0 20 40

0 100 200 300 0 100 200 300

0 500 1000 0 500 1000
0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

f = 1.1
Kout 50%

f = 2
Kout 100%

f = 3
Kout 300%

Auto

Figure 6: Adaptive Parameter Tuning. Dynamic multi-
model optimization results for four example traces. Adaptation
selects good values for 2Q (Kout) and LIRS (f) at most cache
sizes with potential gains. The percentages (upper right) show
the actual adaptation gain (vs. f =2, 50% Kout) and the potential
gain (best per-cache-size values), averaged over all cache sizes.

a pointer to the entry previous to the last-removed HIR
ghost.6 It is guaranteed that no HIR ghost can appear af-
ter this element because entries are always added to the
head of S. If the entry associated with this pointer is re-
moved from the middle of S, such as on a hit, it is simply
updated to the previous entry in the queue. We describe a
similar optimization for SLIDE evictions in Section 5.5.

6This optimization met with approval from the LIRS authors [8].

Non-monotonicity Although the authors reported that
LIRS does not suffer from non-monotonic behavior [9],
we have observed it with several of our workloads when
limiting the size of S. For example, Figure 4 reveals a
prominent region for the msr web trace where increas-
ing the LIRS cache size results in a higher miss ratio.
Interestingly, the degree of non-monotonicity varies with
f , and there appear to be workload-dependent values that
eliminate this behavior. For example, Figure 6 shows that
msr src1, msr src2 and msr web perform well with
f = 1.1, while f = 3.0 is best for msr proj.

Automatic Tuning We use our multi-model optimiza-
tion approach to adapt the LIRS f value dynamically for
a subset of the traces described in Section 3.2. For each
workload, five scaled-down simulations are performed
with different values for f : 1.1, 1.5, 2.0, 2.5 and 3.0.
Each simulation emulates the same cache size, equal to
the size of the actual cache, with a fixed sampling rate
R = 0.005. After each epoch consisting of 1M refer-
ences, the miss ratios for each mini-cache are examined,
and the best f value is applied to the actual cache.

Experiments The goal of automatic LIRS adaptation
is to find the best value of f for each cache size. These
ideal7 static settings form an MRC that traces the lower
envelope of the curves for different static f values. Ac-
tual and potential gains are computed as the mean signed
difference across all cache sizes relative to the curve with
the default fixed value f = 2. Potential gain is based on
the best static f value for each cache size.

Figure 6 presents results for four representative MSR
traces. Among all 12 MSR traces, msr src2 shows the
best actual and potential gains; the worst case for adap-
tation is the net loss for msr proj. For msr web and
msr src2, adaptation converges on the best f = 1.1, and
realizes 83–97% of the potential gain. The average ac-
tual vs. potential improvement across the MSR traces is
0.37% / 0.60%; adaptation captures the majority of pos-
sible gains. Results are mixed for traces like msr src1,
with some regressions, despite an overall gain. We are
experimenting with automatic disabling of ineffective
adaptation; early results show a small gain for msr proj.

LIRS Observations For workloads with a single large
working-set knee (e.g., trace t08 in Figure 3), the LIRS
and OPT MRCs are often surprisingly close. LIRS ap-
pears to trace the convex hull of the LRU curve, slightly
above OPT. This behavior is not intuitive, since LIRS has
no knowledge of the knee, where the miss ratio drops
suddenly once the working set fits. The explanation is
that some blocks initially get stuck in the LIR set, and no
later blocks have a low enough reuse distance to replace

7Although adaptation tends to converge on a single f value, select-
ing the best value for each individual epoch may yield a lower dynamic
optimum. However, the combinatorics make this infeasible to simulate.

USENIX Association 2017 USENIX Annual Technical Conference 493

them. During another pass over the working set, accesses
to these blocks will be hits. Thus, LIRS can effectively
remove some cliffs by trapping blocks in the LIR set.

4.2 2Q Adaptation
The 2Q algorithm is not adaptive, so its queue sizes are
specified manually. The authors suggest allocating 25%
of the cache space to A1in and 75% to Am. They also
suggest sizing the number of ghosts in A1out to be 50%
of the elements in the cache. The 2Q paper defines the
parameter Kin as the size of A1in, and Kout as the size of
A1out, the ghost queue for blocks seen only once.

Comparing 2Q and LIRS, Am is similar to the subset
of the LIRS S stack containing LIR blocks, A1in is com-
parable to the LIRS Q stack, and A1out is similar to the
subset of the LIRS S stack containing HIR ghost blocks.
While LIRS performs well allocating just 1% of its space
to Q, 2Q needs a higher percentage for A1in. The sizing
of A1out in 2Q is similar to f -adaptation in LIRS.

Since 2Q does not adapt its queue sizes dynamically,
we again employ multi-model optimization, using eight
scaled-down simulations with R = 0.005, 25% Kin, and
Kout parameters between 50% and 300%. After each
epoch consisting of 1M references, the best Kout value
is applied to the actual cache. Automatic adaptation is
designed to find the optimal Kout for each cache size.
As in Section 4.1, we compute gain relative to the area
between the default curve with fixed 50% Kout and the
lower envelope of all the curves with static Kout values.

Figure 6 shows adaptation works well for msr web,
which has the best actual and potential gains over all 12
MSR traces; the auto-adapted curve tracks the lower en-
velope closely, capturing 66% of the possible static gain.
For traces like msr proj that are not very sensitive to
Kout, adaptation shows modest absolute gains. The worst
case is the significant loss for msr src1, although the
auto-disabling extension mentioned earlier results in a
small gain. Averaged over all 12 MSR traces, the actual
vs. potential improvement is 0.10% / 0.45%.

5 SLIDE

SLIDE is a new approach inspired by Talus [3] that
leverages scaled-down MRCs to remove performance
cliffs. We describe challenging issues with applying
Talus to non-LRU policies, and explain how SLIDE re-
solves them. We then present efficient SLIDE implemen-
tation techniques that support transparent shadow parti-
tioning within a single unified cache.

5.1 Talus Inspiration
Talus [3] is a technique that removes cache performance
cliffs using hash-based partitioning. It divides the refer-

ence stream for a single workload into two shadow parti-
tions, alpha and beta, steering a fraction r of references
to the alpha partition. Each partition can be made to emu-
late the performance of a smaller or larger cache by con-
trolling its size and input load.

Talus requires the workload’s MRC as an input. The
partition sizes Na and Nb , and their respective loads, r
and 1�r , are computed in a clever manner that ensures
their combined aggregate miss ratio lies on the convex
hull of the MRC. Although Talus was introduced in the
context of hardware processor caches, a similar idea has
also been applied to key-value web caches [5].

We view the hash-based partitioning employed by
Talus for removing performance cliffs and the hash-
based monitoring introduced with SHARDS for efficient
MRC construction as two sides of the same coin. Both
rely on the property that hash-based sampling produces
a smaller reference stream that is statistically self-similar
to the original stream. The ability to construct MRCs us-
ing hash-based sampling was not recognized by the Talus
authors, who emphasized that no known methods could
generate MRCs inexpensively for non-stack algorithms.

5.2 Challenges with Non-LRU MRCs
As noted by the Talus authors, a key challenge with ap-
plying Talus to non-stack algorithms is the need to con-
struct MRCs efficiently in an online manner. This prob-
lem is solved by using the scaled-down modeling tech-
niques described in Section 3. As with parameter adap-
tation described in Section 4, we divide the input refer-
ence stream into a series of epochs. After each epoch, we
construct a discretized MRC from multiple scaled-down
simulations with different cache sizes, smoothing each
miss ratio using an EWMA. We then identify the sub-
set of these miss ratios that form the convex hull for the
MRC, and compute the optimal partition sizes and loads
using the same inexpensive method as Talus.

In theory, the combination of scaled-down MRC con-
struction and Talus shadow partitioning promises to im-
prove the performance of any caching policy by inter-
polating efficient operating points on the convex hulls of
workload MRCs. In practice, we encountered several ad-
ditional challenges while trying to implement Talus for
caching algorithms such as ARC and LIRS.

5.3 Challenges with Non-LRU Partitioning
Talus requires distinct cache instances for its separate al-
pha and beta partitions, which together have a fixed total
size. This hard division becomes problematic in a sys-
tem where the partition boundaries change dynamically
in response to an MRC that evolves over time. Similarly,
when r changes dynamically, some cache entries may re-
side in the “wrong” partition based on their hash values.

494 2017 USENIX Annual Technical Conference USENIX Association

These issues were not discussed in the Talus paper.
We initially tested simple strategies to address these is-

sues. For example, removing cache entries eagerly when
decreasing the size of a partition, and reallocating the re-
claimed space to the other partition. Or migrating entries
across partitions eagerly to ensure that each resides in
the correct partition associated with its hash. Such ea-
ger strategies performed poorly, as migration checks and
actions are expensive, and data may be evicted from one
partition before the other needs the space. Moreover, it’s
not clear how migrated state should be integrated into its
new partition, even for a simple policy like LRU, since
list positions are not ordered across partitions.

A lazy strategy for reallocation and migration gener-
ally fares better. Cache entries can be reclaimed from an
over-quota partition on demand, and entries residing in
incorrect partitions migrated only on hits. However, this
approach adds non-trivial complexity to the core caching
logic. More importantly, while migrating to the MRU
position on a hit seems reasonable for an LRU policy,
it’s not clear how to merge state appropriately for more
general algorithms. Some policies do not even specify
how to transform state to support dynamic resizing.

5.4 Transparent Shadow Partitioning
We developed a new approach called SLIDE (Sharded
List with Internal Differential Eviction) to address these
challenges. In contrast to Talus, SLIDE maintains a sin-
gle unified cache, and defers partitioning decisions until
eviction time. SLIDE conveniently avoids the resizing,
migration, and complexity issues discussed above.

A SLIDE list is a new abstraction that serves as a drop-
in replacement for the standard LRU list used as a com-
mon building block by many sophisticated algorithms,
including ARC, LIRS, and 2Q. Since SLIDE interposes
on primitive LRU operations that add (insert-at-head),
reference (move-to-head), and evict (remove-from-tail)
entries, it is completely transparent to cache-replacement
decisions. An unmodified cache algorithm can support
Talus-like partitioning by simply relinking to substitute
SLIDE lists for LRU8 lists. We have successfully opti-
mized ARC (T1, T2, B1 and B2), LIRS (S and Q), 2Q
(Am, A1in and A1out), and LRU in this manner.

5.5 SLIDE Lists
A SLIDE list is implemented by extending a conven-
tional doubly-linked LRU list. All list entries remain
ordered from MRU (head) to LRU (tail). Each entry is
augmented with a compact hash9 of its associated loca-
tion identifier (e.g., block number or memory address).

8SLIDE also works with FIFO lists, such as the 2Q A1in queue; a
referenced entry simply isn’t moved to the head of the list.

9Our default implementation uses small 8-bit hashes, providing bet-
ter than 0.4% resolution for performing hash-based partitioning.

211 88 141 156

tail
prev

block
hash

next

110 92

head

tailβtailα

if Tα = 200:

if Tα = 100:

tailβ tailα

Figure 7: SLIDE List. Extensions (highlighted) to a doubly-
linked list include hash values plus taila and tailb pointers used
to find the LRU blocks in the alpha and beta partitions. Differ-
ent dynamic thresholds Ta illustrate flexible partitioning.

This hash value is compared to the current threshold Ta
to classify the entry as belonging to either the alpha or
beta “partition”. This makes the SLIDE partition bound-
ary more flexible than the hard partitions in Talus.

As depicted in Figure 7, in addition to the usual head
and tail pointers, SLIDE maintains two new tail pointers,
taila and tailb . To evict from alpha, the LRU alpha entry
is located by walking the list backwards from taila until
an entry with a hash value below Ta is found. Similarly,
an eviction from beta starts with tailb and continues until
an entry with a hash value at or above Ta is found.

The tail-search pointers taila and tailb are initialized
to NULL, which indicates that searches should begin from
the absolute tail of the combined list. They are updated
lazily during evictions, and to skip over entries that are
moved to the MRU position on a hit. Since entries are
added only to the head of the LRU-ordered list, the amor-
tized cost for these updates is O(1), as each tail pointer
traverses a given entry only once.

Many LRU implementations maintain a count of the
number of entries in the list. A SLIDE list also tracks
Na , the number of entries that currently belong to the al-
pha partition. The SLIDE configuration operation spec-
ifies both r and a target size for alpha, expressed as a
fraction Fa of the total number of entries, Ntot . During
an eviction, an entry is preferentially removed from the
alpha partition if it is over quota (i.e., Na > Fa · Ntot), or
otherwise from the beta partition. If the preferred victim
partition is empty, then the absolute LRU entry is evicted.

It is not obvious that substituting SLIDE lists for the
internal lists within non-stack algorithms will approxi-
mate hard Talus partitions. The basic intuition is that
configuring each SLIDE list with identical values of Fa
and r will effectively divide the occupancy of each indi-
vidual list – and therefore divide the entire aggregate al-
gorithm state – to achieve the desired split between alpha
and beta. As with Talus, this depends on the statistical
self-similarity property of hash-based spatial sampling.
While SLIDE may differ from strict Talus partitioning, it
empirically works well for ARC, LIRS, 2Q, and LRU.

USENIX Association 2017 USENIX Annual Technical Conference 495

 0.41% / 0.57%

 2.04% / 4.07%

 3.85% / 9.78%

 4.65% / 9.61%

 0.05% / 0.69%

 0.16% / 2.59%

 1.26% / 5.50%

 1.86% / 5.21%

−0.06% / 0.36%

 3.14% / 4.55%

 0.08% / 2.83%

 0.05% / 2.37%

 0.04% / 0.28%

 1.00% / 4.05%

 0.82% / 5.93%

 2.61% / 6.83%

LRU [msr_web] 2Q [msr_web] LIRS [msr_web] ARC [msr_web]

LRU [msr_src2] 2Q [msr_src2] LIRS [msr_src2] ARC [msr_src2]

LRU [msr_src1] 2Q [msr_src1] LIRS [msr_src1] ARC [msr_src1]

LRU [msr_proj] 2Q [msr_proj] LIRS [msr_proj] ARC [msr_proj]

0 30 60 0 30 60 0 30 60 0 30 60

0 20 40 0 20 40 0 20 40 0 20 40

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0 500 1000 0 500 1000 0 500 1000 0 500 1000
0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

Original SLIDE

Figure 8: SLIDE Cliff Removal. Results for four traces using scaled-down MRCs from seven mini-cache simulations. SLIDE
improves the miss ratio for LRU, 2Q, LIRS and ARC caches at most sizes with potential gains, but does exhibit some regressions.
The percentages (upper right) show the actual SLIDE gain and the potential gain (ideal convex hull) averaged over all cache sizes.

5.6 SLIDE Reconfiguration
Periodic reconfiguration may move partition boundaries
dynamically, changing the threshold Ta . To support
constant-time recomputation of Na , SLIDE optionally
maintains an array of counts tracking the number of en-
tries associated with each hash value.10

A change to Ta must also reset the taila and tailb
search pointers, as later entries may have been reclassi-
fied to different partitions. Although not guaranteed to be
O(1), one pointer must be the same as the global tail, and
the expected number of entries the other must re-traverse
is 1/Fa , assuming a uniform hash distribution. This will
typically be small compared to the epoch length, even for
heavily-skewed partitions; Fa could also be bounded.

10An array of 256 counts for our implementation with 8-bit hashes.

5.7 Experiments
We evaluate the effectiveness of SLIDE using a subset of
the traces described in Section 3.2. For each workload,
a separate experiment is performed at 100 cache sizes.
For each size, a discrete MRC is constructed via multiple
scaled-down simulations with sampling rate R = 0.005.
SLIDE is reconfigured after each 1M-reference epoch,
using 0.2 as the EWMA weight for the current epoch.

Seven emulated cache sizes are positioned exponen-
tially around the actual size, using relative scaling factors
of 1/8, 1/4, 1/2, 1, 2, 4, and 8. For R = 0.005, the mini-
cache metadata is approximately 8% of the actual meta-
data size (R times the sum of the scaling factors). For a
16 KB cache block size and 64 B metadata entries, this
represents less than 0.04% of total memory consumption.

Many alternative configurations can provide differ-

496 2017 USENIX Annual Technical Conference USENIX Association

ent time-space tradeoffs, e.g., fixed-size variable-R mini-
caches, as described in Section 3.1. Similarly, increas-
ing the number of emulated cache sizes generally yields
more accurate MRCs and improves SLIDE results, at the
cost of additional mini-cache resource consumption.

Figure 8 plots the results of SLIDE performance cliff
removal for four representative MSR traces with LRU11,
2Q, LIRS and ARC policies. Ideally, SLIDE would trace
the convex hull of the original MRC. In practice, this is
not attainable, since the MRC evolves dynamically, and
its few discrete points yield a crude convex hull. For
each plot, we show both the actual SLIDE gain and the
potential gain on the convex hull, each computed as the
mean signed difference across all cache sizes from the
original curve. We also characterize the larger set of all
12 MSR traces, although this metric often averages out
more significant differences visible in the plots.

As expected, gains are largest for workloads with non-
trivial cliffs, such as msr src2 and msr web; SLIDE re-
duces their miss ratios by more than 10% in many cases.
For the larger set of MSR traces, the best-case actual vs.
potential gains are 4.65% / 9.78% (LRU), 1.86% / 5.50%
(2Q), 3.14% / 4.55% (LIRS) and 2.61% / 6.84% (ARC).
The average actual vs. potential improvements are 0.88%
/ 2.09% (LRU), 0.26% / 1.30% (2Q), 0.23% / 0.89%
(LIRS) and 0.36% / 1.47% (ARC). Overall, SLIDE cap-
tures a reasonable fraction of possible gains.

For traces such as msr proj, where the original MRC
is nearly convex, SLIDE provides little improvement.
For a few traces like msr src1, results are mixed, with
SLIDE improving many policies and cache sizes, but de-
grading others slightly. Across all 12 MSR traces and all
four policies, the worst-case gain is �0.14%. As future
work, we are extending SLIDE to disable itself dynami-
cally to prevent losses and yield Pareto improvements.

6 Related Work

Research on cache modeling and MRC construction has
focused on LRU and stack algorithms [13, 16, 26, 23,
7]. Modeling non-stack algorithms requires offline cache
simulations with extremely high resource consumption,
making online analysis and control impractical.

As explained in Section 3, basic scaled-down sim-
ulation was first introduced with our prior work on
SHARDS [23], but there has been no detailed study of
this approach. To the best of our knowledge, scaled-
down simulation with miniature caches is the only ap-
proach that can model complex algorithms efficiently.

Our automatic adaptation is motivated by the observa-
tion that no single set of cache parameters performs well

11SLIDE is very effective for LRU, and could use SHARDS or AET
to construct MRCs more efficiently for a pure LRU policy.

across all workloads. SOPA [24] is a cache framework
for inter-policy adaptation. It collects a full trace during
an evaluation period, replays it into simulators for multi-
ple candidate policies, and adopts the best one. To facil-
itate policy switches, SOPA maintains a separate LRU-
ordered list of all cached blocks. Blocks are replayed in
LRU-to-MRU order, helping the new algorithm recon-
struct recency metadata, but any frequency or ghost state
is lost in translation. Our techniques are complementary,
and could reduce SOPA analysis overhead significantly.

SLIDE, inspired by Talus [3], uses MRCs to remove
cache performance cliffs. Section 5 presents a detailed
comparison, and explains how SLIDE overcomes the
challenges of applying Talus to non-LRU policies.

Cliffhanger [5] removes performance cliffs from web
memory caches without an explicit miss-ratio curve. As-
suming a full MRC is too expensive, limited-size shadow
queues instead estimate its gradient, with the sign of the
second derivative identifying a cliff. A significant limita-
tion is that Cliffhanger can only scale a single cliff, which
must be located within the limited visibility of its shadow
queues. Although the authors state that Cliffhanger could
work with any eviction policy, their algorithms and ex-
periments are specific to LRU. It is not clear how to
apply their shadow-queue technique to more complex
caching policies, especially given the challenges identi-
fied in Section 5.3. Non-monotonicity may also present
problems; even a small local bump in the MRC could be
misinterpreted as the single cliff to be removed.

7 Conclusions

We have explored using miniature caches for modeling
and optimizing cache performance. Compelling experi-
mental results demonstrate that scaled-down simulation
works extremely well for a diverse collection of complex
caching algorithms – including ARC, LIRS, 2Q and OPT
– across a wide range of real-world traces. This suggests
our technique is a robust method capable of modeling
nearly any cache policy accurately and efficiently.

Lightweight modeling of non-stack algorithms has
many practical applications, including online analysis
and control. We presented a general method that runs
multiple scaled-down simulations to evaluate hypothet-
ical configurations, and applied it to optimize LIRS
and 2Q parameters automatically. We also introduced
SLIDE, a new technique that performs Talus-like perfor-
mance cliff removal transparently for complex policies.

Miniature caches offer the tantalizing possibility of
improving performance for most caching algorithms on
most workloads automatically. We hope to make addi-
tional progress in this direction by exploring opportuni-
ties to refine and extend our optimization techniques.

USENIX Association 2017 USENIX Annual Technical Conference 497

Acknowledgments Thanks to CloudPhysics for helping
to make this work possible, and to John Blumenthal, Jeff
Hausman, Jim Kleckner, Xiaojun Liu, and Richard Sex-
ton for their encouragement and support. Thanks also
to the anonymous reviewers and our shepherd Timothy
Wood for their valuable feedback and suggestions.

References
[1] AHO, A. V., DENNING, P. J., AND ULLMAN, J. D. Principles

of Optimal Page Replacement. J. ACM 18, 1 (Jan. 1971), 80–93.

[2] APPLEBY, A. SMHasher and MurmurHash. https://code.

google.com/p/smhasher/.

[3] BECKMANN, N., AND SANCHEZ, D. Talus: A Simple Way to
Remove Cliffs in Cache Performance. In Proceedings of the 21st
international symposium on High Performance Computer Archi-
tecture (HPCA-21) (February 2015).

[4] BELADY, L. A. A Study of Replacement Algorithms for Virtual
Storage Computers. IBM Systems Journal 5, 2 (1966), 78–101.

[5] CIDON, A., EISENMAN, A., ALIZADEH, M., AND KATTI, S.
Cliffhanger: Scaling Performance Cliffs in Web Memory Caches.
In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16) (Santa Clara, CA, 2016), USENIX
Association, pp. 379–392.

[6] GRYSKI, D. go-arc git repository. https://github.com/

dgryski/go-arc/.

[7] HU, X., WANG, X., ZHOU, L., LUO, Y., DING, C., AND
WANG, Z. Kinetic Modeling of Data Eviction in Cache. In
Proceedings of the 2016 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2016), USENIX ATC
’16, USENIX Association, pp. 351–364.

[8] JIANG, S. LIRS source code. Private communication, Oct 2016.

[9] JIANG, S., AND ZHANG, X. LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance. In Proceedings of the 2002 ACM SIGMET-
RICS International Conference on Measurement and Modeling of
Computer Systems (New York, NY, USA, 2002), SIGMETRICS
’02, ACM, pp. 31–42.

[10] JOHNSON, T., AND SHASHA, D. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large
Data Bases (San Francisco, CA, USA, 1994), VLDB ’94, Mor-
gan Kaufmann Publishers Inc., pp. 439–450.

[11] KOLLER, R., MASHTIZADEH, A. J., AND RANGASWAMI, R.
Centaur: Host-Side SSD Caching for Storage Performance Con-
trol. 2015 IEEE International Conference on Autonomic Com-
puting (ICAC) (2015), 51–60.

[12] KOLLER, R., AND RANGASWAMI, R. I/O Deduplication: Uti-
lizing Content Similarity to Improve I/O Performance. Trans.
Storage 6, 3 (Sept. 2010), 13:1–13:26.

[13] MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER,
I. L. Evaluation Techniques for Storage Hierarchies. IBM Sys-
tems Journal 9, 2 (June 1970), 78–117.

[14] MEGIDDO, N., AND MODHA, D. S. ARC: A Self-Tuning,
Low Overhead Replacement Cache. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (Berkeley,
CA, USA, 2003), FAST ’03, USENIX Association, pp. 115–130.

[15] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
Off-loading: Practical Power Management for Enterprise Stor-
age. Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[16] NIU, Q., DINAN, J., LU, Q., AND SADAYAPPAN, P. PARDA: A
Fast Parallel Reuse Distance Analysis Algorithm. In Proceedings
of the 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium (Washington, DC, USA, 2012), IPDPS ’12,
IEEE Computer Society, pp. 1284–1294.

[17] O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. The LRU-
K Page Replacement Algorithm for Database Disk Buffering. In
Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data (New York, NY, USA, 1993), SIG-
MOD ’93, ACM, pp. 297–306.

[18] QURESHI, M. K., AND PATT, Y. N. Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Runtime Mech-
anism to Partition Shared Caches. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (Washington, DC, USA, 2006), MICRO 39, IEEE Computer
Society, pp. 423–432.

[19] SAEMUNDSSON, T. cache algorithm git repository. https://

github.com/trauzti/cache/.

[20] SAEMUNDSSON, T., BJORNSSON, H., CHOCKLER, G., AND
VIGFUSSON, Y. Dynamic Performance Profiling of Cloud
Caches. In Proceedings of the ACM Symposium on Cloud Com-
puting (New York, NY, USA, 2014), SOCC ’14, ACM, pp. 28:1–
28:14.

[21] SALTZER, J. H., AND KAASHOEK, M. F. Principles of Com-
puter System Design: An Introduction. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2009.

[22] STEFANOVICI, I., THERESKA, E., O’SHEA, G., SCHROEDER,
B., BALLANI, H., KARAGIANNIS, T., ROWSTRON, A., AND
TALPEY, T. Software-defined Caching: Managing Caches in
Multi-tenant Data Centers. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing (New York, NY, USA, 2015), SoCC
’15, ACM, pp. 174–181.

[23] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A., AND
AHMAD, I. Efficient MRC Construction with SHARDS. In Pro-
ceedings of the 13th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2015), FAST ’15, USENIX
Association, pp. 95–110.

[24] WANG, Y., SHU, J., ZHANG, G., XUE, W., AND ZHENG, W.
SOPA: Selecting the Optimal Caching Policy Adaptively. Trans.
Storage 6, 2 (July 2010), 7:1–7:18.

[25] WIKIPEDIA. LIRS caching algorithm — Wikipedia, the free en-
cyclopedia, 2017. [Online; accessed 22-Jan-2017].

[26] WIRES, J., INGRAM, S., DRUDI, Z., HARVEY, N. J. A., AND
WARFIELD, A. Characterizing Storage Workloads with Counter
Stacks. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2014), OSDI ’14, USENIX Association, pp. 335–349.

[27] ZHAO, W., AND WANG, Z. Dynamic Memory Balancing
for Virtual Machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (New York, NY, USA, 2009), VEE ’09, ACM,
pp. 21–30.

[28] ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A.,
ZHOU, Y., AND KUMAR, S. Dynamic Tracking of Page Miss Ra-
tio Curve for Memory Management. In Proceedings of the 11th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA,
2004), ASPLOS XI, ACM, pp. 177–188.

498 2017 USENIX Annual Technical Conference USENIX Association

Hyperbolic Caching: Flexible Caching for Web Applications
Aaron Blankstein*, Siddhartha Sen†, and Michael J. Freedman*

* Princeton University, † Microsoft Research

Abstract
Today’s web applications rely heavily on caching to re-
duce latency and backend load, using services like Redis
or Memcached that employ inflexible caching algorithms.
But the needs of each application vary, and significant per-
formance gains can be achieved with a tailored strategy,
e.g., incorporating cost of fetching, expiration time, and
so forth. Existing strategies are fundamentally limited,
however, because they rely on data structures to maintain
a total ordering of the cached items.

Inspired by Redis’s use of random sampling for evic-
tion (in lieu of a data structure) and recent theoretical jus-
tification for this approach, we design a new caching algo-
rithm for web applications called hyperbolic caching. Un-
like prior schemes, hyperbolic caching decays item priori-
ties at variable rates and continuously reorders many items
at once. By combining random sampling with lazy evalua-
tion of the hyperbolic priority function, we gain complete
flexibility in customizing the function. For example, we
describe extensions that incorporate item cost, expiration
time, and windowing. We also introduce the notion of a
cost class in order to measure the costs and manipulate the
priorities of all items belonging to a related group.

We design a hyperbolic caching variant for several pro-
duction systems from leading cloud providers. We imple-
ment our scheme in Redis and the Django web framework.
Using real and simulated traces, we show that hyperbolic
caching reduces miss rates by ~10-20% over competitive
baselines tailored to the application, and improves end-to-
end throughput by ~5-10%.

1 Introduction
Web applications and services aggressively cache data
originating from a backing store, in order to reduce both
access latency and backend load. The wide adoption
of Memcached [23] and Redis [44] (key-value caching),
Guava [26] (local object caching), and Varnish [50]
(front-end HTTP caching) speak to this demand, as does
their point-and-click availability on cloud platforms like
Heroku via MemCachier [38], EC2 via ElastiCache [4],
and Azure via Azure Redis Cache [7].

Caching performance is determined by the workload
and the caching algorithm, i.e., the strategy for priori-
tizing items for eviction when the cache is full. All of
the above services employ inflexible caching algorithms,

such as LRU. But the needs of each application vary, and
significant performance gains can be achieved by tailoring
the caching strategy to the application: e.g., incorporating
cost of fetching, expiration time, or other factors [8, 46].
Function-based strategies [2, 52] take this approach, by
devising functions that combine several of these factors.

All of these strategies are fundamentally limited, how-
ever, because they rely on data structures (typically pri-
ority queues) to track the ordering of cached items. In
particular, an item’s priority is only changed when it is
accessed. However, does cache eviction need to be tied to
a data structure? Caches like Redis already eschew order-
ing data structures to save memory [45]. Instead, they rely
on random sampling to evict the approximately lowest-
priority item [42]: a small number of items are sampled
from the cache, their priorities are evaluated (based on
per-item metadata), and the item with lowest priority is
evicted. Can this lack of an ordering data structure enable
us to build a caching framework with vast flexibility? In-
deed, we show that the combination of random sampling
and lazy evaluation allows us to evolve item priorities ar-
bitrarily; thus we can freely explore the design space of
priority functions! Neither Redis nor existing algorithms
exploit this approach, yet we find it outperforms many tra-
ditional and even domain-optimized algorithms.

Armed with this flexibility, we systematically design
a new caching algorithm for modern web applications,
called hyperbolic caching (§2). We begin with a simple
theoretical model for web workloads that leads to an op-
timal solution based on frequency. A key intuition behind
our approach is that caches can scalably measure item fre-
quency only while items are in the cache. (While some
algorithms, e.g., ARC [37], employ ghost caches to track
items not in the cache, we focus on the more practical
setting where state is maintained only for cached items.)
Thus, we overcome the drawbacks of prior frequency-
based algorithms by incorporating the time an item spends
in the cache. This deceptively simple modification already
makes it infeasible to use an ordering data structure, as
pervasively employed today, because item priorities de-
cay at variable rates and are continuously being reordered.
Yet with hyperbolic caching, we can easily customize the
priority function to different scenarios by adding exten-
sions, e.g., for item cost, expiration time, and windowing
(§3). We also introduce the notion of cost classes to man-

USENIX Association 2017 USENIX Annual Technical Conference 499

age groups of related items, e.g., items materialized by the
same database query. Classes enable us both to more ac-
curately measure an item’s miss cost (by averaging over
multiple items) and to adjust the priorities of many items
at once (e.g., in response to a database overload).

A quick survey of existing algorithms shows that they
fall short of this flexibility in different ways. Recency-
based algorithms like LRU use time-of-access to order
items, which is difficult to extend: for example, incor-
porating costs requires a completely new design (e.g.,
GreedyDual [53]). Frequency-based algorithms like LFU
are easier to modify, but any non-local change to item
priorities—e.g., changing the cost of multiple items—
causes expensive churn in the underlying data structure.
Some algorithms, such as those based on marking [22],
maintain only a partial ordering, but the coarse resolution
makes it harder to incorporate new factors. Several theo-
retical studies [2,46] formulate caching as an optimization
problem unconstrained by any data structure, but their so-
lutions are approximated by online heuristics that, once
again, rely on data structures.

We design a hyperbolic caching variant for several dif-
ferent production systems from leading cloud providers
(§3), and evaluate them on real traces from those sys-
tems. We implement hyperbolic caching in Redis and
the Django web framework [18], supporting both per-item
costs and cost classes (§4). Overall (§5), we find that
hyperbolic caching reduces miss rates by ~10-20% over
competitive baselines tailored to the application, and im-
proves end-to-end system throughput by ~5-10%. This
improvement arises from changing only the caching al-
gorithms used by existing systems—our modification to
Redis was 380 lines of code—and nothing else.

To summarize, we make the following contributions:

1. We systematically design a new caching algorithm for
modern web applications, hyperbolic caching, that pri-
oritizes items in a radically different way.

2. We define extensions for incorporating item cost and
expiration time, among others, and use them to cus-
tomize hyperbolic caching to three production systems.

3. We introduce the notion of cost classes to manage
groups of related items effectively.

4. We implement hyperbolic caching in Redis and Django
and demonstrate performance improvements for several
applications.

Although we only evaluate medium-to-large web ap-
plications, we believe hyperbolic caching can improve
hyper-scale applications like Facebook, where working
sets are still too large to fit in the cache [6, 49].

2 Hyperbolic Caching
We first describe the caching framework required by hy-
perbolic caching (§2.1). Then, we motivate a simple the-
oretical model for web workloads and show that a clas-
sical frequency approach is optimal in this model (§2.2).
By solving a fundamental challenge of frequency-based
caching (§2.3), we arrive at hyperbolic caching (§2.4).

2.1 Framework
We assume a caching service that supports a standard
get/put interface. We make two changes to the imple-
mentation of this interface. First, we store a small amount
of metadata per cached item i (e.g., total number of ac-
cesses) and update it during accesses; this is done by the
on get and on put methods in Fig. 1. Second, we re-
move any data structure code that was previously used to
order the items. We replace this with a priority function
p(i) that maps item i’s metadata to a real number; thus
p imposes a total ordering on the items. To evict an item,
we randomly sample S items from the cache and evict
the item i with lowest priority p(i), as implemented by
evict which. This approximates the lowest-priority
item [42]; we evaluate its accuracy in §5.3.

The above framework is readily supported by Redis,
which already avoids ordering data structures and uses
random sampling for eviction. The use of metadata and
a priority function is standard in the literature and re-
ferred to as “function-based” caching [8]. What is dif-
ferent about our framework is when this function is eval-
uated. Prior schemes [2, 46, 52] evaluate the function on
each get/put and use the result to (re)insert the item into
a data structure, freezing its priority until subsequent ac-
cesses. Our framework uses lazy evaluation and no data
structure: an item’s priority is only evaluated when it is
considered for eviction, and it can evolve arbitrarily be-
fore that point without any impact on performance.

2.2 Model and frequency-based optimality
In many workloads, the requests follow an item popu-
larity distribution and the time between requests for the
same item are nearly independent [10]. Absent real data,
most systems papers analyze such distributions (e.g., Zip-
fian [20, 56]), and model dynamism as gradual shifts be-
tween static distributions. Motivated by this, we model re-
quests as a sequence of static distributions 〈D1, D2, . . .〉
over a universe of items, where requests are drawn inde-
pendently fromD1 for some period of time, then fromD2,
and so on. The model can be refined by constraining the
transitions (Di, Di+1), but even if we assume they are in-
stantaneous, we can still prove some useful facts (summa-
rized below). Our measure of cost is the miss rate, which
is widely used in practice.

500 2017 USENIX Annual Technical Conference USENIX Association

def evict_which():
sampled_items = random_sample(S)
re turn argmin(p(i) f o r i in sampled_items)

def on_put(item):
item.accessed = 1
item.ins_time = timenow()
add_to_sampler(item)

def on_get(item):
item.accessed += 1

def p(item):
in_cache = timenow - item.ins_time
re turn item.accessed / (in_cache)

Figure 1: Pseudocode for hyperbolic caching in our framework.

Within a distribution Di, a simple application of the
law of large numbers shows that the optimal strategy for
a cache of size k is to cache the k most popular items.
This is closely approximated by the least-frequently-used
(LFU) algorithm: a typical implementation assigns prior-
ity ni/H to item i, where ni is the number of hits to i and
H =

∑
i ni is the sum over all cached items. Whereas

LFU approximates the optimal strategy, one can prove
that LRU suffers a gap. This is in contrast to the traditional
competitive analysis model—which assumes a worst-case
request sequence and use total misses as the cost [47]—in
which LRU is optimal. This model has been widely criti-
cized (and improved upon) for being pessimistic and unre-
alistic [3, 9, 32, 33, 54]. Our model is reminiscent of older
work (e.g., [24]) that studied independent draws from a
distribution but, again, used total misses as the cost.

To validate our theoretical results, we use a static Zip-
fian popularity distribution and compare the miss rates of
LRU and LFU to the optimal strategy, which has perfect
knowledge of every item’s popularity (Fig. 2).1 Until the
cache size increases to hold most of the universe of items,
LRU has a 25-35% higher miss rate than optimal. LFU
fares considerably better, but is far from perfect. We ad-
dress the drawbacks of LFU next.

2.3 Problems with frequency
Even if requests are drawn from a stable distribution, there
will be irregularities in practice that cause well-known
problems for frequency-based algorithms:

New items die. When an item is inserted into the cache,
the algorithm does not have a good measure of it’s pop-
ularity. In LFU, a new item gets a frequency count of 1,
and may not have enough time to build up its count to sur-
vive in the cache. In the worst case, it could be repeatedly
inserted and evicted despite being requested frequently.

1We present miss rate rather than hit rate curves because our focus is
on the penalties at the backend. Higher numbers indicate worse perfor-
mance in most figures, and the last datapoint is 0 because the cache is
large enough to never incur a miss.

Cache Size 3k 10k 30k 100k
Perfect Freq. Miss Rate 0.29 0.19 0.10 0.00

Figure 2: Simulated miss rates1 compared to a strategy with perfect
frequency knowledge. Items are sampled with Zipfian popularity (α ≈
1) from 105 items. The cache is configured to hold a fixed number of
objects (rather than simulating size in bytes).

This problem can be mitigated by storing metadata for
non-cached items (e.g., [37]), but at the cost of additional
memory that is worst-case linear in the universe size.

Old items persist. When items’ relative popularities
shift—e.g., moving fromDi toDi+1 in our model—a fre-
quency approach may take time to correct its frequency
estimates. This results in older items persisting in the
cache for longer than their current popularity warrants.
For example, consider a new item with 1 access and an
older item with 2 accesses. Initially, the new item may be
better to cache, but if time passes without an additional
access, our knowledge of the old item is more reliable.

2.4 Hyperbolic Caching
We solve the above problems by incorporating a per-item
notion of time. Intuitively, we want to compensate for the
fact that caches can only measure the frequency of an item
while it is in the cache. Traditional LFU does not account
for this, and thus overly punishes new items.

In our approach, an item’s priority is an estimate of its
frequency since it entered the cache:

pi =
ni
ti

(1)

where ni is the request count for i since it entered the
cache and ti is the time since it entered the cache. This
state is erased when i is evicted. Fig. 1 provides pseu-
docode for this policy, which we call hyperbolic caching.

Hyperbolic caching allows a new item’s priority to con-
verge to its true popularity from an initially high estimate.
This initial estimate gives the item temporary immunity
(similar to LRU), while allowing the algorithm to improve
its estimate of the item’s popularity. Over time, the prior-
ity of each item drops along a hyperbolic curve. Since
each curve is unique, the ordering of the items is contin-
uously changing. Such reordering is uniquely enabled by
our framework (lazy evaluation, random sampling), and

USENIX Association 2017 USENIX Annual Technical Conference 501

Cache Size 3k 10k 30k 100k
HC Miss Rate 0.30 0.21 0.13 0.00

Figure 3: LFU miss rate compared to hyperbolic caching (HC) on a
dynamic Zipfian workload (α ≈ 1), where new items are introduced
into the distribution every 100 requests.

would be very costly to implement with a data structure.2

The strengths of hyperbolic caching over LFU are read-
ily apparent in workloads that slowly introduce new items
into the request pool. Fig. 3 shows that LFU has a sig-
nificantly higher miss rate on a workload that introduces
new items every 100 requests whose popularities are in
the top 10% of a Zipfian distribution. This workload is
artificial and much more dynamic than we would expect
in practice, but serves to illustrate the difference.

Another way to solve the same problem is to multiplica-
tively degrade item priorities (e.g., LRFU [34]) or period-
ically reset them. Both of these are forms of windowing,
which best addresses the problem of old items persisting,
not the problem of new items dying. We compare hyper-
bolic caching to these approaches in §3.4.

3 Customizing Hyperbolic Caching
Our framework allows us to build on the basic hyper-
bolic caching scheme by adding extensions to the prior-
ity function and storing metadata needed by those exten-
sions. This is similar to the way function-based policies
build on schemes like LRU and LFU [2, 46, 52], but in
our case the extensions can freely modify item priorities
without affecting efficiency (beyond the overhead of eval-
uating the function). Which extensions to use and how
to combine them are important questions that depend on
the application. Here, we describe several extensions that
have benefited our production applications (cost, expira-
tion time) and our understanding of hyperbolic caching’s
performance (windowing, initial priority estimates).

3.1 Cost-aware caching
In cost-aware caching, all items have an associated cost
that reflects the penalty for a miss on the item. The goal is
to minimize the total cost of all misses. Cost awareness is

2The basic hyperbolic function in Eq. 1 can be tracked by a kinetic
heap [31], but this is a non-standard structure with O(log2 n) update
time, and it ceases to work if the extensions from §3 are added.

particularly relevant in web applications, because unlike
traditional OS uses of caching (fixed-size CPU instruc-
tion lines, disk blocks, etc.), the cost of fetching different
items can vary greatly: items vary in size, can originate
from different backing systems or stores, or can be the
materialized result of complex database joins.

Much of the prior work on cost-aware caching focuses
on adapting recency-based strategies to cost settings (e.g.,
GreedyDual [11]). This typically requires a new design,
because recency-based strategies like LRU-K [41] and
ARC [37] use implicit priorities (e.g., position in a linked
list) and metrics like time-of-access, which are difficult
to augment with cost. In contrast, frequency-based ap-
proaches like hyperbolic caching use explicit priorities
that can naturally be multiplied by a cost: p′i = cipi,
where ci is the cost of fetching item i and pi is the origi-
nal (cost-oblivious) priority of i. Note that pi may include
other extensions from later sections.

The cost of an item needs to be supplied to the caching
algorithm by the application. It can take many forms.
For example, if the goal is to limit load on a backing
database [35], the cost could be request latency. If the
goal is to optimize the hit rate per byte of cache space
used, the cost could be item size [11].

Real-world applications. Our evaluation studies two
applications which benefit from cost awareness. The first
is a set of applications using Memcachier [38], a produc-
tion cloud-based caching service built on Memcache. We
use costs to account for object size in the eviction deci-
sion, i.e., set ci = 1/si where si is the size of item i. The
second application is Viral Search [25, 51], a Microsoft
internal website that displays viral stories from Twitter in
tree form. Virality is measured by analyzing the diffu-
sion tree of the story as it is shared through the network.
For each story, the website fetches the tree edges and con-
structs and lays them out for display. The final trees are
cached and the cost of each is set to the time required to
construct and lay out the tree.

3.2 Cost classes
In many applications, the costs of items are related to
one another. For example, some items may be created
by database joins, while others are the result of simple in-
dexed lookups. Rather than measuring the cost of each
item individually, we can associate items with a cost class
and measure the performance of each class. We store a
reference to the class in each item’s metadata.

Cost classes have two main advantages. Consider the
example of request latency to a backend database. If costs
are maintained per item, latencies must be measured for
each insertion into the cache. Since these measurements
are stochastic, some requests will experience longer de-

502 2017 USENIX Annual Technical Conference USENIX Association

lays than others and thus be treated as more costly by the
cache, even though the higher cost has nothing to do with
the item itself. What’s more, the higher costs will keep
these items in the cache longer, preventing further updates
because costs are only measured when a miss occurs. By
using cost classes, we can aggregate latency measure-
ments across all items of a class (e.g., in a weighted mov-
ing average), resulting in a less noisy estimate of cost.

The second advantage of cost classes comes from
longer-term changes to costs. In scenarios where a replica
failure or workload change affects the cost of fetching a
whole class of items, existing approaches would only up-
date the individual costs after the items have been evicted,
one by one. However, when using cost classes, a change
to a class’s cost is immediately applied to both newly
cached items and items already in the cache.

In both cases above, a single update to a cost class
changes the priorities of many items at once, possibly
dramatically. Our framework supports this with little ad-
ditional overhead because 1) items store a reference to
the class information, and 2) priorities are lazily evalu-
ated. In contrast, integrating cost classes into existing
caching schemes is prohibitively expensive because it in-
curs widespread churn in the data structures they rely on.

Interestingly, some production systems already employ
cost classes implicitly, via more inflexible and inelastic
means. For example at Facebook, the Memcached ser-
vice is split among a variety of pools, such that keys that
are accessed frequently but for which a miss is cheap do
not interfere with infrequently accessed keys for which a
miss is very expensive [40]. However, this scheme re-
quires much more management and requires tuning pool
sizes; more importantly, it does not automatically adapt to
changes in request frequencies or item costs.

In our experiments, we implement cost classes using
exponentially weighted moving averages. We explored
other techniques such as non-weighted moving averages
and using the most recent cost, but exponentially weighted
moving averages performed the best on our workloads
while requiring little memory overhead for tracking.

While cost classes are useful in many settings, incor-
rectly assigning objects to the same class that do not share
the same underlying cost will degrade caching perfor-
mance. In some settings, objects may be members of
multiple classes concurrently—there are several ways of
handling this, but we do not explore this in our work.

Real-world application. Django is a Python framework
for web apps that includes a variety of libraries and com-
ponents. One such component adds support for whole-
page caching. We modified this middleware to support
cost awareness, as follows. In Django, page requests are

dispatched to “view” functions based on the URL. We as-
sociate a cost class with each view function, and map in-
dividual pages to their view function’s class.
3.3 Expiration-aware caching
Many applications need to ensure that the content con-
veyed to end users is not stale. Developers achieve this
by specifying an expiration time for each item, which
tells the caching system how long the item remains valid.
While many systems support this feature, it is typically
handled by an auxiliary process that has no connection
to the caching algorithm (apart from evicting already-
expired items). But incorporating expiration into caching
decisions makes intuitive sense: if an item is going to ex-
pire soon, it is less costly to evict than a similarly popular
item that expires later (or not at all).

To add expiration awareness to hyperbolic caching, we
need to strike a balance between the original priority of an
item and the time before it expires. Rather than evict the
item least likely to be requested next, we want to evict the
item most likely to be requested the least number of times
over its lifetime. This can be naturally captured by multi-
plying item i’s priority by the time remaining until expiry,
or max((texpi − tcur), 0). However, this scheme equally
prioritizes requests far into the future and those closer to
the present, which is unideal because estimates about the
future are less likely to be accurate (e.g., the item’s popu-
larity may change). Therefore, instead of equally weight-
ing all requests over time, we use a weighting function
that discounts the value of future requests:

p′i = pi · (1− e−λ·max((texpi
−tcur),0))

where pi is the original (expiration-unaware) priority of
item i and λ is a parameter controlling how quickly to
degrade the value of future requests. As an item’s time
until expiration decreases, this weighting function sharply
approaches zero. Thus the function continually reweights
(reorders) item priorities, which is uniquely enabled by
our framework: existing approaches can only account for
expiration time once, on insertion into a data structure.

Real-world application. The Decision Service [1,39] is
a machine learning system for optimizing decisions that
has been deployed in MSN to personalize news articles
shown to users. Given a user request, a particular article
is featured and a reward signal (e.g., click) is recorded.
Since rewards may arrive after a substantial delay, a cache
is used to match the decision to its reward. Rewards are
only valid if they occur within a time window after the
decision, so each cached item is given an expiration time.
3.4 Windowing
Windowing is often used in frequency-based caching to
adapt to dynamic workloads and address the problem of

USENIX Association 2017 USENIX Annual Technical Conference 503

Cache Size 3k 10k 30k 100k
HC Miss Rate 0.32 0.22 0.13 0.00

LFU Miss Rate 0.44 0.21 0.13 0.00

Figure 4: Adding perfect windowing to hyperbolic caching and LFU
on a dynamic Zipfian workload (α ≈ 1). Each curve is compared to
the algorithm’s non-windowed performance (given in the table). The
window size is fixed at 104 requests. Every 100 requests, an item is
promoted to the top of the distribution.

“old items persisting”. The idea is to forget requests
older than a fixed time window from the present. Hyper-
bolic caching naturally achieves the benefits of window-
ing, but we investigate it for two reasons. First, one can
show that hyperbolic caching, unlike LRU, is not optimal
in the traditional competitive analysis model [47], but it
can be made optimal if windowing is used. Second, win-
dowing represents alternative solutions, such as resetting
or multiplicatively degrading frequency estimates (e.g.,
LRFU [34]), and so serves as an informative comparison.

We simulate windowing using an idealized (but com-
pletely inefficient) scheme that tracks every request and
forgets those older than the window. This upper bounds
the potential gains of windowing. Fig. 4 shows the perfor-
mance of LFU and hyperbolic caching on a dynamic Zip-
fian workload, with and without windowing. For hyper-
bolic caching, windowing provides limited benefits: 5–
10% reduction in misses on small cache sizes; LFU ben-
efits more but again on small cache sizes. The problem
is that windowing discards measurements that help the
cache estimate item popularity. Even in dynamic work-
loads, we find that large-sized caches can accommodate
newly popular items, so performance depends more on
the ability to differentiate at the long tail of old items.
Fortunately, hyperbolic caching’s measure of time in the
cache achieves some of the benefits of windowing; it out-
performs even recency-based approaches on many of the
highly dynamic workloads we evaluated.

3.5 Initial priorities
Hyperbolic caching protects newly cached items by giv-
ing them an initial priority that tends to be an overes-
timate: for example, an item with true popularity of
1%—placing it among the most popular in most realis-
tic workloads—would remain overvalued for at least 100
timesteps of hyperbolic decay. We found that adjusting

the initial priority based on that of recently evicted items
alleviates this problem, because evicted items tend to have
similar priorities in the tail of the distribution. Thus, we
set a new item’s initial priority to a mixture of its orig-
inal priority (pi) and the last evicted item’s priority (pe):
p′i = βpi+(1−β)pe. Solving this for ni in Eq. 1 gives us
the initial request count to use, after which the extension
can be discarded. β requires some tuning: we found that
β = 0.1 works well on many different workloads; for ex-
ample, on a Zipfian workload (α ≈ 1) it reduced the miss
rate by between 1% and 10% over hyperbolic caching for
all cache sizes.

4 Implementation
Our evaluation uses both simulation and a prototype im-
plementation. For the simulations, we developed a Python
application that generates miss rate curves for different
caching strategies and workloads. For our prototype, we
implemented hyperbolic caching in Redis and developed
Django middleware that uses the modified Redis. Our
code is open-source [28].

Redis. We modified Redis (forked at 3.0) to use the hy-
perbolic caching framework. This was straightforward be-
cause Redis already uses random sampling for eviction.
We included support for per-item costs (and size aware-
ness), cost classes tracked with an exponentially weighted
moving average, and initial priorities. Excluding diagnos-
tic code, this required 380 lines of C code.

We store the following metadata per item, using
double-precision fields: item cost, request count, and time
of entry (from Eq. 1 and §3.1). This is two doubles
of overhead per item compared to LRU. Our prototype
achieved similar miss rates to our simulations, suggest-
ing this precision is adequate. Exploring the trade-offs of
reduced precision in these fields is left to future work.

Django caching middleware. Django is a framework
for developing Python web applications. It includes sup-
port for middleware classes that enable various function-
ality, such as the Django whole-page caching middleware.
This middleware interposes on requests, checking a back-
end cache to see whether a page is cached, and if so, the
content is returned to the client. Otherwise, page process-
ing continues as usual, except that the rendered page is
cached before returning to the client. We added middle-
ware to track cost information for web pages; we mea-
sure cost as the CPU time between the initial miss for
a page and the subsequent SET operation, plus the total
time for database queries. This avoids time lost due to
processor scheduling. We subclassed the Django Redis
caching interface to convey cost information to our Redis
implementation. The interface supports caching a page

504 2017 USENIX Annual Technical Conference USENIX Association

with/without costs, and optionally specifying a cost class
for the former. Cost classes are associated with the par-
ticular Django “view” function that renders the page. In
total, this was implemented in 127 lines of Python code.

5 Evaluation
Our evaluation explores the following questions:

1. How does hyperbolic caching compare to current
caching techniques in terms of miss rate?

2. Does our implementation of hyperbolic caching in
Redis improve the throughput of web applications?

3. What effect does sample size have on the accuracy
and performance of our eviction strategy?

We use real application traces (§5.1) and synthetic
workloads designed to emulate realistic scenarios (§5.2).
We evaluate these questions using simulations as well as
deployments of Django and NodeJS, using our prototype
of hyperbolic caching in Redis. To drive our tests, our ap-
plications run on Ubuntu 14.04 servers located on a single
rack with Intel Xeon E5620 2.40GHz CPUs. Applica-
tions use PostgreSQL 9.3 as their backing database. For
throughput tests, our systems were loaded exclusively by
the test, and to measure max throughput, we increased the
rate of client requests until throughput plateaued and the
application server experienced 100% CPU load.

Methodology. For the majority of our standard work-
loads, we use a Zipfian request distribution with α ≈
1. This is the same parameterization as many well-
studied benchmarks (e.g., YCSB [15]), though some like
linkbench [5] use a heavier-tailed α = 0.9. When measur-
ing miss rates, we tally misses after the first eviction (i.e.,
we allow the cache to fill first). For workloads with associ-
ated item costs, misses are scaled by cost. For real traces,
we run the tests exactly as prescribed; for workloads based
on popularity distributions, we generate enough requests
to measure the steady state performance. When choosing
a cache size to compare performance amongst algorithms,
we use the size given by the trace, or if not given we
use sizes corresponding to high and middle range hit rates
(roughly 90% and 70%), which reflect the cache hit rates
reported in many deployed settings (e.g, [6,27]). In Face-
book [27], of the 35.5% of requests that leave a client’s
browser (the rest are cached locally), ~70% are cached in
either the edge cache or the origin cache. For our random
sampling, unless otherwise noted, we sample 64 items.

5.1 Real-world workloads
We evaluate real applications in two ways. When lack-
ing access to the actual application code or deployment
setting, we evaluate the performance through simulation.
For other applications, we measure the performance using
our prototype implementation of Django caching paired

(a) Simulated miss rates compared to the miss rate of LRU.

App Number 1 2 3 4 5 6 7 8

Mean Obj. Sz. (kB) 79.9 15.4 1.8 149.7 561.7 2.3 1.1 25.0

Stdev Obj. Sz. (kB) 116.5 40.4 9.0 254.5 100.8 3.1 7.9 46.6

App Number 9 10 11 12 13 14 15 16

Mean Obj. Sz. (kB) 5.4 8.1 7.2 5.5 2.2 30.8 26.0 9.0

Stdev Obj. Sz. (kB) 5.1 13.5 17.9 2.0 4.3 52.2 3.1 25.4

(b) Means and stdevs. of object sizes in app traces.

Figure 5: Caching performance on Memcachier app traces.

with Redis. The applications below were described in §3,
when we customized hyperbolic caching to each one.
5.1.1 Memcachier applications (from §3.1)
To evaluate the Memcachier applications, we processed a
trace of GET and SET requests spanning hundreds of ap-
plications, using the amount of memory allocated by each
application as the simulated cache size. We focused our
attention on the 16 applications with over 10k requests
whose allocation could not fit all of the requested objects
(many applications allocated enough memory to avoid any
evictions). We measured the miss rates of plain HC and
LRU, and then used the object sizes to evaluate our size-
aware extension, HC-Size, and the GD-Size [11] algo-
rithm. Fig. 5 show the performance of the algorithms over
a single execution of each application’s trace.

In our evaluation, HC outperforms LRU in many appli-
cations, and HC-Size drastically outperforms LRU. While
GD-Size is competitive with HC-Size, our framework al-
lows for the implementation of HC-Size with only two
lines of code, whereas implementing GD-Size from LRU
requires an entirely new data structure [11].
5.1.2 Decision Service (from §3.3)
The Decision Service [1,39] is a machine learning system
for optimizing decisions that has been deployed in MSN.
The service uses a cache to join information about each
decision with the corresponding reward signal. Because
rewards must be received within a given period of time,
information is cached with an expiration time.

USENIX Association 2017 USENIX Annual Technical Conference 505

Decision Service Viral Search

Algo. Miss Rate (∆%) Miss Rate (∆%)

HC 0.60 (+0%) 0.17 (+0%)
HC-Expire 0.55 (-8%) —

LRU/GD 0.55 (-8%) 0.18 (+6%)
ARC 0.55 (-8%) 0.22 (+29%)
LFU 0.99 (+65%) 0.16 (-6%)

Cache Size 1k 35k

Figure 6: Simulated performance on real-world traces.

Cache Alg. Miss Rate (∆) Tput. (∆)

Default 0.681 (+0.0%) 21.1 req/s (+0.0%)
HC 0.637 (-6.5%) 23.7 req/s (+12.3%)

HC-Cost 0.669 (-1.8%) 21.1 req/s (+0.0%)
HC-Class 0.639 (-6.2%) 22.6 req/s (+7.1%)

Obj. Sizes µ = 32.0kB σ = 31.6kB

Figure 7: Performance of Django-Wiki application using HC Redis
compared to default Redis. The cache is sized to 1GB and the work-
load is a 600k trace of Wikipedia article requests.

In this workload, because items have the same expira-
tion time and are accessed only once after insertion (to
join the reward information), recency is roughly equal to
time-until-expiration. Therefore, LFU and HC perform
poorly in comparison to a recency strategy (Fig. 6). How-
ever, our expiration-aware extension allows HC-Expire to
perform just as well as the recency strategies.
5.1.3 Viral Search (from §3.1)
The Viral Search [25,51] application is an interactive web-
site that displays viral stories from a large social network.
Each viral story is represented as a tree that requires vary-
ing amounts of time to construct and layout on the server
side. We use this time as the per-item cost and apply our
cost-aware extension. Items are requested based on a pop-
ularity distribution given by each item’s “virality score”
and we measure performance over 10M requests.

Hyperbolic caching performs well on this cost-aware
workload, beating all algorithms except for LFU (Fig. 6),
and suffering 6% fewer misses than GreedyDual.
5.1.4 Django Wiki application (from §3.2)
We evaluate our caching scheme on an open-source
Django wiki app using our Django caching middleware.
The caching middleware stores cached data using a con-
figurable backend, for which we use either the default Re-
dis or our modified version with hyperbolic caching.

The wiki database serves a full copy of articles on
Wikipedia from Jan. 2008. We measured the throughput
and miss rate of the application using a trace of Wikipedia
article requests from Sept. 1, 2007 (Fig. 7). We see an
improvement in both miss rate and throughput when us-
ing HC rather than default Redis. Note that because the
pages are costly to render, even small improvements in

Trace P1 P2 P3 P4 S1 F WS

Cache Sz (objs) 32k 32k 32k 32k 525k 32k 525k
Miss Rate 0.72 0.73 0.88 0.91 0.81 0.50 0.85

Figure 8: Miss rates compared to HC on traces from the ARC paper
and SPC (HC’s miss rates are in the table). Cache sizes chosen based on
sizes given in the ARC paper.

miss rate increase the throughput of the application. For
this application, requests are only processed by two dif-
ferent Django views.

However, using HC-Cost reduces the system through-
put compared to HC. This is because the time to render
a page is similar across most pages, but has high vari-
ance: for one page, the mean time of fifty requests was
570ms with a deviation of 180ms. This leads a cost-aware
strategy to incorrectly favor some pages over others. HC-
Class alleviates this by reducing some of the variance, but
it still performs worse than the cost-oblivious HC. For this
application, using costs is counter-productive.
5.1.5 ARC and SPC traces
We additionally simulate performance on traces from
ARC [37] and SPC [48] (Fig. 8). The P1-4 traces are
memory accesses from a workstation computer; S1 and
WebSearch are from a server handling web searches; and
the Financial workload is an OLTP system trace. Caches
were sized according to the ARC paper, and these sizes
were used for the SPC traces as well. These traces have
very high miss rates on all eviction strategies. How-
ever, HC performs very well, outperforming LRU in every
workload and underperforming ARC in the P1-4 traces
only. Importantly, on workloads where LFU exhibits poor
performance, HC remains competitive with ARC, demon-
strating the effectiveness of our improvements over LFU.

5.2 Synthetic workloads
In this section, we simulate and compare the perfor-
mance of HC to three popular strategies—ARC, LFU, and
LRU—on synthetic workloads that reflect the demands
of today’s caches. For cost-aware workloads, we extend
LRU with GreedyDual, and we modify LFU by multiply-
ing frequencies by cost. (ARC is not amenable to costs.)

For each synthetic workload, we evaluate the perfor-
mance of each caching algorithm on two cache sizes,
corresponding to a 90% and a 70% hit rate with hyper-

506 2017 USENIX Annual Technical Conference USENIX Association

(a) Cache size fixed where hit rate of HC ≈ 90%.

(b) Cache size fixed where hit rate of HC ≈ 70%.

Figure 9: Miss rates on synthetic workloads with 10M requests. Miss
rates are compared to the performance of HC. For cost-aware strategies
(GD1-GD3), misses are scaled by the cost of the missed item.

bolic caching (Fig. 9). Note that while we simulated rela-
tively small key spaces, we evaluated our Redis prototype
on larger key spaces and found similar improvements in
miss rate and overall system throughput. In general, these
workloads suggest that HC can perform very well in a va-
riety of scenarios.

The most striking improvement relative to ARC is
on workloads GD1-3. These workloads have associ-
ated costs and are based on the workloads described in
GDWheel [35]. Since ARC is a cost-oblivious strategy, it
does poorly on these workloads. However, even in work-
loads without cost, our scheme is competitive with ARC.
5.2.1 Synthetic web application performance.
In order to understand how our improved miss rates affect
end-to-end throughput in modern web servers, we config-
ured a NodeJS web app to use a backing database with Re-
dis as a look-aside cache. We drive HTTP GET requests
to the web app from a client that draws from synthetic
distributions. The web app parses the URL and returns
the requested object. Objects are stored as random 32B
strings in a table with object identifier as the primary key.

Relating cache misses to throughput. To understand
the association between miss rate and throughput, we
scaled the size of our Redis cache to measure system
throughput with different miss rates (Fig. 10). Miss rate
has a direct impact on throughput even when many client
requests can be handled concurrently. Misses not only
cause slower responses from the backend (an effect which
can be mitigated with asynchronous processing), but they

Figure 10: Throughput of NodeJS using Redis as a look-aside cache for
PostgreSQL as the miss rate varies.

Default Redis HC Redis
Cache sz. Mean tput. Miss Mean tput. Miss ∆ tput.

(objs.) (kreq/s) rate (kreq/s) rate

Zipfian (α ≈ 1, N = 105)

39k 18.1± 0.22 0.11 20.2± 0.18 0.09 10.3%
3k 9.1± 0.09 0.38 10.5± 0.06 0.31 13.5%

Zipfian (α = 0.75, N = 106)

125k 7.5± 0.06 0.55 7.7± 0.16 0.49 3.2%
70k 6.8± 0.06 0.64 7.3± 0.12 0.56 6.3%

Zipfian (α ≈ 1, N = 106)

200k 14.6± 0.16 0.17 15.3± 0.13 0.16 4.4%
50k 11.2± 0.11 0.28 12.1± 0.20 0.24 7.1%

Dynamic Intro. (N = 105)

42k 19.3± 0.17 0.10 20.6± 0.16 0.09 6.3%
5k 10.0± 0.15 0.33 11.3± 0.12 0.27 11.6%

Figure 11: Miss rate and throughput of workloads running on NodeJS
with a Redis cache. Each configuration was executed 10 times with
workloads of 5M requests to objects of size 96B.

also require additional processing on the web server—on
a miss, the app issues a failed GET, a SQL SELECT, and
then a PUT request. This adds a direct overhead to the
throughput of the system.

Zipfian distribution. We measured the maximum
throughput of our NodeJS server when servicing requests
sampled from synthetic workloads with zipfian request
distributions (Fig. 11.) Depending on the workload, hy-
perbolic caching outperforms Redis’s default caching al-
gorithm (LRU approximated by random sampling) in miss
rates by 10-37%, and improves throughput by up to 14%
on some workloads. While throughput differences of 5-
10% on some workloads may be modest, they are not in-
significant, and come with little implementation burden.

Cost-aware caching. To measure the potential through-
put benefits of cost-aware caching, we wrote a NodeJS
app that makes two types of queries to the backend: (1) a
simple key lookup and (2) a join. The app measures the
latency of backend operations and uses that as the item’s
cost. In our experiment, the cache can hold 30k objects,
and we drive the app with 1M requests sampled from a
Zipfian distribution (α ≈ 1). When using normal HC, we
measured a throughput of 5.0 kreq/s and a miss rate of

USENIX Association 2017 USENIX Annual Technical Conference 507

(a) Throughput measured over 30 second windows.

(b) Tail latency measured over 30 second windows.

Figure 12: Performance of NodeJS app fetching items from two differ-
ent PSQL servers using HC with per-item and per-class costs. After 2
minutes, one PSQL server is stressed and takes longer to fetch items.
The cache holds 30k objects and requests are Zipfian (α ≈ 1).

0.11. When using HC-Cost, the miss rate was 0.17, which
is 57% higher, but the throughput was 9.4 kreq/s, an 85%
improvement over HC. HC-Cost traded off miss rate for
lower overall cost, increasing overall performance.

Responding to backend load with classes. To demon-
strate how cost classes can be used to deal with backend
load, we designed a NodeJS application which performs
key lookups on one of two different PSQL servers. The
application measures the latency of the backend operation
and uses that as the cost in our Redis prototype. Addi-
tionally, it sets the class of each cached object to indicate
which backend served the object. This way, HC-Class
will use a per-class cost estimate (exponentially WMA)
when deciding which items to evict, rather than per-item.
We evaluate the application by driving it with requests
and measuring throughput and tail latency (Fig. 12). Two
minutes into our test, we stress one PSQL backend using
the Unix script stress. When one backend is loaded,
throughput decreases and tail latency increases. By using
per-class costs, HC-Class quickly adjusts to one class be-
ing more costly. With per-item costs, however, HC-Cost
is only able to update the costs of items when they are
(re)inserted. As a result, HC-Cost needs more time to set-
tle to steady state performance as item costs are slowly
updated to their correct values.

5.3 Accuracy of random sampling
Our eviction strategy’s sampling impacts its miss-rate.
Prior work [42] has studied the impact of this sampling in
detail. Using order statistics [17], one can easily show that

Figure 13: Simulated performance of HC for different sampling sizes
compared to finding the true minimum. The request workloads are Zip-
fian distributions with different skew parameters.

Figure 14: Simulation of HC using sampling technique that retains M
items [42] on a Zipfian workload with α ≈ 1.4, compared to the perfor-
mance of finding the true minimum.

the expected rank of an evicted item is n/(S + 1), where
n is the number of items in the cache and S is the sample
size. For example, a cache of n = 10k items and a sample
of S = 64 would evict the 154th lowest item on average.
In practice we found that this loss of accuracy is not prob-
lematic. Specifically, we measured and compared the miss
rate curves for varying sample sizes on two different pop-
ularity skews (Fig. 13). While the smoothness of the pri-
ority distribution impacts this accuracy—and extensions
like expiration may introduce jaggedness into priorities—
the dominating factor is how heavy the tail is and the like-
lihood of sampling an item from it. Sampling performs
worse on the lighter-tailed distribution because there are
fewer tail items in the cache, making them less likely to be
sampled. However, for the sample size we use (S = 64),
the performance gap relative to full accuracy is slight. Al-
though this varies depending on the workload and cache-
size, a sample of 64 items was large enough in all of our
experiments, so the additional improvement of better sam-
pling techniques would be limited. Further increasing the

508 2017 USENIX Annual Technical Conference USENIX Association

sample size is not without cost: each sampled item’s pri-
ority must be evaluated, which could become expensive
depending on the complexity of the priority function.

Psounis and Prabhakar [42] proposed an optimization
to random sampling that retains some number of samples
between evictions. This can boost the accuracy of ran-
dom sampling, however in our tests we found the miss
rate benefits to be minimal. On the light-tail distribution
(Fig. 14), we compare performance to the suggested set-
tings of their technique. While performance does improve
for smaller caches, the benefits are more limited as cache
size increases. We believe this is because tail items in a
large cache tend to be new items that are less likely to
be retained from prior evictions, though a more in-depth
analysis is needed to confirm this. As the benefits are lim-
ited (and parameters are sensitive to cache size and work-
load), we did not use this optimization.

6 Related Work
Our introduction and subsequent discussions survey the
landscape of caching work, including recency-based ap-
proaches (e.g., [16, 41, 53]), frequency-based or hybrid
approaches (e.g., [34,37]), marking algorithms and partial
orderings (e.g., [16, 22]), and function-based approaches
(e.g., [2, 46, 52]). All of these approaches rely on data
structures and thus cannot achieve the flexibility and ex-
tensibility of hyperbolic caching.

Consider the approaches that improve recency caching
by using multiple queues to incorporate some frequency
measures into eviction. LRU-K [41] stores items in k
queues and evicts based on the k-th most recent access.
Other works employing multiple queues include 2Q [30],
MQ [55], and LIRS [29]. ARC [37] automatically tunes
the queue sizes of an LRU-2-like configuration. Several of
these algorithms incorporate ghost caches, which track in-
formation about items no longer in the cache. (This tech-
nique could also be applied to hyperbolic caching, but we
focused our work on caches that store information about
items residing in the cache, as most production caches
do.) All of these strategies incorporate frequency to bal-
ance the downsides of LRU. However, they are difficult to
adapt to handle costs or other factors, due to their use of
time-of-access metrics and priority orderings.

GreedyDual [53] exemplifies this difficulty because it
attempts to incorporate cost into LRU, requiring a re-
design. Cao and Irani [11] implemented GreedyDual us-
ing priority queues for size-aware caching in web proxies,
and GDWheel [35] implemented GreedyDual in Mem-
cached using a more efficient wheel data structure. The
RIPQ system uses size awareness in a flash-based caching
system [49]. Other cost-aware strategies have incorpo-
rated properties such as freshness (e.g., [46]), which is

similar to expiration times but not as strict. In contrast to
these approaches, a priority function based on frequency
can easily adopt cost, expiration, or other factors.

Hyperbolic caching learns from the above and adopts
a function-based approach based on frequency. The
GDSF [13] work incorporates frequency into their priority
function, while Yang and Zhang [52] use a priority func-
tion that is also similar to ours. However, these strategies
build their solution on GreedyDual by setting an item’s
cost equal to its priority. In our tests, we found that the
interaction between GreedyDual’s priority queue and this
frequency led to poor performance (3-4x the miss rate of
LRU). Moreover, using a queue forces these strategies to
“freeze” an item’s priority once it enters the structure; in
contrast, our priorities evolve continuously and freely.

Recent work in the systems community has looked at
other aspects of caching that we do not address, such
as optimizing memory overheads [19, 21], multi-tenant
caching [14, 43], balancing memory slabs [14], cache ad-
mission [19], and reducing flash erasures when using flash
storage [12, 36, 49]. Hyperbolic caching does not require
memory for ordering data structures, but uses space to
store the metadata used to compute item priorities. We
have not studied allocation across multiple caches, but
note that our framework obviates the need for separately
tuned caches in some cases, e.g., by using our cost class
extension to manage the pools of caches described in [40].

7 Conclusion
We have presented the design and implementation of hy-
perbolic caching. Our work combines theoretical insights
with a practical framework that enables innovative, flex-
ible caching. Notably, the priority function we use re-
orders items continuously along hyperbolic curves. We
implemented our work in Redis and Django and applied
it to a variety of real applications and systems. By using
different extensions, we are able to match or exceed the
performance of one-off caching solutions. A deeper anal-
ysis of the described extensions, such as for cost classes
and expiration times, is part of our future work.

Acknowledgments. This work was supported by NSF
CAREER Award #0953197. Part of this work was con-
ducted during an internship at MSR NYC. We thank Amit
Levi for access to Memcachier traces and Asaf Cidon
for his help in obtaining them. We thank Siddhartha
Jayanti for his assistance with theoretical analyses. Muthu
Muthukrishnan coined the name “hyperbolic caching”.
Finally, we thank our shepherd, Rachit Agarwal.

USENIX Association 2017 USENIX Annual Technical Conference 509

References
[1] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang,

J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri,
O. Ribas, S. Sen, and A. Slivkins. A multiworld test-
ing decision service. CoRR, abs/1606.03966, 2016.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching
on the world wide web. IEEE Trans. Knowledge and
Data Eng., 11(1):95–107, 1999.

[3] S. Albers, L. M. Favrholdt, and O. Giel. On pag-
ing with locality of reference. J. Comput. Syst. Sci,
70(2):145–175, 2005.

[4] Amazon ElastiCache. http://aws.amazon.
com/elasticache.

[5] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. Linkbench: a database benchmark
based on the Facebook social graph. In SIGMOD,
2013.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In SIGMETRICS, 2012.

[7] Azure Redis Cache. https://azure.
microsoft.com/en-us/services/cache.

[8] A. Balamash and M. Krunz. An overview of web
caching replacement algorithms. IEEE Communica-
tions Surveys and Tutorials, 6(1-4):44–56, 2004.

[9] A. Borodin, S. Irani, P. Raghavan, and B. Schieber.
Competitive paging with locality of reference. J.
Comput. System Sci., 50(2):244–258, 1995.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In INFOCOM, pages
126–134, 1999.

[11] P. Cao and S. Irani. Cost-aware WWW proxy
caching algorithms. In Proc. Symposium on Inter-
net Technologies and Systems (USITS), 1997.

[12] Y. Cheng, F. Douglis, P. Shilane, M. Trachtman,
G. Wallace, P. Desnoyers, and K. Li. Erasing be-
lady’s limitations: In search of flash cache offline
optimality. In USENIX ATC, 2016.

[13] L. Cherkasova and G. Ciardo. Role of aging, fre-
quency, and size in web cache replacement policies.
In Conf. on High-Performance Computing and Net.,
2001.

[14] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web
memory caches. In NSDI, 2016.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In SOCC, 2010.

[16] F. J. Corbato. A paging experiment with the multics
system. In Feshbach and Ingard, editors, In Honor of
Philip M. Morse, pages 217–228. MIT Press, 1969.

[17] H. A. David and H. N. Nagaraja. Order Statistics.
Wiley Series in Probability and Statistics, 2003.

[18] Django. https://www.djangoproject.
com.

[19] G. Einziger and R. Friedman. TinyLFU: A highly
efficient cache admission policy. In Proc. Parallel,
Dist. and Net. Processing, 2014.

[20] J. B. Estoup. Gammes stenographiques., 1916.

[21] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent MemCache with dumber
caching and smarter hashing. In NSDI, 2013.

[22] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.
Sleator, and N. E. Young. Competitive paging al-
gorithms. Journal of Algorithms, 12(4):685–699,
1991.

[23] B. Fitzpatrick. Distributed caching with Mem-
cached. Linux J., 2004(124):5–5, 2004.

[24] P. A. Franaszek and T. J. Wagner. Some distribution-
free aspects of paging algorithm performance. J.
ACM, 21(1):31–39, 1974.

[25] S. Goel, A. Anderson, J. M. Hofman, and D. J.
Watts. The structural virality of online diffusion.
Management Science, 62(1):180–196, 2016.

[26] Guava: Google Core Libraries for Java. https:
//github.com/google/guava.

[27] Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of Facebook
photo caching. In SOSP, 2013.

[28] Hyperbolic caching. https://github.com/
kantai/hyperbolic-caching.

[29] S. Jiang and X. Zhang. LIRS: an efficient low inter-
reference recency set replacement policy to improve
buffer cache performance. In SIGMETRICS, 2002.

510 2017 USENIX Annual Technical Conference USENIX Association

http://aws.amazon.com/elasticache
http://aws.amazon.com/elasticache
https://azure.microsoft.com/en-us/services/cache
https://azure.microsoft.com/en-us/services/cache
https://www.djangoproject.com
https://www.djangoproject.com
https://github.com/google/guava
https://github.com/google/guava
https://github.com/kantai/hyperbolic-caching
https://github.com/kantai/hyperbolic-caching

[30] T. Johnson and D. Shasha. 2Q: A low overhead high
performance buffer management replacement algo-
rithm. In VLDB, 1994.

[31] H. Kaplan, R. E. Tarjan, and K. Tsioutsioulik-
lis. Faster kinetic heaps and their use in broadcast
scheduling. In SODA, pages 836–844, 2001.

[32] A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov
paging. SIAM J. Computing, 30(3):906–922, 2000.

[33] E. Koutsoupias and C. H. Papadimitriou. Be-
yond competitive analysis. SIAM J. Computing,
30(1):300–317, 2000.

[34] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C.-S. Kim. LRFU: A spectrum of
policies that subsumes the least recently used and
least frequently used policies. IEEE Trans. Comput.,
50(12):1352–1361, 2001.

[35] C. Li and A. L. Cox. GD-Wheel: A cost-aware re-
placement policy for key-value stores. In EUROSYS,
2015.

[36] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pan-
nier: A container-based flash cache for compound
objects. In Proc. IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware), 2015.

[37] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In FAST, 2003.

[38] Memcachier. http://www.memcachier.com.

[39] Multiworld Testing Decision Service. http://
aka.ms/mwt.

[40] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In NSDI, 2013.

[41] E. J. O’neil, P. E. O’neil, and G. Weikum. The
LRU-K page replacement algorithm for database
disk buffering. SIGMOD Record, 22(2):297–306,
1993.

[42] K. Psounis and B. Prabhakar. Efficient random-
ized web-cache replacement schemes using samples
from past eviction times. IEEE/ACM Trans. Net-
working, 10(4):441–455, 2002.

[43] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica.
Fairride: Near-optimal, fair cache sharing. In NSDI,
pages 393–406, 2016.

[44] Redis Key-Value Store. http://http://
redis.io.

[45] Using Redis as an LRU Cache. https://redis.
io/topics/lru-cache#approximated-
lru-algorithm.

[46] J. Shim, P. Scheuermann, and R. Vingralek. Proxy
cache algorithms: Design, implementation, and per-
formance. IEEE Trans. Knowledge and Data Eng.,
11(4):549–562, 1999.

[47] D. D. Sleator and R. E. Tarjan. Amortized effi-
ciency of list update and paging rules. Comm. ACM,
28(2):202–208, 1985.

[48] Storage Performance Council Trace Repository.
http://www.storageperformance.org/
specs/#traces, 2002.

[49] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
RIPQ: Advanced photo caching on flash for Face-
book. In FAST, 2015.

[50] Varnish HTTP Cache. https://www.
varnish-cache.org.

[51] ViralSearch: Identifying and Visualizing Viral Con-
tent. https://www.microsoft.com/en-
us/research/video/viralsearch-
identifying-and-visualizing-viral-
content/.

[52] Q. Yang and H. Zhang. Taylor series prediction:
A cache replacement policy based on second-order
trend analysis. In HICSS. IEEE, 2001.

[53] N. Young. Competitive paging and dual-guided
on-line weighted caching and matching algorithms.
PhD thesis, Princeton University, 1991.

[54] N. E. Young. On-line file caching. Algorithmica,
33(3):371–383, 2002.

[55] Y. Zhou, J. Philbin, and K. Li. The multi-queue re-
placement algorithm for second level buffer caches.
In USENIX ATC, 2001.

[56] G. K. Zipf. Selected studies of the Principle of Rel-
ative Frequency in Language. Harvard Univ. Press,
1932.

USENIX Association 2017 USENIX Annual Technical Conference 511

http://www.memcachier.com
http://aka.ms/mwt
http://aka.ms/mwt
http://http://redis.io
http://http://redis.io
https://redis.io/topics/lru-cache#approximated-lru-algorithm
https://redis.io/topics/lru-cache#approximated-lru-algorithm
https://redis.io/topics/lru-cache#approximated-lru-algorithm
http://www.storageperformance.org/specs/#traces
http://www.storageperformance.org/specs/#traces
https://www.varnish-cache.org
https://www.varnish-cache.org
https://www.microsoft.com/en-us/research/video/viralsearch-identifying-and-visualizing-viral-content/
https://www.microsoft.com/en-us/research/video/viralsearch-identifying-and-visualizing-viral-content/
https://www.microsoft.com/en-us/research/video/viralsearch-identifying-and-visualizing-viral-content/
https://www.microsoft.com/en-us/research/video/viralsearch-identifying-and-visualizing-viral-content/

Execution Templates: Caching Control Plane Decisions for
Strong Scaling of Data Analytics

Omid Mashayekhi Hang Qu Chinmayee Shah Philip Levis
Stanford University

Abstract

Control planes of cloud frameworks trade off between
scheduling granularity and performance. Centralized
systems schedule at task granularity, but only schedule
a few thousand tasks per second. Distributed systems
schedule hundreds of thousands of tasks per second but
changing the schedule is costly.

We present execution templates, a control plane ab-
straction that can schedule hundreds of thousands of
tasks per second while supporting fine-grained, per-task
scheduling decisions. Execution templates leverage a
program’s repetitive control flow to cache blocks of
frequently-executed tasks. Executing a task in a template
requires sending a single message. Large-scale schedul-
ing changes install new templates, while small changes
apply edits to existing templates.

Evaluations of execution templates in Nimbus, a
data analytics framework, find that they provide the
fine-grained scheduling flexibility of centralized control
planes while matching the strong scaling of distributed
ones. Execution templates support complex, real-world
applications, such as a fluid simulation with a triply
nested loop and data dependent branches.

1 Introduction

As data analytics have transitioned from file I/O [1, 9]
to in-memory processing [26, 28, 42], systems have fo-
cused on optimizing CPU performance [30]. Spark 2.0,
for example, reports 10x speedups over prior versions
with new code generation layers [38]. Introducing data-
parallel optimizations such as vectorization, branch flat-
tening, and prediction can in some cases be faster than
hand-written C [32, 41]. GPU-based computations [2, 3]
improve performance further.

Computational speedups, however, demand a higher
task throughput from the control plane. This creates
a tension between task throughput and dynamic, fine-
grained scheduling. Available systems cannot fulfill both

30 40 50 60 70 80 90 100
Number of Workers

0

1

2

3

It
e
ra

ti
o
n
 T

im
e
 (

s)

1.44 1.38 1.33 1.34 1.38
1.59 1.64 1.73

Control Plane

Computation

Figure 1: The control plane is a bottleneck in modern
analytics workloads. Increasingly parallelizing logistic
regression on 100GB of data with Spark 2.0’s MLlib re-
duces computation time (black bars) but control over-
head outstrip these gains, increasing completion time.

requirements simultaneously. Today, frameworks adopt
one of two design points to schedule their computations
across workers. One is a centralized controller model,
and the other is a distributed data flow model.

In the first model, systems such as Spark [42] use a
centralized control plane, with a single node that dis-
patches small computations to worker nodes. Central-
ization allows a framework to quickly reschedule, re-
spond to faults, and mitigate stragglers reactively, but as
CPU performance improves the control plane becomes
a bottleneck. Figure 1 shows the performance of Spark
2.0’s MLlib logistic regression running on 30–100 work-
ers. While computation time decreases with more work-
ers, these improvements do not reduce overall comple-
tion time. Spark spends more time in the control plane,
spawning and scheduling computations. While there is
a huge body of work for scheduling multiple jobs within
a cluster [6, 10, 11, 19, 23, 31, 35], these approaches do
not help when a single job has a higher task throughput
than what the control plane can handle, as in Figure 1.

The second approach, used by systems such as Na-
iad [28] and TensorFlow [3], is to use a fully distributed
control plane. When a job starts, these systems install
data flow graphs on each node, which then independently

USENIX Association 2017 USENIX Annual Technical Conference 513

execute and exchange data. By distributing the control
plane and turning it into data flow, these frameworks
achieve strong scalability at hundreds of thousands of
tasks per second. However, data flow graphs describe a
static schedule. Even small changes, such as reschedul-
ing a task between two nodes, requires stopping the job,
recompiling the flow graph and reinstalling it on every
node. As a result, in practice, these systems mitigate
stragglers only proactively by launching backup workers,
which requires extra resource allocation even for non-
straggling tasks [3].

This paper presents a new point in the design space, an
abstraction called execution templates. Execution tem-
plates schedule at the same per-task granularity as cen-
tralized schedulers. They do so while imposing the same
minimal control overhead as distributed execution plans.

Execution templates leverage the fact that long-
running jobs (e.g. machine learning, graph process-
ing) are repetitive, running the same computation many
times [37]. Logically, a framework using execution tem-
plates centrally schedules at task granularity. As it gener-
ates and schedules tasks, however, the system caches its
decisions and state in templates. The next time the job
reaches the same point in the program, the system exe-
cutes from the template rather than resend all of the tasks.
Depending on how much system state has changed since
the template was installed, a controller can immediately
instantiate the template (i.e. execute without modifica-
tion), edit the template by changing some of its tasks,
or install a new version of template. Templates are not
bound to a static control flow and support data-dependent
branches; controllers patch system state dynamically at
runtime if needed. We call this abstraction a template
because it caches some information (e.g., dependencies)
but instantiation requires parameters (e.g., task IDs).

Using execution templates, a centralized controller
can generate and schedule hundreds of thousands of low-
latency tasks per second. We have implemented execu-
tion templates in Nimbus, an analytics framework de-
signed to support high performance computations. This
paper makes five contributions:

1. Execution templates, a control plane abstraction that
schedules high task throughput jobs at task granular-
ity (Section 2).

2. A definition of the requirements execution templates
place on a control plane and the design of Nimbus, a
framework that meets these requirements (Section 3).

3. Details on how execution templates are implemented
in Nimbus, including program analyses to generate
and install efficient templates, validation and patching
templates to meet their preconditions, and dynamic
edits for in-place template changes (Section 4).

Tasks	

Requests	

Results	

Controller	

Scheduler	(Cluster	Manager)	Applica;on	Driver	

Dataflow	 Resource	Alloca;on	

Cluster	of	Compu;ng	Workers	

Results	

St
a;

s;
cs
	

Figure 2: Generalized architecture of a cloud computing
system: a driver program specifies the application logic
to a controller, which can either directly assign tasks to
workers or request resources from a cluster manager.
Execution templates operate within a controller.

4. An evaluation of execution templates on analyt-
ics benchmarks, comparing them with Spark’s fine-
grained scheduler and Naiad’s high-throughput data
flow graphs (Section 5).

5. An evaluation of Nimbus running a PhysBAM [12]
particle-levelset water simulation [13] with tasks as
short as 100µs. (Section 5).1

This paper does not examine the question of schedul-
ing policy, e.g., how to best place tasks on nodes,
whether by min-cost flow computations [16, 21], pack-
ing [17, 18], or other algorithms [6, 19, 23, 33] (Sec-
tion 6). Instead, it looks at the mechanism: how can a
control plane support high throughput, fine-grained deci-
sions? Section 7 discusses how execution templates can
be integrated into existing systems and concludes.

2 Execution Templates

This section introduces execution templates and their
characteristics. Figure 2 shows the general architecture
of cloud computing systems. Execution templates oper-
ate on the controller and its interfaces.

Execution templates are motivated by the fact that
long-running jobs are usually iterative and run same set
of tasks repetitively [37] with minor changes. For ex-
ample, Figure 3 shows the pseudocode and task graph
for a training regression algorithm. The algorithm con-
sists of a nested loop. The Gradient and Estimate
operations can each generate many thousands of tasks.
This graph structure is identical for each iteration, but
the same vertex in two iterations can have different val-
ues across iterations, such as the coeff and param pa-
rameters. Furthermore, task identifiers change across it-
erations. With execution templates, the control plane can
leverage the fixed structure to improve the performance.

1PhysBAM is an open-source simulation package that has received
two Academy Awards and has been used in over 20 feature films.

514 2017 USENIX Annual Technical Conference USENIX Association

while	(error	>	threshold_e)	{	
	while	(gradient	>	threshold_g)	{	
	 	//	Optimization	code	block	
		 	gradient	=	Gradient(tdata,	coeff,	param)	
	 	coeff	+=	gradient	
	}	
	//	Estimation	code	block		
	error	=	Estimate(edata,	coeff,	param)	
	param	=	update_model(param,	error)	

}		
(a) Driver program pseudocode.

Training	
Data	

Es,ma,on	
Data	

Pa
ra
m
et
er
s	

Error	Es,ma,on	Itera,ve	Op,mizer	

Co
effi

ci
en

ts
	

(b) Iterative execution graph.

Figure 3: Task graph and driver program pseudocode of a training regression algorithm. It is iterative, with an outer
loop for updating model parameters based on the estimation error, and an inner loop for optimizing the feature coeffi-
cients. The driver program has two basic blocks corresponding to inner and outer loops. Gradient and Estimate
are both parallel operations that execute many tasks on partitions of data.

2.1 Abstraction
An execution template is a parameterizable list of tasks.
The fixed structure of the template includes the list of
tasks, their executable functions, task dependencies, rel-
ative ordering, and data access references. The parameter
list includes the task identifiers and runtime parameters
passed to each task.

To enable data dependent branches and nested loop
structures, execution templates work at the granularity
of basic blocks. A basic block is a code sequence in the
driver program with only one entry point and no branches
except the exit. For example, Figure 3 has two basic
blocks, one for the inner loop and one for the outer loop
operations. Note that loop unrolling and other batching
techniques (e.g., as used in Drizzle [36]) cannot capture
nested loops and data dependent branches.

Execution templates are installed and instantiated
at run time. These two operations results in perfor-
mance improvements in the control plane by caching and
reusing repetitive control flow. Execution templates also
support two special operations, edits and patching, which
deal with scheduling changes and dynamic control flow.
Each operation is discussed in the following subsections.

2.2 Installation and Instantiation
There are two types of execution templates, one for
the driver-controller interface called a controller tem-
plate, and one for the controller-worker interface called a
worker template. Controller templates contain the com-
plete list of tasks in a basic block across all of the worker
nodes. They cache the results of creating tasks, depen-
dency analysis, data lineage, bookkeeping for fault re-
covery, and assigning data partitions as task arguments.
For every unique basic block, a driver program installs a
controller template at the controller. The driver can then
execute the same basic block again by telling the con-
troller to instantiate the template.

Where controller templates describes a basic block
over the whole system, each worker template describes
the portion of the basic block that runs on a particu-
lar worker. Workers cache the dependency information
needed to execute the tasks and schedule them in the
right order. Like TensorFlow [3], external dependen-
cies such as data exchanges, reductions, or shuffles ap-
pear as tasks that complete when all data is transferred.
Worker templates include metadata identifying where
needed data objects in the system reside, so workers can
directly exchange data and execute blocks of tasks with-
out expensive controller lookups.

When a driver program instantiates a controller tem-
plate, the controller makes a copy of the template and fills
in all of the passed parameters. It then checks whether
the prior assignment of tasks to workers matches existing
worker templates. If so, it instantiates those templates on
workers, passing the needed parameters. If the assign-
ment has changed (e.g., due to scheduling away from a
straggler or a failure), it either edits worker templates or
installs new ones. In the steady state, when two itera-
tions of a basic block run on the same set of n workers,
the control plane sends n + 1 messages: one from the
driver to the controller and 1 from the controller to each
of the n workers.

2.3 Edits

Execution templates have two mechanisms to make con-
trol plane overhead scale gracefully with the size of
scheduling changes: installing new templates and edit-
ing existing ones. If the controller makes large changes
to a worker’s tasks, it can install a new worker template.
Workers cache multiple worker templates, so a controller
can move between several different schedules by invok-
ing different sets of worker templates.

Edits allow a controller to change an existing worker
template. Figure 4(a) shows how edits manifest in the

USENIX Association 2017 USENIX Annual Technical Conference 515

Worker	1	 Worker	2	

Controller	

Instan;ate	 Instan;ate	

(a) Edit task from worker 2 to 1.

Worker	1	

Controller	

Instan;ate	

Patch	
copy	

(b) Patching.

Figure 4: Edits and patches allow a framework to effi-
ciently adapt templates to dynamic changes in the sys-
tem. Edits dynamically modify a template structure
in place, while patches move and copy data objects to
match a template’s preconditions. Grey denotes cached
template information, while black denotes information
sent over the network.

control plane: they modify already installed templates in
place. Edits are used when the controller needs to make
small changes to the schedule, e.g., migrate one of many
partitions. Edits are included as metadata in a worker
template instantiation message and modify its data struc-
tures. An edit can remove and add tasks. Edits keep
the cost of dynamic scheduling proportional to the extent
of changes. Together, installation and edits allow a con-
troller to make fine-grained changes to how a basic block
is distributed across workers.

2.4 Patching

Each worker template has a set of preconditions that
must hold when the template is instantiated, for exam-
ple requiring a replicated data object in local memory
to have the most recent write. When a driver program
instantiates a controller template, the system state may
not meet the preconditions of the associated worker tem-
plates. This can happen because a basic block can be en-
tered from many different points in the program. When
a template is created, the controller may not even have
seen all of these positions (e.g., an edge case covered by
an if/else statement).

A controller uses patches to ensure correct execution
in the presence of dynamic driver program control flow.
Patches update and move data from one worker to an-
other to satisfy the preconditions. For example, the
worker templates for the inner loop in Figure 3(a) have
the precondition that param needs to be in local mem-
ory. But there are two cases in which the controller might
invoke the templates: the first iteration of the loop and
subsequent iterations. In subsequent iterations, param

is inductively already in local memory. However, on the
first iteration, param exists only on the worker that cal-
culated it. The controller therefore patches the inner loop
template, sending directives to workers that copy param
to each worker (Figure 4(b)).

Patches allow execution templates to efficiently handle
dynamic program control flow. This is important when
loop conditions are based on data, such as running until
an error value falls below a threshold. There are two op-
tions to deal with the associated uncertainties in control
flow. The controller can either ensure that the precon-
ditions of every worker template always hold, or when a
template is instantiated it can patch system state to match
the preconditions. The first approach is prohibitively ex-
pensive, because it requires unnecessary and expensive
data copies. For example, it would require immediately
copying param in Figure 3(a) to every worker after it is
calculated even if the outer loop terminates. A controller
therefore has to react to the driver’s stream of controller
template instantiation requests and enforce the precondi-
tions on the fly.

3 System Design

This section defines the requirements that execution tem-
plates place on a control plane and describes the design
of a cloud computing framework, called Nimbus, that
meets these requirements.

3.1 Control Plane Requirements

Conceptually, execution templates can be incorporated
into any existing cloud framework. Incorporating them,
however, assumes certain properties in the framework’s
control plane. We describe these requirements here, and
defer a discussion of how they can be incorporated into
existing systems to Section 7.

1. Workers maintain a queue of tasks and locally deter-
mine when tasks are runnable. Worker templates create
many tasks on a worker, most of which are not imme-
diately runnable because they depend on the output of
prior tasks. A worker must be able to determine when
these tasks are runnable without going through a central
controller, which would become a bottleneck.

2. Workers can directly exchange data. Within a single
template, one worker’s output can be the input of tasks on
other workers. As part of executing the template, the two
workers need to exchange data without going through a
central controller, which would become a bottleneck.

3. The controller schedules fine-grained tasks. Fine-
grained tasks are a prerequisite to support fine-grained
scheduling; they define the minimum scheduling change
that a system can support.

516 2017 USENIX Annual Technical Conference USENIX Association

3.2 Nimbus Architecture

Nimbus is an analytics framework that meets the three re-
quirements. Nimbus’s system architecture is designed to
support execution templates and run computationally in-
tensive jobs that operate on in-memory data across many
nodes. Like Spark, Nimbus has a centralized controller
node that receives tasks from a driver program. The con-
troller dispatches these application tasks to workers. The
controller is responsible for transforming tasks from a
driver program into an execution plan, deciding on which
workers to run which computations.

As it sends application tasks to workers, the controller
inserts additional control tasks, such as tasks to copy data
from one worker to another. These tasks explicitly name
the workers involved in the transfer, such that workers
can directly exchange data.

3.3 Nimbus Execution and Data Model

In Nimbus, a job is decomposed into stages. A stage is a
computation over a set of input data and produces a set of
output data. Each data set is partitioned into many data
objects so that stages can be parallelized. Each stage typ-
ically executes many tasks, one per object, that operate in
parallel. In addition to the identifiers specifying the data
objects it accesses, each task can be passed parameters,
such as model parameters or constants.

Nimbus tasks operate on mutable data objects. Sup-
porting in-place modification of data avoids data copies
and are crucial for computational and memory efficiency.
In-place modification also has two crucial benefits for ex-
ecution templates. First, multiple iterations of a loop ac-
cess the same objects and reuse their identifiers. This
means the data object identifiers can be cached in a tem-
plate, rather than recomputed on each iteration. Second,
mutable data objects reduce the overall number of ob-
jects in the system by a large constant factor, which im-
proves lookup speeds.

Mutable objects mean there can be multiple copies and
versions of an object in the system. For example, for the
code in Figure 3(a), after the execution of the outer loop,
there are n copies of param, one on each worker. How-
ever, one copy of param, has been written to, and has
an updated value. Each data object in the system there-
fore combines an object identifier with a version number.
The Nimbus controller ensures, through data copies, that
tasks on a worker always read the latest value according
to the program’s control flow.

3.4 Nimbus Control Plane

The Nimbus control plane has four major commands.
Data commands create and destroy data objects on work-
ers. Copy commands copy data from one data object

to another (either locally or over a network). File com-
mands load and save data objects from durable storage.
Finally, task commands tell the worker to execute an ap-
plication function.

Commands have five fields: a unique identifier, a read
set of data objects to read, a write set of data objects to
write, a before set of the commands that must complete
before this one can execute, and a binary blob of param-
eters. Task commands include a sixth field, which appli-
cation function to execute.

A command’s before set includes only other tasks on
that worker. If there is a dependency on a remote com-
mand, this is encoded through a copy command. For ex-
ample a task associated with the update_model oper-
ation in Figure 3(a) depends on the results of the parallel
Estimate operation. The update_model task has
n copy commands in its before set; one for each locally
computed error in each partition.

Copy commands execute asynchronously and follow
a push model. A sender starts transmitting an object as
soon as the command’s before set is satisfied. Because
this uses asynchronous I/O it does not block a worker
thread. Similarly, a worker asynchronously reads data
into buffers as soon as it arrives. Once the before set
of a task reading the data is satisfied, worker changes a
pointer in the data object to point to the new buffer.

4 Implementation

This section describes how Nimbus implements execu-
tion templates and their operations. The Nimbus code,
including execution templates, is publicly available at
https://github.com/omidm/nimbus. Nimbus
core library is about 35,000 semicolons of C++ code and
supports tasks written in C++. In addition to machine
learning and graph processing applications, the reposi-
tory includes graphical simulations ported to Nimbus.

4.1 Installation and Instantiation

Template installation begins with the driver sending a
start template message to the controller at the beginning
of a basic block. In the current implementation, a pro-
grammer explicitly marks the basic block in the driver
program. For example, in Figure 3(a), the only change
in the driver program to support templates is extra an-
notations before and after basic blocks; one can also use
other automatic approaches such as static program anal-
ysis. As the controller receives tasks, it simultaneously
schedules them normally and stores them in a temporary
task graph data structure.

At the end of the basic block, the driver sends a tem-
plate finish message. On receiving a finish message, the
controller takes the task graph and post-processes it into

USENIX Association 2017 USENIX Annual Technical Conference 517

https://github.com/omidm/nimbus

Parameter:	 t1	

t3	

p1	 t2	Parameter:	 p2	

Parameter:	 p3	

Data	
Access:	

1	 2	 3	 Data	
Access:	

1	 2	 3	

Data	
Access:	

1	 2	 3	
read	&	write	

read	

no-access	

t1	 t2	 t3	
p1	 p2	 p3	

Task	IDs	

Parameters	

(a) A controller template represents the common structure
of a task graph metadata. It stores task dependencies and data
access patterns. It is invoked by filling in task identifiers and
parameters to each task.

t1	

Worker	1	

P1	

t3	P3	

Task	IDs	

Parameters	

R	 Data	Copy	

t2	

Worker	2	

P2	

S	

t1	 t3	 R	
p1	 p3	

t2	 S	
p2	

(b) Each worker template stores the common structure of
a task graph for execution including the data copies among
workers. It is invoked by passing the task identifiers, and
parameters to each task.

Figure 5: Controller template and worker templates for a simple task graph.

an optimized, table-based data structure. Pointers are
turned into indexes for fast lookups into arrays of values.

Controller templates cache the read set, write set, and
function identifier. A template instantiation message in-
cludes an array of command identifiers and a block of
task parameters. Within a template, task identifiers in-
dex into this array. The one time cost of generating the
ordered indices keeps the successive instantiations effi-
cient. Figure 5(a) shows the instantiation of a controller
template with new set of task identifiers and parameters.

Once it has generated the controller template, the
controller generates the associated worker templates.
Worker templates have two halves. The first half exists at
the controller and represents the entire execution across
all of the workers. This centralized half allows the con-
troller to cache how the template’s tasks are distributed
across workers and track the preconditions for generating
patches when needed.

Each worker template has preconditions that list which
data objects at each worker must hold the latest update to
that object. Not all data objects are required to be up
to date: a data object might be used for writing inter-
mediate data and be updated within the worker template
itself. For example, in Figure 5(b), the third data object
on worker 1 does not need to have the latest update at the
beginning of the worker template; the data copy within
the worker template updates it.

The second half of the worker template is distributed
across the workers and caches the per-worker local com-
mand graph which they locally schedule. The controller
installs worker templates very similarly to how the driver
installs controller templates. And like controller tem-
plates, instantiation passes an array of task identifiers and
parameters. Figure 5(b) shows a set of worker templates
for controller template in Figure 5(a).

4.2 Patching

Before instantiating a worker template, controller must
validate whether the template’s preconditions hold and
patch the worker’s state if not. Validating and patching
must be fast, because they are sequential control plane
overhead that cannot be parallelized. Making them fast
is challenging, however, when there are many workers,
data objects, and tasks, because they require checking a
great deal of state.

Nimbus uses two optimizations to keep validation and
patching fast. The first optimization relates to template
generation. When generating a worker template, Nimbus
ensures that the precondition of the template holds when
it finishes. By doing so, it ensures that tight inner loops,
which dominate execution time and control plane traffic,
automatically validate and need no patching. As an ex-
ample, in Figure 5(b), this adds a data copy of object 1 to
worker 2 at the end of the template.

Second, workers cache patches and the controller can
invoke these patches much like a template. When a
worker template fails validation, the controller checks a
lookup table of prior patches indexed by what executed
before that template. If the cached patch will correctly
patch the template, it sends a single command to the
worker to instantiate the patch. When patches require
multiple data copies, the cache helps reduce the network-
ing overhead at the controller. We have found that the
patch cache has a very high hit rate in practice because
control flow, while dynamic, is typically not very com-
plex.

4.3 Edits

Whenever a controller instantiates a worker template, it
can attach a list of edits for that template to apply before

518 2017 USENIX Annual Technical Conference USENIX Association

Worker	1	

t	

(a) Before.

Worker	1	

R2	 S2	

S1	 R1	

t	

Worker	2	

(b) After.

Figure 6: Edits to reschedule a task. The controller re-
moves the task from worker 1’s template and adds two
data copy commands (S1, R2). It adds the task and two
data copy commands (R1, S2) to worker 2’s template.

instantiation. Each edit specifies either a new task to in-
clude or a task to remove. Edits are usually limited to the
actual tasks being added or removed, because in cases
when there are dependencies with other tasks, tasks are
exchanged with data copy commands. Figure 6 shows,
for example, how a task’s entry in a before set is replaced
by a data receive command. As long as the data receive
command is assigned the same index within the com-
mand identifier array, other commands do not need to
change. Using edits, minor changes in scheduling have
very small costs. The cost scales linearly with the size of
the change.

4.4 Fault Recovery

Nimbus implements a checkpoint recovery mechanism.
Although a controller keeps the full lineage for every
data object in the system, for iterative computations we
found that linage-based recovery [42] is essentially iden-
tical to checkpointing because there are frequent syn-
chronization points around shared global values. Any
lineage recovery beyond a synchronization point requires
regeneration of every data object, which is a checkpoint.

Nimbus automatically inserts checkpoints into the task
stream from a driver program. When a checkpoint trig-
gers, the controller waits until all worker task queues
drain, stores a snapshot of the current execution graph,
and requests every worker to write its live data objects to
durable storage.

When a controller determines a worker has failed (it
stops sending periodic heartbeat messages or workers de-
pending on its data fall idle), it sends a halt command to
every worker. On receiving the command, workers ter-
minate all ongoing tasks, flush their queues, and respond
back. Then, the controller sends commands to load the
latest checkpoint into memory, reverts to the stored exe-
cution graph snapshot, and restarts execution.

5 Evaluation
This section evaluates execution templates in Nimbus,
comparing them with Spark’s fine-grained centralized
scheduler, Naiad’s high-throughput distributed data flow
graphs 2, and application-level MPI messaging. In sum-
mary, the results show:

• Execution templates allow Nimbus to schedule hun-
dreds of thousands of tasks per second, imposing a
control overhead competitive with Naiad’s distributed
data flow graphs.

• Execution templates allow Nimbus to schedule at task
granularity, providing a runtime flexibility and adap-
tivity equivalent to Spark’s centralized scheduler.

• Execution templates are expressive enough to support
complex, high-performance applications, such as a
particle-levelset water simulation with a triply nested,
data dependent loop and tasks as short as 100µs.

5.1 Methodology
All experiments use Amazon EC2 compute-optimized
instances since they are the cheapest option for compute-
bound workloads. Worker nodes use c3.2xlarge in-
stances with 8 virtual cores and 15GB of RAM. Con-
trollers run on a more powerful c3.4xlarge instance
to show how jobs bottleneck on the controller even when
it has more resources. All nodes are allocated in a single
placement group and so have full bisection bandwidth.

We compare the performance of Nimbus with Spark
2.0 and Naiad 0.4.2 using two machine learning bench-
marks, logistic regression and k-means clustering. Be-
cause our goal is to measure the task throughput and
scheduling granularity of the control plane, we factor
out language differences between the three frameworks
and have them run tasks of equal duration. We chose the
task duration as the fastest of the three frameworks, as it
evaluates the highest task throughput. Nimbus tasks run
8 times faster than Spark’s MLlib due to Spark using a
JVM (a 4x slowdown) and its immutable data requiring
copies (a 2x slowdown). Nimbus tasks run 3 times faster
than Naiad due to Naiad’s use of the CLR. To show that
tasks in Naiad and Spark run as fast as C++ ones, we
label them Naiad-opt and Spark-opt. This is done by re-
placing the task computations with a spin wait as long as
C++ tasks.

The Naiad and Nimbus implementations of k-means
and logistic regression include application-level two-
level reduction trees. Application-level reductions in
Spark harm completion time because they add more tasks
that bottleneck at the controller.

2TensorFlow’s control plane design is very similar to Naiad’s which
results in very close performance and behavior.

USENIX Association 2017 USENIX Annual Technical Conference 519

Per-task cost

Installing controller template 25µs
Installing worker template on controller 15µs
Installing worker template on worker 9µs

Nimbus task scheduling 134µs
Spark task scheduling 166µs

Table 1: Template installation is fast compared to
scheduling. The 49µs per-task cost is evenly split be-
tween the controller and worker templates. Installing a
new worker template has a per-task cost of 24µs, and
18% overhead on centrally scheduling that task.

Per-task cost

Instantiate controller template 0.2µs
Instantiate worker template

with auto-validation 1.7µs
with explicit-validation 7.3µs

Table 2: Template instantiation is fast. For the common
case of a template automatically validating (repeated ex-
ecution of a loop), instantiation takes 1.9µs/task: Nim-
bus can schedule over 500,0000 tasks/sec. If dynamic
control flow requires a full validation, it takes 7.5µs/task
and Nimbus can schedule 130,000 tasks/second.

5.2 Micro-Benchmarks

This section presents micro-benchmark performance re-
sults. These results are from a logistic regression job
with a single controller template with 8,000 tasks, split
into 100 worker templates with 80 tasks each.

Table 1 shows the costs of template installation. We
report the per-task costs because they scale with the num-
ber of tasks (there are individual task messages). We also
report the cost of centrally scheduling a task in Spark
and Nimbus to give context. Installing a template has
a one-time cost of installing the controller template and
the potentially repeated cost of installing worker tem-
plates. Adding a task to a controller template takes 25µs.
Adding it to a worker template takes 24µs. In compari-
son to scheduling a task (134µs), this cost is small. In-
stalling all templates has an overhead of 36% on centrally
scheduling tasks.

Table 2 shows the costs of template instantiation.
There are two cases for the worker template. In the first
(common) case, the template validates automatically be-
cause it is instantiated after the same template. Since
Nimbus ensures that a template, on completion, meets its
preconditions, in this case the controller can skip valida-
tion. In the second case, a different worker template is
instantiated after the previous one, and controller must

Cost

Nimbus single edit ≈ 41µs
Nimbus rescheduling 5% of tasks (800 edits) 35ms
Nimbus complete installation (8000 tasks) 203ms

Naiad any scheduling change 230ms

Table 3: A single edit to the logistic regression job takes
41µs in Nimbus, and the cost scales linearly with the
number of edits. Edits are less expensive than full instal-
lation when rescheduling as high as 5% of the tasks in
templates. Any change in Naiad induces the full cost of
data flow installation.

fully validate the template. When executing the inner
loop of a computation, Nimbus’s scheduling throughput
is over 500,000 tasks/second (0.2µs + 1.7µs per task).

Table 3 shows the costs of edits. A single edit (remov-
ing or adding a task) takes 41µs3. Edits allow controllers
to inexpensively make small-scale changes to worker
templates. For example, 800 edits (e.g., rescheduling 5%
of the tasks) takes 35ms, fraction of complete installation
cost. The cost of installing physical graphs on Naiad,
caused by any change to the schedule, is about 230ms.

5.3 Control Plane Performance

This section evaluates the scalability of execution tem-
plates and their impact on job completion time. Figure 7
shows the results of running logistic regression and k-
means clustering over a 100GB input once data has been
loaded and templates have been installed. We observed
negligible variance in iteration times and report the aver-
age of 30 iterations.

Nimbus and Naiad have equivalent performance. With
20 workers, an iteration of logistic regression takes 210-
220ms; with 100 workers it takes 60-80ms. The slightly
longer time for Naiad with 100 workers (80ms) is due to
the Naiad runtime issuing many callbacks for the small
data partitions; this is a minor performance issue and can
be ignored. For k-means clustering, an iteration across
20 nodes takes 310-320ms and an iteration across 100
nodes takes 100-110ms. Completion time shrinks slower
than the rate of increased parallelism because reductions
do not parallelize.

Running over 20 workers, Spark’s completion time is
70-100% longer than Nimbus and Naiad. With greater
parallelism (more workers), the performance difference
increases: Naiad and Nimbus run proportionally faster
and Spark runs slower. Over 100 workers, Spark’s com-
pletion time is 15-23 times longer than Nimbus. The dif-

3It is greater than the cost of installing a task in a worker template
(29µs) due to the necessary changes in the task graph and inserting
extra copy tasks (see Figure 6).

520 2017 USENIX Annual Technical Conference USENIX Association

20 50 100 20 50 100 20 50 100
Spark-opt Naiad-opt Nimbus

Number of Workers

0

1

2

It
e
ra

ti
o
n
 t

im
e
 (

s)

0
.4

4 0
.7

5

1
.4

3

0
.2

2

0
.1

0

0
.0

8

0
.2

1

0
.1

0

0
.0

6

Control Plane

Computation

(a) Logistic regression

20 50 100 20 50 100 20 50 100
Spark-opt Naiad-opt Nimbus

Number of Workers

0

1

2

It
e
ra

ti
o
n
 t

im
e
 (

s)

0
.5

3 0
.7

9

1
.5

7

0
.3

1

0
.1

4

0
.1

1 0
.3

2

0
.1

5

0
.1

0

Control Plane

Computation

(b) K-means clustering

Figure 7: Iteration time of logistic regression and k-means for a data set of size 100GB. Nimbus executes tasks
implemented in C++. Spark-opt and Naiad-opt show the performance when the computations are replaced with spin-
wait as fast as tasks in C++. Execution templates helps centralized controller of Nimbus scale out almost linearly.

0

2

4

6

Spark-opt

10 20 30 40 50 60 70 80 90 100
Number of Workers

0

50

100

150

Nimbus

T
a
sk

 T
h
ro

u
g
h
p
u
t

(T
h
o
u
sa

n
d
s

p
e
r

se
co

n
d
)

Figure 8: Task throughput of Nimbus and Spark as the
number of workers increases. Spark saturates at about
6,000 tasks per second, while Nimbus grows to adapt to
the number of tasks required for more parallelism. Note
that the y-axis scale is different in the plots.

ference is entirely due to the control plane. Spark work-
ers spend most of the time idle, waiting for the Spark
controller to send them tasks.

Figure 8 shows the rate at which Nimbus and Spark
schedule logistic regression tasks as the number of work-
ers increases. Spark quickly bottlenecks at 6,000 tasks
per second. Nimbus scales to support the increasing
task throughput: a single iteration over 100 workers
takes 60ms and executes 8,000 tasks, which is 128,000
tasks/second (25% of Nimbus’s maximum throughput).
Note that greater parallelism increases the task rate su-
perlinearly because it simultaneously creates more tasks
and makes those tasks shorter.

5.4 Dynamic Scheduling
Figure 9 shows the scenario of running a logistic regres-
sion job over 100 workers and rescheduling 5% of tasks
every 5 iterations. The incremental edit cost lets Nim-
bus finish 20 iterations almost twice as fast as Naiad.
Even if there is a single task rescheduling, Naiad would

0 1 2
Time (seconds)

0

10

20

It
e
ra

ti
o
n
 N

o
.

Nimbus

Naiad-opt

Figure 9: Logistic regression over 100 workers with task
rescheduling every 5 iterations. Nimbus’s edits have
negligible overhead, while Naiad requires complete data
flow installation for any scheduling change.

behave similarly; however, Nimbus’s overhead remains
negligible even in such an extreme scenario. Note that,
current Naiad implementation does not support any data
flow flexibility once the job starts, so the curve here is
simulated from the numbers in Table 3 and Figure 7(a).

Figure 10 shows the time per iteration of logistic re-
gression in Nimbus as a cluster manager adjusts the
available resources. The run starts with templates dis-
abled: the control plane overhead of a centralized sched-
uler dominates iteration time: each iteration takes 1.07s.
At iteration 10, the driver starts using templates. Itera-
tion 10 takes ≈ 1.3s, as installing each of the 8,000 tasks
in the controller template adds 25µs (Table 2). On iter-
ation 11, the controller template has been installed, and
the controller generates its half of the worker template as
it continues to send individual tasks to workers. This it-
eration is faster because the control traffic between the
driver and controller is a single instantiation message.
On iteration 12, the controller half of the worker tem-
plates has been installed, and the controller sends tasks
to and installs templates on the workers. On iteration 13,
templates are fully installed and an iteration takes 60ms
(as in Figure 7(a)), with minimal control plane overhead.

At iteration 20, the cluster resource manager revokes
50 workers from the job’s allocation. On this itera-
tion, the controller regenerates the controller half of the

USENIX Association 2017 USENIX Annual Technical Conference 521

10 15 20 25 30 35
Iteration Index

0

1

2

It
e
ra

ti
o
n

T
im

e
(s

)
Control Plane

Computation

manually disabled templates
installing controller template

generating 100 worker templates
installing templates on 100 workers

resource manager evicts 50
workers from the cluster

generating 50 worker templates
installing templates on 50 workers

resource manager brings
all the workers back

validating cached
100 worker templates

Figure 10: Execution templates can schedule jobs with high task throughputs while dynamically adapting as resources
change. This experiment shows the control overheads as a cluster resource manager allocates 100 nodes to a job,
revokes 50 of the nodes, then later returns them.

(a) Still of water pouring into a glass bowl.

196.8	

Nimbus	w/o	templates	

Nimbus	 MPI	

Itera;on	Time	(s)		

36.5	

31.7	

(b) Iteration time of the main outer loop.

Figure 11: PhysBAM water simulation.

worker template, rescheduling tasks from evicted work-
ers to remaining workers. On iteration 21, the controller
installs new worker templates on the 50 workers. Com-
putation time doubles because each worker is performing
twice the work.

At iteration 30, the cluster resource manager restores
the 50 workers to the job’s allocation. The controller re-
verts to using the original worker templates and so does
not need to install templates. However, on this first itera-
tion, it needs to validate the templates. After this explicit
validation, each iterations takes 60ms.

5.5 Complex Applications
To evaluate if execution templates can handle full ap-
plications with complex control flows, we use Phys-

BAM, an open-source computer graphics simulation li-
brary [12]. We ported PhysBAM to Nimbus, wrapping
PhysBAM functions inside tasks and interfacing Phys-
BAM data objects (level sets, mark-and-cell grids, parti-
cles) into Nimbus.

We ran a canonical particle-levelset fluid simulation
benchmark, water being poured into a glass [13]. This is
the same core simulation used for the ocean in The Per-
fect Storm and the river in Brave. It has a triply-nested
loop with 21 different computational stages that access
over 40 different variables. The driver program has 8
basic blocks, three of them require extra data copies for
auto validation, and two of them have non-deterministic
entry points with different patch sets. Systems with static
data flow (e.g., Naiad) cannot run this simulation effi-
ciently because the termination conditions of its two in-
ner loops are based on data values. Without data depen-
dent branches, each loop instance must run as many it-
erations as the longest instance, which is wasteful when
the loop converges faster.

We ran a 10243 cell simulation (512GB-1TB of RAM)
on 64 workers. The median task length is 13ms, 10% of
tasks are <3ms and some tasks are as short as 100µs.
Figure 11 shows the results of running the simulation
with PhysBAM’s hand-tuned MPI libraries, in Nimbus
without templates and in Nimbus with templates. The
MPI libraries cannot rebalance load, and in practice de-
velopers rarely use them due to their brittle behavior
and lack of fault tolerance. Without templates, the cen-
tral controller becomes the bottleneck and the simulation
takes 520% longer than MPI. With templates, the simula-
tion runs within 15% of the MPI implementation, while
providing fine-grained scheduling, automatic fault toler-
ance, and adaptive load balancing.

6 Related Work
Execution templates build on a large body of prior work
that can be divided into three major categories: cloud

522 2017 USENIX Annual Technical Conference USENIX Association

frameworks, cloud schedulers, and high performance
computing.

Cloud frameworks schedule tasks from a single job.
Systems such as CIEL [29], Spark [42] and Optimus [24]
keep all execution state on a central controller, dynami-
cally dispatching tasks as workers become ready. This
gives the controller an accurate, global view of the
job’s progress, allowing it to quickly respond to failures,
changes in available resources, and system performance.
Execution templates borrow this model, but cache con-
trol plane decisions to drastically increase task through-
put for strong scalability.

Systems such as Naiad [28] and TensorFlow [3] take
the opposite approach, statically installing an execution
plan on workers so the workers can locally generate tasks
and directly exchange data. Execution templates borrow
this idea of installing execution plans at runtime but gen-
eralize it to support multiple active plans and dynamic
control flow. Furthermore, execution templates maintain
fine-grained scheduling by allowing a controller to edit
the current execution plan.

Frameworks such as Dryad [20], DryadLINQ [40],
and FlumeJava [8], as well as programming models
such as DimWitted [25], DMLL [7] and Spark optimiza-
tions [32, 41, 4, 39, 38] focus on abstractions for parallel
computations that enable optimizations and high perfor-
mance, in some cases faster than hand-written C. This
paper examines a different but complementary question:
how can a framework’s runtime scale to support the re-
sulting fast computations across many nodes?

Cloud schedulers (also called cluster managers) sched-
ule tasks from many concurrent jobs across a collection
of worker nodes. Because these schedulers have global
knowledge of all of the tasks in the system, they can
efficiently multiplex jobs across resources[17], improve
job completion time [14], fairly allocate resources across
jobs [15], follow other policies [6, 11, 19], or allow mul-
tiple algorithms to operate on shared state [33].

Traditional centralized schedulers have transitioned to
distributed or hybrid models. In Sparrow [31], each
job runs its own independent scheduler that monitors
the load on workers. These schedulers independently
make good cooperative scheduling decisions based on
mechanisms and principles derived from the power of
two choices [27]. Tarcil uses a coarser grained ap-
proach, in which multiple schedulers maintain copies
of the full cluster state, whose access is kept efficient
through optimistic concurrency control because conflicts
are rare [11]. Hawk’s hybrid approach centrally sched-
ules long-running jobs for efficiency and distributes short
job scheduling for low latency [10]. Mercury allows mul-
tiple schedulers to request resources from a shared pool
and then schedule tasks on their resources [23].

These distributed and hybrid schedulers address the
problem of when the combined task rate of multiple jobs
is greater than what a centralized scheduler can handle.
Execution templates solve a similar, but different prob-
lem, when the control plane bottlenecks a single job.
Like Sparrow, a framework using execution templates re-
quests allocation from its cluster manager.

High performance computing (HPC) embraces the
idea that an application should be responsible for its own
scheduling as it has the greatest knowledge about its own
performance and behavior. HPC systems stretch from
very low-level interfaces, such as MPI [34], which is ef-
fectively a high performance messaging layer with some
support for common operations such as reduction. Par-
titioning and scheduling, however, is completely an ap-
plication decision, and MPI provides very little support
for load balancing or fault recovery. HPC frameworks
such as Charm++ [22] and Legion [5] provide powerful
abstractions to decouple control flow, computation and
communication, similar to cloud frameworks. Their fun-
damental difference, however, is that these HPC systems
only provide mechanisms; applications are expected to
provide their own policies.

7 Discussion and Conclusion
Analytics frameworks today provide either fine-grained
scheduling or high task throughput but not both. Exe-
cution templates enable a framework to provide both si-
multaneously. By caching task graphs on the controller
and workers, execution templates are able to schedule
half a million tasks per second (Table 2). At the same
time, controllers can cheaply edit templates in response
to scheduling changes (Table 3). Finally, patches allow
execution templates to support dynamic control flow.

Execution templates are a general control plane ab-
straction. However, the requirements listed in Section 3
are simpler to incorporate in some systems than oth-
ers. Incorporating execution templates into Spark re-
quires two changes: workers need to queue tasks and
resolving dependencies locally and workers need to be
able to exchange data directly (not go through the con-
troller for lookups). Naiad’s data flow graphs as well as
TensorFlow’s can be thought of as an extreme case of
execution templates, in which the flow graph describes a
very large, long-running basic block. Allowing a driver
to store multiple graphs, edit them, and dynamically trig-
ger them would bring most of the benefits.

Acknowledgments This work was funded by the Na-
tional Science Foundation (CSR grant #1409847) and
conducted in conjunction with the Intel Science and
Technology Center - Visual Computing. The experi-
ments were made possible by a generous grant from the
Amazon Web Services Educate program.

USENIX Association 2017 USENIX Annual Technical Conference 523

References

[1] Apache Hadoop. http://wiki.apache.
org/hadoop.

[2] Facebook AI Research open sources deep-learning
modules for Torch. https://research.
facebook.com/blog/fair-open-
sources-deep-learning-modules-
for-torch/.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, et al. Tensorflow: A system for large-scale ma-
chine learning. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI). Savannah, Georgia, USA,
2016.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al. Spark sql: Relational data process-
ing in spark. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of
Data, pages 1383–1394. ACM, 2015.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In High Performance Computing,
Networking, Storage and Analysis (SC), 2012 Inter-
national Conference for, pages 1–11. IEEE, 2012.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: scalable and
coordinated scheduling for cloud-scale computing.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 285–
300, 2014.

[7] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth,
C. De Sa, C. Aberger, and K. Olukotun. Have ab-
straction and eat performance, too: Optimized het-
erogeneous computing with parallel patterns. In
Proceedings of the 2016 International Symposium
on Code Generation and Optimization, pages 194–
205. ACM, 2016.

[8] C. Chambers, A. Raniwala, F. Perry, S. Adams,
R. R. Henry, R. Bradshaw, and N. Weizenbaum.
Flumejava: easy, efficient data-parallel pipelines.
In ACM Sigplan Notices, volume 45, pages 363–
375. ACM, 2010.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[10] P. Delgado, F. Dinu, A.-M. Kermarrec, and
W. Zwaenepoel. Hawk: hybrid datacenter schedul-
ing. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 499–510, 2015.

[11] C. Delimitrou, D. Sanchez, and C. Kozyrakis. Tar-
cil: reconciling scheduling speed and quality in
large shared clusters. In Proceedings of the Sixth
ACM Symposium on Cloud Computing, pages 97–
110. ACM, 2015.

[12] P. Dubey, P. Hanrahan, R. Fedkiw, M. Lentine, and
C. Schroeder. Physbam: Physically based simu-
lation. In ACM SIGGRAPH 2011 Courses, SIG-
GRAPH ’11, pages 10:1–10:22, New York, NY,
USA, 2011. ACM.

[13] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell.
A hybrid particle level set method for improved
interface capturing. Journal of Computational
Physics, 183(1):83–116, 2002.

[14] M. R. Garey, D. S. Johnson, and R. Sethi. The
complexity of flowshop and jobshop scheduling.
Mathematics of operations research, 1(2):117–129,
1976.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, S. Shenker, and I. Stoica. Dominant resource
fairness: Fair allocation of multiple resource types.
In NSDI, volume 11, pages 24–24, 2011.

[16] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M.
Watson, and S. Hand. Firmament: Fast, central-
ized cluster scheduling at scale. In To appear
in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation.
USENIX, 2016.

[17] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 455–
466. ACM, 2014.

[18] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. Do the hard stuff first: Scheduling
dependent computations in data-analytics clusters.
arXiv preprint arXiv:1604.07371, 2016.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In NSDI, volume 11, pages
22–22, 2011.

524 2017 USENIX Annual Technical Conference USENIX Association

http://wiki.apache.org/hadoop
http://wiki.apache.org/hadoop
https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/
https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/
https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/
https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In ACM SIGOPS
Operating Systems Review, volume 41, pages 59–
72. ACM, 2007.

[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair schedul-
ing for distributed computing clusters. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles, pages 261–276. ACM,
2009.

[22] L. V. Kale and S. Krishnan. CHARM++: a
portable concurrent object oriented system based
on C++, volume 28. ACM, 1993.

[23] K. Karanasos, S. Rao, C. Curino, C. Douglas,
K. Chaliparambil, G. M. Fumarola, S. Heddaya,
R. Ramakrishnan, and S. Sakalanaga. Mercury:
Hybrid centralized and distributed scheduling in
large shared clusters. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages
485–497, 2015.

[24] Q. Ke, M. Isard, and Y. Yu. Optimus: a dy-
namic rewriting framework for data-parallel execu-
tion plans. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, pages 15–
28. ACM, 2013.

[25] J. Liu and S. J. Wright. Asynchronous stochas-
tic coordinate descent: Parallelism and conver-
gence properties. SIAM Journal on Optimization,
25(1):351–376, 2015.

[26] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson,
C. E. Guestrin, and J. Hellerstein. Graphlab: A new
framework for parallel machine learning. arXiv
preprint arXiv:1408.2041, 2014.

[27] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions
on Parallel and Distributed Systems, 12(10):1094–
1104, 2001.

[28] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
439–455. ACM, 2013.

[29] D. G. Murray, M. Schwarzkopf, C. Smowton,
S. Smith, A. Madhavapeddy, and S. Hand. Ciel:
A universal execution engine for distributed data-
flow computing. In NSDI, volume 11, pages 9–9,
2011.

[30] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
B.-G. Chun, and V. ICSI. Making sense of perfor-
mance in data analytics frameworks. In Proceed-
ings of the 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages
293–307, 2015.

[31] K. Ousterhout, P. Wendell, M. Zaharia, and I. Sto-
ica. Sparrow: distributed, low latency scheduling.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pages 69–
84. ACM, 2013.

[32] S. Palkar, J. Thomas, and M. Zaharia. Nested vector
language: Roofline performance for data parallel
code. http://livinglab.mit.edu/wp-
content/uploads/2016/01/nvl-
poster.pdf.

[33] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: flexible, scalable schedulers
for large compute clusters. In Proceedings of the
8th ACM European Conference on Computer Sys-
tems, pages 351–364. ACM, 2013.

[34] M. Snir. MPI–the Complete Reference: The MPI
core, volume 1. MIT press, 1998.

[35] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceed-
ings of the 4th annual Symposium on Cloud Com-
puting, page 5. ACM, 2013.

[36] S. Venkataraman, A. Panda, K. Ousterhout, A. Gh-
odsi, M. J. Franklin, B. Recht, and I. Stoica. Driz-
zle: Fast and adaptable stream processing at scale.

[37] S. Venkataraman, Z. Yang, M. Franklin, B. Recht,
and I. Stoica. Ernest: Efficient performance predic-
tion for large-scale advanced analytics. In Proceed-
ings of the 13th USENIX conference on Networked
Systems Design and Implementation. USENIX As-
sociation, 2016.

[38] R. Xin. Technical Preview of Apache Spark 2.0
Now on Databricks. https://databricks.
com/blog/2016/05/11/apache-spark-
2-0-technical-preview-easier-
faster-and-smarter.html.

[39] R. Xin and J. Rosen. Project Tungsten:
Bringing Apache Spark Closer to Bare Metal.
https://databricks.com/blog/2015/
04/28/project-tungsten-bringing-
spark-closer-to-bare-metal.html.

USENIX Association 2017 USENIX Annual Technical Conference 525

http://livinglab.mit.edu/wp-content/uploads/2016/01/nvl-poster.pdf
http://livinglab.mit.edu/wp-content/uploads/2016/01/nvl-poster.pdf
http://livinglab.mit.edu/wp-content/uploads/2016/01/nvl-poster.pdf
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

[40] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P. K. Gunda, and J. Currey. Dryadlinq: A
system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI,
volume 8, pages 1–14, 2008.

[41] M. Zaharia. New developments in spark
and rethinking apis for big data. http://
platformlab.stanford.edu/Seminar%
20Talks/stanford-seminar.pdf.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation.
USENIX Association, 2012.

526 2017 USENIX Annual Technical Conference USENIX Association

http://platformlab.stanford.edu/Seminar%20Talks/stanford-seminar.pdf
http://platformlab.stanford.edu/Seminar%20Talks/stanford-seminar.pdf
http://platformlab.stanford.edu/Seminar%20Talks/stanford-seminar.pdf

cHash: Detection of Redundant Compilations via AST Hashing

Christian Dietrich*, Valentin Rothberg*, Ludwig Füracker+,
Andreas Ziegler+ and Daniel Lohmann*

+Friedrich-Alexander Universität Erlangen-Nürnberg
*Leibniz Universität Hannover

Abstract

Software projects that use a compiled language are built
hundreds of thousands of times during their lifespan.
Hence, the compiler is invoked over and over again on an
incrementally changing source base. As previous work
has shown, up to 97 percent of these invocations are re-
dundant and do not lead to an altered compilation result.
In order to avoid such redundant builds, many developers
use caching tools that are based on textual hashing of the
source files. However, these tools fail in the presence of
modifications that leave the compilation result unchanged.
Especially for C projects, where module-interface defi-
nitions are imported textually with the C preprocessor,
modifications to header files lead to many redundant com-
pilations.

In this paper, we present the cHash approach and com-
piler extension to quickly detect modifications on the
language level that will not lead to a changed compilation
result. By calculating a hash over the abstract syntax tree,
we achieve a high precision at comparatively low costs.
While cHash is light-weight and build system agnostic,
it can cancel 80 percent of all compiler invocations early
and reduce the build-time of incremental builds by up to
51 percent. In comparison to the state-of-the-art CCache
tool, cHash is at least 30 percent more precise in detecting
redundant compilations.

1 Introduction

Software development for a project that uses a compiled
language involves a (seemingly) endless number of com-
piler invocations. Typically, a developer edits some source
files, builds the whole project, and then tests and debugs
the resulting binary. In this process, which is repeated
tens to hundreds of times a day by thousands of develop-
ers, the time taken for the (noninteractive) build step is a
crucial property to developer productivity [23].

After many incremental modifications, software devel-

opers typically commit their changes into a larger project-
wide repository. From there, the robots of a continuous in-
tegration platform might pull and merge them to perform
automated build tests, which involves some additional
thousand builds of the software. A prominent example
is Linux and the Intel 0-day robot.1 The robot monitors
more than 600 development repositories to run tests on
newly integrated changes, for which it builds more than
36000 Linux kernels on an average day in order to pro-
vide kernel developers with quick feedback on integration
issues. Again, the time of each build is a crucial property
for the effectiveness of the system – the more builds it can
handle each day, the more build tests can be performed.

1.1 Redundant Builds
In both settings, the build process itself can often be per-
formed as an incremental build: Compilation is generally
considered to be an idempotent operation. Hence, only the
source modules that are affected by a change or commit
– either directly or transitively via a dependency – need
to be recompiled into object files, while a large portion
of unchanged object files can be reused from a previous
build. In larger projects, build times thereby are reduced
from hours and minutes for a full build to seconds and
milliseconds for an incremental build.

The challenge here is to detect – in a reliable but fast
manner – which source modules are part of the increment
that needs to be recompiled. Ideally, a module becomes
part of the increment only if its recompilation would lead
to a program with a different behavior – which is unde-
cidable in the general sense. Therefore, we technically
reduce this to the decision if recompilation would lead to
a different program binary. The respective test needs to
be reliable in that it never produces a false negative (i.e.,
excludes some source module from the increment that is
affected by a change). False positives do not harm reliabil-
ity, but lead to costly redundant builds – which we wanted

1https://lwn.net/Articles/514278/

USENIX Association 2017 USENIX Annual Technical Conference 527

https://lwn.net/Articles/514278/

objects = network.o main.o filesys.o

program: $(objects)
cc -o program $(objects)

main.o: main.c types.h network.h filesys.h
cc -o main.o -c main.c

network.o: network.c network.h types.h
cc -o network.o -c network.c

filesys.o: filesys.c filesys.h types.h
cc -o filesys.o -c filesys.c

(a) Makefile describing the build process and its dependencies.

program

network.o

network.c

network.h

main.o

types.h

main.c

filesys.o

filesys.h

filesys.c

Source File Header File Build Product

(b) The corresponding Make-internal build-dependency graph.

Figure 1: A minimal example of a software project written in C and built with Make.

to avoid with incremental building in the first place. How-
ever, the test itself also has to be fast – it gets executed
for every source module on every build. If the overhead
to decide which source modules are part of the increment
outweighs the cost of false positives, incremental building
also becomes pointless. In practice, the trade-off between
precision and overhead is tricky – precision often does not
pay off [1]. On the other hand, Zhang et al. [34] showed
that with the common timestamp-based tests performed
by Make [6] and other build systems, up to 97 percent of
calls to the compiler for C/C++ projects are unnecessary
and have to be considered as redundant builds.

1.2 About This Paper
We present cHash, an approach and compiler extension for
the Clang C compiler to quickly detect if a source module
is affected by some change and needs to be recompiled.
Our approach combines speed and precision by analy-
zing the effect of a change on the level of the (hashed)
abstract syntax tree (AST) of the program. Compared to
existing state-of-the-art techniques, such as CCache, we
can significantly reduce the number of false positives (by
48.18 %) at only moderate extra costs, resulting in up to
23.16 percent shorter build times for incremental builds.
In particular, we claim the following contributions:

• Efficient and reliable detection of semantic source-
code changes on the language level.

• Open-source implementation of the cHash concept
as a plugin for Clang C compiler.

• Detailed evaluation on six open-source projects and
comparison with the state-of-the-art CCache tool.

The remainder of this paper is structured as follows.
In Section 2 we analyze the problem of redundant builds
with a special focus on C projects. In Section 3, we de-
scribe the cHash approach and discuss its implementation
briefly in Section 4. We evaluate cHash on a set of six

open-source projects in Section 5 and discuss the previous
work in Section 6. Besides a discussion of our results, we
also elaborate on possible threats to the validity of our
findings in Section 7 and conclude the paper in Section 8.

2 Problem Analysis

All modern build systems, whether they are implemented
in Make [6] or use a more sophisticated toolchain [9, 4],
try to reduce the number of redundant builds in order to
achieve fast incremental rebuilds. However, the employed
mechanisms often fail to detect non-essential changes
precisely. For example, if a developer updates the mo-
dification timestamp of the file convolute.h2 from the
CPython source-code repository, the build system takes
15.9 s to rebuild the entire project on our server described
in Section 5.3, about half of the time that is required for
a fresh build. In this scenario, all build operations were
redundant, so we should not have spent time on invoking
the compiler at all. With cHash, we can cut down the
rebuild time in this particular case to 0.72 s, a decrease of
95.5 percent.

2.1 Modular Decomposition
Incremental rebuilds are enabled by the decomposition
of software into modules, which is already around since
the 1970s [18]. While modules are a necessary means for
the separation of concerns on the logic level, they are also
often physically separated into different files. Integral to
modular decomposition is the export and import of inter-
faces to define whether others can use a particular field or
data type and if they can invoke a specific functionality.
For incremental builds, modularization entails the advan-
tage that an interface is logically split into declaration,
implementation, and invocation of the interface. Hence,
an invoking module is only required to be recompiled if

2Full path: Modules/_decimal/libmpdec/convolute.h

528 2017 USENIX Annual Technical Conference USENIX Association

0.1 0.2 0.3 0.4 0.5 0.6

-O0

-O1

-O2

-O3

seconds

G
C

C
O

pt
im

iz
at

io
n

L
ev

el
C Preprocessor C Parser
Optimization and
Code Generation

Figure 2: Average run time of the compiler phases. We
compiled CPython with GCC on different optimization
levels (-O0: no optimization, -O3: heavy optimization)
and recorded the run time of the different compiler phases
(n=850 compiler invocations per variant).

the declaration of an imported and used interface has been
changed, which avoids many sources of redundant and
costly recompilation [33, 30, 28].

While many languages, like Haskell or Rust, have built-
in module support, the widely used C programming lan-
guage lacks this feature. In C projects, modules are im-
plemented purely idiomatically by means of the C pre-
processor (CPP) and the file system. Importing another
module’s interface is realized via the #include directive
of the CPP, which textually replaces #include direc-
tives with the content of the included file. Exporting an
interface is realized via the file system by explicitly expos-
ing the declarations (i.e., interfaces) in the corresponding
header. Consequently, module dependencies in C can
only be defined on granularity of files.

2.2 Build Systems and Dependencies

Since C and C-like programming languages are widely
spread, their file-system–level implementation of modules
heavily influenced build systems. For example, Figure 1
depicts the structure of a typical software project written
in C and its build system implemented in Make [6]. Logi-
cally, the program is decomposed into the three modules
main, network and filesys. On the file-system level,
the modules are further scattered across different source
files: For the network module, the interface declaration
is located in network.h, while the actual implementation
lives in network.c. Furthermore, the network module
also imports the types.h definition file. From these

source-code artifacts, build system and compiler generate
the object file network.o, which is finally linked into the
executable program file.

The developer describes all build products, their
dependencies, and the production rules in the Makefile
(see Figure 1a). During the build process, Make parses the
Makefile and internally builds the dependency graph (see
Figure 1b). The dependency graph is traversed bottom up
and for each node Make checks whether the production
rule has to be executed. For a clean build, all products are
missing and, therefore, all rules must be executed, while
for an incremental build Make examines the modification
timestamp to detect out-of-date build products.

2.3 Detecting Redundant Compilation
With a timestamp-based method to detect redundant
builds, like employed by Make, the build system com-
pares the modification timestamp of the dependencies and
the (already present) build product. If any prerequisite is
newer, the production rule is re-executed to generate an
updated build product, which again leads to the rebuild
of all dependent build products. While this mechanism is
reliable and fast, it leads to many false positives, as it is in-
sensitive to the actual file contents. Thus, updating a file’s
modification time stamp suffices to cause a (cascading)
recompilation.

A perfectly precise build system would only schedule
an object file for recompilation, if the production rule
will yield an altered binary representation. Modifying a
comment, for instance, has no effect on the binary since
the CPP removes comments from the token stream before
compilation. However, even the introduction of a new
identifier, such as a type or constant, will have no effect
on the binary if the new element is not referenced by the
module. Nevertheless, for such an ideal recompilation
predictor, the whole compilation process would have to
be done to the full extent in the same environment (e.g.,
optimization level). Since that would bear no benefit,
various heuristics are used instead in practice, which we
describe as follows.

Let’s assume a given source file C uses a function func
declared in header H. There are several possible heuristics
to decide if C must be recompiled, each addressing a
different abstraction level of the source module:

(1) The metadata of H or C has been changed

(2) H or C has been changed textually

(3) H or C has been changed syntactically

(a) Syntactical change on the preprocessor level

(b) Syntactical change on the language level

(4) The declaration of func in H has been changed

USENIX Association 2017 USENIX Annual Technical Conference 529

struct unused {
struct unused *next;

};

struct obj {};

struct refcount
{

int counter;
struct obj * ptr;

};

int
inc(struct refcount *e)
{

e->counter += 1;
return e->counter;

}

(a) C Source Code

Function
inc

33

Function Type
75

int
1

Pointer
57

Block
91

Return
81

Argument
e

86

BinaryOp
+=

11

Literal
1

6

FieldRef
->counter

36

FieldRef
->counter

36

int
1

Record
refcount

52

Field
counter

4

Field
object

13

int
1

Pointer
4

Record
obj

1

Record
unused

Pointer

Field
next

1 + 2 · Σ in

1 + 3 · Σ in

1 + 5 · Σ in

Declaration

Type

Expression/Statement AST Child

Type-of

Reference-to

(b) Simplified AST with annotated hash values.

Figure 3: The cHash Approach. From the source module, the (standard) parser builds the abstract syntax tree and the
semantic analysis establishes cross-tree references for types and variables. cHash calculates a recursive hash over the
AST to create a unique fingerprint of the program. In this example, we use three simplified hash rules depending only
on the node class (represented by the node’s color) and always take the modulo 100 from the result. Note that the
unused record declaration is irrelevant for the resulting AST hash.

In this schema, Make and other build systems usu-
ally apply heuristic (1) by means of timestamp-based
recompilation. In order to reach heuristic (2)-(4), we have
to gather detailed information about the source module
and its modifications. However, whether a more precise
heuristic is desirable depends on the ratio of two run
times: the time required to execute the redundant-build
detection and the time saved for avoiding the compilation.
A commonly used tool in this context is CCache [35],
which uses heuristic (3a): CCache calculates a textual
hash (i.e., MD4 hashes) over the preprocessed source code
and uses this fingerprint as an index into an object-file
cache of previous compilation results. The wide-spread
adoption of CCache can be explained by the run-time
proportions of the different compiler stages (see Figure 2).
Compared to the whole C compiler invocation, the pre-
processor takes up only 13.94 percent of the run time for
the commonly used optimization level -O2.

In contrast to pure preprocessing, preprocessing and
parsing takes only slightly longer (24.9 % of the whole
invocation, -O2). Hence, with a more precise fingerprint
of the parsed input we unlock potential higher build-time
reductions for incremental compilation. In this paper, we
present the cHash approach, an incremental-build accel-
eration that applies heuristic (4) by means of hashing the
abstract syntax tree within the compiler.

3 The cHash Approach

Technically, cHash operates similarly to the CCache tool.
Both intercept the compilation process, calculate a hash
value over the input, search in a cache for a previous
compilation result associated with the same hash, and
stop the compilation if the search was successful. Nev-
ertheless, cHash differs from CCache in two important
regards: (1) cHash calculates a hash over the abstract
syntax tree (AST), while CCache hashes the preprocessed
source code textually. (2) CCache only has to perform
preprocessing, while cHash must perform preprocessing,
parsing, and semantic analysis. Since cHash operates on
the language-level instead of the CPP-syntactical level,
we can easily avoid hashing of syntactic and semantic
constructs (e.g., an additional declaration) that will surely
not influence the compilation result. The underlying as-
sumption is that the additional overheads of parsing and
semantic analysis are only minor compared to the possi-
ble savings regarding redundant compilations, especially
if a higher optimization level is chosen (see Figure 2) .

The abstract syntax tree is the central data structure
compilers use during parsing and semantic analysis of
a program. Its nodes represent the language entities
(e.g., statements, expressions, types, . . .) that were iden-
tified by the parser, while the tree edges represent their
syntactic nesting (e.g., statements within a function). Af-
ter parsing, the semantic analysis checks the program
for errors and introduces cross-tree references between
semantically related nodes. For example, all variable-

530 2017 USENIX Annual Technical Conference USENIX Association

definition nodes carry a reference to their respective type
node. So, if we also consider these references, the AST
effectively becomes a directed graph.

Figure 3a shows an example C source module with one
function and three record definitions. Figure 3b depicts
the corresponding (simplified) AST for the module (we
omitted the root node and duplicated the int type). In
our AST, three different classes of nodes are present:
definition, statements/expression, and type nodes. For
example, the function definition (inc) has a signature
type, which itself references other types, and a compound
block node that includes all statements from the function
body. Furthermore, through the cross-tree references,
cyclic structures can occur for recursive type definitions
(see struct unused).

In a nutshell, cHash operates directly within the com-
piler after the semantic analysis. In a depth-first search,
we start from all top-level definitions and calculate a hash
value over the semantically-enriched AST. For each node,
we combine the hash values of all referenced nodes and
all important node-local properties that influence the com-
pilation into a new hash value. However, since we operate
on a directed graph, nodes can be referenced more than
once and two situations can arise: (1) If we have visited
the node before and already calculated a hash value, we
reuse it. (2) If we are currently visiting the node and
encounter it again, we have detected a cycle and use a
surrogate hash value instead to avoid an endless recursion.
As a surrogate hash value, we use a textual representation
of the type name in order to avoid collisions. This is
necessary, since mutual referencing of types is possible:

struct x { struct y* link1; }
struct y { struct x* link2; }

If our surrogate value would be constant, the hash for
the type struct x would be unchanged, if we make
link2 of type struct *y. In both ASTs, the depth-first
search would visit the sequence (struct x→ link1→
struct y→ surrogate(link2)). Therefore, the surrogate
value must depend on the type of link2.

After the depth-first search, the hash is not only a fin-
gerprint of the program semantics, but it also covers only
elements that are reachable from the top-level definitions.

For illustration purposes, we executed a simplified ver-
sion of the AST hashing (see Figure 3b) and annotated
the intermediate hashes at the visited nodes. Here, we
use a very simplistic hashing rule that incorporates only
the node class (Declaration, Type, and Expression) as
a node-local property. To keep the numbers small, we
always calculate the modulo 100 of the result. For the
top-level definition node (inc), the hash value calculates
as follows: We add the hashes of all referenced nodes
(75+91), apply the node-class rule (1+2∗ (166)), and
get a hash value of 33. However, not all nodes influenced
this top-level hash: The record type unused and its chil-

dren were never referenced and therefore are not covered
by the top-level AST hash.

In practice, we have to be very careful when calculating
the AST hash. If we omit an important property, two pro-
grams that are semantically different will end up having
the same AST hash and, therefore, would be considered
equal. Furthermore, we have to include all compiler flags
that can influence the compilation result. In order to be
on the safe side, we textually include all compiler flags
into the top-level hash. If consistency between compiler
upgrades is desired, we also must consider the compiler
version. We also have to choose a sufficiently good hash
function to avoid hash collisions. Since we are not de-
fending against an evil attacker, we choose the efficient
but non-cryptographic MurMur3 [2] hash function.

With the AST hash as a fingerprint of the source
module, we can search for previous compilation results
in a cache and abort the compilation process if we were
successful, thereby avoiding the costly compiler phases
of optimization and assembling. If the AST hash was not
found, we continue the compilation process and copy the
result to the cache for future invocations.

4 Implementation

We implemented the cHash approach as a CLang [3]
plugin for the C programming language. CLang is the
C/C++/Objective-C/C++ front end of the LLVM [14]
project. CLang only performs parsing and the seman-
tic analysis of programs and hands the results, in form of
LLVM intermediate representation (IR), over to LLVM
for optimization and actual code generation.

The CLang plugin interface allows us to load a shared
library into the compiler that is called during the compila-
tion process. We instructed CLang to invoke cHash after
the semantic analysis, but right before the IR is generated
and handed over to LLVM. At this point all cross-tree
AST references are established, while optimizations and
code generation are yet to come.

After an actual compilation, we store the AST hash for
the source file and the object file for future compilations.
On the next compiler invocation for the same source file,
we calculate the AST hash again, compare it to the stored
hash, and, in case of equality, hard link the last object file
to the correct location and terminate CLang by calling
exit(). The hard link is necessary as some build systems
(CMake) remove the old object file before invoking the
compiler. In contrast to the CCache tool, our current
implementation stores only the last compilation result for
every file instead of all previous ones. For an incremental
application scenario, this has a minor influence if a change
is reverted to a previous revision.

USENIX Association 2017 USENIX Annual Technical Conference 531

Source Files Build
System

Opt.
LevelProject Version SLOC .c .h

LUA 5.3.4 18 k 35 26 Make -O2
mbedTLS 2.4.1 56 k 123 83 CMake -O2
musl 7597fc25 73 k 1322 16 Make -Os
bash 4.4-p5 103 k 253 117 AutoConf -O2
CPython 3.7-α1 403 k 324 325 AutoConf -O3
PostgreSQL e72059f 742 k 1152 747 AutoConf -O2

Table 1: Summary of the evaluated C project repositories.

5 Experimental Results

For the evaluation, we validated the correctness of our
implementation and quantified the influence of cHash
on the run time of incremental rebuilds. We chose six
open-source projects to cover a wide range of possible
application scenarios and applied cHash in two typical us-
age scenarios. We compare our results to the CCache [35]
tool (version 3.2.4) and quantify our absolute and relative
prediction precision.

5.1 Evaluated Applications
We used a set of six real-world open source C projects (see
Table 1) for our evaluation. This set of software projects
covers a broad range of possible project properties, since
they vary in size, application domain, and the employed
build system.

The probed source-code bases range from small
projects, like the LUA [11] language interpreter, which is
mainly developed by one person, to large multi-decade,
multi-person projects, like the CPython language inter-
preter [20]. They also differ in their usage of C lan-
guage extensions: While some projects, like the musl C
library [38], aim for portable and simple-structured code,
others, like the mbedTLS SSL library [37] use compiler-
specific features (e.g., vector types) to achieve a higher
performance. The examined projects also develop at dif-
ferent speeds: While the PostgreSQL [19] repository lists
40000 changes for 20 years of development, the bash
command-line interpreter [7] reaches only 128 for the
same period.

Furthermore, the projects employ different build sys-
tems: Small projects, like LUA and mbedTLS, often stick
to plain GNU makefiles [8] and encode their dependencies
manually. Larger projects often use configuration systems
like CMake [4] or GNU AutoConf [9] that act as makefile
generators. All examined build systems compare time-
stamps to detect compilation results that have to be rebuilt
from the source files.

The musl C library deserves special mention, since
their build system ignores some actual dependencies on
purpose. Their manually encoded dependencies exclude
all exported header files (515 files), since changing them

would break the library’s binary interface, which by defi-
nition is immutable. Hence, we exclude the public header
files from our evaluation and treat them as unchangeable.

5.2 Validation of cHash Implementation
As a first step, we validated the robustness of our cHash
implementation. In our targeted scenario, a robust imple-
mentation produces equal AST hashes for two inputs iff
the compilation result is also equal.

For the validation, we built 2368 changes taken from
the development history of the musl library independently.
For every change and every object file, we recorded the
AST hash, a textual hash of the object file, and a run-time
report of the compiler-internal phases.

Over all examined changes, the compiler ran 5.68 mil-
lion times and emitted 13199 different object files. Our
implementation proved to be correct and no AST hash
was associated with more than one object file.

A perfectly precise predictor would exactly produce
one fingerprint for every object file. For cHash, we
collected 55829 different AST hashes over all changes,
which results in a ratio of 1 object file : 4.23 AST hashes.
Through manual investigation, we traced back 55.3 per-
cent of the AST hashes to only 16 changes. While some
of them included a major source-code reorganization, 11
changes caused a new AST hash for every source file,
since they modified the compiler flags (e.g., enabled a new
warning). Without these compiler-configuration changes,
the ratio of object files and fingerprints drops to 1 : 2.5.

From the collected data, we could also confirm that
the run-time impact of cHash is minimal. On a 16-core
Intel i7-2600 @ 3.4 Ghz, cHash needed 9 ms on average
for the AST-hash calculation. In comparison, the parser
took an average 187 ms, while the rest of the compilation
(i.e., optimizer, assembler) executed in 1082 ms.

5.3 Rebuild with Minimal Changes
Our first end-to-end evaluation resembles a typical sce-
nario for an individual developer. In an already built
working copy of the source code (all build products are
up to date), the developer makes a minimal change and
instructs the build system to update all products. The
duration of this rebuild cycle is critical for the developer,
since it is often hundreds of time a day.

We used two methods to introduce an artificial minimal
change to a single file: (1) As the most minimal possible
change, we set the modification timestamp to the current
time to mimic the editor’s save command. (2) To mimic a
minimal textual change, we introduce a #line 1 direc-
tive to the beginning of the file, which is left alone by
the CPP and has no influence on the debug information.
While both modification are surely artificial, they will

532 2017 USENIX Annual Technical Conference USENIX Association

Updated Timestamp Textual Change

Project Initial Build #files Baseline CCache cHash Baseline CCache cHash

LUA 2.03 s 61 1.09 s −67.3 % −59.5 % 1.10 s 16.4 % −59.6 %
mbedTLS 3.57 s 204 1.33 s −24.1 % −4.1 % 1.33 s 18.9 % −4.3 %
musl 14.29 s 1338 0.86 s −20.6 % −4.5 % 0.86 s 17.6 % −4.7 %
bash 6.06 s 370 1.49 s −70.9 % −65.8 % 1.48 s −9.2 % −65.3 %
CPython 34.30 s 649 8.16 s −77.7 % −63.7 % 8.22 s −24.7 % −64.1 %
PostgreSQL 61.35 s 1891 3.16 s −65.3 % −42.2 % 3.12 s 8.6 % −41.8 %

Table 2: Average rebuild duration after a minimal change. In a built working copy of the examined project, we repeated
a modify–rebuild cycle for every file and measured the duration of the recompilation. Baseline shows the arithmetic
average over the rebuild times, relative percentages are in respect to the baseline (n=#files).

result in an unchanged object file. Therefore, this is a
best-case scenario for recompilation avoidance, since all
compiler invocations are actually redundant.

We repeated the modify–rebuild cycle for every source
file (headers included), measured the required rebuild
time on a 48-core AMD Opteron 6180 system with 64GB
of memory running Ubuntu 16.04.1, and calculated the
arithmetic-average rebuild time. While our test system
is an older server system, its performance is compara-
ble to a modern developer work station. For all experi-
ments, we instructed the build system to utilize all cores
(make -j48). Since the initial build was done just before
the actual experiment, all files were served from the main
memory and disk contention was no issue.

The results are listed in Table 2. As an orientation, we
also measured the time to build the project from a fresh
checkout after the build system is set up. The second
column holds the number of files for which the modify–
rebuild cycle was executed.

For updated timestamps, CCache outperforms cHash
in all cases, since it only has to invoke the preprocessor
and skips all subsequent compilation steps. In contrast,
cHash must at least wait for the parser and the semantic
analysis to start calculating the AST hash.

If we introduce a textual change, CCache cannot detect
the redundant rebuild and the build-time improvement di-
minishes or even turns negative, since CCache still has to
pay the cost of maintaining the object cache. For the mod-
ification scenario, the improvements for cHash remain
stable and we achieve a maximum rebuild-time reduction
of −65.3 percent for bash.

However, for two projects (mbedTLS and musl), we
see a much smaller influence of CCache and almost no
improvement by cHash. Both projects have a very sparse
dependency structure where a change to a source file
often leads only to a single compiler invocation, while the
majority of the time is spent in the linking process.

5.4 Rebuild with Commit-Sized Changes

Our second evaluation scenario resembles a usage pattern
that is found in continuous-integration systems. Source-
code changes are uploaded to a build server and automati-
cally integrated into the mainline repository. For every in-
cremental change, the build server verifies that the source
code compiles and informs the developers about compila-
tion errors. This scenario is distinct from the former one,
since an uploaded change reflects the condensed editing
effort of a single developer over a time period.

For this evaluation, we selected the last 500 (127 for
bash) non-merge changes from the source-code reposito-
ries of the examined projects. We excluded all changes
that were broken in the original repository and failed to
compile. For every change, we set up the working copy
to the previous (parent) change and built the project as a
starting point. After applying the change, we measured
the recompilation time on the same 48-core Opteron that
was used for the previous scenario and calculate the arith-
metic average over all non-failing changes. We repeated
the evaluation for the unmodified baseline build system,
CCache, cHash, and a combined variant (CCache+cHash).
We recorded the build times, as well as the number of de-
tected redundant builds, which we will call “hits” for
brevity. The summarized results can be found in Table 3.

Our largest improvement for a single change occurred
in the change 90d3da11c9 in PostgreSQL that fixes
a spelling mistake in a comment located in a central
header. Normally, the rebuilding of this change takes
15.6 s. While CCache correctly identifies the situation,
its cache-maintenance overhead keeps the recompilation
time at 3.5 s. With the compiler-internal approach of
cHash, we only require 2 s (−87.4 %) to rebuild.

Over all projects, and all examined changes, cHash
aborted the compilation in 79.75 percent of all invocations
and decreased the average build time by −29.64 percent.
For CPython, we even achieved an improvement of more
than 50 percent. In contrast to that, CCache has a much

USENIX Association 2017 USENIX Annual Technical Conference 533

Changes Baseline CCache cHash CCache + cHash

OK Fail Time #Invoc. Time #hits Time #hits Time #hits

LUA 479 21 2.14 s 16765 −38.8 % 13761 −49.3 % 15748 −46.7 % 15748
mbedTLS 498 2 2.13 s 36654 −20.7 % 24124 −7.3 % 25750 −21.6 % 26764
musl 500 0 1.25 s 28655 −3.8 % 19587 0.7 % 19457 −3.2 % 23104
bash 108 19 2.88 s 1931 −11 % 326 −22.7 % 1281 −16 % 1354
CPython 500 0 8.27 s 20338 −46.4 % 14551 −51.4 % 19102 −53.7 % 17859
PostgreSQL 498 2 5.63 s 25934 −11 % 7184 −31.6 % 22209 −25.3 % 20909

Table 3: Rebuild time for the last 500 non-merge changes. For every change, we prepared a fully built working copy
with the previous (parent) change. After applying the change, we measure the rebuild duration, as well as the number of
detected redundant build operations. For the baseline, we give the arithmetic average over the time required to build one
change and the number of compiler invocations. For the modified build processes, we give the change in average build
time (n=#OK changes) and the accumulated numbers of detected redundant builds (#hits, higher is better).

lower hit ratio (61.05 %) and could decrease the average
rebuild time by only −23.63 percent. From the total
number of hits, we can quantify that cHash’s semantic
fingerprint is at least 30.19 percent more precise than
CCache’s textual one.

Similar to the results of the previous scenario (Sec-
tion 5.3), we see little influence of cHash on the rebuild
times of musl and mbedTLS. For musl, we even have
a small decrease in performance due to its dependency
structure. Since the developers intentionally omitted al-
most all dependencies on header files, the majority of
compiler invocations is caused by a modified source file,
which almost always involves a semantic modification.

We also combined CCache and cHash by chaining their
execution: First, CCache searches for the textual hash
and, if unsuccessful, hands over the preprocessed code
to cHash. In the last two columns of Table 3, we see
the result of the combined experiment. However, in our
implementation, CCache interferes with the operation of
cHash such that the hit number decreases (CPython, Post-
greSQL): CCache includes a deeper history of previous
builds. If a compilation is aborted by CCache due to its
cache, cHash is not invoked and can, therefore, not fill its
shallow cache, which is only one object file deep. If the
respective source file is then modified in a way that the
textual hash changes but the AST hash remains the same,
cHash is not able to detect the redundant build because its
cache is empty. Nevertheless, the combination of CCache
and cHash comes close or even exceeds the best result
of both methods if applied in isolation. With a combined
caching strategy, this interference between CCache and
cHash could be avoided.

6 Related Work

As building software is an important part of the devel-
opment process, attempts to reduce the build time are
numerous and focus on different aspects and phases of

the process. Since multiple C/C++ compilation units can
be built independently, the process can be distributed over
several machines. The free distcc [36] tool acts as a
compiler wrapper and sends the preprocessed source code
over the network for remote compilation. Microsoft’s
in-house build service CloudBuild [5] employs the same
technique and distributes 20000 builds per day on up to
10000 machines and attaches to various build systems.
CONCORD [21], which is Microsoft’s internal alternative
to CloudBuild, also uses distributed builds and speeds up
the Windows build process by up to 100 times. Google’s
build infrastructure [12] relies on reproducible builds and
distributes the work over thousands of machines.

A too coarse-grained module structure often leads to
redundant builds if one of the central “God” modules are
touched. Therefore, Yu, Dayani-Fard, and Mylopoulos
[33] proposed a technique to refactor large header files
into multiple smaller ones and thereby achieved a speedup
of the compilation by nearly 32 percent. However, with
higher optimization levels their speedup dropped to 12
percent. Furthermore, automatic restructuring of headers
can be in conflict with the developers’ intentions.

Morgenthaler et al. [17] proposed the CLIPPER tool,
which automatically finds build system targets that are too
coarse-grained and aids the developer in removing them.
Vakilian et al. [30] examined build-system dependencies
and found that nearly 50 percent of the 40000 build
targets of a Google internal Java library are too coarse-
grained and can be further refined. However, Miller [16]
discusses that incomplete dependency graphs, which can
stem from the usage of recursive GNU make systems, can
yield incorrect compilation results and render incremental
builds useless. Developers then often fall back to compile
the software always from scratch.

Besides general build-system organization, several re-
searchers proposed techniques to speed up the compiler
invocation itself; cHash being one of them. Often these
propositions focus on a single compiler phase and are
composable. Pre-compiled headers are an old technique

534 2017 USENIX Annual Technical Conference USENIX Association

that was already used for Mesa [10, 26] and NeXT [15]
and is still employed in industry [13]. For this technique,
header files are translated to an intermediate format which
then can be loaded faster by the compiler for all subse-
quent invocations.

The CCache [35] tool intercepts the compilation after
the preprocessor and calculates a textual hash over the
preprocessed code to detect redundant builds. For dis-
tributed build services the problem of redundant builds
becomes especially severe, since many developers start
compile jobs for very similar code bases. Therefore, both
Microsoft and Google use textual hashing in their build
services [32, 5]. However, the employed hashing method
is orthogonal to the caching method and cHash could act
as a drop-in replacement for the textual hashes in these
systems. Actually, Google’s build system allows the inte-
gration of language-specific hashing methods.

For languages with a module system, Tichy [29] pro-
posed the smart recompilation approach, which was ex-
tended by Schwanke and Kaiser [22] and Shao and Appel
[24]. For smart recompilation, each exported module
interface is annotated with a version stamp. Dependent
modules only have to be recompiled if one of their im-
ported interfaces has an updated version stamp. By in-
corporating only referenced declarations, cHash achieves
the same effect for languages without a proper module
system. Furthermore, cHash does not only include the
called function signatures, but also ignores all syntactic
changes that are removed by preprocessor and parser.

Zhang et al. [34] introduce the ABC tool to generate an
additional unoptimized object file for each compilation
unit. For each compilation unit, ABC invokes the com-
piler without optimizations and aborts the subsequent, but
more expensive compilation process with optimizations
if the unoptimized object remains unchanged. However,
in case of a redundant build, cHash pays only the price
for parsing, while ABC has to finish the compilation.

Whaley [31] uses dynamic execution profiles to de-
termine rarely executed code regions in Java programs,
which can either be excluded from optimization or entirely
from compilation. During the execution, the program falls
back to using unoptimized code or even an interpreter
solution. Suganuma, Yasue, and Nakatani [25] used a
similar approach for dynamic compilation of Java soft-
ware by focusing optimization efforts only on non-rare
code paths.

7 Discussion

As we have shown in the evaluation, cHash provides
a significant speed up for realistic usage scenarios that
occur during the development of software. In this section
we want to discuss threats to the validity of our results,
benefits, and give hints for future work.

7.1 Threats to Validity

One threat to the validity of our experimental results is
the selection of software projects we used to evaluate
the effects of cHash. If their code organization and/or
their change-recording policies were highly favorable for
cHash, our results would be overly optimistic. For exam-
ple, if a project had one central header file that is updated
in every single change to the repository, the time savings
cHash induces would be optimal. However, as discussed
in Section 5.1, the chosen projects cover a broad range
of properties and we have not encountered such a pattern.
Furthermore, our evaluation scenarios would yield totally
different results for a project with this pattern.

Another threat to our experimental validity is our im-
plementation of cHash. Although we have rigorously val-
idated our implementation (see Section 5.2) it is not veri-
fied formally. However, the examination of 500 changes
from several open-source projects and over 2000 changes
for musl makes us confident in the reliability of our im-
plementation.

Currently, we implemented the cHash only for the C
programming language. However, the general concept
is suitable for every language that can be expressed as
an AST with cross-tree references, even if it includes
cyclic references. If a programming language cannot
be expressed as such a structure, cHash cannot be ap-
plied. One prominent example is the TEX programming
language: In TEX, the program flow can influence and
feedback data back to the lexer and, therefore, the actual
structure becomes only visible during execution. How-
ever, such languages are rare and will only be executed in
an interpreter.

Furthermore, cHash is only usefully applicable if the
compilation process is dominated by the middle- and
back-end (optimizer, code generation) and the front end is
considerably fast. However, since most modern languages
offer a more expressive semantic than C (e.g., Haskell,
Rust), the efficient code generation and the optimizations
take longer. Therefore, we are confident that cHash will
perform even better for these languages than for C.

Another general impediment for a wide-ranged adop-
tion of cHash is its requirement to access internal compiler
data structures. If a compiler does not provide an appro-
priate plugin structure or is developed as a closed-source
project, cHash cannot be applied. Furthermore, the AST
hashing must be implemented for every programming lan-
guage and for every compiler, a general implementation
does not exist. However, C and C-style languages are still
the most prominent compiled languages [27] and both
widely used free-software compiler suites (clang, GCC)
include a powerful plugin interface.

USENIX Association 2017 USENIX Annual Technical Conference 535

7.2 Advantages of cHash

Besides the apparent benefits of faster rebuilds, cHash is
also build-system agnostic. Similar to the widely-adopted
CCache tool, cHash does not require modifications on
the build-system level. We, therefore, think our unintru-
sive approach fosters a wide-spread adoption of cHash.
We demonstrated this property in the evaluation, where
three different build systems were handled without any
modification (see Section 5).

During the compilation process, the compiler always
builds an abstract syntax tree of the program and holds it
in memory. This availability allows cHash to be a light-
weight and self-contained mechanism that is easy to test in
isolation. Furthermore, the calculation of an AST hash is
computationally cheap, since only one depth-first search
graph-traversal is required to calculate it. During the
compilation process, such traversals are already executed
dozens of times.

Since the AST is a semantic representation of the pro-
gram, cHash is able to detect various changes that do
not lead to a changed compilation result. First of all,
many syntactic modifications, like comments, whitespace-
changes, or even the presence of braces are not present
on the AST level.

Besides the syntactical modifications, cHash is also
able to ignore language-semantic changes to the compila-
tion unit. Per default, we already ignore unused declara-
tions and type definitions, which leads to a fine-grained
dependency tracking on the symbol and the type level.
As mentioned in Section 6, this property of cHash brings
the benefits of smart recompilation [29] to the C program-
ming language, which in other respects lacks any module
support. As C projects handle modules on the file-system
level, the whole interface definition of another module
is included if the header file is referenced (#include).
With cHash, we narrow this import down to the actually
used interfaces and consequentially detect dependencies
between modules more precisely.

7.3 AST Hash Precision

The predictive power of the AST hash in regard to de-
tecting redundant builds is determined by two factors: (1)
Which AST nodes are considered during the depth-first
search. (2) What attributes of the visited nodes are in-
cluded into the hash. Currently, cHash is conservative in
both dimensions in order to avoid false-negative compiler
abortions.

On the node-selection part, cHash currently ignores
all AST nodes which are not referenced, directly or in-
directly, from the top-level definitions of a compilation
unit. However, with a more complex and compiler-aware
strategy, cHash could also ignore other AST nodes that

will not lead to changed object file (e.g., defined but un-
used functions marked as static). A normalization step
– like sorting the order of local-variable definitions – is
also possible.

In regard to the AST-node fields, we ignore only fields
that are known to not influence the resulting code, like
origin line numbers in the source code (if correct debug-
ging information is desired, this information should be
included). In order to increase the predictive power, we
could furthermore exclude variable and type-name fields.
With a more relaxed equivalence relation for object files,
we could additionally exclude modifiers (e.g., inline) if
they are known to have no effect on the resulting program
behavior. However, every introduction of in-depth com-
piler knowledge increases the complexity of the hashing
mechanism, which, most probably, would make cHash
more fragile, especially in terms of changes in future
compiler versions.

7.4 Future Work
We see several directions of future work: In order to
allow co-evolution of the implementation and to do more
validation, we will work on integrating cHash into the
CLang mainline repository. This effort also includes the
integration of the cHash approach into other open-source
compilers (i.e., gcc).

Furthermore, we plan the implementation of the cHash
approach for more complex languages. As a first target,
we will extend our CLang plugin to the C++ programming
language. There, the usage of templates and their location
in header files promises huge savings by cHash.

Another direction of research is the possibility of cHash
to provide more fine-grained information about changed
definitions and language constructs. With cHash, a com-
piler can not only detect that the whole compilation pro-
cess is redundant, but also that the compilation of a single
function can be skipped. For such a partial-compilation
scheme, we would start the depth-first search at the func-
tion level instead of the AST’s root node.

8 Conclusion

The detection of redundant builds, which can increase the
throughput of the development-testing cycle significantly,
is a trade-off between precision and cost. In this paper we
show how this trade-off can be optimized towards higher
precision at low costs by applying language-level anal-
yses directly in the compiler. The results for our cHash
approach show that on average 80 percent of all compiler
invocations can already be canceled after the semantic
analysis. For single projects, we speed-up the recompi-
lation process by up to 51 percent, while single changes

536 2017 USENIX Annual Technical Conference USENIX Association

even compiled up to 87 percent faster. In comparison
to the state-of-the-art CCache tool, cHash’s AST hash
fingerprinting is over 30 percent more precise.

Acknowledgments

The authors thank the anonymous reviewers and our
shepherd Theodore Ts’o for their feedback. This work
has been supported by the German Research Foundation
(DFG) under the grants no. LO 1719/3-1 and SFB/Tran-
sregio 89 “Invasive Computing” (Project C1).

The source code of cHash and the raw data for this
paper are available at:
https://gitlab.cs.fau.de/chash

References

[1] Rolf Adams, Walter Tichy, and Annette Weinert.
“The Cost of Selective Recompilation and Envi-
ronment Processing”. In: ACM Transactions on
Software Engineering and Methodology (TOSEM)
(1994). DOI: 10.1145/174634.174637.

[2] Austin Appleby. SMHasher: a testsuite for distri-
bution, collission, and performance properties of
non-cryptographic hash function. https://github.
com/aappleby/smhasher, accessed 6 Feb. 2017.

[3] CLang: a C language family frontend for LLVM.
http://clang.llvm.org, accessed 7. Feb 2017.

[4] CMake. http://cmake.org, accessed 7. Feb 2017.

[5] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei
Kolomiets, Erica Lan, Erik Mavrinac, Wolfram
Schulte, Newton Sanches, and Srikanth Kandula.
“CloudBuild: Microsoft’s Distributed and Caching
Build Service”. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering Com-
panion (ICSE). 2016. ISBN: 978-1-4503-4205-6.
DOI: 10.1145/2889160.2889222.

[6] Stuart I. Feldman. “Make — A program for main-
taining computer programs”. In: Software: Prac-
tice and experience 9.4 (1979), pp. 255–265.

[7] GNU Bourne Again SHell. http://www.gnu.org/
software/bash/, Git repository at http://savannah.
gnu.org/projects/bash/, accessed 7. Feb 2017.

[8] GNU Make. http://www.gnu.org/software/make,
accessed 7. Feb 2017.

[9] GNU autoconf. https://www.gnu.org/software/
autoconf/autoconf.html, accessed 7. Feb 2017.

[10] Charles M. Geschke, James H. Morris Jr., and
Edwin H. Satterthwaite. “Early Experience with
Mesa”. In: SIGSOFT Softw. Eng. Notes 2.2 (Mar.
1977), pp. 138–. ISSN: 0163-5948. DOI: 10.1145/
390019.808320.

[11] Roberto Ierusalimschy, Luiz Henrique de
Figueiredo, and Waldemar Celes Filho. “Lua—An
Extensible Extension Language”. In: Software:
Practice and Experience 26.6 (1996), pp. 635–652.
ISSN: 1097-024X.

[12] Christian Kemper. Build in the Cloud: How the
Build System works. http://google-engtools.blogsp
ot.de/2011/08/build-in-cloud-how-build-system-
works.html, accessed 7. Feb 2017. [Online; posted
18-08-2011].

[13] Tara Krishnaswamy. “Automatic Precompiled
Headers: Speeding Up C++ Application Build
Times”. In: Proceedings of the 1st Conference
on Industrial Experiences with Systems Software
(WIESS). USENIX Association, 2000.

[14] Chris Lattner and Vikram Adve. “LLVM: A Com-
pilation Framework for Lifelong Program Analysis
& Transformation”. In: Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04). (Palo Alto, CA, USA).
2004.

[15] Andy Litman. “An Implementation of Precompiled
Headers”. In: Software – Practice and Experience
23 (1993).

[16] Peter Miller. “Recursive Make Considered Harm-
ful”. In: AUUGN Journal of AUUG Inc (1998).

[17] J. David Morgenthaler, Misha Gridnev, Raluca
Sauciuc, and Sanjay Bhansali. “Searching for
Build Debt: Experiences Managing Technical Debt
at Google”. In: Proceedings of the Third Inter-
national Workshop on Managing Technical Debt.
2012.

[18] D. L. Parnas. “On the Criteria to Be Used in De-
composing Systems into Modules”. In: Commun.
ACM (1972).

[19] PostgreSQL. http://postgresql.org, Git repository
at http://github.com/postgres/postgres, accessed 7.
Feb 2017.

[20] Python. http: / /python.org, Git mirror at http: / /
github.com/python/cpython, accessed 7. Feb 2017.

[21] Wolfram Schulte. “Changing Microsoft’s Build:
Revolution or Evolution”. In: Proceedings of the
31st IEEE/ACM International Conference on Au-
tomated Software Engineering. ASE 2016. 2016.
ISBN: 978-1-4503-3845-5.

USENIX Association 2017 USENIX Annual Technical Conference 537

https://gitlab.cs.fau.de/chash
https://doi.org/10.1145/174634.174637
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
http://clang.llvm.org
http://cmake.org
https://doi.org/10.1145/2889160.2889222
http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/
http://savannah.gnu.org/projects/bash/
http://savannah.gnu.org/projects/bash/
http://www.gnu.org/software/make
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://doi.org/10.1145/390019.808320
https://doi.org/10.1145/390019.808320
http://google-engtools.blogspot.de/2011/08/build-in-cloud-how-build-system-works.html
http://google-engtools.blogspot.de/2011/08/build-in-cloud-how-build-system-works.html
http://google-engtools.blogspot.de/2011/08/build-in-cloud-how-build-system-works.html
http://postgresql.org
http://github.com/postgres/postgres
http://python.org
http://github.com/python/cpython
http://github.com/python/cpython

[22] Robert W. Schwanke and Gail E. Kaiser. “Smarter
Recompilation”. In: ACM Trans. Program. Lang.
Syst. 10.4 (Oct. 1988), pp. 627–632. ISSN: 0164-
0925. DOI: 10.1145/48022.214505.

[23] Hyunmin Seo, Caitlin Sadowski, Sebastian El-
baum, Edward Aftandilian, and Robert Bow-
didge. “Programmers’ build errors: a case study
(at google)”. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM.
2014, pp. 724–734.

[24] Zhong Shao and Andrew W. Appel. “Smartest Re-
compilation”. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL. 1993. DOI: 10.
1145/158511.158702.

[25] Toshio Suganuma, Toshiaki Yasue, and Toshio
Nakatani. “A Region-based Compilation Tech-
nique for a Java Just-in-time Compiler”. In: Pro-
ceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implemen-
tation (PLDI). 2003. ISBN: 1-58113-662-5.

[26] Richard E Sweet. “The Mesa Programming Envi-
ronment”. In: ACM SIGPLAN Notices. 1985.

[27] TIOBE Index for January 2017. http://www.tiobe.
com/tiobe-index/, accessed 06 Feb. 2017.

[28] Alexandru Telea and Lucian Voinea. “A Tool for
Optimizing the Build Performance of Large Soft-
ware Code Bases”. In: 12th European Confer-
ence on Software Maintenance and Reengineering
(CSMR). 2008.

[29] Walter F. Tichy. “Smart Recompilation”. In: ACM
Trans. Program. Lang. Syst. 8.3 (June 1986),
pp. 273–291. ISSN: 0164-0925. DOI: 10.1145/5956.
5959. URL: http://doi.acm.org/10.1145/5956.5959.

[30] Mohsen Vakilian, Raluca Sauciuc, J. David Mor-
genthaler, and Vahab Mirrokni. “Automated De-
composition of Build Targets”. In: Proceedings of

the 37th International Conference on Software En-
gineering (ICSE). 2015. ISBN: 978-1-4799-1934-5.

[31] John Whaley. “Partial Method Compilation Using
Dynamic Profile Information”. In: Proceedings of
the 16th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications (OOPSLA). 2001. ISBN: 1-58113-335-
9.

[32] Nathan York. Build in the Cloud: Distributing
Build Steps. http : / / google - engtools . blogspot .
de/2011/09/build- in- cloud- distributing- build-
steps.html, accessed 7. Feb 2017. [Online; posted
23-09-2011].

[33] Yijun Yu, Homy Dayani-Fard, and John My-
lopoulos. “Removing False Code Dependencies
to Speedup Software Build Processes”. In: Pro-
ceedings of the 2003 Conference of the Centre for
Advanced Studies on Collaborative Research (CAS-
CON). 2003.

[34] Ying Zhang, Yanyan Jiang, Chang Xu, Xiaoxing
Ma, and Ping Yu. “ABC: Accelerated Building of
C/C++ Projects”. In: Asia-Pacific Software Engi-
neering Conference (APSEC). 2015.

[35] ccache – a fast C/C++ compiler cache. http : / /
ccache.samba.org/, accessed 7. Feb 2017.

[36] distcc – a free distributed C/C++ compiler system.
http://github.com/distcc/distcc, accessed 7. Feb
2017.

[37] mbedTLS. http: / / tls .mbed.org, accessed 7. Feb
2017.

[38] musl libc. http://www.musl-libc.org, accessed 7.
Feb 2017.

538 2017 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/48022.214505
https://doi.org/10.1145/158511.158702
https://doi.org/10.1145/158511.158702
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/5956.5959
https://doi.org/10.1145/5956.5959
http://doi.acm.org/10.1145/5956.5959
http://google-engtools.blogspot.de/2011/09/build-in-cloud-distributing-build-steps.html
http://google-engtools.blogspot.de/2011/09/build-in-cloud-distributing-build-steps.html
http://google-engtools.blogspot.de/2011/09/build-in-cloud-distributing-build-steps.html
http://ccache.samba.org/
http://ccache.samba.org/
http://github.com/distcc/distcc
http://tls.mbed.org
http://www.musl-libc.org

Giza: Erasure Coding Objects across Global Data Centers
Yu Lin Chen?†, Shuai Mu?, Jinyang Li?, Cheng Huang†, Jin Li†, Aaron Ogus†, Douglas Phillips†

?New York University, †Microsoft Corporation

Abstract
Microsoft Azure Storage is a global cloud storage system
with a footprint in 38 geographic regions. To protect
customer data against catastrophic data center failures, it
optionally replicates data to secondary DCs hundreds of
miles away. Using Microsoft OneDrive as an example,
this paper illustrates the characteristics of typical cloud
storage workloads and the opportunity to lower storage
cost for geo-redundancy with erasure coding.
The paper presents the design, implementation and

evaluation of Giza – a strongly consistent, versioned ob-
ject store that applies erasure coding across global data
centers. The key technical challenge Giza addresses is
to achieve single cross-DC round trip latency for the
common contention-free workload, while also maintain-
ing strong consistency when there are conflicting access.
Giza addresses the challenge with a novel implemen-
tation of well-known distributed consensus algorithms
tailored for restricted cloud storage APIs. Giza is de-
ployed to 11 DCs across 3 continents and experimental
results demonstrate that it achieves our design goals.

1 Introduction
Microsoft Azure Storage is a global cloud storage sys-
tem with a footprint in 38 geographic regions [27].
Since 2010, Azure Storage has grown from tens of
petabytes to many exabytes, with tens of trillions of ob-
jects stored [15].
To protect customer data against disk, node, and rack

failure within a data center (DC), Azure Storage applies
Local Reconstruction Coding (LRC) [20] to ensure high
availability and durability. LRC significantly reduces the
storage cost over the conventional scheme of three-way
replication.
To further protect customer data against catastrophic

data center failures (say due to earthquake, tsunami, etc.),
Azure Storage optionally replicate customer data to sec-
ondary DCs hundreds of miles away. It is essential to
the customers that even in the unlikely, albeit inevitable,
event of catastrophic data center failure, their data remain
durable.
Geo-replication, however, doubles the storage cost.

With many exabytes at present and exponential growth
projected, it is highly desirable to lower the storage cost
required for maintaining geo-redundancy.

1.1 Cross-DCErasureCoding: WhyNow?
Erasure coding across geographically distributed DCs is
an appealing option. It has the potential to ensure dura-
bility in the face of data center failure while significantly
reducing storage cost compared to geo-replication. The
same economic argument that has driven cloud providers
to erasure code data within individual data centers natu-
rally extends to the cross-DC scenario.

However, when customer data is erasure coded and
striped across multiple DCs, serving read requests would
require data retrieval from remote DCs, resulting in
cross-DC network traffic and latency. Furthermore,
the recovery after catastrophic DC failure would trigger
wide-area erasure coding reconstruction. While such
reconstruction can be paced and prioritized based on
demand, it nevertheless requires sufficient cross-DC net-
work bandwidth to ensure timely recovery.

Therefore, cross-DC erasure coding only becomes
economically attractive if 1) there are workloads that
consume very large storage capacitywhile incurring very
little cross-DC traffic; 2) there are enough cross-DC net-
work bandwidth at very low cost.

For the former, Azure Storage indeed servesmany cus-
tomers with such workloads. UsingMicrosoft OneDrive
as an example, Section 2 illustrates the characteristics
of typical cloud storage workloads and why they are
ideal for cross-DC erasure coding. For the latter, recent
technological breakthroughs [26, 42] have dramatically
increased bandwidth and reduced cost in cross-DC net-
working. For example, Facebook and Microsoft have
teamed up to build MAREA, a new fiber optic cable un-
der the Atlantic Ocean that will come online in 2017with
160Tbps capacity [12, 28]. The significant advancement
in cross-DC networking is nowmaking cross-DC erasure
coding economically viable.

1.2 Challenges and Contributions
This paper presents Giza, a cloud object store that era-
sure codes and stripes customer data across globally dis-
tributed DCs. We aim to achieve two design goals. One,
Giza should guarantee strong consistency while also
minimizing operation latency. The other, Giza should
make full use of existing cloud infrastructure to simplify
its implementation and deployment.

Since reads andwrites requires cross-DC communica-

USENIX Association 2017 USENIX Annual Technical Conference 539

Figure 1: Storing Object in Giza

0

20

40

60

80

100

 1 10 100 1000

C
D

F
 (

%
)

Object Size (MB)

Storage Capacity

(a)

0

20

40

60

80

100

Day Week Month Quarter

C
D

F
 (

%
)

Object Age when Read

2 4 2

Bytes Read

(b)

0

5

10

15

20

25

30

Day Wk Mo Qtr Yr

C
D

F
 (

%
)

Object Age when Deleted

Bytes Deleted

(c)

Figure 2: Microsoft OneDrive Characteristics

tion, latency is minimized when operations can complete
within a single cross-DC roundtrip. This is possible to
achieve for our target workloads (e.g. OneDrive), where
objects are updated infrequently. Nevertheless, concur-
rent updates to the same object do exist. Furthermore,
such conflicting access might originate from different
DCs. Consider two concurrent requests updating the
same object (with different data) from two separate DCs.
Depending on network latency, the two requests may ar-
rive at different data centers in different order. If not
handled properly, this would result in data inconsistency.
To ensure strong consistency, one possible approach

is to dedicate a primary DC that handles all updates
and enforces execution order. However, requests from
non-primary data centers have to be relayed to the pri-
mary first, incurring extra cross-DC latency, even when
there are no concurrent updates. To guarantee strong
consistency while minimizing latency in the common
case, Giza employs FastPaxos [23], which incurs a sin-
gle cross-DC roundtrip when there are no concurrent
updates. When conflicting access do sometimes occur,
Giza uses classic Paxos [24] andmay takemultiple cross-
DC round trips to resolve the conflicts. We deem this to
be an acceptable tradeoff.
We implement Giza on top of the existing Azure stor-

age infrastructure. For each object, Giza stores its coded
fragments in the Azure Blob storage of different DCs,
and replicates its versioned meta-data containing the ids
of coded fragments in the Azure Table storage of multi-
ple DCs. Giza guarantees the consistency of versioned
meta-data using Paxos/FastPaxos and it adapts both pro-
tocols to use the existing APIs of Azure Table storage.
To summarize, this paper makes the following contri-

butions:

• Wehave designed and implementedGiza, a strongly
consistent, versioned object store that erasure codes
objects across globally distributed data centers.

• Giza achieves minimum latency in the common
case when there are no concurrent conflicting ac-
cess, and ensures strong consistency in the rare case
under contention.

• Giza applies well-known distributed protocols–
Paxos [24] and Fast Paxos [23] – in a novel way
on top of restricted cloud storage APIs.

• Giza is deployed in 11 DCs across 3 continents and
experimental results demonstrate that it achieves
our design goals.

2 The Case for Giza
This section presents an overview of Giza, the character-
istics of typical cloud storage workloads from Microsoft
OneDrive, as well as the storage and networking trade-
offs exploited by Giza.

2.1 Giza Overview
Giza exploits the reduction in cross-DC bandwidth cost
and leverages erasure coding to optimize the total cost
of storing customer data in the cloud. It offers an ex-
ternally strong consistent (linearizable [18]), versioned
object store that erasure codes objects across global data
centers.

Customers access Giza by creating Giza storage ac-
counts. For each storage account, the customers have the
flexibility to choose the set of data centers where their
data are striped across. In addition, they can specify the
erasure coding scheme. Giza employs classic n = k +m
Reed-Solomon coding, which generates m parity frag-
ments from k data fragments. All n coded fragments are
stored in separate DCs, which tolerates up to m arbitrary
DC failures.

Figure 1 illustrates an exemplary flow of storing an
object in Giza with 2 + 1 erasure coding. Giza divides
the object into two data fragments (a and b) and encodes
a parity fragment p. It then stores the coded fragments
in 3 separate data centers.

Giza is accessible via put, get, and delete interface.
In addition, Giza supports versioning. Each new put
does not overwrite existing data, but rather creates a new
version of the data. The old versions remain available
until explicitly deleted.

2.2 Microsoft OneDrive Characteristics
Methodology: The data presented in this section is de-

540 2017 USENIX Annual Technical Conference USENIX Association

rived from a three-month trace of the OneDrive service.
OneDrive serves hundreds of millions of users and stores
their objects which include documents, photos, music,
videos, configuration files, and more. The trace includes
all reads, writes, and updates to all objects between Jan-
uary 1 and March 31, 2016.
Large Objects Dominate: The size of the objects

varies significantly, ranging from kilobytes to tens of
gigabytes. While the number of small objects vastly ex-
ceeds that of large objects, the overall storage consump-
tion is mostly due to large objects. Figure 2a presents the
cumulative distribution of storage capacity consumption
in terms of object size. We observe that less than 0.9% of
the total storage capacity is occupied by objects smaller
than 4MB. This suggests that, to optimize storage cost,
it is sufficient for Giza to focus on objects of 4MB and
larger∗. Objects smaller than 4MB can simply use the
existing geo-replication option. This design choice re-
duces the overhead associated with erasure coding of
small objects (including meta-data for the smaller ob-
ject). As a result, all following analysis filter out objects
smaller than 4MB.
Object Temperature Drops Fast: A common usage

scenario of OneDrive is file sharing. Objects stored in
the cloud are often shared across multiple devices, as
well as among multiple users. Therefore, it is typical
to observe reads soon after the objects are created. To
this end, Figure 2b presents the cumulative distribution
of bytes read in terms of object age when the reads
occur†. It is worth pointing out that 47% of the bytes
read occurred in the same day of object creation, 87%
occurred within the same week, and merely less 2%
occurred beyond one month. Since the temperature of
the objects drops quickly, caching objects can be very
effective (more below).

total reads (B) / writes (B) 2.3×
no caching 1.15×

cross-DC reads / writes caching (day) 0.61×
with Giza caching (week) 0.18×

caching (month) 0.05×

Writes Dominate with Caching: The above table
presents the effectiveness of caching. The ratio between
the total amount of bytes reads to writes is 2.3×. As
illustrated in Section 2.3, Giza incurs 1× and 0.5× cross-
DC network traffic on writes and reads, respectively.
Hence, the ratio between cross-DC traffic due to reads
and writes is 1.15×. Given the temperature analysis, it
is most effective for Giza to cache objects for a short
period of time within one single DC. Serving reads from

∗Objects of tens of Gigabytes are divided into 4MB chunks before
storing in cloud storage back-end.

†The analysis focuses on all the objects created during the three-
month period. Hence, the object age is capped at three months.

the cachingDC dramatically reduces the cross-DC traffic
due to reads. Indeed, when objects are cached for one
day, the cross-DC traffic attribute to reads vs writes re-
duces to 0.61×. When objects are cached for one month,
the ratio reduces to negligible 0.05×, in which case the
cross-DC traffic is completely dominated by writes. Ad-
mittedly, caching the entire object also raises the total
storage overhead to 2× (same as geo-replication) for a
short period of time.

of Versions 1 2 ≥ 3
Percentage 57.96% 40.88% 1.16%

Concurrency is Rare, but Versioning is Required:
The above table presents how often objects are updated
and whether versioning is required. We observe that
57.96% of the objects are written once and never up-
dated during the three-month period. For the remain-
ing, 40.88% of the objects are updated exactly once and
merely 1.16% are updated more than twice. In addition,
we observe that only 0.5% of the updates are concurrent
(within 1 second interval). This suggests that concurrent
updates of same objects are rare in Giza (albeit possible).

Deletion is Not Uncommon: It turns out that
OneDrive customers not only create new objects, but
also delete old objects from time to time. To character-
ize how often objects are deleted and how long they have
been stored upon deletion, we follow all the objects that
were created during the first 3 months in 2016 and match
them with object deletion trace up to one year after cre-
ation. For all the objects whose matching deletion trace
records exist, we calculate the age of the objects upon
deletion. Figure 2c plots the cumulative distribution of
storage capacity consumption against object age‡.

We observe that a non-trivial portion of the objects
were deleted within one year after their creation. These
objects account for 26.5% of the total consumed storage
capacity. On one hand, the amount of bytes deleted
is much smaller than the total amount of bytes cre-
ated, which partly explains the exponential growth of
OneDrive’s storage consumption. On the other hand,
the percentage and amount of bytes deleted is non-trivial.
This suggests that removing the deleted objects from un-
derlining cloud storage and reclaiming capacity is crucial
in achieving storage efficiency.

2.3 Giza Trade-offs
Giza offers flexible trade-offs in terms of storage cost
and cross-DC network traffic, as summarized in Table 1.
Although we cannot discuss the details of how Giza’s
trade-offs translate to overall cost reduction, our internal
calculation indicates that Giza leads to savings of many
millions of dollars annually for OneDrive alone.

‡The distribution curve is cut off at the right end, where the age
of objects exceeds one year.

USENIX Association 2017 USENIX Annual Technical Conference 541

Geo-Rep. Giza
of DCs 2 3 5 7
Erasure coding - 2 + 1 4 + 1 6 + 1
Storage overhead 2.6 1.9 1.6 1.5
Cost savings - 27% 38% 42%
cross-DC traffic (put) 1x 1x 1x 1x
cross-DC traffic (get) 0 0.5x 0.75x 0.83x
DC rebuild 1x 2x 4x 6x

Table 1: Giza Trade-offs

Storage Cost: To tolerate single DC failure, geo-
replication incurs the storage overhead of 2 × 1.3 = 2.6
(with single DC storage overhead at 1.3 [20]). With k+1
erasure coding, where k ranges from 2 to 6, Giza reduces
the storage overhead to between 1.9 and 1.5, increasing
cost savings from 27% to 42%. The storage cost savings
come with inflated cross-DC traffic, examined below.
Cross-DC Traffic: For writes, Giza consumes same

cross-DC traffic as geo-replication. With k + 1 erasure
coding, an object is encoded into k +1 fragments, where
one fragment is stored in a local DC and the rest k in
remote DCs. Hence, the ratio between cross-DC traffic
and object size is k/k = 1, same as geo-replication. For
reads, however, Giza consumes more cross-DC traffic. k
fragments are required, where one is from the local DC
and the rest k − 1 from remote DCs. Hence, the ratio
between cross-DC traffic and object size is (k − 1)/k,
which increases with k. In comparison, geo-replication
serves reads entirely from the local DC and incurs no
cross-DC traffic. However, as discussed in Sec ??, the
cross-DC read traffic can be cut down significantly with
caching. Upon data center failure, Giza needs to rebuild
lost data through erasure coding reconstruction, which
requires k bytes of cross-DC traffic to reconstruct one
byte of data. Geo-replication simply replicates every
object and thus incurs 1× of cross-DC traffic.

Alternative Approach: Giza stripes individual ob-
jects across multiple DCs. This design leads to cross-
DC traffic when serving reads. An alternative design is
to first aggregate objects into large logical volumes (say
100GB) and then erasure code different volumes across
multiple DCs to generate parity volumes [30]. Since
every object is stored in its entirety in one of the DCs,
cross-DC traffic is avoided during reads.
This design works great when objects are never

deleted [30]. However, Giza must support deletion.
Deleting objects from logical volumes (and canceling
them fromcorresponding parity volumes)would result in
complex bookkeeping and garbage collection, greatly in-
creasing system complexity. In comparison, Giza keeps
its design simple and relies on caching to drastically re-
duce the cross-DC traffic of reads to much lower than
that of writes.

3 Design
This section presents the design of Giza, including the
overall architecture, the data model, and the protocols
for the put, get, and delete operations.

3.1 Overview and Challenges

Giza

DC-1
object store

DC-1
table store

DC-1

DC-2

DC-2
object store

DC-2
table store

DC-3

DC-3
object store

DC-3
table store

W
rit

e
a

Write b

Write p

P
ut

(k
,v

)

Create coded fragments
{a, b, p} from v

Replicate and update

k→ {a, b, p}

Update and replicate
k→ {a, b, p}

Update and replicate k→ {a, b, p}

Figure 3: Giza architecture

Architecture Giza is a global-scale cloud storage sys-
tem that spans across many data centers. It stores muta-
ble, versioned objects. Figure 3 shows the architecture
of Giza, which uses existing single-DC object and table
stores. Giza stores an object through a put operation,
consisting of a data operation and a metadata operation.
These operations are executed in parallel to improve per-
formance. On the data path, Giza splits and encodes
the object into data and parity fragments. Each coded
fragment is named by a unique identifier and stored in
a different DC. Each update to the object creates a new
version. The version numbers and the coded fragment
IDs in each version constitutes the metadata of the ob-
ject. On the metadata path, Giza replicates the metadata
across the data centers.

Giza is implemented on top of the existing Azure Stor-
age infrastructure. It stores the coded fragments in Azure
Blob storage and the metadata in Azure Table storage.
This layered approach provides two advantages. First,
doing so allows the rapid development of Giza by re-
using mature, deployed, and well-tested systems. Sec-
ond, it simplifies the failure recovery and deployment:
Giza runs on stateless nodes and can be readily integrated
with the rest of the stateless cloud storage front-ends.
Layering is commonly used in cloud infrastructure. For
example, Percolator [32] supports transactions by layer-
ing over a fault-tolerant distributed table store.

Technical Challenges In Giza, each coded fragment is
named by a unique identifier. As a result, fragments are
immutable, which simplifies the data path.

The metadata path is more tricky, facing three main
technical challenges:

542 2017 USENIX Annual Technical Conference USENIX Association

1. Building a strongly consistent, geo-replicated meta-
data store out of existing single-DC cloud tables.
Giza runs on stateless nodes and leverages exist-
ing well-tested cloud storage infrastructure to per-
sist all data and metadata. The architecture simpli-
fies development, deployment, and operation. This
makes Giza quite different from other systems oper-
ating stateful servers (e.g., Cassandra, Megastore,
Spanner, etc.). In addition, the cloud tables only
guarantee consistency within single data center.
Giza needs to orchestrate a collection of individ-
ual cloud tables across multiple data centers and
achieve strong consistency globally.

2. Jointly optimizing the data and metadata paths to
achieve a single cross-DC round trip for read/write
operations. Most existing systems employ a
primary-based approach, which incurs extra cross-
DC round trip for secondary data centers. Giza,
on the other hand, is leaderless and combines the
data and metadata path in such a way that achieves
single cross-DC round trips for both read and write
from any data center.

3. Performing garbage collection efficiently and
promptly. When a data object is deleted or its old
versions are garbage collected, Giza must remove
obsolete fragments and/or metadata from the under-
lying cloud blob and table storage. This turns out
to be non-trivial because Giza’s garbage collection
mechanism must be able to handle data center fail-
ures while ensuring data consistency and durability.

3.2 Paxos using Cloud APIs
To address the above challenges, Giza adaptswell-known
distributed algorithms - Paxos and Fast Paxos - in a novel
way on top of Azure Table.

3.2.1 Paxos and Fast Paxos in Giza: A Brief Primer

The Paxos algorithm [24] provides a mechanism to reach
consensus among a set of acceptors and one or more
proposers. A proposer initiates a Paxos voting process by
first picking a distinguished ballot. All ballots are unique
and can be compared to each other. The proposer sends
requests and proposed values to the acceptors. Each
acceptor decides whether to accept a request based on
its own state. A proposed value is committed when it is
accepted by a quorum of the acceptors. The acceptors
update their states when a request or value is accepted.
Paxos is typically implemented via active acceptors,

which are capable of comparing the ballot of incoming
requests with their own states and deciding whether to
accept the requests. Giza works differently and uses the
cloud tables as the acceptors. It implements the accep-
tor logic leveraging Azure Table’s atomic conditional
update capability.

Known
committed
version

... Highest
ballot#
seen

Highest
accepted
ballot

Highest
accepted
value

...

version Kversion K-1 version K+1

Figure 4: For each object, Giza stores the Paxos pro-
tocol state and the object metadata in a single row in
the underlying cloud table.

Paxos takes 2 phases to reach consensus, where phase
1 prepares a ballot and phase 2 commits a value. Each
phase takes 1 round trip, so applyingPaxos inGiza results
in 2 cross-DC round trips for the metadata path.

Fast Paxos [23] is a variation of Paxos that optimizes
the performance over cross-DC acceptors. It employs
two types of rounds: fast round and classic round. A fast
round sends a PreAccept request and takes a single round
trip to commit a value. A classic round resembles the two
phases in Paxos and takes two round trips. The fast round
in Fast Paxos requires a larger quorum. With 3 acceptors,
a value is committed only when it is accepted by all the
3 acceptors (quorum size of 3). In comparison, Paxos is
able to commit the value with 2 out of the 3 acceptors
(quorum size of 2). The advantage of Fast Paxos is that
when all the 3 acceptors respond, the value is committed
in a single round trip. The requirement of larger quorum
fits Giza perfectly, as Giza data path already requires
storing fragments in 3 or more data centers.

Giza implements both Paxos and Fast Paxos. This pa-
per discusses Fast Paxos only as its implementation re-
quires more care (but achieves lower latency) than Paxos.

3.2.2 Metadata Storage Layout

Giza needs to persist the Paxos states together with the
metadata for an object in the cloud table. We use one
table row per object, with a dynamic number of columns,
where each version of the object takes three columns.
The layout of each table row is shown in Figure 4.

Each version is represented by a consecutive natu-
ral numbers, starting from 1. Every Giza write to the
object creates a new version. For each version, Giza
initiates a separate Paxos instance and uses Paxos to
guard against races from concurrent writes and cloud
table failures. The metadata of all versions and the
states of all the Paxos instances are stored in the same
table row. Specifically, the metadata contains a triplet
of columns for each version (Figure 4). Two of the
columns are Paxos states: highest ballot seen
and highest accepted ballot. The other col-
umn, highest accepted value, stores the meta-
data, including the erasure coding scheme, the unique
fragment IDs, and DCs that holds the fragments.

Giza additionally maintains a set of known
committed versions for all those that have been

USENIX Association 2017 USENIX Annual Technical Conference 543

successfully committed. This is to facilitate both put and
get operations, as discussed in the following sections.

3.2.3 Metadata Write - Common Case

The metadata path begins by choosing a proper new ver-
sion number to initiate a Fast Paxos instance. Since
version numbers need to be consecutive, the new version
should succeed the most recently committed version.
Giza identifies a proper version number in an optimistic
fashion. Specifically, it reads known committed
versions from the table in its local DC, then uses
the next higher number as the new version number. In
the uncommon case that the newly chosen version num-
ber has already been committed (but this DC missed the
corresponding commit), the commit attempt would fail.
Through the process, Giza learns the committed versions
from the remote DCs, which allows it to choose a correct
version number for retry.
Following Fast Paxos, Giza sends a PreAccept request

to all the cloud tables, each located in a different DC.
Each request is an atomic conditional update on the table
row of the object. If there are no competing writes of
the same object, the PreAccept request will succeed in
updating the row. Otherwise, the PreAccept request will
be rejected by the table and leave the row unchanged.
Whenever Giza receives a fast quorum of positive

PreAccept responses, the corresponding version is con-
sidered to have been committed. Giza asynchronously
sends aCommit confirmation to all the cloud tables to up-
date the set of known committed versions to in-
clude the recently committed version. The Commit con-
firmation is again an atomic conditional update, which
only succeeds if the version number is not yet included
in the current set.
Since the Commit confirmation is completed asyn-

chronously, the critical path only involves the PreAccept
request and response. Hence, without conflict, the above
described metadata write involves only one cross-DC
round trip and is referred to as the fast path.

3.2.4 Metadata Write with Contention

The fast path may fail when Giza fails to collect a fast
quorumof positive PreAccept responses. Thismay result
from concurrent updates to the same object (contention),
or because one or more cloud tables fail. In this case,
Giza enters what is referred to as a slow path to perform
classic Paxos in order to guarantee safety.
On the slow path, Giza first picks a distinguished ballot

number and then replicates a Prepare request to write the
ballot to all the metadata tables and wait for a majority of
responses. The Prepare request is an atomic conditional
update operation. The operation succeeds only if the
highest ballot seen is no more than the ballot
in the Prepare request. The operation also returns the

entire row as a result.
Upon collecting a majority of successful replies, Giza

needs to pick a value to commit. The rule for picking
the value is categorized into three cases. In case 1,
Giza looks for the highest accepted ballot in the replies.
If there is one, the value from the reply is picked. In
case 2, the replies contain no accepted value, but rather
pre-accepted values. Giza picks the pre-accepted value
returned by themaximum responses in the quorum. Both
case 1 and 2 imply the possibility of an ongoing Paxos
instance, so Giza picks the value so as to complete the
Paxos instance first. It then starts with a new version and
follows the fast path to commit its current metadata. In
case 3, there is neither pre-accepted nor accepted value,
which implies no real impact from contention. Giza
picks its current metadata as the value and proceeds to
the next steps.

Once Giza picks the value, it replicates an Accept
request to all the metadata tables. The accept re-
quest is again an atomic conditional update; it suc-
ceeds in writing highest accepted ballot and
highest accepted value if neither highest
ballot seen nor highest accepted ballot
is larger. As soon as a majority of Accept requests suc-
ceed, Giza considers the corresponding metadata write
completed and sends acknowledgment to clients. Ad-
ditionally, a Commit confirmation is replicated in the
background, as described before.

3.2.5 Metadata Read

To get themetadata of the latest object version, it is insuf-
ficient for Giza to only read the corresponding metadata
table row from its local DC. This is because the local
DC might not be part of the majority quorum that has
accepted the latest version. To ensure correctness, Giza
needs to read the metadata rows frommore than one DC.

In the common case, known committed
versions is up-to-date and includes the latest
committed version (say version k). Giza reads version
k from the metadata table row in a local DC. It then
confirms the lack of higher committed versions than k,
from the metadata table row in a non-local DC. Hence,
in the case that the metadata is replicated to 3 DCs, the
metadata from 2 DCs (one local and one non-local)
leads to a decisive conclusion that version k is the latest
committed version. It is therefore safe for Giza to return
version k to clients.

In general, Giza reads the metadata table rows from
all the DCs. Whenever a majority rows have match-
ingknown committed versions and have not ac-
cepted any value for a higher version, Giza returns the
metadata of the highest committed version.

If the replies contain an accepted value with a
higher version number than the known committed

544 2017 USENIX Annual Technical Conference USENIX Association

versions, Giza needs to follow a slow path similar to
the one in the write operation. This is to confirmwhether
the higher version has indeed been committed.

3.3 Joint Optimization of Data and Meta-
data Operations

The naive version of Giza first writes out fragments (data
and parity), and then writes out metadata, resulting in
two or more cross-DC round trips. To reduce latency,
we optimize Giza to execute the data and metadata paths
in parallel. This is potentially problematic because either
the data or metadata path could fail while the other one
succeeds. Below, we describe how put and get cope with
this challenge and ensure end-to-end correctness.
The put Operation: After generating the coded frag-

ments, Giza launches the data and metadata paths in par-
allel. In the common case, Giza waits for both the data
and the metadata paths to finish before acknowledging
clients as well as replicating the commit confirmation.
In other words, Giza ensures that known committed
versions only include those whose data and metadata
have both been successfully committed.
In one uncommon case, the data path succeeds, while

the metadata path fails. Now, the fragments stored in the
cloud blobs become orphans. Giza will eventually delete
these fragments and reclaim storage through a cleaning
process, which first executes Paxos to update the current
version to no-op, discovers the orphan fragments as not
being referenced in the metadata store, and then removes
the fragments from the corresponding blob storage in all
the DCs.
In another uncommon case, the data path fails, but

the metadata path succeeds. This subtle case creates a
challenge for the get operation, as addressed next.

The get Operation: A naive way to perform get is
to first read the latest metadata and then retrieve the
fragments. To reduce latency, Giza chooses an opti-
mistic approach and parallelizes the metadata and the
data paths.
For a get request, Giza first reads the metadata table

row from a local DC. It obtains known committed
versions, as well as the names and locations of the
fragments of the latest version. Giza immediately starts
reading the fragments from the multiple data centers.
Separately, it launches a regularmetadata read to validate
that the version is indeed the latest. If the validation fails,
Giza realizes there is a newer version. It in turn has to
redo the data path by fetching a different set of fragments.
This results in wasted efforts in its previous data fetch.
Such potential waste, however, only happens when there
is concurrent writes on the same object, which is rare.
Because the data and metadata paths are performed

in parallel during put, it is possible (though rare) that
the fragments for the latest committed version have not

been written to the blob storage at the time of read. This
happens if themetadata path in the put finishes before the
data path, or the metadata path succeeds while the data
path fails. In such case, Giza needs to fall back to read the
previous version, as specified in known committed
versions.

3.4 Deletion and Garbage Collection

The delete operation in Giza is treated as a special update
of the object’smetadata. When receiving a delete request
(for either the entire object or specific versions), Giza
executes the metadata path and writes a new version
indicating the deletion. As soon as the metadata update
succeeds, the deletion completes and is acknowledged.

The storage space occupied by deleted ver-
sions/objects is reclaimed through garbage collection.
Giza garbage collection deletes the fragments from the
blob storage and truncates the columns of the deleted
versions from the metadata table row. It follows three
steps: 1) fetching the metadata corresponding to the ver-
sion to be garbage collected, 2) deleting the fragments
in the blob storage, and 3) removing the columns of the
deleted version from the metadata table row. The second
step has to occur before the third one in case that the
garbage collection process is interrupted and the frag-
ments may become “orphans” without proper metadata
pointing to them in the table storage.

Once all the versions of the object are deleted and
garbage collected, Giza needs to remove the correspond-
ing metadata table rows from all the DCs. This requires
extra care, due to possible contention from a new put
request. If the metadata table rows are removed bru-
tally, the new put request may lead the system into an
abnormal state. For instance, the put request could start
at a data center where the metadata table row has al-
ready been removed. Giza would therefore assume that
the object never existed and choose the smallest version
number. Committing this version number is dangerous
before the metadata table rows are removed from all the
DCs, as this may result in inconsistency during future
failure recovery.

Therefore, Giza resorts to a two-phase commit proto-
col to remove the metadata table rows. In the first phase,
it marks the rows in all the DCs as confined. After
this any other get or put operations are temporarily dis-
abled for this object. In the second phase, all the rows
are actually removed from the table storage. The disad-
vantage of this approach is obvious. It requires all the
data centers to be online. Data center failure or network
partition may pause the process and make the row un-
available (but can still continue after data center recovers
or network partition heals).

USENIX Association 2017 USENIX Annual Technical Conference 545

4 Failure Recovery

Giza needs to cope with transient or permanent data cen-
ter failures. Since Giza treats an entire data center as a
fault domain, failures within a data center (server fail-
ures, network failures, etc...) are resolved by individual
cloud object store and table store within each data center.

Transient DC failure: We broadly categorize tran-
sient DC failure to include temporary outages of the
blob and table storage service in a DC. Transient DC
failure may be caused by a temporary network partition
or power failure. By design, Giza can still serve get
and put requests, albeit at degraded performance. For
example, when handling put requests, Giza may take
more than one cross-DC round trip, because some of the
DCs replicating the metadata are unavailable, resulting
in fewer DCs than required for a fast path quorum.

When a data center recovers from transient failures, it
needs to catch up and update the fragments in its blob
storage and the metadata rows in its table storage. The
process follows the Paxos learning algorithm [24]. For
each object, Giza issues a read request of the meta-
data without fetching the fragments. If the local ver-
sion matches the committed version, nothing needs to
be done; if the local version is behind, the recovering
process reads the fragments of all missing versions, re-
constructs corresponding missing fragments and stores
them in the blob storage, as well as updates the metadata
row in the table storage.

Permanent DC Failure: Although extremely rare, a
DC may fail catastrophically. The blob and table service
within the DC may also experience long-term outages.
We categorize these all as permanent DC failure.

Giza handles permanent DC failure by employing log-
ical DC names in storage accounts. The mapping be-
tween a logical DC name to a physical DC location is
stored in a separate service external to Giza. Upon a
permanent DC failure, the same logical DC name is re-
mapped from the failed DC to a healthy replacement.
Giza metadata records logical DC names and therefore
remains unchanged after the re-mapping. This is similar
to DNS, where same domain name can be re-mapped to
a different physical IP address. This way of handling
failure is also reported in Chubby [8].

Upon the permanent DC failure, Giza launches recov-
ery coordinators to reconstruct the lost fragments and
re-insert the metadata rows in the replacement DC. The
procedure is similar to how Giza handles transient fail-
ures yet may last longer. The reconstruction is paced and
prioritized based on demand, with sufficient cross-DC
network bandwidth in-place to ensure timely recovery.

Coding Data and Metadata DCs Ping (max)
US-2-1 2 + 1 US(3/3) 46 ms
US-6-1 6 + 1 US(7/3) 71 ms

World-2-1 2 + 1 US(1/1), EU(1/1), JP(1/1) 240 ms
World-6-1 6 + 1 US(3/1), EU(2/1), JP(2/1) 241 ms

Figure 5: Giza Configuration (US(7/3) represents 7
DCs for data and 3 DCs for metadata, all in the US.)

5 Implementation
Giza is implemented inC++ and usesAzureBlob andTa-
ble storage to store fragments and metadata. The global
footprint of Azure Storage allows for experimenting with
a wide range of erasure coding parameters.

The Giza design relies on atomic conditional write.
For Azure Table, we leverage its ETag mechanism. An
unique ETag is generated by the table service for every
write. To implement an atomic conditional write, a Giza
node first reads the ETag of a table row. It then performs
the condition check and issues the write request together
with the ETag. Azure Table rejects the write request if
the ETag in the request does not match the one in the
table, which could only occur due to a concurrent write
to the row.

To minimize latency, the Giza node delegates its con-
ditional write requests to remote Giza nodes, which re-
side in the same DCs as the tables and act as proxies in
reading the ETag and writing the local table row.

5.1 Experimental Setup
We run experiments using four configurations: US-2-1,
World-2-1, US-6-1, and World-6-1. Figure 5 describes
the data centers participating in each configuration, and
the max ping latency between the DCs. Unless explicitly
stated, all experiments erasure code objects of 4MB, the
dominating size in our target workloads.

We also compareGizawithCockroachDB [9], an open
source implementation of Google spanner. Our Cock-
roachDB experiments use the US-2-1 configuration, as
CockroachDB doesn’t yet support world wide replica-
tion. In every data center, we run three CockroachDB
instances for local DC replication. Each CockroachDB
writes to a dedicated HDD with no memory caching.
We have configured the CockroachDB instances follow-
ing the recommended production setting by the Cock-
roachDB developers. For example, we run NTP to syn-
chronize clocks of the different CockroachDB instances.

6 Evaluation
For evaluation, we deploy Giza on top of the Microsoft
Azure platform across 11 data centers (7 in North Amer-
ica, 2 in Europe and 2 in Asia). Giza nodes are Azure
virtual machines with 16 cores, 56 GB of RAM, and
Gigabit Ethernet. As describe in Section 3, all the Giza
nodes are stateless. For each Giza storage account, a lo-

546 2017 USENIX Annual Technical Conference USENIX Association

Fast
US-2-1
West1

Classic Fast
US-2-1
Central

Classic Fast
US-2-1

South Central

Classic Fast
World-2-1

Europe

Classic Fast
World-2-1

US

Classic Fast
World-2-1

Asia

Classic
0
50
100
150
200
250
300
350
400
450

La
te

nc
y(

m
s)

Query Version Latency
Table Latency
Transfer Latency

Figure 6: Fast Paxos and Classic Paxos Comparison

Serial
(Classic)

Serial
(Fast)

Giza Giza
(Data Only)

Azure
(LR)

0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

(a) Put

Serial Giza Giza
(Data Only)

Azure
(LR)

0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

(b) Get

Figure 7: Giza Overall Latency

cally redundant Azure Blob and Table storage account is
created in every DC. Upon receiving get or put requests,
the Giza nodes execute the data and the metadata paths
to read or write objects.

6.1 Metadata Latency
We implement Giza’s metadata path with both Classic
and Fast Paxos. Here, we compare the performance of
the two algorithms and examine their effects on Giza’s
metadata path latency. Figure 6 presents the metadata
latencies and breakdowns for both US-2-1 and World-2-
1 configurations. The results include running proposers
in each of the DCs.
The metadata latency consists of three parts: query

version latency, transfer latency, and table latency. The
query version latency is determined by reading the possi-
ble highest version from the proposer’s local table. This
request is not part of the concensus protocol and is the
same for both Fast and Classic Paxos. The transfer la-
tency is the amount of time spent on network communi-
cation between the proposer and the furthest Giza proxy
in a Paxos quorum. Here, the latency of Classic Paxos,
which incurs two cross-DC round trips, is not strictly
twice as much as the latency of Fast Paxos. This is be-
cause the Classic Paxos quorum is smaller than the Fast
Paxos quorum. As a result, the distance between the
proposer and the furthest proxy is smaller in a Classic
Paxos quorum. The table latency is the latency for a Giza
proxy to conditionally update its local DC table. Since
Classic Paxos requires two rounds and hence two table
updates, its table latency is twice that of Fast Paxos.
For the US-2-1 configuration, we observe that the

metadata latency is dominated by table latency. In this
case, Fast Paxos is much faster than Classic Paxos, re-
gardless of the proposer’s location.
For the World-2-1 configuration, transfer latency be-

comes a substantial part of the overall metadata latency.
In this case, despite of taking two cross-DC round trips,
the Classic Paxos implementation can have lower trans-
fer latency. Nevertheless, the table latency of Classic
Paxos is still twice that of Fast Paxos. As a result, the
Fast Paxos implementation has lower latency, regardless
of the proposer’s location.

6.2 Giza Latency
The design of Giza went through multiple iterations and
this section illustrates the performance gain for each it-
eration. For the interest of space, we focus on theWorld-
2-1 configuration. All latency results include error bars
representing the 10th and 95th percentile.

6.2.1 Giza Put Latency

Figure 7a shows the Giza overall put latency for 4MB
data. We compare Giza with its two previous itera-
tions where the metadata path is not parallelized with
the data path. In the first iteration, Giza runs the data
path first. After completing the data path, Giza runs the
metadata path with the Classic Paxos implementation.
In the second iteration, we replaced Classic Paxos with
Fast Paxos, improving latency performance. Giza paral-
lelizes metadata path with data path, which can results
in extra metadata or data clean up if either path fails to
complete. However, the performance gain is significant.
We also included a baseline which is the time it takes a
proposing data center to issue a blob store request to the
farthest data center in the quorum. Finally, we include
the latency for storing the 4MB data directly to Azure
storage, which is locally replicated.

The results show that Giza’s performance beats the
other two alternatives in the common case and has closest
latency to the baseline. The median latency of Giza’s
put is 374 ms, only 30 ms higher than the baseline. This
is due to the latency of erasure coding 4MB data. On the
other hand, the serial Paxos version takes 852 ms, and
the serial Fast Paxos version takes 598 ms. In summary,
the latency cost for tolerating data center failure with
Giza is a little more than 3 time that of local replication.

6.2.2 Giza Get Latency

Figure 7b shows Giza’s get performance comparison.
The alternative design here is the non-optimistic get
where the most current version for a blob is not assumed
to be stored in the current data center. Hence, the meta-
data path and data path are executed sequentially, taking
419 ms. Giza’s optimistic get, which runs the metadata
path and data path in parallel, takes 223ms. Giza’s get
latency is higher than the baseline by 33 ms. The perfor-

USENIX Association 2017 USENIX Annual Technical Conference 547

us-2-1 us-6-1 world-2-1 world-6-1
0

50

100

150

200

250

300

350

400

450
La

te
nc

y(
m

s)

(a) Put

us-2-1 us-6-1 world-2-1 world-6-1
0

50

100

150

200

250

300

350

La
te

nc
y(

m
s)

(b) Get

Figure 8: Performance for Giza in different setups

Contention No Contention One Drive
0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

Figure 9: Contention vs No Contention

mance gap between Giza and baseline is higher because
Giza needs to do a local table retrieval first before start-
ing the datapath. In addition, it needs to decode the data
fragments. Here the latency cost of erasure encoding on
the read path with Giza is roughly twice that of reading
from a locally redundant Azure storage.

6.3 Footprint Impact
Giza offers customers the flexibility to choose the set of
data centers, as well as the erasure coding parameters
(e.g., the number of data fragments k). It turns out that
increasing k not only reduces storage overhead, but also
overall latency. This is because the latency in Giza is
often dominated by the data path. Erasure coding with
a larger k results in smaller fragments and fewer bytes
stored in each DC’s blob storage. This reduces the data
path latency and in turn the overall latency.
Figure 8a and Figure 8b present the latency impact

given differentGiza footprints and erasure coding param-
eters. All the requests are generated from US-Central.
Comparing US-2-1 to US-6-1 (World-2-1 toWorld-6-1),
it is clear that increasing k from 2 to 6 reduces the latency
for both put and get.

6.4 Comparing Giza with CockroachDB
Ideally, we would like to compare Giza with an existing
storage system with similar functionalities. However,
there is no off-the-shelf erasure coded system. Hence,
we implemented Giza on top of CockroachDB using its
transaction support. To do this, we create four different
tables in CockroachDB: one metadata table and three
data tables (for storing coded fragments). The metadata
table is replicated across all three DCs. Each of the data
tables is replicated three times within its respective data
center. This is to match the local replication of Azure
Table within individual DCs.
We implement Giza’s put as a transaction consisting of

storing each coded fragment at the corresponding data ta-
ble and storing the metadata information in the metadata
table. Since CockroachDB is not optimized for storing
large objects, we evaluate the performance of puts on
128KB objects. The median put latency of 128KB ob-
jects under CockroachDB is 333ms, much higher than

that of Giza (<100ms).
We implement Giza’s get as a transaction consisting

of reading the metadata from the metadata table and two
coded fragments from the data tables. The median get
latency under CockroachDB is lower than that of Giza by
20%. This is because CockroachDB directly reads from
local HDD, which is faster than Giza reading fromAzure
storage. To demonstrate this, we equalize the storage
layer to substitute Azure latency with local HDD latency.
Indeed, Giza’s performance with equalized storage is
slightly better than that of CockroachDB.

6.5 Giza Contention
Giza is optimized for low contention workloads. So,
it employs a simple strategy for handling contention.
In the event of contention, a Giza node that fails the
fast round falls back to a classic round. In addition,
Giza implements exponential back-off with the latency
starting from the median cross-DC latency whenever
prepare phase or accept phase further fails.

Figure 9 compares the performance of Giza driven by
the OneDrive trace to that with no contention at all. In
the OneDrive trace, only 0.5% of updates are concurrent
(within 1 second interval). Hence, it is not surprising
that the performance of Giza driven by the OneDrive
trace is almost identical to that with no contention.

Figure 9 also presents the latency results of adversary
contention. In this case, two Giza nodes within the same
data center are issuing back-to-back concurrent puts to
update the same object. This is definitely not the scenario
that Giza targets. We include the results merely for the
interest of our readers.

7 Related Work
Erasure Coding in Cluster Storage: Erasure coding
has long been applied in many large-scale distributed
storage systems [34, 41, 16, 1, 38, 35, 40], including
productions systems at Facebook [6], Google [13, 14]
and Microsoft Azure [20]. These solutions generalize
the RAID approach [31, 39] to a distributed cluster set-
ting. Giza is unique in synchronously replicating era-
sure coded data across WAN and minimizing cross-DC
latency. In addition, Giza provides globally consistent

548 2017 USENIX Annual Technical Conference USENIX Association

put and get with versioning support.
Erasure Coding in Wide Area Storage: HAIL [7],

OceanStore [22, 33], RACS [2], DepSky [5] and NC-
Cloud [19] all stripe and erasure code data at a global
scale.
HAIL [7] is designed to withstand Byzantine adver-

saries. OceanStore [22, 33] assumes untrusted infras-
tructure and serializes updates via a primary tier of repli-
cas. Giza operates in a trusted environment.
RACS [2] and DepSky [5] address conflicts caused by

concurrent writers using Apache ZooKeeper [21], where
readers-writer locks are implemented at per-key granu-
larity for synchronization. Giza, on the other hand, im-
plements consensus algorithms for individual keys and
achieves strong consistency without centralized coordi-
nators. In addition, Giza employs a leaderless consensus
protocol. Updates may originate from arbitrary data
centers and still complete with optimal latency without
being relayed through a primary.
NCCloud [19] implements a class of functional re-

generating codes [11] that optimize cross-WAN repair
bandwidth. Giza employs standard Reed-Solomon cod-
ing and leaves such optimization to future.
Facebook f4 [30] is a production warm blob storage

system. It applies erasure coding across data centers
for storage efficiency. As discussed in Section 2.3, f4
avoids the deletion challenge by never truly deleting data
objects. Whenever a data object is deleted, the unique
key used to encrypt the object is destroyed while the en-
crypted data remains in the system. This simplification
suits Facebook very well, because its deleted data only
accounts for 6.8% of total storage and Facebook could
afford not to reclaim the storage space [30]. This, un-
fortunately, is not an option for Giza, as our workloads
show much higher deletion rate. Not reclaiming the
physical storage space from deleted data objects would
result in significant waste and completely void the gain
from cross-DC erasure coding. Furthermore, not physi-
cally deleting customer data objects - even if encrypted
- wouldn’t meet the compliance requirements for many
of our customers.
Separating Data and Metadata: It is common for a

storage systems to separate data and metadata path, and
design a separate metadata service to achieve better scal-
ability, e.g., FARSITE [3] and Ceph [37]. Gnothi [36]
replicates metadata to all replicas while data blocks only
to a subset of the replicas. Cocytus [40] is a highly
available in-memory KV-store that applies replication
to metadata and erasure coding to data so as to achieve
memory efficiency. Giza follows a similar design path,
and store data in commodity cloud blob storage andmeta-
data in commodity NoSQL table storage.
Consistency in Global Storage: Megastore [4] and

Spanner [10] appliesMulti-Paxos tomaintain strong con-

sistency in global databases. Both of them requires two
round trips for a slave site to commit. Mencius [25]
takes a round-robin approach for proposers in different
sites, amortizing commit latency. EPaxos [29] uses fine-
grained dependency tracking at acceptor-side to ensure
low commit latency for both non-contended and con-
tended requests. In comparison, Giza takes a refined
approach based on FastPaxos [23], separating metadata
and data path before committing. This design choice
allows Giza to serve most requests still in single cross-
DC round trip while keeping servers stateless, using the
limited ability of table service. Metasync [17] imple-
ments Paxos using the append functionality provided by
cloud file synchronization services such as DropBox,
OneDrive. By contrast, Giza implements Paxos using
conditional-write APIs of cloud tables. The latter leads
to a more efficient implementation as clients do not need
to download and process logs from the cloud storage in
order to execute Paxos.

8 Conclusion
In this paper, we present the design and evaluation of
Giza – a strongly consistent, versioned object store that
encodes objects across global data centers. Giza imple-
ments the Paxos consensus algorithms on top of existing
cloud APIs and have separate data and metadata paths.
As a result, Giza is fast in normal operation for our tar-
get workloads. Our evaluation of Giza on a deployment
over 11 DCs across 3 continents demonstrates that Giza
achieves much lower latency than naively adopting a
globally consistent storage system.

Acknowledgments
We thank Andy Glover, Jose Barreto, Jon Bruso, Ron-
akkumar Desai, Joshua Entz from the OneDrive team for
their many contributions. Special thanks go to Jeff Irwin
for his contributions that helped enable Giza. We also
thank all of the members of the Azure Storage team for
invaluable discussions and iterations, as well as Taesoo
Kim and anonymous reviewers for their insightful feed-
back. This work was partially supported by ONR grant
N00014-16-1-2154.

References
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor,

G. R. Ganger, J. Hendricks, A. J. Klosterman, M. P.
Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,
et al. Ursa minor: versatile cluster-based storage. In
Proceedings of USENIXConference on File and Storage
Technologies (FAST). Dec. 2005.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weather-
spoon RACS: a case for cloud storage diversity. In
Proceedings of ACM Symposium on Cloud Computing
(SoCC). June 2010.

USENIX Association 2017 USENIX Annual Technical Conference 549

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.
Theimer, and R. P. Wattenhofer FARSITE: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. InProceedings ofUSENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI). Dec. 2002.

[4] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and
V. Yushprakh Megastore: providing scalable, highly
available storage for interactive services. InProceedings
of Biennial Conference on Innovative Data Systems Re-
search (CIDR). Jan. 2011.

[5] A. Bessani, M. Correia, B. Quaresma, F. André,
and P. Sousa DepSky: dependable and secure storage
in a cloud-of-clouds. In Proceedings of ACM European
Conference on Computer Systems (EuroSys). Apr. 2011.

[6] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and
P. Kling Hdfs raid. In Hadoop user group meeting.
2010.

[7] K. D. Bowers, A. Juels, and A. Oprea HAIL: a
high-availability and integrity layer for cloud storage.
In Proceedings of ACM Conference on Computer and
Communications Security (CCS). Nov. 2009.

[8] M. Burrows The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Nov. 2006.

[9] CockroachDB. http://www.cockroachlabs.
com/.

[10] J. C.Corbett, J.Dean,M.Epstein, A.Fikes, C.Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P.
Hochschild, et al. Spanner: Google’s globally dis-
tributed database. In Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI). Oct. 2012.

[11] R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wain-
wright, and K. Ramch Network coding for dis-
tributed storage systems. In Proceedings of IEEE In-
ternational Conference on Computer Communications
(INFOCOM). 2007.

[12] Facebook and Microsoft to Build Fiber Optic Ca-
ble Across Atlantic. http : / / www . wsj . com /
articles/facebook-and-microsoft-to-
build - fiber - optic - cable - across -
atlantic-1464298853. May 2016.

[13] A. Fikes Storage architecture and challenges. Talk at
the Google Faculty Summit (2010).

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan
Availability in globally distributed storage systems. In
Proceedings of USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). Oct. 2010.

[15] A. Greenberg SDN for the cloud. In Keynote in the
2015 ACM Conference on Special Interest Group on
Data Communication. 2015.

[16] A.Haeberlen, A.Mislove,and P.Druschel Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Proceedings of USENIX Confer-
ence on Networked Systems Design and Implementation
(NSDI). May 2005.

[17] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. An-
derson, and D. Wetherall MetaSync: file synchro-
nization across multiple untrusted storage services. In
Proceedings of USENIX Conference on Annual Techni-
cal Conference (ATC). July 2015.

[18] M. P. Herlihy, and J. M. Wing Linearizability:
A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS) 12, 3 (1990), 463–492.

[19] Y. Hu, H. Chen, P. Lee, and Y. Tang NCCloud: apply-
ing network coding for the storage repair in a cloud-of-
clouds. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST). Feb. 2012.

[20] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P.
Gopalan, J. Li, S. Yekhanin, et al. Erasure coding
in Windows Azure storage. In Proceedings of USENIX
Conference on Annual Technical Conference (ATC).
June 2012.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed
ZooKeeper: wait-free coordination for internet-scale
systems. In Proceedings of USENIX Conference on An-
nual Technical Conference (ATC). June 2010.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D.Geels, R.Gummadi, S.Rhea, H.Weath-
erspoon, W. Weimer, et al. Oceanstore: An architec-
ture for global-scale persistent storage. In Proceedings
of ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Nov. 2000.

[23] L. Lamport Fast Paxos. Tech. rep. MSR-TR-2005-112.
Microsoft Research, 2005.

[24] L. Lamport Paxos made simple. ACM SIGACT News
32, 4 (2001), 18–25.

[25] Y. Mao, F. P. Junqueira, and K. Marzullo Mencius:
building efficient replicated state machines for WANs.
In Proceedings of USENIX Symposium on Operating
SystemsDesign and Implementation (OSDI). Dec. 2008.

[26] R. Mears, L. Reekie, S. Poole, and D. Payne Low-
threshold tunable CW and Q-switched fibre laser oper-
ating at 1.55 µm. Electronics Letters 3, 22 (1986), 159–
160.

[27] Microsoft Azure Regions. https : / / azure .
microsoft.com/en-us/regions/.

550 2017 USENIX Annual Technical Conference USENIX Association

http://www.cockroachlabs.com/
http://www.cockroachlabs.com/
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
https://azure.microsoft.com/en-us/regions/
https://azure.microsoft.com/en-us/regions/

[28] Microsoft, Facebook to lay massive undersea ca-
ble. http : / / www . usatoday . com / story /
experience / 2016 / 05 / 26 / microsoft -
facebook - undersea - cable - google -
marea-amazon/84984882. May 2016.

[29] I.Moraru, D. G.Andersen, andM.Kaminsky There
is more consensus in egalitarian parliaments. In Pro-
ceedings of ACM Symposium on Operating Systems
Principles (SOSP). Nov. 2013.

[30] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,
et al. f4: Facebook’s warm BLOB storage system.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Oct. 2014.

[31] D. Patterson, G. Gibson, and R. Katz A case for
redundant arrays of inexpensive disks (RAID). In Pro-
ceedings of ACM International Conference on Manage-
ment of Data (SIGMOD). June 1988.

[32] D. Peng, and F. Dabek Large-scale incremental pro-
cessing using distributed transactions and notifications.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Oct. 2010.

[33] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.
Zhao, and J. Kubiatowicz Pond: the OceanStore pro-
totype. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST). Mar. 2003.

[34] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence FAB: building distributed enterprise disk
arrays from commodity components. In Proceedings of
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Oct. 2004.

[35] M. Sathiamoorthy, M. Asteris, D. Papailiopou-
los, A. G. Dimakis, R. Vadali, S. Chen, and D.
Borthakur Xoring elephants: Novel erasure codes
for big data. The Proceedings of the VLDB Endowment
(PVLDB) 6, 5 (Mar. 2013).

[36] Y.Wang, L.Alvisi,andM.Dahlin Gnothi: separating
data and metadata for efficient and available storage
replication. In Proceedings of USENIX Conference on
Annual Technical Conference (ATC). June 2012.

[37] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
andC.Maltzahn Ceph: A scalable, high-performance
distributed file system. In Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). Nov. 2006.

[38] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B.
Mueller, J.Small, J.Zelenka,andB.Zhou Scalable
Performance of the Panasas Parallel File System. In
Proceedings of USENIXConference on File and Storage
Technologies (FAST). Feb. 2008.

[39] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan
The HP AutoRAID hierarchical storage system. ACM
Transactions on Computer Systems (TOCS) 14, 1 (Feb.
1996).

[40] H. Zhang, M. Dong, and H. Chen Efficient and avail-
able in-memory KV-store with hybrid erasure coding
and replication. In Proceedings of USENIX Conference
on File and Storage Technologies (FAST). Feb. 2016.

[41] Z. Zhang, S. Lin, Q. Lian, andC. Jin RepStore: a self-
managing and self-tuning storage backend with smart
bricks. In Proceedings of International Conference on
Autonomic Computing. 2004.

[42] B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chan-
drasekhar, M. Yan, J. Fini, E. Monberg, and
F. Dimarcello 112-Tb/s space-division multiplexed
DWDM transmission with 14-b/s/Hz aggregate spec-
tral efficiency over a 76.8-km seven-core fiber. Optics
Express 19, 17 (2011), 16665–16671.

USENIX Association 2017 USENIX Annual Technical Conference 551

http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882

SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud
Storage Systems

Yuanyuan Sun, Yu Hua*, Song Jiang†, Qiuyu Li, Shunde Cao, Pengfei Zuo
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
†University of Texas, Arlington

*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract

Fast query services are important to improve overall per-
formance of large-scale storage systems when handling
a large number of files. Open-addressing cuckoo hash
schemes have been widely used to support query services
due to the salient features of simplicity and ease of
use. Conventional schemes are unfortunately inadequate
to address the potential problem of having endless
loops during item insertion, which degrades the query
performance. To address the problem, we propose a cost-
efficient cuckoo hashing scheme, named SmartCuckoo.
The idea behind SmartCuckoo is to represent the hashing
relationship as a directed pseudoforest and use it to
track item placements for accurately predetermining
the occurrence of endless loop. SmartCuckoo can
efficiently predetermine insertion failures without paying
a high cost of carrying out step-by-step probing. We
have implemented SmartCuckoo in a large-scale cloud
storage system. Extensive evaluations using three real-
world traces and the YCSB benchmark demonstrate
the efficiency and efficacy of SmartCuckoo. We have
released the source code of SmartCuckoo for public use.

1 Introduction

Efficient query services are critical to cloud storage
systems at various scales, especially when they process
a massive amount of data. According to the report
of International Data Corporation (IDC) in 2014, the
amount of information created and replicated will reach
44 Zettabytes in 2020 [49], and nearly 50% of cloud-
based services will rely on data in storage systems [21].
Moreover, in a recent survey of 1,780 data center
managers in 26 countries, over 36% of respondents face
two critical challenges, which are efficiently supporting
a flood of emerging applications and handling the rapidly
increasing data management complexity [2]. This
reflects a reality that we are generating and accessing
much more data than ever and this trend continues at
an accelerated pace. This data volume explosion has

imposed great challenge on storage systems, particularly
on their support on efficient data query services. In
various computing facilities, from small hand-held
devices to large-scale data centers, people are collecting
and analyzing ever-greater amounts of data. Users
routinely generate queries on hundreds of Gigabytes of
data stored on their local disks or cloud storage systems.
Commercial companies generally handle Terabytes and
even Petabytes of data each day [6, 10, 54].

It is becoming increasingly challenging for cloud
storage systems to quickly serve queries, which often
consumes substantial resources to support query-related
operations [51]. Cloud management systems usually
demand the support of low-latency and high-throughput
queries [7]. In order to address these challenges, query
services have received many attentions, such as top-k
query processing [23, 34, 37], security model for file
system search in multi-user environments [9], metadata
query on file systems [26, 38], Web search using multi-
cores in mobile computing [27], graph query processing
with abstraction refinement [52], energy saving for
online search in datacenters [50], efficient querying of
compressed network payloads [48], reining the latency
in tail queries [22], and scaling search data structures for
asynchronized concurrency [12].

An efficient hashing scheme is important for improv-
ing performance of query services. A hash table needs
to map keys to values and supports constant-time access
in a real-time manner. Hash functions are used to locate
a key to a unique bucket. While keys may be hashed
to the same bucket (the occurrence of hash collisions),
lookup latency can become higher with more collisions
in a bucket. Cuckoo hashing [43] is a fast and simple
hash structure with the constant-time worst-case lookup
(O(ln 1

ε)) and consumes (1+ ε)n memory consumption,
where ε is a small constant. Due to its desirable property
of open addressing and its support of low lookup latency,
cuckoo hashing has been widely used in real-world cloud
applications [13, 24, 28, 35, 46]. Cuckoo hashing uses
multiple (usually two in practice) hash functions for
resolving hash collisions and recursively kicks items

USENIX Association 2017 USENIX Annual Technical Conference 553

out of their current positions. Unlike standard hashing
schemes that provide only one position for placing an
item, cuckoo hashing provides multiple (usually two)
possible positions to reduce the probability of hash
collisions. To determine the presence of an item, the
cuckoo hashing will probe up to two positions, and the
worst-case lookup time is a constant.

However, the cuckoo hashing suffers from substantial
performance penalty due to the occurrence of endless
loops. Currently, the existence of endless loop is detected
only after a potentially large number of step-by-step
kick-out operations. A search for insertion position in
an endless loop turns out to be fruitless effort. In order to
deliver high performance and improve lookup efficiency,
we need to address two major challenges.

Substantial Resources Consumption. In an endless
loop, an insertion failure can only be known after
a large number of in-memory operations, and the
penalty can substantially compromise the efficiency
of cuckoo hashing schemes. When a hash table is
substantially occupied, many such loops occur, which
can substantially increase insertion costs.

Nondeterministic Performance. Cuckoo hashing
essentially takes a random walk to find a vacant bucket
for inserting an item since the knowledge on the path
for this walk is not obtained in advance [19, 33]. This
scheme does not leverage the dependencies among the
positions of items. Before walking sufficiently long on
the path, one can hardly know if an endless loop exists.
Moreover, the cuckoo hashing provides multiple choices
of possible positions for item insertion. The kick-out
operations need to be completed in an online manner.

Existing schemes have not effectively addressed the
two challenges. For example, MemC3 [16] uses a large
kick-out threshold as its default kick-out upper bound,
which possibly leads to excessive memory accesses and
reduced performance. Cuckoo hashing with a stash
(CHS) [29] addresses the problem of endless loops by
using an auxiliary data structure as a stash. The items
that introduce hash collisions are moved into the stash.
For a lookup request, CHS has to check both the original
hash table and the stash, which increases the lookup
latency. Furthermore, bucketized cuckoo hash table
(BCHT) [15,44, 45,55] allocates two to eight slots into a
bucket, in which each slot can store an item, to mitigate
the chance of endless loops, which however results in
poor lookup performance due to multiple probes.

In order to clearly demonstrate the performance
impact of endless loops, we measure the loop ratio in
CHS with three real-world traces (experiment details can
be found in Section 4.1). The loop ratio is defined as
the percentage of failed insertions due to the existence of
endless loops among all item insertions. Figure 1 shows
that more than 25% insertions walk into endless loops

at a load factor of 0.9 for the hash table, which leads
to substantial time and space overheads for carrying out
rehashing operations and allocating additional storage
space, respectively. The load factor is the ratio of the
number of occupancies to that of total buckets in the hash
table. To this end, we need to mitigate and even eliminate
the occurrence of endless loops to reduce the space and
time overheads.

��

��

��

��

��

��

��

��

��

��	
��	�����

�����

������
�

�
�
�
�
��
�
��
�
	�

�

�

�

�

��

��

��

��

��

��

��

��

��

����������	

��	
��	�����

�����

������
�

�
�
�
�
��
�
��
�
	�

�

�

Figure 1: The loop ratios in CHS with three traces.

In this paper, we propose a cost-effective cuckoo
hashing scheme, named SmartCuckoo. SmartCuckoo
allows flexible configurations and fast item lookup, and
achieves much improved insertion performance. Our
work aims to answer the following questions: (1) Is
there a vacant bucket available for an item to be
inserted before starting kick-outs on a path? (2) How
to guarantee efficiency of the insertion and lookup using
a space-efficient and lightweight auxiliary structure?

SmartCuckoo leverages a fast and cost-efficient prede-
termination operation to help avoid unnecessary kick-out
process due to endless loops. This operation runs before
item insertion starts by using an auxiliary structure.
Moreover, an insertion failure can be identified without
any kick-out operations and manual setting of iteration
thresholds. SmartCuckoo can avoid the endless loops
of cuckoo hashing and deliver high performance. This
paper has made the following contributions.

Cost-effective Hashing Scheme. SmartCuckoo
retains cuckoo hashing’s advantage of space efficiency
and constant-time queries via open addressing. In
the meantime, SmartCuckoo is able to predetermine
insertion failures without the need of carrying out con-
tinuous kick-out operations, thus significantly reducing
the insertion latency and supporting fast lookup services.

Deterministic Performance. Conventional cuckoo
hashing schemes take many kick-out operations in their
insertion operations before detecting endless loops and
consuming substantial system resources. By categoriz-
ing insertions into different cases, SmartCuckoo helps
predetermine the result of a new insertion to avoid
the endless loop by leveraging the concept of maximal

554 2017 USENIX Annual Technical Conference USENIX Association

pseudoforest. SmartCuckoo hence makes insertion
performance more predictable.

System Implementations and Public use. We
have implemented all the components and algorithms
of SmartCuckoo and released the source code for
public use1. In order to evaluate the performance
of SmartCuckoo, we compared it with state-of-the-art
schemes, including CHS [29] as the evaluation baseline,
libcuckoo [36], as well as BCHT [15].

2 Background

This section presents the research background of the
cuckoo hashing and the pseudoforest theory. As a cost-
efficient hashing scheme, the cuckoo hashing utilizes
open addressing to improve lookup efficiency for large
datasets. In the cuckoo hashing, the relationship between
items and buckets can be described by a cuckoo graph,
where each edge represents a hashed item and its two
vertices represent the positions of the hashed item in the
hash directory.

Cuckoo hashing does not require dynamic memory
allocation, which can be efficiently exploited to provide
real-time query services. The cuckoo hashing is able
to support fast queries with worst-case constant-scale
lookup time due to its addressing open to multiple
positions for one item.

2.1 The Cuckoo Hashing

Cuckoo hashing [42, 43] is a dynamization of a static
dictionary. The hashing scheme resolves hash collisions
in a multi-hash manner.

Definition 1 Conventional Cuckoo Hashing. Let d be
the number of hash tables, and S be the set of keys. For
the case of d = 2, conventional cuckoo hashing uses two
hash tables, T1 and T2 with a size of n, and two hash
functions h1, h2: S→ {0, . . . ,n−1}. A Key k ∈ S can be
inserted in either Slot h1(k) of T1 or Slot h2(k) of T2, but
not in both. The two hash functions hi (i = 1 or 2) are
independent and uniformly distributed.

As shown in Figure 2, we use an example to illustrate
the insertion process in the conventional cuckoo hashing.
In the cuckoo graph, the start point of an edge represents
the actual storage position of an item and the end point
is the backup position. For example, the bucket T2[1]
storing Item b is the backup position of Item a. We intend
to insert the item x, which has two candidate positions
T1[0] and T2[5] (blue buckets). There exist three cases
about inserting Item x:

1https://github.com/syy804123097/SmartCuckoo.

• Two items (a and b) are initially located in the hash
tables as shown in Figure 2(a). When inserting Item
x, one of x’s two candidate positions (i.e., T2[5]) is
empty. Item x is then placed in T2[5] and an edge is
added pointing to the backup position (T1[0]).

• Items c and d are inserted into hash tables before
Item x, as shown in Figure 2(b). Two candidate
positions of Item x are occupied by Items a and d
respectively. We have to kick out one of occupied
items (e.g., a) to accommodate Item x. The kicked-
out item (a) is then inserted into its backup position
(T2[1]). This procedure is performed iteratively until
a vacant bucket (T2[3]) is found in the hash tables.
The kick-out path is x→ a→ b→ c.

• Item e is inserted into the hash tables before Item x,
as shown in Figure 2(c). There is no vacant bucket
available to store Item x even after substantial kick-
out operations, which results in an endless loop.
The cuckoo hashing has to carry out a rehashing
operation [43].

b

x

T1 T2
0

1

2

3

0

4

5

a h1(x)

h2(x)
(a) Vacant bucket(s).

c(b)

b(a)

(c)

d

T1 T2
a(x)

(b) Finite kicks.

c

b

e

d

T1 T2

x

a

(c) An endless loop.

Figure 2: The conventional cuckoo hashing data
structure.

A lookup operation probes two candidate positions
of an item. Buckets T1[0] and T2[5] will be probed for
searching Item x, as shown in Figure 2. If the queried
item is stored in the hash tables, it must be in one of its
two candidate positions.

When all candidate buckets of a newly inserted
item have been occupied, the cuckoo hashing needs to
iteratively carry out kick-out operations to identify a
vacant bucket, which possibly causes an endless loop and
an insertion failure, until a kick-out path is tried and a
threshold of steps on the path is reached without locating
a vacant position.

2.2 Pseudoforest Theory
A pseudoforest is an undirected graph in the graph theory
and each of maximally connected components, named
subgraphs, has at most one cycle [5,20]. In other words,

USENIX Association 2017 USENIX Annual Technical Conference 555

it is an undirected graph in which each subgraph has no
more edges than vertices. In a pseudoforest, two cycles
composed of consecutive edges share no vertices with
each other, and cannot be linked to each other by a path
of consecutive edges.

In order to show the difference of actual and backup
positions of items, we take into consideration the
direction of kick-out operations. In a directed graph,
each edge is directed from one of its endpoints to the
other. Each bucket in the hash tables stores at most one
item, and thus each vertex in a directed pseudoforest has
an outdegree of at most one. If a subgraph contains
a vertex whose outdegree is zero, it does not contain
a cycle and the vertex corresponds to a vacant slot.
Otherwise, it contains a cycle and any insertion into the
subgraph will walk into an endless loop [31].

Definition 2 Maximal Directed Pseudoforest. A maxi-
mal directed pseudoforest is a directed graph in which
each vertex has an outdegree of exactly one.

We name a subgraph whose number of vertices are
equal to its number of edges a maximal subgraph. A
maximal subgraph contains a cycle. Any subgraph in a
maximal directed pseudoforest is a maximal subgraph.
Figure 3(a) shows an example of a maximal directed
pseudoforest. There are three maximal subgraphs in
a maximal directed pseudoforest. In contrast, a non-
maximal directed pseudoforest has at least one non-
maximal subgraph, namely, has at least one vertex whose
outdegree is zero. As illustrated in Figure 3(b), the non-
maximal directed pseudoforest has three subgraphs, two
of which do not have any cycles. It can be transformed
to a maximal directed pseudoforest by connecting any
vertex whose outdegree is zero (the dotted circles in
Figure 3(b)) with any other vertex in the graph by adding
a new edge.

e

c

d

a

k

j
n

m

l

b
i

hf g

(a) Maximal.

e

c

d

a

k

j
n

mb

hf g Vacancyh1(k)

h2(k)

(b) Non-Maximal.

Figure 3: The Directed Pseudoforest.

We consider the cuckoo graph as a directed pseudo-
forest. Each vertex of the pseudoforest corresponds to
a bucket of the hash tables and each edge corresponds
to an item between two candidate positions of the item.
An inserted item hence produces an edge. According to
the property, a maximal subgraph has no room to admit
a new edge, which eventually causes an endless loop
when the directed edges are traversed. Such an endless

loop will not be encountered in a non-maximal subgraph,
which does not contain a cycle.

3 The SmartCuckoo Design

As a cost-efficient variant of cuckoo hashing, S-
martCuckoo maintains high lookup efficiency and im-
proves the insertion performance by avoiding unneces-
sary kick-out operations. It classifies item insertions
into three cases and leverages a directed pseudoforest
to represent hashing relationship, which is used to track
item placements for accurately predicting the occurrence
of endless loops. Conventional cuckoo hashing chooses
one of the candidate positions for an item’s placement
without considering whether it would walk into an
endless loop. Our design increases insertion efficiency
by tracking status of subgraphs to predict the insertion
walk outcome. Hence, SmartCuckoo intelligently selects
insertion positions for the item to be inserted. In
addition, we also illustrate the execution of operations
in SmartCuckoo, including item insertion and deletion.

3.1 The Directed Pseudoforest Subgraph
Inserted items in cuckoo hashing form a cuckoo
graph. We represent the cuckoo graph as a directed
pseudoforest, which can reveal the path, consisting of
directed edges, of kick-out operations for insertion.
Hence, the directed graph can be used to track and tell
endless loops in advance to avoid them.

Successful item insertion depends on finding a vacant
bucket for storage. To this end, one of candidate
buckets of an item to be inserted must belong to a
subgraph containing one vertex whose outdegree is
zero, corresponding to a vacant slot. Hence, detecting
vacancies in a subgraph is crucial in the insertion
operation of cuckoo hashing. Knowing the path of a
sequence of kick-out operations for an item’s insertion
before the insertion is carried out will help to identify and
avoid an endless loop. In our design, we characterize the
cuckoo hashing as a directed graph, in which a bucket
is represented as a vertex and an item is represented
as an edge between two candidate positions of an
item. SmartCuckoo stores at most one item in each
bucket, and each item has a unique backup position.
Accordingly, each edge has a start point representing
the actual storage position of the item and an end point
representing the backup one. In the directed graph,
each vertex corresponds to a bucket and each edge
corresponds to an item. Because items stored in a
hash table are always not more than the buckets, the
number of vertices is not smaller than that of edges
in the directed graph. Therefore, there is at most one
cycle existing in a subgraph. Hence, according to the

556 2017 USENIX Annual Technical Conference USENIX Association

property of the directed pseudoforest, the directed graph
used to characterize item placements in SmartCuckoo is
a directed pseudoforest.

Furthermore, we have the following observation.
When inserting a new item into a non-maximal directed
subgraph of a pseudoforest, it will be stored in one of
its candidate buckets, and then one kicked-out item will
be stored in the vacant bucket corresponding to the last
vertex of a directed cuckoo path. If one attempts to insert
the item into a maximal directed pseudoforest, an endless
loop will inevitably occur. Each vertex in a directed
pseudoforest has an outdegree of one, except those with
an outdegree of zero representing vacant buckets located
at the ends of the directed paths in the non-maximal
subgraphs. In a maximal directed pseudoforest, each
vertex has an outdegree of one and no vertex can be
the destination on the path of kick-out operations to
store the item for insertion. That is, an endless loop is
encountered.

The observation inspires us to design a strategy on the
selection of a path leading to a vacant position for item
insertion. Vertices of ourdegree of zero, which represent
vacant positions (buckets) in the directed pseudoforest,
are produced by prior item insertions. To reach a vacant
vertex in a directed pseudoforest for inserting an item,
at least one of the item’s candidate buckets must be in
a subgraph containing a vacant position. Figure 3(b)
illustrates the process of inserting Item k. Its two
candidate positions are currently occupied by Items a and
d (green vertices) and are in a subgraph without vacant
positions. Its insertion would encounter an endless loop
and fail, though there exist two vacancies (red vertices) in
the pseudoforest. Because only non-maximal subgraphs
contain vacant positions, the success of an insertion of
an item relies on whether at least one of its candidate
positions is in a non-maximal subgraph.

New item insertions can be classified into three cases,
i.e., v + 2, v + 1, and v + 0. As each item is represented as
an edge in the pseudoforest, different placements of the
item will increase the graph’s vertex count differently (by
two, one, or zero).

3.2 Three Cases of Item Insertions

In the implementation of conventional cuckoo hashing,
an insertion failure is not known until a kick-out path
is tried and a threshold of steps on the path is reached
without locating a vacant position. The lack of a
priori knowledge in the traditional implementations often
leads to walking into endless loops with substantial time
and resources spent on fruitless tries. To obtain the
knowledge on endless loops in SmartCuckoo, we classify
item insertions according to the number of additional
vertices added to the directed pseudoforest.

In a directed pseudoforest, each edge corresponds to
an inserted item, and each vertex corresponds to a bucket.
Hence, for each item to be inserted into the hash tables,
the number of edges is incremented by one. However,
the increase of vertex count (v) has three cases, namely,
the cases of v+0, v+1, and v+2. In the last two cases,
the new item can be successfully inserted, which will be
explained. Here we first discuss the status of the directed
pseudoforest in the case of v+0.

3.2.1 The Case of v+0

When inserting an item without increasing vertex count,
two vertices corresponding to two candidate buckets of
the item should have existed in the directed pseudoforest,
which leads to five possible scenarios, as illustrated in
Figure 4.

• Two candidate buckets of Item x1, shown as blue
buckets in Figure 4(a), exist in the same non-
maximal directed subgraph A. Either bucket can be
selected to have a successful insertion as the kick-
out operations will always reach a vacant position
in the subgraph. As shown in Figure 4(a), Item
x1 is directly inserted into Bucket T2[3] and creates
a new edge from Bucket T2[3] to Bucket T1[0],
which is the backup position of Item x1. After
the insertion of Item x1, the original non-maximal
directed subgraph A is transformed into a maximal
directed subgraph A′, which does not have a vacant
position to admit a new item.

• Two candidate buckets of Item x2 are in two
different non-maximal directed subgraphs B and
C, respectively, as shown in Figure 4(b). In this
scenario, the insertion operation will also be a
success, because each of two non-maximal directed
subgraphs offers a vacant bucket. Item x2 is located
in Bucket T1[5] and constructs a new directed edge
from Bucket T1[5] to Bucket T2[3] in the directed
pseudoforest, which merges the two subgraphs, B
and C, into a new non-maximal directly subgraph
(BC) with one vacant vertex (T2[3]).

• One candidate bucket of Item x3 is in the non-
maximal directed subgraph E and the other is in
the maximal directed subgraph D, as shown in
Figure 4(c). If the item enters the hash table from
Bucket T1[2], an endless loop is encountered in
the maximal directed subgraph D and unnecessary
kick-out operations are carried out. However, if
Item x3 enters the hash table at Bucket T2[6], the
item insertion will be a success after a number of
kick-out operations (simply kicking out Item g to
Bucket T1[5] in the example shown in Figure 5(a)).

USENIX Association 2017 USENIX Annual Technical Conference 557

Accordingly, two subgraphs D and E are merged
into a new maximal directed subgraph (DE), which
does not have any vacant buckets.

• Two candidate buckets of Item x4 are separated
into two maximal directed subgraphs (F and G),
as shown in Figure 4(d). Because there doesn’t
exist any vacant buckets in any of the subgraphs,
the insertion of the new item (x4) will always walk
into an endless loop, illustrated in Figure 5(b). This
is the worst scenario for an insertion in conventional
cuckoo hashing implementations.

• Two candidate buckets of Item x5 are in the
same maximal directed subgraph (H), as shown
in Figure 4(e). Similar to the previous scenario,
the insertion will turn out to a failure after
numerous kick-outs in an endless loop, as shown in
Figure 5(c).

c

b

d

T1 T2

0

1

2

3

4

5

a

6

7

x1

A

(a) One non-maximal.

c

b

d

T1 T2

a

f

g

x2

B

C

(b) Two non-maximal.

b

d

T1 T2

a

f

g

x
3

e

D

E

c

(c) One maximal and
one non-maximal.

c

b

d

T1 T2

a

f i

g

x4

h

e

0

1

2

3

4

5

6

7

F

G

(d) Two maximal.

c

b

T1 T2

e

x
5

d

a H

(e) One maximal.

Figure 4: Five scenarios for Case v+0.

3.2.2 The Cases of v+1 and v+2

The v + 1 represents the case where the number of
vertices in the directed pseudoforest is increased by 1
after insertion of an item. As shown in Figure 6(a),
in this case one of two candidate positions of Item
x6 corresponds to an existing vertex in the directed
pseudoforest. The other will be a new vertex after the
item’s insertion. That is, this candidate bucket in the

T1[2]T1[2]

T2[3]T1[0]

T2[1]

T2[6]

T1[2]

Empty bucket

Item x3

h1(x3)

h2(x3)

(a) One maximal and
one non-maximal.

T1[5]

T2[7]T1[7]

T2[6]

T2[3]

T1[0]

Item x4

h1(x4)

h2(x4)

T2[1]

T1[2]

(b) Two maximal.

T1[0]

T2[1] T1[2]

T2[5]

T2[3]

Item x5

h1(x5) h2(x5)

(c) One maximal.

Figure 5: Buckets that are accessed during kick-out
operations.

hash table has not been represented by any vertices in the
pseudoforest. Item x6 is then placed in this position, and
a new edge connecting the new vertex with the existing
vertex is added into the subgraph I of the directed
pseudoforest.

In the case of v + 2, both candidate positions of an
item to be inserted have not yet been represented by
any vertices in the pseudoforest. Accordingly, they
are unoccupied. The item can be inserted in any of
the two available positions. Accordingly, two vertices,
each corresponding to one of the positions, are added
into the pseudoforest. Furthermore, an edge from the
vertex corresponding to the position where the item is
actually placed to the other corresponding to its backup
position is also added. The two vertices and the new edge
constitute a new subgraph (K), which is a non-maximal
directed one. This case is illustrated in Figure 6(b),
where the two vertices are Buckets T1[5] and T2[4], and
the new edge is from Bucket T1[5] to Bucket T2[4] after
Item x7 is inserted at Bucket T1[5].

c

b

d

T1 T2
0

1

2

3

0

4

5

a

x6

I

(a) v+1.

c

b

d

T1 T2
a

x7

J

K

(b) v+2.

Figure 6: The cases of v+1 and v+2.

558 2017 USENIX Annual Technical Conference USENIX Association

3.3 Predetermination of An Endless Loop

According to Section 3.2, if we know in advance which
case an item insertion belongs to, we can predetermine
whether any of the item’s candidate positions is on an
endless loop. This is achieved by tracking status of
subgraphs, which is either maximal directed or non-
maximal directed. If a candidate position is in a maximal
directed subgraph, it is on an endless loop. Otherwise, it
is not on an endless loop.

During an item insertion operation, for each of its
candidate positions, we need to find out which one or
two subgraphs of a directed pseudoforest it belongs to.
To this end, we apply the Find operation for a given
candidate position to determine the subgraph it belongs
to. In addition, if two candidate positions of an inserted
item belong to two subgraphs, an edge will be introduced
between the subgraphs and the two subgraphs need to
be merged. To this end, a Union operation is required
to merge them. To enable Find and Union operations
in SmartCuckoo, we assign each subgraph a unique
ID. Each member vertex of the subgraph records the
ID in its corresponding bucket. When two subgraphs
are merged into a new one, instead of exhaustively
searching for member vertices of one or two of the
original subgraphs on the hash tables to update their
subgraph ID, we introduce trees of the IDs. In a tree for
merged subgraphs, the IDs at the buckets representing
the subgraphs before the merging are leaf nodes and the
ID of the new subgraph is the parent. The new subgraph
is likely to be merged again with another subgraph and
has its parent. In the end, the ID at the root of the tree
represents the subgraph merged from all the previous
subgraphs.

In order to determine the status of a subgraph in the
pseudoforest, we track its edge count and vertex count.
A subgraph is a maximal directed one if its edge count is
equal to its vertex count. In this case, the subgraph does
not have any room to admit new edges. Otherwise, the
edge count is smaller than vertex count, and the subgraph
is a non-maximal directed one.

In summary, we can predetermine the outcome of an
item insertion based on the statuses of related subgraphs
in each of the three cases the insertion belongs to.

• v + 2: When the two candidate positions (a
and b) of Item x have not yet been represented
by any vertices in a directed pseudoforest, the
insertion will create a new subgraph, which is non-
maximal directed. Therefore, the new Item x can be
successfully inserted. Moreover, the vertex count of
the subgraph is 2, and the edge count is 1.

• v + 1: This case is detected after running
Find(a) and Find(b) and finding out that one of

the candidate positions corresponds to an existing
vertex in a subgraph and the other has not yet been
represented by any vertex. In this case, no matter
which status the subgraph is on, the insertion will
be a success due to the introduction of a new vertex.
Both the vertex count and the edge count of the
subgraph are increased by 1.

• v + 0: In this case, both candidate positions are
vertices in subgraphs. To know the outcome of the
insertion, we need to determine the status of the
subgraphs. Only if at least one of the subgraphs is
non-maximal, the insertion is a success. Otherwise,
the insertion would fail after walking into an endless
loop. The edge count of the corresponding subgraph
is increased by 1.

3.4 Implementations of Operations
In the Section, we describe how two common hash
table operations, namely insertion and deletion, are
supported in SmartCuckoo, as its implementation of
lookup operation is essentially the same as that in
conventional cuckoo hashing.

3.4.1 Insertion

We use B[∗] to represent the item in the bucket.
Algorithm 1 describes the steps involved in the insertion
of Item x. First, we determine the case the insertion
belongs to and increases corresponding vertex count (v),
as described in Algorithm 2. The t value indicates one of
the three cases (v+2, v+1, and v+0) for the insertion.
In the cases of v+ 1 and v+ 2, Item x can be directly
inserted, as described in Algorithm 3. If the insertion
case is v+ 0, we use Algorithm 4 to determine which
of the following five scenarios about corresponding
subgraph(s) applies: (1) one non-maximal, (2) two non-
maximal (Lines 4-6), (3) one non-maximal and one
maximal (Lines 7-13), (4) two maximal, and (5) one
maximal. SmartCuckoo avoids walking into a maximal
directed subgraph. Due to no loops, SmartCuckoo is
able to efficiently reduce the repetitions in one path, thus
reducing insertion operation latency.

3.4.2 Deletion

An item can only be stored in one of the candidate
positions of the hash tables. During the deletion
operation, we only need to probe the candidate positions
and, if found at one of the positions, remove it from
the position (Lines 3-4). Deleting an item from the
hash tables is equivalent to removal of an edge in
the corresponding subgraph, which causes the subgraph
to be separated into two subgraphs. We assign each

USENIX Association 2017 USENIX Annual Technical Conference 559

Algorithm 1 Insert(Item x)
1: a← Hash1(x)
2: b← Hash2(x) /*Two candidate positions of Item x*/
3: t← Determine-v-add(a,b)
4: if t == v+2 then
5: Assign a unique ID to the new subgraph
6: Union(a,b)
7: DirectInsert(x,a,b)
8: Return Ture /*Finish the insertion*/
9: else if t == v+1 then

10: Union(a,b)
11: DirectInsert(x,a,b)
12: Return True /*Finish the insertion*/
13: else
14: InDirectInsert(x,a,b)
15: end if

Algorithm 2 Determine-v-add(Hash a, Hash b)
1: if neither a nor b have yet existed in the pseudoforest then
2: Return v+2
3: else if both a and b have existed in the pseudoforest then
4: Return v+0
5: else
6: Return v+1
7: end if

of the two subgraphs a new ID, and update the IDs
of each member vertex of the two subgraph in their
corresponding buckets (Lines 5-6). In addition, the
vertex count and edge count of the two subgraphs are
updated. Algorithm 5 describes how the pseudoforest is
maintained in the deletion of Item x.

4 Performance Evaluation

4.1 Experimental Setup

The server used in our experiments is equipped with an
Intel 2.8GHz 16-core CPU, 12GB DDR3 RAM with a
peak bandwidth of 32GB/s, and a 500GB hard disk. The
L1 and L2 caches of the CPU are 32KB and 256KB,
respectively. We use three traces (RandomInteger [40],
MacOS [3, 47], and DocWords [4]), and the YCSB
benchmark [11] to run the SmartCuckoo prototype in
the Linux kernel 2.6.18 to evaluate its performance. In
addition, SmartCuckoo is implemented based on CHS.

RandomInteger: We used C++’s STL Mersenne
Twister random integer generator [40] to generate items,
which are in the full 32-bit unsigned integer range and
follow a pseudo-random uniform distribution.

MacOS: The trace was collected on a Mac OS X
Snow Leopard server [3,47]. We use fingerprints of files
as keys to generate insertion requests. The fingerprints
are obtained by applying the MD5 function on the file

Algorithm 3 DirectInsert(Item x, Hash a, Hash b)
1: /*a and b are two candidate positions of Item x*/
2: if B[a] is empty then
3: B[a]← x /*Insert Item x into the empty bucket*/
4: else
5: B[b]← x
6: end if

Algorithm 4 InDirectInsert(Item x, Hash a, Hash b)
1: /*Determine type of the corresponding subgraphs*/
2: if one non-maximal then
3: Kick-out(x,B[a])
4: else if two non-maximal then
5: Kick-out(x,B[a])
6: Union(a,b)
7: else if one non-maximal and one maximal then
8: if the subgraph containing a is non-maximal then
9: Kick-out(x,B[a])

10: else
11: Kick-out(x,B[b])
12: end if
13: Union(a,b)
14: else
15: Rehash()
16: end if

contents.
DocWords: This trace includes five text collections

in the form of bag-of-words [4]. It contains nearly
80 million items in total. We take advantage of the
combination of its DocID and WordID as keys of items
to be inserted into hash tables.

We compare SmartCuckoo with CHS (cuckoo hashing
with a stash) [29] as the Baseline, libcuckoo [36],
and BCHT [15] schemes. Specifically, for BCHT , we
implemented its main components, including four slots
in each bucket. For libcuckoo, we use its open-source
C++ implementation [1], which is optimized to serve
write-heavy workloads.

4.2 Results and Analysis
We present evaluation results of SmartCuckoo and com-
pare them with those from the state-of-the-art cuckoo
hash tables in terms of insertion throughput, lookup
throughput, and the throughput of mixed operations.

4.2.1 Insertion Throughput

Figure 7 shows the insertion throughputs of Baseline,
libcuckoo, BCHT , and the proposed SmartCuckoo with
the RandomInteger workload. With the increase of the
load factor, we observe that SmartCuckoo significantly
increases insertion throughput over Baseline by 25% to
75%, libcuckoo by 65% to 75%, and over BCHT by

560 2017 USENIX Annual Technical Conference USENIX Association

Algorithm 5 Deletion(Item x)
1: a← Hash1(x)
2: b← Hash2(x) /*Two candidate positions of Item x*/
3: if x == B[a] or x == B[b] then
4: Delete x f rom the corresponding position
5: Assign two unique IDs to two new subgraphs respec-

tively
6: U pdate subgraph ID
7: U pdate vertex and edge count
8: Return True
9: else

10: Return False
11: end if

40% to 50%. Conventional cuckoo hash tables, including
Baseline, libcuckoo, and BCHT , essentially take a
random walk to find a vacant bucket for inserting an
item without a priori knowledge on the path, which leads
to unnecessary operations and the extended response
time. In particular, in addition to the impact of endless
loops, libcuckoo suffers from frequent use of locking for
consistent synchronization in its support of concurrent
accesses. BCHT uses multi-slot buckets to mitigate the
occurrence of endless loops. However, it requires a
search in at least one candidate bucket for an available
slot to carry out an insertion, which compromises its
insertion throughput. In contrast, SmartCuckoo classifies
item insertions into three cases to predetermine outcome
of an insertion, so that an insertion failure can be known
without actually performing any kick-out operations to
significantly save insertion time. This performance
advantage is particularly large with a hash table of a high
load factor.

�

���

�

���

�

���

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

����������	

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 7: Insertion throughputs with RandomInteger.

Figure 8 shows insertion throughputs of the vari-
ous cuckoo hash tables with the MacOS workload.
Compared with conventional hash tables, SmartCuckoo
obtains an average of 90% throughput improvement over
Baseline at a load factor of 0.9, and 75% over libcuckoo,
as well as 25% over BCHT .

Figure 9 illustrates the insertion throughputs with the

�

���

�

���

�

���

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

����������	

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 8: Insertion throughput with MacOS.

DocWords workload. With the increase of the load
factor, SmartCuckoo increases insertion throughput over
Baseline by 33% to 77%, libcuckoo by 60% to 75%, and
over BCHT by 35% to 44%.

�

���

�

���

�

���

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

�

���

�

���

�

���

�

���

���������	

���	
��	

�������

����

�����������

�
��
��
�
�
�
��
��
	
�
�

�
��
�
�
�
�

�
��

�
�
�
�

Figure 9: Insertion throughput with DocWords.

4.2.2 Lookup Throughput

In the evaluation of lookup performance of the four hash
tables (Baseline, libcuckoo, BCHT , and SmartCuckoo),
we generate the workload of all-lookup queries from
each of the real-world traces. First, we extract lookup
queries from a trace and use the remaining insertion and
deletion queries in the trace to populate a hash table.
Second, we selectively issue lookup queries, in the order
of their appearance in the original trace, to the hash table.
For a workload of lookup queries for only existent keys,
we skip those for non-existent keys. For a workload of
lookup queries for only non-existent keys, we skip those
for existent keys. Each workload contains one million
queries.

We examine the lookup throughputs of Baseline,
libcuckoo, BCHT , and SmartCuckoo with the Ran-
domInteger workload, which are shown in Figure 10.
We observe that SmartCuckoo and Baseline achieve
almost the same lookup throughput due to similar
implementation of lookup operation. When all of the
keys in the lookup queries are existent in the table,

USENIX Association 2017 USENIX Annual Technical Conference 561

SmartCuckoo improves the lookup throughputs by 30%
and 5% over those of libcuckoo and BCHT , respectively.
When none of the keys are in the table, all candidate
positions (slots in BCHT) for a key have to be accessed.
In particular, BCHT searches eight slots (four slots per
bucket in the experiment setup) in two candidate buckets
for each key, resulting in the reduced throughput.

���

���

���

�
��	
��
 ��������� ���� �����������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

���

���

���

�

���� ��

��	
��
 ��������� ���� �����������

����������	
�	�������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 10: Lookup throughput with RandomInteger.

Figure 11 shows the lookup throughputs with the
MacOS workload. Similarly, the throughput of S-
martCuckoo is about 30% and 6% higher than that
of libcuckoo and BCHT , respectively, with lookups of
only existent keys. If all of the keys are non-existent,
the improvements become 45% and 10%, respectively.
Figure 12 shows the lookup throughputs with the
DocWords workload, revealing similar performance
trend.

�

���

�

���

����	
�� 	
����� ���� ����������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

�

���

�

���

���� ��

����	
�� 	
����� ���� ����������

����������	
�	�������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 11: Lookup throughput with MacOS.

�

���

�

���
����	
�� 	
����� ���� ����������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

�

���

�

���

�

���

���� ��

����	
�� 	
����� ���� ����������

����������	
�	�������	����	��	���	�

���	��������

�
��
��
�
�
��
�
��
	
�
�

�
�
��

�
��
�
��
�
�
�

Figure 12: Lookup throughput with DocWords.

4.2.3 Throughput of Workload with Mixed Queries

We use YCSB [11] to generate five workloads, each
with ten million key-value pairs, following the zipf
distribution. Each key in the workloads is 16 bytes and
each value is 32 bytes. The distributions of different
types of queries in each workload are shown in Table 1.

Table 1: Distributions of different types of queries in
each workload.

Workload Insert Lookup Update
YCSB-1 100 0 0
YCSB-2 75 25 0
YCSB-3 50 50 0
YCSB-4 25 75 0
YCSB-5 0 95 5

Figure 13 shows the throughputs of SmartCuckoo
and other hash tables in comparison for running each
of the YCSB workloads. With the decrease of the
percentage of insertions in the workloads, throughputs of
all the cuckoo hash tables increase due to expensive kick-
out operations during execution of insertion operations.
With the workloads containing insert queries (the first
four in Table 1), SmartCuckoo consistently produces
higher throughput than the other three cuckoo hash
tables, specifically by 25% to 70% than Baseline, by
25% to 55% than libcuckoo, and by 10% to 50% than
BCHT . SmartCuckoo takes advantage of its ability
of predetermining the occurrence of endless loops to
avoid a potentially large number of step-by-step kick-
out operations. The fifth workload does not have any
insert queries. Instead, it does have a small percentage
of update query, whose cost is similar to that of lookup
if updating existent keys and is equivalent to that of
insert if updating non-existent keys. Because most
queries are for existent keys, SmartCuckoo and Baseline
achieve nearly the same performance due to their similar
implementation of lookup operation.

For each of the YCSB workloads that has 10 million
key-value pairs with 16B keys and 32B values, the
minimal space for holding the data in the cuckoo
hash table is (16 + 32) ∗ 10M = 458MB. Any space
additional to this minimal requirement to hold auxiliary
data structure for higher performance is considered as the
hash table’s space overhead. With its use of a lightweight
pseudoforest, SmartCuckoo has a space overhead of
about 20% of the minimal requirement in the YCSB
workloads. This is in line with that of the other three
hash tables (Baseline, libcuckoo, and BCHT).

5 Related Work

Cuckoo Hashing Structures. SmartCuckoo is a variant
of the cuckoo hashing, which supports fast and cost-

562 2017 USENIX Annual Technical Conference USENIX Association

���

���

���

�

���

�	
����

��������

����

��	��������

�
��
�
�
�
��
	

�
�
��

��
��
��
�
�
�

�

���

���

���

���

�

���

������ ������ ������ ������ ������

���������

�	
����

��������

����

��	��������

�

�
�

�
�
�
�
��
�
�
�
��
	

�
�
��

��
��
��
�
�
�

Figure 13: Throughput of mixed operations with YCSB.

efficient lookup operation. Cuckoo hashing [42, 43]
is an open-addressing hashing scheme that provides
each item with multiple candidate positions in the hash
table. Studies of cuckoo hashing via the graph theory
provide insightful understanding of cuckoo hashing’s
advantages and limitations [14, 32]. Cuckoo Graph
is proposed to describe the hashing relationship of
cuckoo hashing [32]. Cuckoo filter [17] uses the
cuckoo hash table to enhance Counting Bloom filter [18]
for supporting insertion and deletion operations with
improved performance and space efficiency. Horton
table [8] is an enhanced bucketized cuckoo hash table
to reduce the number of CPU cache lines that are
accessed in each lookup. In contrast, we investigate the
characteristics of the directed cuckoo graph describing
the kick-out behaviors. The proposed SmartCuckoo
leverages the directed pseudoforest, a concept in graph
theory, to track item placements in the hash table for
predetermining occurrence of endless loops.

Content-based Search. NEST [24] uses cuckoo
hashing to address the load imbalance issue in the tra-
ditional locality-sensitive hashing (LSH) and to support
approximate queries. HCTrie [41] is a multi-dimensional
structure for file search using scientific metadata in file
systems, which supports a large number of dimensions.
MinCounter [46] allocates a counter for each bucket to
track kick-out times at the bucket, which mitigates the
occurrence of endless loops during data insertion by
selecting less used kick-out routes. SmartCuckoo aims at
avoiding unnecessary kick-out operations due to endless
loops in item insertion.

Searchable File Systems. Many efforts have been
made to improving performance of large-scale search-
able storage systems. Spyglass [34] is a file metadata
search system, based on hierarchical partitioning of
namespace organization, for high performance and
scalability. Smartstore [23] reorganizes file metadata
based on file semantic information for next-generation
file systems. It provides efficient and scalable complex
queries and enhances system scalability and function-
ality. Glance [25] is a just-in-time sampling-based

system to provide accurate answers for aggregate and
top-k queries without prior knowledge. Ceph [39, 53]
uses dynamic subtree partitioning to support filename-
based query as well as to avoid metadata-access hot
spots. SmartCuckoo provides fast query services for
cloud storage systems.

6 Conclusion and Future Work

Fast and cost-efficient query services are important to
cloud storage systems. Due to the salient feature of
open addressing, cuckoo hashing supports fast queries.
However, it suffers from the problem of potential endless
loops during item insertion. We propose a novel
cost-efficient hashing scheme, named SmartCuckoo,
for tracking item placements in the hash table. By
representing the hashing relationship as a directed
pseudoforest, SmartCuckoo can accurately predetermine
the status of cuckoo operations and endless loops. We
further avoid walking into an endless loop, which always
belongs to a maximal subgraph in the pseudoforest. We
use three real-world traces, i.e., RandomInteger, MacOS,
and DocWords, and the YCSB benchmark to evaluate the
performance of SmartCuckoo. Extensive experimental
results demonstrate the advantages of SmartCuckoo over
state-of-the-work schemes, including cuckoo hashing
with a stash, libcuckoo, and BCHT .

SmartCuckoo currently addresses the issue of endless
loop for cuckoo hash tables using two hash functions. It
is well-recognized that using more than two hash func-
tions would significantly increase operation complexity
and is thus less used [13, 56]. A general and well-known
approach is to reduce the number of hash functions
to two using techniques such as double hashing [30].
As a future work, we plan to apply the approach of
SmartCuckoo on hash tables using more than two hash
functions. In addition, we will also study the use of
SmartCuckoo in cuckoo hash tables with multiple slots
in each bucket.

Acknowledgments

This work was supported by National Key Research and
Development Program of China under Grant 2016YF-
B1000202 and State Key Laboratory of Computer
Architecture under Grant CARCH201505. Song Jiang
was supported by US National Science Foundation under
CNS 1527076. The authors are grateful to anonymous
reviewers and our shepherd, Rong Chen, for their
constructive feedbacks and suggestions.

References
[1] Libcuckoo library. https://github.com/efficient/libcuckoo.

USENIX Association 2017 USENIX Annual Technical Conference 563

[2] Symantec. 2010 State of the Data Center Global Da-
ta. http://www.symantec.com/content/en/us/about/media /pdf-
s/Symantec DataCenter10 Report Global.pdf (Jan. 2010).

[3] Traces and Snapshots Public Archive.
http://tracer.filesystems.org (July 2014).

[4] Bag-of-words data set. http://archive.ics.uci.edu/ml/datasets
/Bag+of+Words (Mar. 2008).

[5] ÀLVAREZ, C., BLESA, M., AND SERNA, M. Universal
Stability of Undirected Graphs in the Adversarial Queueing
Model. In Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures (2002), ACM, pp. 183–
197.

[6] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, I., ET AL. A View of Cloud Computing.
Communications of the ACM 53, 4 (2010), 50–58.

[7] BELL, G., HEY, T., AND SZALAY, A. Beyond the Data Deluge.
Science 323, 5919 (2009), 1297–1298.

[8] BRESLOW, A. D., ZHANG, D. P., GREATHOUSE, J. L.,
JAYASENA, N., TULLSEN, D. M., XU, L., CAVAZOS, J.,
ALVAREZ, M. A., MORALES, J. A., AGUILERA, P., ET AL.
Horton Tables: Fast Hash Tables for In-Memory Data-Intensive
Computing. USENIX Association, pp. 281–294.

[9] BÜTTCHER, S., AND CLARKE, C. L. A Security Model for Full-
Text File System Search in Multi-User Environments. In Proc.
FAST (2005).

[10] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R., PANDYA,
R., AND THELIN, J. Orleans: Cloud Computing for Everyone.
In Proc. SOCC (2011), ACM, p. 16.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking Cloud Serving Systems with
YCSB. In Proc. SoCC (2010), ACM, pp. 143–154.

[12] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search
Data Structures. ACM SIGARCH Computer Architecture News
43, 1 (2015), 631–644.

[13] DEBNATH, B. K., SENGUPTA, S., AND LI, J. ChunkStash:
Speeding up Inline Storage Deduplication using Flash Memory.
In Proc. USENIX ATC (2010).

[14] DEVROYE, L., AND MORIN, P. Cuckoo hashing: Further
analysis. Information Processing Letters 86, 4 (2003), 215–219.

[15] ERLINGSSON, U., MANASSE, M., AND MCSHERRY, F. A Cool
and Practical Alternative to Traditional Hash Tables. In Proc.
WDAS (2006).

[16] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. MemC3:
Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proc. NSDI (2013).

[17] FAN, B., ANDERSEN, D. G., KAMINSKY, M., AND MITZEN-
MACHER, M. D. Cuckoo Filter: Practically Better Than Bloom.
In Proc. CoNext (2014), ACM, pp. 75–88.

[18] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Transactions on Networking (TON) 8, 3 (2000), 281–
293.

[19] FRIEZE, A., MELSTED, P., AND MITZENMACHER, M. An
Analysis of Random-Walk Cuckoo Hashing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2009, pp. 490–503.

[20] GABOW, H. N., AND WESTERMANN, H. H. Forests, frames,
and games: Algorithms for matroid sums and applications.
Algorithmica 7, 1 (1992), 465–497.

[21] GANTZ, J., AND REINSEL, D. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.
IDC iView: IDC Analyze the Future 2007 (2012), 1–16.

[22] HSU, C.-H., ZHANG, Y., LAURENZANO, M. A., MEISNER, D.,
WENISCH, T., MARS, J., TANG, L., AND DRESLINSKI, R. G.
Adrenaline: Pinpointing and Reining in Tail Queries with Quick
Voltage Boosting. In Proc. HPCA (2015), IEEE, pp. 271–282.

[23] HUA, Y., JIANG, H., ZHU, Y., FENG, D., AND TIAN,
L. Smartstore: A New Metadata Organization Paradigm with
Semantic-Awareness for Next-Generation File Systems. In Proc.
SC (2009), ACM.

[24] HUA, Y., XIAO, B., AND LIU, X. Nest: Locality-aware
Approximate Query Service for Cloud Computing. In Proc.
INFOCOM (2013), IEEE, pp. 1303–1311.

[25] HUANG, H. H., ZHANG, N., WANG, W., DAS, G., AND
SZALAY, A. S. Just-in-Time Analytics on Large File Systems.
IEEE Transactions on Computers 61, 11 (2012), 1651–1664.

[26] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R.,
SATYANARAYANAN, M., GANGER, G. R., RIEDEL, E., AND
AILAMAKI, A. Diamond: A Storage Architecture for Early
Discard in Interactive Search. In Proc. FAST (2004), pp. 73–86.

[27] JANAPA REDDI, V., LEE, B. C., CHILIMBI, T., AND VAID, K.
Web Search Using Mobile Cores: Quantifying and Mitigating the
Price of Efficiency. In Proc. ISCA (2010), pp. 314–325.

[28] KIRSCH, A., AND MITZENMACHER, M. The Power of Qne
Move: Hashing Schemes for Hardware. IEEE/ACM Transactions
on Networking 18, 6 (2010), 1752–1765.

[29] KIRSCH, A., MITZENMACHER, M., AND WIEDER, U. More
Robust Hashing: Cuckoo Hashing with a Stash. SIAM Journal
on Computing 39, 4 (2009), 1543–1561.

[30] KNUTH, D. E. The Art of Computer Programming: Sorting and
Searching, vol. 3. Pearson Education, 1998.

[31] KRUSKAL, C. P., RUDOLPH, L., AND SNIR, M. Efficient
parallel algorithms for graph problems. Algorithmica 5, 1 (1990),
43–64.

[32] KUTZELNIGG, R. Bipartite Random Graphs and Cuckoo
Hashing. In Fourth Colloquium on Mathematics and Computer
Science Algorithms, Trees, Combinatorics and Probabilities
(2006), Discrete Mathematics and Theoretical Computer Science,
pp. 403–406.

[33] LAM, H., LIU, Z., MITZENMACHER, M., SUN, X., AND
WANG, Y. Information Dissemination via Random Walks in d-
Dimensional Space. In Proc. SODA (2012), SIAM, pp. 1612–
1622.

[34] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: Fast, Scalable Metadata Search for
Large-Scale Storage Systems. In Proc. FAST (2009), pp. 153–
166.

[35] LI, Q., HUA, Y., HE, W., FENG, D., NIE, Z., AND SUN,
Y. Necklace: An Efficient Cuckoo Hashing Scheme for Cloud
Storage Services. In Proc. IWQoS (2014), IEEE, pp. 153–158.

[36] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND FREEDMAN,
M. J. Algorithmic Improvements for Fast Concurrent Cuckoo
Hashing. In Proc. EuroSys (2014), ACM.

[37] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZIS, G., AND CAMBLE, P. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality. In Proc. FAST
(2009), pp. 111–123.

[38] LIU, L., XU, L., WU, Y., YANG, G., AND GANGER, G. R.
SmartScan: Efficient Metadata Crawl for Storage Management
Metadata Querying in Large File Systems. Parallel Data
Laboratory (2010), 1–17.

564 2017 USENIX Annual Technical Conference USENIX Association

[39] MALTZAHN, C., MOLINA-ESTOLANO, E., KHURANA, A.,
NELSON, A. J., BRANDT, S. A., AND WEIL, S. Ceph as a
scalable alternative to the Hadoop Distributed File System. login:
The USENIX Magazine 35, 4 (2010), 38–49.

[40] MATSUMOTO, M., AND NISHIMURA, T. Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[41] OHARA, Y. HCTrie: A Structure for Indexing Hundreds of
Dimensions for Use in File Systems Search. In Proc. MSST
(2013), IEEE, pp. 1–5.

[42] PAGH, R., AND RODLER, F. Cuckoo hashing. In Proc. ESA
(2001), Springer, pp. 121–133.

[43] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[44] POLYCHRONIOU, O., RAGHAVAN, A., AND ROSS, K. A.
Rethinking SIMD Vectorization for In-Memory Databases. In
Proc. SIGMOD (2015), ACM, pp. 1493–1508.

[45] ROSS, K. A. Efficient Hash Probes on Modern Processors. In
Proc. ICDE (2007), IEEE, pp. 1297–1301.

[46] SUN, Y., HUA, Y., FENG, D., YANG, L., ZUO, P., AND CAO,
S. MinCounter: An Efficient Cuckoo Hashing Scheme for Cloud
Storage Systems. In Proc. MSST (2015), IEEE.

[47] TARASOV, V., MUDRANKIT, A., BUIK, W., SHILANE, P.,
KUENNING, G., AND ZADOK, E. Generating Realistic Datasets
for Deduplication Analysis. In Proc. USENIX ATC (2012),
USENIX Association, pp. 261–272.

[48] TAYLOR, T., COULL, S. E., MONROSE, F., AND MCHUGH, J.
Toward Efficient Querying of Compressed Network Payloads. In
Proc. USENIX ATC (2012), USENIX Association, pp. 113–124.

[49] TURNER, V., GANTZ, J. F., REINSEL, D., AND MINTON,
S. The digital universe of opportunities: Rich data and the
increasing value of the internet of things. Framingham (MA):
IDC (2014).

[50] VAMANAN, B., SOHAIL, H. B., HASAN, J., AND VIJAYKU-
MAR, T. TimeTrader: Exploiting Latency Tail to Save Datacenter
Energy for Online Search. In Proc. MICRO (2015), ACM,
pp. 585–597.

[51] WANG, C., REN, K., YU, S., AND URS, K. M. R. Achieving
Usable and Privacy-assured Similarity Search over Outsourced
Cloud Data. In Proc. INFOCOM (2012), IEEE, pp. 451–459.

[52] WANG, K., XU, G., SU, Z., AND LIU, Y. D. GraphQ:
Graph Query Processing with Abstraction Refinement-Scalable
and Programmable Analytics over Very Large Graphs on a Single
PC. In Proc. USENIX ATC (2015), USENIX Association,
pp. 387–401.

[53] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D.,
AND MALTZAHN, C. Ceph: A Scalable, High-Performance
Distributed File System. In Proc. OSDI (2006), USENIX
Association, pp. 307–320.

[54] WU, S., LI, F., MEHROTRA, S., AND OOI, B. C. Query
Optimization for Massively Parallel Data Processing. In Proc.
SOCC (2011), ACM.

[55] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-KV: A Case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores. Proceedings of the
VLDB Endowment 8, 11 (2015), 1226–1237.

[56] ZUO, P., AND HUA, Y. A Write-friendly Hashing Scheme for
Non-volatile Memory Systems. In Proc. MSST (2017).

USENIX Association 2017 USENIX Annual Technical Conference 565

Repair Pipelining for Erasure-Coded Storage

Runhui Li, Xiaolu Li, Patrick P. C. Lee, Qun Huang

The Chinese University of Hong Kong

lrhdiy@gmail.com, {lixl,pclee}@cse.cuhk.edu.hk, huangqundl@gmail.com

Abstract

We propose repair pipelining, a technique that speeds up

the repair performance in general erasure-coded storage.

By pipelining the repair of failed data in small-size units

across storage nodes, repair pipelining reduces the repair

time to approximately the same as the normal read time

to the same amount of data in homogeneous environ-

ments. We further extend repair pipelining for hetero-

geneous environments. We implement a repair pipelin-

ing prototype called ECPipe and integrate it as a mid-

dleware system into two open-source distributed storage

systems HDFS and QFS. Experiments on a local testbed

and Amazon EC2 show that repair pipelining signifi-

cantly improves the performance of both degraded reads

and full-node recovery over existing repair techniques.

1 Introduction

Distributed storage systems rely on data redundancy to

provide fault tolerance, so as to maintain availability and

durability. Replication, which is traditionally used by

production systems [4, 11], provides the simplest form

of redundancy by keeping identical copies of data in dif-

ferent storage nodes. However, the raw storage cost of

replication is overwhelming, especially with the mas-

sive scale of data we face today. Erasure coding pro-

vides a low-cost redundancy alternative that incurs sig-

nificantly lower storage overhead than replication at the

same fault tolerance level [39]. In a nutshell, erasure cod-

ing transforms fixed-size units, called blocks, of original

data into a set of coded blocks, such that any subset of

a sufficient number of available coded blocks can recon-

struct all original data. Today’s distributed storage sys-

tems adopt erasure coding to protect data against failures

in clustered [10, 15, 29] or geo-distributed environments

[21, 33], and reportedly save PBs of storage [15, 21].

Although achieving storage efficiency, erasure coding

has a drawback of incurring high repair penalty. Specifi-

cally, the repair of a single failed coded block (either lost

or unavailable) needs to read multiple available coded

blocks for reconstruction; in other words, it reads more

available data than the actual amount of failed data. This

is in contrast to replication, whose repair can be simply

done by reading another replica that is of the same size

as the failed block. The excessive data not only increases

the read time to failed data as opposed to normal reads,

but also consumes bandwidth resources that could oth-

erwise be made available for other foreground jobs [29].

Thus, erasure coding in practice is mainly used for stor-

ing less frequently read (i.e., warm/cold) data that needs

long-term persistence [2, 15, 21], while frequently read

(i.e., hot) data remains replicated for efficient access.

To mitigate the repair penalty of erasure coding, prior

studies either propose new erasure codes that reduce the

amount of repair traffic (e.g., [8,15,17,25,28,30,34]), or

design fast repair approaches for existing erasure codes

(e.g., lazy repair [3, 37] or parallel partial repair (PPR)

[20]). While the repair time is effectively reduced, it re-

mains higher than the normal read time in general. In

view of this, we pose the following question: Can we

further reduce the repair time of erasure coding to al-

most the same as the normal read time? This creates op-

portunity for applying erasure coding to hot data for high

storage efficiency, while preserving read performance.

We present a new technique called repair pipelining

to speed up the repair performance in general erasure-

coded storage. Its main idea is to pipeline the repair of

a coded block in small-size units across storage nodes

(analogous to wormhole routing [22]), so as to distribute

repair traffic and fully utilize bandwidth resources across

storage nodes. Contrary to the conventional wisdom that

the repair of erasure coding is a slow operation, repair

pipelining can reduce the repair time of a failed coded

block to approximately the same as the read time of a

normal coded block, regardless of coding parameters,

in homogeneous environments (i.e., link bandwidths are

identical). It is also general to support various practical

erasure codes that are adopted by today’s production sys-

tems, including classical Reed-Solomon codes [32] and

recent Local Reconstruction Codes [15]. To summarize,

we make the following contributions.

• We design repair pipelining to address two types of

repair operations: degraded reads and full-node recov-

ery. We show that repair pipelining achieves O(1) re-

pair time in homogeneous environments.

• We extend repair pipelining to address heterogeneous

environments (i.e., link bandwidths are different). We

present two variants of repair pipelining. The first one

allows parallel reads of reconstructed data when the

bandwidth between the storage system and the node

that issues repair is limited, while the second one finds

USENIX Association 2017 USENIX Annual Technical Conference 567

an optimal repair path across storage nodes such that

the repair time is minimized.

• We implement a repair pipelining prototype called

ECPipe, which runs as a middleware layer atop an ex-

isting storage system and performs repair operations

on behalf of the storage system. As a proof of con-

cept, we integrate ECPipe into two widely adopted

open-source distributed storage systems HDFS [36]

and QFS [24]. Both integrations only make minor

changes (with no more than 200 lines of code) to the

code base of each storage system.

• We evaluate repair pipelining on a local cluster and

two geo-distributed Amazon EC2 clusters (one in

North America and one in Asia). We compare it with

two existing repair approaches: conventional repair

that is used by classical Reed-Solomon codes [32] and

achieves O(k) repair time, and the recently proposed

PPR [20] that achieves O(log k) repair time by paral-

lelizing partial repair operations in a hierarchical man-

ner (§2.2). Our experiments show that in many cases,

repair pipelining reduces the single-block repair time

by around 90% and 80% compared to conventional re-

pair and PPR, respectively. It also improves repair per-

formance in HDFS and QFS deployments.

2 Background and Motivation

2.1 Basics

We consider a distributed storage system (e.g., GFS [11],

HDFS [36], and Azure [4]) that manages large-scale

datasets and stores files as fixed-size blocks, which form

the basic read/write units. The block size is often large,

ranging from 64 MiB [11] to 256 MiB [30], to mitigate

I/O overhead. Erasure coding is applied to a collection

of blocks. Specifically, an erasure code is typically con-

figured with two integer parameters (n, k), where k < n.

An (n, k) code divides blocks into groups of k. For ev-

ery k (uncoded) blocks, it encodes them to form n coded

blocks, such that any k out of n coded blocks can be

decoded to the original k uncoded blocks. The set of

n coded blocks is called a stripe. A large-scale stor-

age system stores data of multiple stripes, all of which

are independently encoded. The n coded blocks of each

stripe are distributed across n distinct nodes to tolerate

any n−k node failures. Most practical erasure codes are

systematic, such that k of n coded blocks are identical to

the original uncoded blocks and hence can be directly ac-

cessed without decoding. Nevertheless, our design treats

both uncoded and coded blocks the same, so we simply

refer to them as “blocks”.

Many erasure code constructions have been proposed

in the literature (see survey [26] and §7). Among all era-

sure codes, Reed-Solomon (RS) codes [32] are the most

popular erasure codes that are widely deployed in pro-

...

 n blocks of a stripe

word

Figure 1: In erasure coding, blocks are partitioned into

words, such that words at the same offset of each block

of a stripe are encoded together.

duction [10, 24, 29]. Note that RS codes achieve the

minimum storage redundancy among any (n, k) codes,

and are said to be maximum distance separable (MDS).

Some erasure codes used in production, such as locally

repairable codes [15,34], introduce slightly higher redun-

dancy than RS codes for better repair performance.

Practical erasure codes, including RS codes and lo-

cally repairable codes, satisfy linearity. Specifically, for

each stripe of an (n, k) code, let {B1, B2, · · · , Bk} de-

note any k blocks of a stripe. Any block in the same

stripe, say B∗, can be computed from a linear combi-

nation of the k blocks as B∗ =
∑

k

i=1 aiBi, where ai’s

(1 ≤ i ≤ k) are decoding coefficients specified by a

given erasure code. All additions and multiplications are

based on Galois Field arithmetic over w-bit units called

words; in particular, an addition is equivalent to bitwise

XOR. Note that the additions of aiBi’s are associative.

Some constraints may be applied; for example, RS codes

require n ≤ 2w + 1 [27]. Each block is partitioned into

multiple w-bit words, such that the words at the same

offset of each block of a stripe are encoded together, as

shown in Figure 1.

2.2 Repair

In this paper, repair in erasure-coded storage can refer

to one of the following: (i) full-node recovery for restor-

ing lost blocks (e.g., due to disk crashes, sector errors,

etc.), or (ii) degraded reads to temporarily unavailable

blocks (e.g., due to power outages, network disconnec-

tion, system maintenance, etc.) or lost blocks that are

yet recovered. Each failed block (either lost or unavail-

able) is reconstructed on a destination termed requestor,

which can be a new node that replaces a failed node, or a

client that issues degraded reads. Note that there may be

one or multiple requestors when multiple failed blocks

are reconstructed.

Erasure coding triggers more repair traffic than the

size of failed data to be reconstructed. For example, for

(n, k) RS codes, repairing a failed block reads k avail-

able blocks of the same stripe from other nodes (i.e., k

times the block size). Some repair-friendly erasure codes

(e.g., [8, 15,17,25,28,30,34]) are designed to reduce re-

pair traffic, but the size of repair traffic per block remains

larger than the size of a block. In distributed storage sys-

568 2017 USENIX Annual Technical Conference USENIX Association

Switch

N1 N2 N3 N4 R

Switch

N1 N2 N3 N4 R

(a) Conventional repair (b) PPR

Figure 2: Examples of conventional repair and PPR.

tems, network bandwidth is often the most dominant fac-

tor in repair performance as extensively shown by previ-

ous work [8, 20, 37] (see further justifications in §2.3).

Thus, the amplification of repair traffic implies the con-

gestion at the downlink of the requestor, thereby increas-

ing the overall repair time.

To understand the repair penalty of erasure coding, we

use RS codes as an example and call this repair approach

conventional repair. Suppose that a requestor R wants

to repair a failed block B∗. It can be done by read-

ing k available blocks from any k working nodes, called

helpers. Without loss of generality, let R contact k helper

nodes N1, N2, · · · , Nk, which store available blocks B1,

B2, · · · , Bk, respectively. To make our discussion clear,

we divide the repair process into timeslots, such that only

one block can be transmitted across a network link in

each timeslot. Figure 2(a) shows the conventional repair

for k = 4. Since R needs to retrieve the k blocks B1, B2,

· · · , Bk, all k transmissions must traverse the downlink

of R. Overall, the repair takes four timeslots.

The drawback of conventional repair is that the band-

width usage distribution is highly skewed: the down-

link of the requestor is highly congested, while the links

among helpers are not fully utilized. PPR [20] builds on

the linearity and addition associativity of erasure coding

by decomposing a repair operation into multiple partial

operations that are distributed across all helpers. This

distributes bandwidth usage across the links of helpers.

Figure 2(b) shows how PPR repairs B∗ for k = 4. In the

first timeslot, N2 and N4 receive blocks a1B1 and a3B3

from N1 and N3, respectively. Since the transmissions

use different links, they can be done simultaneously in a

single timeslot. In the second timeslot, N2 combines the

received a1B1 and its locally stored block B2 to obtain

a1B1 + a2B2 and sends it to N4. In the third timeslot,

N4 combines all received blocks and its own block B4

to obtain a1B1 + a2B2 + a3B3 + a4B4, and sends it

to R. This hierarchical approach reduces the overall re-

pair time to only three timeslots. In general, PPR needs

⌈log2(k + 1)⌉ timeslots to repair a failed block.

2.3 Motivation

Although PPR reduces repair time, the bandwidth usage

distribution remains not fully balanced; for example, the

downlink of N4 in Figure 2(b) still carries more repair

traffic than other links. Thus, the repair time is still bot-

tlenecked by the link with the most repair traffic. This

motivates us to design a new repair scheme that can more

efficiently utilize bandwidth resources, with the primary

goal of minimizing repair time.

Minimizing repair time is critical to both availability

and durability. In terms of availability, field studies show

that transient failures (i.e., no data loss) account for over

90% of failure events [10]. Thus, most repairs are ex-

pected to be degraded reads rather than full-node recov-

ery. Since degraded reads are issued when clients request

unavailable data, achieving fast degraded reads not only

improves availability but is also critical for meeting cus-

tomer service-level agreements [15]. In terms of durabil-

ity, minimizing repair time also minimizes the window

of vulnerability before unrecoverable data loss occurs.

Our work targets distributed storage environments in

which network bandwidth is the bottleneck. Although

modern data centers scale to 10Gb/s or higher speeds,

they are shared by a mix of application workloads. Thus,

the network bandwidth available for repair tasks is often

throttled [15, 37]. Also, the cross-rack links of modern

data centers are oversubscribed [5], yet blocks are striped

across racks to tolerate rack failures [10, 15, 30, 34]. Re-

pair of failed blocks inevitably reads available blocks

from other racks, and its performance becomes con-

strained by the limited cross-rack bandwidth.

3 Repair Pipelining

We present the design of repair pipelining for both de-

graded reads and full-node recovery.

3.1 Goals and Assumptions

Repair pipelining also exploits the linearity and addition

associativity of erasure codes as in PPR [20], yet it par-

allelizes the repair across helpers in an inherently dif-

ferent way. It focuses on (i) eliminating bottlenecked

links (i.e., no link transmits more traffic than others) and

(ii) effectively utilizing bandwidth resources during re-

pair (i.e., links should not be idle for most times), so as

to ultimately achieve O(1) repair time in homogeneous

environments where all links have the same bandwidth.

In addition, we show that repair pipelining can be ex-

tended for practical distributed environments with het-

erogeneous links (§4), which are not addressed by PPR.

Repair pipelining is designed for speeding up the re-

pair of a single failed block per stripe, which accounts

for the most repair scenarios in practice [15, 29] (e.g.,

over 98% of cases [29]). If a stripe has multiple failed

blocks, we trigger a multi-failure repair, in which we re-

sort to conventional repair (§2.2) by reading a sufficient

number of available blocks. Optimizing single-block re-

pair is also the main design goal of repair-friendly era-

sure codes [8, 15, 17, 25, 28, 30, 34]. In this paper, we

study the single-block repair for one stripe and multiple

stripes. The former occurs when a requestor issues a de-

USENIX Association 2017 USENIX Annual Technical Conference 569

graded read to an unavailable block, which are the major-

ity (§2.3); the latter occurs when all lost data of a single

failed node is recovered at one or multiple requestors in

full-node recovery.

As in PPR, we do not design new repair-friendly era-

sure codes that minimize repair traffic; instead, each re-

pair of a single failed block still reads k blocks, yet it

spreads the repair traffic across all helpers to fully utilize

bandwidth resources and reduce the overall repair time.

3.2 Degraded Reads

We first study how repair pipelining reconstructs a sin-

gle block of a stripe at a requestor in a degraded read.

We start with a naı̈ve approach. Specifically, we ar-

range k helpers and the requestor as a linear path, i.e.,

N1 → N2 → · · · → Nk → R. At a high level, to repair a

lost block B∗, N1 sends a1B1 to N2. Then N2 combines

a1B1 with its own block B2 and sends a1B1 + a2B2 to

N3. The process repeats, and finally, Nk sends R the

combined result, which is B∗. The whole repair incurs

k transmissions that span across k different links. Thus,

there is no bottlenecked link. However, this naı̈ve ap-

proach underutilizes bandwidth resources, since there is

only one block-level transmission in each timeslot. The

whole repair still takes k timeslots, same as the conven-

tional repair (§2.2).

Thus, repair pipelining decomposes the repair of a

block into the repair of a set of s small fixed-size units

called slices S1, S2, · · · , Ss. It pipelines the repair of

each slice through the linear path, and each slice-level

transmission over a link only takes 1
s

timeslots. Figure 3

shows how repair pipelining works for k = 4 and s = 6.

A slice can have an arbitrarily small size, provided that

Galois Field arithmetic can be performed (§2.1). For RS

codes, the minimum size of a slice is a w-bit word; if

w = 8, a word denotes a byte. On the other hand, prac-

tical distributed storage systems store data in large-size

blocks, typically 64 MiB or even larger (§2.1). Since a

coding unit (i.e., word) has a much smaller size than a

read/write unit (i.e., block), we can parallelize a block-

level repair operation into more fine-grained slice-level

repair sub-operations. Having small-size slices can im-

prove parallelism, but also increases the overhead of is-

suing many requests for transmitting slices over the net-

work. We study the impact of the slice size in §6.

We analyze the time complexity of repair pipelining.

Here, we neglect the overheads due to computation and

disk I/O, which we assume cost less time than network

transmission; in fact, they can also be executed in paral-

lel with network transmission in actual implementation

(§5). Each slice-level transmission over a link takes 1
s

timeslots. The repair of each slice takes k

s
timeslots to

traverse the linear path, and N1 starts to transmit the last

slice after s−1
s

timeslots. Thus, the whole repair time,

N1 N2 N3 N4 RS1:

N1 N2 N3 N4 RS2:

N1 N2 N3 N4 RS3:

N1 N2 N3 N4 RS4:

N1 N2 N3 N4 RS5:

N1 N2 N3 N4 RS6:

Figure 3: Repair pipelining with k = 4 and s = 6.

which is given by the total number of timeslots to trans-

mit all slices through the linear path, is s−1+k

s
= 1+ k−1

s

timeslots. In practice, k is of moderate size to avoid large

coding overhead [27] (e.g., k = 12 in Azure [15] and

k = 10 in Facebook [29]), while s can be much larger

(e.g., s = 2,048 for 32 KiB slices in a 64 MiB block).

Thus, we have 1 + k−1
s

→ 1 as s is sufficiently large.

Repair pipelining connects multiple helpers as a chain,

so its repair performance is degraded by the presence of

poorly performed links/helpers (i.e., stragglers). We em-

phasize that any repair scheme of erasure coding faces

the similar problem, as it needs available data from mul-

tiple helpers for data reconstruction; for example, the

conventional repair of (n, k) MDS codes needs available

data from k helpers. We address the straggler problem by

taking into account heterogeneity and bypassing strag-

glers via helper selection (§4.2). Also, if any helper fails

during an ongoing repair, the progress of repair pipelin-

ing will be stalled. In this case, we restart the whole re-

pair process with a new set of available helpers and trig-

ger a multi-failure repair (§3.1), since the repaired stripe

now has multiple failed blocks; however, multi-failure

repairs are rare in practice [15, 29].

3.3 Full-Node Recovery

We now study how repair pipelining addresses multi-

stripe repair (one failed block per stripe) when recover-

ing a full-node failure. As the stripes are independently

encoded, we can parallelize the multiple single-stripe re-

pair operations. However, since each repair involves a

number of helpers, if one helper is chosen in many repair

operations of different stripes, it will become overloaded

and slow down the overall repair performance. In prac-

tice, each stripe is stored on a different set of storage

nodes spanning across the network. Our goal is to dis-

tribute the load of a multi-stripe repair across all avail-

able helpers as evenly as possible.

We adopt a simple greedy scheduling approach for the

selection of helpers. For each node in the storage sys-

tem, repair pipelining keeps track of a timestamp indi-

cating when the node was last selected as a helper for a

single-stripe repair. To repair a failed block of a stripe,

we select k out of n−1 available helpers in the stripe that

have the smallest timestamps; in other words, the k se-

570 2017 USENIX Annual Technical Conference USENIX Association

lected helpers are the least recently selected in previous

requests. Choosing the k out of the n− 1 helpers can be

done in O(n) time using the quick select algorithm [13]

(based on repeated partitioning of quick sort). We use a

centralized coordinator to manage the selection process

(§5). Our greedy scheduling emphasizes simplicity in

deployment. We can also adopt a more sophisticated ap-

proach by weighting node preferences in real time [20].

Unlike the degraded read scenario, the multiple recon-

structed blocks can be stored on multiple requestors. Un-

der this condition, the gain of repair pipelining over con-

ventional repair decreases, as the latter can also paral-

lelize the repair across multiple requestors. Neverthe-

less, our evaluation indicates that repair pipelining still

provides repair performance improvements (§6).

Note that the number of requestors that can be selected

and the choices of requestors may also depend on various

deployment factors [20]. In this work, we assume that the

requestors are selected offline in advance.

4 Heterogeneity

In practice, the links of a distributed storage system have

different bandwidths [9, 18]. We now extend the design

of repair pipelining in §3 in two aspects: (i) a requestor

can read slices from multiple helpers in parallel, and (ii)

we solve a weighted path selection problem to find an

optimal path of k helpers that maximizes repair perfor-

mance. Each extension addresses a different heteroge-

neous setting.

4.1 Parallel Reads

In the original design of repair pipelining, a requestor al-

ways reads slices from one helper. This may lead to last-

mile congestion. For example, a client (requestor) sits

at the network edge and accesses a cloud storage system

that is far from the client. We propose a cyclic version

of repair pipelining that allows a requestor to read slices

from multiple helpers.

We now describe the cyclic version. Our discussion

assumes that all links are homogeneous and it takes

one timeslot to transmit a block size of data in a link.

The cyclic version again divides a failed block into s

fixed-size slices S1, S2, · · · , Ss, and repairs each slice

through some linear path to eliminate any bottlenecked

link. However, it now maps the k helpers N1, N2, · · · ,

Nk into different cyclic paths that can be cycled from

Nk through N1. Specifically, it partitions the s slices

into ⌈ s

k−1⌉ groups, each of which has k − 1 slices (the

last group has fewer than k − 1 slices if s is not divis-

ible by k − 1). The repair of each group of slices is

then performed in two phases. Without loss of gener-

ality, we only consider how to repair the first group S1,

S2, · · · , Sk−1. In the first phase, repairing each slice

Si (1 ≤ i ≤ k − 1) traverses through the cyclic path

N3 N4 N1 N2

N1 N2 N3 N4

N2 N3 N4 N1

N4 N1 N2

S1 S2 S3

Send to requestor

G
ro

u
p

 1

S1:

S2:

S3:

N3 N4 N1 N2

N1 N2 N3 N4

N2 N3 N4 N1

N4 N1 N2

S4 S5 S6

G
ro

u
p

 2

S4:

S5:

S6:

Send to requestor

Figure 4: Cyclic version of repair pipelining with k = 4
and s = 6.

Ni → Ni+1 → · · ·Nk → N1 → · · ·Ni−1. We repair

all slices through different cyclic paths simultaneously,

and each slice-level transmission takes 1
s

timeslots. The

first phase can be done in k−1
s

timeslots. In the second

phase, the last helper of each cyclic path delivers the re-

paired slice to the requestor. The second phase is also

done in k−1
s

timeslots. Figure 4 shows the cyclic version

for k = 4 and s = 6.

Note that we can start repairing the slices of the next

group simultaneously while we deliver the repaired slices

for the current group. Specifically, while k − 1 helpers

simultaneously transmit slices for the repair in the next

group, there is one idle helper that can transmit the re-

paired slice for the current group to the requestor. They

can be done together in k−1
s

timeslots.

We analyze the time complexity of the cyclic version

under the homogeneous link assumption. We only con-

sider the case where s is divisible by k−1, while the same

result can be derived otherwise. Repairing each group of

slices takes
2(k−1)

s
timeslots, and the repair of the last

group starts after (s

k−1 − 1)k−1
s

timeslots. The whole

repair time is (s

k−1 − 1)k−1
s

+ 2(k−1)
s

= 1 + k−1
s

→ 1,

as s is sufficiently large.

Note that the cyclic version now allows a requestor to

read slices from k−1 helpers. If the repair bottleneck lies

on the network transfer from the helpers to the requestor,

our evaluation shows that the cyclic version significantly

outperforms the original design of repair pipelining (§6).

4.2 Weighted Path Selection

We now study a more general heterogeneous setting in

which link bandwidths can have arbitrary values. To

motivate, we consider geo-distributed data centers that

span multiple geographic regions [1, 10]. They typi-

cally stripe redundancy across regions to protect against

large-scale correlated failures. However, intra- and inter-

region bandwidths are highly different. Table 1 shows

one of our iperf [16] measurement tests for the intra-

and inter-region bandwidths on Amazon EC2 across four

regions respectively in North America and Asia. We ob-

serve that intra-region bandwidths are in general more

abundant than inter-region bandwidths, and inter-region

bandwidths have a high degree of variance.

USENIX Association 2017 USENIX Annual Technical Conference 571

Table 1: A test of intra- and inter-region bandwidth mea-

surements (in Mb/s) on Amazon EC2 in North America

and Asia. Each number is the measured bandwidth from

the row region to the column region.

(a) North America

Bandwidth California Canada Ohio Oregon

California 501.3 57.2 44.1 299.9

Canada 55.3 732.0 63.3 48.0

Ohio 46.3 65.7 332.5 95.6

Oregon 297.8 50.2 93.6 250.1

(b) Asia

Bandwidth Mumbai Seoul Singapore Tokyo

Mumbai 624.8 62.3 39.5 37.7

Seoul 63.8 265.7 86.1 183.2

Singapore 41.5 88.1 493.0 49.1

Tokyo 39.7 181.0 46.9 489.1

In the following, we extend repair pipelining to solve a

weighted path selection problem. We focus on extending

the design for the single-block repair (of a single stripe)

for degraded reads (§3.2). We later discuss how our ex-

tended design is applied to full-node recovery (§3.3).

4.2.1 Formulation

Recall that for a single-block repair, repair pipelining

transmits a number of slices along a path of k helpers,

say N1 → N2 → · · · → Nk → R. Suppose that the link

bandwidths are different. If the number of slices is suf-

ficiently large, then the slices are transmitted in parallel

through the path (Figure 3), and the performance of re-

pair pipelining will be bottlenecked by the link with the

minimum available bandwidth along the path. To mini-

mize the single-block repair time, we should find a path

that maximizes the minimum link bandwidth. Here,

To repair a failed block, we need to find k out of n− 1
available helpers of the same stripe as the failed block,

and also find the sequence of link transmissions so that

the path along the k selected helpers and the requestor

minimizes the single-block repair time. Specifically,

there are a total of n nodes, including the n − 1 avail-

able helpers and the requestor. We associate a weight

with each (directed) link from one node to another node,

such that a higher weight implies a longer transmission

time along the link. For example, the weight can be rep-

resented by the inverse of the link bandwidth obtained by

periodic measurements on link utilizations [5]. Then our

objective is to find a path of k + 1 nodes (i.e., k selected

helpers and the requestor) that minimizes the maximum

link weight of the path. Here, we focus on link weights,

and the same idea is applicable if we associate weights

with nodes. Any straggler is assumed to be associated

with a large weight, so it will be excluded from the se-

lected path.

To solve the above problem, a naı̈ve approach is to per-

Algorithm 1 Weighted Path Selection

Input: link weights

Output: optimal path P
∗

1: procedure MAIN

2: P = R

3: P
∗ = null

4: w
∗ = ∞

5: N = set of n− 1 available helpers

6: EXTENDPATH

7: return P
∗

8: end procedure

9: function EXTENDPATH

10: if P .length < k + 1 then

11: for each node N ∈ N not in P do

12: if weight(N , head node of path P) < w
∗ then

13: P = N → P

14: EXTENDPATH

15: remove N from P

16: end if

17: end for

18: else

19: P
∗ = P

20: w
∗ = maximum link weight of P

21: end if

22: end function

form a brute-force search on all possible candidate paths.

However, there are a total of
(n−1)!

(n−1−k)! permutations, and

the brute-force search becomes computationally expen-

sive even for moderate sizes of n and k. Since the link

weights vary over time, the path selection should be done

quickly on-the-fly based on the measured link weights.

4.2.2 Algorithm

We present a fast yet optimal algorithm that quickly iden-

tifies an optimal path. The algorithm builds on brute-

force search to ensure that all candidate paths are cov-

ered, but eliminates the search of infeasible paths. Our

insight is that if a link L has a weight larger than the

maximum weight of an optimal path candidate that is

currently found, then we no longer need to search for the

paths containing link L, since the maximum weight of

any path containing L must be larger than the maximum

weight of the optimal path candidate.

Algorithm 1 shows the pseudo-code of the weighted

path selection algorithm. Let P be the path that we cur-

rently consider, P ∗ be the optimal path candidate that we

have found, w∗ be the maximum link weight of P ∗, and

N be the set of n−1 available helpers. We first initialize

a path P with only the requestor R (Line 2), such that

R will be the tail node of P . We also initialize P ∗, w∗,

and N (Lines 3-5). We call the recursive function EX-

TENDPATH (Line 6) and finally return the optimal path

P ∗ (Line 7).

The function EXTENDPATH recursively extends P by

572 2017 USENIX Annual Technical Conference USENIX Association

one node in N and appends the node to the head of P if

the link weight from the node to the current head node

of P is less than w∗; otherwise, the path containing the

link cannot minimize the maximum link weight as ar-

gued above. Specifically, the algorithm appends N ∈ N

to P if the current path length is less than k + 1 and the

weight from N to the head node of P is less than w∗

(Lines 10-13). It calls EXTENDPATH again to consider

candidate paths that now include N → P (Line 14). It

then removes N from P (Line 15), and tries other nodes

in N . If the length of P is now k + 1, it implies that all

of its links have weight less than w∗, so we update P as

the new optimal path P ∗ and w∗ as the maximum link

weight of P ∗ (Lines 19-20).

Algorithm 1 significantly reduces the search time. We

evaluate the search time for (14,10) codes using Monte-

Carlo simulations over 1,000 runs on a machine with

3.7 GHz Intel Xeon E5-1620 v2 CPU and 16 GiB mem-

ory. The brute-force search takes 27s on average, while

Algorithm 1 reduces the search time to only 0.9ms.

4.2.3 Discussion

Algorithm 1 also addresses full-node recovery (§3.3).

Specifically, we apply Algorithm 1 to each stripe. If we

apply greedy scheduling on helper selection, we simply

substitute N with the set of k selected helpers. Note that

the brute-force search for the optimal path on the k se-

lected helpers remains expensive, since it still needs to

consider k! permutations on the sequence of link trans-

missions along the path. Thus, Algorithm 1 still signifi-

cantly saves the search time in this case.

We can also apply Algorithm 1 to the cyclic version in

§4.1. Instead of searching for an optimal path, we now

search for an optimal cycle of k helpers that minimizes

the maximum link weight.

5 Implementation

We implemented a prototype called ECPipe to realize re-

pair pipelining. ECPipe runs as a middleware atop an ex-

isting storage system and performs repair operations on

behalf of the storage system. Moving the repair logic to

ECPipe greatly reduces changes to the code base of the

storage system to realize new repair techniques, while

we focus on optimizing ECPipe to maximize the repair

performance gain. We have integrated ECPipe with two

widely deployed distributed storage systems HDFS [36]

and QFS [24]. HDFS is written in Java, while QFS is

written in C++. Our ECPipe prototype is mostly written

in C++, and the part for HDFS integration is in Java. Our

ECPipe prototype has around 3,000 lines of code.

5.1 Erasure Coding in HDFS and QFS

HDFS: Erasure coding in HDFS is done by the HDFS-

RAID module [12]. HDFS-RAID deploys a RaidNode

atop HDFS for erasure coding management. HDFS ini-

tially stores data as fixed-size blocks (64 MiB by de-

fault) with replication; later, the RaidNode encodes repli-

cated blocks into coded blocks via MapReduce [7]. The

RaidNode also checks for any lost or corrupted coded

block (by verifying block checksums). If so, it repairs

the failed blocks, either by itself in local mode or via

a MapReduce job in distributed mode. Both modes will

issue reads to k available blocks of the same stripe in par-

allel from HDFS, reconstruct the failed block, and write

back to HDFS. HDFS-RAID also provides a RAID file

system client to access coded blocks. For a degraded read

to a failed block, the RAID file system reads k available

blocks of the same stripe in parallel and reconstructs the

failed block.

QFS: Different from HDFS, which stores data with both

replication and erasure coding, QFS stores all data in

erasure-coded format. QFS supports (9,6) RS codes [32].

The QFS client writes data into six 1 MiB buffers. When

the buffers fill up, it encodes the six 1 MiB buffers into

three 1 MiB parity buffers. It then appends the nine 1MB

buffers to nine data and parity blocks (the default block

size is 64 MiB) that are stored in nine storage nodes. To

repair any failed block, a storage node retrieves six avail-

able blocks from other storage nodes for reconstruction.

5.2 ECPipe Design

Figure 5 shows the ECPipe architecture. It uses a coordi-

nator to manage the repair operation between a requestor

and multiple helpers. ECPipe runs on top of a storage

system. To repair a failed block, the storage system cre-

ates a requestor object, which sends a repair request with

the failed block ID to the coordinator (step 1). The coor-

dinator uses the failed block ID to identify the locations

of k available blocks of the same stripe. It notifies all

helpers with the block locations (step 2). The helpers re-

trieve the blocks, perform repair pipelining in slices, and

deliver the repaired slices to the requestor (step 3).

We integrate ECPipe with a storage system in three as-

pects. First, we implement the requestor as a class (in

C++ and Java) that can be instantiated by the storage

system to reconstruct failed blocks. For HDFS, the re-

questor is created in either the RaidNode or the RAID file

system client; for QFS, it is created by the storage node

that starts a repair operation. Second, we implement each

helper as a daemon that is co-located with each storage

node to directly read the locally stored blocks. Our in-

sight is that both HDFS and QFS store each block in the

underlying native file system as a plain file, and use the

block ID to form the file name. Thus, each helper can di-

rectly read the stored blocks through the native file sys-

tem. This eliminates the need of helpers to fetch data

through the distributed storage system routine. It not

only reduces the burden of metadata management of the

USENIX Association 2017 USENIX Annual Technical Conference 573

Coordinator
1

2 2 2
3

Storage node

Helper

Storage node

Helper

Storage node

Helper
3

Requestor

3

Control flow Data flow

Figure 5: ECPipe architecture.

distributed storage system, but also improves repair per-

formance (§6.3). Finally, the coordinator needs to access

both block locations and the mappings of each block to

its stripe. For HDFS, we retrieve the information from

the RaidNode; for QFS, we retrieve the information from

a storage node when it starts a repair operation.

To simplify our implementation, ECPipe uses Redis

[31] to pipeline slices across helpers. Each helper main-

tains an in-memory key-value store based on Redis, and

uses the client interface of Redis to transmit slices among

helpers. In addition, each helper performs disk I/O, net-

work transfer, and computation via multiple threads for

performance speedup. Adding ECPipe into HDFS and

QFS only requires changes of around 110 and 180 lines

of code, respectively.

To provide fair comparisons (§6), we also implement

conventional repair (§2.2) and PPR [20] under the same

ECPipe framework, by only changing the transmission

flow of data during repair.

6 Evaluation

We conducted experiments on a local cluster and two

geo-distributed clusters deployed on Amazon EC2. We

show that repair pipelining outperforms both conven-

tional repair and PPR [20], for both degraded reads and

full-node recovery.

6.1 ECPipe Performance on a Local Cluster

6.1.1 Methodology

We first evaluate ECPipe when it runs as a standalone

system. We conducted experiments on a local cluster of

19 machines, each of which has a quad-core 3.1 GHz

Intel Core i5-2400 CPU, 8 GiB RAM, and a Seagate

ST31000524AS 1 TiB SATA hard disk. We host the co-

ordinator on one machine, and 18 helpers on the remain-

ing machines. All machines are connected via a 1 Gb/s

Ethernet switch. The 1 Gb/s bandwidth can be viewed as

modeling the cross-rack bandwidth available for repair

tasks in a production cluster [34], in which the blocks

of a stripe are stored in distinct racks and there will be

cross-rack transfers during repair.

Initially, we store coded blocks in the local file system

of each machine, and load block locations and stripe in-

formation into the coordinator. We simulate a “failed”

machine by erasing blocks there, and repair the failed

block of each stripe on a requestor. To fairly evaluate

the impact of network transfers on repair, we host the re-

questor on a machine that does not store any available

block of the repaired stripe, so as to ensure that the avail-

able blocks are always transmitted over the network. By

default, we configure 64 MiB block size, 32 KiB slice

size (for repair pipelining only), and (14,10) RS codes;

note that (14,10) RS codes are also used by Facebook

[30, 34]. We vary one of the settings at a time and evalu-

ate its impact.

We consider two versions of repair pipelining: the ba-

sic version in §3 and the cyclic version in §4.1. We com-

pare them with conventional repair (§2) and PPR [20].

We evaluate both degraded reads and full-node recov-

ery. For degraded reads (Figures 6(a)-(d) and 6(f)), we

measure the single-block repair time, defined as the la-

tency from issuing a degraded read request to a failed

block until the block is reconstructed. For full-node re-

covery (Figure 6(e)), we measure the recovery rate, de-

fined as the amount of recovered data by the total repair

time. All results are averaged over 10 runs. The standard

deviations are small and hence omitted from the plots.

6.1.2 Results

Slice size: Figure 6(a) shows the single-block repair time

versus the slice size in repair pipelining. It also plots the

transmission time of directly sending a single block over

a 1 Gb/s link (labeled as “Direct send”). Both basic and

cyclic versions of repair pipelining have high repair times

when the slice size is small, even though more slices

are pipelined during a repair (i.e., s is large). The rea-

son is that the overhead of issuing transmission requests

for many slices becomes significant. Nevertheless, the

repair times of both versions decrease as the slice size

increases up to 32 KiB (where s = 2,048) since fewer

transmission requests are issued, and then increase since

there are fewer slices in a block being pipelined. When

the slice size is 32 KiB, the basic version reduces the

single-block repair time by 90.9% and 80.4% compared

to conventional repair and PPR, respectively. The ba-

sic version achieves 10.7% less single-block repair time

than the cyclic version. The reason is that a helper in the

cyclic version sends data to both the requestor as well

as its next-hop helper, so the two transfers interfere with

one another and (slightly) increase the repair time.

Also, the direct send time of transferring a 64 MiB

block is 0.57s, which is almost network-bound in our

1 Gb/s network. The single-block repair time of the ba-

sic version is only 7.0% more than the direct send time,

showing the feasibility of achieving O(1) repair time.

Block size: Figure 6(b) shows the single-block repair

time versus the block size. The repair time reduction of

574 2017 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

2 4 8 16 32 64 128 256

Slice size (KiB)

R
e

p
a

ir
 t

im
e

 (
s
)

Conv. PPR Basic Cyclic
Direct
 send

0

4

8

12

16

8 16 32 64 128

Block size (MiB)

R
e

p
a

ir
 t

im
e

 (
s
)

Conv. PPR Basic Cyclic

0.0

2.5

5.0

7.5

10.0

(9,6) (12,8) (14,10) (16,12)

(n,k)

R
e

p
a

ir
 t

im
e

 (
s
)

Conv. PPR Basic Cyclic

(a) Slice size (b) Block size (c) Coding parameters

LRC
LRC+

PPR

LRC+

RP
RRS

RRS+

PPR

RRS+

RP

0

0.5

1

N
o
rm

a
liz

e
d
 r

e
p
a
ir
 t
im

e

0

50

100

150

1 2 4 8 16

Number of requestors

R
e

c
o
ve

ry
 r

a
te

 (
M

iB
/s

)

Conv. PPR RP RP+scheduling

0

1

2

3

4

5

6

1000 500 200 100

Edge bandwidth (Mb/s)

R
e

p
a

ir
 t

im
e

 (
s
)

Basic

Cyclic

(d) Repair-friendly codes (e) Full-node recovery (f) Limited edge bandwidth

Figure 6: ECPipe performance on a local cluster.

repair pipelining over conventional repair and PPR in-

creases with the block size as it can partition a block into

more slices for better network usage. The basic version

of repair pipelining reduces the single-block repair time

by up to 91.4% and 80.9% compared to conventional re-

pair and PPR, respectively. It is also faster than the cyclic

version by up to 16.7%.

Coding parameters: Figure 6(c) shows the single-block

repair time versus (n, k). The single-block repair times

of both conventional repair and PPR increase with k,

while that of repair pipelining is almost unchanged. As

k increases from 6 to 12, the repair time reduction of the

basic version increases from 85.1% to 92.1% compared

to conventional repair, and from 75.7% to 83.3% com-

pared to PPR.

Repair-friendly codes: We demonstrate how repair

pipelining is compatible with practical erasure codes. We

consider two state-of-the-art repair-friendly codes: LRC

[15] and Rotated RS codes [17]. LRC has higher stor-

age redundancy than RS codes by associating local par-

ity blocks with a subset of data blocks, so as to improve

single-block repair performance. On the other hand, ro-

tated RS codes arrange the layout of parity blocks to im-

prove the performance of a degraded read to a series of

data blocks. We configure LRC with k = 12 data blocks,

and Rotated RS codes with (n, k) = (16,12). LRC needs

to read only six blocks (five data blocks plus one local

parity block) for repairing a failed data block, while Ro-

tated RS codes on average read nine blocks for repairing

a failed data block. Here, we focus on the basic version

of repair pipelining.

Figure 6(d) shows the normalized single-block repair

time with respect to the conventional repair of (16,12)

RS codes. Although repair pipelining does not reduce

the amount of repair traffic as in LRC and Rotated RS

codes, its normalized repair time (around 0.1) is much

smaller than those of LRC and Rotated RS codes by ef-

fectively utilizing the bandwidth resources of all helpers.

We observe the same improvement in PPR, but its repair

time reduction is less than that of repair pipelining.

Full-node recovery: We now evaluate full-node recov-

ery with multiple requestors and our greedy scheduling

in helper selection (§3.3). We randomly write multiple

stripes of blocks across all 18 helpers in the local clus-

ter. We erase 64 blocks from 64 stripes (one block per

stripe) in one helper to mimic a single node failure, and

recover all the erased blocks simultaneously. We dis-

tribute the reconstructed blocks evenly across a number

of requestors (i.e., 1, 2, 4, 8, and 16).

We consider two cases of helper selection based on

the basic version of repair pipelining: (i) we index the

helpers from 1 to 18, and always select the available

blocks from the k helpers that have the smallest indexes

in a stripe for repair (labeled as “RP”); and (ii) we use

the greedy approach to select k helpers that are least re-

cently accessed for repair (labeled as “RP+scheduling”).

We also evaluate conventional repair and PPR, both of

which select helpers as in RP without greedy scheduling.

Figure 6(e) shows the recovery rates. As the number

of requestors increases, the recovery rates of all schemes

increase. Conventional repair sees the largest gain by

distributing the repair load across more requestors. Its

USENIX Association 2017 USENIX Annual Technical Conference 575

performance is also close to that of PPR as the number

of requestors increases. However, repair pipelining still

outperforms conventional repair by making bandwidth

utilization more balanced. Furthermore, our greedy

scheduling achieves a higher gain when there are more

requestors by better distributing the repair load across

all helpers. For example, when there are 16 requestors,

the recovery rate of repair pipelining without greedy

scheduling is 1.63× that of conventional repair, and our

greedy scheduling further improves the recovery rate of

repair pipelining by 27.9%.

Limited edge bandwidth: In previous tests, the ba-

sic version of repair pipelining always outperforms the

cyclic version. We now show the benefits of the cyclic

version when a requestor sits at the network edge and the

edge bandwidth from the storage system to the requestor

is limited (§4.1). We use the Linux command tc [38]

to limit the edge bandwidth from each helper to the re-

questor. Figure 6(f) shows the single-block repair time

versus the edge bandwidth. As the edge bandwidth de-

creases, the repair time of the basic version increases sig-

nificantly, while that of the cyclic version only increases

mildly by allowing the requestors to read repaired data

from multiple helpers in parallel. For example, the cyclic

version has 80.1% less repair time than the basic version

when the edge bandwidth is 100 Mb/s.

6.2 ECPipe Performance on Amazon EC2

Methodology: We evaluate ECPipe on two independent

Amazon EC2 clusters, one in North America and one in

Asia. Each cluster is deployed in four regions as shown

in Table 1. We deploy four EC2 instances per region per

cluster to host helpers (i.e., 16 helpers in total), and one

EC2 instance in Ohio and Singapore to host the coordi-

nator for the North America and Asia clusters, respec-

tively. Note that the overhead of accessing the coordi-

nator has negligible impact on the overall repair perfor-

mance. We focus on evaluating the degraded reads (in

terms of single-block repair time) issued by a requestor.

We host the requestor on an EC2 instance in each region

and study how the performance varies across regions. All

EC2 instances are of type t2.micro.

We configure 64 MiB block size and 32 KiB slice size

for repair pipelining. We use (16,12) RS codes and dis-

tribute the 16 blocks of each stripe across the 16 EC2

instances in four regions; this also provides fault toler-

ance against any single-region failure. We consider two

versions of repair pipelining: the basic version in §3 (la-

beled as “RP”), which finds a random path across k ran-

domly selected helpers, and the optimal version in §4.2

(labeled as “RP+optimal”), which finds an optimal path

via Algorithm 1. Note that the network bandwidth fluctu-

ates over time, although intra-region bandwidth remains

higher than inter-region bandwidth, as shown in Table 1.

0

30

60

90

120

150

180

Califo
rnia

Canada
Ohio

Oregon

Requestor location

R
e
p
a
ir
 t
im

e
 (

s
)

PPR RP RP+optimal

0

30

60

90

120

150

180

Mumbai

Seoul

Singapore

Tokyo

Requestor location

R
e
p
a
ir
 t
im

e
 (

s
)

PPR RP RP+optimal

(a) North America cluster (b) Asia cluster

Figure 7: ECPipe performance on Amazon EC2.

Thus, the optimal version probes the network bandwidth

via iperf before each run of experiments. We average

our results over 10 runs, and also include the standard de-

viations as the results have higher variances than in our

local cluster.

Results: Figure 7 shows the single-block repair times

and the standard deviations of PPR and the two versions

of repair pipelining in both clusters; we do not show the

results of conventional repair, whose repair time goes be-

yond 200s. Repair pipelining (without weighted path

selection) achieves repair time saving over PPR in all

cases when the requestor is in different regions. The re-

pair time reduction is 62.7-78.0% for North America and

66.6-87.1% for Asia. Our weighted path selection further

reduces the repair time by 7.3-45.4% for North America

and 14.5-45.0% for Asia, compared to repair pipelining

without weighted path selection. Note that our weighted

path selection can be done in around 1ms (§4.2), which is

negligible compared to the repair time in our evaluation.

6.3 Performance on HDFS and QFS

Methodology: We evaluate the integration of ECPipe

into HDFS and QFS, both of which are deployed on our

local cluster (§6.1). We co-locate a helper daemon with

each storage node (18 nodes in total). By default, we set

the slice size of repair pipelining as 32 KiB and block

size as 64 MiB. For QFS, we use its default (9,6) RS

codes and vary the slice size and block size. For HDFS,

we vary (n, k). We consider three repair schemes: (i) the

original repair implementations of HDFS and QFS, both

of which are based on conventional repair, (ii) the con-

ventional repair under ECPipe, and (iii) the basic version

of repair pipelining in §3 under ECPipe. We evaluate

degraded reads (in terms of single-block repair time) is-

sued by a requestor that is attached with either an HDFS

or QFS client. We report averaged results over 10 runs as

in §6.1 (the standard deviations are small and omitted).

Results: Figure 8 shows the evaluation results. First, re-

pair pipelining under ECPipe significantly improves the

repair performance of the original repair implementa-

576 2017 USENIX Annual Technical Conference USENIX Association

0

1

2

3

4

5

2 4 8 16 32 64 128 256

Slice size (KiB)

R
e

p
a

ir
 t

im
e

 (
s
)

QFS Conv. RP

0

1

2

3

4

5

8 16 32 64

Block size (MiB)

R
e

p
a

ir
 t

im
e

 (
s
)

QFS Conv. RP

0.0

2.5

5.0

7.5

10.0

(9,6) (12,8) (14,10) (16,12)

(n,k)

R
e

p
a

ir
 t

im
e

 (
s
)

HDFS Conv. RP

(a) QFS: slice size (b) QFS: block size (c) HDFS: coding parameters

Figure 8: Performance on HDFS and QFS.

tions of HDFS and QFS. It reduces the single-block re-

pair time by up to 86.3% when the slice size is 32 KiB

and the block size is 64 MiB (Figures 8(a) and 8(b)),

and by 84.4–92.4% for different coding parameters (Fig-

ure 8(c)). The results are consistent with those in §6.1.

We observe that moving the repair logic to ECPipe im-

proves repair performance. Specifically, conventional re-

pair under ECPipe reduces the single-block repair time

by up to 16.2% and 23.8% in HDFS and QFS, respec-

tively, compared to the original conventional repair im-

plementation. The reason of the performance gain is

that the helpers of ECPipe can directly access the stored

blocks via the native file system, instead of fetching the

blocks through the distributed storage system routine.

Nevertheless, we emphasize that the repair performance

gain mainly comes from repair pipelining, rather than the

implementation of ECPipe. Although moving repair to

ECPipe reduces repair time, the reduction is minor com-

pared to the reduction achieved by repair pipelining.

7 Related Work

Many new erasure codes have been proposed to mitigate

repair overhead, especially for single-node repair. To

name a few, regenerating codes [8] minimize repair traf-

fic by allowing storage nodes to send encoded data for

repair. Rotated RS codes [17] reduce repair traffic and

disk I/O of a degraded read to a sequence of data blocks.

Hitchhiker [30] extends RS codes [32] to piggyback par-

ity information of one stripe into another stripe, and is

shown to reduce both bandwidth and I/O for repair by

up to 45%. PM-RBT codes [28] are special regenerating

codes that simultaneously minimize bandwidth, I/O, and

storage redundancy. Butterfly codes [25] are systematic

regenerating codes that provide double-fault tolerance.

Locally repairable codes [15, 34] add local parity blocks

to mitigate repair I/O with extra storage.

Instead of constructing new erasure codes, we design

new repair strategies for general practical erasure codes

(including repair-friendly codes). Some prior studies are

also along this direction. Lazy repair [3, 37] defers im-

mediate repair action until a tolerable limit is reached.

To speed up full-node recovery, the repair of multiple

stripes can be parallelized across available nodes, as also

adopted by replicated storage [6, 23] and de-clustered

RAID arrays [14]. Degraded-first scheduling [19] tar-

gets MapReduce on erasure-coded storage by scheduling

map tasks to fully utilize bandwidth in degraded reads.

CAR [35] focuses on RS codes in data centers, and com-

putes partial repaired results in each rack to mitigate

cross-rack repair traffic. The most closely related work

to ours is PPR [20], which reduces repair time from O(k)
to O(log k). Repair pipelining further reduces it to O(1).
We also show how repair pipelining addresses heteroge-

neous environments with different link bandwidths.

8 Conclusions

Repair pipelining is a general technique to reduce the

repair time to almost the same as the normal read

time in erasure-coded storage. It pipelines the re-

pair of a failed block across storage nodes in units

of slices, so as to evenly distribute repair traffic and

fully utilize bandwidth resources across storage nodes.

Our contributions include: (i) the design of repair

pipelining for both degraded reads and full-node recov-

ery, (ii) the extensions of repair pipelining with par-

allel reads and weighted path selection for heteroge-

neous environments, (iii) a repair prototype ECPipe

and its integrations into HDFS and QFS, and (iv) ex-

periments that show the repair speedup through repair

pipelining on a local cluster and Amazon EC2. The

source code of our ECPipe prototype is available at:

http://adslab.cse.cuhk.edu.hk/software/ecpipe.

Acknowledgments: We thank our shepherd, Ryan

Huang, and the anonymous reviewers for their valu-

able comments. We thank Allen Poon for contribut-

ing to the early implementation. This work was sup-

ported in part by the Research Grants Council of Hong

Kong (GRF 14216316 and CRF C4047-14E), VC Dis-

cretionary Fund of CUHK (VCF2014007), and Cisco

University Research Program Fund (CG#593756) from

Silicon Valley Community Foundation.

USENIX Association 2017 USENIX Annual Technical Conference 577

References

[1] M. K. Aguilera. Geo-distributed Storage in Data Centers.

In Slides presented at OPODIS, 2013.

[2] F. André, A.-M. Kermarrec, E. L. Merrer, N. L. Souarnec,

G. Straub, and A. van Kempen. Archiving Cold Data in

Warehouses with Clustered Network Coding. In Proc. of

ACM EuroSys, Apr 2014.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and

G. Voelker. Total Recall: System Support for Automated

Availability Management. In Proc. of NSDI, 2004.

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,

J. Wu, H. Simitci, et al. Windows Azure Storage: A

Highly Available Cloud Storage Service with Strong

Consistency. In Proc. of ACM SOSP, Oct 2011.

[5] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging

Endpoint Flexibility in Data-Intensive Clusters. In Proc.

of ACM SIGCOMM, Aug 2013.

[6] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weather-

spoon, M. F. Kaashoek, J. Kubiatowicz, and R. Mor-

ris. Efficient Replica Maintenance for Distributed Storage

Systems. In Proc. of NSDI, 2006.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Proc. of USENIX OSDI,

Dec 2004.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and

K. Ramchandran. Network Coding for Distributed Stor-

age Systems. IEEE Trans. on Info. Theory, 56(9):4539–

4551, Sep 2010.

[9] T. Ernvall, S. El Rouayheb, C. Hollanti, and H. V. Poor.

Capacity and Security of Heterogeneous Distributed Stor-

age Systems. IEEE Journal on Selected Areas in Commu-

nications, 31(12):2701–2709, Dec 2013.

[10] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A.

Truong, L. Barroso, C. Grimes, and S. Quinlan. Avail-

ability in Globally Distributed Storage Systems. In Proc.

of USENIX OSDI, Oct 2010.

[11] S. Ghemawat, H. Gobioff, and S. Leung. The Google File

System. In Proc. of ACM SOSP, Dec 2003.

[12] HDFS-RAID. http://wiki.apache.org/

hadoop/HDFS-RAID.

[13] C. A. R. Hoare. Algorithm 65: find. Communications of

the ACM, 4(7):321–322, 1961.

[14] M. Holland and G. A. Gibson. Parity Declustering for

Continuous Operation in Redundant Disk Arrays. In

Proc. of ASPLOS, 1992.

[15] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,

P. Gopalan, J. Li, and S. Yekhanin. Erasure Coding in

Windows Azure Storage. In Proc. of USENIX ATC, Jun

2012.

[16] Iperf. https://iperf.fr/.

[17] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang.

Rethinking Erasure Codes for Cloud File Systems: Min-

imizing I/O for Recovery and Degraded Reads. In Proc.

of USENIX FAST, Feb 2012.

[18] J. Li, S. Yang, X. Wang, and B. Li. Tree-structured Data

Regeneration in Distributed and Storage Systems with

Regenerating Codes. In Proc. of IEEE INFOCOM, 2010.

[19] R. Li, P. P. C. Lee, and Y. Hu. Degraded-First Scheduling

for MapReduce in Erasure-Coded Storage Clusters. In

Proc. of IEEE/IFIP DSN, 2014.

[20] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-

Parallel-Repair (PPR): A Distributed Technique for Re-

pairing Erasure Coded Storage. In Proc. of ACM EuroSys,

2016.

[21] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Kumar.

f4: Facebook’s Warm BLOB Storage System. In Proc. of

USENIX OSDI, 2014.

[22] L. M. Ni and P. K. McKinley. A Survey of Wormhole

Routing Techniques in Direct Networks. IEEE Computer,

26(2):62–76, Feb 1993.

[23] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,

and M. Rosenblum. Fast Crash Recovery in RAMCloud.

In Proc. of ACM SOSP, 2011.

[24] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and

J. Kelly. The Quantcast File System. In Proc. of VLDB

Endowment, 2013.

[25] L. Pamies-Juarez, F. Blagojević, R. Mateescu, C. Gyuot,

E. E. Gad, and Z. Bandic. Opening the Chrysalis: On

the Real Repair Performance of MSR Codes. In Proc. of

USENIX FAST, Feb 2016.

[26] J. S. Plank. Erasure Codes for Storage Systems: A Brief

Primer. ;login: the Usenix magazine, 38(6):44–50, Dec

2013.

[27] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-

O’Hearn. A Performance Evaluation and Examination

of Open-source Erasure Coding Libraries for Storage. In

Proc. of USENIX FAST, 2009.

[28] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and

K. Ramchandran. Having Your Cake and Eating It Too:

Jointly Optimal Erasure Codes for I/O, Storage, and

Network-bandwidth. In Proc. of USENIX FAST, 2015.

[29] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,

D. Borthakur, and K. Ramchandran. A Solution to the

Network Challenges of Data Recovery in Erasure-coded

Distributed Storage Systems: A Study on the Facebook-

Warehouse Cluster. In Proc. of USENIX HotStorage,

2013.

[30] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,

D. Borthakur, and K. Ramchandran. A ”Hitchhiker’s”

Guide to Fast and Efficient Data Reconstruction in

Erasure-Coded Data Centers. In Proc. of ACM SIG-

COMM, 2014.

[31] Redis. http://redis.io/.

[32] I. Reed and G. Solomon. Polynomial Codes over Certain

Finite Fields. Journal of the Society for Industrial and

Applied Mathematics, 8(2):300–304, 1960.

[33] J. K. Resch and J. S. Plank. AONT-RS: Blending Security

and Performance in Dispersed Storage Systems. In Proc.

of USENIX FAST, 2011.

578 2017 USENIX Annual Technical Conference USENIX Association

[34] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.

Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing

Elephants: Novel Erasure Codes for Big Data. In Proc. of

VLDB Endowment, pages 325–336, 2013.

[35] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering Single

Failure Recovery in Clustered File Systems. In Proc. of

IEEE/IFIP DSN, 2016.

[36] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

Hadoop Distributed File System. In Proc. of IEEE MSST,

May 2010.

[37] M. Silberstein, L. Ganesh, Y. Wang, L. Alvizi, and

M. Dahlin. Lazy Means Smart: Reducing Repair Band-

width Costs in Erasure-coded Distributed Storage. In

Proc. of ACM SYSTOR, 2014.

[38] tc. https://linux.die.net/man/8/tc.

[39] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding

vs. Replication: A Quantitative Comparison. In Proc. of

IPTPS, Mar 2002.

USENIX Association 2017 USENIX Annual Technical Conference 579

PARIX: Speculative Partial Writes in Erasure-Coded Systems

Huiba Li
mos.meituan.com

Yiming Zhang
NUDT

Zhiming Zhang
mos.meituan.com

Shengyun Liu
NUDT

Dongsheng Li
NUDT

Xiaohui Liu
NUDT

Yuxing Peng
NUDT

Abstract
Erasure coding (EC) has been widely used in cloud
storage systems because it effectively reduces storage
redundancy while providing the same level of durability.
However, EC introduces significant overhead to small
write operations which perform partial write to an entire
EC group. This has been a major barrier for EC to
be widely adopted in small-write-intensive systems such
as virtual disk service. Parity logging (PL) appends
parity changes to a journal to accelerate partial writes.
However, since previous PL schemes have to perform a
time-consuming write-after-read for each partial write,
i.e., read the current value of the data and then compute
and write the parity delta, their write performance is still
much lower than that of replication-based storage.

This paper presents PARIX, a speculative partial write
scheme for fast parity logging. We transform the original
formula of parity calculation, so as to use the data deltas
(between the current/original data values), instead of
the parity deltas, to calculate the parities during journal
replay. For each partial write, this allows PARIX to
speculatively log only the current value of the data. The
original value is needed only once in a journal when
performing the first write to the data. For a series of
n partial writes to the same data, PARIX performs pure
write (instead of write-after-read) for the last n−1 ones
while only introducing a small penalty of an extra net-
work RTT (round-trip time) to the first one. Evaluation
results show that PARIX remarkably outperforms state-
of-the-art PL schemes in partial write performance.

1 Introduction

Failures are common in large-scale cloud storage sys-
tems [22, 34, 35]. For example, more than 1000 server
failures occur in one year in Google’s 1800-server clus-
ters [5]. To maintain data durability against failures,
storage systems usually have two options, namely, repli-
cation [24] and erasure coding (EC) [25]. In replication,

the storage system uses multiple replicas for each piece
of data, while EC encodes the original data to generate
new parities such that the original data can be recovered
from a subset of the data and parities. EC has less storage
overhead than replication while providing the same or
even higher level of durability [32], and thus has been
widely adopted in not only RAID systems [10, 30, 28,
20] but also modern cloud storage systems [13, 16, 27].

In cloud storage systems like Amazon Dynamo [12]
and Windows Azure [7], small write operations [29]
(which perform partial write to an entire EC group) are
dominant for many real-world workloads. For erasure-
coded storage systems that frequently perform small
writes, it is important to efficiently support EC partial
writes. Usually there are two ways to perform writes [8],
namely, in-place update which directly updates the new
data, and log-based update which appends the writes to
a journal [26]. The logs are asynchronously replayed to
update the data with the latest values when the system is
idle.

Logging improves the write performance but degrades
the read performance [32]. Parity logging (PL) [29]
adopts a hybrid approach. Since normally only the data
is read and the parities will only be read when the data is
not available, PL respectively performs in-place update
and log-based update for writes of the data and of the
parities, so as to achieve a balance between reads and
writes. However, state-of-the-art PL schemes [29, 17, 8]
have to perform a time-consuming write-after-read for
each partial write to compute the parity delta (which will
be used to “patch” the parity during journal replay), and
thus their write performance is still significantly lower
than that of replication [32].

This paper presents PARIX, a speculative partial write
scheme for fast parity logging. We transform the original
formula of parity calculation, so as to use the data deltas
(between the current and original values), instead of the
parity deltas, to update the parities during journal replay.
For each partial write, this allows PARIX to speculatively

USENIX Association 2017 USENIX Annual Technical Conference 581

log only the new value of the data without reading its
original value, which is needed only once in a journal
when performing the first write to the data. For a series
of n partial writes to the same data, PARIX performs
pure write (instead of write-after-read) for the last n− 1
ones while only introducing a small penalty of an extra
network RTT (round-trip time) to the first one.

Based on PARIX, we have built a prototype of an
erasure-coded block store [1] providing virtual disks that
can be mounted by cloud-oblivious applications with
strong consistency guarantees. Evaluation on the PARIX
block store shows that PARIX not only achieves similar
or even higher I/O performance compared to replication
(with much higher storage efficiency), but also remark-
ably outperforms state-of-the-art PL schemes in partial
write performance by up to orders of magnitude.

This paper makes the following contributions.

• We propose a novel speculative partial write scheme
(PARIX) for fast parity logging in erasure-coded
storage systems.
• We apply PARIX and implement an erasure-coded

block store supporting efficient journal replay and
fast failure recovery.
• We report evaluation results of PARIX’s I/O perfor-

mance from prototype measurement to demonstrate
the effectiveness of our designs.

The rest of this paper is organized as follows. §2
discusses the background and related work. §3 intro-
duces PARIX partial writes. §4 describes the prototype
of a block store using PARIX-backed EC. §5 presents the
evaluation results. And §6 concludes the paper.

2 Background

Erasure coding (EC) introduces less storage overhead
than replication while providing the same level of dura-
bility [8]. Essentially, EC calculates linear combinations
of the original data in the Galois Field [25] GF(2∧w),
where encoding is performed in the unit of w-bit words
(usually w = 8). For EC(m,k), we have k parity stripes
p j, j = 1,2, · · · ,k, for m original data stripes di, i =
1,2, · · · ,m, and the m+ k stripes are called an EC group
which ensures durability under any k failures. The parity
stripes p j, j = 1,2, · · · ,k, is calculated by

(p1, p2, · · · , pk)
T = A× (d1,d2, · · · ,dm)

T , (1)

where A = [ai j]m×k is the encoding coefficient matrix.
Small writes are dominant for many real-world work-

loads in cloud storage systems, so it is important to
efficiently support EC partial writes, i.e., writes on some
part of an entire EC group. Early EC storage systems
applies in-place update [6] to both data and parity, which
leads to frequent disk seeks on hard-disk drives (HDDs).

R
an

dW
rit

e
La

te
nc

y
(m

s)

0

4

8

12

16

R3 EC EC-PLog

Ra
nd

W
rit

e
IO

PS

0K

2K

4K

6K

8K

R3 EC EC-PLog

2.2K

0.6K

28.4K

Figure 1: EC vs. replication in (cached) write latency
and IOPS. R3: 3× replication with backup logging. EC:
erasure coding with in-place update (no logging). EC-
PLog: erasure coding with parity logging.

We compare EC (using in-place update) to replication
in a small testbed of three machines, demonstrating EC
suffers from poor write performance (Fig. 1).

Log-based EC storage systems [16, 14, 8] improve s-
mall writes by appending the writes to a journal. Logging
transforms random small writes into sequential writes to
the journal, and thus (for HDDs) it avoids frequent disk
seeks and boosts the write performance compared with
in-place update. However, log-based approach suffers
from poor read performance since the data is scattered
in the journal. Parity logging (PL) [29] adopts a hybrid
approach to alleviate this problem. It adopts in-place
update to write the data and uses logging to write the
parities. Since the parities will be read only when some
data is unavailable, it improves small write performance
without affecting normal reads.

State-of-the-art PL schemes [29, 17, 8] log the parity
delta for each partial write, which will be used to “patch”
the parity during journal replay. When updating a data
stripe di, the delta ∆p j of parity stripe p j, j = 1,2, · · · ,k,
is calculated by

∆p j = ai j×∆di, (2)

where ∆di is the delta of data stripe di and ai j ∈ A is the
encoding coefficient.

According to Eq. (2), for the rth write on a data stripe
di (denoted as d(r)

i), we first have to read d(r−1)
i , the

current value of di before this write, and we have ∆p j =

ai j × (d(r)
i − d(r−1)

i), j = 1,2, · · · ,k. Then we write the
new data on the data server and send the k parity deltas
to the parity servers. The entire procedure is illustrated
in Fig. 2a. Our test shows that the latency of the write-
after-read operation on 7,200 RPM HDDs is about 8.3
milliseconds, which is higher than that of pure write
(due to one more disk seek). This contributes most to
the performance degradation of partial writes in current
PL schemes and results in significantly lower small
write performance compared to replication (especially
for cached writes), as shown in Fig. 1.

582 2017 USENIX Annual Technical Conference USENIX Association

client data parity1 parity2 parity3

R

W

write d(r)

update
by ∆pj

read d(r-1)

write d(r)

success

success

state-of-art approach for ec partial write

w write ∆pj

to journal
w w

(a) Traditional partial writes in previous parity-logging read
d(r−1) to compute ∆p j, which is appended to the parity journal.

client data parity1 parity2 parity3

w w w

write d(r) write d(r)

write d(r)
to journal

new approach for ec partial write

W
here’s d(0)

w w w

need
d(0)?

W

Rsu
cc

es
sf

ul
 s

pe
cu

la
tio

n

read d(0)

fa
ile

d
sp

ec
ul

at
io

n

write d(0)
to journalwrite d(r)

write d(r)

(b) Speculative partial writes append d(1) and d(0) to the parity
journal for the 1st write, and d(r) for the rth writes (r 6= 1), so
as to avoid disk reads for overwrites.

Figure 2: Parity-logging vs. PARIX (in partial writes).

3 Speculative Partial Write

As discussed in §2, previous PL schemes have to perform
disk reads for partial writes to compute the parity deltas,
which will be used to update the parities during journal
replay. Clearly, the key to improve the performance of
partial writes is to reduce the number of reads.

Consider a series of r writes to the same data stripe
di, say, d(1)

i ,d(2)
i , · · · ,d(r)

i , the parity stripes (p j, j =
1,2, · · · ,k) of which have not yet been replayed. Let d(0)

i

and p(0)j be the original values of the data di and parity
p j, respectively. By Eq. (2), we could update a parity
stripe p j by ∆p(1)j = ai j×∆d(1)

i , ∆p(2)j = ai j×∆d(2)
i , · · · ,

∆p(r)j = ai j×∆d(r)
i , and thus we have

p(r)j = p(0)j +
r

∑
x=1

∆p(x)j = p(0)j +
r

∑
x=1

ai j(d
(x)
i −d(x−1)

i)

= p(0)j +ai j× (d(r)
i −d(0)

i). (3)

By Eq. (3), the current parity stripes p(r)j , j =

1,2, · · · ,k, could be calculated by p(0)j , d(0)
i , and d(r)

i .

This enables us not to use the delta of the parity, but to
use the delta of the data itself, i.e., the difference between
the data’s latest and original values (d(r) and d(0), where
for conciseness we omit the subscripts), to calculate the
parities. Consequently, d(0) only needs to be read once
when writing d(1). As shown in Fig. 2b, for each write
the data server speculatively sends the latest value (d(r))
to the parity servers without reading d(0). The data server
reads d(0) only when the parity servers explicitly request
it by returning an error code NEED D0.

Note that in Fig. 2b the data server does not know
whether d(0) is needed before receiving responses from
parity servers. This is because d(0) is needed every time
after the log gets merged into the parity chunk, which is
performed independently by every parity server. It is too
expensive to maintain the consensus about whether d(0)

is needed for every chunk on every parity server, as it
introduces overwhelming communication cost, memory
footprint and design complexity.

For a series of r writes, d(1)∼ d(r), the speculation will
succeed for r−1 writes (d(2),d(3), · · · ,d(r)) and will only
fail once (d(1)). Consequently, PARIX avoids disk reads
(on the data server) for the last r− 1 writes while only
introducing a small penalty of an extra network RTT to
the first one.

A partial write to an EC group performs both random
writes to the data and sequential appends to the parity.
Although PARIX and previous PL schemes have similar
overhead in performing appends on the parity servers,
PARIX remarkably outperforms them in performing
writes on the data server: for a non-cached (resp. cached)
overwrite, PARIX’s overhead is a disk write (resp. a
memory write), while previous PL schemes’ overhead is
a disk write after a disk read (resp. a memory write after
a disk read) assuming the read is cache-missed.

If the speculation fails, d(0) needs to be sent from
the data chunk to the parity chunk, introducing an extra
network RTT of about 0.1∼ 0.2 milliseconds. The failed
speculation also wastes extra network bandwidth, which
is negligible for modern networks as the partial writes
are small. It is the parity servers’ responsibility to track
whether d(0) is already in the log for its EC group.

Compared to existing PL techniques, the speculation-
based scheme usually reduces the amount of reads and
slightly increases the amount of writes when missing
d(0). In the worst case (of large sequential one-shot
writes), speculation might double the amount of writes.
Besides, a few more extra bytes will be transferred
between data/parity servers when missing d(0). Clearly,
large sequential one-shot write workload is not suitable
for the speculative partial write scheme, and could be
recognized by an additional cache layer (which will be
studied in our future work) and handled as full writes.

Full writes. Workloads in real-world applications per-

USENIX Association 2017 USENIX Annual Technical Conference 583

Parity Chunk 1

Data Chunk i

Parity Chunk 2

 WRITE_EC_PARTIAL(data, version)

 RESPOND

 RESPOND

 RESPOND

 LPU

 LDW

 LPU

 UPDATE(data, ith, version)

 UPDATE(data, ith, version)

Client
 if (majority_success(resp))
 version++;

Figure 3: Partial writes with strong consistency guaran-
tee. LDW: local data write. LPU: local parity update.

form not only random small writes but also large se-
quential writes, which induce full writes on the entire EC
groups. For a full write d = (di), i = 1,2, · · · ,m, we first
compute the parity p = (p j), j = 1,2, · · · ,k by Eq. (1)
and write the parity into the corresponding parity servers.
We then invalidate previous logs for the EC group in the
journal by appending a special mark I. Therefore, the
logs for data d on the parity journal are in the form of
“d(1), d(0), d(2), · · · , I, d(1), d(0), d(2), · · · , I, · · ·”. Note
that d(1) is ahead of d(0) due to the speculation (Fig. 2b).

Replay. The replay of parity journals is asynchronously
performed when the disk is idle. The (basic) replay
procedure is straightforward. A process traverses the
journal from the beginning, and for each parity block (the
minimum unit of a disk sector) it records the original
and latest data blocks (d(0) and d(r)) in RAM. When
encountering a mark I, it invalidates the records that are
ahead of I. Finally it updates all the parities using the
recorded original and latest values by Eq. (3).

4 PARIX Block Store

We have implemented a prototype of PARIX block store
(PBS), which utilizes PARIX to provide virtual disks [18,
31, 21] that can be mounted by virtual machines (VMs)
running cloud-oblivious POSIX applications. The design
of PBS is similar to Blizzard [21] and URSA [1], except
that PBS uses PARIX-backed EC (instead of replication
in Blizzard and URSA) to achieve data durability.

PBS organizes its data and parity into fixed-size (nor-
mally 64MB) data/parity chunks. Like URSA [1], PBS
leverages MySQL [4] and Redis [2] to implement a
global master [9], which can be configured into the
high-availability (HA) mode [33]. The master manages
metadata [23] such as chunk ID/size and performance
statistics, coordinates services like volume creation and
recovery [19], and detects errors like missing servers and
inconsistent chunks. Clients retrieve chunk information
from the master, and read/write data through the chunk
servers. PBS adopts no nested striping [21], because EC
has essentially achieved the same effect.

Fig. 3 shows the partial write procedure in PBS. A
client sends a write request to the data server, which
forwards it to all relevant parity chunks on different
parity servers. When receiving the write, the parity
servers perform local parity update (LPU) to the per-
chunk journal (Fig. 2b) and respond to the data server.
Note that the data server cannot perform in-place local
data write (LDW) for updating the data to its disk until
this point, since if the parity servers request the initial
value (d(0)) in their response it will need to perform read-
after-write (instead of pure write) and send d(0) to them.

PBS extends the basic replay procedure (§3). We
maintain an index structure in RAM recording the po-
sitions of d(0) and d(r) for each parity block, so that in
replay we could update a parity block by reading only the
two blocks in the journal without traversing the journal.
For EC(m,k), in the worst case the size of logs needed
to be read from the journal for replaying a parity chunk
is 2m times the parity chunk size, because calculating
a parity block requires at most m data blocks each of
which requires its own d(0) and d(r). Since the journal
is replayed whenever the disk is idle, in practice its size
is much smaller than 2m times the parity chunk size.

In the worst case the index structure keeps 2 addresses
in RAM for each data block (of 512B), but the actual
index size is much less than that, because: (i) the sizes
of most small writes are at least 4KB (a page), instead
of 512B (a block), which only requires to keep in RAM
the first index and the size of each write; and (ii) a large
write will immediately free all the in-RAM indices for
the corresponding blocks. Assuming an average write
size of 64KB, the in-RAM index size is at least three
orders of magnitude smaller than the size of the data.

Recovery. When a data/parity chunk fails, the healthy
data/parity blocks in the corresponding EC groups are
read to perform the recovery. The unplayed parity logs
in the journal are first replayed, similar to the aforemen-
tioned normal replay procedure. The small difference is
that the recovery is pipelined: each parity block is used
to calculate the failed block right after it is replayed.

Consistency. PBS uses a lease to ensure a virtual
disk has at most one active client at any time and
leverages (chunk-level) versioning [15] to guarantee per
chunk strong consistency [11] (Fig. 3). The versioning
mechanism is similar to that of parity logging [17], the
details of which are omitted here due to lack of space.

5 Evaluation

This section presents evaluation results of the PBS proto-
type. Our testbed consists of 10 machines, each with dual
10-core Xeon E5-2630v4 2.20GHz CPU, 128GB RAM,
one 10GbE NIC port, and 10 7200RPM HDDs. The ma-
chines connect to a non-blocking 10GbE network. The

584 2017 USENIX Annual Technical Conference USENIX Association

Ra
nd

om
 IO

PS

0 K

1 K

2 K

3 K

4 K

5 K

HDD EC PLog PBS-1PBS-2 R3

35.2K38.8K

2.5K2.6K

1K

write (non-cached) write (cached)

Figure 4: IOPS test. Background log flushing is omitted
since PARIX only introduces a very small amount of
extra data for logging compared to existing PL schemes.

Ra
nd

om
 I/

O
 L

at
en

cy
 (m

s)

0

5

10

15

20

25

30

HDD R3 PBS-2PBS-1 PLog EC

write (non-cached) write (cached)

Figure 5: Latency test. Note that PARIX tries to elim-
inate unnecessary reads when performing speculative
partial writes, so we measure random I/O latency so as
to avoid the impact of prefetching and caching.

sizes of data/parity chunks and EC stripes are 64MB and
16KB, respectively. The virtual disk size is 100GB. The
performance is measured by micro benchmarks, namely,
small writes of 4KB block size (fio --rw=randwrite

bs=4KB). §5.1 measures the performance of PBS in IOPS
and latency, and §5.2 shows the recovery performance of
PBS with different journal sizes.

5.1 PARIX Block Store
This section evaluates PBS. All measurements are per-
formed on the VMs that mount virtual disks. For non-
cached write, we turn off the cache in the OS and RAID
cards, but keep the on-disk cache (otherwise the tests
would not be able to get stable results). The queue depth
is 1 and 32 for latency and IOPS tests, respectively.

Figs. 4 and 5 show the results in IOPS and random
latency, respectively, where HDD represents the baseline
performance of an HDD, R3 uses 3× replication, PBS-1
and PBS-2 use EC(4,2) respectively with failed and
successful speculation, EC is the standard EC(4,2) mode
(no journal), and PLog uses traditional parity logging.

First, PARIX remarkably outperforms PLog when

R
ec

ov
er

y
Ti

m
e

(s
)

0

2

4

6

8

Journal Size (normalized to chunk size)

0 0.1 0.2 0.4 0.8 1.6 3.2

Figure 6: Single chunk failure recovery.

write-after-read is avoided in successful speculation.
Second, PARIX is comparable to PLog even when the
speculation fails, since the penalty is as small as an extra
network RTT. Note that in order to compare different
EC partial write schemes we must exclude the influence
of read caching and prefetching, which exist in multiple
layers in the I/O stack. Therefore, in Fig. 5 we measure
the random (instead of sequential) I/O latency for all EC
schemes, which may be up to more than 20 milliseconds
unless the speculation succeeds (in PBS-2).

5.2 Recovery
We test the recovery performance of PARIX block store
on 3 machines, using EC(4,2) with 64MB chunk size.
A client first continuously performs small writes (of
4KB block size) until the (per parity chunk) journal
size reaches a pre-defined proportion to the chunk size,
which simulates the scenario that some corresponding
parity logs in the journal have not yet been replayed
before performing the recovery. We then emulate a data
chunk failure by killing its service process. Fig 6 depicts
the recovery times with respect to the exponentially-
increased journal size (ranging from 0 to 3.2× chunk
size). We do not test higher journal sizes, since in those
cases replication would be even more efficient than EC
and thus it might be inappropriate to apply PARIX. The
result shows that the recovery overhead introduced by the
parity journal is small, owing to the (in-RAM) full index.

6 Conclusion

This paper proposes PARIX for fast EC parity logging.
We identify the root cause (write-after-read) for the poor
performance of current EC partial writes, and specula-
tively performs pure write instead of write-after-read for
small overwrites. We have implemented a prototype of
PARIX block store (PBS). Evaluation shows that PBS re-
markably outperforms current PL schemes. In the future,
we plan to use PBS at the backend of our commercial
block store in MOS (Meituan Open Service) [3].

USENIX Association 2017 USENIX Annual Technical Conference 585

Acknowledgement

This work is supported by the National Key Research
and Development Program of China (2016YFB1000100)
and the National Natural Science Foundation of China
(61379055, 61379053, and 61222205). Yiming Zhang
is the corresponding author. We thank Professor Ryan
Huang, Huaimin Wang, Yijie Wang, Haibo Mi and
Ziyang Li for their help to improve this paper.

References
[1] http://nicexlab.com/ursa/.

[2] http://redis.io/.

[3] https://mos.meituan.com/.

[4] https://www.mysql.com/.

[5] http://www.datacenterknowledge.com/archives/

2008/05/30/failure-rates-in-google-data-centers/.

[6] AGUILERA, M. K., JANAKIRAMAN, R., AND XU, L. Using
erasure codes efficiently for storage in a distributed system. In
Dependable Systems and Networks, 2005. DSN 2005. Proceed-
ings. International Conference on (2005), IEEE, pp. 336–345.

[7] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., ET AL. Windows azure storage: a
highly available cloud storage service with strong consistency. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011), ACM, pp. 143–157.

[8] CHAN, J. C., DING, Q., LEE, P. P., AND CHAN, H. H.
Parity logging with reserved space: Towards efficient updates and
recovery in erasure-coded clustered storage. In Proceedings of
the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014), pp. 163–176.

[9] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A.,
AND GRUBER, R. Bigtable: A distributed storage system for
structured data. In OSDI (2006), pp. 205–218.

[10] CHEN, P. M., AND LEE, E. K. Striping in a RAID level 5 disk
array, vol. 23. ACM, 1995.

[11] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Consistency without ordering.
In USENIX FAST (2012).

[12] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In SOSP (2007), pp. 205–220.

[13] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUINLAN,
S. Availability in globally distributed storage systems. In OSDI
(2010), vol. 10, pp. 1–7.

[14] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In SOSP (2003), pp. 29–43.

[15] GLENDENNING, L., BESCHASTNIKH, I., KRISHNAMURTHY,
A., AND ANDERSON, T. E. Scalable consistency in scatter. In
SOSP (2011), pp. 15–28.

[16] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., YEKHANIN, S., ET AL. Erasure coding in
windows azure storage. In Usenix annual technical conference
(2012), Boston, MA, pp. 15–26.

[17] JIN, C., FENG, D., JIANG, H., AND TIAN, L. Raid6l:
A log-assisted raid6 storage architecture with improved write
performance. In 2011 IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST) (2011), IEEE, pp. 1–6.

[18] LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual
disks. In ACM SIGPLAN Notices (1996), vol. 31, ACM, pp. 84–
92.

[19] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
Silt: A memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011), ACM, pp. 1–13.

[20] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M., WANG,
R. Y., AND ANDERSON, T. E. Improving the performance
of log-structured file systems with adaptive methods. In SOSP
(1997), ACM.

[21] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING,
D., FAN, B., KADAV, A., CHIDAMBARAM, V., KHAN, O.,
AND NAREDDY, K. Blizzard: Fast, cloud-scale block storage
for cloud-oblivious applications. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14)
(2014), pp. 257–273.

[22] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E.,
LIU, W., PAN, S., SHANKAR, S., SIVAKUMAR, V., TANG,
L., ET AL. f4: Facebook’s warm blob storage system. In
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14) (2014), pp. 383–398.

[23] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J. K., AND ROSENBLUM, M. Fast crash recovery in
ramcloud. In SOSP (2011), pp. 29–41.

[24] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIÈRES, D., MITRA,
S., NARAYANAN, A., PARULKAR, G. M., ROSENBLUM, M.,
RUMBLE, S. M., STRATMANN, E., AND STUTSMAN, R. The
case for ramclouds: scalable high-performance storage entirely
in dram. Operating Systems Review 43, 4 (2009), 92–105.

[25] RIZZO, L. Effective erasure codes for reliable computer commu-
nication protocols. ACM SIGCOMM computer communication
review 27, 2 (1997), 24–36.

[26] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Transac-
tions on Computer Systems (TOCS) 10, 1 (1992), 26–52.

[27] SATHIAMOORTHY, M., ASTERIS, M., PAPAILIOPOULOS, D.,
DIMAKIS, A. G., VADALI, R., CHEN, S., AND BORTHAKUR,
D. Xoring elephants: Novel erasure codes for big data. In
Proceedings of the VLDB Endowment (2013), vol. 6, VLDB
Endowment, pp. 325–336.

[28] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H., CHANG,
J., MCMAINS, S., AND PADMANABHAN, V. File system
logging versus clustering: A performance comparison. In Pro-
ceedings of the USENIX 1995 Technical Conference Proceedings
(1995), USENIX Association, pp. 21–21.

[29] STODOLSKY, D., GIBSON, G., AND HOLLAND, M. Parity
logging overcoming the small write problem in redundant disk
arrays. In ACM SIGARCH Computer Architecture News (1993),
vol. 21, ACM, pp. 64–75.

[30] THOMASIAN, A. Reconstruct versus read-modify writes in raid.
Information processing letters 93, 4 (2005), 163–168.

[31] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P.,
KIRUBANANDAM, J., ALVISI, L., AND DAHLIN, M. Robust-
ness in the salus scalable block store. In Presented as part of
the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13) (2013), pp. 357–370.

586 2017 USENIX Annual Technical Conference USENIX Association

http://nicexlab.com/ursa/
http://redis.io/
https://mos.meituan.com/
https://www.mysql.com/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/

[32] WEATHERSPOON, H., AND KUBIATOWICZ, J. D. Erasure cod-
ing vs. replication: A quantitative comparison. In International
Workshop on Peer-to-Peer Systems (2002), Springer, pp. 328–
337.

[33] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D.,
AND MALTZAHN, C. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation (2006), USENIX
Association, pp. 307–320.

[34] ZHANG, Y., LI, D., GUO, C., WU, H., XIONG, Y., AND LU,
X. Cubicring: Exploiting network proximity for distributed in-
memory key-value store. IEEE/ACM Transactions on Network-
ing (2017).

[35] ZHANG, Y., LI, D., TIAN, T., AND ZHONG, P. Cubex:
Leveraging glocality of cube-based networks for ram-based key-
value store. In IEEE INFOCOM (2017).

USENIX Association 2017 USENIX Annual Technical Conference 587

E-Team: Practical Energy Accounting for Multi-Core Systems

Till Smejkal1, Marcus Hähnel1, Thomas Ilsche2, Michael Roitzsch1, Wolfgang E. Nagel2, and
Hermann Härtig1

1Operating Systems Group,TU Dresden
2Center for Information Services and High Performance Computing (ZIH), TU Dresden

firstname.lastname@tu-dresden.de

Abstract
Energy-based billing as well as energy-efficient soft-
ware require accurate knowledge of energy consumption.
Model-based energy accounting and external measure-
ment hardware are the main methods to obtain energy
data, but cost and the need for frequent recalibration have
impeded their large-scale adoption. Running Average
Power Limit (RAPL) by Intel R© enables non-intrusive,
off-the-shelf energy monitoring, but only on a per-socket
level. To enable apportioning of energy to individ-
ual applications we present E-Team, a non-intrusive,
scheduler-based, easy-to-use energy-accounting mecha-
nism. By leveraging RAPL, our method can be used on
any Intel system built after 2011 without the need for ex-
ternal infrastructure, application modification, or model
calibration. E-Team allows starting and stopping mea-
surements at arbitrary points in time while maintaining a
low performance overhead. E-Team provides high accu-
racy, compared to external instrumentation, with an error
of less than 3.5 %.

1 Introduction
Energy has become the major factor constraining the util-
ity of today’s systems. For mobile platforms, which rely
heavily on battery life, energy efficiency is an impor-
tant differentiator for applications and devices. Being
more energy efficient is a competitive advantage. In data-
centers, energy is nowadays dominating the operation
costs, necessitating energy-based payment models [21].

Accurate accounting of energy is paramount to op-
timize energy consumption and to enable energy-based
billing. Software developers rely on energy consump-
tion statistics to find and fix energy bugs [31] and im-
prove the energy efficiency of their algorithms [18]. But
software development already requires developers’ atten-
tion to non-functional properties, like responsiveness and

security. To enable energy efficient systems developers
need a measurement infrastructure that is easy to use and
cost-effective to deploy.

As energy characteristics often only manifest during
runtime of the deployed application, such infrastructure
must be non-intrusive in production environments by not
incurring any performance loss or energy penalty when
not in use. Still, enabling on-the-fly measurement of in-
dividual applications or parts of the system should be as
easy as executing a simple command.

1.1 State of the Art
External measurement hardware is accurate [23], but can
only provide machine-level measurements. Inference
based solutions [35, 25, 7] are more flexible, but require
calibration. We strive for a solution combining the re-
spective advantages.

Intel introduced the Running Average Power Limit
(RAPL) technology in Sandy Bridge

TM
CPUs [33]. It

provides a power limiting infrastructure that is automat-
ically calibrated during startup and exposes energy mea-
surements. While not providing per-application energy
values, it removes the need for expensive, specialized ex-
ternal measurement hardware and comes with zero setup
effort. We introduce RAPL in Section 2.

Simple inference-based models, using CPU time or
retired instructions, fail to accurately capture energy
consumption of complex workloads making energy ap-
portioning infeasible. We illustrate this point by mea-
suring a busy loop that does not touch any data, and
FIRESTARTER [14], a CPU burner application designed
for high power-usage. Figure 1 shows the result of the
experiment. We establish a baseline by measuring the en-
ergy consumption of each app in isolation using RAPL.
Then we run both programs at the same time, scheduled
by Linux’ CFS, measure the system-level end-to-end en-

USENIX Association 2017 USENIX Annual Technical Conference 589

0 200 400 600 800 1,000

E-Team
Insns

CPU time
Baseline

549.88
770.68

451.74
549.26

408.39
180.04

498.98
404.37

Energy (CPU+Memory) [J]

busy-loop FIRESTARTER

Figure 1: Energy attribution based on instructions retired
(Insns) and CPU time, compared to E-Team

ergy consumption and apportion it based on CPU time
and based on instructions retired. Both methods are in-
capable of correctly attributing energy consumption. We
also give a short glimpse of the result of our solution,
E-Team, which is able to accurately capture the energy
consumption for both applications.

1.2 Contributions
We present the design and implementation of an oper-
ating system service for accurate and efficient measure-
ment of per-application CPU energy use on multi-core
systems using RAPL. Our key contributions are:
• A scheduler design to circumvent the limitations of

RAPL using team scheduling (Section 3.1) and a
Linux implementation (Section 4).

• A user-accessible interface to start and stop energy ac-
counting of individual thread groups (Section 4.2).

• A scheduler integration of RAPL for short code paths
(Section 2.3).

• An evaluation using standard benchmarks (NPB [1])
and real-world scenarios with multiple individually
measured applications running in parallel (Section 5).

• A validation of our implementation’s accuracy using a
precise external measurement setup (Section 6).

2 RAPL for Energy Measurements
Starting with the Sandy Bridge generation, Intel CPUs
provide the Running Average Power Limit technology
(RAPL) [33]. As the name implies, RAPL is intended for
power-limiting, but also provides energy counters. Due
to the widespread availability and the fact that it requires
no additional instrumentation, RAPL is used extensively
for power and energy estimation [12, 16, 11, 39].

2.1 Basic RAPL Operation
RAPL provides energy measurements for four domains:
Package (PKG) the whole processor package,
Cores (PP0) aggregate of all cores in a package,
Graphics (PP1) the CPU-integrated graphics process-

ing unit (not available on server platforms), and

Memory (DRAM) memory. Although officially only
supported on server platforms [20], this domain is
also available on desktop processors since Haswell.

The initial implementation of RAPL was based on a
model using micro-architectural events to estimate en-
ergy consumption [8]. Hackenberg et al. [13] have re-
vealed systematic errors in the RAPL energy counters,
e.g. bias towards certain workloads and contradictory re-
sults when using Hyper-Threading. For Haswell genera-
tion processors, RAPL has been demonstrated to provide
accurate measurements without systematic errors [15],
hence the results presented in Section 5 and 6 were pro-
duced on Haswell desktop and server systems.

2.2 Limitations of Basic RAPL
Contrary to performance counters, RAPL counters are
exposed exclusively through Model-Specific Registers
(MSRs) that are only readable from kernel space. A
number of methods exist in Linux to read the MSR
in the kernel and make the values accessible to ap-
plications: Performance monitoring libraries such as
PAPI [26] or LIKWID [38], and dedicated third-party
drivers [24]. Since Linux 3.12, RAPL is usable as power-
cap driver. Since Linux 3.14 RAPL is accessible via the
perf performance monitoring framework as system-wide
performance-counter.

Another fundamental difference to conventional per-
formance counters is that RAPL values are updated with
an approximate frequency of 1 kHz [20] only, while per-
formance counters are updated continuously. The update
is not associated with a timestamp, preventing identifica-
tion of stale values. The discrete updates make it diffi-
cult to measure code paths running shorter than or close
to the counter’s 1 ms update interval. The number of up-
dates cannot be accurately determined: considering, for
example, a piece of code running for 2.5 ms, it makes
a large difference in terms of attributed energy whether
there were two or three updates during that time.

This is especially visible in time-shared systems where
switching between programs happens frequently. In
these systems traditional performance counters are multi-
plexed by saving and restoring their values on every con-
text switch. Such a technique cannot be trivially applied
for RAPL because of the aforementioned update behav-
ior. Counter values may be outdated at the point of con-
text switching leading to significant measurement errors.

Similar to other measurement-based methods, men-
tioned in Section 1.1, the RAPL design cannot mea-
sure energy for individual cores or applications. Instead
RAPL accounts the combined energy for all cores in a
socket. This makes apportioning energy to an applica-
tion executing in a multi-processor system with multiple,

590 2017 USENIX Annual Technical Conference USENIX Association

(a)

t [ms]0 1 2 3 4 5 6

foo

call return

(b)

t [ms]0 1 2 3 4 5 6

foo

call

RAPL read RAPL read

return

Figure 2: Synchronized measurement for short code

concurrently running applications non-trivial. In Sec-
tion 3 we present the design of our scheduler-based mea-
surement service. It ensures that, at any point in time, the
cores of one socket are assigned exclusively to programs
that should be measured together.

2.3 Measuring Short Code Paths
To address the problem of RAPL’s fixed update inter-
vals, we use a method from our previous work on mea-
suring short code-paths [16]. When measuring a short
code path, both the start and the end of the measure-
ment may fall between the update points of the RAPL
energy counter as illustrated in Figure 2 (a). The shorter
the measured code path (here less than 3 ms) the higher
the influence of measurement inaccuracies on the result.
The measurement window, indicated by the dotted arrow,
is offset against the code execution, delineated by call
and return. The offset results in the inclusion of irrele-
vant code at the start and the omission of relevant code at
the end. A solution to this problem is to synchronize the
measurement time to counter updates. For the start of the
measurement, this is achieved by repeatedly reading the
ENERGY_STATUS register until it changes, indicating a
RAPL update. Only then the measured code is executed.

Synchronizing the end of the function is not as simple.
Just waiting for the next update will skew the measure-
ment as the result would include the energy consumed
while waiting. In our previous work, we propose to fill
the time until the next update with a workload of fixed
and known energy consumption [16]. Since polling the
counter is needed to detect the update, using the polling
loop as this defined workload elegantly solves the prob-
lem. Listing 1 shows pseudo-code for the algorithm exe-
cuted when the function of interest terminates. The value
of ePerClock is determined in a one-time calibration
step performed by measuring the cost of repeatedly read-
ing the RAPL counter over an interval of several updates
(less than one second in total). Subtracting the known
cost of the loop ensures that the returned value only con-
tains energy consumed by measured code, thus effec-

f in ish_measurement () {
cyc les = rd tscp () ;
e _ s t a r t = RAPLRead () ;

while (RAPLRead () == e _ s t a r t) { }

cyc les = rd tscp () − cyc les ;
return RAPLRead () − ePerClock ∗ cyc les ;

}

Listing 1: Algorithm for leaving measured code

Time
C1

C2

PE

PO

Wrong Energy Accounting

Figure 3: Miss-accounted energy in normal scheduling

tively increasing the RAPL resolution and removing the
constraint imposed by the update interval. Figure 2 (b)
shows how this solution synchronizes the measurement
with RAPL updates. The striped part before the mea-
sured code may have arbitrary energy consumption, the
part at the end is the described polling loop. We call this
mechanism short-time RAPL.

2.4 Accounting Individual Processes
Figure 3 illustrates the challenge in accounting energy
for individual processes using socket-local measure-
ments. When using RAPL directly to measure process
PE running on core C1, while an unrelated process PO
executes in parallel on core C2, the final energy con-
sumption will be incorrect. During the time marked in
the graph the measurement will include the energy con-
sumed by both programs. The example in Section 1.1
shows, that time-proportional accounting does not suf-
fice to circumvent this problem as instruction types and
access patterns are not taken into account. More sophisti-
cated performance-counter-based models require exten-
sive calibration leading to a significant deployment cost.
Accordingly, we propose a different approach.

3 Energy Measurement as a Kernel Service
Our solution, E-Team, enables energy accounting on a
per-application basis in multi-core systems through spe-
cialized scheduling. The main challenge of introducing
a measurement infrastructure into a production system is
to minimize the accompanying performance impact. The
system should run as usual if there are no active measure-
ments and hardware modifications should not be neces-
sary. However, some overhead may be acceptable dur-
ing troubleshooting or application development. Even in
development scenarios isolating individual applications
that are part of a complex system may be worthwhile to
pinpoint energy bugs. Naïvely restricting the system to
a single core or running the application of interest exclu-

USENIX Association 2017 USENIX Annual Technical Conference 591

sively in the system solves the energy accounting prob-
lem but does not resemble production system behavior.

For the remainder of this paper, we refer to individ-
ually executing programs as processes. Processes may
be comprised of many execution contexts called threads.
Each thread is scheduled as a task by the scheduler and
has an assigned task structure in the kernel.

We introduce the concept of teams. A team is an arbi-
trary group of tasks whose energy is accounted together.
Teams get exclusive access to their assigned CPU socket
to prevent tasks of different teams from running on the
same socket in parallel. This enables the use of the
socket-wide energy measurements of RAPL to account
the team’s energy consumption. Tasks of a team are
scheduled on the team’s socket according to any schedul-
ing scheme. Thereby energy characteristics caused by
interaction between measured tasks are largely preserved
and performance degradation is limited.

We call this approach team scheduling. For the re-
mainder of this paper we refer to a team that is measured
as a measured team. There exists exactly one team con-
taining all tasks that should not be measured (the non-
measured team). To enforce the team-scheduling policy,
we added a new scheduler to Linux.

3.1 Team Scheduling
The design of the E-Team scheduler guarantees that no
tasks belonging to different teams run on the same socket
at the same time. We want to enforce the following prop-
erties in our energy measurement service:

Property 1 (Team Interactivity): Teams are interruptible
to enable interaction between different teams and main-
tain system responsiveness.

Property 2 (Task Interactivity): Tasks of a team share
the team’s cores fairly to enable task interaction and pre-
serve the team’s energy characteristics.

Property 3 (Accuracy): The scheduler limits switches
between teams to curtail measurement errors due to mul-
tiplexing and uses short-time RAPL as required.

Property 4 (Non-invasiveness): In the absence of mea-
surements, the system behaves like an unmodified system.

Property 5 (Usability): Starting and stopping measure-
ments is possible at any point in time, either initiated by
the user or the program itself. Teams grow and shrink
when tasks are created, destroyed, added, or removed.

To account energy for individual processes we propose
to assign sockets exclusively to teams (measured teams
or non-measured) in a time-multiplexed fashion. This
leads to the main invariant of our scheduler:

Invariant 1: On any socket only tasks of the same team
can run concurrently at any point in time.

Property 2 requires cores to be time-multiplexed be-
tween tasks of a team. The team scheduler controls
which tasks can run on which socket at any given time
based on policy and team-membership. A task sched-
uler distributes the tasks assigned to a socket between its
cores. The team scheduler makes no assumptions about
the task scheduler policy and the policy can be set per
team. This allows to use the Completely Fair Scheduler
(CFS) as task scheduler.

The team scheduler manages a list of teams (team run-
queue), whereas each team consists of tasks called team
members. One item in the team runqueue is the non-
measured team. Teams are activated and deactivated by
the team scheduler only as a whole. To activate a team,
the team scheduler first deactivates the currently running
team. It then dequeues the new team, affinitizes its tasks
to the socket and notifies the responsible task scheduler
to reschedule. Deactivation of a team entails removing
all its tasks from the socket and adding the team back
to the team runqueue. This design enforces Invariant 1.
Only tasks of one team are available to the socket-local
task scheduler to be scheduled.

When all tasks in the system belong to the same team,
team scheduling is reduced to a no-op. This is the case
when no measurements are taken as the non-measured
team then contains all tasks. Together with the possibil-
ity to run arbitrary scheduling schemes within the task
schedulers, this enforces Property 4.

While not implemented by us the extension of the pro-
posed scheme to multiple sockets is straightforward. A
running team can occupy multiple sockets at the same
time. The team scheduler may remove or add sockets to
a team as necessary. The maximum number of simulta-
neously active teams is limited by the number of sock-
ets. Having multiple teams active on different sockets
does not affect accounting accuracy, as each socket has
its own RAPL domains.

The architecture of E-Team can be thought of as core-
local scheduling with socket-level coordination.

3.2 Fine-Grained Context Switching
Property 3 is the hardest to enforce. Although the team
scheduling approach guarantees that energy is only ac-
counted for measured tasks, we still need to ensure that
processes which execute for short times due to blocking
are accounted accurately. To minimize overhead we try
to switch teams only every 100 ms or more. This results
in an error of about 1 % due to the fixed RAPL counter
update intervals. The team scheduling frequency is tun-

592 2017 USENIX Annual Technical Conference USENIX Association

STOP CFS IDLE

Scheduling Classes

Core Scheduler
schedule()

Scheduler

uses

Processor

Core 0 Core 1

R
un

qu
eu

e
0

R
un

qu
eu

e
1

uses

Figure 4: Linux scheduler architecture

able, allowing the system operator to trade overhead
against interactivity. More frequent team switches lead
to higher system responsiveness at the expense of more
overhead of the E-Team mechanism. Irrespective of the
configured time-slice length, the measurement has to be
stopped when all tasks within a measured team yield the
CPU, which is regularly the case with I/O-bound work-
loads. To avoid measurement errors due to short execu-
tions, we employ the short-time RAPL technique intro-
duced in Section 2.3 if less than 50 ms of the time slice
are used. Otherwise we read the RAPL counters directly.
This allows us to guarantee the accuracy property for all
workloads, even interactive and I/O-heavy ones, while
limiting the performance impact for compute-intensive
workloads and execution phases.

4 Implementation
We implemented our energy measurement service E-
Team as a scheduling class in the Linux kernel. The ker-
nel patch and user tools are available on GitHub1.

4.1 Scheduler Implementation
The general architecture of the Linux scheduling frame-
work is illustrated in Figure 4. It consists of a core sched-
uler, which invokes the scheduling classes implementing
the actual policies. Scheduling classes are sorted by pri-
ority. The highest priority is given to the STOP class, the
lowest to the IDLE class. Schedulers maintain per-core
runqueues, enabling them to make core-local schedul-
ing decisions, which removes one of the bottlenecks in
many-core systems. Usually, tasks in Linux are sched-
uled by the Completely Fair Scheduler (CFS). We prior-
itize the team scheduler above CFS.

The team scheduler must ensure that only tasks be-
longing to the same team are assigned to the same socket.
The team scheduler maintains a list of teams (the team
runqueue) where a team is a pointer to a list of the tasks
that comprise the team. We illustrate the team scheduling
process in Figure 5. As soon as the team scheduler de-
cides — based on its team scheduling policy — to switch

1https://github.com/TUD-OS

Core 0 Core 1

Ta
sk

R
Q

C
FS

R
Q

Ta
sk

R
Q

C
FS

R
QCurrent

Team

Team
RQ

1

2

2

2

3 3

Figure 5: Scheduling a team for energy measurement

the team running on a socket it clears the core-local task
runqueues . The team scheduler then picks the new team
(step 1) and distributes its tasks to the cores of the socket
(step 2) by enqueuing them in the task runqueues of the
cores. CPU affinity is respected during this step. The
core-local task schedulers are then triggered to resched-
ule the tasks in their task runqueue according to their
scheduling policy (step 3). If there are not enough tasks
in a team to occupy all cores of the assigned sockets,
the idle task is scheduled on the remaining cores. This
causes these cores to enter energy-saving states. When
all the tasks in a team have terminated or the team’s time
slice is exhausted, the next team is scheduled.

Non-measured tasks are treated as an implicit team
which is not managed by the team scheduler. In our im-
plementation, they are not implemented as an actual team
but as tasks kept in the core-local runqueues of CFS.
These tasks are scheduled in between measured teams
by yielding to CFS in order to enforce the interactivity
property. How frequently E-Team yields to CFS depends
on the number of non-measured tasks and the number of
tasks in the measured teams, allowing fairness properties
similar to CFS to be enforced.

Time-sliced round-robin with a base time-slice length
of 100 ms was chosen as the team-scheduling policy. The
base time-slice length is configurable. The actual length
of the time slice depends on the number of ready tasks in
the teams (i.e. the load). A team with more tasks waiting
in its runqueues will get proportionally more time than a
less-loaded team. This leads to fair multiplexing of CPU
time between the team scheduler and the regular tasks in
the system scheduled by CFS. We found a 100 ms base
time-slice length to be a good compromise between over-
head, accounting accuracy, and system-responsiveness.
CFS chooses a similar base time-slice length for a sys-
tem with CPU intensive load [6, Table 7-2]. Shortening
the default time slice can improve responsiveness at the
cost of higher overhead for frequent switching and more
frequent use of the short-time RAPL mechanism. Please
note that the default time-slice length is independent of
the timer frequency. For all our experiments the timer

USENIX Association 2017 USENIX Annual Technical Conference 593

still ticked with a frequency of 1 kHz, thus invoking the
scheduler every millisecond. The default time slice is a
scheduler parameter that determines the default amount
of time each process gets before it is rescheduled. The
actual time may be less.

Tasks in the task runqueue are scheduled using time-
sliced round-robin, but it would also be possible to use
CFS as the task scheduling policy. Especially when mea-
suring large teams containing many tasks with different
priorities, CFS would better preserve the execution char-
acteristics of the unmodified system.

When the E-Team scheduler does not schedule a mea-
sured team, it will yield to CFS, which then schedules the
non-measured tasks as it normally would. This is an ad-
vantage of the implementation of the non-measured team
using the normal CFS runqueues. Accordingly the sys-
tem performs exactly as if it was unmodified whenever
no tasks are in measured teams.

4.2 User-Level Tooling
Teams are formed by assigning a process to the E-Team
scheduler. E-Team then automatically adds threads cre-
ated by the process to the process’s team. Although this
simplified grouping was sufficient for our evaluation, it
would also be possible to move individual threads to a
team, disable the automatic addition of newly created
threads, or combine several processes in one team.

The decision to use a specialized scheduler supports
the usability property (see Section 3.1). Scheduler as-
signment is performed by starting the measured program
through a tool such as schedtool. Alternatively our
own tool energy can be used with the added benefit of
outputting the energy consumption after program termi-
nation (like the Unix time utility does for time). Appli-
cations can start and stop measurement at arbitrary points
in time by calling sched_setscheduler to move
the process between the E-Team scheduler and CFS.

Applications can read their energy consumption from
a file in their procfs subdirectory. Procfs provides run-
time parameters and statistics of each process. We added
two entries, energystat and loopstat, which pro-
vide access to the energy consumption and statistics
about the scheduler’s operation (number of time slices
executed, short-time RAPL statistics, etc.), respectively.
Listing 2 shows example output for the energy data.

Both files can be read during program execution to get
regularly updated energy and statistics values. The con-
tent of the files will not change when the process is not
measured and retains the values from when the process
left the E-Team scheduling class. The files will retain
their final values when the process stops being measured
by leaving the E-Team scheduling class.

root@measure$ cat / proc /100 / energys ta t
package (uJ) : 1052792342
dram (uJ) : 54277983
core (uJ) : 842365434
gpu (uJ) : 89234
updates : 303
avg_loop_time (us) : 180

Listing 2: Example data provided by E-Team

5 Evaluation
To deliver on our promise of accurate energy accounting,
we evaluate our system by first establishing a baseline
using an unmodified system and then analyzing the en-
ergy and time overhead in three scenarios. We start by
measuring a single application running alone on a Linux
system. We then add background load and execute two
applications in parallel, measuring them individually. Fi-
nally, we investigate the influence of short scheduling in-
tervals and the effects of short-time RAPL.

Measurements were performed on a single-socket
quad-core Intel R© Haswell Core

TM
i7-4770 machine with

3.4 GHz nominal frequency and 2×4 GiB of DDR3
CL9 RAM clocked at 1333 MHz. We disabled Hyper-
Threading and Turbo Boost, to make the individual mea-
surements more deterministic and maintain compara-
bility between single-application and multi-application
runs. These options could otherwise lead to different be-
havior based on thread assignment and the decisions of
Turbo Boost. We used a Linux 4.2.3 kernel in our exper-
iments. Although we measured energy for all available
RAPL domains, we only present PKG energy for brevity.
The other domains showed comparable results.

5.1 Baseline and Overhead
Our first measurements establish the baseline for the rest
of our evaluation. Baseline measurements were per-
formed on a Linux system stripped down to the mini-
mum necessary to run the benchmarks: We ran the sys-
tem from an initrd with no system services interfering
with execution. We believe the measured energy to con-
form to the energy consumed by the benchmarks. We use
the NAS Parallel Benchmarks (NPB) [1], version 3.1, as
benchmarks. Presented data is averaged over 20 consec-
utive runs. Error bars are not given in graphs if the stan-
dard deviation is below 1 %. Figure 6 shows the end-to-
end measurement of the benchmarks for wall-clock time,
cpu time and package energy (measured by the PKG
counter). The benchmarks were scheduled using CFS.
No parts of our kernel modification were active during
the runs. Time was determined using the time com-
mand, while energy was measured by reading the RAPL
MSR at the start and end of the benchmark. We measured
each benchmark running with one to four threads.

594 2017 USENIX Annual Technical Conference USENIX Association

W
al

l-
cl

oc
k

tim
e
[s
]

0

20

40

60

80

1 thread 2 threads 3 threads 4 threads
C

PU
tim

e
[s
]

0

50

100

PK
G

en
er

gy
[k

J]

bt.
A

cg
.B

ep
.B ft.

B
is.

C
lu.

A
mg.C sp

.A
ua

.A

0

1

2

Figure 6: Baselines for wall-clock time, CPU time and
PKG energy for different NPB kernels

We do not include the DC benchmark in our mea-
surements because it mixes computation with extensive
I/O. We found that its CPU time deviates significantly
(>10 %) from wall-clock time when run as single ap-
plication with one thread. The effect increases with the
number of threads. This makes an end-to-end measure-
ment meaningless as too much of the time is spent out-
side the benchmark. This is one of the cases that cannot
be measured reliably without E-Team. We evaluate sim-
ilar cases in Section 5.4 and will show a detailed discus-
sion of DC in Section 6, when comparing against exter-
nal measurements. For the other benchmarks, wall-clock
time matched CPU time for the single-core case, result-
ing in a usable end-to-end baseline for energy.

Next, we repeated the baseline measurement using E-
Team. This measurement and all the following in this
section were performed on a normal Arch Linux system
that was not stripped down. Ideally, the results obtained
from E-Team would show the same wall-clock time and
CPU time as the baseline. We also expected slightly
lower energy consumption than the baseline, since E-
Team does not account energy that is consumed by ker-
nel tasks or by other processes in the system. Figure 7
shows the results of our measurements relative to the
baseline. Team scheduling increases the wall-clock time
of each benchmark. The more threads the program has,
the longer it executes compared to the baseline, since

W
al

l-
cl

oc
k

tim
e
[%

]

−2

0

2

4

1 thread 2 threads 3 threads 4 threads

C
PU

Ti
m

e
[%

]

−2

0

2

PK
G

en
er

gy
[%

]
bt.

A
cg

.B
ep

.B ft.
B

is.
C

lu.
A

mg.C sp
.A

ua
.A

−2

0

2

Figure 7: Wall-clock time, CPU time, and PKG energy
measured using team scheduling compared to baseline.

background load in the system, even if single-threaded,
blocks the whole measured program from running on the
CPU. This is expected and the worst-case overhead is
approximately 4 %. As we had hoped, CPU time did
not increase significantly, which shows that the perfor-
mance impact of our scheduler is negligible at less than
1 % in most cases. As long as there are enough tasks in
all the teams, total performance of the system will not
suffer. For package energy, our measurements are in the
expected range with a difference relative to the baseline
of less than 2 %. For most benchmarks we even measure
less consumption due to the exclusion of unrelated work
performed by the system. The measurements prove that
our method combines low overhead with high precision.

5.2 Surveying Individual Groups of Tasks
After demonstrating that E-Team performs as good as the
end-to-end measurements, we will show that our mea-
surements stay accurate even in the presence of other
tasks that are scheduled by the system. We introduce
background load by running a single-threaded busy loop
concurrently to the NPB suite. An empty busy loop does
not touch any data and thus avoids any cache interference
that could lead to changes in energy consumption.

Figure 8 shows the results of this experiment. We
omit wall-clock time, as it is not a useful metric to com-
pare against in this case. Wall-clock time will increase
compared to the baseline in any case due to the intro-

USENIX Association 2017 USENIX Annual Technical Conference 595

C
PU

tim
e
[%

]

−2

0

2

1 thread 2 threads 3 threads 4 threads
PK

G
en

er
gy

[%
]

bt.
A

cg
.B

ep
.B ft.

B
is.

C
lu.

A
mg.C sp

.A
ua

.A

−2

0

2

Figure 8: Per-application CPU time and PKG energy
(relative to the baseline) as determined by E-Team with
a background application running in parallel.

duced background load. For CPU time, we see an over-
head of at most 2 %, while energy measurements are
slightly below the baseline. We suspect the encountered
energy reduction to be an artifact of precision limits of
the RAPL counters. The busy-loop consumes signifi-
cantly less energy than the benchmarks and we spec-
ulate that internal RAPL state influenced by this low-
power activity bleeds into the results for the much more
energy-consuming benchmarks. To test this hypothesis,
we replaced the busy-loop with FIRESTARTER, which
consumes more energy than the benchmarks. In this ex-
periment, energy consumption increased relative to the
baseline (e.g., 1.6 % for ft.B). This result indicates that
inaccuracies within RAPL caused the measurement er-
rors we observed. RAPL counters for DRAM proved less
susceptible to this effect.

5.3 Multiple Measurements
One feature of our scheduler is that we can extract and
measure a single application out of a number of applica-
tions running in parallel on the system. To demonstrate
this feature we executed all application-pairs of the NPB
suite (except for DC due to the lack of a meaningful base-
line), measuring only one application of the pair. The re-
sults can be seen in Figure 9. We used scheduling slices
of 100 ms to limit interference between the benchmarks.
We ran this benchmark for one to four threads and com-
pared the results against baseline.

As a guide to read Figure 9, consider the row with
ft.B in the rightmost pane showing four threads in Fig-
ure 9b: Selecting the column is.C shows that the mea-
sured energy consumption of ft.B, when running concur-
rently with is.C, is 4 % below the baseline. No statement

is made about is.C in this cell. Our worst-case error is
6 % for the DRAM energy (not shown) when running
ua.A concurrently with itself. This may be attributed to
either measurement errors introduced by our scheduler,
errors in the RAPL model (i.e. incorrect energy values),
or interference between the programs, despite the long
scheduling interval. We will discuss the cause of this di-
vergence in Section 6. Even a 6 % error is still on par
with model-based estimation techniques [32, 37, 5].

5.4 Short Scheduling Intervals
Particularly challenging for E-Team are applications that
execute in short bursts, blocking in-between execution
phases. Interactive GUI or multimedia applications as
well as I/O-bound applications are examples that exhibit
such behavior. They require rescheduling more often
than our default time slice of 100 ms by yielding the
CPU. Every time all the threads in the currently running
team yield the CPU, we must switch to another team. If
the last switch was not at least 50 ms ago, we need to per-
form short-time RAPL (refer to Section 2.3), to avoid in-
accuracies introduced by the time-discrete updates of the
RAPL counters. To evaluate the benefits of short-time
RAPL for scheduling, we implemented a synthetic, in-
teractive load that executes a busy loop for 5.4 ms, subse-
quently blocks for 1 s and then repeats the procedure 50
times. We compare short-time RAPL and naïve, update-
oblivious multiplexing of the counter. As baseline we
measure the busy loop that occupies the CPU as long as
our synthetic workload (270 ms), but runs uninterrupted.
Figure 10 shows the results. The energy measured by E-
Team matches the baseline. When using naïve, update-
oblivious multiplexing our measurements exhibit an er-
ror of up to 10 %. In contrast, short-time measurements
only exhibit an error of 0.2 %. We conclude, that E-Team
can reliably measure interactive and I/O-intensive tasks
that yield the CPU frequently.

5.5 Practical Scenarios
Virtual machines We used qemu-kvm to run two
VMs with Debian Jessie 8.4 64-bit, each given one core
and 2 GiB of RAM. One VM was serving files over
HTTP, the other was a malicious VM wasting CPU cy-
cles by executing FIRESTARTER. We ran both VMs in
parallel on Arch Linux using E-Team. Each VM received
300 s CPU time. The fileserver used 1034.1 J while the
malicious VM used 7013.8 J. Based on this information
a data-center operator could use appropriate billing or re-
duce the CPU time allocated to the malicious VM.

Single-Core Sampling We show the effectiveness of
sampling to reduce overhead for single-threaded work-

596 2017 USENIX Annual Technical Conference USENIX Association

bt.A
cg.B
ep.B
ft.B
is.C
lu.A

mg.C
sp.A
ua.A

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

1 thread

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

2 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

3 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

4 threads

−5

0

5

D
iff

er
en

ce
[%

]

(a) CPU Time

bt.A
cg.B
ep.B
ft.B
is.C
lu.A

mg.C
sp.A
ua.A

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A
1 thread

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

2 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

3 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

4 threads

−5

0

5

D
iff

er
en

ce
[%

]

(b) Package Energy

Figure 9: Benchmarks in the rows are measured while running concurrently with the benchmarks in the columns.
Shown is the relative difference to the baseline. We repeated this experiment for thread counts from one to four.

0 2 4 6

Baseline
Short-time

Naïve

6.31
6.3

5.68

Energy [J]

Figure 10: Short-time RAPL and update-oblivious mea-
surements compared to baseline

020406080100
0

500

1,000

1,500

Sampling rate [%]

E
ne

rg
y
[J
]

020406080100
0

20

40

60

80

Sampling rate [%]

B
an

dw
id

th
[M

B
/s
]

Energy ep.B
Bandwidth Redis

Figure 11: Redis throughput vs. ep.B measurement ac-
curacy at various sampling rates

loads. Our setup consists of a single-threaded mea-
sured instance of ep.B running in parallel with unmea-
sured Redis, a popular in-memory database. To reduce
the performance impact of isolating ep.B we employ
random sampling. Figure 11 shows the throughput of
memtier_benchmark at default configuration. At 10 %
sampling we achive 86.4 % of the baseline performance
of Redis, while maintaining 99 % measurement accuracy
for ep.B. Like DC from NPB, Redis’ I/O-intensive nature
complicates determining an energy baseline. We thus
omit its energy values.

6 External Validation
When running multiple teams in parallel, as done in Sec-
tion 5.3, we do not know the cause of any aberrations
from the baseline. Causes may be interference between
threads, RAPL inaccuracies, or accounting errors in E-
Team. To rule out the latter, we verify E-Team results
using a secondary, external measurement infrastructure.

6.1 Measurement Setup
To verify the accuracy of our results, we use a sophis-
ticated high-resolution power measurement infrastruc-
ture, which has been thoroughly verified [19]. It has
been adapted to a Haswell-EP with two-socket Xeon E5-
2690 v3 and a total of 256 GiB DDR4-2133 ECC RAM
that we use as evaluation platform in this section.

We compare the results of RAPL against direct cur-
rent (DC) measurements at inputs of each socket’s volt-
age regulators. Both sockets are measured at a sampling
rate of 500 kSa/s, to track power consumption between
scheduling events. Data obtained from the external mea-
surement infrastructure correspond to the sum of PKG
and DRAM consumption according to RAPL. Because
we measure at the input of the voltage regulators, the
external measurements cover some components on the
mainboard that are not measured by RAPL. Therefore
RAPL reports less power consumption than the external
measurements, even if both are perfectly accurate in their
own power domain.

The verification is focused on identifying potential
systematic inaccuracies introduced by our novel tech-

USENIX Association 2017 USENIX Annual Technical Conference 597

0 200 400 600 800

is.C

ft.B

312.54

783.42

321.89

792.34

Energy [J]

E-Team External

Figure 12: ft.B and is.C PKG energy using E-Team and
external measurement with 12 threads per application

0 200 400 600 800 1,000

E-Team
External

995.1
1,034.86

Energy [J]

Figure 13: dc.W measured with E-Team and externally

nique. To compare the measured reference against the
power domain of RAPL, we apply a model to map be-
tween the two. The model is trained on measurements
of different workload kernels executed at various thread-
counts and configurations as described in [4]. Training is
performed on a non-modified Linux system using contin-
uous RAPL and reference measurements. Linear regres-
sion provides the final slopes and intercepts separately
for each socket with R2 > 0.999.

Since the external measurement traces not only con-
tain the power usage of the measured program but also
of other tasks executed in parallel, a post-processing step
was necessary to identify the regions in the traces dur-
ing which the program of interest actually executed. For
this purpose, we used an additional trace, generated by
the E-Team scheduler, which indicates when each pro-
gram was scheduled on the processor. We had to syn-
chronize the traces, because they have timestamps from
different clocks. We generated a special energy pattern
before and after every measurement to correlate the mea-
surement and scheduler traces.

6.2 Results
To validate our measurements from Section 5, we exe-
cute selected benchmarks on the instrumented hardware.
We present the case of ft.B running together with is.C,
which we already used in Section 5.3, as they exhibit
significantly different power usage of 110 W and 80 W
per socket, respectively. The results in Figure 12 show
that our measurement is very accurate with an error of
1.1 % for ft.B and 2.9 % for is.C. The 12-core configura-
tion used for the figure represents the worst case for this
benchmark. The error decreased with fewer threads. We
also examined the DC benchmark, which we were not
able to evaluate in Section 5. We measured dc.W run-

18.4 18.6 18.8 19 19.2 19.4

40

50

60

70

Time [s]

Po
w

er
[W

]

is.C (E-Team) ft.B (E-Team) system external

Figure 14: Power characteristics over time

ning with two threads and compared the external mea-
surement to the E-Team result. Figure 13 shows that even
for this I/O-intensive benchmark E-Team’s error is only
3.5 %. Over 20 consecutive runs we observed a standard
deviation well below 1 % in all cases.

Figure 14 shows that our E-Team implementation ac-
curately tracks energy consumption over time. We ran
is.C and ft.B in parallel, each in its own measured team
and read their respective procfs entry repeatedly. We
used a time slice of 200 ms. The characteristics of the
external measurement match those of the internal one.
The dips visible in the power consumption reported by
E-Team (e.g. at 18.95 s) are caused by switches between
teams or scheduling of the non-measured team. Tasks
in the non-measured team yielded after very short time
leading to short interruptions of the measured teams.

7 Limitations
E-Team provides accurate energy accounting for arbi-
trary groups of threads using socket-wide energy mea-
surements. But this feature comes at a cost: a team al-
ways needs exclusive access to the socket. Accordingly,
resources remain unused if teams cannot spread across
all cores of the socket. The pathological example for
this is a team that consists of a single thread. However,
E-Team allows on-the-fly starting and stopping of mea-
surements and thereby supports random sampling. This
creates a trade-off space between measurement accuracy
and performance overhead. In cases where the perfor-
mance overhead of E-Team is prohibitive, limiting the
measurement duration to short sampling intervals allows
for acceptable performance at a slight loss of accuracy.

For I/O-bound workloads short-time RAPL is required
more often, incurring additional overhead. In the worst
case this translates to 1 ms overhead per team switch.
Our experiments with dc.W showed only a performance
degradation of 4.7 % in the worst case. We further ex-
amined a worst-case scenario for I/O-bound workloads
by running grep recursively over the Linux source
tree. We identified the extreme case showing 150 %
overhead (155.32 s vs. 62.30 s) when flushing the buffer

598 2017 USENIX Annual Technical Conference USENIX Association

cache before the run. We also measured Redis running
memtier_benchmark and achived 30 % to 80 % of native
performance for data sizes of 32 B to 128 kB despite its
I/O-intensive nature. To measure such scenarios, we ad-
vice the use of random sampling.

8 Related Work
As energy efficiency is a cross-cutting concern, it has
been approached from both the hardware and software
side. On the hardware side, external measurement meth-
ods, such as those proposed by Hönig et al. [18], have im-
proved significantly in sampling speed and accuracy over
existing solutions, such as the frequently used Watts-
Up power meter [9]. External measurements as data
sources integrate well with our method, but introduce the
need for additional hardware. Intel’s RAPL addresses
this problem by providing self-calibrating models [33].
Hackenberg et al. have shown that RAPL produces accu-
rate energy estimates in recent versions [15] and compare
various measurement methods [13].

Below the application layer, system architects
construct runtimes and scheduling frameworks to
model [30], account [29], and control [34] platform en-
ergy use. Several methods using performance counter
based power models [22, 9, 36, 3, 2] exist. They exhibit
relative errors in the range of 5 % to 10 % but can, con-
trary to RAPL, include other components such as disks.
However, models require calibration, which has to be
performed for each individual CPU. McCullough et al.
found variations between individual CPUs of the exact
same type to be too large to calibrate based on CPU
model and have shown that linear CPU energy models
are intrinsically limited in their accuracy [27].

There are various approaches using performance-
counter-based models to apportion energy to VMs or
applications. Shen et al. investigate Power Containers,
which use model-based apportioning of energy to appli-
cations [36]. They use external recalibration during run-
time, thus relying on additional hardware. Their meth-
ods exhibit relative errors of up to 11 % on Sandy Bridge
CPUs. Bertran et al. account energy for VMs using a
model-based approach and report 5 % relative error [3].

For high performance computing (HPC) systems,
Georgio et al. have shown a SLURM-based job man-
agement system, which allows accounting of energy to
jobs [12]. Their approach is limited to account energy on
a per-node level. While suitable for typical HPC systems,
it does not cover cloud or data-center scenarios with mul-
tiple simultaneous users per machine.

To schedule groups of tasks Ousterhout introduced co-
scheduling [28] and an Feitelson et al. presented gang-
scheduling [10]. Our method builds on these approaches.

9 Conclusion & Future Work

We presented the design and implementation of E-Team,
a facility that enables accurate measurement of energy
consumption for individual threads or groups of threads
in a system. We isolate groups of interest using team
scheduling. This enables us to use a system-wide mea-
surement method, such as Intel’s RAPL, while still be-
ing able to apportion energy consumption per thread or
group of threads. To address the discrete nature of the
RAPL readings, we employ short-time measurements
to accommodate for applications that are interactive or
yield the CPU often. We are able to isolate arbitrary
parts of a system and apportion their energy with an er-
ror of at most 3.5 % compared to external measurements.
Our methods provide greater accuracy than many exist-
ing model-based approaches and our validation shows
that E-Team can apportion energy faithfully. To the best
of our knowledge, our implementation is the first to allow
practical, high-precision, per-application energy attribu-
tion in a multi-core system without relying on manual
calibration or external measurement equipment.

Our implementation is applicable to a wide range of
devices. E-Team does not rely on RAPL but can use
other energy measurement techniques such as sensors
available on mobile platforms [17] or hand-held devices.

Some ideas of our design are not yet implemented and
are left for future work. We did not implement simulta-
neous execution of different teams on different sockets.
The challenge in accounting energy on multiple sockets
concurrently is that applications running on one socket
can cause energy usage in another socket. Remote mem-
ory access is one example for such behavior. We leave
the implementation of a cgroup-like interface to future
work as well. Such an interface could prove useful to
combine threads of multiple applications into one mea-
sured team. While we implemented random sampling, a
detailed discussion of the performance and accuracy im-
plications is left for future work, due to space constraints.

In summary, our work represents a significant step
forward for data-center energy accounting, energy-based
billing, and energy profiling of applications in produc-
tion systems. E-Team provides a cheap, accurate, and
easy-to-use solution for on-the-fly energy accounting.

Acknowledgements

This work is supported by the German Research Foun-
dation (DFG) within the CRC 912 - HAEC. The authors
would like to thank Mario Bielert for his work on the
verification of the external measurement system.

USENIX Association 2017 USENIX Annual Technical Conference 599

References
[1] BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING,

D. S., CARTER, R. L., DAGUM, L., FATOOHI, R. A., FRED-
ERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R. S., ET AL.
The NAS parallel benchmarks. International Journal of High
Performance Computing Applications 5, 3 (1991), 63–73.

[2] BASMADJIAN, R., AND DE MEER, H. Evaluating and mod-
eling power consumption of multi-core processors. In Future
Energy Systems: Where Energy, Computing and Communication
Meet (e-Energy), 2012 Third International Conference on (2012),
IEEE, pp. 1–10.

[3] BERTRAN, R., BECERRA, Y., CARRERA, D., BELTRAN,
V., GONZALEZ, M., MARTORELL, X., TORRES, J., AND
AYGUADE, E. Accurate energy accounting for shared virtual-
ized environments using PMC-based power modeling techniques.
In Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on (2010), IEEE, pp. 1–8.

[4] BIELERT, M. Evaluating power estimation techniques: A
methodological approach. Master’s thesis, Technische Univer-
sität Dresden, 2016.

[5] BOSE, P., MARTONOSI, M., AND BROOKS, D. Modeling and
analyzing CPU power and performance: Metrics, methods, and
abstractions. Tutorial, ACM SIGMETRICS (2001).

[6] BOVET, D., AND CESATI, M. Understanding The Linux Kernel.
Oreilly & Associates Inc, 2005.

[7] COLMANT, M., KURPICZ, M., FELBER, P., HUERTAS, L.,
ROUVOY, R., AND SOBE, A. Process-level power estimation in
VM-based systems. In Proceedings of the Tenth European Con-
ference on Computer Systems (2015), ACM, p. 14.

[8] DAVID, H., GORBATOV, E., HANEBUTTE, U. R., KHANNA,
R., AND LE, C. RAPL: Memory power estimation and capping.
In Proceedings of the 2010 ACM/IEEE International Symposium
on Low-Power Electronics and Design (2010), ISLPED, IEEE,
pp. 189–194.

[9] DO, T., RAWSHDEH, S., AND SHI, W. ptop: A process-level
power profiling tool. In Proceedings of the 2nd workshop on
power aware computing and systems (HotPowerâĂŹ09) (2009).

[10] FEITELSON, D. G., AND RUDOLPH, L. Gang scheduling perfor-
mance benefits for fine-grain synchronization. Journal of Parallel
and Distributed Computing 16, 4 (1992), 306–318.

[11] GAUTHAM, A., KORGAONKAR, K., SLPSK, P., BALACHAN-
DRAN, S., AND VEEZHINATHAN, K. The implications of shared
data synchronization techniques on multi-core energy efficiency.
In Presented as part of the 2012 Workshop on Power-Aware Com-
puting and Systems (2012).

[12] GEORGIOU, Y., CADEAU, T., GLESSER, D., AUBLE, D.,
JETTE, M., AND HAUTREUX, M. Energy accounting and con-
trol with SLURM resource and job management system. In Dis-
tributed Computing and Networking. Springer, 2014, pp. 96–118.

[13] HACKENBERG, D., ILSCHE, T., SCHÃŰNE, R., MOLKA, D.,
SCHMIDT, M., AND NAGEL, W. E. Power measurement tech-
niques on standard compute nodes: A quantitative comparison.
In Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on (April 2013), pp. 194–204.

[14] HACKENBERG, D., OLDENBURG, R., MOLKA, D., AND
SCHONE, R. Introducing FIRESTARTER: A processor stress
test utility. In Green Computing Conference (IGCC), 2013 Inter-
national (2013), IEEE, pp. 1–9.

[15] HACKENBERG, D., SCHONE, R., ILSCHE, T., MOLKA, D.,
SCHUCHART, J., AND GEYER, R. An energy efficiency feature
survey of the Intel Haswell processor. In Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-
national (2015), IEEE, pp. 896–904.

[16] HÄHNEL, M., DÖBEL, B., VÖLP, M., AND HÄRTIG, H. Mea-
suring energy consumption for short code paths using RAPL.
SIGMETRICS Perform. Eval. Rev. 40, 3 (Jan. 2012), 13–17.

[17] HÄHNEL, M., AND HÄRTIG, H. Heterogeneity by the numbers:
A study of the ODROID XU+E big.LITTLE platform. In 6th
Workshop on Power-Aware Computing and Systems (HotPower
14) (2014).

[18] HÖNIG, T., JANKER, H., EIBEL, C., MIHELIC, O., AND
KAPITZA, R. Proactive energy-aware programming with PEEK.
In 2014 Conference on Timely Results in Operating Systems
(TRIOS 14) (2014).

[19] ILSCHE, T., HACKENBERG, D., GRAUL, S., SCHUCHART, J.,
AND SCHÖNE, R. Power measurements for compute nodes:
Improving sampling rates, granularity and accuracy. In 2015
Sixth International Green and Sustainable Computing Confer-
ence (IGSC) (Dec. 2015), The sixth international green and sus-
tainable computing conference, pp. 1–8.

[20] INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A, 3B, and 3C: System Programming Guide,
Sep 2014. Section 14.9.

[21] JIMENEZ, V., GIOIOSA, R., CAZORLA, F. J., VALERO, M.,
KURSUN, E., ISCI, C., BUYUKTOSUNOGLU, A., AND BOSE,
P. Energy-aware accounting and billing in large-scale computing
facilities. IEEE Micro, 3 (2011), 60–71.

[22] KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHAT-
TACHARYA, A. A. Virtual machine power metering and provi-
sioning. In Proceedings of the 1st ACM Symposium on Cloud
Computing (New York, NY, USA, 2010), SoCC ’10, ACM,
pp. 39–50.

[23] KONSTANTAKOS, V., CHATZIGEORGIOU, A., NIKOLAIDIS, S.,
AND LAOPOULOS, T. Energy consumption estimation in embed-
ded systems. Instrumentation and Measurement, IEEE Transac-
tions on 57, 4 (2008), 797–804.

[24] Krapl: Intel RAPL driver exposing the RAPL interface in sysfs.
https://github.com/TUD-OS/krapl.

[25] LI, T., AND JOHN, L. K. Run-time modeling and estimation of
operating system power consumption. In Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 2003),
SIGMETRICS ’03, ACM, pp. 160–171.

[26] MCCRAW, H., RALPH, J., DANALIS, A., AND DONGARRA,
J. Power monitoring with PAPI for extreme scale architectures
and dataflow-based programming models. In Proceedsings of
the 2014 IEEE International Conference on Cluster Computing
(2014), CLUSTER, IEEE, pp. 385–391.

[27] MCCULLOUGH, J. C., AGARWAL, Y., CHANDRASHEKAR, J.,
KUPPUSWAMY, S., SNOEREN, A. C., AND GUPTA, R. K.
Evaluating the effectiveness of model-based power characteri-
zation. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Berkeley, CA, USA,
2011), USENIXATC’11, USENIX Association, pp. 12–12.

[28] OUSTERHOUT, J. K. Scheduling techniques for concurrent sys-
tems. In ICDCS (1982), vol. 82, pp. 22–30.

600 2017 USENIX Annual Technical Conference USENIX Association

[29] PATHAK, A., HU, Y. C., AND ZHANG, M. Where is the energy
spent inside my app?: Fine grained energy accounting on smart-
phones with eprof. In Proceedings of the 7th ACM European
Conference on Computer Systems (New York, NY, USA, 2012),
EuroSys ’12, ACM, pp. 29–42.

[30] PATHAK, A., HU, Y. C., ZHANG, M., BAHL, P., AND WANG,
Y.-M. Fine-grained power modeling for smartphones using sys-
tem call tracing. In Proceedings of the 6th ACM European Con-
ference on Computer Systems (2011), EuroSys, ACM, pp. 153–
168.

[31] PATHAK, A., JINDAL, A., HU, Y. C., AND MIDKIFF, S. P.
What is keeping my phone awake?: Characterizing and detecting
no-sleep energy bugs in smartphone apps. In Proceedings of the
10th International Conference on Mobile Systems, Applications,
and Services (2012), MobiSys, ACM, pp. 267–280.

[32] RIVOIRE, S., RANGANATHAN, P., AND KOZYRAKIS, C. A
comparison of high-level full-system power models. HotPower
8 (2008), 3–3.

[33] ROTEM, E., NAVEH, A., ANANTHAKRISHNAN, A., RAJWAN,
D., AND WEISSMANN, E. Power-management architecture of
the Intel microarchitecture code-named Sandy Bridge. IEEE Mi-
cro 32, 2 (2012), 20–27.

[34] ROY, A., RUMBLE, S. M., STUTSMAN, R., LEVIS, P., MAZ-
IÈRES, D., AND ZELDOVICH, N. Energy management in mo-
bile devices with the Cinder operating system. In Proceedings of
the 6th ACM European Conference on Computer Systems (2011),
EuroSys, ACM, pp. 139–152.

[35] RYFFEL, S. LEA2P – The linux energy attribution and account-
ing platform. Master’s thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland (2009).

[36] SHEN, K., SHRIRAMAN, A., DWARKADAS, S., ZHANG, X.,
AND CHEN, Z. Power containers: An OS facility for fine-grained
power and energy management on multicore servers. In Pro-
ceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (New York, NY, USA, 2013), ASPLOS ’13, ACM, pp. 65–
76.

[37] SNOWDON, D. C., PETTERS, S. M., AND HEISER, G. Accurate
on-line prediction of processor and memory energy usage under
voltage scaling. In Proceedings of the 7th ACM &Amp; IEEE
International Conference on Embedded Software (New York, NY,
USA, 2007), EMSOFT ’07, ACM, pp. 84–93.

[38] TREIBIG, J., HAGER, G., AND WELLEIN, G. LIKWID: A
lightweight performance-oriented tool suite for x86 multicore en-
vironments. In Proceedings of the 39th International Confer-
ence on Parallel Processing Workshops (2010), ICPPW, IEEE,
pp. 207–216.

[39] WANG, W., CAVAZOS, J., AND PORTERFIELD, A. Energy auto-
tuning using the polyhedral approach. In Proceedings of the 4th
International Workshop on Polyhedral Compilation Techniques,

S. Rajopadhye and S. Verdoolaege, Eds., Vienna, Austria (2014).

USENIX Association 2017 USENIX Annual Technical Conference 601

Scalable NUMA-aware Blocking Synchronization Primitives
Sanidhya Kashyap Changwoo Min Taesoo Kim

Georgia Institute of Technology

Abstract
Application scalability is a critical aspect to efficiently
use NUMA machines with many cores. To achieve that,
various techniques ranging from task placement to data
sharding are used in practice. However, from the perspec-
tive of an operating system, these techniques often do not
work as expected because various subsystems in the OS
interact and share data structures among themselves, re-
sulting in scalability bottlenecks. Although current OSes
attempt to tackle this problem by introducing a wide range
of synchronization primitives such as spinlock and mu-
tex, the widely used synchronization mechanisms are not
designed to handle both under- and over-subscribed sce-
narios in a scalable fashion. In particular, the current
blocking synchronization primitives that are designed to
address both scenarios are NUMA oblivious, meaning
that they suffer from cache-line contention in an under-
subscribed situation, and even worse, inherently spur long
scheduler intervention, which leads to sub-optimal perfor-
mance in an over-subscribed situation.

In this work, we present several design choices to im-
plement scalable blocking synchronization primitives that
can address both under- and over-subscribed scenarios.
Such design decisions include memory-efficient NUMA-
aware locks (favorable for deployment) and scheduling-
aware, scalable parking and wake-up strategies. To vali-
date our design choices, we implement two new blocking
synchronization primitives, which are variants of mutex
and read-write semaphore in the Linux kernel. Our evalu-
ation shows that these locks can scale real-world applica-
tions by 1.2–1.6× and some of the file system operations
up to 4.7× in both under- and over-subscribed scenarios.
Moreover, they use 1.5–10× less memory than the state-
of-the-art NUMA-aware locks on a 120-core machine.

1 Introduction
Over the last decade, microprocessor vendors have been
pursuing the direction of bigger multi-core and multi-
socket (NUMA) machines [16, 31] to provide large
chunks of memory, which is accessible by multiple CPUs.
Nowadays, these machines are a norm to further scale ap-
plications such as large in-memory databases (Microsoft
SQL server [26]) and processing engines [34, 41]. Thus,
achieving application scalability is critical for efficiently
using these NUMA machines, which today can have up
to 4096 hardware threads organized into sockets. To
achieve high performance, various applications such as
databases [26], processing engines [34, 41], and oper-
ating systems (OS) often rely on NUMA partitioning
to mitigate the cost of remote memory access either by

0k

100k

200k

300k

400k

500k

0 30 60 90 120
0

100

200

300

400

500

0 30 60 90 120

O
ps

/s
ec

#core

(a) File creation in a shared directory

Vanilla
Cohort

CST

M
em

or
y

(M
B

)

#core

(b) Memory used by lock instances

Figure 1: Impact of NUMA-aware locks on a file-system micro-
benchmark that spawns processes to create new files in a shared
directory (MWCM in [27]). It stresses either the mutex or the writer
side of the read-write semaphore and memory allocation. Figure
(a) presents the results up to 120 threads on a 120-core machine
and Figure (b) shows the memory utilized by locks during the
experiment. Here, Vanilla is Linux’s native version, and Cohort
is an in-kernel ported version of NUMA-aware locks [4, 11],
and our NUMA-aware lock (CST).

data or task placement. However, these approaches do
not address how to efficiently modify shared data struc-
tures such as inodes, dentry cache, or even the structures
of the memory allocator that span multiple sockets in a
large multi-core machine. As a result, synchronization
primitives are inevitably the basic building blocks for
such multi-threaded applications and are critical in deter-
mining their scalability [2]. Hence, the state-of-the-art
locks [4, 5, 10, 11, 23, 24], which are NUMA-aware, are
the apt choice to efficiently exploit the NUMA behavior
for achieving scalability on these multi-core machines.

NUMA-aware locks do improve application scalability,
but they are difficult to adopt in practice. They either
require application modification [5, 11, 23] or statically
allocate a considerable amount of memory that can bloat
shared data structures [4, 5, 11], as thousands to millions
of lock instances can be instantiated in a large multi-
core machine. For instance, a similar issue of adopting
non-blocking queue-based locks occurred with Linux.
Wickizier et al. [2] showed that a ticket lock suffers from
cache-line contention with increasing core count. They
replace it with the MCS lock to mitigate such an effect,
which improved the system performance. Unfortunately,
its adoption faced several challenges due to the change in
the structure size and the lock function API [21].

We observe a similar trend in the case of blocking
synchronization primitives, which suffer from numerous
problems: 1) OS developers rely on TTAS locks or their
variant [12, 18, 39], as they are simple and cache-line
contention is not evident at smaller core count. However,
they deter scalability on large multi-core machines (Fig-
ure 1 (a)). 2) The proposed blocking synchronization
primitives [35, 36] are NUMA-oblivious and suffer from

USENIX Association 2017 USENIX Annual Technical Conference 603

high memory management cost for every lock acquisition,
which impedes scalability. 3) NUMA-aware locks (Cohort
locks) suffer from memory bloat as they statically allo-
cate memory for all sockets, which is a serious issue in
an OS [3] (Figure 1 (b)) and are non-blocking. 4) Finally,
current blocking primitives severely suffer from the poor
parking strategy because of cache-line contention, use of
a global parking list, inefficient scheduling decisions, and
inefficient system load estimation.

In this work, we design and implement two scalable
blocking synchronization primitives, namely CST-mutex
and CST-rwsem, from an OS perspective. Our primitives
are memory-efficient, support blocking synchronization,
and are tightly coupled with the scheduler, thereby result-
ing in better scalability beyond 100 physical cores for both
under- and over-subscribed situations (tested up to 5×
over-subscription). CST locks support blocking, as they
incorporate a timeout capability for waiters, including
readers and writers, in which waiters can park and wake-
up without hurting the performance of the system. We use
four key ideas to implement a scalable blocking synchro-
nization primitive: First, we consciously allocate memory
by maintaining a dynamic list of per-socket structures that
is a basic building block of NUMA-aware locks. Second,
instead of passing the lock to the very next waiter, we
pass it to a not-yet-parked (still spinning) waiter, which
removes the scheduler intervention while passing the lock
to a waiter. Third, we keep track of the parked waiters in
a separate, per-socket list without manipulating the actual
waiting list maintained by the lock protocol. Lastly, we
maintain a per-core scheduling information to efficiently
estimate the system load. Thus, our blocking primitives
improve the application performance by 1.2–1.6×, and
they are 10× faster than existing blocking primitives in
over-subscribed scenarios for various micro-benchmarks.
Moreover, our approach uses 1.5–10× less memory com-
pared with the state-of-the-art NUMA-aware locks.

In summary, we make the following contributions:

• Two blocking synchronization primitives. We
design and implement two blocking synchroniza-
tion primitives (CST-mutex and CST-rwsem) that effi-
ciently scale beyond 100 physical cores.

• Memory-efficient data structure. We maintain a
dynamically allocated list of per-socket structures
that address the issue of memory bloat.

• Scheduling-aware parking/wake-up strategy.
Our approach mitigates the scheduler interaction by
passing the lock to a spinning waiter and batching
the wake-up operation.

• Lightweight schedule information. We extend the
scheduler to estimate the system load to efficiently
handle both over- and under-subscription cases.

2 Background and Motivation
We first classify prior research directions into two cate-
gories: NUMA-aware locks and runtime contention man-
agement. We later give a primer on blocking synchroniza-
tion primitives used in Linux.

NUMA-aware locks. NUMA-aware locks address the
limitation of NUMA-oblivious locks [25] by amortizing
the cost of accessing the remote memory. Most of the
locks are hierarchical in nature such that they maintain
multiple levels of lock [6, 10, 11, 14, 24] in the form of a
tree. Inspired by prior hierarchical locks [10, 24], Cohort
locks [6, 11] generalized the design of any two types of
locks in a hierarchical fashion for two-level NUMA ma-
chines and later extended them for the read-write locks [4].
However, neither of them addresses the memory utiliza-
tion issue nor supports blocking synchronization, which
leads to sub-optimal performance when multiple instances
of locks are used or when the system is overloaded. Be-
sides Cohort locks, another category of locking mech-
anism is based on combining [13, 32] and the remote
core execution approach [23] in which a thread executes
several critical sections without any synchronization. Al-
though it outperforms Cohort locks [23], the mechanism
requires application modification, which is not practical
for applications with a large code base.

Our design of NUMA-aware locks is memory con-
scious, as we defer the allocation of per-socket locks until
required, unlike prior ones. In addition, CST locks are
blocking, meaning that they support timeout capability
while maintaining the locality awareness, unlike the exist-
ing NUMA-oblivious locks that allocate memory for each
lock acquisition [35, 36]. Moreover, none of the NUMA-
aware read-write locks support blocking readers, but the
ones that do support [19, 28, 30] are NUMA oblivious
and are designed specifically for read-mostly operations.

Contention management. The interaction between
lock contention and thread scheduling determines appli-
cation scalability, which is an important criterion to de-
cide whether to spin or park a thread in an under- or
over-subscribed scenario. Johnson et al. [17] addressed
this problem by separating contention management and
scheduling in the user space. They use admission control
to handle the number of spinning threads by running a
system-wide daemon that globally measures the load on
the system. Similar approaches have been used by run-
times [7] and task placement strategies inside the kernel
without considering the lock subsystem [42]. Along these
lines, the Malthusian lock [9], a NUMA-oblivious lock,
handles thread over-subscription by randomly moving a
waiter from an active list to a passive list (concurrency
culling), which is inspired by Johnson et al.

CST locks handle the over-subscription by maintaining
a separate list in which waiters independently add them-

604 2017 USENIX Annual Technical Conference USENIX Association

selves to a separate list after timing out. Our approach is
different from the Malthusian lock and does not lengthen
the unlock phase because wake-up and parking strategies
are independent. Moreover, CST locks adopt the idea
of a separate parking list from existing synchronization
primitives [28, 29] or wait queues [38], but remove the
cache-line bouncing by maintaining a per-socket, separate
parking list for both readers and writers.

Design of Linux’s mutex and rwsem. Many OSes, in-
cluding Linux, do not allow nested critical sections for
any blocking locks. The current design of mutex is based
on the TTAS lock, which is coupled with a global queue-
based instance [22] and a parking list per-lock instance.
The algorithm works by first trying to atomically update
the lock variable, called fast path; on failure, the mid-path
phase (optimistic spinning) begins in which only a single
waiter is queued up if there is no spinning waiter and
optimistically spins until its schedule quota expires. If
the waiter still does not acquire the lock, it goes to the
slow-path phase in which it acquires a lock on the parking
list (parking lock), adds itself, and schedules out after
releasing the parking lock. During the unlock phase, the
lock holder first resets the TTAS variable and wakes up
a waiter from the parking list while holding the parking
lock. Meanwhile, it is possible that either a new waiter
can acquire the lock in the fast path or a spinning waiter in
the mid path. Now, once a waiter is scheduled in, it again
acquires the parking lock and tries to acquire the TTAS
lock. If successful, it removes itself from the parking
list and enters the critical section; otherwise, it schedules
itself out again and sleeps until a lock holder wakes it up.
The current algorithm is unfair because of the TTAS lock;
even starves its waiters in the slow-path phase. Moreover,
the algorithm also suffers from cache-line contention be-
cause of the TTAS lock and waiters maintenance, and even
worse is the scheduling overhead in the slow-path phase
and the unlock phase for parking and wake up.

The read-write semaphore is an extension of mutex,
with a writer-preferred version. Both the write lock and
the reader count are encoded in a word to decide readers,
writer, and waiting readers. Moreover, rwsem maintains a
single parking list in which both readers and writers are
added. Thus, in addition to inheriting the issues of mutex,
rwsem also suffers from reader starvation due to the writer-
preferred version. Interestingly, developers found that the
neutral algorithm suffers from scheduler overhead [20],
while the writer-preferred version mitigated this overhead
and improved the performance by 50% [37].

3 Challenges and Approaches
We present challenges and our approaches in designing
practical synchronization primitives that can scale beyond
100 physical cores.

C1. NUMA awareness. A synchronization primitive

should scale under high contention even in NUMA ma-
chines. Although locks that are used in practice [18, 28,
29] address cache-line contention by using queue-based
locks [22] for high contention, they do not address the
cache-line bouncing (remote socket access) introduced
in NUMA machines. The remote access is at least 1.6×
slower than the local access within a socket, which is a
deterrent to the scalability of an application.

Approach: To achieve scalability in NUMA ma-
chines, hierarchical locks (e.g., Cohort lock) are an
apt choice. They mitigate the cache-line bouncing by
passing a lock within a socket, which relaxes the strict
fairness guarantee of FIFO locks for throughput.

C2. Memory-efficient data structures. Unfortunately,
current hierarchical locks severely bloat the memory due
to their large structure size (e.g., a Cohort lock requires
1,600 bytes in an eight-socket machine1), which they stat-
ically allocate for all sockets that may be unused. Memory
bloat is a serious concern because it stresses the memory
allocator and is alarming for synchronization primitives as
they statically allocate the memory. For example, the size
of the XFS inode structure increased by 4% after adding
16 bytes to the rwsem structure, which had an impact on
the footprint and performance, as there can be millions of
inodes cached on a system [8]. Thus, existing hierarchical
locks are difficult to adopt in practice because they stati-
cally allocate per-socket structures during initialization.

Approach: A hierarchical lock should dynamically
allocate per-socket structure only when it is being
used to avoid the memory bloat problem and reduce
the memory pressure on a system.

C3. Effective contention management for both over-
and under-subscribed scenarios. Designing synchro-
nization primitives that perform equally well for both
over- and under-subscribed situations is challenging. Non-
blocking synchronization primitives, such as spinlocks
including Cohort locks, work well when a system is under-
loaded. However, for an over-loaded system, they perform
poorly because spinning waiters and a lock holder con-
tend each other, which deters the progress. On the other
hand, blocking synchronization primitives such as mutex
and rwsem are designed to handle an over-loaded system.
Instead of spinning, waiting threads sleep until a lock
holder wakes one up upon lock release. However, this
procedure imposes the overhead of waking up in every
unlock operation, which increases the length of the criti-
cal section. Also, frequent sleep and wake-up operations
impose additional overhead on the scheduler, which can
result in scalability collapse, especially when multiple
lock instances are involved. To mitigate this issue, many
blocking synchronization primitives [18, 28, 29] employ

164-byte cache line size × (3 cache lines for the socket lock × 8
sockets + 1 cache line for the top lock).

USENIX Association 2017 USENIX Annual Technical Conference 605

the spin-then-park strategy: a waiter spins for a while,
and then parks itself out. Unfortunately, this approach is
agnostic of system-wide contention, which leads to sub-
optimal performance when multiple locks are contending.
Ryan et al. [17] addressed the problem by designing a
system-wide load controller, but its centralized design
has memory hot spots for its control variables (e.g., the
number of ever-slept threads) to decide whether a thread
should sleep or spin.

Approach: To work equally well in both over- and
under-loaded cases, we must address the system-wide
load that allows waiters to optimistically spin in under-
loaded cases and park themselves out in over-loaded
cases. In addition, such a decision should be taken in
a distributed way to keep the contention management
from becoming a scalability bottleneck.

C4. Scalable parking and wake-up strategy. To im-
plement an efficient blocking synchronization primitive,
the most important aspects are how and when to park
(schedule out) and wake up waiters with minimal over-
head. The current approach [28, 29] maintains a global
parking list to keep track of parked waiters and a lock
holder wakes one of the parked waiters at the unlock
operation. However, this design has several drawbacks:
The frequent updating of a global parking list becomes
a single point of contention in an over-loaded system,
which leads to severe performance degradation because
a lock holder has to wake up each sleeping waiter dur-
ing the unlock phase, which adds extra pressure on the
scheduler subsystem and lengthens the critical section:
the cost of waking up varies from 2,000–8,000 cycles in
the kernel-space or from 5,000–50,000 cycles in the user-
space (futex() overhead). Thus, according to Amdahl’s
Law, an increased sequential part can significantly affect
the scalability, especially in a large multi-core machine.

Approach: Instead of waking up the very next waiter,
a lock holder passes the lock to a non-sleeping waiter,
if any. Thus, this approach not only avoids waking
up other threads under high contention, but also mini-
mizes the access of the parking list and scheduler inter-
actions. Furthermore, we maintain a per-socket park-
ing list to remove costly cache-line bouncing among
NUMA domains for accessing the parking list.

4 Design Principles
We present two scalable NUMA-aware blocking synchro-
nization primitives, a mutex (CST-mutex) and a read-write
semaphore (CST-rwsem), that can scale beyond 100 physi-
cal cores. At a high level, our lock is a two-level NUMA-
aware lock, where a global lock is an MCS lock [25] and
a per-socket local lock is a K42 lock [15] (see Figure 2).
While the first level localizes the cache-line contention
within a socket, the second one mitigates the cache-line
bouncing among sockets. To enter a critical section, a

Per-NUMA snode Per-thread qnode

Socket 1
waiting_list

parking_list

L

T1
PW

T2
UW

T3

Socket 2
waiting_list

parking_list

Global lock Local lock

PW

T4
PW

T5

Socket 3
waiting_list

parking_list

Figure 2: A CST-mutex is active on sockets: 1, 2, and 3. Cur-
rently, socket 1 is being served. T1 now holds the lock (L); T3 is
spinning for its turn (UW: unparked waiting); T2, T4, and T5 are
sleeping (PW: parked waiting) until a lock holder wakes them up.
A lock holder, T1, will pass the lock to T3, which is spinning,
skipping the sleeping T2, to minimize the overhead of wake-up.

thread first acquires the per-socket local lock and then
the global lock. During the release phase, it first releases
the global lock followed by the local lock. To mitigate
memory bloating, we dynamically allocate the per-socket
structure (snode) when a thread first tries to acquire the
lock on a specific NUMA domain, and maintain it until
the life-cycle of the lock. Each snode maintains a per-
thread qnode in two lists: waiting_list—a K42-style list
of waiters and parking_list—a list of parked (or sleep-
ing) waiters. To acquire the lock, a thread first appends its
qnode to the waiting_list of the corresponding snode
in a UW (unparked waiting or spinning) status (T3 in Fig-
ure 2) and spins until its schedule quota is over. On timing
out, T3 parks itself by changing its status to PW (parked
waiting) and adds itself to the parking_list (T2). A lock
holder (T1) that acquires its local and the global lock,
passes the lock in the same NUMA domain by traversing
the waiting_list during the release phase. It skips the
parked waiter (T2) and passes the lock to an active waiter
(T3). If there is no active waiter, the lock holder wakes up
parked waiters in the same or other NUMA nodes to pass
the lock. Our rwsem additionally maintains a separate
reader parking list, besides writer parking list, to handle
the over-subscription of the readers.

We explain our design principles on efficient memory
usage (C1 and C2 in §4.1) and parking/wake-up strategy
(C3 and C4 in §4.2). We later show how to apply our
approaches to design blocking synchronization primitives:
CST-mutex (§5.1) and CST-rwsem (§5.2).
4.1 Memory-efficient NUMA-aware Lock
Unlike other hierarchical locks that statically allocate per-
NUMA structures for all sockets during the initialization,
CST defers the snode allocation until the moment it is
accessed first. The allocated snodes are active until the
lock is destroyed. Our dynamic allocation of snode is
especially beneficial in two cases: 1) when the number
of objects is unbounded, such as inode and mm_struct in
Linux kernel,2 and 2) when threads are restricted to access

2The static allocation of all snodes increases the inode structure size
by 3.8× and mm_struct size by 2.6× in an eight-socket machine.

606 2017 USENIX Annual Technical Conference USENIX Association

Per-NUMA snode Per-thread qnode

qtail

parking_list

L

next

p_next

UW UWT1 T2 T3

(i) Intial status

qtail

parking_list

L

next

p_next

PW UWT1 T2 T3

(ii) Thread T2 times out and changes its status to PW

qtail

parking_list
next

p_next

PW LT1 T2 T3

(iii) Thread T1 passes the lock to T3

(a) Pass the lock to an active waiter
Per-NUMA snode Per-thread qnode

qtail

parking_list
next

p_next

PW LT2 T3

(i) Intial status

(iii) Thread T2 acquires the lock

qtail

parking_list
next

p_next

LT2

(ii) Thread T3 wakes up T2

qtail

parking_list
next

p_next

UWT2 T3

(b) Pass the lock to a parked waiter
Per-NUMA snode Per-thread qnode

qtail

parking_list

PW

next

p_next

LT2 T3

(i) Intial status

(ii) Thread T2 wakes up T3 and pass the lock

qtail

parking_list
next

p_next

LT3 T2

(c) Pass the lock to the last parked waiter

Figure 3: Figure (a) shows the passing of a lock to a spinning waiter inside a per-socket structure (snode). (i) T1 is the current lock
holder, and T2 and T3 are in the waiting_list, and qtail points to the qnode of T3. (ii) T2 times out, successfully CASes its state
from UW to PW, and adds itself to the parking_list. (iii) T1 exits the critical section. It tries to pass the lock to T2, but fails to CAS the
state of T2 from UW to L. T1 goes to T3 via next pointer of T2, successfully CASes the state of T3 from UW to L, and leaves the unlock
phase. Figure (b) shows the passing of the lock to a parked waiter in the parking_list. (i) T3 (lock holder) is in the unlock phase. It
finds that waiting_list is empty as T2 is in the parking_list. T3 successfully CASes qtail to NULL. (ii) Now, T3 checks for parked
waiters in parking_list, finds T2, and updates the state of T2 from PW to R. (iii) Since stail is NULL and there are no prior waiters, T2
sets its state to L and acquires the local lock, and later goes to acquire the global lock. Figure (c) illustrates the passing of the lock to
a parked waiter at the end of the waiting_list. (i) On exiting the critical section, T2 fails to CAS the state of T3 to L, since it is parked.
(ii) T2 then explicitly SWAPs the state of T3 to L and wakes it up. T3 now holds the local lock and goes to acquire the global lock.

a subset of sockets such as running a multi-core virtual
machine on a subset of sockets in a cloud environment.

For every lock operation, we first check whether a cor-
responding snode is present, and then get the snode to
acquire the local lock. To efficiently determine whether
an snode is present, a lock maintains a global bit vector in
which each bit denotes the presence of a particular snode.
Hence, each thread relies on the bit vector for determin-
ing the presence of an snode. We use CAS to atomically
update the bit vector, but the number of CAS operations is
bounded to the number of sockets in a system during the
lifetime of a lock. A lock maintains allocated snodes in
snode_list, which is traversed by a thread to find the cor-
responding snode. We separate the snode into two cache
lines, almost-read-only for snode traversal and read-write
for the local lock operation, which prevents snode traver-
sal from incurring cache-line bouncing among sockets.

4.2 Scheduling-aware Parking/Wake-up Strategy
As discussed in the previous section, the most widely used
spin-then-park policy fails to address the issue of scalabil-
ity in NUMA machines. It works by maintaining a single,
global parking list to account for the sleeping waiters, and
wakes one or some waiters to pass the lock at the time
of release. Hence, this approach is not scalable because
it incurs contention on the parking list and suffers from
scheduler interaction as it passes the lock to a potentially
sleeping waiter in an over-subscribed condition.

To address these issues, the CST lock uses two key
ideas: it maintains a per-socket parking_list, which
minimizes costly cross-socket cache-line bouncing and
passes the lock to a spinning waiter, whose time quota is
not over yet, to minimize costly wake-up operations. We
wake up a set of skipped sleeping waiters in bulk when
there are no active waiters in the serving snode or pass the

global lock to the other waiting snode. Thus, by relaxing
the strict FIFO guarantee, we mitigate the lock-waiter
preemption problem.

4.2.1 Low-contending List Management

In a CST lock, each snode maintains the K42-style wait-
ing list that comprises its own tail pointer: qtail. For
parked waiters, the snode also maintains a per-socket
parking_list to account for the parked waiters, which
avoids the costly cache-line bouncing while manipulating
the parking_list. For a rwsem, we maintain a separate
readers and writers parking_list, which simplifies the
list processing in the unlock phase, as the lock holder
can pass the lock to all parked readers or to one of the
writers. Moreover, this approach enables a distributed
parallel waking of readers at a socket level, which can
improve the throughput of readers in an over-subscribed
scenario (refer §5.2).

4.2.2 Scheduling-aware Parking/wake-up Decision

For a blocking synchronization primitive, the most impor-
tant question is how to efficiently pass the lock or wake up
a waiter, while maintaining an on-par performance in both
the under- and over-subscribed cases. For the scalable
parking/wake-up decision, we remove costly scheduler
operations (i.e., wake-up) from the common, critical path
and employ a distributed parking decision while consid-
ering the load on a system. We discuss three key ideas
to address the problem of 1) whom to pass the lock to,
2) when to park oneself, and 3) how to take the parking
decisions for blocking synchronization primitives.
Passing lock to an active spinning waiter. In queue-
based locks (e.g., MCS, K42, and CLH), the successor of
a lock holder always acquires the lock, which guarantees
complete fairness, but, unfortunately, causes severe perfor-

USENIX Association 2017 USENIX Annual Technical Conference 607

mance degradation in an over-subscribed system, as this
invariant stresses the scheduler to always issue a call to
wake up the parked waiter. To mitigate this issue, we mod-
ify the invariant of a succeeding lock holder from the next
waiter to a nearest active waiter, which is still spinning
for the lock acquisition. Hence, the waiting_list com-
prises both active and parked waiters in its queue, and the
parked waiters are added to a separate list: parking_list.
Figure 3 (a) illustrates this scenario, where T1 passes the
lock to T3 instead of T2, since T2 is parked. Later, parked
waiters are woken up in batches up to the number of
physical cores in a socket once there is no active waiter
in the waiting_list. When a parked waiter is woken
up, it generally re-queues itself back at the end of the
waiting_list, and again actively spins for the lock. This
approach is effective because we can avoid scheduler in-
tervention under high contention by passing the lock to
an active waiter. In addition, a batched wake-up strategy
amortizes the cost of the wake-up phase.
Scheduling-aware spinning. Current hierarchical
locks [4, 6, 11] do not consider the amount of time
a waiter should spin before parking itself out. Thus,
in an over-loaded system, waiting threads and a lock
holder will contend with each other, which deters the
system progress. Instead, in CST locks, waiting threads
park themselves as soon as their time quota is about to
cease. To check the quota, we rely on the scheduler
and its APIs for this information. Specifically in the
Linux kernel, the scheduler exposes need_resched() to
know whether the task should run, and preemption APIs
(preempt_disable() / preempt_enable()) to explicitly
disable or enable the task preemption. These APIs work
with both preemptive and non-preemptive kernels. Limit-
ing the duration of spinning up to the time quota proposed
by the scheduler has several advantages: 1) It guaran-
tees the forward progress of the system in an over-loaded
system by allowing the current lock holder to do useful
work while mitigating its preemption. 2) It allows other
tasks to do some useful work rather than wasting the CPU
cycles. 3) By only spinning for the specified duration,
the primitive respects the fair scheduling decision of the
scheduler.
Scheduling-aware parking. The current blocking syn-
chronization primitives [28, 29] do not efficiently account
for the system load; thus, they naively park waiters even
in under-loaded scenarios. Hence, a naive use of the spin-
then-park approach results in scheduler intervention, as
the waiters park themselves as soon as their time quota
ceases, and the lock holder has to do an extra operation
of waking them up, which severely degrades the perfor-
mance of the system in an under-loaded scenario [27].
Also, previous research [17] has shown that estimating
system load is critical to the spin-then-park approach be-
cause it not only removes the scheduler interaction from

the parking phase, but also improves the latency of the
lock/unlock phase.

We gauge the system load by peeking at the number of
running tasks on a CPU (i.e., the length of scheduling run
queue for a CPU). Checking the number of running tasks
is almost free because a modern OS kernel, including
Linux, has a per-CPU scheduler queue, which already
maintains an up-to-date per-CPU active task information.
On the other hand, maintaining system-wide, central in-
formation, like the approach used by Johnson et al. [17],
is costly because the cost of collecting the total number of
active tasks increases with increasing core count, which
may not catch the load imbalance due to the new incoming
tasks or the rescheduling of periodic tasks.

5 Scalable Blocking Synchronizations
We now discuss the design and implementation of

the two types of NUMA-aware blocking synchronization
primitives (mutex and rwsem) using our design decisions.
We first present the design of mutex (CST-mutex) along
with the parking strategy and later extend it to rwsem
(CST-rwsem). Figure 4 presents their pseudo-code.
5.1 Mutex (CST-mutex)
CST-mutex is a two-level hierarchical lock, which is ex-
tended to support blocking behavior by adding several
design choices, such as scheduling-awareness, efficient
spinning and parking strategy, and passing of the lock to
the spinning waiter. The global lock employs an MCS
lock, whereas the local lock is a K42 lock [15], a variant
of the MCS lock. We choose the K42 lock because it does
not require an extra argument in the function call as it
maintains a qnode structure on the stack, but we can use
any queue-based lock for the local lock. The top level
lock maintains a dynamically allocated per-socket struc-
ture (snode) to keep track of the global lock and local lock
information such as its waiting_list and the next waiter
(for the K42 lock), and also parking_list information
for the parked waiters. The MCS lock protocol has two
status values: waiting (lock waiter) and locked state (lock
holder). To support the blocking behavior, we keep the
locked state (denoted as L) intact and extend the waiting
state to the spinning/unparked (UW) and parked (PW) state.
We also introduce a special state, called re-queue (R), that
notifies the waiter to re-acquire the local lock.

Extended Cohort lock/unlock protocol. A thread
starts by trying to acquire a local lock inside a socket. If
there are no predecessors during the lock acquisition, it ac-
quires the global lock, thereby becoming the lock holder,
and enters the critical section (CS). The other threads that
do not acquire the local lock are the local waiters, and
the ones waiting for the global lock are the socket leaders.
They wait for their respective predecessor to pass the lock.
In the release phase, the lock holder locally tries to pass
the lock to a successor. Thus, on success, the successor

608 2017 USENIX Annual Technical Conference USENIX Association

1 def mutex_lock(lock):
2 snode = find_or_add_snode(lock) # Find or allocate snode once
3 while True:
4 lock_status = acquire_local_lock(snode)
5 if lock_status & ACQUIRE_GLOLBAL_LOCK is True: # Acquire global lock?
6 acquire_global_lock(lock, snode)
7 return
8
9 def acquire_local_lock(snode):

10 cur_qnode = init_qnode(status=UW, next=None) # Initialize qnode on the function stack
11 pred_qnode = SWAP(&snode.qtail, &cur_qnode) # Add to snode’s waiting list
12 if pred_qnode is None: # Check for predecessor
13 cur_qnode.status = L|ACQUIRE_GLOLBAL_LOCK # Should acquire global lock
14 return cur_qnode.status
15 pred_qnode.next = &cur_qnode # Update predecessor next pointer
16 cur_qnode.task = current_task
17 while cur_qnode.status == UW: # Spinning for the local lock
18 if task_timed_out(cur_qnode.task): # Time quota is over
19 if park_write_qnode(snode, cur_qnode) == REQUEUE: # Check for requeue state
20 if cur_qnode.status == L: # Local lock acquired
21 break
22 else:
23 return R # Restart the local lock acquisition
24 update_next_qnode(snode, cur_qnode) # Update the next qnode (k42 protocol)
25 return cur_qnode.status
26
27 def acquire_global_lock(lock, snode):
28 snode = init_snode(snode, status=UW, next=None) # Initialize snode
29 pred_snode = SWAP(&lock.stail, &snode) # Add to global lock’s waiting list
30 if pred_snode is None:
31 snode.status = L # Acquired global lock
32 return
33 pred_snode.next_snode = snode # Update predecessor next pointer
34 snode.leader_task = current_task
35 while snode.status == UW: # Spin till the global lock holder passes the lock
36 if task_timed_out(current_task): # Leader time quota is over
37 if CAS(&snode.status, UW, PW): # Modify the state to PW
38 schedule_out(snode.leader_task) # Schedule out the task
39 lock.current_serving_socket = snode
40
41 def mutex_unlock(lock):
42 snode = lock.current_serving_socket # Get the lock holder’s snode #
43 if snode.local_batch_count < BATCH_COUNT: # local lock batching
44 snode.local_batch_count += 1
45 # Pass the lock to waiter with UW state and already has the global lock
46 if pass_local_lock(snode, acquire_global=False) is True:
47 return # Successfully found an active waiter
48 snode.local_batch_count = 0 # Reset the batch count
49 release_global_lock(lock, snode) # Release the global lock
50 release_local_lock(lock, snode) # Release the local lock
51 if snode_parking_list_is_not_empty(snode): # Remove parked waiter starvation
52 wake_up_parked_waiters(snode) # Wake up set of parked waiters
53
54 def release_local_lock(lock, snode):
55 if snode.qnext is None: # Check for next qnode, if any
56 if CAS(&snode.qtail, &snode.qnext, None) is True: # No qnode present
57 wake_up_parked_waiters(snode) # Wake up set of parked waiters
58 while snode.qnext is None: # qnode joined the qtail (waiting)
59 continue
60 if pass_local_lock(snode, acquire_global=True) is False:
61 with parking_list_lock(snode): # Acquire parking list lock to wake up a waiter
62 snode.qnext.status = L|ACQUIRE_GLOLBAL_LOCK # Update status
63 remove_from_parking_list(snode.qnext) # Update the parking list
64 schedule_in(snode.qnext.task) # Wake up the parked waiter
65
66 def release_global_lock(lock, snode):
67 if snode.next_snode is None: # Check for next snode, if any
68 if CAS(&lock.stail, snode, NULL) is True: # No snode present
69 return
70 while snode.next_snode is None: # Some snode joined the global lock stail
71 continue
72 if CAS(&snode.next_snode.status, UW, L) is False: # Check for parked snode
73 snode.next_snode.status = L # next snode is parked, still pass the lock
74 schedule_in(snode.next_snode.leader_task) # Wake it up for global lock acquisition

75 def park_write_qnode(snode, cur_qnode):
76 park_flag = False # Denotes whether waiter is parked
77 with parking_list_lock(snode): # Acquire parking list lock
78 if CAS(&cur_qnode.status, UW, PW) is True: # Try to update the state
79 add_to_parking_list(snode, cur_qnode) # Update parking list
80 park_flag = True # Parking was successful
81 if park_flag is True:
82 schedule_out(cur_qnode.task) # Schedule the task out
83 # cur_qnode.task is now awake, the task now returns REQUEUE
84 return REQUEUE # Should check for requeue phase
85 else:
86 return DO_NOT_REQUEUE # Acquired the lock
87
88 def pass_local_lock(snode, acquire_global):
89 qnode = snode.qnext # Search from snode.next
90 while True: # Search for an active waiter
91 if CAS(&qnode.status, UW, L) is True:
92 if acquire_global is True: # Need to acquire the global lock
93 L = L|ACQUIRE_GLOLBAL_LOCK # Update L status bit
94 return True
95 if qnode.next is None:
96 break
97 qnode = qnode.next # Find next qnode
98 snode.qnext = qnode # Found no one, updating qnext with tail
99 return False

100
101 def wake_up_parked_waiters(snode):
102 with parking_list_lock(snode): # Acquire the parking list
103 for qnode in parking_list(snode): # Iterate over stored parked waiters
104 qnode.status = R # All waiter should requeue right now
105 remove_from_parking_list(snode, qnode) # Update parking list
106 schedule_in(qnode.task) # Schedule in the waiter
107
108 def write_lock(lock):
109 mutex_lock(lock) # Acquire mutex first
110 for s in snode_list(lock): # Check for active readers
111 while s.active_readers is not 0:
112 if task_timed_out(current_task):
113 schedule() # Only schedule, will come back
114
115 def write_unlock(lock):
116 mutex_unlock(lock) # Release the mutex
117 if lock.stail is None: # There is no waiting snode
118 for s in snode_list(lock): # Traverse the snode
119 wake_up_first_read_waiter(s.reader_parking_list) # Wake-up a reader
120
121 def read_lock(lock):
122 snode = find_or_add_snode(lock) # Find or allocate the snode
123 ret = True
124 while True: # Spin, till acquired the lock
125 while lock.stail is not None: # Check for no waiters
126 if task_timed_out(current_task):
127 ret = park_reader_task(lock, snode) # park the reader
128 if ret is True:
129 FAA(&snode.active_readers, 1)
130 if lock.stail is not None: # No one in the global lock tail
131 FAA(&snode.active_readers, -1)
132 ret = True
133 continue
134 break
135
136 def read_unlock(lock):
137 snode = find_or_add_snode(lock)
138 FAA(&snode.active_readers, -1) # Update the snode readers count.
139
140 def park_reader_task(lock, snode):
141 # Wait and park youself until global lock tail is NULL
142 park_and_wait_on_event(&snode.reader_parking_list, (lock.stail is not None))
143 if CAS(&snode.reader_is_parked_leader, False, True) is True:
144 FAA(&snode.active_readers, 1) # Decrease the active reader count
145 wake_up_all_read_waiters(&snode.reader_parking_list) # Wake up all readers
146 snode.reader_is_parked_leader = False
147 return False
148 return True

Figure 4: Pseudo-code of CST-mutex (lines 1 – 74), CST-rwsem (lines 108 – 148), and their parking/wake up (lines 75 – 106). We
use three atomic instructions: CAS(addr,new,old) atomically updates the value at addr to new and returns True if the value at addr is
old. Otherwise, it returns False without updating addr. SWAP(addr,val) atomically writes val to addr and returns the old value at
addr. FAA(addr,val) atomically increases the value at addr by val.
does not acquire the global lock and immediately enters
the critical section. To prevent starvation, a lock holder
later passes the global lock to a globally waiting successor
(socket leader) after a bounded number of local acquisi-
tions. We now describe the CST-mutex protocol in detail,
which is an extension of the aforementioned steps.

Acquire local lock: A thread T starts by first finding (or
adding if not present) its snode (line 2). Unlike the Cohort
lock protocol, T tries to acquire the local lock (line 4) in
an infinite for loop because it may restart the protocol
after being parked. In the local lock phase, T initializes
its qnode (line 10) and then SWAPs the qtail of snode
with qnode. It then acquires the global lock when no

waiters are present. Otherwise, T spins on its status, which
changes to either the L or R state (line 17). While waiting,
T initiates the parking protocol (lines 75 – 86) on timing
out, where it tries to CAS the status of qnode from UW to
PW. T returns back on failure; otherwise, it adds itself to
the parking_list and schedules out. Later, when a lock
holder wakes it up, it resumes (line 83) and either acquires
the local lock or restarts the protocol, depending on its
updated status. If T has L status after being woken up, it
goes on to acquire the global lock as the previous lock
holder releases the global lock before waking up sleeping
waiters. To mitigate cache-line bouncing, T checks for the
global lock flag (line 5). If not set, T already holds the

USENIX Association 2017 USENIX Annual Technical Conference 609

global lock, or else it goes to acquire it.

Acquire global lock: T initializes its snode (line 28) and
adds itself to the waiting_list (line 29). It then acquires
the global lock if there is no waiter (line 31), or waits until
its predecessor snode passes the lock (line 35). On timing
out, while spinning (line 35), T CASes status of snode from
UW to PW and schedules out (line 38); otherwise, it acquires
the lock as the predecessor passed the lock. Note that even
after being woken up, T always acquires the global lock
without re-queueing itself.

Release local lock: T gets the current snode (line 42) and
tries to locally pass the lock if it is within the batching
threshold (line 43). To locally pass the lock, T first tries
to CAS the status of its successor from UW to L. On suc-
cess, the unlock phase is over; otherwise, it traverses the
waiting_list to find an actively running waiter (lines 88
– 99). Figure 3 (a) illustrates this scenario, where T1 ends
up passing the lock to T3 since T2 has PW state. Note that
if all waiters are parked, (line 99), T releases the global
lock (line 49) and then the local lock (line 50). T can also
initiate both release phases when an snode exceeds the
batching threshold. In the local unlock phase, T finds the
snode qnext pointer to pass the lock. If qnext is NULL, T
updates the qtail of snode with NULL (line 68) and wakes
up waiters in the parking list to the R state to re-queue
them back to the waiting_list (line 101). Figure 3 (b)
illustrates the scenario, where T3 is the last one in the
waiting_list. In the release phase, after resetting qtail
to NULL, T3 wakes up parked T2 after updating its status
from PW to UW. If there are waiters (lines 60 – 64), then
T again tries to pass the lock to a spinning waiter in the
waiting_list (line 88). If successful, a waiter acquires
the local lock and then goes for the global lock since T
has already released that one. If all, including the last
waiter, are parked (lines 60–64), T passes the local lock
to the last waiter and wakes it up because T cannot reset
the qtail pointer, as there maybe some parked waiters;
hence, passing the lock to the last waiter is mandatory.
Figure 3 (c) shows this scenario in which T2 is about to
release the local lock and finds that T3 is the last one and
has PW status. T2 has to wake up T3 with an L state (not R),
so that T3 can maintain the K42/MCS lock protocol.

Release global lock: The protocol differs from the MCS
protocol for passing the lock. For an existing snode suc-
cessor, thread T tries to CASes the status of its succeeding
snode from UW to L. If successful, the lock is passed; oth-
erwise, T explicitly updates the status to L and wakes up
the succeeding socket leader (lines 72 – 74).
5.2 Read-write Semaphore (CST-rwsem)
CST-rwsem is a writer-preferred version of the Cohort read-
write lock [4] (CST-rwsem) with two extensions: 1) ap-
plication of our parking strategy to the readers and 2)
our own version of the mutex algorithm (§5.1). It relaxes

the condition of acquiring the CS by multiple threads
in a read mode. Hence, it maintains an active reader
count (active_readers) on each snode to localize the
contention on each socket at the cost of increasing the
latency for the writers. We further extend the snode to
support the parking of readers by maintaining a separate
parking list for them, which allows readers to separately
park themselves without intervening with the writers.

Write lock: Thread T first acquires the CST-mutex
(line 109). Then T traverses all snodes to check whether
the value of active_readers is zero (line 111). Due to
our writer-preferred algorithm, T blocks new readers from
entering the CS because they can only proceed if there is
no writer. Once the writer has acquired the mutex lock, it
does not park itself, as this is a writer-preferred algorithm
and the writer will soon enter the CS (lines 110 – 113).

Read lock: T first finds its snode (line 122) and waits until
there are no writers (line 125). On timing out, while wait-
ing, T adds itself to the parking_list and schedules itself
out until there are no writers (line 142). The last writer
wakes up the first reader in the parking_list, which
wakes up remaining sleeping waiters in its own socket.
Lines 143 – 146 present the waking up of the parked
reader and subsequent readers.

Write unlock: T first releases the writer lock (line 116).
If there are no writers (line 117), then T checks for any
sleeping waiters across all snodes. If there are any, it
wakes up the only very first waiter, which will subse-
quently wake up remaining waiters to acquire the read
lock (line 119). This approach has two advantages: 1) it
ensures distributed, parallel wake-up of the readers, and
2) it does not lengthen the writer unlock phase along with
the least number of remote memory accesses.

Read unlock: Thread T searches for its snode from
the list of existing sockets and atomically decreases the
active_readers count by 1. T does not have to wake up
any writer because our approach does not park the writer
thread, which is going to be the next lock holder.

6 Implementation
We implemented CST locks on the Linux kernel v4.6
and v4.7. We also provide a destructor API to reclaim
the snode memory while destroying a data structure (e.g.,
destroy_inode for inode). For our evaluation, we modi-
fied the inode structure to use our CST-rwsem in v4.7 and
CST-mutex in v4.6 since mutex was replaced with rwsem
from v4.7 [40]. We also modified the virtual memory
subsystem (mmap_sem) that manipulates the virtual mem-
ory area of a process. We modified 650 and five calls
for mmap_sem and inode, respectively. In total, our lock
implementation comprises 1,100 lines of code and can
substitute most of the lock instances in Linux.

610 2017 USENIX Annual Technical Conference USENIX Association

0k

1k

2k

3k

4k

5k

6k

0 20 40 60 80 100 120
0.0 KB
0.8 KB
1.6 KB
2.4 KB
3.2 KB
4.0 KB
4.8 KB
5.6 KB

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

0 20 40 60 80 100 120
0.0 KB

0.8 KB

1.6 KB

2.4 KB

3.2 KB

4.0 KB

0

40

80

120

160

200

240

0 20 40 60 80 100 120
0 MB
40 MB
80 MB
120 MB
160 MB
200 MB
240 MB
280 MB

Jo
bs

/h
ou

r

#thread

Vanilla
(a) Histogram

#thread

Cohort
(b) Metis

M
em

or
y

#thread

CST
(c) Psearchy

Figure 5: Impact of synchronization primitives on the scalability and memory utilization for three applications: (a) Histogram, (b)
Metis, and (c) Psearchy with Linux’s native rwsem (Vanilla), Cohort read-write lock, and CST-rwsem.
7 Evaluation
We evaluate the impact of CST locks by answering the
following questions:
• How do locks affect the scalability and memory uti-

lization of real-world applications? (§7.1)
• What is the impact of locks on operations provided

by the OS in various scenarios? (§7.2)
• How does each design aspect help improve the per-

formance? (§7.3, §7.4)
Evaluation setup. We evaluate CST locks on three
workloads [1, 33] in an under-subscribed scenario, three
micro-benchmarks from FXMARK [27] that stress various
file system components and the kernel memory allocator.
Finally, we breakdown the performance implication of
each design aspect using a hash table micro-benchmark.
We evaluate on an eight-socket, 120-core machine with
Intel Xeon E7-8870 v2 processors.
7.1 Application Benchmarks
We evaluate the scalability of CST-rwsem on three applica-
tions, namely Histogram [33], Metis [1], and Psearchy [1],
that scale with increasing core count and stress the mem-
ory subsystem of the Linux kernel at varying levels. We
compare our lock with the Linux’s rwsem and an in-kernel
port of Cohort locks [14]. For each benchmark results, we
use Vanilla for the native Linux’s rwsem, Cohort for the
read-write Cohort lock, and CST for the CST-rwsem lock.
Histogram is a MapReduce application, which is page-
fault intensive. It mmaps an 11 GB file at the beginning
and keeps reading this file while each thread performs
a simple computation. Figure 5 (a) shows that NUMA-
aware Cohort and CST locks outperform the native im-
plementation after 60 cores. They scale better because
both locks localize the number of active readers within
a socket, thereby having almost negligible contention
across the sockets. Moreover, both locks have 2% idle
time because the Cohort lock is non-blocking by design
and the CST-rwsem effectively behaves as a non-blocking
lock. On the other hand, the vanilla version is idle 10.5%
of the time because of its ineffective parking strategy even
in the under-subscribed situation. In summary, both locks
outperform the native rwsem by 1.2× at 120 cores.
Metis is a mix of page-fault and mmap operation work-
load. It runs a worker thread on each core and mmaps
12 GB of anonymous memory for generating tables for
map, reduce, and merge phases. Figure 5 (b) shows that
both Cohort and CST locks outperform the original ver-

sion by 1.6× as soon as the frequency of the write opera-
tion increases. Since the Cohort lock is non-blocking, it
does not sleep, whereas the CST lock efficiently handles
the under-subscribed case by not parking the threads, re-
sulting in only 0.5% of idle time. Moreover, both locks
batch readers, which improves the throughput of the work-
load. On the other hand, the original rwsem has 39% of
the idle time because of its naive parking strategy and is
1.6× slower than the others at 120 cores.
Psearchy is a parallel version of searchy that does text
indexing. It is mmap intensive, which stresses the mem-
ory subsystem with multiple userspace threads. It does
around 96,000 small and large mmap/munmap operations
from 96,000 files with multiple threads, which taxes the
writer side of the rwsem in the memory subsystem as well
as the allocation of the inodes for those files in the vir-
tual file system layer. Figure 5 (c) shows that CST-rwsem
outperform both the Cohort and native locks by 1.4× at
120 cores. Cohort locks suffer from the static allocation
because the kernel has to allocate 96,000 inodes for read-
ing files into a per-core hash table of Psearchy, which not
only stresses the memory allocator with large objects, but
also suffers from ineffective scheduling because of the
involvement of multiple instances of locks. Like prior
workloads, the native lock suffers from the scheduler in-
tervention after 45 cores, as it spends up 54.4% being idle,
whereas the CST-rwsem is only idle for 11.4% of the time.

Summary. Figure 5 shows the impact of scheduler in-
tervention with increasing contention between readers
and writers. With our efficient spinning strategy that
checks its local load, CST locks have the same benefit
as Cohort locks in the case of a highly contended but
under-subscribed system. While Cohort locks improve the
scalability of applications in highly contended and under-
subscribed scenario, they hamper the scalability of appli-
cations that allocate multiple instances of locks (Figure 5
(c)). Unlike Cohort locks, CST locks consciously allocate
memory with increasing socket count, which saves up to
10× of memory for each workload on a single socket, and
1.5 – 9.1× at 120 cores. Thus, CST locks show that dy-
namic allocation is beneficial to real applications, while
mitigating the memory bloat issue and maintaining an
on-par performance.
7.2 Over- And Under-subscribed Cases
We compare the performance of CST locks with the ker-
nel and Cohort locks in both an over- and under-subscribed

USENIX Association 2017 USENIX Annual Technical Conference 611

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 128 256
0

40
80

120
160
200
240

1 2 4 8 16 32 64 128 256

O
ps

/µ
se

c

#thread

(a) DWOM (mutex)

Vanilla
Cohort

CST

#thread

(b) MWCM (mutex)

#thread

(c) MRDL (rwsem)

Figure 6: Impact of synchronization primitives on the scalability of micro-benchmarks [27] that affect file system operations such as
(a) overwriting a block in a shared file, (b) creating, and (c) enumerating files in a shared directory.

system, where multiple instances of locks are in use. We
run FXMARK because it stresses various file system oper-
ations by only stressing various kernel components that
interact with the virtual file system layer, without any user-
space computation. We use three micro-benchmarks from
FXMARK [27] to show how multiple instances—static
lock size allocation, contention, and scheduler—affect
the scalability of file system operations: DWOM updates a
shared file in which threads overwrite a block. It rep-
resents a log in I/O workloads such as databases that
multiple threads share and manipulate. MWCM creates mul-
tiple files in a shared directory. Both stress the writer lock
of rwsem, and mutex. Finally, MRDM enumerates all files in
a shared directory and stresses the reader lock.

Block overwrite. Figure 6 (a) shows the impact of var-
ious locks on the scalability of block overwriting that
stresses the mutex. We observe that the CST lock outper-
forms the Cohort lock by 1.6× and 2.3×, and the Linux
one by 2.6× and 2.5× for 120 and 240 threads, respec-
tively. Its efficient parking design maintains an on-par
performance even in the over-subscribed scenario (i.e.,
2× more threads). Cohort locks suffer from scheduler in-
teraction because tasks get frequently rescheduled, which
consume 54.4% of the time because of no scheduling
information. The native mutex suffers from cache-line
bouncing until 60 cores, but starts to suffer from scheduler
intervention since the threads start parking themselves as
the system is 98% and 90% idle at 120 and 240 threads,
respectively.

File creation. Figure 6 (b) shows the impact of various
locks on file creation. CST-mutex outperforms the Cohort
lock by 1.4× and 1614.7×, and the Linux mutex by 1.7×
and 2.2× for 120 and 240 threads, respectively. At 240
cores, CST-mutex suffers from a bottleneck imposed on
the memory allocator because of the over-subscription,
which also happens with the Linux mutex. The Cohort
lock, stresses both the scheduler and the memory allocator,
as each operation allocates a new inode, whose size is
3.8× larger than the normal inode structure. Moreover,
at 240 cores, its performance severely degrades because
of its non-blocking nature, and is 743.0× slower than
the Linux mutex. The Linux version again suffers from
the cache-line contention after 30 cores and then from
scheduler intervention after 60 cores.

File enumeration. Figure 6 (c) shows the impact of

reading a directory. CST-rwsem achieves almost linear
scalability with increasing threads up to 120 cores and
further scales in the over-subscribed case. It outperforms
the Cohort lock by 3.3× and 3.7×, and the Linux one
by 4.6× and 4.7× for 120 and 240 threads, respectively.
The Cohort lock still suffers from scheduler interaction,
whereas the Linux version suffers from cache-line con-
tention because of the global count of readers compared
with the per-socket storage by both hierarchical locks.

7.3 Performance Breakdown
We evaluate how each component of CST contributes
to the overall performance improvement by using an in-
kernel hash table that is protected by a single lock. To
quantify the impacts of NUMA awareness and parking
strategy, we keep the read-write ratio at 90/10%. We
vary the thread count from 1 to 600 threads on 120 cores
to show the effectiveness of our blocking strategy even
in the over-subscribed scenario. Figure 7 (a) shows the
throughput of readers with increasing thread count. We
evaluate three variants of the reader-side parking strat-
egy: 1) global wake-up of parked readers (CST-Wake)
and 2) distributed wake-up (CST-DWake). In an under-
subscribed system, CST variants outperform both Cohort
and Linux by 4.6× and 10×, respectively, as Cohort locks
suffers from scheduler intervention (86.4%) and mutex is
contending on the global reader count value. Beyond 120
threads, both the Cohort and CST-Spin approaches per-
form poorly compared with Linux because they are non-
blocking. On the other hand, CST-Wake and CST-DWake
scale up to 600 threads, thereby showing the importance
of blocking behavior. CST-DWake, a distributed wake-up
scheme for readers, wakes up more readers in parallel,
thereby improving their performance by 1.2× over the
global wake-up strategy and outperforming the Linux
version by 9.1×.

Figure 7 (b) presents another micro-benchmark results
in which we update a single cache line by multiple threads
from 120 to 600. We compare the Linux’s mutex with the
Cohort lock and two CST locks: 1) CST-WA is the block-
ing lock that modifies the status invariant and wakes up all
parked waiters in a socket, and 2) CST-WS is also block-
ing but wakes up the selected number of parked waiters in
which the number of wake-ups is equal to the number of
hardware threads in a socket. At 120 threads, the native
mutex suffers from cache-line bouncing and later from

612 2017 USENIX Annual Technical Conference USENIX Association

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512

0

200

400

600

800

1000

120 240 360 480 600

4,621.3 6,167.1 10,057.0 20,322.9

R
ea

ds
/µ

se
c

#thread

(a) Hash table lookup (rwsem)

Vanilla
Cohort

CST-Wake
CST-DWake

Ti
m

e
(n

s)

#thread

(b) Single cache line access (mutex)

Vanilla
Cohort

CST-WA
CST-WS

Figure 7: Two micro-benchmarks to illustrate the performance
impact of various techniques employed by CST-rwsem and
CST-mutex. Figure (a) represents the lookup performance of
a concurrent hash table for 10% writes, which uses rwsem. Fig-
ure (b) shows the time taken to update a single cache line by
holding a mutex with increasing thread count.

contention on its global parking_list while still main-
taining a permissible performance beyond 120 threads.
On the other hand, all CST variants address the cache-line
bouncing issue for 120 threads. However, the Cohort lock
suffers from spinning at higher core count since the wait-
ers preempt the lock-holder after 120 threads. CST-WA
and CST-WS address the limitation of the Cohort lock
and maintain on-par performance even beyond 120 cores.
CST-WS further mitigates the lock-holder preemption
problem, since it does not wake up all waiters in one shot
inside a socket, which has slightly higher throughput than
CST-WA. In summary, CST-WS outperforms the Linux
version by 1.7× at 6× over-subscription.

7.4 Critical Section Latency
We evaluate the lock/unlock pair latency of rwsem to
gauge the effectiveness of CST against the Linux ver-
sion. Table 1 shows that while NUMA-aware lock is a
better fit for multiple readers/writers, it suffers in the low
contention scenario because of the costly operation of
finding the snode for readers and multiple atomic opera-
tions to obtain the lock, which we can improve with the
hysteresis-based technique [5].

8 Discussion and Limitations
The current design of CST locks can introduce starvation
in two cases: 1) re-queueing of the waiters after they are
parked, and 2) the writer-preferred version of the rwsem.
Although, in theory, we can devise a non-blocking al-
gorithm that mitigates the overhead of costly scheduler
interaction for the first case, we have not come across
such an algorithm in practice and the CST lock is a better
alternative than the current mutex that also suffers from
the same starvation issue. We believe that this can be a
plausible future research direction both in the terms of syn-
chronization primitives and lightweight scheduling. For

Latency RW-lock (ns)

Kernel Cohort CST

Reader (1 reader) 30.4 36.4 37.6
Reader (120 readers) 20,062.2 1,973.2 1,925.3
Writer (0 reader) 31.3 140.3 75.0
Writer (119 readers) 28,545.2 11,314.4 4,252.2

Table 1: Empty critical section latency for rwsem.

CST-rwsem, we choose a writer-preferred version because
it batches readers, thereby improving the throughput of
the application, which is similar to the design ideology
of the Linux rwsem [37]. We can address this limitation
by exactly adopting the writer-preferred version of the
read-write Cohort lock [4].

Even though CST locks outperform both Cohort locks
and the Linux mutex, we can further scale applications
by using combining [13, 32] or the remote-core locking
approach [23]. However, the only caveat with these ap-
proaches is that we need to rewrite some parts of the
OS, which is not easy due to the large code base and
complicated lock usage. Another area in which we can
improve the performance of CST locks is the latency in
low contention (Table 1). We are investigating the use
of hardware transactional memory (TSX) to acquire and
release the locks in a transaction as in prior work [5]. Al-
though CST locks cannot completely replace all of the
locks, they are beneficial to a few data structures that are
critical and contend as much as inode, mm, dentry, etc.

9 Conclusion
Synchronization primitives are the basic building blocks
of any parallel application, out of which the blocking syn-
chronization primitives are designed to handle both over-
and under-subscribed scenarios. We find that the existing
primitives have sub-optimal performance for machines
with large core count. They suffer either from cache-line
contention or scheduler intervention in both scenarios,
and are oblivious to the existing NUMA machines. In
this work, we present scalable NUMA-aware, memory-
efficient blocking primitives that exploit the NUMA
hardware topology along with scheduling-aware parking
and wake-up strategies. We implement CST-mutex and
CST-rwsem, which provide the same benefit of existing
non-blocking NUMA-aware locks in under-subscribed
scenario while maintaining similar peak performance
in over-subscribed cases. Our code is available here:
https://github.com/sslab-gatech/cst-locks.

10 Acknowledgment
We thank the anonymous reviewers and our shep-
herd, Jean-Pierre Lozi, for their helpful feedback.
This research was supported by the NSF award DGE-
1500084, CNS-1563848, CRI-1629851, ONR under grant
N000141512162, DARPA TC program under contract No.
DARPA FA8650-15-C-7556, DARPA XD3 program un-
der contract No. DARPA HR0011-16-C-0059, and ETRI
MSIP/IITP[B0101-15-0644].

USENIX Association 2017 USENIX Annual Technical Conference 613

https://github.com/sslab-gatech/cst-locks

References
[1] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.

Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[2] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
Non-scalable locks are dangerous. In Proceedings of the Linux
Symposium, Ottawa, Canada, July 2012.

[3] D. Bueso and S. Norton. An Overview of Kernel Lock Im-
provements, 2014. https://events.linuxfoundation.org/
sites/events/files/slides/linuxcon-2014-locking-
final.pdf.

[4] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and
N. Shavit. NUMA-aware Reader-writer Locks. In Proceedings of
the 18th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 157–166, Shenzhen, China, Feb.
2013.

[5] M. Chabbi and J. Mellor-Crummey. Contention-conscious,
Locality-preserving Locks. In Proceedings of the 21st ACM
Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 22:1–22:14, Barcelona, Spain, Mar. 2016.

[6] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the
20th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), San Francisco, CA, Feb. 2015.

[7] G. Chadha, S. Mahlke, and S. Narayanasamy. When Less is
More (LIMO):Controlled Parallelism For improved Efficiency. In
Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES ’12,
2012.

[8] D. Chinner. Re: [regression, 3.16-rc] rwsem: optimistic spinning
causing performance degradation, 2014. https://lkml.org/
lkml/2014/7/3/25.

[9] D. Dice. Malthusian Locks. CoRR, abs/1511.06035, 2015. URL
http://arxiv.org/abs/1511.06035.

[10] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA
Locks. In Proceedings of the Twenty-third Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 65–74, 2011.

[11] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A Gen-
eral Technique for Designing NUMA Locks. In Proceedings of
the 17th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 247–256, New Orleans, LA, Feb.
2012.

[12] Facebook. A persistent key-value store for fast storage environ-
ments, 2012. http://rocksdb.org/.

[13] P. Fatourou and N. D. Kallimanis. Revisiting the Combining
Synchronization Technique. In Proceedings of the 17th ACM
Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 257–266, New Orleans, LA, Feb. 2012.

[14] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The
Case is Not Closed Yet. In Proceedings of the 2016 USENIX
Annual Technical Conference (ATC), pages 649–662, Denver, CO,
June 2016.

[15] IBM. IBM K42 Group, 2016. http://researcher.watson.
ibm.com/researcher/view_group.php?id=2078.

[16] Xeon Processor E7-8890 v4 (60M Cache, 2.20 GHz). In-
tel, 2016. http://ark.intel.com/products/93790/Intel-
Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz.

[17] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decou-
pling Contention Management from Scheduling. In Proceedings of
the 15th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),
pages 117–128, New York, NY, Mar. 2010.

[18] X. Leroy. The open group base specifications issue 7, 2016. http:
//pubs.opengroup.org/onlinepubs/9699919799/.

[19] R. Liu, H. Zhang, and H. Chen. Scalable Read-mostly Synchro-
nization Using Passive Reader-writer Locks. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC), pages
219–230, Philadelphia, PA, June 2014.

[20] Y. Liu. aim7 performance regression by commit 5a50508 report
from LKP, 2014. https://lkml.org/lkml/2013/1/29/84.

[21] W. Long. qspinlock: Introducing a 4-byte queue spinlock, 2014.
https://lwn.net/Articles/582897/.

[22] W. Long. locking/mutex: Enable optimistic spinning of lock
waiter, 2016. https://lwn.net/Articles/696952/.

[23] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast
and Portable Locking for Multicore Architectures. ACM Trans.
Comput. Syst., 33(4):13:1–13:62, Jan. 2016.

[24] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH
Queue Lock. In Proceedings of the 12th International Conference
on Parallel Processing, Euro-Par’06, pages 801–810, 2006.

[25] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-memory Multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, Feb. 1991.

[26] Microsoft. SQL Server 2014, 2014. http://www.
microsoft.com/en-us/server-cloud/products/sql-
server/features.aspx.

[27] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the
2016 USENIX Annual Technical Conference (ATC), Denver, CO,
June 2016.

[28] I. Molnar. Linux rwsem, 2006. http://www.makelinux.net/
ldd3/chp-5-sect-3.

[29] I. Molnar and D. Bueso. Generic Mutex Subsystem,
2016. https://www.kernel.org/doc/Documentation/
locking/mutex-design.txt.

[30] O. Nesterov. Linux percpu-rwsem, 2012. http://lxr.free-
electrons.com/source/include/linux/percpu-
rwsem.h.

[31] Data Sheet: SPARC M7-16 Server. Oracle, 2015.
http://www.oracle.com/us/products/servers-
storage/sparc-m7-16-ds-2687045.pdf.

[32] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel pro-
grams with synchronization bottlenecks efficiently. In Proceedings
of International Workshop on Parallel and Distributed Computing
for Symbolic and Irregular Applications (PDSIA), pages 182–204,
jul 1999.

[33] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and Multi-
processor Systems. In Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture,
HPCA ’07, pages 13–24, 2007.

[34] SAP. SAP HANA 2: the transformer, 2015. http://hana.sap.
com/abouthana.html.

[35] M. L. Scott. Non-blocking Timeout in Scalable Queue-based Spin
Locks. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing, PODC ’02, pages 31–40,
New York, NY, USA, 2002. ISBN 1-58113-485-1.

[36] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks
with Timeout. In Proceedings of the 6th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages
44–52, Snowbird, Utah, June 2001.

[37] A. Shi. [PATCH] rwsem: steal writing sem for better performance,

614 2017 USENIX Annual Technical Conference USENIX Association

https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://lkml.org/lkml/2014/7/3/25
https://lkml.org/lkml/2014/7/3/25
http://arxiv.org/abs/1511.06035
http://rocksdb.org/
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://lkml.org/lkml/2013/1/29/84
https://lwn.net/Articles/582897/
https://lwn.net/Articles/696952/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.makelinux.net/ldd3/chp-5-sect-3
http://www.makelinux.net/ldd3/chp-5-sect-3
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://hana.sap.com/abouthana.html
http://hana.sap.com/abouthana.html

2013. https://lkml.org/lkml/2013/2/5/309.

[38] L. Torvalds. Linux Wait Queues, 2005. http://www.tldp.org/
LDP/tlk/kernel/kernel.html#wait-queue-struct.

[39] L. Torvalds. The Linux Kernel Archives, 2017. https://www.
kernel.org/.

[40] A. Viro. parallel lookups, 2016. https://lwn.net/Articles/
684089/.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10, 2010.

[42] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Pri-
eto. Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors. ACM Comput. Surv., 45(1),
Dec. 2012.

USENIX Association 2017 USENIX Annual Technical Conference 615

https://lkml.org/lkml/2013/2/5/309
http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
https://www.kernel.org/
https://www.kernel.org/
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/

StreamBox: Modern Stream Processing on a Multicore Machine

Hongyu Miao1, Heejin Park1, Myeongjae Jeon2,

Gennady Pekhimenko2, Kathryn S. McKinley3, and Felix Xiaozhu Lin1

1Purdue ECE 2Microsoft Research 3Google

Abstract

Stream analytics on real-time events has an insatiable de-

mand for throughput and latency. Its performance on a

single machine is central to meeting this demand, even in

a distributed system. This paper presents a novel stream

processing engine called StreamBox that exploits the

parallelism and memory hierarchy of modern multicore

hardware. StreamBox executes a pipeline of transforms

over records that may arrive out-of-order. As records ar-

rive, it groups the records into ordered epochs delineated

by watermarks. A watermark guarantees no subsequent

record’s event timestamp will precede it.

Our contribution is to produce and manage abun-

dant parallelism by generalizing out-of-order record pro-

cessing within each epoch to out-of-order epoch pro-

cessing and by dynamically prioritizing epochs to opti-

mize latency. We introduce a data structure called cas-
cading containers, which dynamically manages concur-

rency and dependences among epochs in the transform

pipeline. StreamBox creates sequential memory layout

of records in epochs and steers them to optimize NUMA

locality. On a 56-core machine, StreamBox processes

records up to 38 GB/sec (38M Records/sec) with 50 ms

latency.

1 Introduction

Stream processing is a central paradigm of modern data

analytics. Stream engines process unbounded numbers

of records by pushing them through a pipeline of trans-
forms, a continuous computation on records [3]. Records

have event timestamps, but they may arrive out-of-order,

because records may travel over diverse network paths

and computations on records may execute at different

rates. To communicate stream progression, transforms

emit timestamps called watermarks. Upon receiving a

watermark wts, a transform is guaranteed to have ob-

served all prior records with event time ≤ ts.

Most stream processing engines are distributed be-

cause they assume processing requirements outstrip the

capabilities of a single machine [38, 28, 32]. How-

ever, modern hardware advances make a single multi-

core machine an attractive streaming platform. These ad-

vances include (i) high throughput I/O that significantly

improves ingress rate, e.g., Remote Direct Memory Ac-

cess (RDMA) and 10Gb Ethernet; (ii) terabyte DRAMs

that hold massive in-memory stream processing state;

and (iii) a large number of cores. This paper seeks to

maximize streaming throughput and minimize latency on

modern multicore hardware, thus reducing the number of

required machines to process streaming workloads.

Stream processing on a multicore machine raises three

major challenges. First, the streaming engine must ex-

tract parallelism aggressively. Given a set of trans-

forms {d1,d2, · · · ,dn} in a pipeline, the streaming en-

gine should exploit (i) pipeline parallelism by simultane-

ously processing all the transforms on different records

in the data stream and (ii) data parallelism on all the

available records in a transform. Second, the engine

must minimize thread synchronization while respecting

dependences. Third, the engine should exploit the mem-

ory hierarchy by creating sequential layout and minimiz-

ing data copying as records flow through various trans-

forms in the pipeline.

To address these challenges, we present StreamBox,

an out-of-order stream processing engine for multicore

machines. StreamBox organizes out-of-order records

into epochs determined by arrival time at pipeline

ingress and delimited by periodic event time watermarks.

It manages all epochs with a novel parallel data struc-

ture called cascading containers. Each container man-

ages an epoch, including its records and end watermark.

StreamBox dynamically creates and manages multiple

inflight containers for each transform. StreamBox links

upstream containers to their downstream consuming con-

tainers. StreamBox provides three core mechanisms:

(1) StreamBox satisfies dependences and transform

USENIX Association 2017 USENIX Annual Technical Conference 617

correctness by tracking producer/consumer epochs,

records, and watermarks. It optimizes throughput and la-

tency by creating abundant parallelism. It populates and

processes multiple transforms and multiple in progress

containers per transform. For instance, when watermark

processing is a long latency event, StreamBox is not

stalled, because as soon as any subsequent records arrive,

it opens new containers and starts processing them.

(2) StreamBox elastically maps software parallelism

to hardware. It binds a set of worker threads to cores.

(i) Each thread independently retrieves a set of records

(a bundle) from a container and performs the transform,

producing new records that it deposits to a downstream

container(s). (ii) To optimize latency, it prioritizes the

processing of containers with timestamps required for

the next stream output. As is standard in stream pro-

cessing, outputs are scoped by temporal windows that are

scoped by watermarks to one or more epochs.

(3) StreamBox judiciously places records in memory

by mapping streaming access patterns to the memory ar-

chitecture. To promote sequential memory access, it or-

ganizes pipeline state based on the output window size,

placing records in the same windows contiguously. To

maximize NUMA locality, it explicitly steers streams to

flow within local NUMA nodes rather than across nodes.

We evaluate StreamBox on six benchmarks with a 12-

core and 56-core machine. StreamBox scales well up

to 56 cores, and achieves high throughput (millions of

records per second) and low latency (tens of millisec-

onds) on out-of-order records. On the 56-core system,

StreamBox reduces latency by a factor of 20 over Spark

Streaming [38] and matches the throughput of results of

Spark and Apache Beam [3] on medium-size clusters of

100 to 200 CPU cores for grep and wordcount.
The full source code of StreamBox is available at

http://xsel.rocks/p/streambox.

2 Stream model and background

This section describes our out-of-order stream process-

ing model and terminology, summarized in Table 1.

Streaming pipelines A stream processing engine re-

ceives one or more streams of records and performs a se-

quence of transforms D = {d1,d2, · · · ,dn} on the records

R. Each record rts ∈ R has a timestamp ts for tempo-

ral processing. A record has an event timestamp defined

by its occurrence (e.g., when a sensor samples a geoloca-

tion). Ingress of a record to the stream engine determines

its arrival timestamp.

Out-of-order streaming Because data sources are di-

verse, records travel different paths, and transforms op-

erate at different rates, records may arrive out-of-order at

the stream processing engine or to individual transforms.

Table 1: Terminology

Term Definition

Stream An unbounded sequence of records

Transform A computation that consumes and produces streams

Pipeline A dataflow graph of transforms

Watermark A special event timestamp for marking stream progression

Epoch A set of records arriving between two watermarks

Bundle A set of records in an epoch (processing unit of work)

Evaluator A worker thread that processes bundles and watermarks

Container Data structure that tracks watermarks, epochs, and bundles

Window A temporal processing scope of records

To achieve low latency, the stream engine must contin-
uously process records and thus cannot stall waiting for

event and arrival time to align. We adopt the out-of-order

processing (OOP) [27] paradigm based on windows to

address this challenge.

Watermarks and stream epochs Ingress and trans-

forms emit strictly monotonic event timestamps called

watermarks wts, as exemplified in Figure 1(a). A wa-

termark guarantees no subsequent records will have an

event time earlier than ts. At ingress, watermarks de-

limit ordered consecutive epochs of records. An epoch

may have records with event timestamps greater than the

epoch’s end watermark due to out-of-order arrival. The

stream processing engine may process records one at a

time or in bundles.

We rely on stream sources and transforms to cre-

ate watermarks based on their knowledge of the stream

data [2, 3]. We do not inject watermarks (as does prior

work [7]) to force output and manage buffering.

Pipeline egress Transforms define event-time windows
that dictate the granularity at which to output results. Be-

cause we rely on watermarks to define streaming pro-

gression, the rate of egress is bounded by the rate of wa-

termarks, since a transform can only close a window af-

ter it receives a watermark. We define the output delay
in a pipeline from the time it first receives the watermark

wts that signals the completion of the current window to

the moment when it delivers the window results to the

user. This critical path is implicit in the watermark times-

tamps. It includes processing any remaining records in

epochs that precede wts and processing wts itself.

Programming model We use the popular model from

timely dataflow [30], Google dataflow [3], and others. To

compose a pipeline, developers declare transforms and

define dataflows among transforms. This is exemplified

by the following code that defines a pipeline for Win-

dowed Grep, one benchmark used in our evaluation (§9).

// 1. Declare transforms
Source <string > source (/* config info */);
FixedWindowInto <string > fwi(seconds (1));
WindowedGrep <string >wingrep (/* regexp */);
Sink <string > sink();

// 2. Create a pipeline
Pipeline* p = Pipeline :: create ();

618 2017 USENIX Annual Technical Conference USENIX Association

p->apply(source); //set source

// 3. Connect transforms together
connect_transform(source , fwi);
connect_transform(fwi , wingrep);
connect_transform(wingrep , sink);

// 4. Evaluate the pipeline
Evaluator eval (/* config info */);
eval.run(p); // run the pipeline

Listing 1: Pseudo code for Windowed Grep pipeline

To implement a transform, developers must define

the following functions, as shown in Figure 1(b): (i)

ProcessRecord(r) consumes a record r and may emit

derived records. (ii) ProcessWm(w) consumes a water-

mark w, flushes the transform’s internal state, and may

emit derived records and watermarks. ProcessWm(w) is

always invoked only after ProcessRecord(r) consumes

all records in the current epoch.

3 Design goals and criteria

We seek to exploit the potential of modern multicore

hardware with its abundant hardware parallelism, mem-

ory capacity, and I/O bandwidth for high throughput and

low latency. A key contribution of this paper is exploiting

epoch parallelism by concurrently processing all avail-

able epochs in every transform, in addition to pipeline

parallelism. Epoch parallelism generalizes the idea of

processing the records in each epoch out-of-order by pro-

cessing epochs out-of-order. The following two invari-

ants ensure correctness:

(1) Records respect epoch boundaries Each epoch

is defined by a start watermark wstart and an end water-

mark wend that arrive at ingress at time start and end, and

consists only of records rat that arrive at ingress at time

at, with start < at < end. Once an ingress record rat is

assigned an epoch, records never changed epochs, since

this change might violate the watermark guarantee.

(2) Watermark ordering A transform D may only

consume wend after it consumes all the records r in the

epoch. This invariant transitively ensures that water-

marks and epochs are processed in order, and is criti-

cal to pipeline correctness, as it enforces the progression

contract on ingress and between transforms.

Our primary design goal is to minimize latency by

exploiting epoch and pipeline parallelism with minimal

synchronization while maintaining these invariants. In

particular, our engine processes unconsumed records us-

ing all available hardware resources regardless of record

ordering, delayed watermarks, or epoch ordering. We

further minimize latency by exploiting the multicore

memory hierarchy (i) by creating sequential memory lay-

out and minimizing data movement, and (ii) by mapping

streaming data flows to the NUMA architecture.

Process
Record()

ProcessWm()

internal state
flushbundles

0:100:20 0:20
0:11 0:050:22 0:12

0:10
0:18 0:05 0:110:12 0:18

Figure 1: A transform in a StreamBox pipeline.

4 StreamBox overview

A StreamBox pipeline includes multiple transforms and

each transform has multiple containers. Each container

is linked to a container in a downstream transform or

egress. Containers form a network pipeline organiza-

tion, as depicted in Figure 2. Records, derived records,

and watermarks flow through the network by following

the links. A window consists of one or more epochs.

The window size determines the output aggregation and

memory layout, but otherwise does not influence how

StreamBox manages epochs.

This dataflow pipeline network is necessary to exploit

parallelism because parallelism emerges dynamically as

a result of variation in record arrival times and the vari-

ation in processing times of individual records and wa-

termarks for different transforms. For instance, records,

based on their content, may require variable amounts of

processing. Furthermore, it is typically faster to process

a record than a watermark. However, exposing this abun-

dant record processing parallelism and achieving low la-

tency require prioritizing containers on the critical path

through the network. StreamBox prioritizes records in

containers with timestamps preceding the pipeline’s up-

coming output watermark. Otherwise, the scheduler pro-

cesses records from transforms with the most open con-

tainers. StreamBox thus dynamically adds parallelism to

the bottleneck transforms of the network to optimize la-

tency.

StreamBox implements three core components:

Elastic pipeline execution StreamBox dynamically al-

locates worker threads (evaluators) from a pool to trans-

forms to maximize CPU utilization. StreamBox pins

each evaluator to a CPU core to limit contention. During

execution, StreamBox dispatches pending records and

watermarks to evaluators. An evaluator executes trans-

form code (i.e., ProcessRecord() or ProcessWm()) and

USENIX Association 2017 USENIX Annual Technical Conference 619

produces new records and watermarks that further drive

the execution of downstream transforms.

When dispatching records, StreamBox packs them

into variable sized bundles for processing to amortize

dispatch overhead and improve throughput. Bundles dif-

fer from batches in many other streaming engines [38,

32, 7]. First, bundle size is completely orthogonal to

the transform logic and its windowing scheme. Stream-
Box is thus at liberty to vary bundle size dynamically

per transform, trading dispatch latency for overhead.

Second, dynamically packing records in bundles does

not delay evaluators and imposes little buffering delay.

StreamBox only produces sizable bundles when down-

stream transforms back up the pipeline.

Cascading containers Each container belongs to a

transform and tracks one epoch, its state (open, process-
ing, or consumed), the relationship between the epoch’s

records and its end watermark, and the output epoch(s)

in the downstream consuming transform(s). Each trans-

form owns a set of containers for its current input epochs.

With this container state, executers may concurrently

consume and produce records in all epochs without

breaking or relaxing watermarks.

Pipeline state management StreamBox places records

belonging to the same temporal windows (one or more

adjacent epochs) in contiguous memory chunks. It

adapts a bundle’s internal organization of records, cater-

ing to data properties, e.g., the number of values per

key. StreamBox steers bundles so that they flow mostly

within their own NUMA nodes rather than across nodes.

To manage transform internal state, StreamBox instan-

tiates a contiguous array of slides per transform, where

each slide holds processing results for a given event-time

range, e.g., a window. Evaluators operate on slide ar-

rays based on window semantics, which are independent

of the epoch tracking mechanism – cascading contain-

ers. The slide array realization incurs low synchroniza-

tion costs under concurrent access.

5 Cascading containers

Cascading containers track epochs and orchestrate con-

current evaluators (i) to consume all of an epoch’s

records before processing its end watermark, (ii) to

consume watermarks in stream order, and (iii) to emit

records derived from an upstream epoch into the corre-

sponding downstream epoch(s).

Figure 2 shows the cascading container design. Each

transform owns a set of input stream containers, one for

each potential epoch. When StreamBox creates a con-

tainer uc, it creates one downstream container dc (or

more) for its output in the downstream transform(s) and

links to it, causing a cascade of container creation. It

09:00

04:00

00:00

25:00 15:0020:00
(Upstream)

Window

Aggregation

Sink

OldestNewest

1

Mapper

Unclaimed
bundle

Retrieved bundle
(not consumed yet)

3
A2 A1A3

S4 S3 S2 S1

M1

W1

(Downstream)

2

W2

Flow of bundles
& watermarks

Figure 2: An overview of cascading containers

OPEN

9:00

WM
ASSIGNED

WM
RETRIEVED

WM
CONSUMED

WM_CANCELED

(DESTROY)

(INIT)

Figure 3: The life cycle of a container

puts all records and watermarks derived from the trans-

form on uc into this corresponding downstream con-

tainer dc. All these containers form a pipeline network.

As stream processing progresses, the network topology

evolves. Evaluators create new containers, establish links

between containers, and destroy consumed containers.

5.1 Container implementation

StreamBox initializes a container Down when the trans-

form receives the first input record or bundle of an epoch.

Each container includes any unclaimed bundles of the

epoch. An unconsumed counter tracks the number of

bundles that ever entered the container but are not fully

consumed. After processing a bundle, Down deposits de-

rived output bundles in the downstream container and

then updates the unconsumed counter.

Container state StreamBox uses a container to track an

epoch’s life cycle as follows and shown in Figure 3.

OPEN Containers are initially empty. An open container

receives bundles from the immediate upstream Dup.

The owner Down processes the bundles simultaneously.

WM ASSIGNED When Dup emits an epoch watermark

w, it deposits w in Down’s dependent container. Even-

tually Down consumes all bundles in the container and

the unconsumed counter drops to zero, at which point

Down retrieves and processes the end watermark.

WM RETRIEVED A container enters this state when

Down starts processing the end watermark.

620 2017 USENIX Annual Technical Conference USENIX Association

WM CONSUMED After Down consumes the end water-

mark, it guarantees that it has flushed all derived state

and the end watermark to the downstream container

and Down may be destroyed.

WM CANCELLED Dup chooses not to emit the end wa-

termark for the (potential) epoch. Section 5.2 de-

scribes how we support windowing transforms by can-

celling watermarks and merging containers.

Lock-free container processing Containers are lock-

free to minimize synchronization overhead. We instanti-

ate the end watermark as an atomic variable that enforces

acquire-release memory order. It ensures that Down ob-

serves all Dup evaluators’ writes to the container’s un-

claimed bundle set before observing Dup’s write of the

end watermark. The unclaimed bundle set is a concurrent

data structure that aggressively weakens the ordering se-

mantics on bundles for scalability. Examples of other

such data structures include non-linearizable lock-free

queues [13] and relaxed priority queues [4]. We further

exploit this flexibility to make the bundle set NUMA-

aware, as discussed in Section 7.1.

5.2 Single-input transforms
If a transform has only one input stream, all its input

epochs – and therefore the containers – are ordered, even

though records are not.

Creating containers The immediate upstream container

Dup creates downstream containers on-demand and links

to them. Figure 2 1 shows an example of container cre-

ation. When StreamBox processes the first bundle in A3,

it creates S4 and any missing container that precedes it,

in this case S3, and links A3 to S4 and A2 to S3. To make

concurrent growth safe, StreamBox instantiates down-

stream links and containers using an atomic variable with

strong consistency. Subsequent bundle processing uses

the instantiated links and containers.

Processing To select a bundle to process, evaluators

walk the container list for a transform, starting from

the oldest container to the youngest, since the oldest

container holds the most urgent work for state exter-

nalization. If an evaluator encounters containers in the

wm consumed state, it destroys the container. Otherwise,

1. it retrieves an unclaimed bundle. If none exists,

2. it retrieves the end watermark when (i) the water-

mark is valid (i.e., the container has wm assigned),

and (ii) all bundles are consumed (unconsumed ==

0), and (iii) all watermarks in the preceding contain-

ers of Down are consumed.

3. If the evaluator fails to retrieve a bundle or wa-

termark from this container, it moves to the next

younger container on Down’s list.

L

R
Ddown

0:300:40 0:100:20

Join L0’ R0’L1’ R1’

0:000:100:100:20

Joint watermarks seen by Ddown
after consuming each epoch

L0L1

R1 R0

partial watermarks

L

R
DdownJoin

partial watermarks

(b) Arbitrarily ordering Join’s output epochs relaxes watermarks

A record

2

1

3

Figure 4: A logic diagram of OOP temporal join

Figure 2 shows an example. An evaluator starts from

the oldest container W1 to find work 2 . Because W1

is in WM RETRIEVED (all bundles are consumed and the

end watermark is being processed), the worker moves on

to W2. Because all bundles in W2 are consumed but

the end watermark is available, it retrieves the watermark

(09:00) for processing. Section 6 describes how we pri-

oritize transforms in the container network.

Merging containers for windowing For each input con-

tainer, we create a potential downstream container, ex-

pecting each input epoch will correspond to an output

epoch. However, when a transform D performs win-

dowing operations, it often must wait for multiple wa-

termarks to correctly aggregate records. In this case,

we merge containers. Figure 2 3 shows an example

of Aggregation on a 10-min window. After consuming

container A1 with its 04:00 watermark, the Aggregation

transform cannot yet emit a watermark and retire its cur-

rent window (0:00-10:00). Our solution is to cancel wa-

termarks and merge the downstream output containers

until the windowing logic, which uses event time, is sat-

isfied. This operation is cheap. StreamBox cancels wa-

termarks by simply marking them wcancel . As evaluators

walk container lists and observe wcancel , they logically

treat adjacent containers as one, e.g., S2 and S3. When

the transform receives a watermark ts ≥ 10, it emits the

watermark which will eventually close the container.

5.3 Multi-input transforms

A multi-input transform, such as temporal Join and

Union, takes multiple input streams and produces one

stream. Figure 4 shows an example of out-of-order tem-

poral join [27]. The left and right input streams progress

independently (they share D join’s internal state). The

USENIX Association 2017 USENIX Annual Technical Conference 621

output stream consists of interleaved epochs resulting

from processing either input stream. These epochs are

delimited by partial watermarks (wL or wR), which are

also solely derived from the input streams. The down-

stream Ddown derives a joint watermark as min(w′L,w′R),
where w′L and w′R are the most recent left and right partial

watermarks.

The case for unordered containers A multi-input trans-

form, unlike single-input transforms, cannot always have

its downstream containers arranged on an ordered list

(§5.2) because an optimal ordering of output epochs de-

pends on their respective end (partial) watermarks. On

the other hand, arbitrarily ordering output epochs may

unnecessarily relax watermarks and delay watermark

processing (§2).

Figure 4(b) shows an example of arbitrarily order-

ing output epochs. While processing open input epochs

L0/L1 and R0/R1 1 , StreamBox arbitrarily orders

the corresponding output as L1’→R1’→L0’→R0’ with-

out knowing the end watermarks. Later, these output

epochs eventually receive their partial end watermarks

2 . Upon consuming them, Ddown derives joint water-

marks based on its subsequent observations of partial

watermarks 3 . Unfortunately, the joint watermark is

more relaxed than the partial watermarks. For instance,

the partial watermark 00:30 of R0’ guarantees that all

records in R0’ are later than 00:30. However, from the

derived joint watermark, Ddown only knows that they are

later than 00:00. Relaxed watermarks propagate to all

downstream transforms. To tighten a joint watermark,

StreamBox should have placed L0’ and L1’ (and per-

haps more subsequent left epochs) before R0’ and R1’.

However, it cannot make that decision before observing

all these partial watermarks!

In summary, StreamBox must achieve two objectives

in tracking epochs for multi-input transforms. (1) It must

track output epochs with corresponding containers for

epoch parallelism. (2) It must defer ordering these con-

tainers until it determines their end watermarks.

Solution StreamBox maintains unordered containers for

a multi-input transform’s output epochs and their down-

stream counterparts. Once StreamBox determines the or-

dering of one epoch, it appends the corresponding con-

tainer to an ordered list and propagates this change down-

stream. Figure 5 shows an example.

• D join owns two ordered container lists L and R.

• D1, the immediate downstream transform of D join,

owns three ordered lists of containers. L1 and R1 are

derived from D join’s L and R, respectively. S1 holds

merged containers from L1 and R1.

• With D2 downstream of D1, D2 owns an unordered set

U and an ordered list S2.

As D join processes its input streams L and R, it de-

L

R

(Upstream)

D2

DJoin

L1

R1

S2

S1

U

3

2

4

(to downstream)

D1

11

C2

C1

(Downstream)

Figure 5: Unordered containers for Join and its down-

stream. For brevity, container watermarks are not drawn

posits the derived bundles and watermarks to containers

on L1, R1, and S1 1 . D1 selects the oldest container

C1 on L1 and R1 to process and it appends C1 to S1 2 .

Processing C1, deposits records in container C2 (follow-

ing the down link), which subsequently produces records

in containers at S2 3 and beyond 4 .

5.4 Synchronized access to containers

In the cascading containers network, the concurrent eval-

uators dynamically modify the network topology by cre-

ating, linking, and destroying containers. Although the

most frequent container operations, such as processing

records, are lock-free as described in Section 5.1, mod-

ifying the container network must be synchronized. We

carefully structure network modifications in reader and

writer paths and synchronize them with one readers-

writer lock for each container list. To retrieve work,

an evaluator holds the container list’s reader lock while

walking the list. If the evaluator needs to modify the list

(e.g., to destroy a container), it atomically upgrades the

reader lock to a writer lock.

6 Pipeline scheduling

A pipeline’s latency depends on how fast the engine ex-

ternalizes the state of the current window. To this end,

StreamBox’s scheduler prioritizes upcoming state exter-

nalization.

StreamBox maintains a global notion of the next ex-
ternalization moment (NEM). The upcoming windowed

output requires processing of all bundles and watermarks

with timestamps prior to NEM. After each state external-

ization, StreamBox increments the NEM monotonically

based on a prediction. In the common case where exter-

nalization is driven by temporal windows, the engine can

622 2017 USENIX Annual Technical Conference USENIX Association

accurately predict NEM as the end of the current win-

dow. In case windowing information is unavailable, the

engine may predict NEM based on historical externaliza-

tion timing. Mispredicting NEM may increase the output

delay but will not affect correctness.

NEM guides work prioritization in StreamBox. All

evaluators independently retrieve work (i.e., bundles or

watermarks) from cascading containers. By executing

StreamBox’s dispatch function, an evaluator looks for

work by traversing container lists from the oldest to the

youngest, starting from the top of the network. It priori-

tizes bundles in containers with timestamps that precede

NEM.

Watermark processing is on the critical path of state

externalization and often entails substantial amount of

work, e.g., reduction of the window state. To acceler-

ate watermark processing, StreamBox creates a special

watermark task queue. Watermark tasks are defined as

lambda functions. StreamBox gives these tasks higher

priority and executes them with the same set of evalua-

tors – without oversubscribing the CPU cores. An eval-

uator first processes watermark tasks. After completing

a task, evaluators return to the dispatcher immediately.

Evaluators never wait on a synchronization barrier inside

the watermark evaluator. This on-demand, extra paral-

lelism accelerates watermark evaluation.

7 Pipeline state management

The memory behavior of a stream pipeline is deter-

mined by the bundles of records flowing among trans-

forms and the transforms’ internal states. To manage this

state, StreamBox targets locality, NUMA-awareness,

and coarse-grained allocation/free. We decouple state

management from other key aspects, including epoch

tracking, worker scheduling, and transform logic.

7.1 Bundles
Adaptive internal structure StreamBox adaptively

packs records into bundles for processing.

StreamBox seeks to (i) maximize sequential access,

(ii) minimize data movement, and (iii) minimize the per-
record overhead incurred by bundling.

A bundle stores a “flat” sequence of records sequen-

tially in contiguous memory chunks. This logical record

ordering supports grouping records temporally in epochs

and windows, and by keys. It achieves both because

temporal computation usually executes on all the keys

of specific windows, rather than on specific keys of all

windows. This choice contrasts to prior work that sim-

ply treats <window, key> as a new key.

To minimize data movement, StreamBox adapts bun-

dle internals to the transform algorithm. For instance,

given a Mapper that filters records, the bundles include

both records and a bitmap, where each bit indicates the

presence of a record, so that a record can be logically fil-

tered by simply toggling a bit. Databases commonly use

this optimization [7] as well.

StreamBox adapts bundle internals based on input

data properties. The performance of keyed transforms,

i.e., those consuming key-value pairs, is sensitive to the

physical organization of these values. If each key has a

large number of values, a bundle will hold a key’s values

using an array of pointers, each pointing to an array of

values. This choice makes combining values produced

by multiple workers as cheap as copying a few pointers.

If each key only has a few values, StreamBox holds them

in an array and copies them during combining. To learn

about the input data, StreamBox samples a small fraction

of it.

NUMA-aware bundle flows StreamBox explicitly

steers bundles between transforms for NUMA locality

by maximizing the chance that a bundle is both produced

and consumed on the same NUMA node.

Each bundle resides in memory from one NUMA node

and is labeled with that node. When an evaluator pro-

cesses a container, it prefers unclaimed bundles labeled

with its same NUMA node. It will process non-local

bundles only when bundles from the local node are all

consumed. To facilitate this process, an evaluator always

allocates memory on its NUMA node, and later deposits

the new bundle to the NUMA node of the downstream

container. Notice that the NUMA-aware scheduling only

affects the order among bundles within a container. It

does not starve important work, e.g., containers to be dis-

patched by the next externalization moment.

7.2 Transform Internal State

StreamBox organizes a transform’s internal state as an

array of temporal slides, forming a slide. Each slide cor-

responds to a window (for fixed windows) or a window’s

offset (for sliding windows). Note that the size of a slide

is independent of an epoch size.

To access a transform’s state, an evaluator operates

on a range of slides: updating slides in-place for accu-

mulating processing results; fetching slides for closing

a window; and retiring slides for state flushing. Since

concurrent evaluators frequently access the slide arrays,

we need to minimize locking and data movement. To

achieve this goal, StreamBox grows the array on-demand

and atomically. It only copies pointers when fetching

slides. It decouples the logical retirement of slides from

their actual, likely expensive destruction. To support

concurrent access to a single slide, the current Stream-
Box implementation employs off-the-shelf concurrent

data structures, as discussed below.

USENIX Association 2017 USENIX Annual Technical Conference 623

56CM Dell PowerEdge R930
4850v4 “Broadwell”

12CM Dell PowerEdge R720
2630v2 “Ivy Bridge”

Table 2: Test platforms used in experiments

8 Implementation

We implement StreamBox in 22K SLoC of C++11. The

implementation extensively uses templates, static poly-

morphism, and C++ smart pointers. We implemented

Windowing, GroupBy, Aggregation, Mapper, Reducer,

and Temporal Join as our library transforms. Our scal-

able parallel runtime relies on the following scalable low-

level building blocks.

C++ libraries We use boost [20] for timekeeping and

locks, Intel TBB [22] for concurrent hash tables, and

Facebook folly [17] for optimized vectors and strings.

Folly improves the performance of some benchmarks

by 20–30%. For scalable memory allocation, we

use jemalloc [12], which scales much better than

std::alloc and TBB [23] on our workloads.

Concurrent hash tables are hotspots in most statefull

pipelines. We tested three open-source concurrent hash

tables [22, 18, 17], but they either did not scale to a large

core count or required pre-allocating a large amount of

memory. Despite the extensive research on scalable hash

tables [26, 6], we needed to implement an internally

partitioned hash table. We wrapped TBB’s concurrent

hash map. This simple optimization improves our per-

formance by 20–30%.

Bundle size is an empirical trade off between scheduling

delay and overhead. StreamBox mainly varies bundle

size at pipeline ingress. When the engine is fully busy,

with all records in one ingress epoch, it produces as many

bundles as evaluators, e.g., 56 bundles for 56 evaluators,

to maximize the bundle size without starving any thread.

The largest bundle size is around 80K records. When

the ingress slows down, the system shrinks bundle sizes

to reduce latency. We empirically determine that a 2×
reduction in bundle size balances a 10% drop in ingress

data rate. We set the minimal bundle size at 1K records

to avoid excessive per-record overhead.

9 Evaluation

Methodology We evaluate StreamBox on the two mul-

ticore servers, summarized in Table 2. 56CM is a high-

end server that excels at real-time analytics and 12CM

is a mid-range server. Although 100 Gb/s Infiniband

(RDMA) networks are available, our local network is

only 10 Gb/s. However, 10 Gb/s is insufficient to test

StreamBox and furthermore even if we used Infiniband,

it will directly store stream input in memory. We there-

fore generate ingress streams from memory. We dedi-

cate a small number of cores (1–3) to the pipeline source.

We then replay these large memory buffers pre-populated

with records and emit in-memory stream epochs contin-

uously. We measure the maximum sustained throughput

of up to 38 GB/s at the pipeline source when the pipeline

delay meets a given target.

Benchmarks We use the following benchmarks and

datasets. Unless stated otherwise, each input epoch con-

tains 1 M records and spans 1 second of event time. (1)

Windowed Grep (grep) searches the input text and out-

puts all occurrences of a specific string. We use Amazon

Movie Reviews (8.7 GB in total) [37] as input, a sliding

window of 30 seconds, and 1 second target latency. The

input record size is 1 KB. (2) Word Count (wordcount)
splits input texts into words and counts the occurrences

of each word. We use 954 MB English books [21] as in-

put, a sliding window of 30 seconds, and 1 second target

latency. The input record size is 100 bytes. (3) Tempo-
ral Join (join) has two input streams, for which we ran-

domly generate unique 64-bit integers as keys. The join

window for each record is ± 0.5 seconds. (4) Counting
Distinct URLs (distinct) [32] counts unique URL iden-

tifiers. We use the Yandex dataset [16] with 70 M unique

URLs and a fixed window of 1 second. (5) Network
Latency Monitoring (netmon) [32] groups network la-

tency records by IP pairs and computes the average per

group. We use the Pingmesh dataset [19] with 88 M

records and a fixed window of 1 second. The source

emits 500K records per epoch. (6) Tweets Sentiment
Analysis (tweets) [32] correlates sentiment changes in a

tweet stream to the most frequent words. It correlates re-

sults from two pipelines: one that selects windows with

significant sentiment score changes, and the other that

calculates the most frequent words for each window. We

use a public dataset of 8 million English tweets [10] and

a fixed window of 1 second. This benchmark is the most

complex and uses 8 transforms.

9.1 Throughput and Scalability
This section evaluates the throughput, scalability, and

out-of-order handling of StreamBox, and compares with

existing stream processing systems.

Throughput Figure 6 presents throughput on the y-axis

for the six benchmarks as a function of hardware paral-

lelism on the x-axis and latency as distinct lines. Stream-
Box has high throughput and typically processes millions

of input records per second on a single machine, while

delivering latencies as low as 50 ms. In particular, grep

achieves up to 38 M records per second, which translates

to 38 GB per second. This outstanding performance is

due to low overheads and high system utilization. Profil-

624 2017 USENIX Annual Technical Conference USENIX Association

 0

 10000

 20000

 30000

 40000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Windowed Grep

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)
 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Word Count

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)
 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Temporal Join

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

 0

 500

 1000

 1500

 2000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Counting Distinct URLs
CM56 (1sec)

CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Network Latency Monitoring
CM56 (1sec)

CM56 (500ms)
CM12 (1sec)

CM12 (500ms)

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Tweets Sentiment Analysis

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

Figure 6: Throughput of StreamBox as a function of hardware parallelism and latency. StreamBox scales well.

 0

 2000

 4000

 6000

4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

0%
20%
40%

(a) wordcount

 0

 200

 400

 600

 800

 1000

4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

0%
20%
40%

(b) netmon

 0

 2000

 4000

 6000

4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

0%
20%
40%

(c) tweets

Figure 7: StreamBox achieves high throughput even

when a large fraction of records arrive out-of-order.

ing shows that all CPU cores have consistently high uti-

lization (> 95%) and that most time is spent performing

transform logic, e.g., processing stream data and manip-

ulating hash tables.

Scalability Figure 6 shows that StreamBox scales well

with core count for most benchmarks on both the 12-core

and 56-core machines. When scalability diminishes in a

few cases beyond 32 cores, as for grep, it is a result of

memory-bound computation saturating the machine.

Out-of-order records By design, StreamBox efficiently

computes on out-of-order records. To demonstrate this

feature, we force a certain percent of records to arrive

early in each epoch, i.e., the event time of these records

is larger than the enclosing epoch’s end watermark. Fig-

ure 7 shows the effect on throughput for 3 benchmarks.

StreamBox achieves nearly the same throughput and la-

tency as in in-order data processing. In particular, the

throughput loss is as small as 7% even with 40% of

records out-of-order. The minor degradation is due to

early-arriving records that accumulate more windows in

the pipeline. We attribute this consistent performance to

(i) out-of-order epoch processing, since each transform

continuously processes out-of-order records without de-

lay, and (ii) prioritizing bundles and watermarks that de-

cide the externalization latency of the current window in

the scheduler.

Comparing to distributed stream engines We first

compare StreamBox with published results of a few pop-

ular distributed stream processing systems and then eval-

uate two of them on our 56-core machine. Most pub-

lished results are based on processing of in-order stream

data. For out-of-order data, they either lack support (e.g.,

no notion of watermarks) or expect transforms to “hold

and sort”, which significantly degrades latency [11, 35].

Compared to existing systems, StreamBox jointly

achieves low millisecond latency and high throughput

(tens of millions of records per second). Very few sys-

tems achieve both. To achieve similar throughput, prior

work uses at least a medium-size cluster with a few hun-

dred CPU cores [28, 38]. For instance, under the 50-

ms target latency, StreamBox’s throughput on 56CM

is 40× greater than StreamScope [28] running on 100

cores. Moreover, even under a 1-second target latency,

StreamBox achieves much higher throughput per core.

StreamBox can process 700K records/sec for grep and

90K records/sec for wordcount per core, which are 4.7×
and 1.5× faster than the per-core processing rate reported

by Spark Streaming on a 100-node cluster with a total of

400 cores.

We further experimentally compare StreamBox with

Spark (v2.1.0) [38] and Apache Beam (v0.5.0) [3], on

the same machine (56CM). We verify that they both uti-

lize all cores. We set the the target latency to 1 second

since they cannot achieve 50 ms as StreamBox does. Fig-

USENIX Association 2017 USENIX Annual Technical Conference 625

 0

 2000

 4000

 6000

 8000

4 12 32 56
7K 10K 10K 8K

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
Spark Streaming

Beam

Figure 8: StreamBox scales better than Spark and Beam

with wordcount on 56CM, with a 1-second target latency.

 0

 10000

 20000

 30000

 40000

 50000

32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
In-order

(a) grep

 0

 2000

 4000

 6000

 8000

32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
In-order

(b) wordcount

 0

 1000

 2000

32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
In-order

(c) distinct

Figure 9: In-order processing reduces parallelism, scala-

bility, and throughput.

ure 8 shows that StreamBox achieves significantly higher

throughput (by more than one order of magnitude) and it

scales much better with core count.

Comparing to single-machine streaming engines A

few streaming engines are designed for a single ma-

chine: Oracle CEP [31], StreamBase [34], Esper [14],

and SABER (for CPU+GPU) [24]. With 4 to 16 CPU

cores, they achieve throughput between thousands and a

few million of records per second. None of them reports

to scale beyond 32 CPU cores. In particular, we tested

Esper [14] on 56CM with wordcount. On four cores, Es-

per achieves around 900K records per second, which is

similar to StreamBox with the same core count. How-

ever, we were unable to get Esper to scale even after

applying recommended programming techniques, e.g.,

context partitioning [15]. As the core count increases,

we observed the throughput drops.

In summary, StreamBox achieves better or similar per

core performance than prior work. More importantly,

StreamBox scales well to a large core count even with

out-of-order record arrival.

9.2 Validation of key design features

This section evaluates the performance and scaling con-

tributions of our key design features.

Epoch parallelism for out-of-order processing Epoch

parallelism is fundamental to producing abundant paral-

 0

 2000

 4000

 6000

 8000

4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
No-respect

(a) wordcount on 56CM

 0

 2000

 4000

4 12

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

StreamBox
No-respect

(b) wordcount on 12CM

Figure 10: When records do not respect epoch bound-

aries, it limits parallelism, scalability, and throughput.

lelism and exploiting out-of-order processing. We com-

pare with in-order epoch processing by implementing

“hold and sort,” in which each transform waits to process

an epoch until all its records arrive. Note that this in-

order epoch processing leaves out the high cost of sort-

ing records. It processes records within an epoch out-

of-order. Figure 9 shows that in-order epoch processing

reduces throughput by 25% – 87%. Profiling reveals the

reduced parallelism causes poor CPU utilization.

Records must respect epoch boundaries (§3). Stream-
Box enforces the invariant that records respect epoch

boundaries by mapping upstream containers to down-

stream containers (§5). We compare this to an alterna-

tive design where a transform’s output records always

flow into the most recently opened downstream con-

tainer. Records then no longer respect epoch boundaries,

since later records may enter earlier epochs. Violating

the epoch invariant leads to huge latency fluctuations in

watermark externalization, degrading performance. Fig-

ure 10 shows that not respecting epoch boundaries re-

duces throughput by up to 71%.

Prioritized scheduling (§6) Prioritizing containers on

the critical path is crucial to latency and throughput. To

explore its effect, we disable prioritized scheduling such

that evaluators freely retrieve available bundles anywhere

in the pipeline starting from its curent source and sink

container. In this configuration, evaluators tend to rush

into one transform, drain bundles there, and then move to

the next. We confirmed this behavior with profiling. Per-

formance measurements show that the pipeline latency

fluctuates greatly and sometimes overshoots the target la-

tency by a factor of 10.

NUMA-awareness (§7) We find NUMA-awareness es-

pecially benefits memory-bound benchmarks. For exam-

ple, grep without windowing achieves 54 GB/s on 56CM,

which is 12.5% higher than a configuration with NUMA-

unaware evaluators.

Watermark arrival rates. Frequent watermarks lead

to shorter epochs and more containers, each with fewer

records, thus increasing the maintenance cost of cascad-

626 2017 USENIX Annual Technical Conference USENIX Association

 0

 2000

 4000

 6000

10
00

K
10

0K 10
K 1KTh

ro
ug

hp
ut

 K
Re

c/
s

Records/Epoch

Figure 11: Performance impact of watermark arrival rate

for wordcount on 56CM.

ing containers. In general, as shown in Figure 11, con-

tainers are sufficiently lightweight so that frequent wa-

termarks (e.g., 100× more watermarks in 10K record-

s/epoch) result in only a minor performance loss (e.g.,

20%). However, substantial performance degradation

emerges for watermarks at the rate of 1 K records/epoch,

because frequent container creation and destruction incur

too much synchronization.

10 Related work

This section compares StreamBox to prior work that uses

the out-of-order processing (OOP) model, distributed

and single server stream engines, and on exploiting

shared memory for streaming.

OOP stream processing A variety of classic stream-

ing engines focus on processing in-order records with

a single core (e.g., StreamBase [34], Aurora [1], Tele-

graphCQ [9], Esper [14], Gigascope [11], and Nia-

garaST [29]). Li et al. [27] advocate OOP stream pro-

cessing that relies on stream progression messages, e.g.

punctuations, for better throughput and efficiency. The

notion of punctuations is implemented in many modern

streaming engines [3, 7, 28]. These systems do exploit

pipeline and batch parallelism, but they do not exploit

out-of-order processing of epochs to expose and deliver

highly scalable data parallelism on a single server.

Single-machine streaming engines Trill [8] inspires

StreamBox’s state management with its columnar store

and bit-vector design. However, Trill’s punctuations are

generated by the engine itself in order to flush its in-

ternal batches, which limits parallelism. Furthermore,

Trill assumes ordered input records, which limits it ap-

plicability. StreamBox has neither of these limitations.

SABER [24] is a hybrid streaming engine for CPUs and

GPGPUs. Similar to StreamBox, it exploits data paral-

lelism with multithreading. However, SABER does not

support OOP. It must reorder execution results from con-

current workers, limiting its applicability and scalability.

Oracle CEP [31] exploits record parallelism by relaxing

record ordering. However, it lacks the notion of water-

marks and does not implement statefull OOP pipelines.

Distributed streaming engines Several systems process

large continuous streams using hundreds to thousands of

machines. Their designs often focus on addressing the

pressing concerns of a distributed environment, such as

fault tolerance [38, 32, 28], programming models [30, 3],

and API compatibility [36]. TimeStream [32] tracks data

dependence between transform’s input and output, but

uses it for failure recovery. StreamBox also tracks fine-

grained epoch dependences, but for minimizing exter-

nalization latency. StreamScope [28] handles OOP us-

ing watermark semantics, but it does not exploit OOP for

performance as does StreamBox. It instead implements

operator determinism based on holding and waiting for

watermarks. StreamBox is partially inspired by Google’s

dataflow model [3] and is an implementation of its OOP

programming model. However, to the best of our knowl-

edge and based on our experiments, the Apache Beam [5]

open-source implementation of Google dataflow does

not exploit epoch parallelism on a multicore machine.

Data analytics on a shared memory machine Some

data analytics engines propose to facilitate sequential

memory access [33, 25] and one exploits NUMA [39].

StreamBox’s bundles are similar to morsels in a rela-

tional query evaluator design [26], where evaluators pro-

cess data fragments (“morsels”) in batch and that are

likely allocated on local NUMA nodes. StreamBox fa-

vors low scheduling delay for stream processing. Eval-

uators are rescheduled after consuming each bundle, in-

stead of executing the entire pipeline for that bundle.

11 Conclusions

This paper presents the design of a stream processing en-

gine that harnesses the hardware parallelism and memory

hierarchy of modern multicore servers. We introduce a

novel data structure called cascading containers to track

dependences between epochs while at the same time pro-

cessing any available records in any epoch. Experimen-

tal results show StreamBox scales to a large number of

cores and achieves throughput on-par with distributed

engines on medium-size clusters. At the same time,

StreamBox delivers latencies in the tens of milliseconds,

which are 20× shorter than other large-scale streaming

engines. The key contribution of our work is a general-

ization of out-of-order record processing to out-of-order

epoch processing that maximizes parallelism while min-

imizing synchronization overheads.

Acknowledgments

This work was supported in part by NSF Award

#1619075 and by a Google Faculty Award. The authors

thank the anonymous reviewers and the paper shepherd,

Charlie Curtsinger, for their useful feedback.

USENIX Association 2017 USENIX Annual Technical Conference 627

References

[1] ABADI, D., CARNEY, D., CETINTEMEL, U.,

CHERNIACK, M., CONVEY, C., ERWIN, C.,

GALVEZ, E., HATOUN, M., MASKEY, A., RASIN,

A., ET AL. Aurora: a data stream management sys-

tem. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data
(2003), ACM, pp. 666–666.

[2] AKIDAU, T., BALIKOV, A., BEKIROĞLU, K.,

CHERNYAK, S., HABERMAN, J., LAX, R.,

MCVEETY, S., MILLS, D., NORDSTROM, P.,

AND WHITTLE, S. Millwheel: Fault-tolerant

stream processing at internet scale. Proc. VLDB
Endow. 6, 11 (Aug. 2013), 1033–1044.

[3] AKIDAU, T., BRADSHAW, R., CHAMBERS,

C., CHERNYAK, S., FERNÁNDEZ-MOCTEZUMA,

R. J., LAX, R., MCVEETY, S., MILLS, D.,

PERRY, F., SCHMIDT, E., ET AL. The dataflow

model: A practical approach to balancing cor-

rectness, latency, and cost in massive-scale, un-

bounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment 8, 12 (2015), 1792–

1803.

[4] ALISTARH, D., KOPINSKY, J., LI, J., AND

SHAVIT, N. The spraylist: A scalable relaxed prior-

ity queue. SIGPLAN Not. 50, 8 (Jan. 2015), 11–20.

[5] APACHE. Beam. https://beam.apache.org/,

2017.

[6] BALKESEN, C., TEUBNER, J., ALONSO, G., AND

ÖZSU, M. T. Main-memory hash joins on multi-

core cpus: Tuning to the underlying hardware. In

Data Engineering (ICDE), 2013 IEEE 29th Inter-
national Conference on (2013), IEEE, pp. 362–373.

[7] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-

NETT, M., DELINE, R., FISHER, D., PLATT,

J. C., TERWILLIGER, J. F., AND WERNSING, J.

Trill: A high-performance incremental query pro-

cessor for diverse analytics. Proceedings of the
VLDB Endowment 8, 4 (2014), 401–412.

[8] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-

NETT, M., DELINE, R., FISHER, D., PLATT,

J. C., TERWILLIGER, J. F., AND WERNSING, J.

Trill: A high-performance incremental query pro-

cessor for diverse analytics. Proceedings of the
VLDB Endowment 8, 4 (2014), 401–412.

[9] CHANDRASEKARAN, S., COOPER, O., DESH-

PANDE, A., FRANKLIN, M. J., HELLERSTEIN,

J. M., HONG, W., KRISHNAMURTHY, S., MAD-

DEN, S. R., REISS, F., AND SHAH, M. A. Tele-

graphcq: continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international
conference on Management of data (2003), ACM,

pp. 668–668.

[10] CHENG, Z., CAVERLEE, J., AND LEE, K. You are

where you tweet: a content-based approach to geo-

locating twitter users. In Proceedings of the 19th
ACM international conference on Information and
knowledge management (2010), ACM, pp. 759–

768.

[11] CRANOR, C., JOHNSON, T., SPATASCHEK, O.,

AND SHKAPENYUK, V. Gigascope: a stream

database for network applications. In Proceed-
ings of the 2003 ACM SIGMOD international con-
ference on Management of data (2003), ACM,

pp. 647–651.

[12] DAVID GOLDBLATT, DAVE WATSON, J. E. Je-

malloc memory allocator. http://http://

jemalloc.net/, 2017.

[13] DESROCHERS, C. moodycamel::concurrentqueue.

https://github.com/cameron314/

concurrentqueue, 2016.

[14] ESPERTECH. Esper. http://www.espertech.

com/esper/, 2017.

[15] ESPERTECH. Esper faq. http://www.

espertech.com/esper/faq_esper.php#

scaling, 2017.

[16] EUGENE KHARITONOV, P. S. Yan-

dex: Personalized web search chal-

lenge. https://www.kaggle.com/c/

yandex-personalized-web-search-challenge/

data, 2017.

[17] FACEBOOK. Folly. https:

//github.com/facebook/folly#

folly-facebook-open-source-library,

2017.

[18] GOYAL, M., FAN, B., LI, X., ANDERSEN, D. G.,

AND KAMINSKY, M. Libcuckoo. https://

github.com/efficient/libcuckoo, 2017.

[19] GUO, C., YUAN, L., XIANG, D., DANG, Y.,

HUANG, R., MALTZ, D., LIU, Z., WANG, V.,

PANG, B., CHEN, H., ET AL. Pingmesh: A large-

scale system for data center network latency mea-

surement and analysis. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 139–152.

628 2017 USENIX Annual Technical Conference USENIX Association

[20] GURTOVOYI, A., AND ABRAHAMSI, D. Boost

c++ libraries. http://www.boost.org/, 2017.

[21] HART, M. Free ebooks by project gutenberg.

http://www.gutenberg.org/wiki/Main_

Page, 2017.

[22] INTEL. Intel threading building blocks. https:

//software.intel.com/en-us/intel-tbb,

2017.

[23] INTEL. Scalable memory allocator. https:

//www.threadingbuildingblocks.org/

tutorial-intel-tbb-scalable-memory-allocator,

2017.

[24] KOLIOUSIS, A., WEIDLICH, M., CASTRO FER-

NANDEZ, R., WOLF, A. L., COSTA, P., AND

PIETZUCH, P. Saber: Window-based hybrid stream

processing for heterogeneous architectures. In Pro-
ceedings of the 2016 International Conference on
Management of Data (New York, NY, USA, 2016),

SIGMOD ’16, ACM, pp. 555–569.

[25] KYROLA, A., BLELLOCH, G., AND GUESTRIN,

C. Graphchi: Large-scale graph computation on

just a PC. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12,

USENIX Association, pp. 31–46.

[26] LEIS, V., BONCZ, P., KEMPER, A., AND NEU-

MANN, T. Morsel-driven parallelism: a numa-

aware query evaluation framework for the many-

core age. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of
data (2014), ACM, pp. 743–754.

[27] LI, J., TUFTE, K., SHKAPENYUK, V., PAPADI-

MOS, V., JOHNSON, T., AND MAIER, D. Out-

of-order processing: a new architecture for high-

performance stream systems. Proceedings of the
VLDB Endowment 1, 1 (2008), 274–288.

[28] LIN, W., QIAN, Z., XU, J., YANG, S., ZHOU, J.,

AND ZHOU, L. Streamscope: continuous reliable

distributed processing of big data streams. In Proc.
of NSDI (2016), pp. 439–454.

[29] MAIER, D., LI, J., TUCKER, P., TUFTE, K., AND

PAPADIMOS, V. Semantics of data streams and op-

erators. In International Conference on Database
Theory (2005), Springer, pp. 37–52.

[30] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,

ISARD, M., BARHAM, P., AND ABADI, M. Na-

iad: A timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2013),

SOSP ’13, ACM, pp. 439–455.

[31] ORACLE. Stream explorer. http://bit.ly/

1L6tKz3, 2017.

[32] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H.,

ZHANG, T., ZHOU, L., YU, Y., AND ZHANG, Z.

Timestream: Reliable stream computation in the

cloud. In Proceedings of the 8th ACM European
Conference on Computer Systems (New York, NY,

USA, 2013), EuroSys ’13, ACM, pp. 1–14.

[33] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,

W. X-stream: Edge-centric graph processing using

streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13,

ACM, pp. 472–488.

[34] STANLEY ZDONIK, MICHAEL STONEBRAKER,

M. C. Streambase systems. http://www.tibco.

com/products/tibco-streambase, 2017.

[35] TUCKER, P. A., MAIER, D., SHEARD, T., AND

FEGARAS, L. Exploiting punctuation semantics

in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003),

555–568.

[36] TWITTER. Heron. https://twitter.github.

io/heron/, 2017.

[37] WANG, L., ZHAN, J., LUO, C., ZHU, Y., YANG,

Q., HE, Y., GAO, W., JIA, Z., SHI, Y., ZHANG,

S., ET AL. Bigdatabench: A big data bench-

mark suite from internet services. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on (2014), IEEE,

pp. 488–499.

[38] ZAHARIA, M., DAS, T., LI, H., HUNTER, T.,

SHENKER, S., AND STOICA, I. Discretized

streams: Fault-tolerant streaming computation at

scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(2013), ACM, pp. 423–438.

[39] ZHANG, K., CHEN, R., AND CHEN, H. Numa-

aware graph-structured analytics. SIGPLAN Not.
50, 8 (Jan. 2015), 183–193.

USENIX Association 2017 USENIX Annual Technical Conference 629

Everything you always wanted to know about multicore graph processing
but were afraid to ask

Jasmina Malicevic
EPFL

Baptiste Lepers
EPFL

Willy Zwaenepoel
EPFL

Abstract

Graph processing systems are used in a wide variety of
fields, ranging from biology to social networks, and a
large number of such systems have been described in the
recent literature. We perform a systematic comparison
of various techniques proposed to speed up in-memory
multicore graph processing. In addition, we take an end-
to-end view of execution time, including not only algo-
rithm execution time, but also pre-processing time and
the time to load the graph input data from storage.

More specifically, we study various data structures to
represent the graph in memory, various approaches to
pre-processing and various ways to structure the graph
computation. We also investigate approaches to improve
cache locality, synchronization, and NUMA-awareness.
In doing so, we take our inspiration from a number of
graph processing systems, and implement the techniques
they propose in a single system. We then selectively en-
able different techniques, allowing us to assess their ben-
efits in isolation and independent of unrelated implemen-
tation considerations.

Our main observation is that the cost of pre-processing
in many circumstances dominates the cost of algorithm
execution, calling into question the benefits of proposed
algorithmic optimizations that rely on extensive pre-
processing. Equally surprising, using radix sort turns
out to be the most efficient way of pre-processing the
graph input data into adjacency lists, when the graph in-
put data is already in memory or is loaded from fast stor-
age. Furthermore, we adapt a technique developed for
out-of-core graph processing, and show that it signifi-
cantly improves cache locality. Finally, we demonstrate
that NUMA-awareness and its attendant pre-processing
costs are beneficial only on large machines and for cer-
tain algorithms.

1 Introduction

Interest in processing graph-structured data has grown
over the last few years, especially for mining relation-
ships in social network graphs. Many graph process-
ing systems have been built, including single-machine,
cluster-based, in-memory and out-of-core systems [7, 8,
12–14, 16, 17, 19, 20, 22, 23, 26, 27, 29, 33, 36, 37]. In
this paper we focus on single-machine in-memory graph
processing systems. With the recent increase in main
memory size and number of cores, such machines can
now process very large graphs in a reasonable amount of
time.

With few exceptions [4, 28], most papers on graph pro-
cessing systems present a new system and compare its
performance (and occasionally its programmability) to
previous systems. While interesting, these comparisons
are often difficult to interpret, because systems are multi-
dimensional, and therefore a variety of features may con-
tribute to observed performance differences. Variations
in hardware and software infrastructure, input formats,
algorithms, graphs and measurement methods further ob-
scure the comparison.

In this paper we take a different approach. Rather than
comparing different systems, we compare different tech-
niques used in graph processing systems, and we try to
answer the question: what techniques provide what ben-
efits for what types of algorithms and graphs? We imple-
ment various techniques proposed in different papers in
a single system. We then selectively enable the different
techniques, and compare the performance of the result-
ing approach on the same hardware platform for the same
algorithms and graphs.

In particular we take an end-to-end view of graph pro-
cessing, often absent in other papers. Graph processing
involves loading the graph as an edge array from stor-
age, pre-processing the input to construct the necessary
data structures, executing the actual graph algorithm, and
storing the results. Most papers focus solely on the algo-

USENIX Association 2017 USENIX Annual Technical Conference 631

rithm phase, but we demonstrate that there is an impor-
tant trade-off between pre-processing time and algorithm
execution time. While we recognize that pre-processing
can potentially be amortized over repeated executions,
we show that gains in algorithm execution time can be
completely undone by increases in pre-processing time.

We structure our investigation of algorithm execution
time along two dimensions. In a first dimension, we dis-
tinguish between a vertex-centric approach, in which the
algorithm iterates over vertices, and an edge-centric ap-
proach, in which the algorithm iterates over edges. In
addition, we propose a new iteration approach, adapted
from out-of-core systems [37], in which the algorithm
iterates over grids, with improved cache locality as a re-
sult. In a second dimension, we distinguish between al-
gorithms that push information to their neighbors, or pull
information from them. We also consider algorithms that
dynamically choose between push and pull.

To illustrate through a simple example the importance
of an end-to-end view, we analyze the push-pull ap-
proach to Breadth First Search (BFS)1. Earlier papers [2,
3, 29] have demonstrated that, for BFS, a push-pull ap-
proach results in better algorithm execution time than the
conventional push approach. Figure 1 shows the end-
to-end execution time of BFS on the well-known Twit-
ter follower graph [18] using both approaches. While
the algorithm execution time is indeed 3× smaller for
push-pull, the overall execution is completely dominated
by pre-processing. The pre-processing time is 2× larger
for push-pull, resulting in 1.5× worse overall end-to-end
time.

In addition to different methods of iteration and infor-
mation flow, various optimizations have been proposed
to take advantage of memory locality on NUMA ma-
chines. These optimizations often take the form of par-
titioning data structures during pre-processing, such that
most accesses during algorithm execution are local to a
NUMA node. Continuing the theme of the trade-off of
pre-processing versus algorithm execution times, we in-
vestigate whether such pre-processing pays off for graph
processing.

The main results of this paper are:

• An illustration of the fundamental trade-off be-
tween pre-processing and algorithm execution time
in graph processing.

• An evaluation of different techniques for building
adjacency lists, showing that radix sort provides the
best performance when the graph is in memory or
when it is loaded from a fast storage medium.

• An evaluation of the pre-processing vs. algorithm
execution time trade-off for vertex-centric vs. edge-

1see Section 6 for a precise definition of push-pull

 0
 2
 4
 6
 8

 10
 12
 14

bfs
push-pull

bfs
push

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 1: Example of the trade-off between pre-processing
and algorithm execution time for BFS on the Twitter graph:
push-pull improves algorithm execution time, but the required
pre-processing time leads to overall worse end-to-end execu-
tion time (measured on Ligra [29]).

centric computation, showing that the construction
of adjacency lists for vertex-centric processing may
or may not pay off, depending on the algorithm ex-
ecution time.

• An evaluation of a push vs. pull information flow,
illustrating the benefits of reduced computation for
push vs. reduced synchronization for pull.

• An evaluation of the pre-processing vs. computa-
tion trade-off for combined push-pull information
flow, showing that the extra pre-processing costs as-
sociated with this combination outweigh gains in al-
gorithm execution time.

• The adaptation of an out-of-core technique for im-
proving the cache locality and the synchronization
overhead of an in-memory graph processing system.

• An evaluation of the pre-processing vs. com-
putation tradeoff for NUMA-aware optimizations,
demonstrating that their large pre-processing times
can be compensated by gains in algorithm execu-
tion time only on large NUMA machines and only
for certain algorithms.

The outline of this paper is somewhat unusual. We
start in Section 2 with an overview of the hardware and
software used in this paper. We discuss data structures
and pre-processing costs in Section 3. In Section 4
we look at the relationship between the data layout and
vertex-centric or edge-centric computation. Section 5
discusses methods for improving cache locality. In Sec-
tion 6 we evaluate the choice between push and pull
approaches and its implications for algorithm execution
time, pre-processing time and synchronization overhead.
Section 7 evaluates graph partitioning approaches to take
advantage of NUMA characteristics. Section 8 summa-
rizes results on graphs and algorithms not discussed in
previous sections. Section 9 provides an overview of all
the results in one place. Section 10 discusses the graph
processing systems from which we draw inspiration for
this work. Section 11 concludes the paper.

632 2017 USENIX Annual Technical Conference USENIX Association

The code used for the experiments in this paper and
instructions on how to run them is available at: https:
//github.com/epfl-labos/EverythingGraph.

2 Experimental setup

Experimental environment. We evaluate the pre-
processing and algorithm execution times on two ma-
chines, each representative of a large class of machines.
Machine A has 2 NUMA nodes, and is less sensitive
to NUMA effects than machine B, which has 4 NUMA
nodes. More precisely, machine A has 2 Intel Xeon E5-
2630 processors, each with 8 cores (16 cores in total) and
a 20MB LLC cache, and 128GB of RAM. Machine B has
4 AMD Opteron 6272 processors, each with 8 cores (32
cores in total) and a 16MB LLC cache, and 256GB of
RAM. Unless otherwise stated, all experiments are run
on Machine B.

The pre-processing times, unless otherwise stated, as-
sume the graph is already loaded in memory. The costs
of loading the graph into memory and its implications on
pre-processing are discussed separately.

The subset of vertices or edges to be processed during
a computation step is kept in a work queue. Threads take
work items from the queue in large enough chunks to
reduce the work distribution overheads. We parallelize
both pre-processing and computation using the Cilk 4.8
parallel runtime system. When needed, Cilk balances the
work among threads by allowing threads to steal work
items from one another. Our experiments using OpenMP
and PThreads show comparable execution times and are
therefore not reported.

Algorithms. We select six algorithms with different
characteristics in terms of functionality (traversal, ma-
chine learning, ranking), vertex metadata, as well as the
number of vertices active during computation steps (iter-
ations).

We evaluate the following three traversal algorithms.
Breadth-first search (BFS) traverses a graph from a
given source vertex and builds a tree in breadth-first or-
der. Weakly connected components (WCC) discov-
ers connected vertices within a graph and classifies them
into components using label propagation. Single source
shortest path (SSSP) finds the (length of the) short-
est path between a given source vertex and every other
reachable vertex in the graph. We also evaluate two
algorithms that compute over the entire graph: Pager-
ank (PR) [24] is a ranking algorithm used to rank web
pages based on their popularity. Sparse matrix vector
multiplication (SpMV) multiplies the adjacency matrix
of a graph with a vector of values. The matrix entries
are stored as edge weights. Finally, Alternating Least
Squares (ALS) is an optimization method used in rec-
ommender systems.

Datasets. Table 1 gives an overview of the graphs
used along with their number of vertices and edges. We
use both synthetic and real-world datasets. The synthetic
datasets are power-law graphs generated by the RMAT
graph generator [5]. We generate graphs of different
sizes to evaluate the scalability of optimizations in terms
of graph size. RMAT26 is the biggest RMAT graph that
we can fit on all machines for all approaches. As a real-
world power-law dataset, we use the Twitter follower
graph [18], which is the largest real-world dataset that
fits on all machines for all approaches.

In addition to these two graphs, we also use the US-
Road graph from the DIMACS challenge [1]. This graph
has a different shape than power-law graphs: it has a high
diameter, and all vertices have a small in/out degree. We
use it to study the impact of the shape of the graph on
different computation approaches. Finally, for ALS we
use the bipartite Netflix graph [35].

Graph Vertices Edges
RMAT-N 2N 2N+4

Twitter 62M 1468M
US-Road 23.9M 58M
Netflix 0.5M 100M

Table 1: Graphs used in the evaluation, with their number of
vertices and edges.

Due to space constraints, in Sections 3 to 7, we primar-
ily present results for BFS and Pagerank (with 10 itera-
tions). These algorithms represent opposite ends of the
spectrum, both in terms of the percentage of the graph
that is active during each step of the computation and
in terms of computation complexity. Furthermore, we
report results primarily for the RMAT26 graph. We in-
clude results for other algorithms and graphs only when
they provide additional insights that depend on the algo-
rithm or the shape of the graph. Section 8 completes the
picture by presenting data on the combinations of algo-
rithms and input graphs not discussed in earlier sections.

3 Data layouts and pre-processing costs

In this section we first present different data layouts and
their associated pre-processing costs.

3.1 Data layouts

Edge arrays are the simplest and the default way to dis-
tribute graphs [27] and are used by many systems [6, 12,
27]. Graphs are stored as an array containing pairs of
integers corresponding to the source and the destination
vertex of each edge. In the remainder of the paper, we
assume the graph input takes the form of an edge array
and needs to be further converted into other formats.

USENIX Association 2017 USENIX Annual Technical Conference 633

https://github.com/epfl-labos/EverythingGraph
https://github.com/epfl-labos/EverythingGraph

Adjacency lists store edges in per-vertex edge arrays.
Each vertex points to an array containing the destination
vertices of its outgoing edges, and possibly also to an ar-
ray containing the source vertices of its incoming edges.

3.2 Pre-processing costs
Edge array. The layout of edge arrays matches the for-
mat of the input file, and it suffices to map the input file
in memory to be able to start computation. As such, edge
arrays incur no pre-processing cost.

Adjacency lists. We explore two techniques to build
adjacency lists.

The simplest technique consists of reading the input
file and dynamically allocating and resizing the edge ar-
rays of vertices as new edges are discovered.

The second technique avoids reallocations by loading
the graph as an edge array and then sorting it by source
vertex. Vertices use an index in the sorted edge array to
point to their outgoing edge array. The incoming edge
array is created by sorting the edge array by destination
vertex. This way the edges are stored contiguously in
memory, corresponding to compressed sparse row for-
mat (CSR). The performance of this approach depends
on the sorting algorithm.

The most common approach to sort edges is to use a
count sort. In a first pass over the edge array, we count
the number of outgoing (incoming) edges for each ver-
tex. In a second pass over the edge array, we place edges
at the correct location in the sorted edge array. Most ex-
isting graph analytics frameworks use this approach, as it
is optimal in terms of complexity (the input array is only
scanned twice).

An alternative approach is based on radix sort. Radix
sort treats keys as multi-digit numbers, and sorts the keys
into buckets one digit at a time. In the parallel version,
each thread recursively sorts a subset of edges into a
small number of buckets [32]. The advantage of radix
sort is that buckets are written sequentially, and therefore
have good locality. The complexity of the sort is rela-
tively low. We use a radix size of 8 bits (256 buckets)
which only requires log2(#vertices)/8 recursions to sort
the edge array (e.g., 4 recursions for a graph with 4 bil-
lion vertices, 8 recursions with 264 vertices).

3.3 Evaluation
Table 2 presents, for all three approaches (dynamic,
count sort and radix sort), the execution times for cre-
ating outgoing per-vertex edge arrays and for creating
both incoming and outgoing per-vertex edge arrays, for
the Twitter graph and assuming the graph is already in
memory. Using a radix sort is 4.8× faster than count sort.
Surprisingly, sorting using a radix sort is also 4.9× faster

Adj. list pre-processing
variation

Twitter
out

Twitter
in-out

LLC
misses

Dynamic 20.0 27.2 69%
Count sort 19.5 23.9 71%
Radix sort 4.0 8.5 26%

Table 2: Adjacency list creation cost (in seconds) and percent-
age of LLC misses on machine B when the graph is in memory.

than dynamically building the per-vertex edge arrays.
Radix sort is faster, because it has better cache locality
than the other solutions. Both the dynamic approach and
count sort sequentially read the input edge array, but the
subsequent steps have poor cache locality. The dynamic
approach requires jumping between per-vertex arrays to
insert a newly read edge. Count sort requires jumping
between vertices as well in order to count their degree. It
then does another scan of the input to place edges at their
corresponding offsets in the sorted edge array. This step
jumps between distant positions in the array.

Figure 2 presents the evolution of the pre-processing
time for RMAT graphs depending on the graph size. All
approaches scale as the graph size increases. The radix
sort approach is always faster than the count sort and the
dynamic sort approach (3.3× and 3.8×, respectively, on
RMAT26).

For smaller graphs, count sort is slower than both the
dynamic and radix approaches. The approach requires
reading the edge array twice (once for counting, and then
once to place edges in the sorted array). As the graph
grows, however, the fact that the second pass in count
sort does no reallocations makes it slightly better than the
dynamic approach (e.g. there are 32 million reallocations
for an RMAT26 graph).

 1

 10

 100

R
M

A
T2

3

R
M

A
T2

4

R
M

A
T2

5

R
M

A
T2

6

R
M

A
T2

7

P
re

-p
ro

ce
ss

in
g

im
e

(s
ec

on
ds

)

Radix sort
Dynamic
Count

Figure 2: Scaling of pre-processing methods for adjacency
list creation. All methods scale linearly with the graph size.
RMAT-(N+1) is double the size of RMAT-N, and so is the pre-
processing time.

3.4 Loading and pre-processing

The previous discussion assumes that the graph is al-
ready loaded into memory. Conclusions are different
when the graph is to be read from storage or over the
network. Indeed, doing a radix sort can only be partially
overlapped with loading the graph in memory. In con-
trast, the dynamic approach of allocating and resizing

634 2017 USENIX Annual Technical Conference USENIX Association

per-vertex edge arrays can be fully overlapped with load-
ing. For count sort, only the first pass can be overlapped
with loading.

3.5 Evaluation with loading included
Table 3 presents the combined loading and pre-
processing time when the graph is loaded from an SSD
(380MB/s maximum bandwidth) and from a regular hard
drive disk (100MB/s).

If we take loading speed into account, dynamically al-
locating per-vertex edge arrays becomes faster than radix
sort when the storage medium is slow. On the SSD the
total time for the radix sort approach is shorter than or
more or less the same as the dynamic approach. The re-
sults for count sort are, as before, inferior, and are not
included for that reason.

Pre-processing approach RMAT26
out

RMAT26
in-out

Dynamic, loaded from SSD 20.7 40.0
Radix-sort, loaded from SSD 21.2 27.0

Dynamic, loaded from disk 61.0 61.1
Radix-sort, loaded from disk 65.0 71.0

Table 3: The cost of pre-processing for adjacency list creation
with loading time included. Results show the time when build-
ing only the outgoing per-vertex edge arrays, and when build-
ing both the outgoing and incoming per-vertex edge arrays. The
pre-processing is overlapped with loading when the adjacency
list is created dynamically.

Summary. Costs associated with loading and building
data structures in memory are non-negligible, and differ-
ent approaches shine in different situations. Surprisingly,
using radix sort to build adjacency lists is the fastest ap-
proach when the input file is in memory or loaded from
a fast medium. When the graph is loaded from a slow
medium, building adjacency lists dynamically is a better
option, because it can be overlapped with loading.

4 Data layout and graph traversal

4.1 Vertex-centric vs. edge-centric
The choice of data layout impacts the decision of how
to traverse the graph. In this section, we show that the
best performing data layout and corresponding traversal
model depend on the algorithm.

Computation on edge arrays happens in an edge-
centric manner, and is quite simple: at every iteration
of the computation the whole edge array is scanned, and
the graph algorithm is called on every edge. This compu-
tation model is efficient, because scanning an edge array
is cache-friendly: most of the accessed data is prefetched

before being used. The drawback of this layout is that it
offers no easy way to work on a subset of the vertices: a
full scan of the edge array is required to find the edges of
a vertex.

Adjacency lists are a natural solution to this problem.
They enable vertex-centric computation, in which work
is only performed on the subset of active vertices.

4.2 Evaluation

To illustrate the impact of data layout and traversal
model on the end-to-end execution time, we show in Fig-
ure 3 the pre-processing and algorithm execution times
of BFS, Pagerank, and SpMV on RMAT26. For BFS,
vertex-centric computation performs the best, because
during an iteration BFS only works on a limited subset
of the graph. Edge arrays are not well suited for this type
of computation, as all edges of the graph are read at every
iteration.

In contrast, Pagerank accesses the entire graph in ev-
ery iteration. Looking only at algorithm execution time,
vertex-centric computation still performs a bit better, be-
cause it has better cache locality (all edges from a vertex
are processed on the same core). When taking into ac-
count the pre-processing time, however, the end-to-end
execution time is the same as for edge-centric computa-
tion.

Finally, SpMV is an algorithm that makes only a sin-
gle pass over the graph. Here, edge-centric computa-
tion produces the best end-to-end result, since the cost
of building adjacency lists for vertex-centric execution is
not amortized by any gains in algorithm execution time.

5 Cache-locality

Due to their irregular access patterns, graph algorithms
usually exhibit poor cache locality. Last-level cache
(LLC) misses may happen during three key steps of the
computation: fetching an edge, fetching the metadata as-
sociated with the source vertex of the edge, and fetching
the metadata associated with the destination vertex of the
edge. In this section, we study how to lay out the data in
memory to reduce the number of LLC misses, and we
explain the pre-processing costs associated with creating
those layouts.

5.1 Impact of the data layout

Edge array. In edge-centric computation, since edges
are streamed, they are prefetched efficiently and do not
incur cache misses. Fetching the metadata of the ver-
tices, however, leads to random accesses with poor spa-
tial and temporal locality.

USENIX Association 2017 USENIX Annual Technical Conference 635

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

adj. edge array

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Algorithm

(a) BFS on RMAT26

 0

 10

 20

 30

 40

 50

 60

adj. edge array

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Algorithm

(b) Pagerank on RMAT26

 0
 1
 2
 3
 4
 5
 6
 7
 8

adj. edge array

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Algorithm

(c) SPMV on RMAT26

Figure 3: Pre-processing and algorithm execution time for BFS, Pagerank and SpMV on RMAT26, using vertex-centric computa-
tion on an adjacency list or edge-centric computation on an edge array.

Adjacency lists. In adjacency lists, computation is
performed from the point of view of a vertex: a core it-
erates over all edges of a given vertex before processing
another vertex. As a consequence, the metadata of the
source vertex is read only once, after which it is cached.
This is beneficial for vertices that have a large number of
edges. Fetching edges may introduce a cache miss for the
first edge, but subsequent edges are prefetched, as with
the edge array. Also similar to the case of the edge ar-
ray, the metadata of the destination vertices exhibits poor
cache behavior.

Grids: optimizing edge arrays. To improve the
cache locality of edge arrays, data is laid-out as a grid
of cells. Each cell contains the edges from a range of
vertices to another range of vertices. Figure 4 shows an
example of a graph transformed into a grid. This data
structure is inspired by the grid data structure first in-
troduced in GridGraph [37], which aimed at maximizing
reuse of data read from disks. Computation then iterates
over cells. The goal is that the metadata associated with
the vertices in the cell stays in cache and can therefore
be reused. We construct the grid using the same radix
sort approach as for building adjacency lists. Instead of
bucketing edges by source vertex, we bucket them by
the cell to which they belong. The optimal number of
cells in the grid depends on the graph shape and size.
We experimentally find that a grid of 256x256 cells per-
forms best on the Twitter and RMAT26 graphs. Build-
ing a grid is slightly more expensive than building an
adjacency list (the number of cells in the grid is equal
to (#vertices/256)2, which is higher than the number of
vertices for large graphs).

We compare using radix sort with a dynamic approach
for buiding the grid, and the conclusions regarding dif-
ferent pre-processing approaches made in Section 3.2 are

0

1

2

3

0-1 2-3

0
-1

2
-3

(0,1)
(1,0)

(0,2)
(0,3)

(2,3)

Figure 4: Transforming a graph into a grid representation.

applicable to grids as well: radix sort is faster when the
graph is in memory or loaded from a fast medium, while
dynamically building the grid is faster otherwise.

Optimizing adjacency lists. An intuitive idea to im-
prove cache locality in adjacency lists is to sort the per-
vertex edge arrays by destination. Indeed, the metadata
of vertices with contiguous IDs is also contiguous in
memory, thus when accessing vertex 0 and then vertex 1,
the metadata of vertex 1 is likely to be present in cache.
Of course, sorting the per-vertex edge arrays increases
the pre-processing cost.

5.2 Evaluation
Figure 5 compares the pre-processing and algorithm ex-
ecution times of BFS and Pagerank on RMAT26, on
the unsorted adjacency list, the sorted adjacency list, the
edge array and the grid. Table 4 presents the cache miss
rate for these four data layouts.

 0
 2
 4
 6
 8

 10
 12
 14

adj.
unsorted

adj.
sorted

edge array grid

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

(a) BFS on RMAT26

 0

 10

 20

 30

 40

 50

 60

adj.
unsorted

adj.
sorted

edge array grid

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

(b) Pagerank on RMAT26

Figure 5: Impact of cache-related optimizations on pre-
processing and algorithm execution time for BFS and Pagerank
on RMAT26.

636 2017 USENIX Annual Technical Conference USENIX Association

Data layout BFS Pagerank
Edge array 57% 83%
Grid 23% 35%
Adjacency list 63% 78%
Adjacency list sorted 63% 78%

Table 4: Cache miss ratio for BFS and Pagerank on RMAT26.

BFS. For BFS, the unsorted adjacency list remains
the solution with the best end-to-end execution time.
Looking at algorithm execution time alone, BFS is 2.4×
faster with a grid than with unsorted per-vertex edge ar-
rays. However, creating the grid adds significant pre-
processing time (9s), making the grid the slowest solu-
tion overall for BFS. Sorting the per-vertex edge arrays
also leads to end-to-end performance inferior to unsorted
adjacency lists. The pre-processing time increases, and
the algorithm execution time does not decrease. Table 4
shows that sorting the per-vertex arrays does not signif-
icantly impact the cache miss rate. The destination ver-
tices are accessed in order, but in practice a cache line
only contains the metadata associated with very few ver-
tices (64 in the case of BFS). Even when sorted, the
destination vertex identifiers in the per-vertex edge ar-
rays are sufficiently far apart for their metadata to fall in
different cache lines, which explains the limited impact
of this optimization on the number of cache misses and
therefore on algorithm execution time. The increased
pre-processing time for sorting the per-vertex arrays in-
creases end-to-end execution time.

Pagerank. Even with the added pre-processing cost,
the grid outperforms all other data layouts for Pagerank:
it is 1.4× faster than an edge array and 1.3× faster than
an unsorted adjacency list. This improvement is a direct
result of the reduced cache miss rate when using a grid.
As shown in Table 4, the cache miss ratio for the grid
is less than half of that for the other data layouts. As
for BFS, sorting the per-vertex edge arrays provides no
benefit for Pagerank, for the same reasons. A cache line
can fit at most 6 vertices for Pagerank, leading to an even
smaller improvement in spatial locality than for BFS.

Summary. Creating a grid improves cache reuse and
has a significant impact on algorithm execution time.
Yet, this comes at the cost of an extra pre-processing,
which is not always amortized. Different layouts also
shine in very different situations. For instance, the grid
is the best solution for Pagerank, but the slowest on BFS.

6 Information flow: Push and Pull

One of the core design decisions for a graph processing
system is the information flow model it adopts. Informa-
tion propagates through the graph in one of two ways:
a vertex either pushes data along its out edges, writing
to the state of its neighbors, or it pulls data along its

incoming edges and updates its own state. These two
approaches have important implications on computation,
synchronization and pre-processing that we detail in this
section.

6.1 Impact on end-to-end execution time

6.1.1 Impact on algorithm execution time

The push and pull approaches have different impact on
the number of vertices and edges that need to be accessed
during an iteration.

First, the push approach allows working on a sub-
set of the vertices, while the pull approach does not.
When pushing, vertices that do not need to propagate
their value can be safely ignored. In contrast, the pull
approach requires a vertex to scan all its incoming edges
for neighbors that could potentially propagate a value. It
also requires a pass over all vertices to check whether
they need to look at their incoming edges (e.g., whether
they have already been discovered in BFS).

Second, for some algorithms, the pull approach allows
stopping the computation for a vertex in the middle of
an iteration, while the push approach does not. Indeed,
while pulling data a vertex may stop pulling before ex-
ploring all its incoming edges. For instance in BFS, if a
vertex marks itself as discovered in the middle of an it-
eration, it stops exploring its remaining incoming edges.
This guarantees that the vertex is discovered only once.
In the push approach, vertices need to check that all their
neighbors have been discovered, which leads to redun-
dant work if multiple vertices have the same neighbors.

Figure 6 shows the per-iteration execution time of
pushing vs. pulling for BFS on an RMAT26 graph. Dur-
ing the first iteration and after the third iteration, pushing
is faster than pulling. During iterations 2 and 3, pulling
is faster than pushing. This difference is explained by the
percentage of the graph that is accessed during the iter-
ations: most vertices in the graph are discovered during
iterations 2 and 3. When pushing data, lots of redundant
work is done in these iterations.

Because pushing data and pulling data perform best at
different phases of the computation, some frameworks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Push

Pull

Figure 6: Per-iteration algorithm execution time for push vs.
pull for BFS on RMAT26.

USENIX Association 2017 USENIX Annual Technical Conference 637

dynamically switch between pushing and pulling, de-
pending on the number of active vertices in an itera-
tion [2, 3, 29].

6.1.2 Impact on synchronization

A significant part of the algorithm execution time may
involve synchronization. For example, in Pagerank on
an RMAT26 graph with 16 cores, 40% of the algorithm
execution time is spent in code protected by locks. The
goal of this section is to evaluate the possibilities for lock
removal, how they depend on the data layout and the in-
formation flow, and what if any pre-processing costs they
induce.

In push mode, a vertex pushes updates to all its neigh-
bors, and thus needs to lock them to update their meta-
data. In pull mode, a vertex only updates its own state.
Thus, lock removal with adjacency lists requires execu-
tion in pull mode.

The grid offers a natural partition of the graph: edges
in different rows have different source vertices, and
edges in different columns have different destination ver-
tices. To perform computation without locks in push
mode, it suffices to assign different columns to differ-
ent cores. To perform computation without locks in pull
mode, it suffices to assign different rows to different
cores.

6.1.3 Impact on pre-processing

Adjacency lists. To use push-pull, a system needs to iter-
ate over both outgoing and incoming edges. As a result,
when the graph is directed, we need to build both the out-
going and incoming per-vertex edge arrays. In contrast,
for push we only need to build the outgoing, and for pull
only the incoming per-vertex edge arrays. As a result,
for directed graphs push-pull comes with an increased
pre-processing cost, compared to push or pull, as seen in
Section 3.2. When the graph is undirected, it suffices to
build the outgoing per-vertex edge arrays (outgoing and
incoming edges are the same), and push-pull induces no
extra pre-processing cost.

Edge array. Computation over an edge array always
requires scanning all the edges in the graph, so there is
no advantage to using either push or pull. Furthermore,
since the computation is edge-centric and not vertex-
centric, locks need to be acquired for all updates. For
these reasons, edge arrays are not considered any further
in this section.

Lock removal. Lock removal does not require any ad-
ditional pre-processing, beyond what is otherwise neces-
sary for adjacency lists and grids, but it cannot be used
with edge arrays, which have zero pre-processing cost.

6.2 Evaluation
6.2.1 BFS

Figure 7 presents the end-to-end execution times for BFS
running on a directed RMAT26 graph, with adjacency
lists, using push-pull, push (with locks) and pull (without
locks). We do not show any results for edge array or grid
for BFS, as we have shown in Section 5 that these ap-
proaches lead to inferior results compared to adjacency
lists.

Push-pull is much faster in terms of algorithm execu-
tion time, but it is 1.5× slower than the push approach in
terms of end-to-end execution time because of the extra
pre-processing time. When taking pre-processing time
into account, we find no combination of graphs, algo-
rithms and machines in which push-pull is beneficial on
directed graphs. On undirected graphs, push-pull does
not add any pre-processing time, and is thus much faster
than just pulling or pushing data. Furthermore, due to
the fact that, on average, only a small percentage of ver-
tices is processed per iteration, BFS in push mode per-
forms 20% better than BFS in pull mode, even though
push uses locks and pull does not.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

adj.
push-pull

adj.
push(locks)

adj. pull
(no lock)

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 7: Pre-processing and algorithm execution time for
BFS on RMAT26 using push-pull, push (with locks) and pull
(without locks).

6.2.2 Pagerank

Figure 8 shows the end-to-end execution times for Pager-
ank in push mode on an adjacency list (with locks), in
pull mode on an adjacency list (without locks), in push
mode on a grid (with locks), and in pull mode on a grid
(without locks). Here, the advantages of removing locks
can be clearly seen. On adjacency lists, the version with-
out locks is 40% faster than the push version when look-
ing at end-to-end time. On a grid, the version without
locks shows a gain of 1.5× in end-to-end time when
comparing to the version with locks.

Summary. Push and pull on adjacency lists have con-
flicting benefits. Push works better for algorithms that
only access a subset of the vertices in a given iteration,
while pull allows vertices to be updated without locks.
With grids, locking can be avoided regardless of whether
push or pull is used, but the advantage of push remains

638 2017 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

adj. push
(locks)

adj. pull
(no lock)

grid
(locks)

grid
(no lock)

E
xe

cu
tio

n
im

e(
s)

Pre-processing
Algorithm

Figure 8: Pre-processing time and algorithm execution time
for Pagerank on RMAT26 for push (with locks) on an adja-
cency list (with locks), for pull on an adjacency list (without
locks), for push on a grid (with locks), for pull on a grid (with-
out locks).

for algorithms that only access a subset of the vertices.
Whether push or pull comes out ahead depends heavily
on the nature of the algorithm. A combined push-pull
approach requires extra pre-processing, which outweighs
the benefits in terms of algorithm execution time.

7 NUMA-Awareness

We evaluate the trade-offs between the potential benefits
of being NUMA-aware and the overheads it introduces in
both the pre-processing and algorithm execution phase.

7.1 Data layout
In NUMA-aware solutions, the graph is partitioned
across the NUMA nodes, and threads prioritize work
from partitions that are local to their NUMA node. The
partitioning scheme divides graph data evenly across
NUMA nodes and places related data on the same
NUMA node. Partitioning is performed so as to mini-
mize the number of edges whose source and destination
vertices are on different NUMA nodes, while still balanc-
ing the number of vertices and edges per NUMA node.

We evaluate in particular the partitioning schemes of
Polymer [33] and Gemini [36]. The vertices are split into
as many subsets as there are NUMA nodes. The outgoing
edges of vertices are colocated with their target vertices.
This approach avoids random remote writes and balances
the number of edges across NUMA-nodes. Threads first
process their local partitions. After that, they start work-
ing on remote partitions by updating the target vertices
that are local to their NUMA node.

7.2 Evaluation
We evaluate the potential performance improvement of
NUMA-aware data placement on the two machines pre-
sented in Section 2. Figure 9 shows the impact of
NUMA-aware graph partitioning of an RMAT26 graph
when running BFS and Pagerank. We compare NUMA
partitioning to a solution that randomly interleaves the

 0

 5

 10

 15

 20

 25

 30

A
inter.

A
NUMA

B
inter.

B
NUMA

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Partitioning
Algorithm

(a) BFS - RMAT26

 0
 10
 20
 30
 40
 50
 60
 70

A
inter.

A
NUMA

B
inter.

B
NUMA

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Partitioning
Algorithm

(b) Pagerank - RMAT26

Figure 9: Impact of NUMA-aware partitioning on machines
A and B. For each machine we show the pre-processing, par-
titioning and algorithm execution time for BFS and Pagerank
on RMAT26 with memory interleaving vs. NUMA-aware data
placement.

graph data on all NUMA nodes. We use, for each appli-
cation, the best algorithm in terms of algorithm execu-
tion, as presented in the previous sections (push/pull for
BFS and pull without locks for Pagerank). The end-to-
end execution time is broken down into pre-processing,
partitioning and algorithm execution.

Looking at Figure 9b, the NUMA-aware data lay-
out improves the algorithm execution time for Pagerank
1.3× on Machine A and 2× on Machine B. However,
only on the machine B, with 4 NUMA nodes, does the
end-to-end execution time benefit from being NUMA-
aware.

In contrast, looking at Figure 9a, for BFS the NUMA-
aware version is 3.5× slower on Machine A and 1.8×
slower on Machine B. For BFS the time spent in par-
titioning dwarfs the algorithm execution time on both
machines. More surprisingly, even when looking only
at algorithm execution time, the NUMA-aware version
performs worse than the interleaved version. In BFS,
in a given iteration, only a small number of vertices is
processed, and these vertices often share a common an-
cestor (e.g., during the first iteration, all processed ver-
tices are the children of the root vertex). As a conse-
quence, vertices processed during a given iteration often
reside in the same partition. This leads to all cores ac-
cessing the same NUMA node, which creates memory
contention [9]. This undesirable effect is even more visi-
ble on high-diameter graphs with low-degree vertices, as
shown in Figure 10 when running BFS on the US-Road
graph. The NUMA-aware version is 12× slower than the
interleaved version.

USENIX Association 2017 USENIX Annual Technical Conference 639

 0
 1
 2
 3
 4
 5
 6
 7
 8

B
inter.

B
NUMA

E
xe

cu
tio

n
tim

e
(s

) Pre-processing
Partitioning
Algorithm

Figure 10: Effect of contention on memory bus on high di-
ameter graphs. Pre-processing, partitioning and algorithm exe-
cution time for BFS US-Road graph with memory interleaving
vs. NUMA-aware data placement

Summary. NUMA-aware data partitioning has a high
pre-processing cost. This cost is amortized for algo-
rithms that run for a long time and that work on most of
the data during every iteration. For algorithms that run
only for a short time, this may not be the case. For al-
gorithms that only work on a subset of the data, NUMA-
aware partitioning may exacerbate memory contention.

8 Additional algorithms and workloads

Table 5 shows the best solutions for BFS and Pager-
ank for graphs not evaluated in previous sections. The
Twitter graph has a degree distribution similar to that of
RMAT, and benefits from the same approaches: using an
adjacency list while pushing data for BFS, and using a
grid for Pagerank. The US-Road graph leads to slightly
different conclusions. The best approach on Pagerank is
to use an edge array and not a grid. Since the graph has
a lower per-vertex degree than the RMAT and Twitter
graphs, the grid data structure reduces only slightly the
cache miss ratio, and therefore its pre-processing cost is
not amortized.

In Table 6 we report the best approaches for WCC,
SpMV, SSSP and ALS, their end-to-end execution time
and its breakdown over pre-processing and algorithm ex-
ecution time.

SPMV is a very short algorithm, and edge arrays
are always the fastest approach, as they induce no pre-
processing cost.

Intuitively, WCC should perform best on adjacency
lists, because it is a traversal algorithm (only a subset of
the graph is processed during every iteration of the com-
putation), but WCC runs on an undirected graph. We
therefore first have to build an undirected version of the
graph from the input file. In the case of adjacency lists,
an edge has to be inserted in both the outgoing edge array
of its source and its destination. Thus, the pre-processing
cost for creating adjacency lists is increased. In con-
trast, no additional pre-processing is required for edge
arrays and grids to perform computation on an undirected
graph. As a consequence, on graphs with a low diameter,
WCC works best with an edge array, because the pre-

processing time of building adjacency lists is too high.
On graphs that have a higher diameter, like the US-Road
graph, WCC needs more iterations to converge, and an
adjacency list works best.

SSSP is very similar to BFS, and previous conclu-
sions regarding the trade-offs between algorithm execu-
tion time and pre-processing for BFS are applicable to
this algorithm as well. The only difference is that BFS
discovers a vertex only once, whereas in SSSP a vertex
may update its path many times during the computation,
leading to an increase both in the number of iterations
and the number of vertices active in each iteration.

ALS computes recommendations from a bipartite
graph. The left side of the graph represents users and
the other side items being rated. During every iteration,
a subset of the graph (the left or right side) is active, and
hence adjacency lists are the best data layout.

9 Summary

Improvements in algorithm execution time often come
at the cost of increased pre-processing time. As seen in
the previous sections, no approach fits every graph, al-
gorithm or machine. In this section we try to provide a
roadmap for choosing between different data layouts and
computation approaches.

The first step consists of choosing an appropriate data
layout. The layout is chosen based on the algorithm and
graph characteristics. Short algorithms, such as SPMV,
that complete in one iteration, should use an edge array,
as it incurs no pre-processing cost. When the computa-
tion works only on a small subset of the graph at every
computation step, adjacency lists in push mode improve
algorithm execution time. The cost of building them is
usually amortized compared to computation over edge
arrays, especially on graphs with a high diameter. Other
algorithms that run on graphs that have a large average
per-vertex degree and iterate over most of the graph at
every iteration, may benefit from using a grid, because
the grid improves cache locality.

Second, if the machine is a large NUMA machine and
the algorithm execution time is predicted to be large, then
partitioning the graph to be NUMA-aware is beneficial
(Figure 9b).

Third, if the data layout and computation approach
chosen during the first step allow for execution without
locking (e.g., pull mode in grids), then it is always ben-
eficial to remove locks. We do not find any algorithm or
directed graph for which switching between a pull mode
without locks and push mode is beneficial when looking
at end-to-end execution time.

Finally, when pre-processing cannot be avoided, it in-
duces a non-negligible cost, and it should be optimized
by using appropriate sorting techniques.

640 2017 USENIX Annual Technical Conference USENIX Association

Algo Graph Data layout Propagation model Pre-processing Algorithm Total
BFS Twitter Adj. list Push 5.8 2.3 8.1
BFS US-Road Adj. list Push 0.3 0.5 0.8
Pagerank Twitter Grid Pull (no lock) 23.2 37.8 61.0
Pagerank US-Road Edge array Pull 0.0 1.6 1.6

Table 5: Best approaches in terms of end-to-end execution time for BFS and Pagerank on the Twitter and US-Road graph.

Algo Graph Data layout Propagation model Pre-processing Algorithm Total
WCC RMAT-26 Edge array Push 0.0 11.0 11.0
WCC Twitter Edge array Push 0.0 19.2 19.2
WCC US-Road Adj. list Push 0.6 56.8 57.4
SpMV RMAT-26 Edge array Push 0.0 4.4 4.4
SpMV Twitter Edge array Push 0.0 5.8 5.8
SpMV US-Road Edge array Push 0.0 0.3 0.3
SSSP RMAT-26 Adj. list Push 4.4 2.8 7.2
SSSP Twitter Adj. list Push 5.8 4.4 10.2
SSSP US-Road Adj. list Push 0.5 30.7 31.2
ALS Netflix Adj. list Pull (no lock) 0.8 7.7 8.1

Table 6: Best approaches in terms of end-to-end execution time for SpMV, WCC and ALS on different graphs.

System Data layout Iteration model Push or Pull Without locks NUMA-Aware
Ligra Adj list Vertex-centric Push&Pull Yes -
Polymer Adj list Vertex-centric Push&Pull Yes Yes
Gemini Adj list Vertex -centric Push&Pull Yes Yes
X-Stream Edge array Edge-centric Push - -
GridGraph Grid Grid-cell Push Yes -

Table 7: Overview of multicore graph processing systems that inspired this work and their features.

10 Related Work

Very few papers compare the benefits of different graph
processing systems. Satish et al. [28] evaluate vari-
ous single-machine and distributed systems and compare
them to a hand-optimized baseline. The paper looks
at complete systems rather than individual techniques.
Capota et al. [4] introduce a benchmark for graph pro-
cessing platforms.

A large number of graph processing systems have been
proposed [7, 8, 12–17, 19, 20, 22, 23, 25–27, 29, 31, 33,
36, 37]. We cover here only those works that have di-
rectly inspired the techniques evaluated in this paper. For
a brief summary of the main features of these systems,
see Table 7.

Beamer et al. [2, 3] are the first to propose push-pull
for BFS. Ligra [29] extends this idea to other graph algo-
rithms. It also uses radix sort for creating adjacency lists.
X-Stream [27] introduces edge-centric graph processing
in the context of out-of-core systems. GridGraph [37]
improves on this idea by organizing the edges into a grid.
Polymer [33] and Gemini [36] optimize graph processing
for NUMA machines. We use their data placement tech-
nique in Section 7. In addition to the techniques used
in Polymer, Gemini adds work stealing to balance work
across NUMA nodes.

Not explored in this paper, the use of GPUs for

graph processing has been the subject of some recent
works [10, 11, 21, 30, 34]. This approach could affect
the relative magnitude of pre-processing vs. algorithm
execution time, and thereby impact the conclusions for
certain algorithms.

11 Conclusion

We have presented an analysis of various techniques
aimed at improving the algorithm execution time in
graph processing systems, and we have explained their
impact on pre-processing time. Our main observation is
that pre-processing often dominates the end-to-end ex-
ecution time of graph analytics. Therefore, it is often
better to work with simple graph data layouts that in-
duce less pre-processing than to invest time in elabo-
rate pre-processing to speed up the algorithm execution
phase. We argue that future works on graph analytics
frameworks must more carefully consider this trade-off
between pre-processing and algorithm execution time.

Acknowledgments: This work was supported in part by Swiss
National Science Foundation Grant No. 167157 and by an EPFL-
INRIA postdoctoral fellowship. We thank our reviewers, our shepherd
Rong Chen, Laurent Bindschaedler, Florin Dinu, Rachid Guerraoui,
Tim Harris, Dushyanth Narayanan, Amitabha Roy and Nicolas Schiper
for their valuable feedback.

USENIX Association 2017 USENIX Annual Technical Conference 641

References

[1] http://dimacs.rutgers.edu/Challenges/.

[2] BEAMER, S., ASANOVIĆ, K., AND PATTERSON,
D. Direction-optimizing breadth-first search. In
Proceedings of the International Conference on
High Performance Computing, Networking, Stor-
age and Analysis (Los Alamitos, CA, USA, 2012),
SC ’12, IEEE Computer Society Press, pp. 12:1–
12:10.

[3] BEAMER, S., ASANOVIC, K., PATTERSON,
D. A., BEAMER, S., AND PATTERSON, D.
Searching for a parent instead of fighting over chil-
dren: A fast breadth-first search implementation for
graph500. Tech. rep.

[4] CAPOTĂ, M., HEGEMAN, T., IOSUP, A., PRAT-
PÉREZ, A., ERLING, O., AND BONCZ, P. Graph-
alytics: A big data benchmark for graph-processing
platforms. In Proceedings of the GRADES’15
(New York, NY, USA, 2015), GRADES’15, ACM,
pp. 7:1–7:6.

[5] CHAKRABARTI, D., ZHAN, Y., AND FALOUT-
SOS, C. R-MAT: A recursive model for graph min-
ing. In Proceedings of the SIAM International Con-
ference on Data Mining (2004), SIAM.

[6] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H.
Powerlyra: Differentiated graph computation and
partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Sys-
tems (2015), ACM, p. 15.

[7] CHENG, R., HONG, J., KYROLA, A., MIAO, Y.,
WENG, X., WU, M., YANG, F., ZHOU, L., ZHAO,
F., AND CHEN, E. Kineograph: taking the pulse of
a fast-changing and connected world. In Proceed-
ings of the ACM European conference on Computer
Systems (2012), ACM, pp. 85–98.

[8] CHING, A. Giraph: Large-scale graph process-
ing infrastructure on hadoop. Proceedings of the
Hadoop Summit. Santa Clara 11 (2011).

[9] DASHTI, M., FEDOROVA, A., FUNSTON, J.,
GAUD, F., LACHAIZE, R., LEPERS, B., QUEMA,
V., AND ROTH, M. Traffic management: a holis-
tic approach to memory placement on NUMA sys-
tems. In ACM SIGPLAN Notices (2013), vol. 48,
ACM, pp. 381–394.

[10] DAVIDSON, A., BAXTER, S., GARLAND, M.,
AND OWENS, J. D. Work-efficient parallel GPU
methods for single-source shortest paths. In Pro-
ceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium

(Washington, DC, USA, 2014), IPDPS ’14, IEEE
Computer Society, pp. 349–359.

[11] FU, Z., PERSONICK, M., AND THOMPSON, B.
Mapgraph: A high level API for fast development
of high performance graph analytics on GPUs. In
Proceedings of Workshop on Graph Data Manage-
ment Experiences and Systems (New York, NY,
USA, 2014), GRADES’14, ACM, pp. 2:1–2:6.

[12] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. Powergraph: distributed
graph-parallel computation on natural graphs. In
Proceedings of the Conference on Operating Sys-
tems Design and Implementation (2012), USENIX
Association, pp. 17–30.

[13] GONZALEZ, J. E., XIN, R. S., DAVE, A.,
CRANKSHAW, D., FRANKLIN, M. J., AND STO-
ICA, I. GraphX: Graph processing in a distributed
dataflow framework. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2014),
OSDI’14, USENIX Association, pp. 599–613.

[14] HAN, W., MIAO, Y., LI, K., WU, M., YANG, F.,
ZHOU, L., PRABHAKARAN, V., CHEN, W., AND
CHEN, E. Chronos: A graph engine for temporal
graph analysis. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems (New York,
NY, USA, 2014), EuroSys ’14, ACM, pp. 1:1–1:14.

[15] HONG, S., CHAFI, H., SEDLAR, E., AND
OLUKOTUN, K. Green-Marl: A DSL for easy and
efficient graph analysis. In Proceedings of the Sev-
enteenth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2012), ASPLOS
XVII, ACM, pp. 349–362.

[16] ISARD, M., BUDIU, M., YU, Y., BIRRELL,
A., AND FETTERLY, D. Dryad: distributed
data-parallel programs from sequential building
blocks. In ACM SIGOPS Operating Systems Re-
view (2007), vol. 41, ACM, pp. 59–72.

[17] JU, W., LI, J., YU, W., AND ZHANG, R. iGraph:
an incremental data processing system for dynamic
graph. Frontiers of Computer Science (2016), 1–15.

[18] KWAK, H., LEE, C., PARK, H., AND MOON, S.
What is Twitter, a social network or a news media?
In Proceedings of the International conference on
World Wide Web (2010), ACM, pp. 591–600.

[19] KYROLA, A., BLELLOCH, G., AND GUESTRIN,
C. GraphChi: Large-scale graph computation on
just a PC. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-

642 2017 USENIX Annual Technical Conference USENIX Association

http://dimacs.rutgers.edu/Challenges/

mentation (Berkeley, CA, USA, 2012), USENIX
Association, pp. 31–46.

[20] MAASS, S., MIN, C., KASHYAP, S., KANG, W.,
KUMAR, M., AND KIM, T. Mosaic: Processing a
trillion-edge graph on a single machine. In Pro-
ceedings of the Twelfth European Conference on
Computer Systems (New York, NY, USA, 2017),
EuroSys ’17, ACM, pp. 527–543.

[21] MERRILL, D., GARLAND, M., AND GRIMSHAW,
A. Scalable GPU graph traversal. In Proceedings of
the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New York,
NY, USA, 2012), PPoPP ’12, ACM, pp. 117–128.

[22] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Na-
iad: A timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 439–455.

[23] NGUYEN, D., LENHARTH, A., AND PINGALI, K.
A lightweight infrastructure for graph analytics. In
Proceedings of the Symposium on Operating Sys-
tems Principles (2013), ACM, pp. 456–471.

[24] PAGE, L., BRIN, S., MOTWANI, R., AND WINO-
GRAD, T. The PageRank citation ranking: Bring-
ing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999.

[25] PEREZ, Y., SOSIČ, R., BANERJEE, A., PUT-
TAGUNTA, R., RAISON, M., SHAH, P., AND
LESKOVEC, J. Ringo: Interactive graph analytics
on big-memory machines. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2015),
SIGMOD ’15, ACM, pp. 1105–1110.

[26] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J.,
AND ZWAENEPOEL, W. Chaos: Scale-out graph
processing from secondary storage. In Proceedings
of the 25th Symposium on Operating Systems Prin-
ciples (2015), ACM, pp. 410–424.

[27] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,
W. X-stream: Edge-centric graph processing us-
ing streaming partitions. In Proceedings of the
ACM symposium on Operating Systems Principles
(2013), ACM, pp. 472–488.

[28] SATISH, N., SUNDARAM, N., PATWARY, M.
M. A., SEO, J., PARK, J., HASSAAN, M. A.,
SENGUPTA, S., YIN, Z., AND DUBEY, P. Navi-
gating the maze of graph analytics frameworks us-
ing massive graph datasets. In Proceedings of the
2014 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, 2014),
SIGMOD ’14, ACM, pp. 979–990.

[29] SHUN, J., AND BLELLOCH, G. E. Ligra: a
lightweight graph processing framework for shared
memory. In ACM SIGPLAN Notices (2013),
vol. 48, ACM, pp. 135–146.

[30] WANG, Y., DAVIDSON, A., PAN, Y., WU, Y.,
RIFFEL, A., AND OWENS, J. D. Gunrock: A
high-performance graph processing library on the
GPU. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 2016), PPoPP
’16, ACM, pp. 11:1–11:12.

[31] WU, M., YANG, F., XUE, J., XIAO, W., MIAO,
Y., WEI, L., LIN, H., DAI, Y., AND ZHOU, L.
GraM: Scaling graph computation to the trillions.
In Proceedings of the Sixth ACM Symposium on
Cloud Computing (New York, NY, USA, 2015),
SoCC ’15, ACM, pp. 408–421.

[32] ZAGHA, M., AND BLELLOCH, G. E. Radix sort
for vector multiprocessors. In Proceedings of the
1991 ACM/IEEE conference on Supercomputing
(1991), ACM, pp. 712–721.

[33] ZHANG, K., CHEN, R., AND CHEN, H. NUMA-
aware graph-structured analytics. In ACM SIG-
PLAN Notices (2015), vol. 50, ACM, pp. 183–193.

[34] ZHONG, J., AND HE, B. Medusa: Simplified graph
processing on GPUs. IEEE Trans. Parallel Distrib.
Syst. 25, 6 (June 2014), 1543–1552.

[35] ZHOU, Y., WILKINSON, D., SCHREIBER, R.,
AND PAN, R. Large-scale parallel collaborative
filtering for the Netflix Prize. In Proceedings of
the 4th International Conference on Algorithmic
Aspects in Information and Management (Berlin,
Heidelberg, 2008), AAIM ’08, Springer-Verlag,
pp. 337–348.

[36] ZHU, X., CHEN, W., ZHENG, W., AND MA, X.
Gemini: A computation-centric distributed graph
processing system. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16)(Savannah, GA (2016).

[37] ZHU, X., HAN, W., AND CHEN, W. GridGraph:
Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX
ATC 15) (2015), pp. 375–386.

USENIX Association 2017 USENIX Annual Technical Conference 643

Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai
Stony Brook University

Donald E. Porter
University of North Carolina at Chapel Hill

and Fortanix

Mona Vij
Intel Corporation

Abstract
Intel SGX hardware enables applications to protect

themselves from potentially-malicious OSes or hyper-
visors. In cloud computing and other systems, many
users and applications could benefit from SGX. Unfortu-
nately, current applications will not work out-of-the-box
on SGX. Although previous work has shown that a li-
brary OS can execute unmodified applications on SGX,
a belief has developed that a library OS will be ruinous
for performance and TCB size, making application code
modification an implicit prerequisite to adopting SGX.

This paper demonstrates that these concerns are exag-
gerated, and that a fully-featured library OS can rapidly
deploy unmodified applications on SGX with overheads
comparable to applications modified to use “shim” lay-
ers. We present a port of Graphene to SGX, as well as
a number of improvements to make the security bene-
fits of SGX more usable, such as integrity support for
dynamically-loaded libraries, and secure multi-process
support. Graphene-SGX supports a wide range of un-
modified applications, including Apache, GCC, and the
R interpreter. The performance overheads of Graphene-
SGX range from matching a Linux process to less than
2× in most single-process cases; these overheads are
largely attributable to current SGX hardware or missed
opportunities to optimize Graphene internals, and are not
necessarily fundamental to leaving the application un-
modified. Graphene-SGX is open-source and has been
used concurrently by other groups for SGX research.

1 Introduction
Intel SGX introduces a number of essential hardware fea-
tures that allow an application to protect itself from the
host OS, hypervisor, BIOS, and other software. With
SGX, part or all of an application can run in an en-
clave. Enclave features include confidentiality and in-
tegrity protection for the enclave’s virtual address space;
restricting control flow into well-defined entry points for
an enclave; integrity checking memory contents at start
time; and remote attestation. SGX is particularly appeal-
ing in cloud computing, as users might not fully trust the
cloud provider. That said, for any sufficiently-sensitive
application, using SGX may be prudent, even within
one administrative domain, as the security track record

of commodity operating systems is not without blemish.
Thus, a significant number of users would benefit from
running applications on SGX as soon as possible.

Unfortunately, applications do not “just work” on
SGX. SGX imposes a number of restrictions on enclave
code that require application changes or a layer of in-
direction. Some of these restrictions are motivated by
security, such as disallowing system calls inside of an
enclave, so that system call results can be sanitized by
shielding code in the enclave before use. Our experience
with supporting a rich array of applications on SGX, in-
cluding web servers, language runtimes, and command-
line programs, is that a number of software components,
orthogonal to the primary functionality of the applica-
tion, rely on faithful emulation of arcane Linux system
call semantics, such as mmap and futex; any SGX wrap-
per library must either reproduce these semantics, or
large swaths of code unrelated to security must be re-
placed. Although this paper focuses on SGX, we note
that a number of vendors are developing similar, but
not identical, hardware protection mechanisms, includ-
ing IBM’s SecureBlue++ [16] and AMD SEV [27]—
each with different idiosyncrasies. Thus, the need to
adapt applications to use hardware security features will
only increase in the near term.

As a result, there is an increasingly widespread belief
that adopting SGX necessarily involves significant code
changes to applications. Although Haven [15] showed
that a library OS could run unmodified applications on
SGX, this work pre-dated availability of SGX hardware.
Since then, several papers have argued that the library OS
approach is impractical for SGX, both in performance
overhead and trusted computing base (TCB) bloat, and
that one must instead refactor one’s application for SGX.
For instance, a feasibility analysis in the SCONE paper
concludes that “On average, the library OS increases the
TCB size by 5×, the service latency by 4×, and halves
the service throughput” [14]. Shinde et al. [49] argue that
using a library OS, including libc, increases TCB size by
two orders of magnitude over a thin wrapper.

This paper demonstrates that these concerns are
greatly exaggerated: one can use a library OS to quickly
deploy applications in SGX, gaining immediate secu-
rity benefits without crippling performance cost or TCB

USENIX Association 2017 USENIX Annual Technical Conference 645

bloat. We present a port of the Graphene library OS [52]
to SGX, called Graphene-SGX, and show that the per-
formance overheads are comparable to the range of over-
heads presented in SCONE; the authors of Panoply also
note that Graphene-SGX is actually 5-10% faster than
Panoply [49]. Arguments about TCB size are more nu-
anced, and a significant amount of the discrepancies arise
when comparing incidental choices like libc implemen-
tation (e.g., musl vs. glibc). Graphene, not including libc,
adds 53 kLoC to the application’s TCB, which is compa-
rable to Panoply’s 20 kLoC or SCONE’s 97 kLoC. Our
position is that the primary reduction to TCB comes from
either compiling out unused library functionality, as in a
unikernel [38] and measured by our prior work [53]; or
further partitioning an application into multiple enclaves
with fewer OS requirements. When one normalizes for
functionality required by the code in the enclave, the de-
sign choice between a library OS or a smaller shim does
not have a significant impact on TCB size.

To be clear, SGX-specific coding has benefits, but we
must not let the perfect be the enemy of the good. For
example, privilege separating a complex application into
multiple enclaves may be a good idea for security [40, 44,
49], and replacing particularly expensive operations can
improve performance on SGX. The goal of Graphene is
to bring up rich applications on SGX quickly, and then let
developers optimize code or reduce the TCB as needed.

Graphene-SGX runs unmodified Linux binaries on
SGX; to this end, this paper also contributes a number of
usability enhancements, including integrity support for
dynamically-loaded libraries, enclave-level forking, and
secure inter-process communication (IPC). Users need
only configure features and cryptographically sign the
configuration.

Graphene-SGX is also useful as a tool to accelerate
SGX research. Graphene-SGX has been open-sourced
since June 20161. Although our focus is unmodified ap-
plications, Graphene-SGX can also run smaller pieces
of code in an enclave, as in a partitioned application.
Several papers already compared against or extended
Graphene-SGX [28, 43, 49] and we are aware of ongoing
projects using Graphene-SGX.

The contributions of this paper are:
– A framework, called Graphene-SGX, to isolate un-

modified, Linux applications in enclaves.
– Several usability enhancements for SGX, including

dynamic loading, fork, and IPC.
– A thorough evaluation of the performance of unmod-

ified applications on Graphene-SGX, indicating that
the costs of a feature-rich library OS on SGX are in-
band with purportedly lighter-weight solutions that
require application changes. For example, lighttpd

1Available at https://github.com/oscarlab/graphene

throughput and latency on Graphene-SGX are com-
parable to a Linux process. Overheads are generally
under 2× (cf. SCONE overheads up to 1.6× on com-
parable workloads). In a few cases, Graphene-SGX
overheads are higher, but these are internal to the li-
brary OS or fundamental to enclave limitations, not
because the application is unmodified.

2 Background
This section summarizes SGX, and current design points
for running or porting applications on SGX.

2.1 Software Guard Extensions (SGX)
The primary SGX abstraction is an enclave: an isolated
execution environment within the virtual address space
of a process. The code and data in enclave memory do
not leave the CPU package unencrypted; when mem-
ory contents are read back into cache, the CPU decrypts
the contents, and checks the integrity of cache lines and
the virtual-to-physical mapping. SGX also cryptograph-
ically measures the integrity of enclaves at start-up, and
provide attestation to remote systems or other enclaves.

SGX enables a threat model where one only trusts the
Intel CPUs and the code running in the enclave(s). SGX
protects applications from three different types of attacks
on the same host, which are summarized in Figure 1:
untrusted application code inside the same process but
outside the enclave; operating systems, hypervisors, and
other system software; other applications on the same
host; and off-chip hardware. A SGX enclave can also
trust a remote service or enclave, and be trusted after
inter-platform attestation [13].

2.2 SGX Software Design Space
This subsection summarizes the principal design choices
facing any framework for running applications on SGX.
We explain the decisions in recent systems for SGX ap-
plications, and the trade-offs in this space.

How much functionality to pull into the enclave? At
one extreme, a library OS like Haven [15] pulls most of
the application-supporting code of the OS into the en-
clave. On the other extreme, thin “shim” layers, like
SCONE [14] and Panoply [49] wrap an API layer such as
the system call table. Pulling more code into the enclave
increases the size of the TCB, but can reduce the size and
complexity of the interface, and attack surface, between
the enclave and the untrusted OS.

The impact of this choice on performance largely de-
pends on two issues. First, entering or exiting the en-
clave is expensive; if the division of labor reduces en-
clave border crossings, it will improve performance. The
second is the size of the Enclave Page Cache (EPC), lim-
ited to 128MB on version 1 of SGX. If a large support-

646 2017 USENIX Annual Technical Conference USENIX Association

Off-chip

hardware

Host OS

Remote
service

or
enclave

Local host

Enclave data

Enclave code

In-process attacks
(memory corruption,

 ROP attacks)

Hardware attacks
(e.g., cold-boot attacks)

OS attacks
(e.g., rootkits)

Enclave
creation

Exchange
attestation

Intel
CPU

Trusted

Untrusted

Figure 1: The threat model of SGX. SGX protects ap-
plications from three types of attacks: in-process attacks
from outside of the enclave, attacks from OS or hypervi-
sor, and attacks from off-chip hardware.

ing framework tips the application’s working set size past
this mark, the enclave will incur expensive swapping.

Shielding complexity. SGX hardware can isolate an ap-
plication from an untrusted OS, but SGX alone can’t pro-
tect an application that requires functionality from the
OS. Iago attacks [18] are semantic attacks from the un-
trusted OS against the application, where an unchecked
system call return value or effect compromises the ap-
plication. Iago attacks can be subtle and hard to com-
prehensively detect, at least with the current POSIX or
Linux system call table interfaces.

Thus, any SGX framework must provide some shield-
ing support, to validate or reject inputs from the untrusted
OS. The complexity of shielding is directly related to the
interface complexity: inasmuch as a library OS or shim
can reduce the size or complexity of the enclave API, the
risks of a successful Iago attack are reduced.

Application code complexity. Common example ap-
plications for SGX in the literature amount to a sim-
ple network service running a TLS library in the en-
clave, putting minimal demands on a shim layer. Even
modestly complex applications, such as the R runtime
and a simple analytics package, require dozens of sys-
tem calls providing wide-ranging functionality, includ-
ing fork and execve. For these applications, the options
for the user or developer become: (1) modifying the ap-
plication to require less of the runtime; (2) opening and
shielding more interfaces to the untrusted OS; (3) pulling
more functionality into a shim or a library OS. The goal
of this paper is to provide an efficient baseline, based on
(3), so that users can quickly run applications on SGX,
and developers can explore (1) or (2) at their leisure.

Application partitioning. An application can have mul-
tiple enclaves, or put less important functionality outside
of the enclave. For instance, a web server can keep cryp-
tographic keys in an enclave, but still allow client re-

quests to be serviced outside of the enclave. Similarly, a
privilege-separated or multi-principal application might
create a separate enclave for each privilege level.

This level of analysis is application-specific, and be-
yond the focus of this paper. However, partitioning a
complex application into multiple enclaves can be good
for security. In support of this goal, Graphene-SGX can
run smaller pieces of code, such as a library, in an en-
clave, as well as coordinate shared state across enclaves.

3 Design Overview
This section discusses the threat model, how Graphene-
SGX defends against attacks from the untrusted OS, and
how users configure policies for defenses.

3.1 Threat Model
Graphene-SGX follows a typical threat model for SGX
applications. The following components are untrusted:
(1) hardware outside of the Intel CPU package(s), (2)
the OS, hypervisor, and other system software, (3) other
applications executing on the same host, including unre-
lated enclaves, and (4) user-space components that reside
in the application process but outside the enclave. Our
design only trusts the CPUs and any code running inside
the enclave, including the library OS, the unmodified ap-
plication, and its supporting libraries.

We also trust aesmd, an enclave provided by the In-
tel’s SGX SDK, which verifies attributes in the enclave
signature and approves the enclave creation. Currently,
any framework that uses SGX for remote attestation must
trust aesmd. Graphene-SGX uses, but does not trust, the
Intel SGX kernel driver. Other than aesmd and the driver,
Graphene-SGX does not use or trust any part of the SDK.

Denial of service, side channels, and controlled-
channel attacks [54] are vulnerabilities common to all
SGX frameworks, and are beyond the scope of this work.

3.2 User Policy Configuration
Before an application is first executed using Graphene-
SGX, the user must make certain policy decisions. Our
goal is to balance policy expressiveness with usability.

As with Graphene and several other systems, each ap-
plication requires a manifest to specify which resources
the application is allowed to use, including a unioned,
chroot-style view of the file system (comparable to aufs),
and a set of iptables-style network rules. In Graphene, a
program cannot access any resources not declared in the
manifest. The original intention of the manifest was to
protect the host: a reference monitor can easily identify
the resources an application might use, and reject an ap-
plication with a problematic manifest.

In Graphene-SGX, the manifest is extended to protect
the application from the host file system. Specifically,

USENIX Association 2017 USENIX Annual Technical Conference 647

Library OS

Apache

web server

Library OS

CGI-PHP

Library OS

Lighttpd

web server

Library OS

CGI-PHP

Enclave Group 1 Enclave Group 2

Figure 2: Two enclave groups, one running Apache
and the other running Lighttpd, each creates a child en-
clave running CGI-PHP. Graphene-SGX distinguishes
the child enclaves in different enclave groups.

the manifest can specify secure hashes (using SHA-256)
of trusted files (generally read-only, including dynamic
libraries). As part of opening a file, Graphene-SGX ver-
ifies the integrity of trusted files by checking the secure
hashes. A trusted file is only opened if the secure hash
matches. The manifest can also specify files or direc-
tories that can be accessed but are not trusted, such as a
write-only output file. Graphene-SGX includes a signing
utility that hashes all trusted files and generates a signed
manifest that can be used at runtime.

SGX requires that certain resources be specified at ini-
tialization time, including the number of threads, the
maximum size of the enclave, and the starting vir-
tual address of the enclave. Thus, we also extend the
manifest syntax for the user to specify these options.
Other security-sensitive manifest options inherited from
Graphene, such as enabling debug output, are also pro-
tected as part of the signed manifest.

3.3 Multi-Process Applications

Graphene supports multi-process applications by run-
ning a separate library OS instance in each process [52].
Each library OS instance coordinates state via message
passing. Graphene implements Linux multi-process ab-
stractions in the user-space, including fork, execve,
signals, and System V semaphores and message queues.

Graphene-SGX extends the multi-process support of
Graphene to enclaves by running each process with a
library OS instance in an enclave. For instance, fork
creates a second enclave and copies the parent enclave’s
contents over message passing. We call a group of coor-
dinating enclaves an enclave group. Figure 2 shows two
mutually-untrusting enclave groups running on a host.

Because multi-process abstractions are implemented
in enclaves, securing these abstractions from the OS is
straightforward. Graphene-SGX adds: (1) the ability for
enclaves to authenticate each other via local attestation,
and thereby establish a secure channel, and (2) a mecha-
nism to securely fork into a new enclave, adding the child
to the enclave group (§4.3).

4 Shielding Linux Abstractions
This section discusses how Graphene-SGX implements
and shields the Linux ABI for applications in enclaves.

4.1 Shielding Dynamic Loading
To run unmodified Linux binaries, Graphene-SGX im-
plements dynamic loading and run-time linking. In a
major Linux distribution like Ubuntu, more than 99% of
binaries are dynamically linked [53]. Static linking is
popular for SGX frameworks because it is simple and fa-
cilitates the use of hardware enclave measurements. Dy-
namic linking requires rooting trust in a dynamic loader,
which must then measure the libraries. For Haven [15],
the enclave measurement only verifies the integrity of
Haven itself, and the same measurement applies to any
application running on the same Haven binary.

Graphene-SGX extends the Haven model to generate
a unique signature for any combination of executable and
dynamically-linked libraries. Figure 3 shows the archi-
tecture and the dynamic-loading process of an enclave.
Graphene-SGX starts with an untrusted Platform Adap-
tion Layer (pal-sgx), which calls the SGX drivers to
initialize the enclave. The initial state of an enclave,
which determines the measurement then attested by the
CPU, includes a shielding library (libshield.so), the
executable to run, and a manifest file that specifies the at-
tributes and loadable binaries in this enclave. The shield-
ing library then loads a Linux library OS (libLinux.so)
and the standard C libraries (ld-linux-x86-64.so and
libc.so). After enclave initialization, the loader contin-
ues loading additional libraries, which are checked by the
shielding libraries. If the SHA-256 hash does not match
the manifest, the shield will refuse to open the libraries.

To reiterate, a manifest includes integrity measure-
ments of all components and is signed; this manifest is
unique for each application and is measured as part of
enclave initialization. This strategy does require trust in
the Graphene (in-enclave) bootloader and shielding mod-
ule to correctly load binaries according to the manifest
and reject any errant binaries offered by the OS. This is
no worse than the level trust placed in Haven’s dynamic
loader, but differentiates applications or even instances
of the same application with different libraries.

Memory permissions. By default, the Linux linker for-
mat (ELF) often places code and linking data (e.g., jump
targets) in the same page. It is common for a library to
temporarily mark an executable pages as writable dur-
ing linking, and then protect the page to be execute-only.
This behavior is ubiquitous in current Linux shared li-
braries, but could be changed at compile time to pad
writable sections onto separate pages.

The challenge on version 1 of SGX is that an appli-
cation cannot revoke page permissions after the enclave

648 2017 USENIX Annual Technical Conference USENIX Association

Executable code (/usr/sbin/apache2)RX

Executable data (/usr/sbin/apache2)RW

User library (libcrypt.so)

(0x0)

(0x400000)

Library OS (libLinux.so)

Shield code (libshield.so)RX

Shield data (libshield.so)RW

(0x600000)

(0x10000000)

...

Manifest + file hashes RO

Library heap RWX

Libc loader (ld-linux-x86-64.so)

Libc (libc.so)

Enclave Platform Adaption Layer (pal-sgx)

Intel SGX Driver

(/dev/isgx)

Graphene-SGX Driver

(/dev/gsgx)
Linux Kernel

Library API

System calls

(as functions)

Graphene host ABI

Enclave Interfaces

System calls

Trusted

Untrusted

Figure 3: The Graphene-SGX architecture. The exe-
cutable is position-dependent. The enclave includes an
OS shield, a library OS, libc, and other user binaries.

starts. In order to support this ELF behavior, we cur-
rently map all enclave pages as readable, writable, and
executable. This can lead to some security risks, such as
code injection attacks in the enclave. In a few cases, this
can also harm functionality; for instance, some Java VM
implementations use page faults to synchronize threads.
Version 2 of SGX [41] will support changing page pro-
tections, which Graphene-SGX will adopt in the future.

Position-dependent executables. SGX requires that all
enclave sizes be a power-of-two, and that the en-
clave starts at a virtual address aligned to the enclave
size. Most Ubuntu Linux executables are compiled
to be position-dependent, and typically start at address
0x400000. The challenge is that, to create an enclave
that includes this address and is larger than 4MB, the en-
clave will necessarily need to include address zero.

We see including address zero in the enclave as a net
positive, but not strictly necessary, as we are reluctant to
make strong claims in the presence of code that follows
null pointers. Graphene-SGX can still mark this address
as unmapped in an enclave. Thus, a null pointer will still
result in a page fault. On the other hand, if address zero
were outside of the enclave, there is a risk that the un-
trusted OS could map this address to dangerous data [10],
undermining the integrity of the enclave.

4.2 Shielding Single-Process Abstractions
For a single-process application running on Graphene-
SGX, most Linux system calls are serviced inside the
enclave by the library OS. A Graphene-SGX enclave in-
cludes both the same library OS in “classic” Graphene,

Classes Safe Benign DoS Unsafe

Enter enclaves & threads 2 0 0 0
Clone enclaves & threads 2 0 0 0
File & directory access 3 0 0 2
Exit enclave 1 0 0 0
Network & RPC streams 5 2 0 0
Scheduling 0 1 1 0
Stream handles 2 2 1 0
Map untrusted memory 2 0 0 0
Miscellaneous 1 1 0 0

Total 18 6 2 2

Table 1: 28 enclave interfaces, including safe (host be-
havior can be checked), benign (no harmful effects), DoS
(may cause denial-of-service), and unsafe (potentially at-
tacked by the host) interfaces.

that would also run on a Linux or FreeBSD picoprocess,
as well as an SGX-specific platform adaptation layer
(PAL), which implements 36 functions of the host ABI
that the library OS is programmed against. This PAL
funnels to a slightly smaller set of 28 interfaces which
the enclave calls out to the untrusted OS (Table 1).

The evolution of the POSIX API and Linux system
call table were not driven by a model of mutual distrust,
and retrofitting protection onto this interface is challeng-
ing. Checkoway and Shachman [18] demonstrate the
subtlety of detecting semantic attacks via the POSIX
interface. Projects such as Sego [33] go to significant
lengths, including modifying the untrusted OS, to val-
idate OS behavior on subtle and idiosyncratic system
calls, such as mmap or getpid.

The challenge in shielding an enclave interface is care-
fully defining the expected behavior of the untrusted sys-
tem, and either validating the responses, or reasoning that
any response cannot harm the application. By adding
a layer of indirection under the library OS, we can de-
fine an enclave ABI that has more predictable semantics,
which is, in turn, more easily checked at run-time. For
instance, to read a file, Graphene-SGX requests that un-
trusted OS to map the file at an address outside the en-
clave, starting at an absolute offset in the file, with the
exact size that the library OS needs for checking. After
copying chunks of the file into the enclave, but before
use, the contents can be hashed and checked against the
manifest. This enclave interface limits the possible re-
turn values to one predictable answer, and thus reduces
the space that the OS can explore to find attack vectors to
the enclave. Many system calls are partially (e.g., brk)
or wholly (e.g., fcntl), absorbed into the library OS,
and do not need shielding from the untrusted OS.

Table 1 lists our 28 enclave interfaces, organized by
risk. 18 interfaces are safe because responses from the
OS are easily checked in the enclave. An example of
a safe interface is FILE MAP, which maps a file outside

USENIX Association 2017 USENIX Annual Technical Conference 649

the enclave, to copy it into the enclave for system calls
like mmap or read, as discussed below. 6 interfaces
are benign, which means, if a host violates the spec-
ification, the library OS can easily compensate or re-
ject the response. An example of a benign interface is
STREAM FLUSH, which requests that data be sent over a
network or to disk; cryptographic integrity checks on a
file or network communication can detect when this op-
eration is ignored by untrusted software.

Like any SGX framework, Graphene-SGX does not
guarantee liveness of enclave code: the OS can refuse to
schedule the enclave threads. Two interfaces are suscep-
tible to liveness issues (labeled DoS): FUTEX WAIT and
STREAM POLL. In the example of FUTEX WAIT, a block-
ing synchronization call may never return, violating live-
ness but not safety. A malicious OS could cause a futex
wait to return prematurely; thus, synchronization code in
the PAL must handle spurious wake-ups and either at-
tempt to wait on the futex again, or spin in the enclave.

Finally, only two interfaces, namely FILE STAT and
DIR READ, are unsafe, because we do not protect in-
tegrity of file metadata. We leave this issue for future
work, adopting one of several existing solutions [21].

File authentication. As with libraries and application
binaries, configuration files and other integrity-sensitive
data files can have SHA256 hashes listed in the signed
manifest. At the first open to ones of the listed files,
Graphene-SGX maps the whole file outside the enclave,
copies the content in the enclave, divides into 64KB
chunks, constructs a Merkle tree of the chunk hashes, and
finally validates the whole-file hash against the manifest.
In order to reduce enclave memory usage, Graphene-
SGX does not cache the whole file after validating the
hash, but keeps the Merkle tree to validate the untrusted
input for subsequent, chunked reads. The Merkle tree is
calculated using AES-128-GMAC.

Memory mappings. The current SGX hardware re-
quires that the maximum enclave size be set at creation
time. Thus, a Graphene-SGX manifest can specify how
much heap space to reserve for the application, so that
the enclave is sufficiently large. This heap space is also
used to cache file contents.

Threading. Graphene-SGX currently uses a 1:1 thread-
ing model, whereas SCONE and Panoply support an m:n
threading model. The issue is that SGX version 1 re-
quires the maximum number of threads in the enclave
to be specified at initialization time. We see this as a
short-term problem, as SGX version 2 will support dy-
namic thread creation. We currently have users specify
how many threads the application needs in the manifest.

This choice affect performance, as one may be able
to use m:n threading and asynchronous calls at the en-
clave boundary to reduce the number of exits. This is

a good idea we will probably implement in the future.
Eleos [43] addresses this performance problem on un-
modified Graphene-SGX with application-level changes
to issue asynchronous system calls. The benefits of this
optimization will probably be most clear in I/O-bound
network services that receive many concurrent requests.
Exception handling. Graphene-SGX handles hardware
exceptions triggered by memory faults, arithmetic errors,
or illegal instructions in applications or the library OS.
SGX does not allow exceptions to be delivered directly
into the enclave. An exception interrupts enclave ex-
ecution, saves register state on a thread-specific stack
in the enclave, and returns to the untrusted OS. When
SGX re-enters the enclave, the interrupted register state
is then used by Graphene-SGX to reconstruct the excep-
tion, pass it to the library OS, and eventually deliver a
signal to the application.

We note that the untrusted OS may deliberately trigger
memory faults, by modifying the page tables, or not de-
liver the exceptions (denial of service). Direct exception
delivery within an enclave is an opportunity to improve
performance and security in future generations of SGX,
as designed in Sanctum [19].

By handling exceptions inside the enclave, Graphene-
SGXcan emulate instructions that are not supported by
SGX, including cpuid and rdtsc. Use of these instruc-
tions will ultimately trap to a handler inside the enclave,
to call out to the OS for actual values, which are treated
as untrusted input and are checked.

4.3 Shielding Multi-Process Abstractions
Many Linux applications use multi-process abstractions,
which are implemented using copy-on-write fork and in-
kernel IPC abstractions. In SGX, the host OS is un-
trusted, and enclaves cannot share protected memory.
Fortunately, Graphene implements multi-process support
including fork, execve, signals, and a subset of System
V IPC, using message passing instead of shared memory.
Thus, Graphene-SGX implements multi-process abstrac-
tions in enclaves without major library OS changes. This
subsection explains how Graphene-SGX protects multi-
processing abstractions from an untrusted OS.

Process creation in Graphene-SGX is illustrated in
Figure 4. When a process in Graphene-SGX forks into
a new enclave, the parent and child will be running the
same manifest and binaries, and will have the same mea-
surements. Similar to the process creation in Graphene,
the parent and child enclaves are connected with a pipe-
like RPC stream, through the untrusted PAL. As part of
initialization, the parent and child will exchange a ses-
sion key over the unsecured RPC stream, using Diffie-
Hellman. The parent and child use the CPU to generate
attestation reports, which include a 512-bit field in the
report to store a hash of the session key and a unique en-

650 2017 USENIX Annual Technical Conference USENIX Association

Executable

Parent Enclave

fork()

Inter-enclave RPC stream

Key exchange
 (Diffie-Hellman)

Locally exchange attestation

Establish TLS connection

1.

4.

5.

Executable

Child Enclave

resume
8.

Library OS

6.

Enclave PAL

7. Send process snapshot
(over Secured RPC)

Enclave PAL

clone_process()

2.
start_enclave()

3.

Trusted Untrusted

Shield

Library OS

Shield

Figure 4: Process creation in Graphene-SGX. Numbers
show the order of operations. When a process forks,
Graphene-SGX creates a new, clean enclave on the un-
trusted host. Then the two enclaves exchange an encryp-
tion key, validates the CPU-generated attestation of each
other, and migrates the parent process snapshot.

clave ID. The parent and child exchange these reports to
authenticate each other. Unlike remote attestation, local
attestation does not require use of Intel’s authentication
service (IAS). Once the parent and child have authenti-
cated each other, the parent establishes a TLS connection
over the RPC stream using the session key. The parent
can then send a snapshot of itself over the TLS-secured
RPC stream, and the snapshot is resumed in the child
process, making it a clone of its parent. This mutual at-
testation and encryption strategy prevents a man-in-the-
middle attack between the parent and child.

Once a parent enclave forks a child, by default, the
child is fully trusted. To create a less trusted child, the
parent would need to sanitize its snapshot, similar in
spirit to the close-on-exec flag for file handles. For ex-
ample, a pre-forked Apache web server may want to keep
worker processes isolated from the master to limit a po-
tential compromise of a worker process. Graphene-SGX
inherits a limited API from Graphene, for applications
to isolate themselves from untrusted child processes, but
developers are responsible for purging confidential infor-
mation before isolation.
Supporting execve. Unlike fork, execve starts a pro-
cess with a specific executable, often different from the
caller. When a thread calls execve in Graphene-SGX,
the library OS migrates the thread to a new process, with
file handles being inherited. Although the child does not
inherit a snapshot from its parent, it can still compromise
the parent by exploiting potential vulnerabilities in han-
dling RPC, which are not internally shielded. In other
words, Graphene-SGX is not designed to share library
OS-internal with untrusted children. Thus, Graphene-
SGX restricts execve to only launch trusted executables,
which are specified in the manifest.

Inter-process communication. After process creation,
parent and child processes will cooperate through shared
abstractions, such as signals or System V message
queues, via RPC messages. While messages are being
exchanged between enclaves, they are encrypted, ensur-
ing that these abstraction are protected from the OS.

5 Evaluation
Graphene-SGX is designed to be general-purpose, sup-
porting a broad range of server and command-line ap-
plications. We thus evaluate performance overheads
of unmodified Linux applications, using binaries from
an Ubuntu installation. Depending on the workload, we
measure application throughput or latency.

In order to differentiate SGX-specific overheads from
Graphene overheads, we use both Linux processes and
Graphene on a Linux host without SGX as baselines for
comparison. Note that Graphene includes two optional
kernel extensions: one that creates a reference monitor to
protect the host kernel from the library OS, and one that
optimizes fork by with copy-on-write for large (page-
sized) RPC messages. Neither of these extensions are
currently supported in Graphene-SGX.

Experimental setup. We use a Dell Optiplex 790
Small-Form Desktop, with a 4-core 3.20 GHz Intel Core
i5-6500 CPU (no hyper-threading, with 6MB cache), 8
GB RAM, and a 512GB, 7200 RPM SATA disk. The
host OS is Ubuntu 16.04.4 LTS, with Linux kernel 4.4.0-
21. Each machine uses a 1Gbps Ethernet card connected
to a dedicated local network. We use version 1.8 of the
Intel SGX Linux SDK [24] and driver [23].

5.1 Server applications
One deployment model for SGX is to host network
services on an untrusted cloud provider’s hardware.
We measure three widely-used Linux web servers, in-
cluding Lighttpd [6] (v1.4.35), Apache [2] (v2.4.18),
and NGINX [7] (v1.10). For each workload, we use
ApacheBench [1] to download the web pages on a sepa-
rate machine. The concurrency of ApacheBench is grad-
ually increased during the experiment, to test the both
the per-request latency and the overall throughput of the
server. Figure 5 shows the throughput versus latency
of these server applications in Graphene-SGX, Graphene
and Linux. Each workload is discussed below.

Lighttpd [6] is a web server designed to be light-
weight, yet robust enough for commercial uses. Lighttpd
is multi-threaded; we test with 25 threads to pro-
cess HTTP requests. By default, Lighttpd uses the
epoll wait system call to poll listening sockets. At
peak throughput and load, both Graphene and Graphene-
SGX have marginal overhead on either latency or
throughput of the Lighttpd server. The overheads of

USENIX Association 2017 USENIX Annual Technical Conference 651

0.0

2.0

4.0

6.0

8.0

10.0

0 5,000 10,000

La
te

n
cy

 (
S/

re
q

)

Throughput (req/S)

Linux
Graphene
Graphene-SGX

(a) Lighttpd (25 threads)

0.0

2.0

4.0

6.0

8.0

10.0

0 5,000 10,000

La
te

n
cy

 (
S/

re
q

)

Throughput (req/S)

Linux
Graphene
Graphene-SGX

(b) Apache (5 processes)

0.0

2.0

4.0

6.0

8.0

10.0

0 5,000 10,000

La
te

n
cy

 (
S/

re
q

)

Throughput (req/S)

Linux
Graphene
Graphene-SGX

(c) NGINX (event-driven)
Figure 5: Throughput versus latency of web server workloads, including Lighttpd, Apache, and NGINX, on native
Linux, Graphene, and Graphene-SGX. We use an ApacheBench client to gradually increase load, and plot throughput
versus latency at each point. Lower and further right is better.

Graphene are more apparent when the system is more
lightly loaded, at 15–35% higher response time, or 13–
26% lower throughput. Without SGX, Graphene in-
duces 11–15% higher latency or 13-17% lower through-
put over Linux; the remaining overheads are attributable
to SGX—either hardware or our OS shield.

Apache [2] is one of the most popular production web
servers. We test Apache using 5 preforked worker pro-
cesses to service HTTP requests, in order to to eval-
uate the efficiency of Graphene-SGX across enclaves.
This application uses IPC extensively—the preforked
processes of a server use a System V semaphore to syn-
chronize on each connection. Regardless of the work-
load, the response time on Graphene-SGX is 12–35%
higher than Linux, due to the overhead of coordination
across enclaves over encrypted RPC streams. The peak
throughput achieved by Apache running in Graphene-
SGX is 26% lower than running in Linux. In this work-
load, most of the overheads are SGX-specific, such as
exiting enclaves when accessing the RPC, as non-SGX
Graphene has only 2–8% overhead compared to Linux.

NGINX [7] is a relatively new web server designed
for high programmability, for as a building block to im-
plement different services. Unlike the other two web
servers, NGINX is event-driven and mostly configured as
single-threaded. Graphene-SGX currently only supports
synchronous I/O at the enclave boundary, and so, under
load, it cannot as effectively overlap I/O and computa-
tion as other systems that have batched and asynchronous
system calls. Once sufficiently loaded, NGINX on both
Graphene and Graphene-SGX performs worse than in a
Linux process. The peak throughput of Graphene-SGX
is 1.5× lower than Linux; without SGX, Graphene only
reaches 79% of Linux’s peak throughput. We expect that
using tools like Eleos [43] to reduce exits would help this
workload; in future work, we will improve asynchronous
I/O in Graphene-SGX.

5.2 Command-Line Applications
We also evaluate the performance of a few commonly-
used command-line applications. Three off-the-shelf ap-

plications are tested in our experiments: R (v3.2.3) for
statistical computing [9]; GCC (v5.4), the general GNU
C compiler [4]; CURL (v7.74), the default command-
line web client on UNIX [3]. These applications are cho-
sen because they are frequently used by Linux users, and
each of them potentially be used in an enclave to handle
sensitive data—either on a server or a client machine.

We evaluate the latency or execution time of these ap-
plications. In our experiments, both R and CURL have
internal timing features to measure the wall time of in-
dividual operations or executions. On a Linux host, the
time to start a library OS is higher than a simple process,
but significantly lower than booting a guest OS in a VM
or starting a container. Prior work measured Graphene
(non-SGX) start time at 641 µs [52], whereas starting an
empty Linux VM takes 10.3s and starting a Linux (LXC)
container takes 200 ms [12].

On SGX, the enclave creation time is relatively higher,
ranging from 0.5s (a 256MB enclave) to 5s (a 2G en-
clave), which is a fixed cost that any application frame-
work will have to pay to run on SGX. Enclave creation
time is determined by the latency of the hardware and
the Intel kernel driver, and is primarily a function of the
size of the enclave, which is specified at creation time
because it affects the enclave signature. For non-server
workloads that create multiple processes during execu-
tion, such as GCC in Figure 6, the enclave creation con-
tributes a significant portion to the execution time over-
heads, illustrated as a stacked bar.

R [9] is a scripting language often used for data pro-
cessing and statistical computation. With enclaves, users
can process sensitive data on an OS they don’t trust.
We use an R benchmark suite developed by Urbanek et
al. [8], which includes 15 CPU-bound workloads such as
matrix computation and number processing. Graphene-
SGX slows down by less than 100% on the majority
of the workloads, excepts the ones which involve al-
location and garbage collection: (matrix1 creates and
destroys matrices, and both FFT and hilbert involve
heavy garbage collection.) Aside from garbage collec-
tion, these R benchmarks do not frequently interact with

652 2017 USENIX Annual Technical Conference USENIX Association

-1
0
1
2
3
4
5
6
7
8
9

10

m
at

ri
x1

m
at

ri
x2

so
rt

in
g

m
at

ri
x3

lin
ea

r
re

gr
.

FF
T

ei
ge

n

d
e

te
rm

in
.

ch
o

le
sk

y

in
ve

rs
e

fi
b

o
n

ac
ci

h
ib

er
t

G
C

D

to
ep

lit
z

es
co

u
fi

er

o
ve

rh
e

ad
 (

x)
Linux Graphene Graphene-SGX

(a) R

18.7 X

3.6 X
2.1 X

-5

0

5

10

15

20

25

gzip.c
(5kLoC)

oggenc.c
(50kLoC)

gcc.c
(500kLoC)

Ex
e

cu
ti

o
n

 t
im

e

o
ve

rh
ea

d
 (

x)

Linux Graphene Graphene-SGX

Enclave creation time
in Graphene-SGX

-1

(b) GCC

-1.0

-0.5

0.0

0.5

1.0

1M 10M 100M 1G

D
o

w
n

lo
ad

 t
im

e
o

ve
rh

ea
d

 (
x)

File size

Linux Graphene Graphene-SGX

(c) CURL
Figure 6: Performance overhead on desktop applications, including latency of R, execution time of GCC compilation,
download time with CURL. The evaluation compares native Linux, Graphene, and Graphene-SGX.

the host. We further note that non-SGX Graphene is as
efficient as Linux on all workloads, and these overheads
appear to be SGX-specific. In our experience, garbage
collection and memory management code in managed
language runtime systems tends to be written with as-
sumptions that do not match enclaves, such as a large,
sparse address space or that memory can be demand
paged nearly for free (SGX version 1 requires all mem-
ory to be mapped at creation); a useful area for future
work would be to design garbage collection strategies
that are optimized for enclaves.

GCC [4] is a widely-used C compiler. By support-
ing GCC in enclaves, developers can compile closed-
source applications on customers’ machines, without
leaking the source code. GCC composes of multiple bi-
naries, including cc1 (compiler), as (assembler), and ld

(linker). Therefore, GCC is a multi-process program us-
ing execve. We test the compilation of thee source files
with varied sizes, using single C source files collected by
MIT [5]. Each GCC execution typically creates five
processes, and we run each process in a 256MB enclave
by default. For a small workload like compiling gzip.c
(5 kLoC), running in Graphene-SGX (4.1s) is 18.7×
slower than Linux (0.2s). The bulk of this time is spent in
enclave creation, taking 3.0s in total, while the whole ex-
ecution inside the enclaves, including initialization of the
library OS and OS shield, takes only 1.1s, or 4.2× over-
head. For larger workloads like oggenc.c (50 kLoC)
and gcc.c (500 kLoC), the overhead of Graphene-SGX
is less significant. For gcc.c (500 kLoC), we have to
enlarge one of the enclaves (cc1) to 2GB, but running on
Graphene-SGX (53.1s) is only 2.1× slower than Linux
(17.2s), and 7.1s is spent on enclave creation. The over-
head of non-SGX Graphene on GCC is marginal.

CURL [3] is a command-line web downloader.
Graphene-SGX can make CURL into a secure down-
loader that attests both server and client ends. We
evaluate the total time to download a large file, rang-
ing from 1MB to 1GB, from another machine running
Apache. Graphene has marginal overhead on CURL, and

Graphene-SGX adds 7–61% overhead to the download-
ing time of CURL, due to the latency of I/O.

5.3 Performance Overhead Analysis
In this section we evaluate a few system operations that
are heavily impacted by the Graphene-SGX design. We
measure the open, read, and fork system calls using
LMbench 2.5 [42]. A primary source of the overheads
on these system calls is the cost of shielding applications,
with run-time checks on the inputs. Cryptographic tech-
niques are used to: (1) validate the file against the se-
cure hash, at open, (2) check the file chunks against the
Merkle tree, at read, and (3) establish a TLS connection
over inter-enclave RPC, at fork. The remaining over-
heads contribute to exiting the enclave for host system
calls, and bringing memory into the EPC (enclave page
cache) or decrypting memory on a last-level cache miss.

Figure 7(a) shows the overhead for authenticating files
in open. Depending on the file size, the latency of open
on Graphene-SGX is 383µs (64KB file) to 21ms (4MB
file), whereas on Linux, the latency is constant at 0.85µs.
We note that this is where enclaves are at a disadvan-
tage, as open normally does not need to read file con-
tent; whereas here Graphene-SGX uses open as a point
at which to validate file content. For a subsequent open,
when the Merkle tree is already generated, the overhead
of simply exiting enclave for open, and searching the file
list in the manifest, is about 9×.

One might be able to optimize further for cases where
only part of a file is accessed with incremental hashing.
However, in the common case where nearly all of the file
is accessed, these costs are difficult to avoid when host
file system is untrusted. Another opportunity is to create
the Merkle tree offline, when the manifest is created.

Figure 7(b) shows the overhead for authenticating files
in read, which is lower than open. Since the whole
file has been verified at open, the sequential read only
verifies the chunks of files it is reading from untrusted
memory. Depending on the size of blocks being read,
the latency on Graphene-SGX is 0.5µs (64-byte read)

USENIX Association 2017 USENIX Annual Technical Conference 653

64k 256k 1m 4mSy
st

e
m

 c
a

ll
la

te
n

cy

Opened file size

linux Graphene

Graphene-SGX (unbuffered) Graphene-SGX (buffered)

10ms

1ms

100µs

10µs

1µs

21ms
5ms

2ms
383µs

8.4µs 8.4µs 8.4µs

(a) Open a file

0.1µs

1µs

10µs

64b 256b 1k 4k

Sy
st

e
m

 c
a

ll
la

te
n

cy

Read file block size

linux Graphene
Graphene-SGX (insecure) Graphene-SGX (secure)

0.4µs

1.2µs

4.4µs

16.9µs

(b) Read a file

16M 32M 64M 128MSy
st

em
 c

al
l l

at
en

cy

Process memory footprint

linux Graphene (over RPC)
Graphene (bulk IPC) Graphene-SGX

1s

100ms

10ms

1ms

100µs

10µs

1µS

(c) Fork a process
Figure 7: Latency of some expensive system calls in Graphene-SGX, including opening and reading a secured (au-
thenticated) file, and forking a new process. The results are compared with native Linux and Graphene.

Components Graphene-SGX SCONE Panoply
libc (ld, libm, pthread) 1,292 88 –

(glibc-2.19) (musl)
Library OS 34 – –
PAL / OS Shield 22 99 10
Total 1,348 187 10

Table 2: TCB size (in thousands of lines of code) of
Graphene-SGX, SCONE, and Panoply.

to 16.9µs (4KB read). The latency of read on Linux is
∼0.1µs for any block size below 4KB. If the file is not
authenticated, Graphene-SGX only copies the file con-
tents into the buffer, and the overhead reduces to 48%
(64-byte read) to 83% (4KB read).

Figure 7(c) shows the overhead of forking a process.
As described in 4.3, the latency of fork in Graphene-
SGX is affected by three factors: creation of a new en-
clave, local attestation of the integrity, and duplicating
the process state over an encrypted RPC stream. Com-
bining these factors, fork is one of the most expen-
sive calls in Graphene-SGX. The default enclave size is
256MB. Our evaluation shows that the latency of forking
a process is around 0.8s (16MB process) to 2.7s (128MB
process), but can be more expensive if the parent process
uses more memory. The trend matches the performance
of Graphene without the bulk IPC optimization.

One way to further optimize fork is to reduce or avoid
enclave creation time; one can potentially pre-launch a
child enclave, and then migrate the process contents later
when fork is called. There might be another opportunity
to improve the latency of process migration, if copy-on-
write sharing of enclave pages can be supported in future
generations of SGX.

5.4 TCB Size and Shielded Functionality
In this section we measure the increase in TCB size of
Graphene-SGX, as well as the OS functionality shielded
by the framework. We compare to SCONE and Panoply,
using numbers reported in their papers. A smaller TCB
is generally easier to review or possibly verify, and is
assumed to have fewer vulnerabilities.

Table 2 lists the lines of code in each compo-
nents within the TCB of Graphene-SGX, SCONE, and
Panoply. By comparing the total TCB size, Graphene-
SGX is 9× larger than SCONE, and 134× larger than
Panoply. However, the primary difference is the selec-
tion of libc: for maximum compatibility, Graphene uses
glibc. SCONE uses the smaller musl libc, which lacks
some features of glibc. Panoply excludes libc from its
TCB, to fit into the range of automated formal verifi-
cation, as they shield at the libc interface. In principle,
Graphene could easily support musl as well as glibc for
applications that do not need the additional features of
glibc. We also see the benefit of removing unused code
from libraries, especially in an unsafe language, similar
to the approach taken in unikernels [38]. On balance,
this choice of libc implementation is largely orthogonal
to the issue of how general-purpose the shields are.

If we focus on the TCB size of the library OS and the
shields, Graphene-SGX is 44% smaller than SCONE.
We cannot analyze the size of SCONE because it is
closed source. Panoply has a smaller TCB in its shield,
but within the same order of magnitude. Panoply only
shields 91 out of 256 supported POSIX functions; for
context, POSIX 1003.1 defines 1,191 APIs [11].

All three of these compatibility layers or shields are
within the same order of magnitude in code size, and
the differences are likely correlated with different ranges
of supported functionality. A recent study indicates that
only order-of-magnitude differences in code size corre-
late with reported CVE vulnerabilities; within the same
order-of-magnitude, the data is inconclusive that there
is a meaningful difference in risk [25]. Thus, increased
generality does not necessarily come with increased risk.

6 Related Work
Protection against untrusted OSes. Protecting appli-
cations from untrusted OSes predates hardware support.
Virtual Ghost [20] uses both compile-time and run-time
monitoring to protect an application from a potentially-
compromised OS, but requires recompilation of the
guest OS and application. Flicker [40], MUSHI [56],

654 2017 USENIX Annual Technical Conference USENIX Association

SeCage [37], InkTag [21], and Sego [32] protect appli-
cations from untrusted OS using SMM mode or virtual-
ization to enforce memory isolation between the OS and
a trusted application. Koberl et al. [30], isolate software
on low-cost embedded devices using a Memory Protec-
tion Unit. Li et al. [34] built a 2-way sandbox for x86
by separating the Native Client (NaCl) [55] sandbox into
modules for sandboxing and service runtime to support
application execution and use Trustvisor [39] to protect
the piece of application logic from the untrusted OS. Jang
et al. [26] build a secure channel to authenticate the appli-
cation in the Untrusted area isolated by the ARM Trust-
Zone technology. Song et al. [50] extend each memory
unit with an additional tag to enforce fine-grained isola-
tion at machine word granularity in the HDFI system.

Trusted execution hardware. XOM [35] is the first
hardware design for trusted execution on an untrusted
OS, with memory encryption and integrity protection
similar to SGX. XOM supports containers of an appli-
cation to be encrypted with a developer-chosen key. This
encryption key is encrypted at design-time using a CPU-
specific public key, and also used to tag cache lines that
the containers are allowed to access. XOM realizes a
similar trust model as SGX, except a few details, such as
lack of paging support, and allowing fork by sharing the
encryption key across containers.

Besides SGX, other hardware features have been in-
troduced in recent years to enforce isolation for trusted
execution. TrustZone [51] on ARM creates an isolated
environment for trusted kernel components. Different
from SGX, TrustZone separates the hardware between
the trusted and untrusted worlds, and builds a trusted path
from the trusted kernel to other on-chip peripherals. IBM
SecureBlue++ [16] also isolates applications by encrypt-
ing the memory inside the CPU; SecureBlue++ is capa-
ble of nesting isolated environments, to isolate applica-
tions, guest OSes, hypervisors from each other.

AMD is introducing a feature in future chips called
SEV (Secure Encrypted Virtualization) [27], which ex-
tends nested paging with encryption. SEV is designed
to run the whole virtual machines, whereas SGX is de-
signed for a piece of application code. SEV does not
provide comparable integrity protection or the protection
against replay attacks on SGX. Graphene-SGX provides
the best of both worlds: unmodified applications with
confidentiality and integrity protections in hardware.

Sanctum [19] is a RISC-V processor prototype that
features a minimal and open design for enclaves. Sanc-
tum also defends against some side channels, such as
page fault address and cache timing, by virtualizing the
page table and page fault handler inside each enclave.

SGX frameworks and applications. Besides shielding
systems [14, 15, 49], SGX has been used in specific ap-

plications or to address other security issues. VC3 [45]
runs MapReduce jobs in SGX enclaves. Similarly, Bren-
ner et al. [17] run cluster services in ZooKeeper in an
enclave, and transparently encrypt data in transit be-
tween enclaves. Ryoan [22] sandboxes a piece of un-
trusted code in the enclave to process secret data while
preventing the loaded code from leaking secret data.
Opaque [57] uses an SGX-protected layer on the Spark
framework to generate oblivious relational operators that
hide the access patterns of distributed queries. SGX has
also been applied to securing network functionality [47],
as well as inter-domain routing in Tor [29].

Several improvements to SGX frameworks have been
recently developed, which can be integrated with appli-
cations on Graphene-SGX. Eleos [43] reduces the num-
ber of enclave exits by asynchronously servicing system
calls outside of the enclaves, and enabling user-space
memory paging. SGXBOUND [31] is a software tech-
nique for bounds-checking with low memory overheads,
to fit within limited EPC size. T-SGX [48] combines
SGX with Transactional Synchronization Extensions, to
invoke a user-space handler for memory transactions
aborted by page fault, to mitigate controlled-channel at-
tacks. SGX-Shield [46] enables Address Space Layout
Randomization (ASLR) in enclaves, with a scheme to
maximize the entropy, and the ability to hide and enforce
ASLR decisions. Glamdring [36] uses data-flow analysis
at compile-time, to automatically determine the partition
boundary in an application.

7 Conclusion
This paper demonstrates that the costs of running an
unmodified application in SGX on a library OS are
marginal compared to thinner shims. The major costs
of using SGX are still hardware limitations of SGX.
As SGX and similar technologies mature, these de-
sign choices may have more impact. In the interim,
Graphene-SGX serves as a simple, open-source tool to
quickly bring up existing applications on SGX, and then
incrementally adapt the code to improve performance
and security on SGX.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Mihai Christodorescu, for their insighful comments on
the work. We also thank the users of Graphene for con-
tributing bug reports, code patches, and suggestions for
the project, as well as their patience with bug fixes. Part
of this work was completed while Porter’s primary af-
filiation was Stony Brook University. This work was
supported in part by NSF grants CNS-1149229, CNS-
1161541, CNS-1228839, CNS-1405641, VMware, and
an SGX pre-release equipment loan from Intel.

USENIX Association 2017 USENIX Annual Technical Conference 655

References
[1] Apache HTTP benchmarking tool. http:

//httpd.apache.org/docs/2.4/programs/

ab.html.

[2] Apache HTTP server project. https://httpd.

apache.org/.

[3] CURL, command line tool and library for transfer-
ring data with url. https://curl.haxx.se.

[4] GCC, the GNU compiler collection. https://

gcc.gnu.org.

[5] Large single compilation-unit C programs.
http://people.csail.mit.edu/smcc/

projects/single-file-programs/.

[6] Lighttpd. https://www.lighttpd.net/.

[7] NGINX. https://www.nginx.com/.

[8] R benchmark 2.5. http://www.math.tamu.edu/
osg/R/R-benchmark-25.R.

[9] The R project for statical computing. https://

www.r-project.org/.

[10] CVE-2009-2692. Available at MITRE,
https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2009-2692, August 2009.

[11] IEEE International Standard for Information Tech-
nology – Portable Operating System Interface
(POSIX) Base Specifications, Issue 7. Standard,
IEEE, September 2009.

[12] K. Agarwal, B. Jain, and D. E. Porter. Containing
the hype. In Proceedings of the 6th Asia-Pacific
Workshop on Systems, APSys ’15, 2015.

[13] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scar-
lata. Innovative technology for CPU based attes-
tation and sealing. In Proceedings of the Fourth
Workshop on Hardware and Architectural Support
for Security and Privacy at Proceedings of the ACM
IEEE International Symposium on Computer Ar-
chitecture (ISCA), 2013.

[14] S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Ey-
ers, R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE:
Secure linux containers with Intel SGX. In Pro-
ceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Nov
2016.

[15] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 267–283, 2014.

[16] R. Boivie and P. Williams. SecureBlue++:
CPU support for secure executables. Tech-
nical report, IBM Research, 2013. Avail-
able at http://domino.research.ibm.

com/library/cyberdig.nsf/papers/

BE73A643EFE8274B85257B51006760C0.

[17] S. Brenner, C. Wulf, and R. Kapitza. Run-
ning ZooKeeper coordination services in untrusted
clouds. In 10th Workshop on Hot Topics in System
Dependability (HotDep 14), 2014.

[18] S. Checkoway and H. Shacham. Iago attacks: Why
the system call API is a bad untrusted RPC inter-
face. SIGPLAN Not., pages 253–264, March 2013.

[19] V. Costan, I. Lebedev, and S. Devadas. Sanctum:
Minimal hardware extensions for strong software
isolation. In USENIX Security, volume 16, pages
857–874, 2016.

[20] J. Criswell, N. Dautenhahn, and V. Adve. Virtual
ghost: Protecting applications from hostile oper-
ating systems. In Proceedings of the ACM Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS). Citeseer, 2014.

[21] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee,
and E. Witchel. Inktag: secure applications on
an untrusted operating system. In Proceedings of
the ACM International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 265–278. ACM,
2013.

[22] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel.
Ryoan: A distributed sandbox for untrusted compu-
tation on secret data. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI). USENIX Association, 2016.

[23] Intel Corporation. Intel software guard exten-
sions for Linux OS - Intel SGX driver. https:

//github.com/01org/linux-sgx.

[24] Intel Corporation. Intel software guard exten-
sions for Linux OS - Intel SGX SDK. https:

//github.com/01org/linux-sgx.

656 2017 USENIX Annual Technical Conference USENIX Association

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/
https://httpd.apache.org/
https://curl.haxx.se
https://gcc.gnu.org
https://gcc.gnu.org
http://people.csail.mit.edu/smcc/projects/single-file-programs/
http://people.csail.mit.edu/smcc/projects/single-file-programs/
https://www.lighttpd.net/
https://www.nginx.com/
http://www.math.tamu.edu/osg/R/R-benchmark-25.R
http://www.math.tamu.edu/osg/R/R-benchmark-25.R
https://www.r-project.org/
https://www.r-project.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692
http://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73A643EFE8274B85257B51006760C0
http://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73A643EFE8274B85257B51006760C0
http://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73A643EFE8274B85257B51006760C0
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx

[25] B. Jain, C.-C. Tsai, and D. E. Porter. A clairvoy-
ant approach to evaluating software (in)security. In
Proceedings of the USENIX Workshop on Hot Top-
ics in Operating Systems (HotOS), 2017.

[26] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B.
Kang. Secret: Secure channel between rich exe-
cution environment and trusted execution environ-
ment. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2015.

[27] D. Kaplan, J. Powell, and T. Woller. AMD memory
encryption. White paper, April 2016. Avail-
able at http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2013/12/AMD_

Memory_Encryption_Whitepaper_v7-

Public.pdf.

[28] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. En-
hancing security and privacy of tors ecosystem by
using trusted execution environments. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Associa-
tion, 2017.

[29] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A first
step towards leveraging commodity trusted execu-
tion environments for network applications. In Pro-
ceedings of the 14th ACM Workshop on Hot Topics
in Networks (HotNets), page 7. ACM, 2015.

[30] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varad-
harajan. Trustlite: A security architecture for tiny
embedded devices. In Proceedings of the ACM
European Conference on Computer Systems (Eu-
roSys), page 10. ACM, 2014.

[31] D. Kuvaiskii, O. Oleksenko, S. Arnautov,
B. Trach, P. Bhatotia, P. Felber, and C. Fet-
zer. SGXBOUNDS: Memory safety for shielded
execution. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys),
EuroSys ’17, 2017.

[32] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann,
Y. Xu, and E. Witchel. Sego: Pervasive trusted
metadata for efficiently verified untrusted system
services. SIGOPS Oper. Syst. Rev.

[33] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hof-
mann, Y. Xu, and E. Witchel. Sego: Pervasive
trusted metadata for efficiently verified untrusted
system services. In Proceedings of the ACM Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 277–290. ACM, 2016.

[34] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker,
and W. Drewry. Minibox: A two-way sandbox for
x86 native code. In Proceedings of the USENIX An-
nual Technical Conference, pages 409–420, 2014.

[35] D. Lie, C. A. Thekkath, and M. Horowitz. Imple-
menting an untrusted operating system on trusted
hardware. ACM SIGOPS Operating Systems Re-
view, 37(5):178–192, 2003.

[36] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe,
P.-L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche,
D. Eyers, R. Kapitza, C. Fetzer, and P. Pietzuch.
Glamdring: Automatic application partitioning for
Intel SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), Santa Clara, CA,
2017. USENIX Association.

[37] Y. Liu, T. Zhou, K. Chen, H. Chen, and
Y. Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In Pro-
ceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

[38] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating sys-
tems for the cloud. In Proceedings of the ACM
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS), 2013.

[39] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In Proceedings of the
IEEE Symposium on Security and Privacy (Oak-
land), pages 143–158, 2010.

[40] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastruc-
ture for TCB minimization. In Proceedings of the
ACM European Conference on Computer Systems
(EuroSys), pages 315–328, 2008.

[41] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi,
S. Johnson, R. Leslie-Hurd, and C. Rozas. Intel
software guard extensions (Intel SGX) support for
dynamic memory management inside an enclave.
In Proceedings of the Fourth Workshop on Hard-
ware and Architectural Support for Security and
Privacy, pages 1–9, New York, New York, USA,
June 2016. ACM Press.

[42] L. McVoy and C. Staelin. lmbench: Portable tools
for performance analysis. In Proceedings of the
USENIX Annual Technical Conference, pages 23–
23, 1996.

USENIX Association 2017 USENIX Annual Technical Conference 657

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

[43] M. Orenbach, P. Lifshits, M. Minkin, and M. Sil-
berstein. Eleos: ExitLess OS services for SGX en-
claves. In Proceedings of the ACM European Con-
ference on Computer Systems (EuroSys), 2017.

[44] N. Provos, M. Friedl, and P. Honeyman. Prevent-
ing privilege escalation. In Proceedings of the 12th
Conference on USENIX Security Symposium - Vol-
ume 12, SSYM’03, pages 16–16, Berkeley, CA,
USA, 2003. USENIX Association.

[45] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud us-
ing SGX. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland), pages 38–54.
IEEE, 2015.

[46] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han,
and T. Kim. SGX-Shield: Enabling address space
layout randomization for SGX programs. In Pro-
ceedings of the Network and Distributed System Se-
curity Symposium (NDSS), 2017.

[47] M.-W. Shih, M. Kumar, T. Kim, and
A. Gavrilovska. S-NFV: Securing NFV states by
using SGX. In Proceedings of the ACM Interna-
tional Workshop on Security in Software Defined
Networks & Network Function Virtualization
(SDN-NFV Security), pages 45–48. ACM, 2016.

[48] M.-W. Shih, S. Lee, T. Kim, and M. Peinado.
T-SGX: Eradicating controlled-channel attacks
against enclave programs. In Proceedings of the
Network and Distributed System Security Sympo-
sium (NDSS), 2017.

[49] S. Shinde, D. L. Tien, S. Tople, and P. Sax-
ena. PANOPLY: Low-TCB Linux applications with
SGX enclaves. In Proceedings of the Network and
Distributed System Security Symposium (NDSS),
2017.

[50] C. Song, H. Moon, M. Alam, I. Yun, B. Lee,
T. Kim, W. Lee, and Y. Paek. HDFI: Hardware-
assisted data-flow isolation. In Proceedings of the

IEEE Symposium on Security and Privacy (Oak-
land), 2016.

[51] ARM TrustZone technology overview. Avail-
able at http://www.arm.com/products/

processors/technologies/trustzone/

index.php.

[52] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain,
W. Jannen, J. John, H. A. Kalodner, V. Kulkarni,
D. Oliveira, and D. E. Porter. Cooperation and Se-
curity Isolation of Library OSes for Multi-Process
Applications. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2014.

[53] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter.
A study of modern Linux API usage and compati-
bility: What to support when you’re supporting. In
Proceedings of the ACM European Conference on
Computer Systems (EuroSys), 2016.

[54] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oak-
land). IEEE Institute of Electrical and Electronics
Engineers, May 2015.

[55] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In Proceedings of the
IEEE Symposium on Security and Privacy (Oak-
land), pages 79–93. IEEE, 2009.

[56] N. Zhang, M. Li, W. Lou, and Y. T. Hou. Mushi:
Toward multiple level security cloud with strong
hardware level isolation. In Military Communica-
tions Conference, 2012-MILCOM 2012, pages 1–6.
IEEE, 2012.

[57] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa,
J. E. Gonzalez, and I. Stoica. Opaque: An oblivi-
ous and encrypted distributed analytics platform. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2017.

658 2017 USENIX Annual Technical Conference USENIX Association

http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php

PrivApprox: Privacy-Preserving Stream Analytics
https://PrivApprox.github.io

Do Le Quoc†, Martin Beck†, Pramod Bhatotia∗, Ruichuan Chen‡, Christof Fetzer†, Thorsten Strufe†

†TU Dresden ∗University of Edinburgh ‡Nokia Bell Labs

Abstract
How to preserve users’ privacy while supporting high-utility
analytics for low-latency stream processing?

To answer this question: we describe the design,
implementation and evaluation of PRIVAPPROX, a data
analytics system for privacy-preserving stream processing.
PRIVAPPROX provides three important properties: (i)
Privacy: zero-knowledge privacy guarantee for users, a
privacy bound tighter than the state-of-the-art differential
privacy; (ii) Utility: an interface for data analysts to
systematically explore the trade-offs between the output
accuracy (with error estimation) and the query execution
budget; (iii) Latency: near real-time stream processing based
on a scalable “synchronization-free” distributed architecture.

The key idea behind our approach is to marry two tech-
niques together, namely, sampling (used for approximate
computation) and randomized response (used for privacy-
preserving analytics). The resulting marriage is complemen-
tary — it achieves stronger privacy guarantees, and also
improves the performance for stream analytics.

1 Introduction
Many online services continuously collect users’ private
data for real-time analytics. Much of this data arrives as a
data stream and in huge volumes, requiring real-time stream
processing based on distributed systems [1–3, 21].

In the current ecosystem of data analytics, the analysts
usually have direct access to users’ private data, and must be
trusted not to abuse it. However, this trust has been violated
in the past [28, 49, 62, 69]. A pragmatic ecosystem has
two desirable, but contradictory design requirements: (i)
stronger privacy guarantees for users, and (ii) high-utility
stream analytics in real time. Users seek stronger privacy,
while analysts strive for high-utility analytics in real time.

To meet these two design requirements, there is a
surge of novel computing paradigms that address these
concerns, albeit separately. Two such paradigms are
privacy-preserving analytics to protect user privacy and
approximate computation for real-time analytics.

Privacy-preserving analytics. Recent privacy-preserving
analytics systems favor a distributed architecture to avoid
central trust (see §8 for details), where users’ private data
is stored locally on their respective client devices. Data an-
alysts use a publish-subscribe mechanism to run aggregate
queries over the distributed private dataset of a large number
of clients. Thereafter, such systems add noise to the aggregate
output to provide useful privacy guarantees, such as differen-
tial privacy [32]. Unfortunately, these state-of-the-art systems
normally deal with single-shot batch queries, and therefore,
these systems cannot be used for real-time stream analytics.

Approximate computation. Approximate computation is
based on the observation that many data analytics jobs are
amenable to an approximate rather than the exact output (see
§8 for details). Such applications include speech recognition,
computer vision, machine learning, and recommender
systems. For such an approximate workflow, it is possible
to trade accuracy by computing over a subset (usually
selected via a sampling mechanism) instead of the entire
input dataset. Thereby, data analytics systems based on
approximate computation can achieve low latency and
efficient utilization of resources. However, the existing
systems for approximate computation assume a centralized
dataset, where the desired sampling mechanism can be
employed. Thus, existing systems are not compatible with
the distributed privacy-preserving analytics systems.

The marriage. In this paper, we make the observation
that the two computing paradigms, i.e., privacy-preserving
analytics and approximate computation, are complementary.
Both paradigms strive for an approximate instead of the
exact output, but they differ in their means and goals for
approximation. Privacy-preserving analytics adds explicit
noise to the aggregate query output to protect user privacy,
whereas approximate computation relies on a representative
sampling of the entire dataset to compute over only a
subset of data items to enable low-latency/efficient analytics.
Therefore, we marry these two existing paradigms together
in order to leverage the benefits of both. The high-level

USENIX Association 2017 USENIX Annual Technical Conference 659

https://privapprox.github.io/

idea is to achieve privacy (via approximation) by directly
computing over a subset of sampled data items (instead
of computing over the entire dataset) and then adding an
explicit noise for privacy preservation.

To realize this marriage, we designed an approximation
mechanism that also achieves privacy-preserving goals
for stream analytics. Our design (see Figure 1) targets a
distributed setting, similar as aforementioned, where users’
private data is stored locally on their respective personal
devices, and an analyst issues a streaming query for analytics
over the distributed private dataset of users. The analyst’s
streaming query is executed on the users’ data periodically
(a configurable epoch) and the query results are transmitted
to a centralized aggregator via a set of proxies. The analyst
interfaces with the aggregator to get the aggregate query
output periodically.

We employ two core techniques to achieve our goal.
Firstly, we employ sampling [60] directly at the user site
for approximate computation, where each user randomly
decides whether to participate in answering the query in the
current epoch. Since we employ sampling at the data source,
instead of sampling at a centralized infrastructure, we are
able to squeeze out the desired data size (by controlling the
sampling parameter) from the very first stage in the analytics
pipeline, which is essential in low-latency environments.

Secondly, if the user participates in the query answering
process, we employ a randomized response [37] mechanism
to add noise to the query output at the user site, again locally
at the source of the data in a decentralized fashion. In
particular, each user locally randomizes the truthful answer
to the query to achieve the differential privacy guarantees
(§3.2.2). Since we employ noise addition at the source of
data, instead of adding the explicit noise to the aggregate
output at a trusted aggregator or proxies, we enable a
truly “synchronization-free” distributed architecture, which
requires no coordination among proxies and the aggregator
for the mandated noise addition.

The last, but not the least, silver bullet of our design: it
turns out that the combination of the two aforementioned
techniques (i.e., sampling and randomized response) leads
us to achieve zero-knowledge privacy [41], a privacy bound
tighter than the state-of-the-art differential privacy [32].

To summarize, we present the design and implementation
of a practical system for privacy-preserving stream analytics
in real time. In particular, our system is a novel combination
of the sampling and randomized response techniques, as well
as a scalable “synchronization-free” routing scheme which
employs a light-weight XOR-based encryption scheme [26].
The resulting system ensures zero-knowledge privacy,
anonymization, and unlinkability for users (§2.2). Altogether,
we make the following contributions:
• We present a marriage of the sampling and randomized

response techniques to achieve improved performance
and stronger privacy guarantees.

Proxies

Clients / Users

C1

C2

Cn

.

.

Aggregator

A1

A2

Am

.

.

Analysts

Streaming query & budget

Query result

 Users’ private

data is stored

locally

Figure 1: System overview.

• We present an adaptive query execution interface for
analysts to systematically make a trade-off between the
output accuracy and the query execution budget.
• We present a confidence metric on the output ac-

curacy using a confidence interval to interpret the
approximation due to sampling and randomization.

To empirically evaluate our approach, we implemented
our design as a fully functional prototype in a system
called PRIVAPPROX based on Apache Flink [21] and
Apache Kafka [7]. In addition to stream analytics, we
further extended our system to support privacy-preserving
“historical” batch analytics over users’ private datasets. The
evaluation based on micro-benchmarks and real-world case
studies shows that this marriage is, in fact, made in heaven!

2 Overview
2.1 System Architecture
PRIVAPPROX is designed for privacy-preserving stream
analytics on distributed users’ private dataset. Figure 1
depicts the high-level architecture of PRIVAPPROX. Our
system consists of four main components: clients, proxies,
aggregator, and analysts.

Clients locally store users’ private data on their respective
personal devices, and subscribe to queries from the system.
Analysts publish streaming queries to the system, and also
specify a query execution budget. The query execution bud-
get can either be in the form of latency guarantees/SLAs,
output quality/accuracy, or the computing resources for query
processing. Our system ensures that the computation remains
within the specified budget.

At a high-level, the system works as follows: a query
published by an analyst is distributed to clients via the
aggregator and proxies. Clients answer the analyst’s query
locally over the users’ private data using a privacy-preserving
mechanism. Client answers are transmitted to the aggregator
via anonymizing proxies. The aggregator aggregates re-
ceived answers from the clients to provide privacy-preserving
stream analytics to the analyst.

2.2 System Model

Query model. PRIVAPPROX supports the SQL query lan-
guage for analysts to formulate streaming queries, which are
executed periodically at the clients as sliding window compu-
tations [14]. While queries can be complex, the results of a
query are expressed as counts within histogram buckets, i.e.,

660 2017 USENIX Annual Technical Conference USENIX Association

each bucket represents a range of the query’s answer values.
Specifically, each query answer is represented in the form
of binary buckets, where each bucket stores a value ‘1’ or ‘0’
depending on whether or not the answer falls into the value
range represented by that bucket. For example, an analyst can
learn the driving speed distribution across all vehicles in San
Francisco by formulating an SQL query “SELECT speed
FROM vehicle WHERE location=‘San Fran-
cisco’”. The analyst can then define 12 answer buckets
on speed: ‘0’, ‘1∼10’, ‘11∼20’, ···, ‘81∼90’, ‘91∼100’, and
‘>100’. If a vehicle is moving at 15 mph in San Francisco,
it answers ‘1’ for the third bucket and ‘0’ for all others.

Our query model supports not only numeric queries as
described above, but also non-numeric queries. For non-
numeric queries, each bucket is specified by a matching rule
or a regular expression. Note that, at first glance, our query
model may appear simple; however, it has been shown to be
effective for a wide-range of analytics algorithms [19, 20].

Threat model. Analysts are potentially malicious. They may
try to violate the PRIVAPPROX’s privacy model (described
later), i.e., de-anonymize clients, build profiles through the
linkage of queries and answers, or remove the added noise
from answers.

Clients are potentially malicious. They could generate
false or invalid responses to distort the query result for the
analyst. However, we do not defend against the Sybil at-
tack [31], which is beyond the scope of this work [75].

Proxies are also potentially malicious. They may transmit
messages between clients and the aggregator in contravention
of our system protocols. PRIVAPPROX includes at least two
proxies, and there are at least two proxies which do not
collude with each other.

The aggregator is assumed to be honest-but-curious.
The aggregator faithfully conforms to the system protocols,
but may try to exploit the information about clients. The
aggregator does not collude with any proxy nor the analyst.

Finally, we assume that all the end-to-end communica-
tions use authenticated and confidential connections (e.g.,
protected by long-lived TLS connections), and no system
component could monitor all network traffic.

Privacy model. Our privacy properties include: (i) zero-
knowledge privacy, (ii) anonymity, and (iii) unlinkability.

All aggregate query results in the system are independently
produced under the zero-knowledge privacy guarantees [41].
The zero-knowledge privacy metric builds upon differential
privacy [32], and provides a tighter bound on privacy
guarantees compared to differential privacy. Informally,
zero-knowledge privacy states that essentially everything that
an adversary can learn from the output of an zero-knowledge
private mechanism could also be learned using the aggregate
information. Anonymity means that no system component
can associate query answers or query requests with a
specific client. Finally, unlinkability means that no system

component can join any pair of query requests or answers
to the same client, even to the same anonymous client.

We give a sketch of the privacy analysis in §4, while we
also provide the formal definition, analysis, and proof in the
technical report [64].

3 Design
PRIVAPPROX consists of two main phases (see Figure 1):
submitting queries and answering queries. In the first phase,
an analyst submits a query (along with the execution budget)
to clients via the aggregator and proxies. In the second phase,
the query is answered by the clients in the reverse direction.

3.1 Submitting Queries
To perform statistical analysis over users’ private data streams,
an analyst creates a query using the query model described
in §2.2. In particular, each query consists of the following
fields, and is signed by the analyst for non-repudiation:

Query :=〈QID,SQL,A[n], f ,w,δ〉 (1)

• QID denotes a unique identifier of the query. This can
be generated by concatenating the identifier of the
analyst with a serial number unique to the analyst.
• SQL denotes the actual SQL query, which is passed on

to clients and executed on their respective personal data.
• A[n] denotes the format of a client’s answer to the query.

The answer is an n-bit vector where each bit associates
with a possible answer value in the form of a “0” or
“1” per index (or answer value range).
• f denotes the answer frequency, i.e., how often the

query needs to be executed at clients.
• w denotes the window length for sliding window

computations [13]. For example, an analyst may only
want to aggregate query results for the last ten minutes,
which means the window length is ten minutes.
• δ denotes the sliding interval for sliding window

computations. For example, an analyst may want to
update the query results every one minute, and so the
sliding interval is set to one minute.

After forming the query, the analyst sends the query, along
with the query execution budget, to the aggregator. Once
receiving the pair of the query and query budget from the
analyst, the aggregator first converts the query budget into
system parameters for sampling (s) and randomization (p,q).
We explain these system parameters in the next section
§3.2. Hereafter, the aggregator forwards the query and the
converted system parameters to clients via proxies.

3.2 Answering Queries
After receiving the query and system parameters, we next
explain how the query is answered by clients and processed
by the system to produce the result for the analyst. The query
answering process involves four steps including (i) sampling
at clients for low-latency approximation; (ii) randomizing
answers for privacy preservation; (iii) transmitting answers

USENIX Association 2017 USENIX Annual Technical Conference 661

via proxies for anonymization and unlinkability; and finally,
(iv) aggregating answers with error estimation to give a
confidence level on the approximate result.

3.2.1 Step I: Sampling at Clients

We make use of approximate computation to achieve low-
latency execution by computing over a subset of data items
instead of the entire input dataset. Specifically, our work
builds on sampling-based techniques [8, 9, 42, 53, 65] in the
context of “Big Data” analytics. Since we aim to keep the
private data stored at individual clients, PRIVAPPROX applies
an input data sampling mechanism locally at the clients. In
particular, we use Simple Random Sampling (SRS) [60].
Simple Random Sampling (SRS). SRS is considered as a
fair way of selecting a sample from a given population since
each individual in the population has the same chance of be-
ing included in the sample. We make use of SRS at the clients
to select clients that will participate in the query answering
process. In particular, the aggregator passes the sampling
parameter (s) on to clients as the probability of participating
in the query answering process. Thereafter, each client flips a
coin with the probability based on the sampling parameter (s),
and decides whether to participate in answering a query. Sup-
pose that we have a population of U clients, and each client
i has an answer ai. We want to calculate the sum of these
answers across the population, i.e., ∑

U
i=1ai. To compute an

approximate sum, we apply the SRS at clients to get a sample
of U ′ clients. The estimated sum is then calculated as follows:

τ̂=
U
U ′

U ′

∑
i=1

ai±error (2)

Where the error bound error is defined as:

error=t
√

V̂ar(τ̂) (3)

Here, t is a value of the t-distribution with U ′−1 degrees
of freedom at the 1− α/2 level of significance, and the
estimated variance V̂ar(τ̂) of the sum is:

V̂ar(τ̂)=
U2

U ′
σ

2(
U−U ′

U
) (4)

Where σ2 is the sample variance of the sum.
Note that, in this paper, we assume that all clients

produce the input stream with data items following the same
distribution, i.e., all clients’ data streams belong to the same
stratum. We further extend our sampling mechanism with
the stratified sampling technique [53] to deal with varying
distributions of data streams. We cover the algorithm and
evaluation of stratified sampling in the technical report [64].

3.2.2 Step II: Answering Queries at Clients

Clients that participate in the query answering process make
use of the randomized response technique [37] to preserve
answer privacy, with no synchronization among clients.

Randomized response. Randomized response protects
user’s privacy by allowing individuals to answer sensitive
queries without providing truthful answers all the time, yet
it allows analysts to collect statistical results. Randomized
response works as follows: suppose an analyst sends a query
to individuals to obtain the statistical result about a sensitive
property. To answer the query, a client locally randomizes
its answer to the query [37]. Specifically, the client flips
a coin, if it comes up heads, then the client responds its
truthful answer; otherwise, the client flips a second coin
and responds “Yes” if it comes up heads or “No” if it comes
up tails. The privacy is preserved via the ability to refuse
responding truthful answers.

Suppose that the probabilities of the first coin and the
second coin coming up heads are p and q, respectively. The
analyst receives N randomized answers from individuals,
among which Ry answers are “Yes”. Then, the number of
original truthful “Yes” answers before the randomization
process can be estimated as:

Ey=
Ry−(1−p)×q×N

p
(5)

Suppose Ay and Ey are the actual and the estimated
numbers of the original truthful “Yes” answers, respectively.
The accuracy loss η is then defined as:

η=

∣∣∣∣Ay−Ey

Ay

∣∣∣∣ (6)

It has been proven in [36] that, the randomized response
mechanism achieves ε-differential privacy [32], where:

ε= ln
(Pr[Response=Yes|Truth=Yes]

Pr[Response=Yes|Truth=No]

)
(7)

More specifically, the above randomized response
mechanism achieves ε-differential privacy, where:

ε= ln
(p+(1−p)×q

(1−p)×q

)
(8)

The reason is that, if a truthful answer is “Yes”, then
with the probability of ‘p+(1− p)× q’, the randomized
answer will still remain “Yes”. Otherwise, if a truthful
answer is “No”, then with the probability of ‘(1− p)×q’,
the randomized answer will become “Yes”.

It is worth mentioning that, combining the randomized
response with the sampling technique described in Step I, we
achieve not only differential privacy but also zero-knowledge
privacy [41] which is a privacy bound tighter than differential
privacy. We sketch out the proof in §4, with details in the
technical report [64].

3.2.3 Step III: Transmitting Answers via Proxies

After producing randomized responses, clients transmit them
to the aggregator via the proxies. To achieve anonymity

662 2017 USENIX Annual Technical Conference USENIX Association

AggregatorClient

Proxy # 2

Proxy # 1

M = ME Ο MK

< MID, ME >

ME = M Ο MK

< MID, Mk >

< MID, ME, MK >

+ +

Figure 2: XOR-based encryption with two proxies.

and unlinkability of the clients against the aggregator and
analysts, we utilize the XOR-based encryption together
with source rewriting, which has been used for anonymous
communications [26, 27, 30, 67].

XOR-based encryption. At a high-level, the XOR-based
encryption employs extremely efficient bit-wise XOR
operations as its cryptographic primitive compared to ex-
pensive public-key cryptography. This allows us to support
resource-constrained clients, e.g., smartphones and sensors.
The underlying idea of this encryption is simple: if Alice
wants to send a message M of length l to Bob, then Alice and
Bob share a secret MK (in the form of a random bit-string of
length l). To transmit the message M privately, Alice sends
an encrypted message ‘ME =M⊕MK’ to Bob, where ‘⊕’
denotes the bit-wise XOR operation. To decrypt the message,
Bob again uses the bit-wise XOR operation: M=ME⊕MK.

Specifically, we apply the XOR-based encryption to
transmit clients’ randomized answers as follows. At first,
each randomized answer is concatenated with its associated
query identifier QID to build a message M:

M=QID,RandomizedAnswer (9)

Thereafter, the client generates (n − 1) random l-bit
key strings MKi with 2 ≤ i ≤ n using a cryptographic
pseudo-random number generator (PRNG) seeded with a
cryptographically strong random number. The XOR of all
(n−1) key strings together forms the secret MK.

MK =
n⊕

i=2

MKi (10)

Next, the client performs an XOR operation with M and
MK to produce an encrypted message ME .

ME =M⊕MK (11)

As a result, the message M is split into n messages
〈ME,MK2,···,MKn〉. Afterwards, a unique message identifier
MID is generated, and sent along with the split messages to
the n proxies via anonymous channels enabled by source
rewriting [30, 67].

Client−→Proxy1:〈MID,ME〉
Client−→Proxyi :〈MID,MKi〉

(12)

Upon receiving the messages (either 〈MID, ME〉 or
〈MID, MKi〉) from clients, the n proxies transmit these
messages to the aggregator.

The message identifier MID ensures that ME and all
associated MKi will be joined later to decrypt the original
message M at the aggregator. Note that, 〈MID,ME〉 and all
〈MID,MKi〉 are computationally indistinguishable, which
hides from the proxies if the received data contains the
encrypted answer or is just a pseudo-random bit string.

3.2.4 Step IV: Generating Result at the Aggregator

At the aggregator, all data streams (〈MID, ME〉 and
〈MID,MKi〉) are received, and can be joined together to
obtain a unified data stream. Specifically, the associated
ME and MKi are paired by using the message identifier
MID. To decrypt the original randomized message M from
the client, the XOR operation is performed over ME and
MK: M = ME ⊕MK with MK being the XOR of all MKi:
MK =

⊕n
i=2MKi . As the aggregator cannot identify which of

the received messages is ME , it just XORs all the n received
messages to decrypt M.

The joined answer stream is processed to produce the
query results as a sliding window. For each window, the
aggregator first adapts the computation window to the
current start time t by removing all old data items, with
timestamp < t, from the window. Next, the aggregator
adds the newly incoming data items into the window. Then,
the answers in the window are decoded and aggregated to
produce the query results for the analyst. Each query result
is an estimated result which is bound to a range of error due
to the approximation. The aggregator estimates this error
bound using equation 3 and produces a confidence interval
for the result as: queryResult ± errorBound. The entire
process is repeated for every window.

Note that an adversarial client might answer a query many
times in an attempt to distort the query result. However, we
can handle this problem, for example, by applying the triple
splitting technique [26].

Error bound estimation. We provide an error bound
estimation for the aggregate query results. The accuracy loss
in PRIVAPPROX is caused by two processes: (i) sampling
and (ii) randomized response. Since the accuracy loss of
these two processes is statistically independent (see §6),
we estimate the accuracy loss of each process separately.
Furthermore, Equation 2 indicates that the error induced by
sampling can be described as an additive component of the
estimated sum. The error induced by randomized response
is contained in the ai values in Equation 2. Therefore,
independent of the error induced by randomized response,
the error coming from sampling is simply being added upon.
Following this, we sum up both independently estimated
errors to provide the total error bound of the query results.

To estimate the accuracy loss of the randomized response
process, we make use of an experimental method. We

USENIX Association 2017 USENIX Annual Technical Conference 663

run several micro-benchmarks at the beginning of the
query answering process (without performing the sampling
process) to estimate the accuracy loss caused by randomized
response. We measure the accuracy loss using Equation 6.

On the other hand, to estimate the accuracy loss of the
sampling process, we apply the statistical theory of the
sampling techniques. In particular, we first identify a desired
confidence level, e.g., 95%. Then, we compute the margin
of error using Equation 3. Note that, to use this equation the
sampling distribution must be nearly normal. According to
the Central Limit Theorem (CLT), when the sample size U ′

is large enough (e.g., ≥ 30), the sampling distribution of a
statistic becomes close to the normal distribution, regardless
of the underlying distribution of values in the dataset [72].

3.3 Practical Considerations

We next present two design enhancements to further improve
the practicality of PRIVAPPROX.

3.3.1 Historical Analytics

In addition to providing real-time data analytics, we further
extend PRIVAPPROX to support historical analytics. The his-
torical analytics workflow is essential for the data warehous-
ing setting, where analysts wish to analyze user behaviors
over a longer time period. To facilitate historical analytics,
we support the batch analytics over user data at the aggregator.
The analyst can analyze users’ responses stored in a fault-
tolerant distributed storage (e.g., HDFS) at the aggregator to
get the aggregate query result over the desired time period.

We also extend the adaptive execution interface for
historical analytics, where the analyst can specify query
execution budget, for example, to suit dynamic pricing in
spot markets in the cloud deployment. Based on the query
budget, we can perform an additional round of sampling at
the aggregator to ensure that the batch analytics computation
remains within the query budget (see the evaluation details
in the technical report [64]).

3.3.2 Query Inversion

In the current setting, some queries may result in very few
truthful “Yes” answers in users’ responses. For such cases,
PRIVAPPROX can only achieve lower utility of query results
because the fraction of truthful “Yes” answers is distant from
the second randomization parameter q (see experimental
results in §6). For instance, if q is set to a high value (e.g.,
q=0.9), having only a few truthful “Yes” answers will affect
the overall utility of the query result. To address this issue,
we propose a query inversion mechanism. If the fraction of
truthful “Yes” answers is too small or too large compared to
the q value, then the analysts can invert the query to calculate
the truthful “No” answers instead of the truthful “Yes” an-
swers. In this way, the fraction of truthful “No” answers gets
closer to q, resulting in a higher utility of the query result.

4 Privacy Analysis
PRIVAPPROX achieves the strong privacy properties
(i) differential privacy and (ii) zero-knowledge privacy as
introduced in §2.2. This section only provides a sketch of
the full proof. The detailed proof along with the empirical
evaluation is available in the technical report [64].

The basic idea is that all data from the clients is already
differentially private due to the use of randomized response.
Furthermore, the combination with sampling at the clients
makes it zero-knowledge private as well. Following the
privacy definitions [32, 41], any computation upon the
results of differentially as well as zero-knowledge private
algorithms is guaranteed to be private.

Intuitively, differential privacy limits the information that
can be learned about any individual i by the difference occur-
ring from either including i’s sensitive data in a differentially
private computation or not. Zero-knowledge privacy on the
other hand also gives the adversary access to aggregate infor-
mation about the remaining individuals. Essentially, every-
thing that can be learned about individual i can also be learned
by having access to some aggregate information upon them.
(i) Differential privacy. Differential privacy is already
fulfilled by randomized response [36]. However, due to the
use of client-side sampling, a tighter privacy bound can be de-
rived. Consequently, we show that sampling and randomize
response commute and how to derive the combined bound
given the sampling and randomize response parameters.
The commutative property is shown by showing statistical
indistinguishability of applying a sampling and randomize
response in that order and vice versa. Furthermore, we show
that sampling can be decomposed into pre- and post-sampling
by leveraging the commutative property of multiplication.
(ii) Zero-knowledge privacy. The zero-knowledge privacy
property follows from combining a differentially private
algorithm (randomized response) with an aggregation
function (sampling) as given in the seminal work on
zero-knowledge privacy [40]. More detail is available in the
technical report [64].

5 Implementation
We implemented PRIVAPPROX as an end-to-end stream
analytics system. Figure 3 presents the architecture of our
prototype. Our system implementation consists of three main
components: (i) clients, (ii) proxies, and (iii) the aggregator.

First, the query and the execution budget specified by the
analyst are processed by the initializer module to
decide on the sampling parameter (s) and the randomization
parameters (p and q). These parameters along with the query
are then sent to the clients.
Clients. We implemented Java-based clients for mobile
devices as well as for personal computers. A client makes
use of the sampling parameter (based on the sampling
module) to decide whether to participate in the query answer-
ing process (§3.2.1). If the client decides to participate then

664 2017 USENIX Annual Technical Conference USENIX Association

Client

...

Proxies
(Apache Kafka & Zookeeper)

Aggregator

(Apache Flink)

XOR -based

encryption

Query

answering

Sampling at

client Proxy # 1

(pub/sub)

Proxy # n

(pub/sub) XOR-based

decryption

Aggregation

Initializer

Data

analytics

Error

estimation

Streaming

query & budget
Query

result

Query distribution

Query answering

Analyst

Figure 3: PRIVAPPROX architecture. Historical analytics
pipeline at the aggregator is not shown for clarity.

the query answer module is used to execute the input
query on the local user’s private data stored in SQLite [5].
The client makes use of the randomized response to execute
the query (§3.2.2). Finally, the randomized answer is
encrypted using the XOR-based encryption module;
thereafter, the encrypted message and the key messages are
sent to the aggregator via proxies (§3.2.3).
Proxies. We implemented proxies based on Apache Kafka
(which internally uses Apache Zookeeper [4] for fault
tolerance). In Kafka, a topic is used to define a stream of
data items. A stream producer can publish data items to
a topic, and these data items are stored in Kafka servers
called brokers. Thereafter, a consumer can subscribe to the
topic and consume the data items by pulling them from
the brokers. In particular, we make use of Kafka APIs to
create two main topics: key and answer for transmitting the
key message stream and the encrypted answer stream in the
XOR-based encryption protocol, respectively (§3.2.3).
Aggregator. We implemented the aggregator using Apache
Flink for real-time stream analytics and also for historical
batch analytics. At the aggregator, we first make use of the
join method (using the aggregation module) to com-
bine the two data streams: (i) encrypted answer stream and
(ii) key stream. Thereafter, the combined message stream is
decoded (using the XOR-based decryption module)
to reproduce the randomized query answers. These answers
are then forwarded to the analytics module. The analyt-
ics module processes the answers to provide the query re-
sult to the analyst. Moreover, the error estimation
module is used to estimate the error (§3.2.4), which we
implemented using the Apache Common Math library. If
the error exceeds the error bound target, a feedback mecha-
nism is activated to re-tune the sampling and randomization
parameters to provide higher utility in the subsequent epochs.

6 Evaluation: Microbenchmarks
We first evaluate PRIVAPPROX using microbenchmarks.
#I: Effect of sampling and randomization parameters.
We measure the effect of randomization parameters on

Table 1: Utility and privacy of query results with different
randomization parameters p and q.

p q Accuracy loss (η) Privacy Level (ε)

0.3
0.3 0.0278 1.7047
0.6 0.0262 1.3862
0.9 0.0268 1.2527

0.6
0.3 0.0141 2.5649
0.6 0.0128 2.0476
0.9 0.0136 1.7917

0.9
0.3 0.0098 4.1820
0.6 0.0079 3.5263
0.9 0.0102 3.1570

the utility and the privacy guarantee of the query results.
In particular, the utility is measured by the query results’
accuracy loss (Equation 6), and privacy is measured by the
level of achieved zero-knowledge privacy (Equation 19 in
the technical report [64]). In the experiment, we randomly
generated 10,000 original answers, 60% of which are “Yes”
answers. The sampling parameter s is set to 0.6.

Table 1 shows that different settings of the two randomiza-
tion parameters, p and q, do affect the utility and the privacy
guarantee of the query results. The higher p means the higher
probability that a client responds with its truthful answer. As
expected, this leads to higher utility (i.e., smaller accuracy
loss η) but weaker privacy guarantee (i.e., higher privacy
level ε). In addition, Table 1 also shows that the closer we set
the probability q to the fraction of truthful “Yes” answers (i.e.,
60% in this microbenchmark), the higher utility the query
result provides. Nevertheless, to meet the utility and privacy
requirements in various scenarios, we should carefully
choose the appropriate p and q. In practice, the selection of
the ε value depends on real-world applications [54].

We also measured the effect of sampling parameter on
the accuracy loss. Figure 4 (a) shows that the accuracy loss
decreases with the increase of sampling fraction, regardless
of the settings of randomization parameters p and q. The
benefits reach diminishing returns after the sampling fraction
of 80%. The system operator can set the sampling fraction
using resource prediction model [78–80] for any given SLA.

#II: Error estimation. To analyze the accuracy loss, we
first measured the accuracy loss caused by sampling and
randomized response separately. For comparison, we also
computed the total accuracy loss after running the two pro-
cesses in succession as in PRIVAPPROX. In this experiment,
we set the number of original answers to 10,000 with 60%
of which being “Yes” answers. We measured the accuracy
loss of the randomized response process by setting the
sampling parameter to 100% (s=1) and the randomization
parameters p and q to 0.3 and 0.6, respectively. Meanwhile,
we measured the accuracy loss of the sampling process
without the randomized response process by setting p to 1.

Figure 4 (b) indicates that the accuracy loss caused by the
two processes is statistically independent of each other. In ad-
dition, the accuracy loss of the two processes can effectively
be added together to calculate the total accuracy loss.

USENIX Association 2017 USENIX Annual Technical Conference 665

 0

 2

 4

 6

 8

 10 20 40 60 80 90 100

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Sampling fraction (%)

(a) Accuracy loss vs Sampling fraction

p = 0.3, q = 0.3

p = 0.3, q = 0.6

p = 0.3, q = 0.9

p = 0.6, q = 0.3

p = 0.6, q = 0.6

p = 0.6, q = 0.9

p = 0.9, q = 0.3

p = 0.9, q = 0.6

p = 0.9, q = 0.9

 0

 1

 2

 3

 4

 5

 6

10 20 40 60 80 90 100

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Sampling fraction (%)

(b) Error estimation

Sampling (p = 1, q = x)

Randomized response (s = 1)

Combined

 0

 2

 4

 6

 8

101 102 103 104 105 106

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Number of clients

(c) Accuracy loss vs Number of clients

Figure 4: (a) Accuracy loss with varying sampling and randomization parameters. (b) Accuracy loss caused by sampling
and randomized response processes, combined and individually. (c) Accuracy loss with varying numbers of clients.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Truthful “Yes” answer fraction (%)

(a) Accuracy loss vs Truthful “Yes” answer fraction

Native query

Inverse query

 0

 500

 1000

 1500

 2000

102 103 104

#
 r

e
s
p
o
n
s
e
s
/s

e
c
 (

K
)

Bit vector size

(b) Proxy throughput vs Bit vector size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 20 40 60 80 90 100D
if
fe

re
n
ti
a
l
p
ri
v
a
c
y
 l
e
v
e
l
(ε

d
p
)

Sampling fraction at clients (%)

(c) PrivApprox vs RAPPOR

PrivApprox
RAPPOR

Figure 5: (a) Accuracy loss of the native and inversed query results with different fractions of truthful “Yes” answers. (b)
Throughput at proxies with different sizes of the query answer. (c) Comparison between PRIVAPPROX and RAPPOR.

Table 2: Comparison of crypto overheads (# operations/sec). The public-key crypto schemes use a 1024-bit key.

Encryption Decryption
Phone Laptop Server Phone Laptop Server

RSA [10] 937 16× 2,770 341× 4,909 275× 126 25890× 698 23666× 859 26401×
Goldwasser [27] 2,106 7× 17,064 55× 22,902 59× 127 25686× 6,329 2610× 7,068 3209×

Paillier [66] 116 129× 489 1930× 579 2335× 72 45308× 250 66076× 309 73392×
PRIVAPPROX 15,026 943,902 1,351,937 3,262,186 16,519,076 22,678,285

#III: Effect of the number of clients. We next analyzed
how the number of participating clients affects the utility of
the results. In this experiment, we fix the sampling and ran-
domization parameters s, p and q to 0.9, 0.9 and 0.6, respec-
tively, and set the fraction of truthful “Yes” answers to 60%.

Figure 4 (c) shows that the utility of query results improves
with the increase of the number of participating clients, and
few clients (e.g., <100) may lead to low-utility query results.

Note that increasing the number of participating clients
leads to higher network overheads. However, we can tune
the number of clients using the sampling parameter s and
thus decrease the network overhead (see §7.2 #II).

#IV: Effect of the fraction of truthful answers. We
measured the utility of both the native and the inversed
query results with different fractions of truthful “Yes”
answers. In this experiment, we still keep the sampling and
randomization parameters s, p and q to 0.9, 0.9 and 0.6,
respectively, and set the total number of answers to 10,000.

Figure 5 (a) shows that PRIVAPPROX achieves higher

utility as the fraction of truthful “Yes” answers gets closer
to 60% (i.e., the q value). In addition, when the fraction
of truthful “Yes” answers y is too small compared to the q
value (e.g., y=0.1), the accuracy loss is quite high at 2.54%.
However, by using the query inversion mechanism (§3.3.2),
we can significantly reduce the accuracy loss to 0.4%.

#V: Effect of answer’s bit-vector sizes. We measured the
throughput at proxies with various bit-vector sizes of client
answers (i.e., A[n] in §3.1). We conducted this experiment
with a 3-node cluster (see §7.1 for the experimental setup).
Figure 5 (b) shows that the throughput, as expected, is
inversely proportional to the answer’s bit-vector sizes.

#VI: Computational overhead of crypto operations. We
compared the computational overhead of crypto operations
used in PRIVAPPROX and prior systems. In particular, these
crypto operations are XOR in PRIVAPPROX, RSA in [10],
Goldwasser-Micali in [27], and Paillier in [66]. In this ex-
periment, we measured the number of crypto operations that
can be executed on: (i) Android Galaxy mini III smartphone

666 2017 USENIX Annual Technical Conference USENIX Association

Table 3: Throughput (# operations/sec) at clients.

operations/sec Phone Laptop Server
SQLite read 1,162 19,646 23,418

Randomized response 168,938 418,668 1,809,662
XOR encryption 15,026 943,902 1,351,937

Total 1,116 17,236 22,026

running Android 4.1.2 with a 1.5 GHz CPU; (ii) MacBook
Air laptop with a 2.2 GHz Intel Core i7 CPU running OS
X Yosemite 10.10.2; and (iii) Linux server running Linux
3.15.0 equipped with a 2.2 GHz CPU with 32 cores.

Table 2 shows that the XOR operation is extremely
efficient compared with the other crypto mechanisms. This
highlights the importance of XOR encryption in our design.

#VII: Throughput at clients. We measured the throughput
at clients. In particular, we measured the number of
operations per second that can be executed at clients for the
query answering process. In this experiment, we used the
same set of devices as in the previous experiment. Table 3
presents the throughput at clients. To closely investigate the
overheads, we measured the individual throughput of three
sub-processes in the query answering process: (i) database
read, (ii) randomized response, and (iii) XOR encryption.
The result indicates that the performance bottleneck in the
answering process is actually the database read operation.

#VIII: Comparison with related work. First, we com-
pared PRIVAPPROX with SplitX [26], a high-performance
privacy-preserving analytics system. Since PRIVAPPROX
and SplitX share the same architecture, we compare the
latency incurred at proxies in both systems.

Figure 6 shows that, with different numbers of clients,
the latency incurred at proxies in PRIVAPPROX is always
nearly one order of magnitude lower than that in SplitX.
The reason is simple: unlike PRIVAPPROX, SplitX requires
synchronization among its proxies to process query answers
in a privacy-preserving fashion. This synchronization creates
a significant delay in processing query answers, making
SplitX unsuitable for dealing with large-scale stream ana-
lytics. More specifically, in SplitX, the processing at proxies
consists of a few sub-processes including adding noise to
answers, answer transmission, answer intersection, and
answer shuffling; whereas, in PRIVAPPROX, the processing
at proxies contains only the answer transmission. Figure 6
also shows that with 106 clients, the latency at SplitX is 40.27
sec, whereas PRIVAPPROX achieves a latency of just 6.21
sec, resulting in a 6.48× speedup compared with SplitX.

Next, we compared PRIVAPPROX with a recent privacy-
preserving analytics system called RAPPOR [73]. Similar
to PRIVAPPROX, RAPPOR applies a randomized response
mechanism to achieve differential privacy. However,
RAPPOR is not designed for stream analytics, and therefore,
we compared PRIVAPPROX with RAPPOR for privacy only.
To make an “apples-to-apples” comparison between PRIVAP-
PROX and RAPPOR in terms of privacy, we make a mapping

10-3

10-2

10-1

100

101

102

103

102 103 104 105 106 107 108

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of clients

SplitX transmission

SplitX computation

SplitX shuffling

SplitX

PrivApprox

Figure 6: Comparison between SplitX and PRIVAPPROX.

between the system parameters of the two systems. We set
the sampling parameter s=1, and the randomized parameters
p=1− f , q=0.5 in PRIVAPPROX, where f is the parameter
used in the randomized response process of RAPPOR [73].
In addition, we set the number of hash functions used in
RAPPOR to 1 (h=1) for a fair comparison. In doing so, the
two systems have the same randomized response process.
However, since PRIVAPPROX makes use of the sampling
mechanism before performing the randomized response, PRI-
VAPPROX achieves stronger privacy. Figure 5 (c) shows the
differential privacy level of RAPPOR and PRIVAPPROX with
different sampling fractions s. It is worth mentioning that, by
applying the sampling mechanism, PRIVAPPROX achieves
stronger privacy (i.e., zero-knowledge privacy) for clients.

7 Evaluation: Case Studies
We next present our experience of using PRIVAPPROX in
the following two case studies: (i) New York City (NYC)
taxi ride, and (ii) household electricity consumption.

7.1 Experimental Setup

Cluster setup. We used a cluster of 44 nodes connected
via a Gigabit Ethernet. Each node contains 2 Intel Xeon
quad-core CPUs and 8 GB of RAM running Debian 5.0. We
deployed two proxies with Apache Kafka, each of which
consists of 4 Kafka broker nodes and 3 Zookeeper nodes.
We used 20 nodes to deploy Apache Flink as the aggregator.
In addition, we employed the remaining 10 nodes to replay
the datasets to generate data streams for the evaluation.

Datasets. For the first case study, we used the NYC Taxi
Ride dataset from the DEBS 2015 Grand Challenge [51].
For the second case study, we used the Household Electricity
Consumption dataset [6].

Queries. For the NYC taxi ride case study, we created a
query: “What is the distance distribution of taxi rides in New
York?”. We defined the query answer with 11 buckets as
follows: [0, 1) mile, [1, 2) miles, [2, 3) miles, [3, 4) miles, [4,
5) miles, [5, 6) miles, [6, 7) miles, [7, 8) miles, [8, 9) miles,
[9, 10) miles, and [10, +∞) miles.

For the second case study, we defined a query to analyze
the electricity usage distribution of households over the past
30 minutes. The query answer format is as follows: [0, 0.5]

USENIX Association 2017 USENIX Annual Technical Conference 667

0.0

0.2

0.4

0.6

 10 20 40 60 80 90

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Sampling fraction (%)

(a) Utility

p = 0.3, q = 0.3

p = 0.3, q = 0.6

p = 0.3, q = 0.9

p = 0.6, q = 0.3

p = 0.6, q = 0.6

p = 0.6, q = 0.9

p = 0.9, q = 0.3

p = 0.9, q = 0.6

p = 0.9, q = 0.9

0.0

2.0

4.0

6.0

 10 20 40 60 80 90

P
ri
v
a
c
y
 l
e
v
e
l
(ε

z
k
)

Sampling fraction (%)

(b) Privacy

p = 0.3, q = 0.3
p = 0.3, q = 0.6
p = 0.3, q = 0.9
p = 0.6, q = 0.3
p = 0.6, q = 0.6
p = 0.6, q = 0.9

p = 0.9, q = 0.3
p = 0.9, q = 0.6
p = 0.9, q = 0.9

0.0

0.2

0.4

0.6

 0.1 1 10

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Privacy Level (εzk)

(c) Utility vs Privacy

Figure 7: Results from the NYC Taxi case study with varying sampling and randomization parameters: (a) Utility, (b)
Privacy level, (c) Comparison between utility and privacy.

0

1000

2000

3000

2 4 6 1 2 3 4

T
h
ro

u
g
h
p
u
t

[#
R

e
s
p
o
n
s
e
s
/s

e
c
 (

K
)] (a) Proxies

Cores # Nodes

NYC Taxi
Electricity

0

1000

2000

2 4 6 1 5 10 15 20

(b) Aggregator

Cores # Nodes

NYC Taxi
Electricity

Figure 8: Throughput at proxies and the aggregator with
different numbers of CPU cores and nodes.

kWh, (0.5, 1] kWh, (1, 1.5] kWh, (1.5, 2] kWh, (2, 2.5]
kWh, and (2.5, 3] kWh.
Evaluation metrics. We evaluated PRIVAPPROX using four
key metrics: throughput, latency, utility, and privacy level.
Throughput is defined as the number of data items processed
per second, and latency is defined as the total amount of time
required to process a certain dataset. Utility is the accuracy
loss defined as |estimate−exact

exact |, where estimate and exact are
the query results produced by applying PRIVAPPROX and the
native computation, respectively. Finally, privacy level (εzk)
is calculated using Equation 19 in the technical report [64].
For all measurements, we report the average over 10 runs.

7.2 Results from Case Studies
#I: Scalability. We measured the scalability of the two main
system components: proxies and the aggregator. We first
measured the throughput of proxies with different numbers
of CPU cores (scale-up) and different numbers of nodes
(scale-out). This experiment was conducted on a cluster of
4 nodes. Figure 8 (a) shows that, as expected, the throughput
at proxies scales quite well with the number of CPU cores
and nodes. In the NYC Taxi case study, with 2 cores, the
throughput of each proxy is 512,348 answers/sec, and with
8 cores (1 node) the throughput is 1,192,903 answers/sec;
whereas, with a cluster of 4 nodes each with 8 cores, the
throughput of each proxy reaches 2,539,715 answers/sec.
In the household electricity case study, the proxies achieve
relatively higher throughput because the message size is
smaller than in the NYC Taxi case study.

We next measured the throughput at the aggregator.
Figure 8 (b) depicts that the aggregator also scales quite well

 0

 200

 400

 600

10 20 40 60 80 90 100N
e

tw
o

rk
 T

ra
ff

ic
 (

G
B

)

Sampling fraction at clients (%)

(a) Bandwidth overhead

NYC Taxi
Electricity

 0

 500

 1000

 1500

 2000

10 20 40 60 80 90 100

L
a

te
n

c
y
 (

s
e

c
)

Sampling fraction at clients (%)

(b) Latency

NYC Taxi
Electricity

Figure 9: Total network traffic and latency at proxies with
different sampling fractions at clients.

when the number of nodes for aggregator increases. The
throughput of the aggregator, however, is much lower than
the throughput of proxies due to the relatively expensive
join operation and the analytical computation at the
aggregator. We notice that the throughput of the aggregator
in the household electricity case study does not significantly
improve in comparison to the first case study. This is
because the difference in the size of messages between the
two case studies does not affect much the performance of
the join operation and the analytical computation.

#II: Network bandwidth and latency. Next, we conducted
the experiment to measure the network bandwidth usage. By
leveraging the sampling mechanism at clients, our system re-
duces network traffic significantly. Figure 9 (a) shows the to-
tal network traffic transferred from clients to proxies with dif-
ferent sampling fractions. In the first case study, with the sam-
pling fraction of 60%, PRIVAPPROX can reduce the network
traffic by 1.62×; whereas in the second case study, the reduc-
tion is 1.58×. Besides the benefit of saving network band-
width, PRIVAPPROX also achieves lower latency in process-
ing query answers by leveraging approximate computation.
To evaluate this advantage, we measured the effect of sam-
pling fractions on the latency of processing query answers.
Figure 9 (b) depicts the latency with different sampling frac-
tions at clients. For the first case study, with the sampling
fraction of 60%, the latency is 1.68× lower than the execu-
tion without sampling; whereas, in the second case study, this
value is 1.66× lower than the execution without sampling.

#III: Utility and privacy. Figure 7 (a)(b)(c) show the
utility, the privacy level, and the trade-off between them,

668 2017 USENIX Annual Technical Conference USENIX Association

respectively, with different sampling and randomization
parameters. The randomization parameters p and q vary in
the range of (0, 1), and the sampling parameter s is calculated
using Equation 19 in the technical report [64]. Here, we
show results only with the NYC Taxi dataset. As the
sampling parameter s and the first randomization parameter
p increase, the utility of query results improves (i.e., accuracy
loss gets smaller) whereas the privacy guarantee gets weaker
(i.e., privacy level gets higher). Since the NYC Taxi dataset
is diverse, the accuracy loss and the privacy level change
in a non-linear fashion with different sampling fractions
and randomization parameters. Interestingly, the accuracy
loss does not always decrease as the second randomization
parameter q increases. The accuracy loss gets smaller when
q= 0.3. This is due to the fact that the fraction of truthful
“Yes” answers in the dataset is 33.57% (close to q=0.3).

8 Related Work
Privacy-preserving analytics. Since the notion of dif-
ferential privacy [32, 34], a plethora of systems have
been proposed to provide differential privacy with cen-
tralized databases [46, 48, 52, 56–59, 63, 68]. In practice,
however, such central trust can be abused, leaked, or
subpoenaed [28, 49, 62, 69].

To overcome the limitations of the centralized database
schemes, recently a flurry of systems have been proposed
with a focus on preserving user privacy (mostly, differential
privacy) in a distributed setting where the private data is kept
locally [10, 26, 27, 33, 43, 44, 47, 55, 61, 71, 74]. However,
these systems are designed to deal with the “one-shot” batch
queries only, whereby the data is assumed to be static.

To overcome the limitations of the aforementioned
systems, several differentially private stream analytics
systems have been proposed [22, 23, 35, 38, 45, 66, 70].
Unfortunately, these systems still contain several technical
shortcomings that limit their practicality. One of the first
systems [35] updates the query result only if the user’s
private data changes significantly, and does not support
stream analytics over an unlimited time period. Subsequent
systems [23, 45] remove the limit on the time period, but
introduce extra system overheads. Some systems [66, 70]
leverage expensive secret sharing cryptographic operations
to produce noisy aggregate query results. These systems,
however, cannot work at large scale under churn; more-
over, in these systems, even a single malicious user can
substantially distort the aggregate results without detection.
Recently, some other privacy-preserving distributed stream
monitoring systems have been proposed [22, 38]. However,
they all require some form of synchronization, and are
tailored for heavy-hitter monitoring only. Streaming data
publishing systems like [76] use a stream-privacy metric at
the cost of relying on a trusted party to add noise. In contrast,
PRIVAPPROX does not require a trusted proxy or aggregator
to add noise. Furthermore, PRIVAPPROX provides stronger

privacy properties (i.e., zero-knowledge privacy).
Sampling and randomized response. Sampling and
randomized response, also known as input perturbation
techniques, are being studied in the context of privacy-
preserving analytics, albeit they are explored separately. For
instance, the relationship between sampling and privacy is
being investigated to provide k-anonymity [24], differential
privacy [59], and crowd-blending privacy [40]. In contrast,
we show that sampling combined with randomized response
achieves the zero-knowledge privacy, a privacy bound strictly
stronger than the state-of-the-art differential privacy.

Randomized response [37, 77] is a surveying technique
in statistics, since 1960s, for collecting sensitive information
via input perturbation. Recently, Google in a system called
RAPPOR [73] made use of randomized response for
privacy-preserving analytics. Like RAPPOR, PRIVAPPROX
utilizes randomized response. However, RAPPOR is
designed for heavy-hitter collection, and does not deal with
the situation where clients’ answers to the same query are
changing over time. Therefore, RAPPOR does not fit well
with the stream analytics. Furthermore, since we combine
randomized response with sampling, PRIVAPPROX provides
a privacy bound tighter than RAPPOR.
Approximate computation. Approximation techniques
such as sampling [11, 25, 39], sketches [29], and online
aggregation [50] have been well-studied over the decades
in the databases community. Recently, sampling-based
systems [8, 9, 42, 53, 65] have also been shown effective
for “Big Data” analytics. We build on the advancements of
sampling-based techniques. In particular, our work builds
on IncApprox [53], a data analytics system that combines
incremental computation [12, 15–18] and approximate
computation. However, we differ in two crucial aspects. First,
we perform sampling in a distributed way as opposed to sam-
pling in a centralized dataset. Second, we extend sampling
with randomized response for privacy-preserving analytics.

9 Conclusion
In this paper, we presented PRIVAPPROX, a privacy-
preserving stream analytics system. Our approach builds on
the observation that both computing paradigms — privacy-
preserving data analytics and approximate computation —
strive for approximation, and can be combined together
to leverage the benefits of both. Our evaluation shows
that PRIVAPPROX not only improves the performance
to support real-time stream analytics, but also achieves
provably stronger privacy guarantees than the state-of-the-art
differential privacy. PRIVAPPROX’s source code is publicly
available: https://PrivApprox.github.io.
Acknowledgments. We thank anonymous reviewers and
our shepherd Adam Bates for their helpful comments. This
work is supported by the resilience path within CFAED at
TU Dresden, the European Unions Horizon 2020 research
and innovation programme under grant agreements 645011
(SERECA) and Amazon Web Services Education Grant.

USENIX Association 2017 USENIX Annual Technical Conference 669

https://privapprox.github.io

References
[1] Apache S4. http://incubator.apache.org/s4.

Accessed: May, 2017.

[2] Apache Spark Streaming. http://spark.apache.
org/streaming. Accessed: May, 2017.

[3] Apache Storm. http://storm-project.net/. Ac-
cessed: May, 2017.

[4] Apache Zookeeper. https://zookeeper.apache.
org/. Accessed: May, 2017.

[5] Kafka - A high-throughput distributed messaging system.
http://kafka.apache.org. Accessed: May, 2017.

[6] Sample household electricity time of use data. https://
goo.gl/0p2QGB. Accessed: May, 2017.

[7] SQLite. https://www.sqlite.org/. Accessed: May,
2017.

[8] Quickr: Lazily Approximating Complex Ad-Hoc Queries
in Big Data Clusters. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD),
2016.

[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors
and Bounded Response Times on Very Large Data. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2013.

[10] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke.
Non-tracking web analytics. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2012.

[11] M. Al-Kateb and B. S. Lee. Stratified Reservoir Sampling
over Heterogeneous Data Streams. In Proceedings of the
22nd International Conference on Scientific and Statistical
Database Management (SSDBM), 2010.

[12] P. Bhatotia. Incremental Parallel and Distributed Systems.
PhD thesis, Max Planck Institute for Software Systems
(MPI-SWS), 2015.

[13] P. Bhatotia, U. A. Acar, F. P. Junqueira, and R. Rodrigues.
Slider: Incremental Sliding Window Analytics. In Pro-
ceedings of the 15th International Middleware Conference
(Middleware), 2014.

[14] P. Bhatotia, M. Dischinger, R. Rodrigues, and U. A.
Acar. Slider: Incremental Sliding-Window Com-
putations for Large-Scale Data Analysis. Techni-
cal Report MPI-SWS-2012-004, MPI-SWS, 2012.
http://www.mpi-sws.org/tr/2012-004.pdf.

[15] P. Bhatotia, P. Fonseca, U. A. Acar, B. Brandenburg, and
R. Rodrigues. iThreads: A Threading Library for Parallel
Incremental Computation. In Proceedings of the 20th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[16] P. Bhatotia, R. Rodrigues, and A. Verma. Shredder:
GPU-Accelerated Incremental Storage and Computation. In
Proceedings of USENIX Conference on File and Storage
Technologies (FAST), 2012.

[17] P. Bhatotia, A. Wieder, I. E. Akkus, R. Rodrigues, and U. A.
Acar. Large-scale incremental data processing with change
propagation. In Proceedings of the Conference on Hot Topics
in Cloud Computing (HotCloud), 2011.

[18] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquini. Incoop: MapReduce for Incremental Compu-
tations. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2011.

[19] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: the SuLQ framework. In Proceedings of the ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), 2005.

[20] A. Blum, K. Ligett, and A. Roth. A Learning Theory Ap-
proach to Non-interactive Database Privacy. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), 2008.

[21] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 2015.

[22] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially Private
Continual Monitoring of Heavy Hitters from Distributed
Streams. In Proceedings of the 12th International Conference
on Privacy Enhancing Technologies (PETS), 2012.

[23] T.-H. H. Chan, E. Shi, and D. Song. Private and Continual
Release of Statistics. ACM Trans. Inf. Syst. Secur., 2011.

[24] K. Chaudhuri and N. Mishra. When Random Sampling
Preserves Privacy. In Proceedings of the 26th Annual
International Conference on Advances in Cryptology
(CRYPTO), 2006.

[25] S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified
Sampling for Approximate Query Processing. Proceedings
of ACM Transaction of Database Systems (TODS), 2007.

[26] R. Chen, I. E. Akkus, and P. Francis. SplitX: High-
performance Private Analytics. In Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), 2013.

[27] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards
Statistical Queries over Distributed Private User Data. In Pre-
sented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[28] ComScore Reaches $14 Million Settlement in
Electronic Privacy Class Action. http://www.
alstonprivacy.com/comscore-reaches-
14-million-settlement-in-electronic-
privacy-class-action/. Accessed: May, 2017.

[29] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches. Found. Trends databases, 2012.

[30] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Technical report, DTIC
Document, 2004.

[31] J. R. Douceur. The Sybil Attack. In Proceedings of 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[32] C. Dwork. Differential privacy. In Proceedings of the 33rd
International Colloquium on Automata, Languages and
Programming, part II (ICALP), 2006.

[33] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our Data, Ourselves: Privacy Via Distributed Noise
Generation. In Proceedings of the 24th Annual International
Conference on The Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2006.

670 2017 USENIX Annual Technical Conference USENIX Association

http://incubator.apache.org/s4
http://spark.apache.org/streaming
http://spark.apache.org/streaming
http://storm-project.net/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
http://kafka.apache.org
https://goo.gl/0p2QGB
https://goo.gl/0p2QGB
https://www.sqlite.org/
http://www.mpi-sws.org/tr/2012-004.pdf
http://www.alstonprivacy.com/comscore-reaches-14-million-settlement-in-electronic-privacy-class-action/
http://www.alstonprivacy.com/comscore-reaches-14-million-settlement-in-electronic-privacy-class-action/
http://www.alstonprivacy.com/comscore-reaches-14-million-settlement-in-electronic-privacy-class-action/
http://www.alstonprivacy.com/comscore-reaches-14-million-settlement-in-electronic-privacy-class-action/

[34] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
Noise to Sensitivity in Private Data Analysis. In Proceedings
of the Third conference on Theory of Cryptography (TCC),
2006.

[35] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differ-
ential privacy under continual observation. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), 2010.

[36] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

[37] J. A. Fox and P. E. Tracy. Randomized response: a method for
sensitive surveys. Beverly Hills California Sage Publications,
1986.

[38] A. Friedman, I. Sharfman, D. Keren, and A. Schuster.
Privacy-Preserving Distributed Stream Monitoring. In
Proceedings of the Symposium on Network and Distributed
System Security (NDSS), 2014.

[39] M. N. Garofalakis and P. B. Gibbon. Approximate Query Pro-
cessing: Taming the TeraBytes. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), 2001.

[40] J. Gehrke, M. Hay, E. Lui, and R. Pass. Crowd-blending
privacy. In Proceedings of the 32nd Annual International
Conference on Advances in Cryptology (CRYPTO), 2012.

[41] J. Gehrke, E. Lui, and R. Pass. Towards Privacy for Social
Networks: A Zero-Knowledge Based Definition of Privacy.
In Theory of Cryptography, 2011.

[42] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen.
ApproxHadoop: Bringing Approximations to MapReduce
Frameworks. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[43] S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy in
Online Advertising. In Proceedings of the 8th Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

[44] S. Guha, M. Jain, and V. N. Padmanabhan. Koi: A
location-privacy platform for smartphone apps. In Presented
as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[45] T. h. Hubert Chan, E. Shi, and D. Song. Privacy-preserving
stream aggregation with fault tolerance. In Proceedings of
16th International Conference on Financial Cryptography
and Data Security (FC), 2012.

[46] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential
Privacy Under Fire. In Proceedings of the 20th USENIX
Security Symposium (USENIX Security), 2011.

[47] M. Hardt and S. Nath. Privacy-aware personalization for mo-
bile advertising. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS), 2012.

[48] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting
the Accuracy of Differentially Private Histograms Through
Consistency. Proceedings of the International Conference
on Very Large Data Bases (VLDB), 2010.

[49] HealthCare.gov Sends Personal Data to Dozens of Tracking
Websites. https://www.eff.org/deeplinks/
2015/01/healthcare.gov-sends-personal-
data. Accessed: May, 2017.

[50] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggre-

gation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 1997.

[51] Z. Jerzak and H. Ziekow. The debs 2015 grand challenge.
In Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems (DEBS), 2015.

[52] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev.
Private analysis of graph structure. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), 2011.

[53] D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and
R. Rodrigues. IncApprox: A Data Analytics System for
Incremental Approximate Computing. In Proceedings of
International Conference on World Wide Web (WWW), 2016.

[54] J. Lee and C. Clifton. How Much is Enough? Choosing ε for
Differential Privacy. In Proceedings of the 14th International
Conference on Information Security (ISC), 2011.

[55] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and V. Shmatikov.
πBox: A Platform for Privacy-Preserving Apps. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[56] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing Linear Counting Queries Under Differential Pri-
vacy. In Proceedings of the ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), 2010.

[57] F. McSherry. Privacy Integrated Queries. In Proceedings of
ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2009.

[58] F. McSherry and R. Mahajan. Differentially-private Network
Trace Analysis. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), 2010.

[59] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT:
Privacy Preserving Data Analysis Made Easy. In Proceedings
of the 2012 ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2012.

[60] D. S. Moore. The Basic Practice of Statistics. W. H. Freeman
& Co., 2nd edition, 1999.

[61] A. Narayan and A. Haeberlen. DJoin: Differentially Private
Join Queries over Distributed Databases. In Proceedings of
the 10th USENIX Conference on Operating Systems Design
and Implementation (OSDI), 2012.

[62] Privacy Lawsuit Targets Net Giants Over ‘Zombie’ Cook-
ies. http://www.wired.com/2010/07/zombie-
cookies-lawsuit. Accessed: May, 2017.

[63] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating
Data to Sensitivity in Private Data Analysis: A Platform
for Differentially-private Analysis of Weighted Datasets.
Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2014.

[64] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer,
and T. Strufe. Privacy preserving stream analytics: The
marriage of randomized response and approximate computing.
https://arxiv.org/abs/1701.05403, 2017.

[65] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and
T. Strufe. StreamApprox: Approximate Computing for
Stream Analytics. 2017.

[66] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In

USENIX Association 2017 USENIX Annual Technical Conference 671

https://www.eff.org/deeplinks/2015/01/healthcare.gov-sends-personal-data
https://www.eff.org/deeplinks/2015/01/healthcare.gov-sends-personal-data
https://www.eff.org/deeplinks/2015/01/healthcare.gov-sends-personal-data
http://www.wired.com/2010/07/zombie-cookies-lawsuit
http://www.wired.com/2010/07/zombie-cookies-lawsuit
https://arxiv.org/abs/1701.05403

Proceedings of the International Conference on Management
of Data (SIGMOD), 2010.

[67] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on
Selected Areas in Communications, 1998.

[68] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and Privacy for MapReduce. In Proceedings
of the 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2010.

[69] SEC Charges Two Employees of a Credit Card Com-
pany with Insider Trading. http://www.sec.gov/
litigation/litreleases/2015/lr23179.htm.
Accessed: May, 2017.

[70] E. Shi, T. H. Chan, E. G. Rieffel, R. Chow, and D. Song.
Privacy-Preserving Aggregation of Time-Series Data. In
Proceedings of the Symposium on Network and Distributed
System Security (NDSS), 2011.

[71] K. Singh, S. Bhola, and W. Lee. xbook: Redesigning privacy
control in social networking platforms. In Proceedings of the
18th Conference on USENIX Security Symposium (USENIX
Security), 2009.

[72] S. K. Thompson. Sampling. Wiley Series in Probability and
Statistics, 2012.

[73] E. Úlfar, P. Vasyl, and K. Aleksandra. RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response. In
Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014.

[74] B. Viswanath, E. Kiciman, and S. Saroiu. Keeping Infor-

mation Safe from Social Networking Apps. In Proceedings
of the ACM SIGCOMM Workshop on Social Networks
(WOSN’12), 2012.

[75] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y.
Zhao. Defending against sybil devices in crowdsourced
mapping services. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2016.

[76] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren.
RescueDP: Real-time Spatio-temporal Crowd-sourced Data
Publishing with Differential Privacy. In Proceedings of the
35th Annual IEEE International Conference on Computer
Communications (INFOCOM), 2016.

[77] S. L. Warner. Randomized response: A survey technique for
eliminating evasive answer bias. In Journal of the American
Statistical Association, 1965.

[78] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Brief
Announcement: Modelling MapReduce for Optimal
Execution in the Cloud. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of Distributed
Computing (PODC), 2010.

[79] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Conductor:
Orchestrating the Clouds. In Proceedings of the 4th
international workshop on Large Scale Distributed Systems
and Middleware (LADIS), 2010.

[80] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orches-
trating the Deployment of Computations in the Cloud with
Conductor. In Proceedings of the 9th USENIX symposium on
Networked Systems Design and Implementation (NSDI), 2012.

672 2017 USENIX Annual Technical Conference USENIX Association

http://www.sec.gov/litigation/litreleases/2015/lr23179.htm
http://www.sec.gov/litigation/litreleases/2015/lr23179.htm

Mercury: Bandwidth-Effective Prevention of Rollback Attacks Against
Community Repositories

Trishank Karthik Kuppusamy Vladimir Diaz Justin Cappos
New York University Tandon School of Engineering

Abstract

A popular community repository such as Docker Hub,
PyPI, or RubyGems distributes tens of thousands of soft-
ware projects to millions of users. The large number of
projects and users make these repositories attractive tar-
gets for exploitation. After a repository compromise, a
malicious party can launch a number of attacks on un-
suspecting users, including rollback attacks that revert
projects to obsolete and vulnerable versions. Unfortu-
nately, due to the rapid rate at which packages are up-
dated, existing techniques that protect against rollback
attacks would cause each user to download 2–3 times the
size of an average package in metadata each month, mak-
ing them impractical to deploy.

In this work, we develop a system called Mercury that
uses a novel technique to compactly disseminate ver-
sion information while still protecting against rollback
attacks. Due to a different technique for dealing with
key revocation, users are protected from rollback attacks,
even if the software repository is compromised. This
technique is bandwidth-efficient, especially when delta
compression is used to transmit only the differences be-
tween previous and current lists of version information.
An analysis we performed for the Python community
shows that once Mercury is deployed on PyPI, each user
will only download metadata each month that is about
3.5% the size of an average package. Our work has been
incorporated into the latest versions of TUF, which is be-
ing integrated by Haskell, OCaml, RubyGems, Python,
and CoreOS, and is being used in production by LEAP,
Flynn, and Docker.

1 Introduction

Community repositories, such as Docker Hub [25],
Python Package Index (PyPI) [69], RubyGems [71], and
SourceForge [80], provide an easy way for third party
developers to distribute software to users. Unlike tra-
ditional repositories (e.g., Ubuntu, or the Apple App
Store), community repositories allow any developer to
immediately release new software without waiting for an
administrator’s approval. This distinctive feature has led

to the tremendous popularity of these repositories, which
have served billions of downloads to millions of users.

Unfortunately, their popularity also makes them at-
tractive targets for attackers. Major repositories run
by Adobe, Apache, Debian, Fedora, FreeBSD, Gentoo,
GitHub, GNU Savannah, Linux, Microsoft, npm, Opera,
PHP, RedHat, RubyGems, SourceForge, and WordPress
have all been compromised at least once [2–4,21–24,28,
31, 33, 34, 36, 44, 54, 59, 63, 70, 72, 81, 82, 86–88, 93].

When a community repository is compromised, a
number of attacks can be launched on unsuspecting
users, including rollback attacks, where attackers revert
the state of the repository to point to obsolete and vulner-
able versions of software. Rollback attacks are trivial for
attackers to perform: instead of tampering with signed
software, they simply replace these software packages
with older versions. It is equally trivial to prevent such
attacks for software that is already installed by the user,
because existing security systems can easily reject soft-
ware older than what is already on disk. However, there
may be tens of thousands of software projects on a repos-
itory, of which the user may install only a fraction. Un-
less the user keeps track of all projects, she is susceptible
to a rollback attack on a project she might install at a
much later date. Consequently, she would install authen-
tic but obsolete software that contains known vulnerabil-
ities. An attacker can later exploit these vulnerabilities to
compromise her machine.

A solution to prevent rollback attacks needs to meet
several important properties in order to be adopted:

• No administrative overhead. There must not be
additional servers to manage. Many community
repositories are managed by volunteers that infre-
quently interact with the repository, and so the ad-
ministrative burden must remain low.

• Simple client communications. Retrieving a pack-
age should not require clients to gossip or commu-
nicate with third parties. This could create deploy-
ment issues and even security concerns (e.g., in-
forming untrusted parties which security fixes are
being requested [13]).

USENIX Association 2017 USENIX Annual Technical Conference 673

• Low overhead. Repositories often have large band-
width costs and use mirrors or CDNs to offload this
burden. A solution must not substantially increase
this cost, even if the repository hosts a large number
of projects that are rapidly updated.

In this paper, we describe Mercury, a bandwidth-
efficient system that prevents security attacks, includ-
ing rollback attacks, even if a community repository
is compromised. This work is innovative in provid-
ing low-bandwidth rollback protection. However, the
main contribution of this work is how the insights
behind Mercury can be used by real-world commu-
nity repositories to solve a widespread problem. Mer-
cury has been incorporated into the latest versions of
TUF [47, 73], which is being integrated by Haskell [94],
OCaml [32], RubyGems [75–77], Python [45, 46], and
CoreOS [66], and is being used in production by
LEAP [49], Flynn [68], and Docker [64].

The key insight in Mercury is that the source of trust
about which versions of projects are current can be safely
shifted from developers to the repository. The reposi-
tory uses online keys to sign and distribute the latest ver-
sion numbers of projects as soon as they are updated.
Although attackers can provide clients with incorrect
version information when a repository is compromised,
Mercury uses several techniques that can limit user sus-
ceptibility to rollback attacks even in this case. The
key technique is that by always comparing the current
list of version information signed by the repository to
the previous list, these attacks are easily detected. Mer-
cury is bandwidth-efficient with respect to rollback at-
tacks because it downloads only the version numbers of
all projects (instead of metadata about all packages), and
uses delta compression [61, 62] to transmit only the dif-
ferences between previous and current lists. While trust-
ing the repository for version numbers opens users up to
a new fast-forward attack, this can be mitigated by per-
forming additional steps when revoking the repository
key after a compromise.

In summary, our contributions are:

1. We find that existing security systems that prevent
rollback attacks incur prohibitive bandwidth costs
to do so when the number of projects, or the rate of
project updates, is high (e.g., in popular community
repositories).

2. We design and implement Mercury, a bandwidth-
efficient system that prevents rollback attacks even
though it depends on the repository to continually
indicate the latest versions of projects.

3. We evaluate the effectiveness of Mercury using re-
quests to PyPI. We find Mercury can prevent roll-

Django
Django-1.8.tar.gz

snapshot

Repository-
managed

hash
hash

hash

hash

hash

hash

offline
keys

legend package

online
keys

Developer-
managed

Metadata

Projects

Packages

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

Figure 1: How software is organized by metadata
about projects and packages on a community repository.
Repositories and developers sign these metadata in order
to prevent security attacks. See Section 2 for a detailed
explanation.

back attacks by having each user download meta-
data each month that is about 3.5% the size of an av-
erage package. Additionally, new users (or all users
following a compromise) will download metadata
48% of the size of an average package (compared
to two other systems with overheads of 1,152% and
3,092%).

2 Background

In order to better understand the design decisions be-
hind Mercury, we provide some essential background in-
formation. First, we discuss how software is managed
and distributed by community repositories. Then, we
describe metadata used in an existing security system,
TUF [47, 73], that we leverage in Mercury to protect
these repositories from security attacks.

TUF is a framework that allows repositories to build
different security models that provide varying degrees of
security and usability. In this paper, we show that TUF
has a severe performance drawback on popular commu-
nity repositories. Thus, we devised Mercury, a more effi-
cient variant of TUF that prevents rollback attacks using
significantly lower bandwidth costs. As we stated earlier,
Mercury has been incorporated into the latest versions of
TUF.

2.1 Community repositories

A community repository is a single server that hosts and
distributes third-party software. Three groups of peo-
ple interact with the repository. Administrators, who
are usually volunteers, manage the repository software
and hardware. Developers upload software to the repos-
itory, which administrators publish as soon as possible,
for users to download. Users download, validate, and

674 2017 USENIX Annual Technical Conference USENIX Association

Django project metadata file

{
 “signatures”: {
 “keyid”: “4445d918dfcf1af804b749eeee4835dccfd27c06b6828533be827473ff6343
 9f”,
 “method”: “ed25519”,
 “sig”: “190f4b6228f2f72b3cbafa3446e032c9eaed03b055acfe8a9d3c445060b47d1b3
 ccd5c1ed9a9367a53d21e1d265f453996268dfeb1f005e530a025b0676ec720”
 },
 “signed”:{
 “packages”: {
 “Django-1.7.tar.gz”: “0654407104e420508cf5be04fb85a066131df3117117dbaca09
 5e9a248949359”
 “Django-1.8.tar.gz”: “066bad42cb4c66944e7efcf7304d3d17f7b0eb222e53958cdd8
 66420d2e8b412”
 },
 "expires": "2015-03-21T00:00:00Z",
 “version”: 2
 }
}

Figure 2: An example of a project metadata file for the
repository in Figure 1, explained in Section 2.2.

install software with a package manager that may down-
load software through middlemen, such as content deliv-
ery networks (CDNs) and/or mirrors. These middlemen
allow the repository to reduce bandwidth costs.

The software uploaded by developers is organized
as follows. A developer registers a project with a
unique name, such as Django or Bcrypt. When a spe-
cific version of the software for that project is ready to
be released, the software is built into a package (e.g.,
Django-1.7.tar.gz), and the developer uploads that
package to a community repository. A project may
make multiple packages available at any time. For ex-
ample, in Figure 1, even though Django-1.8.tar.gz
may be the latest package of the Django project,
Django-1.7.tar.gz is still available to users who re-
quest it.

2.2 Project and snapshot metadata

Appropriately structured and signed metadata can be
used to prevent security attacks when a repository is
compromised [15, 47, 73]. These metadata are used by
package managers to tell whether attackers have tam-
pered with projects, or reverted projects to obsolete ver-
sions. In this paper, we focus on two types of metadata.

Project metadata is the manifest of all packages re-
leased by a project [47]. It lists the cryptographic hashes
for available packages, and includes an expiration date
as well as a version number for the metadata file it-
self. In Figure 2, version 2 of the Django project meta-
data lists the hashes for the Django-1.7.tar.gz and
Django-1.8.tar.gz packages, and an expiration date of
March 21st 2015. Developers use offline keys (or private
keys stored off the repository) to sign project metadata,
so that attackers cannot modify it without being detected.

Snapshot metadata is the manifest of all project meta-

Snapshot metadata file

{
 “signatures”: {
 “keyid”: “16a0eeb0791b6c92451fd284dd9f599e0a7dbe7f6ebea6e2d2d06c7f74aec1
 12”,
 “method”: “ed25519”,
 “sig”: “7a7e4858a2f86f740c2a9d8627df4cda92f7b4b8e600ea596ffa3623ca31b0e7b
 0e59c3bd601645e03ae5ba0581d2c31a8ce3a879d34afdf09dc3040339bfac”
 },
 “signed”:{
 “projects”: {
 “Django.json”: “1919ff5cc47994470e539169db049f61ff133538ea1b935484e9819e
 00beb9d6”
 “Bcrypt.json”: “bd162a5385407e07e0e67310d8ebc60abe759d8937bf72ad125802
 4dff6f561a”
 },
 "expires": "2014-03-29T09:44:10Z"
 }
}

Figure 3: An example of a snapshot metadata file for the
repository in Figure 1, explained in Section 2.2.

data currently available on the repository. Following
common practice in traditional repositories [15], snap-
shot metadata binds the location (e.g., relative path) of
every project metadata file to the cryptographic hash of
the file [73]. In Figure 3, the snapshot metadata file lists
the hashes for the Django and Bcrypt project metadata
files. Since packages and project metadata are contin-
ually updated (as often as every few minutes [47]) and
made available to users immediately, community reposi-
tories use online keys (or private keys stored on the repos-
itory) to sign snapshot metadata [47]. Because the snap-
shot key is stored on the repository, an attacker who com-
promises the repository can sign maliciously generated
metadata with that key. In the next few sections, we dis-
cuss how Mercury deals with this scenario.

3 Threat model

In this paper, we are concerned with a scenario where at-
tackers have compromised a community repository. Our
threat model then assumes that:

1. Attackers can compromise a running repository, and
tamper with any files and keys stored on the reposi-
tory.

2. Developers store their keys off the repository,
so that attackers cannot compromise these keys.
Project metadata, which is managed and signed by
the developers of each project, are not under the
control of the attacker.

3. Attackers have access to any file that was previously
published on the repository.

4. Attackers are aware of vulnerabilities in outdated
packages, and are able to exploit them. These vul-
nerabilities can be found by looking at security an-

USENIX Association 2017 USENIX Annual Technical Conference 675

nouncements, or changes in source code reposito-
ries such as GitHub. However, attackers do not
know of zero-day flaws in packages.

We leverage pre-existing techniques from TUF and
other software security systems to provide effective pro-
tection against a wide array of other attacks [14, 16, 17,
47, 73]. As a result, our system can recover from key
compromises [47, 73] and resist malicious man-in-the-
middle attackers or mirrors [16]. Note that these tech-
niques are orthogonal to Mercury, and do not interfere
with its evaluation.

This work focuses on rollback attacks that cause pack-
age managers to install obsolete packages containing
known vulnerabilities. A rollback attack happens when a
package manager accepts a project that is older than the
version at the last time the user visited the repository.

4 Analysis of the limitations of existing sys-
tems

A motivation for our work is that existing security sys-
tems that can be deployed on community repositories fall
short for one of two reasons. They either do not prevent
rollback attacks, or require prohibitive bandwidth costs
to defend against such attacks.

4.1 Systems that are insecure
Many of the popular community repositories use either
HTTPS or package signing (e.g., GPG or RSA) to en-
sure packages are not tampered with. This system does
prevent rollback attacks on projects already installed by
the user, because the package manager will not accept a
project metadata file with a version number lower than in
the previous copy of the file.

However, it suffers from a subtle but serious security
problem. The package manager does not know about the
version number of project metadata files for packages
that are not requested by the user. If the repository is
subsequently compromised, then attackers can execute
rollback attacks on projects yet to be installed by the
user. Hence, when an attacker compromises the reposi-
tory, they can provide package managers out-of-date ver-
sions of packages that have known vulnerabilities.

4.2 Systems that are bandwidth-inefficient
As discussed in Section 2, Mercury is a variant of
TUF [73], a security system deployed [47] by some com-
munity repositories. TUF protects users from rollback
attacks by downloading developer-signed project meta-
data for all projects. This way, if a repository is compro-
mised, the attacker cannot provide forged project meta-

data. To avoid detection, the package manager must be
given project metadata that is at least as current as the
previous project metadata downloaded by the package
manager.

This system prevents rollback attacks on projects yet
to be installed by the user, but has high bandwidth costs
in two cases. First, for any new user (i.e., a user that
has no previous project metadata), the package manager
must download all project metadata files on the reposi-
tory. This may be large since there may be tens of thou-
sands of projects and hundreds of thousands of pack-
ages. Second, projects are continually created or updated
on community repositories. Thus, returning users will
download significant amounts of metadata to update to
the latest version. As a result, this security system can
be costly. However, the bandwidth cost for TUF is low
should users need to recover from a repository compro-
mise. Since the developer signs all of the project meta-
data, it need not be revoked if an attacker controls the
repository. So, recovery from compromise is inexpen-
sive, while normal operation is costly.

While it is not used in practice, for comparison pur-
poses we also propose TUF-version, a variant of TUF
where a project developer separately signs a project-
version metadata file that simply contains the version
number of her project. Then, the package manager
downloads all project-version metadata files, but only the
project metadata file for the package to be installed. The
number of signatures is a significant cost for the project-
version metadata. Thus, as we will see later in Section 6,
this variant incurs between 37–53% of the cost of TUF,
but is still too expensive for community repositories.

5 Mercury: a new security system

To address the limitations of existing security systems,
we present Mercury, a security system for community
repositories that can prevent rollback attacks while using
a reasonable amount of bandwidth. Mercury retains se-
curity even if a potentially compromised repository signs
version information on behalf of all projects. This is due
to its slightly more complicated functionality when re-
covering from a repository compromise. Thus the “rare
case” of recovering from a compromise is less straight-
forward, but the “common case” of distributing version
information requires much less bandwidth. In this sec-
tion, we discuss how and why package managers using
Mercury will be protected from rollback attacks.

5.1 Insight: shifting trust from developers
to the repository

Existing systems (Section 4.2) are expensive because
they were designed with the assumption that there is no

676 2017 USENIX Annual Technical Conference USENIX Association

Django
Django-1.8.tar.gz

snapshot

Repository-
managed

vers
ion

version

offline
keys

legend package

online
keys

Developer-
managed

Metadata

Projects

Packages

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

hash

hash

hash

hash

Figure 4: In Mercury, the snapshot metadata binds the lo-
cation of every project metadata file to the version num-
ber instead of the hash of the file.

trusted party (e.g., hardware or administrators) on the
repository that can always correctly indicate the version
numbers of project metadata files. In the absence of this
trusted party, package managers have relied on project
metadata files signed by developers to learn about ver-
sion numbers, even though it has meant downloading all
new files.

Our key insight is that by handling key revocation in a
different manner (Section 5.3), a repository can securely
distribute the version numbers of project metadata files
in the snapshot metadata. In Mercury, the snapshot meta-
data binds the location of every project metadata file to
its version number instead of the hash of the file (as illus-
trated in Figure 4 and Figure 5). Now, the snapshot meta-
data informs the package manager not only about which
projects on the repository are new or updated, but also
gives the version numbers of their corresponding project
metadata files. By shifting the source of trust from de-
velopers to the repository, Mercury allows the package
manager to save bandwidth as long as it: (1) has access
to a previous snapshot metadata file that was signed by
the repository, and (2) always verifies the current snap-
shot metadata file as follows.

Suppose the user wishes to install a Django package.
The package manager begins by downloading the differ-
ence between the previous and current snapshot meta-
data files, sprev and scurr, respectively. Next, the package
manager must verify that the version number b of every
project metadata file in scurr is greater than or equal to
the version number a of the same project metadata file in
sprev. If this verification step passes, then it sets sprev to
scurr. Finally, the package manager downloads only the
Django project metadata file, and ensures that the ver-
sion number c in this file is indeed equal to the version
number b for this file in scurr.

There are two reasons why this saves bandwidth cost.
First, the package manager downloads only a new project
metadata file for the package to be installed, as opposed
to all new project metadata files. Second, in Mercury

Snapshot metadata file

{
 “signatures”: {
 “keyid”: “16a0eeb0791b6c92451fd284dd9f599e0a7dbe7f6ebea6e2d2d06c7f74aec1
 12”,
 “method”: “ed25519”,
 “sig”: “7a7e4858a2f86f740c2a9d8627df4cda92f7b4b8e600ea596ffa3623ca31b0e7b
 0e59c39bd601645e03ae5ba0581d2c31a8ce3a879d34afdf09dc3040339bfac”
 },
 “signed”:{
 “projects”: {
 “Django.json”: “2”
 “Bcrypt.json”: “1”
 },
 "expires": "2014-03-29T09:44:10Z"
 }
}

Figure 5: An example of a Mercury snapshot metadata
file for the repository illustrated in Figure 4. See Sec-
tion 5.1 for details.

there is a single signature (from the repository) in a snap-
shot metadata file. With TUF / TUF-version, the package
manager downloads all new or updated project / project-
version metadata files (and hence metadata about their
packages).

5.2 Security analysis

A primary strength of Mercury is that an attacker who
compromises the repository cannot rollback projects to
versions that existed before the last time the user visited
it. This is because whenever the user installs a pack-
age, the package manager always compares the current
snapshot metadata file scurr to the previous copy sprev.
The package manager would detect a rollback attack, and
refuse to install the package, if: (1) the version number b
of any project metadata file in scurr is lower than the ver-
sion number a of the same project metadata file in sprev,
or (2) the version number c of the project metadata file
for the requested package is lower than the version num-
ber b for this project metadata file in scurr.

As with existing systems [47,73], the attacker can roll-
back projects to versions that were added after the last
time the user visited the repository. However, unlike ex-
isting systems, Mercury provides a stronger method for
imposing stringent limits on these attacks (Section 5.4).

Attackers can deny the installation of packages by ex-
ecuting fast-forward attacks, where they arbitrarily in-
crease the version numbers of project metadata files in
the snapshot metadata. In a sense, fast-forward attacks
are the opposite of rollback attacks. In this attack, the
version number b of at least one project metadata file in
scurr is greater than the version number a of the same
project metadata file in sprev. However, this version num-
ber b is also greater than the actual version number c
contained within the project metadata file itself. Thus,

USENIX Association 2017 USENIX Annual Technical Conference 677

the package manager would refuse to install a package
from this project.

Fast-forward attacks are not nearly as severe a threat
as rollback attacks because they simply block a pack-
age from being installed. Since the attacker has multiple
ways to achieve the same goal (the simplest of which is
to refuse to serve anything), fast-forward attacks do not
present a major threat so long as it is possible to recover
from them securely.

5.3 Recovering from a repository compro-
mise

As discussed earlier, attackers who compromise a reposi-
tory may launch fast-forward attacks that prevent the user
from installing newer versions of existing software. This
problem can be addressed by replacing the package man-
ager’s copy of the snapshot metadata. To do so, admin-
istrators must use an offline backup [47] to restore all
project metadata and packages to a verifiable point be-
fore the compromise. Then, the online keys used to sign
snapshot metadata can be revoked and replaced with new
keys.

The process for distributing and revoking these keys
is borrowed from TUF [47, 73]. The repository signs
root-of-trust metadata using a quorum of offline keys.
The root-of-trust metadata indicates which keys can be
trusted for verifying metadata files, including snapshot
metadata files. This leads to a seamless and automatic re-
covery from fast-forward attacks after a repository com-
promise.

5.4 Securing out-of-date package man-
agers

The security of a Mercury user relies on her package
manager possessing version numbers that are relatively
recent. Users who have never visited the repository be-
fore are protected against rollback attacks by bundling
the latest root-of-trust and snapshot metadata with the
package manager. Nevertheless, a package manager us-
ing Mercury is vulnerable to rollback attacks against
software released after the last time the package man-
ager was updated. (Note that this limitation also applies
to TUF for the same reason.) To combat this, a repository
can choose to periodically sign a version of the snapshot
metadata using offline keys (see smid in Figure 6). For ex-
ample, if the repository administrator commits to signing
snapshot metadata with offline keys at least every month,
then the package manager can first retrieve that snapshot
metadata, and verify that it was signed within the last
month. Then, it verifies that all version numbers in the
snapshot metadata signed with the online keys are later
than or equal to those signed with the offline keys. This

sprev

previous
snapshot
metadata

file seen by
user 1

sprev

previous
snapshot
metadata

file seen by
user 2

smid

previous
snapshot
metadata
file on the
repository

scurr

current
snapshot
metadata
file on the
repository

Time
offline
keys

legend
online
keys

Figure 6: In order to help outdated package managers
catch up to the latest snapshot metadata signed before
the repository is compromised, administrators may peri-
odically sign a copy smid of the latest snapshot metadata
using offline keys. See Section 5.4 for details.

prevents attackers who compromised the repository from
blocking packages that were released in the last month.

However, this functionality is not used in production
by current users of Mercury. This is largely due to two
concerns. First, the management overhead of having sep-
arate keys stored securely offline was deemed high for
this use case. Second, there was some concern that the
administrator would forget to sign an update with the
offline keys within the prescribed period, and that this
would cause users to incorrectly deduce an attack was
underway. Hence, Docker [64] and Flynn [68] do not
use this feature of Mercury in their deployments.

5.5 Deleting projects from snapshot meta-
data

It is fairly common practice for community reposito-
ries to allow projects to be deleted. However, deleting
projects can make it harder for Mercury to defend against
rollback attacks. Suppose that the package manager
naively drops the version information for projects deleted
from the snapshot metadata file. This would enable an
attacker who controls the repository to reset known ver-
sion numbers. Therefore, to better secure a repository
using Mercury, projects should not be deleted from snap-
shot metadata. This is the route that Docker [64] and
Flynn [68] chose with their deployments.

5.6 Protection against malicious mirrors
Some community repositories, such as Docker [64], use
mirrors to serve metadata and packages to users, which
opens users to malicious mirrors that may be able to tam-
per with some files. Specifically, consider a scenario out-
side of our threat model, where malicious mirrors do not
have access to snapshot metadata keys, but have access
to a few keys used to sign some project metadata files.
These mirrors cannot tamper with the snapshot metadata.

678 2017 USENIX Annual Technical Conference USENIX Association

However, they can substitute a few original project meta-
data files with malicious project metadata files. These
malicious project metadata files contain version numbers
identical to original project metadata files, but point to
malicious instead of original packages. Mercury cannot
detect these substitutions, because there is only informa-
tion about the version numbers of project metadata files
in its snapshot metadata.

In order to address this problem, we propose Mercury-
hash, a variant of Mercury where the snapshot meta-
data contains both version numbers and hashes of all
project metadata files. This prevents a malicious mir-
ror from substituting project metadata files without be-
ing detected. As we will see in Section 6, this variant
incurs 7x the cost of Mercury, which may be acceptable
for community repositories where preventing this prob-
lem is important.

5.7 Implementation
Our reference implementation of Mercury is written in
Python. It includes: command-line tools [89, 90] that
help administrators and developers create, sign, and val-
idate metadata (4,661 SLOC); integration libraries that
package managers can use to download and verify meta-
data as well as packages (1,218 SLOC); unit and integra-
tion tests (6,247 SLOC); documentation such as specifi-
cations, and example metadata.

6 Evaluation of bandwidth costs

In the previous section, we discussed how Mercury is de-
signed to prevent rollback attacks, even if the repository
is compromised. In this section, we show that very same
design is also efficient with respect to bandwidth cost.
Using a log of package downloads from PyPI, the Python
community repository, we compare Mercury to existing
security systems, and answer the following questions:

1. What is the bandwidth overhead needed by each se-
curity system to prevent rollback attacks on PyPI?
(Section 6.2)

2. How does the bandwidth overhead change as the
number of projects on PyPI is varied? (Section 6.3)

3. How does the bandwidth overhead change as the
rate of project updates on PyPI is varied? (Sec-
tion 6.4)

6.1 Experimental setup
To answer these questions, we obtained an anonymized
log of package downloads from PyPI for the month be-
tween March 21st and April 19th, 2014. This log con-

tains 69,890,162 package requests by 1,175,625 users
(identified by anonymized IP addresses). These users
downloaded 46TB of packages, and the average down-
loaded package size was 660KB. We elected to use the
average downloaded package size as a basis of compari-
son for metadata overhead, because it is the average ex-
penditure when obtaining new or updated software pack-
ages. As such, it serves as a logical frame of reference in
determining whether metadata overhead is reasonable or
excessive.

To measure the cost for a package request in the down-
load log, we must know the file sizes of packages and
their corresponding metadata. To obtain package file
sizes, we copied all packages hosted on PyPI at the time
of writing. (Thus, these are approximations of the file
sizes of packages available that month.) To obtain meta-
data file sizes, we produced 10,981 releases of metadata
as follows. The first release contains snapshot, project-
version, and project metadata about all packages that
were available at the beginning of the month. Then, we
produced a new release whenever a project was created
or updated during the month. The first and last releases
describe 58,328 and 59,486 projects, respectively. When
computing the cost for a request, we compared using
compression, delta encoding [61, 62], or delta compres-
sion [41, 42], and chose the most cost-efficient method.

We compare Mercury to four security systems that
have been, or can be, deployed by community reposi-
tories (Section 4). One security system does not pre-
vent rollback attacks (Section 4.1). In many deploy-
ments of this system, used by community repositories
such as PyPI and RubyGems, developers use GPG or
RSA to sign project metadata. Thus, as a useful abbre-
viation, we will call this security system GPG/RSA. We
also compare Mercury against a variant called Mercury-
hash (Section 5.6). Finally, we compare Mercury against
TUF [47, 73] and a variant called TUF-version (Sec-
tion 4.2).

The source code and data for these
experiments are freely available at
https://theupdateframework.com/. Unfortunately,
the download log is not publicly available, because
it may inadvertently compromise the privacy of PyPI
users.

6.2 Bandwidth overhead by security sys-
tem

The initial benchmark required in our study was the
bandwidth cost for all five systems. This was measured
by looking at the cost per user. A user may incur three
different types of costs. First, a new user who just in-
stalled the PyPI package manager incurs an initial cost
to download its first copy of metadata. Second, a user

USENIX Association 2017 USENIX Annual Technical Conference 679

https://theupdateframework.com/

Initial cost Recurring cost Recovery cost
GPG/RSA 0.6KB (0.1%) 0.02KB (0.003%) N/A
Mercury 319KB (48%) 23KB (3.5%) 320KB (48%)

Mercury-hash 2.4MB (360%) 156KB (24%) 2.4MB (361%)
TUF-version 7.6MB (1,152%) 1.1MB (171%) 2.3MB (350%)

TUF 20MB (3,092%) 2.1MB (320%) 2.3MB (350%)

Table 1: The overhead for a user incurred by each se-
curity system. The user incurs an initial cost when she
contacts PyPI for the first time, a recurring cost when
she returns to an uncompromised PyPI after the month of
the download log, and a recovery cost when she returns
to PyPI after it has recovered from a compromise. The
percentages indicate the overhead relative to the average
downloaded package size.

who returns to an uncompromised PyPI incurs a recur-
ring cost to update the metadata (which is the common
case). Third, a user who returns to PyPI after it has re-
covered from a compromise incurs a recovery cost to re-
download metadata to deal with the compromise.

Table 1 lists these costs. The first column shows the
initial cost. The second column shows the recurring cost
after the month represented by our download log. We
chose this period in order to study the greatest recurring
cost that can be measured with the available data. The
third column shows the recovery cost.

If she is a new user, then GPG/RSA incurs the low-
est initial cost (0.1%) relative to the average downloaded
package size. (The cost is equal to the average size
of project metadata files available in the last release.)
This is because it downloads only the project meta-
data file for the requested package. However, the user
is left vulnerable to rollback attacks against all other
projects. Mercury incurs a larger initial cost (48%), be-
cause it must also download snapshot metadata about all
projects. However, this is a one-time cost, and protects
the user from rollback attacks against all known projects.
Mercury-hash incurs an even larger initial cost (360%),
because its snapshot metadata also contains the hashes
of all project metadata files. In contrast, TUF-version
(1,152%) and TUF (3,092%) incur significantly higher
initial costs for the same protection. This is because they
must download all project-version and project metadata,
respectively. TUF-version is still bandwidth-inefficient
compared to Mercury and even Mercury-hash, because
it downloads incompressible signatures for nearly sixty
thousand projects.

If she is returning to an uncompromised PyPI after
the month, then GPG/RSA again incurs the lowest re-
curring cost (0.003%), because it downloads only the
difference to the project metadata file for the requested
package. (This recurring cost is equal to the average
size of differences to project metadata files between the
first and last releases.) Now, Mercury incurs significantly

Total initial costs of new users
Packages 2.2TB

GPG/RSA 0.005TB (0.2%)
Mercury 0.4TB (17%)

Mercury-hash 2.8TB (125%)
TUF-version 8.9TB (396%)

TUF 23.9TB (1,067%)

Table 2: The overhead to PyPI incurred by each security
system for new users. We consider every IP address that
appears for the first time in the download log as a new
user. The percentages indicate the overhead relative to
the total size of all packages downloaded by these new
users.

less recurring cost (3.5%), because it needs to download
only the difference to snapshot metadata over the month.
Mercury-hash incurs a larger recurring cost (24%), be-
cause it needs to also download hashes in its snapshot
metadata. In contrast, TUF-version (171%) and TUF
(320%) still incur a recurring cost greater than the aver-
age downloaded package, because they must download
project-version and project metadata, respectively, about
all projects created or updated over the month.

If she is returning to PyPI after it has recovered from
a compromise, then she may incur a recovery cost for
re-downloading metadata. GPG/RSA does not have a
recovery cost (N/A), because there is no recovery pro-
cedure to reset the version numbers of projects after a
repository compromise. On the other hand, Mercury
has a recovery cost (48%) that is dominated by snapshot
metadata (for the reason explained in Section 5.3). Simi-
larly, the recovery cost (350%) for TUF-version and TUF
are dominated by snapshot metadata. The snapshot meta-
data in both systems is always a few times larger than in
Mercury, because it lists random hashes, instead of ver-
sion numbers. However, note that, in this instance, the
recovery cost for Mercury-hash is the largest, because
its snapshot metadata contains both hashes and version
numbers.

Finally, for the sake of completeness, we also look at
the cost to PyPI incurred by “new” users in this month,
or users who appear for the first time in our download
log. We do not have ground truth about the number of
new versus returning users, since that information can-
not be determined from our download log. However, we
can get a conservative estimate of this size, by assum-
ing all users are new. While this may overestimate the
cost to PyPI in this month, this is accurate for many vir-
tualized environments, such as continuous integration /
deployment systems. Table 2 lists these costs. New users
downloaded 2.2TB of packages, and GPG/RSA adds to
this an overhead of 0.005TB (0.2%) in project metadata.
Mercury and Mercury-hash add an overhead of 0.4TB
(17%) and 2.8TB (125%), mostly due to snapshot meta-

680 2017 USENIX Annual Technical Conference USENIX Association

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Number of projects

100B

1KB

10KB

100KB

1MB

10MB

100MB

Ba
nd

w
id

th
 c

os
t

Initial cost as number of projects is varied
TUF
TUF-version
Mercury-hash
Mercury
GPG/RSA
Average downloaded package size
Actual number of projects at end of month

Figure 7: The initial cost for a user incurred by each se-
curity system, depending on the number of projects. The
dashed lines show the regression lines based on the ob-
served data (points) for each system. The horizontal line
marks the average downloaded package size, whereas the
vertical line marks the actual number of projects on PyPI
at the end of the month. Points on the x and y axes have
been plotted on the log-2 and log-10 scales, respectively.

data. TUF-version adds an overhead of 8.9TB (396%),
more than two-thirds of which is due to project version
metadata. TUF adds an overhead of 23.9TB (1,067%),
eighty-nine percent of which is due to project metadata.
It is fair to conclude that it is not practical for commu-
nity repositories to deploy TUF, or even TUF-version,
especially when Mercury, and even Mercury-hash, can
prevent rollback attacks just as well, but at a fraction of
the cost.

6.3 Bandwidth versus number of projects
This subsection focuses on how the bandwidth costs
would vary for a repository that has fewer or more
projects than PyPI did at the end of the month. To an-
swer this, we looked at how the initial cost for a new
user would change as the number of projects in the last
release (which contains the largest number of projects)
is varied. (We focused on this cost because changing
the number of projects on the repository would affect
new users the most.) To study the cost if the number of
projects is smaller than in the last release, we produced
a new release based on a random sample of projects. On
the other hand, to study the cost if the number of projects
is larger than in the last release, we used linear regres-
sion to extrapolate the costs for this number based on the
costs for smaller numbers of projects.

Figure 7 shows these costs. The vertical line marks the
number of projects at the end of the month. The band-

2¡10 2¡9 2¡8 2¡7 2¡6 2¡5 2¡4 2¡3 2¡2 2¡1 1 2 4

The average number of projects updated per minute

100B

1KB

10KB

100KB

1MB

10MB

100MB

Ba
nd

w
id

th
 c

os
t

Recurring cost as rate of project updates is varied
TUF
TUF-version
Mercury-hash
Mercury
GPG/RSA
Average downloaded package size
Actual rate of updates over the month

Figure 8: The recurring cost for a user incurred by each
security system, if she returns to an uncompromised PyPI
after the month of the download log, depending on the
rate of project updates. The dashed lines show the regres-
sion lines based on the observed data (points) for each
system. The horizontal line marks the average down-
loaded package size, whereas the vertical line marks the
actual rate of project updates on PyPI over the month.
Points on the x and y axes have been plotted on the log-2
and log-10 scales, respectively. Note that GPG/RSA is
not represented in this figure, because its average recur-
ring cost is effectively zero, since most projects were not
updated during that month.

width overhead at that number of projects for all security
systems is similar to the first column of Table 1. The
horizontal line marks the average downloaded package
size.

The initial cost for GPG/RSA changes little as the
number of projects is varied, because its cost depends
only on the size of the average project metadata file.
In contrast, the initial costs for Mercury, Mercury-hash,
TUF-version, and TUF grow linearly with the number of
projects. With Mercury, this cost is dominated by the
snapshot metadata. It outgrows the average downloaded
package if the number of projects on PyPI grows larger
by more than 4x (256K). The cost for Mercury-hash is
also dominated by the snapshot metadata. However, it
outgrows the average downloaded package if the number
of projects on PyPI is nearly 3.4x smaller (17K).

Unlike Mercury, the costs for TUF-version and TUF
are dominated by project-version and project metadata
files, respectively. In fact, the cost for TUF-version is al-
ready greater than the average downloaded package if the
number of projects on PyPI is nearly 12x smaller (5K),
and for TUF if this number is more than 29x smaller
(2K).

USENIX Association 2017 USENIX Annual Technical Conference 681

6.4 Bandwidth versus rate of project up-
dates

This last subsection focuses on how the bandwidth costs
would vary for a repository that has a lower or higher
rate of project updates than PyPI did over the month. To
answer this, we looked at how the recurring cost for a re-
turning user would change as the rate of project updates
varies between the beginning and end of the month. (We
focused on this cost because changing this rate would
principally affect users who are returning to an uncom-
promised repository.) Between these two points, 3,612
projects were created or updated 10,980 times. To study
the cost if this rate is decreased, we artificially decreased
it by increasing the time interval between the first and any
subsequent release. For example, say that there are only
three releases, and that the second and last releases were
produced n and 2n minutes, respectively, after the first re-
lease. Since we assume that this user returns to the repos-
itory at the end of the month (say, at 2n+1 minutes), her
security system would download metadata from the last
release. To artificially slow down the rate of project up-
dates by half, the second and last releases would arrive 2n
and 4n minutes, respectively, after the first release. Now,
her security system would download metadata from the
second release instead of the last one. On the other hand,
to study the cost if this rate is increased, we used linear
regression to extrapolate the costs for larger rates based
on the costs for smaller rates.

Figure 8 shows these costs. The vertical line marks
the actual rate of project updates at the end of the month
(2−2 projects per minute, or a project every 4 minutes).
The bandwidth overhead then for all security systems is
identical to the second column of Table 1. The horizontal
line marks the average downloaded package size. Note
that GPG/RSA is not represented in this figure, because
its average recurring cost is effectively zero, since most
projects were not updated during that month.

When the rate of project updates is varied, the cost for
Mercury and Mercury-hash are determined by the dif-
ferences to snapshot metadata as projects are created or
updated. However, the cost for Mercury remains well
under the average downloaded package even if the rate
of project updates is 16x higher than on PyPI (4 projects
per minute, or 16 projects every 4 minutes). The cost
for Mercury-hash is only greater than the average down-
loaded package when the rate of project updates is nearly
5.7x higher than on PyPI (1.4 projects per minute, or 5.6
projects every 4 minutes). In contrast, the cost for TUF-
version is already greater than the average downloaded
package when the rate of project updates is 2x lower than
on PyPI (2−3 projects per minute, or a project every 8
minutes), and for TUF when this rate is 4x lower (2−4

projects per minute, or a project every 16 minutes).

7 Related work

In this section, we survey some prior work that is related
to Mercury.

Accountability systems. Accountability systems,
such as PeerReview [37], CATS [95], and Cloud-
Proof [67], provide a way to detect a subclass of Byzan-
tine failures in distributed systems. All of these systems
can detect rollback attacks after they happen, but, unlike
Mercury, they are not designed to prevent such attacks
before they occur.

Security systems for software repositories. Previous
work have shown software updaters to be prone to secu-
rity problems such as rollback attacks [5, 15]. Popular
Linux package managers use a security architecture that
protects against malicious mirrors or CDNs [15]. But,
unlike Mercury, it will not necessarily withstand a com-
promise of the original repository [47, 73].

Revere [53] uses a self-organizing, peer-to-peer (P2P)
overlay network to deliver security updates. However, a
P2P setup would increase the complexity of deploying a
community repository, and as such, was deemed imprac-
tical by the administrators we have been working with.
Since Mercury does not require a P2P setup, it is an eas-
ier system to put in place.

File systems for untrusted storage servers. In this
subsection, we will discuss a number of file systems that
are inherently designed to detect whether attackers have
tampered with packages. The biggest difference is that
Mercury is not a file system, which means that reposito-
ries are free to use any file system that they like. Mercury
works on top of existing file systems, and requires repos-
itories only to add a layer of signed metadata, and modi-
fying package managers to verify these metadata before
installing packages.

ECFS [6] and TCFS [19], both of which are based on
the Cryptographic File System (CFS) [7], allow devel-
opers to share files with users by offering the option of
not encrypting files. However, ECFS does not appear to
prevent rollback attacks on files not yet read by the user,
whereas TCFS does not prevent rollback attacks at all,
because unencrypted files are not protected with digital
signatures. By providing security without the need to en-
crypt, Mercury offers a more accessible alternative.

To guarantee freshness, SiRiUS [35] requires every
project developer to sign a hash tree of metadata files.
This signature expires quickly, and so a software agent
acting on behalf of the developer must renew it every
few seconds or minutes. Unfortunately, this would not
work on community repositories that provide rarely up-
dated projects which are still heavily used, but no longer
actively maintained by developers [47]. Unlike SiRiUS,
Mercury does not require developers to quickly renew
signatures on project metadata.

682 2017 USENIX Annual Technical Conference USENIX Association

SNAD [60] can prevent rollback attacks against all
projects by using a certificate object, which serves a sim-
ilar purpose to the snapshot metadata in Mercury. How-
ever, SNAD is computationally expensive for community
repositories, because all files must be encrypted, even
though these repositories have no need for encryption.

The Protected File System (PFS) [84] records hashes
of file blocks, where each hash is parameterized not only
with the file block itself, but also a secret key kept on
trusted storage. This prevents attackers from tampering
with blocks. However, like Iris [83], PFS assumes that
both developers and users would share the same secret
key to read and write files. Sharing this secret key only
makes sense when the users share the same computer,
as in PFS, or the same organization, as in Iris. Mer-
cury does not require developers or users to share a secret
key, which means that they do not have to share the same
computer or organization.

Security systems with different trust assumptions.
SUNDR [51, 57] is a file system designed for software
repositories. Unlike Mercury, SUNDR can prevent roll-
back attacks as well as detect forking attacks [8–12, 78]
despite using a single untrusted server. However, the
price of this is that SUNDR requires clients to trust that
other clients would honestly report whether the reposi-
tory has performed a forking attack. The problem is that
a single faulty or malicious client could accidentally or
deliberately frame an honest repository.

Depot [55] is a file system that eliminates trust for
safety, and minimizes trust for liveness and availability.
Unlike Mercury, Depot not only detects forking attacks,
but can continue functioning despite these attacks. How-
ever, the price is potentially high bandwidth costs, be-
cause Depot is essentially a replication protocol that re-
quires clients to continually exchange updates about all
read and write operations with servers or other clients.

In the most popular method used in file systems to pro-
vide file integrity, a trusted party signs a Merkle hash
tree [58] over a set of files [27,29,30,35,39,40,56,65,83,
92]. Unfortunately, there is no such trusted party on com-
munity repositories. Community repositories must use
online keys instead to sign the root of this tree, because
packages are continually updated, and must be published
as soon as possible (Section 2.2). Unfortunately, attack-
ers who compromise the repository can use these online
keys to sign new hash trees that point to obsolete project
metadata files. Mercury does not use hash trees, and ad-
dresses this problem by distributing version numbers of
all project metadata files using the snapshot metadata,
which help to prevent rollback attacks.

Other systems, such as Proof of Freshness [92],
A2M [20], and TrInc [50], assume that there is trusted
hardware (such as a Trusted Platform Module [91]
chip). Unfortunately, except in limited settings [85], such

trusted hardware is generally not available on commod-
ity cloud servers that community repositories may use to
host packages [1]. Mercury does not need trusted hard-
ware, which greatly increases where it can be deployed.

Byzantine fault-tolerant security systems. Byzan-
tine fault-tolerant (BFT) systems use many replicas in-
stead of a single server to execute operations [18, 26, 38,
43,52,74,79]. Unfortunately, PBFT requires administra-
tors to manage 3 f + 1 independent replicas instead of a
single server [48], where f is the maximum number of
repositories whose compromise can be tolerated. This
significantly increases administrative burden. Mercury
can work using only a single server, making it less ex-
pensive, and more easily deployable.

8 Conclusions

As community repositories continue to grow in popu-
larity, so does the need for reliable and economically-
feasible security systems to protect users from a number
of possible attacks. Solutions that require developers to
indicate the latest version number are too costly to be
used in practice. In this paper, we present Mercury, a
security system that instead uses the community repos-
itory to indicate the latest version numbers of projects.
Although attackers can compromise the repository, Mer-
cury always prevents rollback attacks, and its recov-
ery mechanism helps users recover from fast-forward at-
tacks. Using a key on the repository to sign the version
number for every project allows Mercury to efficiently
use bandwidth to prevent rollback attacks.

The Mercury source code and stan-
dards documents are freely available at
https://theupdateframework.com/.

Acknowledgements

We thank our shepherd, Eric Eide, and the anonymous re-
viewers for their valuable comments. We would also like
to thank Lois Anne DeLong for her efforts on this paper,
as well as the Docker, CoreOS, Flynn, Haskell, LEAP,
OCaml, Python, Ruby, and Square communities for their
collaboration. Our work on Mercury was supported by
U.S. National Science Foundation grants CNS-1345049
and CNS-0959138.

References

[1] ACHEMLAL, M., GHAROUT, S., AND GABER, C.
Trusted Platform Module as an Enabler for Secu-
rity in Cloud Computing. In Network and Informa-
tion Systems Security (SAR-SSI), 2011 Conference
on (May 2011), pp. 1–6.

USENIX Association 2017 USENIX Annual Technical Conference 683

https://theupdateframework.com/

[2] APACHE INFRASTRUCTURE TEAM.
apache.org incident report for 8/28/2009.
https://blogs.apache.org/infra/entry/
apache org downtime report, 2009.

[3] APACHE INFRASTRUCTURE TEAM.
apache.org incident report for 04/09/2010.
https://blogs.apache.org/infra/entry/
apache org 04 09 2010, 2010.

[4] ARKIN, B. Adobe to Revoke Code Sign-
ing Certificate. https://blogs.adobe.com/
conversations/2012/09/adobe-to-revoke-
code-signing-certificate.html, 2012.

[5] BELLISSIMO, A., BURGESS, J., AND FU, K. Se-
cure Software Updates: Disappointments and New
Challenges. In Proceedings of the 1st USENIX
Workshop on Hot Topics in Security (Berkeley, CA,
USA, 2006), HOTSEC’06, USENIX Association,
pp. 7–7.

[6] BINDEL, D., CHEW, M., AND WELLS, C.
Extended Cryptographic File System, 1999.
Unpublished. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.22.4339.

[7] BLAZE, M. A Cryptographic File System for
UNIX. In Proceedings of the 1st ACM Conference
on Computer and Communications Security (New
York, NY, USA, 1993), CCS ’93, ACM, pp. 9–16.

[8] CACHIN, C., AND GEISLER, M. Applied Cryp-
tography and Network Security: 7th International
Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, ch. In-
tegrity Protection for Revision Control, pp. 382–
399.

[9] CACHIN, C., KEIDAR, I., AND SHRAER, A. Fork
sequential consistency is blocking. Information
Processing Letters 109, 7 (2009), 360–364.

[10] CACHIN, C., KEIDAR, I., AND SHRAER, A. Fail-
Aware Untrusted Storage. SIAM Journal on Com-
puting 40, 2 (2011), 493–533.

[11] CACHIN, C., AND OHRIMENKO, O. Principles
of Distributed Systems: 18th International Con-
ference, OPODIS 2014, Cortina d’Ampezzo, Italy,
December 16-19, 2014. Proceedings. Springer In-
ternational Publishing, Cham, 2014, ch. Verifying
the Consistency of Remote Untrusted Services with
Commutative Operations, pp. 1–16.

[12] CACHIN, C., SHELAT, A., AND SHRAER, A. Effi-
cient Fork-linearizable Access to Untrusted Shared
Memory. In Proceedings of the Twenty-sixth An-
nual ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2007), PODC
’07, ACM, pp. 129–138.

[13] CAPPOS, J. Avoiding Theoretical Optimality to
Efficiently and Privately Retrieve Security Up-
dates. In Financial Cryptography and Data Se-
curity: 17th International Conference, FC 2013,
Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers (Berlin, Heidelberg, 2013), A.-R. Sadeghi,
Ed., Springer Berlin Heidelberg, pp. 386–394.

[14] CAPPOS, J., BAKER, S., PLICHTA, J., NYUGEN,
D., HARDIES, J., BORGARD, M., JOHNSTON, J.,
AND HARTMAN, J. H. Stork: package manage-
ment for distributed VM environments. In The 21st
Large Installation System Administration Confer-
ence, LISA’07 (2007).

[15] CAPPOS, J., SAMUEL, J., BAKER, S., AND
HARTMAN, J. H. A look in the mirror: Attacks on
package managers. In Proceedings of the 15th ACM
conference on Computer and communications se-
curity (2008), ACM, pp. 565–574.

[16] CAPPOS, J., SAMUEL, J., BAKER, S., AND
HARTMAN, J. H. Package management security.
Tech. Rep. TR-08-02, University of Arizona, 2008.

[17] CAPPPOS, J. Stork: Secure Package Management
for VM Environments. Dissertation, University of
Arizona, 2008.

[18] CASTRO, M., AND LISKOV, B. Practical Byzan-
tine Fault Tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 1999), OSDI
’99, USENIX Association, pp. 173–186.

[19] CATTANEO, G., CATUOGNO, L., SORBO, A. D.,
AND PERSIANO, P. The Design and Implemen-
tation of a Transparent Cryptographic File Sys-
tem for UNIX. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association,
pp. 199–212.

[20] CHUN, B.-G., MANIATIS, P., SHENKER, S., AND
KUBIATOWICZ, J. Attested Append-only Memory:
Making Adversaries Stick to Their Word. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles (New York, NY,
USA, 2007), SOSP ’07, ACM, pp. 189–204.

684 2017 USENIX Annual Technical Conference USENIX Association

https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4339
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4339

[21] CORBET, J. An attempt to backdoor the kernel.
http://lwn.net/Articles/57135/, 2003.

[22] CORBET, J. The cracking of kernel.org. http:
//www.linuxfoundation.org/news-media/
blogs/browse/2011/08/cracking-kernelorg,
2011.

[23] DEBIAN. Debian Investigation Report after Server
Compromises. https://www.debian.org/News/
2003/20031202, 2003.

[24] DEBIAN. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012, 2012.

[25] DOCKER INC. Docker Hub. https://
hub.docker.com/.

[26] DOUCEUR, J. R., AND WATTENHOFER, R. P. Op-
timizing file availability in a secure serverless dis-
tributed file system. In Proceedings of the 20th
IEEE Symposium on Reliable Distributed Systems
(2001), pp. 4–13.

[27] DUCHAMP, D. A Toolkit Approach to Partially
Connected Operation. In Proceedings of the Annual
Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 1997), USENIX Asso-
ciation, pp. 23–23.

[28] FRIELDS, P. W. Infrastructure report, 2008-
08-22 UTC 1200. https://www.redhat.com/
archives/fedora-announce-list/2008-
August/msg00012.html, 2008.

[29] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D.
Fast and Secure Distributed Read-only File Sys-
tem. In Proceedings of the 4th Conference on
Symposium on Operating System Design & Imple-
mentation - Volume 4 (Berkeley, CA, USA, 2000),
OSDI’00, USENIX Association.

[30] FU, K. E. Group sharing and random access in
cryptographic storage file systems. Master’s thesis,
Massachusetts Institute of Technology, 1999.

[31] GENTOO LINUX. rsync.gentoo.org: rotation server
compromised. https://security.gentoo.org/
glsa/200312-01, 2003.

[32] GESBERT, L., AND MEHNERT, H. Signing
the OPAM repository. https://opam.ocaml.org/
blog/Signing-the-opam-repository/, 2015.

[33] GITHUB, INC. Public Key Security Vulnerability
and Mitigation. https://github.com/blog/
1068-public-key-security-vulnerability-
and-mitigation, 2012.

[34] GNU SAVANNAH. Compromise2010.
https://savannah.gnu.org/maintenance/
Compromise2010/, 2010.

[35] GOH, E.-J., SHACHAM, H., MODADUGU, N.,
AND BONEH, D. SiRiUS: Securing Remote Un-
trusted Storage. In The 10th Annual Network
and Distributed System Security Symposium (San
Diego, CA, Feb. 2003), The Internet Society,
pp. 131–145.

[36] GOODIN, D. Attackers sign malware using
crypto certificate stolen from Opera Software.
http://arstechnica.com/security/2013/
06/attackers-sign-malware-using-crypto-
certificate-stolen-from-opera-software/,
2013.

[37] HAEBERLEN, A., KOUZNETSOV, P., AND DR-
USCHEL, P. PeerReview: Practical Accountabil-
ity for Distributed Systems. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles (New York, NY, USA,
2007), SOSP ’07, ACM, pp. 175–188.

[38] HO, C., VAN RENESSE, R., BICKFORD, M., AND
DOLEV, D. Nysiad: Practical Protocol Transfor-
mation to Tolerate Byzantine Failures. In Proceed-
ings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (Berkeley,
CA, USA, 2008), NSDI’08, USENIX Association,
pp. 175–188.

[39] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN,
R., WANG, Q., AND FU, K. Plutus: Scalable Se-
cure File Sharing on Untrusted Storage. In Pro-
ceedings of the 2Nd USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA,
2003), FAST ’03, USENIX Association, pp. 29–42.

[40] KEYBASE. Introducing the Keybase filesystem,
2016. https://keybase.io/docs/kbfs.

[41] KORN, D., MACDONALD, J., MOGUL, J., AND
VO, K. The VCDIFF Generic Differencing and
Compression Data Format. RFC 3284 (Pro-
posed Standard). https://tools.ietf.org/html/
rfc3284, June 2002.

[42] KORN, D. G., AND VO, K.-P. A Generic Dif-
ferencing and Compression Data Format. Tech.
Rep. HA1630000-021899-02TM, AT&T Labs -
Research, February, 1999.

[43] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,
A., AND WONG, E. Zyzzyva: Speculative Byzan-
tine Fault Tolerance. In Proceedings of Twenty-first

USENIX Association 2017 USENIX Annual Technical Conference 685

http://lwn.net/Articles/57135/
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
https://www.debian.org/News/2003/20031202
https://www.debian.org/News/2003/20031202
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://hub.docker.com/
https://hub.docker.com/
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://security.gentoo.org/glsa/200312-01
https://security.gentoo.org/glsa/200312-01
https://opam.ocaml.org/blog/Signing-the-opam-repository/
https://opam.ocaml.org/blog/Signing-the-opam-repository/
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://savannah.gnu.org/maintenance/Compromise2010/
https://savannah.gnu.org/maintenance/Compromise2010/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
https://keybase.io/docs/kbfs
https://tools.ietf.org/html/rfc3284
https://tools.ietf.org/html/rfc3284

ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07,
ACM, pp. 45–58.

[44] KUHN, B. M. News: IMPORTANT: In-
formation Regarding Savannah Restoration for
All Users. https://savannah.gnu.org/forum/
forum.php?forum id=2752, 2003.

[45] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND
CAPPOS, J. PEP 458 – Securing the Link from
PyPI to the End User. https://www.python.org/
dev/peps/pep-0458/, 2013.

[46] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND
CAPPOS, J. PEP 480 – Surviving a Compromise of
PyPI. https://www.python.org/dev/peps/pep-
0480/, 2014.

[47] KUPPUSAMY, T. K., TORRES-ARIAS, S., DIAZ,
V., AND CAPPOS, J. Diplomat: Using Delega-
tions to Protect Community Repositories. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16) (Santa Clara, CA,
Mar. 2016), USENIX Association, pp. 567–581.

[48] LAMPORT, L., SHOSTAK, R., AND PEASE, M.
The Byzantine Generals Problem. ACM Trans. Pro-
gram. Lang. Syst. 4, 3 (July 1982), 382–401.

[49] LEAP ENCRYPTION ACCESS PROJECT. New re-
leases for a new year - LEAP. https://leap.se/
en/2014/darkest-night, 2014.

[50] LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND
MOSCIBRODA, T. TrInc: Small Trusted Hardware
for Large Distributed Systems. In Proceedings of
the 6th USENIX Symposium on Networked Systems
Design and Implementation (Berkeley, CA, USA,
2009), NSDI’09, USENIX Association, pp. 1–14.

[51] LI, J., KROHN, M., MAZIÈRES, D., AND
SHASHA, D. Secure untrusted data repository
(SUNDR). In Proceedings of the 6th conference on
Symposium on Operating Systems Design & Imple-
mentation - Volume 6 (Berkeley, CA, USA, 2004),
OSDI’04, USENIX Association, pp. 9–9.

[52] LI, J., AND MAZIÉRES, D. Beyond One-third
Faulty Replicas in Byzantine Fault Tolerant Sys-
tems. In Proceedings of the 4th USENIX Con-
ference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2007), NSDI’07,
USENIX Association.

[53] LI, J., REIHER, P., AND POPEK, G. J. Resilient
self-organizing overlay networks for security up-
date delivery. Selected Areas in Communications,
IEEE Journal on 22, 1 (2004), 189–202.

[54] MAGNUSSON, H. The PHP project and Code
Review. http://bjori.blogspot.com/2010/12/
php-project-and-code-review.html, 2010.

[55] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT,
A., ALVISI, L., DAHLIN, M., AND WALFISH,
M. Depot: Cloud Storage with Minimal Trust.
ACM Trans. Comput. Syst. 29, 4 (Dec. 2011), 12:1–
12:38.

[56] MAHESHWARI, U., VINGRALEK, R., AND
SHAPIRO, W. How to Build a Trusted Database
System on Untrusted Storage. In Proceedings of the
4th Conference on Symposium on Operating Sys-
tem Design & Implementation - Volume 4 (Berke-
ley, CA, USA, 2000), OSDI’00, USENIX Associa-
tion.

[57] MAZIÈRES, D., AND SHASHA, D. Building Se-
cure File Systems out of Byzantine Storage. In
Proceedings of the Twenty-first Annual Symposium
on Principles of Distributed Computing (New York,
NY, USA, 2002), PODC ’02, ACM, pp. 108–117.

[58] MERKLE, R. A Digital Signature Based on a Con-
ventional Encryption Function. In Advances in
Cryptology — CRYPTO ’87, C. Pomerance, Ed.,
vol. 293 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1988, pp. 369–378.

[59] MICROSOFT, INC. Flame malware collision
attack explained. http://blogs.technet.com/b/
srd/archive/2012/06/06/more-information-
about-the-digital-certificates-used-to-
sign-the-flame-malware.aspx, 2012.

[60] MILLER, E., LONG, D., FREEMAN, W., AND
REED, B. Strong security for distributed file sys-
tems. In Performance, Computing, and Communi-
cations, 2001. IEEE International Conference on.
(2001), IEEE, pp. 34–40.

[61] MOGUL, J., KRISHNAMURTHY, B., DOUGLIS,
F., FELDMANN, A., GOLAND, Y., VAN HOFF,
A., AND HELLERSTEIN, D. Delta encoding in
HTTP. RFC 3229 (Proposed Standard). https:
//tools.ietf.org/html/rfc3229, Jan. 2002.

[62] MOGUL, J. C., DOUGLIS, F., FELDMANN, A.,
AND KRISHNAMURTHY, B. Potential Benefits of
Delta Encoding and Data Compression for HTTP.
In Proceedings of the ACM SIGCOMM ’97 Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication (New
York, NY, USA, 1997), SIGCOMM ’97, ACM,
pp. 181–194.

686 2017 USENIX Annual Technical Conference USENIX Association

https://savannah.gnu.org/forum/forum.php?forum_id=2752
https://savannah.gnu.org/forum/forum.php?forum_id=2752
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0480/
https://www.python.org/dev/peps/pep-0480/
https://leap.se/en/2014/darkest-night
https://leap.se/en/2014/darkest-night
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
https://tools.ietf.org/html/rfc3229
https://tools.ietf.org/html/rfc3229

[63] MULLENWEG, M. Passwords Reset.
https://wordpress.org/news/2011/06/
passwords-reset/, 2011.

[64] MÓNICA, D., AND DOCKER, INC. In-
troducing Docker Content Trust. https:
//blog.docker.com/2015/08/content-trust-
docker-1-8/, 2015.

[65] OPREA, A., AND REITER, M. K. Integrity Check-
ing in Cryptographic File Systems with Constant
Trusted Storage. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Sympo-
sium (Berkeley, CA, USA, 2007), SS’07, USENIX
Association, pp. 13:1–13:16.

[66] PHILIPS, B. Evaluate The Update Frame-
work. https://github.com/appc/spec/issues/
211, 2015.

[67] POPA, R. A., LORCH, J. R., MOLNAR, D.,
WANG, H. J., AND ZHUANG, L. Enabling Secu-
rity in Cloud Storage SLAs with CloudProof. In
Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Berkeley,
CA, USA, 2011), USENIXATC’11, USENIX As-
sociation.

[68] PRIME DIRECTIVE, INC. Development - Flynn.
https://flynn.io/docs/development, 2015.

[69] PYTHON SOFTWARE FOUNDATION. PyPI - the
Python Package Index: Python Package Index.
https://pypi.python.org/pypi.

[70] RED HAT, INC. Infrastructure report, 2008-08-
22 UTC 1200. https://rhn.redhat.com/errata/
RHSA-2008-0855.html, 2008.

[71] RUBYGEMS.ORG. RubyGems.org — your com-
munity gem host. https://rubygems.org/.

[72] RUBYGEMS.ORG. Data Verification.
http://blog.rubygems.org/2013/01/31/
data-verification.html, 2013.

[73] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND
DINGLEDINE, R. Survivable key compromise in
software update systems. In Proceedings of the
17th ACM conference on Computer and communi-
cations security (2010), ACM, pp. 61–72.

[74] SCHNEIDER, F. B. Implementing Fault-tolerant
Services Using the State Machine Approach: A Tu-
torial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–
319.

[75] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 1. https://goo.gl/
XO4AHu, 2013.

[76] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 2. https://goo.gl/
yymo8z, 2013.

[77] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 3. https://goo.gl/
pPKcgB, 2013.

[78] SHRAER, A., CACHIN, C., CIDON, A., KEI-
DAR, I., MICHALEVSKY, Y., AND SHAKET, D.
Venus: Verification for Untrusted Cloud Storage.
In Proceedings of the 2010 ACM Workshop on
Cloud Computing Security Workshop (New York,
NY, USA, 2010), CCSW ’10, ACM, pp. 19–30.

[79] SINGH, A., FONSECA, P., KUZNETSOV, P., RO-
DRIGUES, R., AND MANIATIS, P. Zeno: Even-
tually Consistent Byzantine-fault Tolerance. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation
(Berkeley, CA, USA, 2009), NSDI’09, USENIX
Association, pp. 169–184.

[80] SLASHDOT MEDIA. About. http:
//sourceforge.net/about.

[81] SLASHDOT MEDIA. phpMyAdmin cor-
rupted copy on Korean mirror server.
https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[82] SMITH, J. K. Security incident on Fe-
dora infrastructure on 23 Jan 2011. https:
//lists.fedoraproject.org/pipermail/
announce/2011-January/002911.html, 2011.

[83] STEFANOV, E., VAN DIJK, M., JUELS, A., AND
OPREA, A. Iris: A Scalable Cloud File System
with Efficient Integrity Checks. In Proceedings of
the 28th Annual Computer Security Applications
Conference (New York, NY, USA, 2012), ACSAC
’12, ACM, pp. 229–238.

[84] STEIN, C. A., HOWARD, J. H., AND SELTZER,
M. I. Unifying File System Protection. In Proceed-
ings of the General Track: 2001 USENIX Annual
Technical Conference (Berkeley, CA, USA, 2001),
USENIX Association, pp. 79–90.

[85] TECTONIC/COREOS, INC. Tectonic with Dis-
tributed Trusted Computing, 2016. https://
tectonic.com/trusted-computing/.

USENIX Association 2017 USENIX Annual Technical Conference 687

https://wordpress.org/news/2011/06/passwords-reset/
https://wordpress.org/news/2011/06/passwords-reset/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://github.com/appc/spec/issues/211
https://github.com/appc/spec/issues/211
https://flynn.io/docs/development
https://pypi.python.org/pypi
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rubygems.org/
http://blog.rubygems.org/2013/01/31/data-verification.html
http://blog.rubygems.org/2013/01/31/data-verification.html
https://goo.gl/XO4AHu
https://goo.gl/XO4AHu
https://goo.gl/yymo8z
https://goo.gl/yymo8z
https://goo.gl/pPKcgB
https://goo.gl/pPKcgB
http://sourceforge.net/about
http://sourceforge.net/about
https://sourceforge.net/blog/phpmyadmin-back-door/
https://sourceforge.net/blog/phpmyadmin-back-door/
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://tectonic.com/trusted-computing/
https://tectonic.com/trusted-computing/

[86] THE FREEBSD PROJECT. FreeBSD.org intru-
sion announced November 17th 2012. http://
www.freebsd.org/news/2012-compromise.html,
2012.

[87] THE PHP GROUP. php.net security no-
tice. http://www.php.net/archive/
2011.php#id2011-03-19-1, 2011.

[88] THE PHP GROUP. A further update on php.net.
http://php.net/archive/2013.php#id2013-
10-24-2, 2013.

[89] THE UPDATE FRAMEWORK. Developer Tools.
https://github.com/theupdateframework/
tuf/blob/develop/tuf/README-developer-
tools.md, 2014.

[90] THE UPDATE FRAMEWORK. Reposi-
tory Management. https://github.com/
theupdateframework/tuf/blob/develop/tuf/
README.md, 2014.

[91] TRUSTED COMPUTING GROUP. Trusted
Platform Module (TPM), 2016. https:

//www.trustedcomputinggroup.org/work-
groups/trusted-platform-module/.

[92] VAN DIJK, M., SARMENTA, L. F., O’DONNELL,
C. W., AND DEVADAS, S. Proof of freshness:
How to efficiently use an online single secure clock
to secure shared untrusted memory. Tech. Rep.
CSG Memo 496, Massachusetts Institute of Tech-
nology, 2006.

[93] VOSS, L. Newly Paranoid Maintainers.
http://blog.npmjs.org/post/80277229932/
newly-paranoid-maintainers, 2014.

[94] WELL-TYPED LLP. Improving Hackage secu-
rity. http://www.well-typed.com/blog/2015/
04/improving-hackage-security/, 2015.

[95] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
Accountability for Network Storage. Trans. Stor-
age 3, 3 (Oct. 2007).

688 2017 USENIX Annual Technical Conference USENIX Association

http://www.freebsd.org/news/2012-compromise.html
http://www.freebsd.org/news/2012-compromise.html
http://www.php.net/archive/2011.php#id2011-03-19-1
http://www.php.net/archive/2011.php#id2011-03-19-1
http://php.net/archive/2013.php#id2013-10-24-2
http://php.net/archive/2013.php#id2013-10-24-2
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://www.well-typed.com/blog/2015/04/improving-hackage-security/
http://www.well-typed.com/blog/2015/04/improving-hackage-security/

CAB-FUZZ: Practical Concolic Testing Techniques for COTS Operating
Systems

Su Yong Kim∗§ Sangho Lee† Insu Yun† Wen Xu†

Byoungyoung Lee¶ Youngtae Yun∗ Taesoo Kim†

∗The Affiliated Institute of ETRI †Georgia Institute of Technology ¶Purdue University

Abstract
Discovering the security vulnerabilities of commercial
off-the-shelf (COTS) operating systems (OSes) is chal-
lenging because they not only are huge and complex, but
also lack detailed debug information. Concolic testing,
which generates all feasible inputs of a program by using
symbolic execution and tests the program with the gen-
erated inputs, is one of the most promising approaches
to solve this problem. Unfortunately, the state-of-the-art
concolic testing tools do not scale well for testing COTS
OSes because of state explosion. Indeed, they often fail
to find a single bug (or crash) in COTS OSes despite their
long execution time.

In this paper, we propose CAB-FUZZ (Context-Aware
and Boundary-focused), a practical concolic testing tool
to quickly explore interesting paths that are highly likely
triggering real bugs without debug information. First,
CAB-FUZZ prioritizes the boundary states of arrays
and loops, inspired by the fact that many vulnerabilities
originate from a lack of proper boundary checks. Sec-
ond, CAB-FUZZ exploits real programs interacting with
COTS OSes to construct proper contexts to explore deep
and complex kernel states without debug information. We
applied CAB-FUZZ to Windows 7 and Windows Server
2008 and found 21 undisclosed unique crashes, includ-
ing two local privilege escalation vulnerabilities (CVE-
2015-6098 and CVE-2016-0040) and one information
disclosure vulnerability in a cryptography driver (CVE-
2016-7219). CAB-FUZZ found vulnerabilities that are
non-trivial to discover; five vulnerabilities have existed
for 14 years, and we could trigger them even in the initial
version of Windows XP (August 2001).

1 Introduction
Concolic testing is a well-known approach to automati-

cally detect software vulnerabilities [8]. Empowered by
its symbolic interpretation of the input, it generates and

§This work is done while this author was a visiting scholar in
Georgia Institute of Technology.

explores all feasible states in a program and thoroughly
checks whether a certain security property can be vio-
lated. In particular, it has shown its effectiveness for
small applications and/or applications with source code.
For example, Avgerinos et al. [1] found more than 10,000
bugs in about 4,000 small applications. Also, Ramos
and Engler [40] found 67 bugs in various open-source
projects, such as BIND, OpenSSL, and the Linux kernel.

However, concolic testing does not scale well for com-
plex and large software [5, 8, 13, 48], such as commer-
cial off-the-shelf (COTS) operating systems (OSes). The
complete concolic execution of COTS OSes would never
terminate in a reasonable amount of time due to the well-
known limitation of the symbolic execution, state (or
path) explosion, where the number of feasible program
states increases exponentially (e.g., once reaching a loop
statement). Since the COTS OSes have massive imple-
mentation complexity, testing using symbolic execution
ends up exploring a very small portion of program states,
i.e., it cannot test deep execution paths.

Moreover, a proprietary nature of COTS OSes prevents
concolic testing from exploring program states with pre-
contexts. Unlike the open-source kernel for which the
internal documentation and all test suites are publicly
available [41, 50], COTS OSes do not provide such com-
prehensive information. Although manual annotation on
the interface can help increase code coverage and detect
logical bugs [27], it also does not scale. For these rea-
sons, concolic execution on COTS OSes cannot explore
program states that are only reachable after undergoing
complex runtime operations.

In this paper, we propose CAB-FUZZ (Context-Aware
and Boundary-focused), a practical system specialized to
detect vulnerabilities in COTS OSes based on concolic
testing. First, to overcome the scalability limitation of
concolic testing, CAB-FUZZ prioritizes states likely hav-
ing vulnerabilities. This prioritization is based on the
observation that a majority of critical security bugs (e.g.,
memory corruption and information disclosure) originate

USENIX Association 2017 USENIX Annual Technical Conference 689

from a lack of proper boundary checks. This is why com-
pilers and even hardware have adopted boundary-check
mechanisms, such as SoftBound [37], SafeStack [28], and
Intel Memory Protection Extensions (MPX) [20]. There-
fore, we instruct CAB-FUZZ to generate and explore the
boundary states of arrays and loops first, thereby detect-
ing vulnerabilities as early as possible before exploding
in terms of program states.

Second, to construct pre-contexts of COTS OSes with-
out detailed debug information, CAB-FUZZ refers to real
programs as a concolic-execution template. Since such
a program frequently interacts with the COTS OSes to
perform a certain operation, it embodies sufficient infor-
mation and logic that constructs pre-contexts for using OS
functions. Thus, if CAB-FUZZ runs a real program until
it calls any target OS function that we are interested in,
CAB-FUZZ is able to prepare with proper pre-contexts
to initiate concolic testing correctly.

We implemented CAB-FUZZ based on a popular con-
colic testing tool, S2E [10], and evaluated it with two
popular COTS OSes, Windows 7 and Windows Server
2008, especially for the 274 device drivers shipped with
them. Since our approaches are general and independent
of the OS, we believe they can be applied to currently
unsupported OSes in the future.

In total CAB-FUZZ discovered 21 unique crashes of
six device drivers developed by Microsoft and ESET (§5).
Among them we reported six reproducible crashes to Mi-
crosoft and one reproducible crash to ESET. Microsoft
confirmed that three of them were undisclosed vulnera-
bilities and could be abused by a guest account for lo-
cal privilege escalation (CVE-2015-6098 and CVE-2016-
0040) and information disclosure in a cryptography driver
(CVE-2016-7219). Especially, the later vulnerability even
existed in the latest versions of Windows (Windows 10
and Windows Server 2016). Microsoft acknowledged the
other three reports demanding administrator privilege and
ESET fixed the bug we reported.

This evaluation result arguably demonstrates the ef-
fectiveness of CAB-FUZZ in finding vulnerabilities in
COTS OSes despite its lack of completeness. CAB-FUZZ
may not be able to trigger sophisticated bugs unrelated to
boundary states. However, because of the fundamental
scalability limitation of concolic testing, complete con-
colic testing is infeasible especially for large software.
One of the contributions of CAB-FUZZ is that it changes
the way we think of concolic testing—sacrificing com-
pleteness in a degree—to make it practical. Microsoft
invests huge engineering efforts and computational re-
sources in finding vulnerabilities, but CAB-FUZZ still
discovered many different vulnerabilities in the Windows
kernel using relatively moderate engineering efforts and
computational resources. Specifically, we want to em-
phasize that Microsoft made fuzzing mandatory for every

untrusted interface for every product, and their fuzzing
solution has been running 24/7 since 2007 for a total of
over 500 machine years [3]. However, despite this ef-
fort, CAB-FUZZ was able to discover 14-year-old bugs
in Windows’ kernel device drivers (§5.3).

This paper makes the following contributions.

• Practical Techniques. CAB-FUZZ makes concolic
testing practical by addressing its two important
challenges: state explosion and missing execution
contexts. CAB-FUZZ prioritizes boundary condi-
tions to trigger a crash before explosion and refers
to a real application to construct proper execution
contexts.

• Evaluation and In-depth Analysis. We analyzed
the implementation of COTS OSes in detail to fig-
ure out why CAB-FUZZ was able to detect their
vulnerabilities effectively compared to conventional
techniques.

• Real-world Impact. CAB-FUZZ discovered 21
unique crashes of device drivers for Windows 7 and
Windows Server 2008. We reported all reproducible
crashes to the vendors. They confirmed that four
of the reported crashes were critical and fixed them.
Specifically, two of them were privilege escalation
vulnerabilities and one was an information disclo-
sure vulnerability in a cryptography driver.

The rest of this paper is organized as follows. §2 de-
scribes the challenges of performing concolic testing for
COTS OSes. §3 depicts CAB-FUZZ and §4 describes its
implementation. §5 evaluates CAB-FUZZ’s vulnerability-
finding effectiveness. §6 discusses the various aspects of
CAB-FUZZ including its limitations, and §7 presents re-
lated work. §8 concludes the paper.

2 Challenges for COTS OSes
This section elaborates on the challenges involved in

performing concolic testing for COTS OSes to clearly
motivate our proposed system, CAB-FUZZ.
2.1 Binary

Automated binary analysis is necessary for production
software (e.g., COTS OS) because (1) it usually contains
third-party binaries and libraries without source code, (2)
its behavior can be changed due to compiler optimization
or linking, and (3) its code can be written with multiple
programming languages, making source code analysis
difficult. However, the following two challenges make
concolic testing for COTS OSes unpractical.
Missing Documentation and Test-suites. When doing
automated testing, especially for COTS OSes, a lack of
source code and document is a critical hurdle because
most of the communication interfaces between user- and
kernel-space are undocumented (often intentionally) and
vary dramatically across versions [21]. Further, COTS

690 2017 USENIX Annual Technical Conference USENIX Association

1 // global arrays
2 bool flag_table[125];
3 void (*fn_table[36])(); //function pointer array
4

5 int dispatch_device_io_control(unsigned long ctrl_code,
6 unsigned long *buf) {
7 switch (ctrl_code) {
8 case 0x8fff23cc:
9 case 0x8fff23c8:

10 // sanitizing conditions (simplified)
11 if (buf[0] > 246 || buf[1] > 124 || buf[2] > 36)
12 return -1;
13

14 if (flag_table[buf[1]]) {
15 // buf[2] == 36 -> out-of-bound access
16 (*fn_table[buf[2]])();
17 }
18

19 for (int i = 1; i <= buf[0]; ++i) { ... }
20

21 // NOTE. the below included to comprehensively illustrate
22 // the effectiveness of on-the-fly technique.
23 // Not exist in the original NDProxy
24 case 0x8fff23c4:
25 // set all elements of flag_table to true
26 for (int i = 0; i < 125; i++)
27 flag_table[i] = true;
28 ...
29 }
30 }

Figure 1: A simplified code snippet reconstructed from ND-
Proxy vulnerability (CVE-2013-5065) [11]. It resulted in a local
privilege escalation in Windows XP and Server 2003.

OSes often do not provide test suites such that it is difficult
to generate proper input values that pass input validation
routines at an early state. This prevents the concolic test-
ing procedure from reaching later and deeper stages. Even
the state-of-the-art techniques (S2E [10] and Dowser [19])
rely on unit tests to pass input validation routines.
Handling Symbolic Memory. There are two common
ways to handle symbolic memory in concolic testing:
treating it as a symbolic array (symbolization) or con-
cretizing it (concretization). Memory symbolization is
typically used to avoid the state explosion problem be-
cause it efficiently abstracts the execution state. However,
memory symbolization is not suitable for a COTS binary
because it heavily uses the static information (e.g., ob-
ject size) for performance optimization, which is often
unavailable. Further, it produces complex constraints that
are barely solvable in large-scale, real-world software.

Therefore, CAB-FUZZ concretizes every symbolic
memory as it produces solvable constraints even for large-
scale software. But, it has to cope with the state explosion
problem as we discuss in the next section.

2.2 State Explosion
We illustrate state explosion with an NDProxy vulnera-

bility (CVE-2013-5065) and S2E [10].
CVE-2013-5065. Figure 1 shows a simplified code snip-
pet reverse-engineered from the NDProxy kernel driver.
The dispatch_device_io_control function handles the
requests of a user-mode process. ctrl_code and buf are

inputs from a user-mode process, where ctrl_code repre-
sents an operation and buf contains user data.

According to our analysis, this vulnerability originated
from the misverification of buf[2] at Line 11. buf[2]
is used as an index to refer to fn_table and it should
lie between 0 and 35 to avoid memory access violations.
In principle, having ctrl_code and buf as symbolic vari-
ables, S2E [10] is supposed to identify the offending input
satisfying the vulnerable condition. However, we found it
suffers from state explosion.
State Explosion Problem. We carefully adjusted S2E
to check the code (Figure 1) as a preliminary experiment
(§5.1). Due to state explosion, it took two hours while con-
suming up to 15 GB of memory to detect the vulnerability.
First, S2E explored all feasible paths of symbolic mem-
ory—a memory region a symbolic variable controls. The
code had at least two symbolic memory arrays: fn_table
and flag_table, where fn_table generated 37 states due
to the condition of buf[2] at Line 11, and flag_table
generated 125 states due to the condition of buf[1] at
Line 11. Second, S2E explored all possible paths of a
loop controlled by a symbolic variable. This code had a
loop controlled by buf[0] at Line 19, generating at least
247 states in our observation. In total, S2E generated
more than a million states just for two symbolic memo-
ries and a single loop.

Exploring all feasible paths of a program is difficult
in practice due to state explosion. Instead, CAB-FUZZ
prioritizes interesting paths that more likely trigger vul-
nerabilities. For example, the vulnerability in Figure 1 is
triggered when buf[2] has the upper-bound value 36. Fo-
cusing on such boundary states allows us to detect many
vulnerabilities while avoiding state explosion (§3.2).
2.3 Missing Execution Contexts

To avoid state explosion, concolic testing tools need to
check individual functions instead of the entire program
from the beginning. However, functions can have close
relationships with each other such that we cannot estab-
lish proper contexts when skipping some of them (e.g., a
function for initializing shared variables) [40].

Figure 1 also shows a crash example that context-
unaware concolic testing tools cannot detect (Lines 14, 16,
and 27). In fact, fn_table[buf[2]] will be executed only
after dispatch_device_io_control with 0x8fff23c4 as
ctrl_code has been called first since it depends on a
global array flag_table. When testing such a function,
existing concolic testing tools just treat its input parame-
ters as symbolic variables, ignoring context such as the
sequence of function calls. However, this cannot generate
a crash because no elements of flag_table have the value
required for the crash. Therefore, existing tools cannot
detect the bug in our example.

CAB-FUZZ targets COTS OSes such that it aims to
solve this problem without relying on any prior knowl-

USENIX Association 2017 USENIX Annual Technical Conference 691

❶�Symbolization
(synthetic or
on-the-fly)

COTS OSes
(e.g., Windows)

Vuln. info
(e.g., classification)

§ 3.2

❷�Concolic
execution

disk image

❸�Analyzing
crashes

BSOD
detector

Crash DB
(e.g., memory dump)

§ 3.1

Figure 2: An overview of CAB-FUZZ’s workflow.

edge (e.g., annotation). Our basic idea is to run a real
program, instead of a synthetic program, to let it construct
pre-contexts. Later, when the program is calling a target
function, CAB-FUZZ initiates concolic testing on-the-fly.
This allows us to get enough pre-contexts to test the target
function with minimal overhead (details are in §3.1.2.)
3 Design

In this section, we describe in detail CAB-FUZZ’s
design and the techniques that allow for concolic exe-
cution for COTS OSes. CAB-FUZZ is a full-fledged
vulnerability-detection system for COTS binaries, and
in particular, it aims to make concolic testing (see §2)
practical in the context of COTS OSes.

Figure 2 depicts an overview of CAB-FUZZ. First, it
takes a disk image of the targeted COTS OS as an in-
put. Then, it determines when to start symbolic execution
either by synthetic symbolization (§3.1.1) or on-the-fly
symbolization (§3.1.2). After deciding what to symbolize,
CAB-FUZZ performs the concolic testing. In order to ad-
dress the state explosion problem, CAB-FUZZ employs
two new techniques, namely, array-boundary prioritiza-
tion (§3.2.1) and loop-boundary prioritization (§3.2.2),
which focus on boundary states (§3.2). Once CAB-FUZZ
observes a kernel crash during the symbolic execution, it
attempts to generate concrete input and a crash report to
help reproduce the observed crash.
3.1 Symbolization for Kernel

The goal of CAB-FUZZ is to detect the vulnerabili-
ties in the kernel using concolic testing. In particular,
CAB-FUZZ symbolizes a certain memory location dur-
ing kernel execution such that any instruction involv-
ing this location is symbolically executed. Although
this procedure resembles generic concolic testing meth-
ods, we specialize CAB-FUZZ for handling COTS OSes
by considering two important issues: when to start the
symbolic execution and what memory regions to sym-
bolize. The kernel can be considered as a long-running
process or system service, and the majority of its func-
tional components depend on previous kernel execution
states. CAB-FUZZ takes two different approaches in this
regard: synthetic symbolization (§3.1.1) and on-the-fly
symbolization (§3.1.2). Overall, synthetic symbolization
launches a previously built user-space program and ex-
plicitly starts the symbolic execution phase. On the other
hand, on-the-fly symbolization retrofits the existing user-

space programs to better construct the legitimate kernel
execution contexts and seamlessly starts the symbolic
execution at a certain execution point.
3.1.1 Synthetic Symbolization

Synthetic symbolization launches a previously built
user-space program that initiates the symbolic execution.
This largely follows previous concolic execution tech-
niques in that CAB-FUZZ also launches synthetic pro-
grams to start the symbolic execution phase. The key
difference is that CAB-FUZZ tailors the user-space pro-
grams to test kernel device drivers. Our synthetic pro-
gram invokes a function controlling an IO device (i.e.,
NtDeviceIoControlFile) while symbolizing its parame-
ters.

Figure 3 shows example code to test
NtDeviceIoControlFile. In particular, for each
device driver, we obtain the corresponding device driver
handle at Line 17. Using this handle, CAB-FUZZ
invokes NtDeviceIoControlFile while symbolizing the
two parameters, ctrl_code and in_buf, which primarily
control the behavior of a device driver (see Figure 1). We
observed that symbolizing the size of in_buf resulted in
state explosion, leading us to decide not to symbolize it
(explained later). The memory symbolization is carried
out by utilizing existing runtime helper functions in the
concolic execution engine (i.e., s2e_make_symbolic).
Once these two parameters are symbolized, CAB-FUZZ
symbolically interprets these parameters while executing
NtDeviceIoControlFile.
State Explosion due to Input Buffer Size Symboliza-
tion. We explain why input buffer size symbolization
generates state explosion. Windows provides three meth-
ods to deliver a user-space input buffer to the kernel,
configured using the lowest two bits of ctrl_code [33].
The first method, buffered I/O, allocates a kernel memory
buffer whose size is the same as that of a user input buffer
and copies the input buffer’s content to the kernel buffer.
The buffered I/O, however, generates state explosion, as
shown in Figure 4. At Line 9, in_buf_size is used as
a condition of the for loop, so it generates 0x7FFF0000
states even with the constraint at Line 7.

The other two methods (direct I/O and neither buffered
nor direct I/O) do not directly generate state explosion
since they let a kernel device driver access the user buffer
via a memory descriptor list (MDL) or virtual address.
However, since we focus on COTS OSes, we do not know
which method a target driver uses to access a user input
buffer. Consequently, CAB-FUZZ should symbolize the
for loop no matter which method the target driver uses.
3.1.2 On-the-Fly Symbolization

As shown in §2.3, existing concolic testing tools can-
not check individual target functions due to the lack of
context awareness. To this end, on-the-fly symbolization
retrofits the real user-space programs to better construct

692 2017 USENIX Annual Technical Conference USENIX Association

1 HANDLE device_handle;
2 unsigned long in_buf[BUF_SIZE] = {0};
3 unsigned long out_buf[BUF_SIZE] = {0};
4 unsigned long ctrl_code = 0;
5 NTSTATUS status;
6 UNICODE_STRING device_name;
7 OBJECT_ATTRIBUTES object_attributes;
8 ACCESS_MASK max_allowed_access;
9 IO_STATUS_BLOCK io_status_block;

10

11 // get maximum access allowed for the target device driver
12 max_allowed_access = get_allowed_access(&device_name);
13

14 obect_attributes.ObjectName = &device_name;
15

16 // get handle of the target device driver
17 status = NtCreateFile(&device_handle, max_allowed_access,
18 &object_attributes, ...);
19

20 if (status)
21 return -1; //cannot get a handle
22

23 // initate concolic execution and symoblize params
24 cab_start_concolic_testing();
25

26 s2e_make_symbolic(&ctrl_code, sizeof(ctrl_code), "code");
27 s2e_make_symbolic(&in_buf, sizeof(in_buf), "buf");
28

29 // targeted call
30 NtDeviceIoControlFile(
31 device_handle, // handle to target device
32 NULL, // A handle to an event
33 NULL, // ApcRoutine procedure
34 NULL, // a pointer to pass to ApcRoutine
35 &io_status_block, // receive the final completion status
36 ctrl_code, // a control function to be executed
37 &in_buf, // input buffer
38 BUF_SIZE, // input buffer size
39 &out_buf, // output buffer
40 BUF_SIZE); // output buffer size
41

42 // terminate and generate a testcase
43 s2e_kill_state(0, "Successfully done");

Figure 3: Example code of the synthetic symbolization testing
the NtDeviceIoControlFile function (see §3.1.1 for explana-
tion). get_allowed_access() is related to the access permission
per the driver (see §4.1 for more details). The prototype of
NtDeviceIoControlFile function can be found in [35].

the legitimate kernel execution contexts and seamlessly
starts the symbolic execution at a certain execution point.
Specifically, unlike existing concolic testing tools, our
on-the-fly concolic testing tries to satisfy the pre-contexts
of a function to crash in our best effort by following the
real execution procedure of a COTS binary, as shown in
Figure 5. It (1) runs and monitors the execution of a user-
space program, (2) lets the program and kernel construct
pre-contexts, (3) monitors input values to a target func-
tion and selects some of them, and (4) performs runtime
concolic testing while designating the selected values as
symbolic variables.

For example, to test dispatch_device_io_control
in Figure 1, our tool runs a user-space program con-
taining the code, ensuring the initialization has been
called (i.e., ctrl_code = 0x8fff23c4) before other
NtDeviceIoControlFile calls. Since the pre-context is
now fulfilled, concolic testing can automatically generate
the value that results in a crash.

1 // ctrl_code, in_buf_size, and in_buf are given from
2 // a user-space process. kernel_mem is a kernel-space buffer
3

4 #define USER_ADDR_MAX 0x7fff0000
5

6 if (ctrl_code & 3 == 0) { // Buffered I/O
7 if (in_buf_size < USER_ADDR_MAX) {
8 ...
9 for (int i = 0; i < in_buf_size; i++) {

10 kernel_mem[i] = in_buf[i];
11 }
12 ...
13 }
14 }

Figure 4: Pseudo code showing why symbolizing an input
buffer size generates state explosion during concolic testing.

Program

Kernel

❶�Execute
a program ❷�Construct pre-contexts

 of a target function

❸�Call the function

❹�Initiate runtime
concolic testing

User-space Kernel-space

Kernel data
structures

Global
variables

Figure 5: Overall procedures of on-the-fly concolic test-
ing: 1 CAB-FUZZ executes a real user-space program; 2
CAB-FUZZ lets the program and kernel interact with each other
to construct the pre-contexts of a target function; 3 the pro-
gram calls a target function; 4 CAB-FUZZ hooks the event
and initiates runtime concolic testing from this point.

Furthermore, our on-the-fly concolic testing method
can work with COTS binaries that provide only partial
information. Many COTS binaries lack full documen-
tation, so we cannot obtain all the information to test
target functions. This makes existing concolic testing
tools ineffective in practice because it is difficult to pass
the sanitization routines without satisfying basic condi-
tions among inputs. Even in such a case, our on-the-fly
symbolization has a chance to bypass uninteresting saniti-
zation routines, yet effectively test the target function by
deriving input conditions from a real execution [46].

3.2 Boundary-state Prioritization
In this section, we introduce boundary-state prioritiza-

tion that attempts to overcome the state explosion due to
symbolic arrays and loops in COTS OSes. The key idea
of the boundary-state prioritization is to defer the analysis
of uninteresting states based on the likelihood of security
vulnerability (e.g., memory corruption and disclosure).
In other words, we focus on triggering security vulnera-
bilities via concolic execution while compromising the
completeness of testing for performance and scalability.

USENIX Association 2017 USENIX Annual Technical Conference 693

❶ Identify symbolic
variables and constraints ❷ Prioritize array boundaries ❸ Prioritize loop boundaries

buf[2] = 0

buf[2] = 36

buf[2] = 13

buf[0] = 0: no loop exec

buf[0] = 1

buf[0] = 246
(maximum)

...
if (buf[0] > 246
 && buf[1] > 124
 && buf[2] > 36)
 return -1;

if (flag_table[buf[1]])
 (*fn_table[buf[2]])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[0])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[13])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 0; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 1; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 246; ++i) { ... }
...

instantiation

defer

concretization

Figure 6: Overall procedures of boundary-state prioritization: 1 CAB-FUZZ identifies symbolic variables and constraints;
2 CAB-FUZZ selectively concretizes symbolic memories according to their boundary information; 3 CAB-FUZZ selectively
concretizes loops using their boundary information (in this example, we do not symbolized flag_table for simplicity.)

Figure 6 shows the overall procedures. First, it figures
out constraints that limit the range of symbolic variables
using KLEE’s range analysis function [6]. Second, it de-
tects symbolic memories controlled by the symbolic vari-
ables and selectively concretizes them according to their
boundary information (array-boundary prioritization).
Third, it detects loops and selectively iterates through
them using the boundary information (loop-boundary pri-
oritization). Without our prioritization techniques, the
total number of states exponentially increases according
to the number of symbolic memories and loops. If the
number of symbolic arrays and loops is n and the number
of possible states of each symbolic array or loop is si, the
total number of states to explore will be ∏

n
i=1 si. In con-

trast, our techniques test ∏
n
i=1 c = cn states first, where c

is a constant.

3.2.1 Array-boundary Prioritization

We explain our array-boundary prioritization technique
with two symbolic memories flag_table and fn_table
in Figure 1 and Figure 6. As we discussed in §2.2,
flag_table generates 125 states and fn_table generates
37 states, which result in 125×37 = 4,625 states total.

Exploring all states is challenging, especially when
the length of a target array is long and/or many sym-
bolic memories and loops are associated with it. Instead,
CAB-FUZZ drives symbolic execution to visit boundary
cases first, which highly likely have problems. Specifi-
cally, CAB-FUZZ creates two states for each symbolic
memory by solving the associated constraints: the lowest
memory address and the highest memory address. Note
that the two boundary states could result in exceptions
due to crashes or boundary checks. To proceed the test,

CAB-FUZZ additionally creates a state for an arbitrary
memory address between them.

The second step of Figure 6 shows array-boundary
prioritization for fn_table. CAB-FUZZ prioritizes three
states according to the associated symbolic variable’s
constraints: the lowest memory address fn_table[0], the
highest memory address fn_table[36], and an arbitrary
memory address between them, e.g., fn_table[13].
3.2.2 Loop-boundary Prioritization

Handling a loop can result in state explosion [18]. To
avoid it, CAB-FUZZ limits the number of state forks at
the same loop to focus on boundary states. Specifically, it
focuses on only three states: a state with no loop execu-
tion, a state with a single loop execution, and a state with
the largest number of loop executions. Figure 6 has a loop
whose number of iterations depends on buf[0]. Since
its values lie between 0 and 246, this loop generates 247
states. To avoid such state explosion, our loop-boundary
prioritization method focuses on three kinds of loop exe-
cutions: 0, 1, and maximum (246) times.

In total, our method generates only 27 states first,
flag_table (3) × fn_table (3) × the loop (3), including
the boundary condition causing a crash, buf[2] == 36.

4 Implementation
We implemented CAB-FUZZ by extending S2E [10].

In particular, we focused on crashing Windows device
drivers, which are popular and complex commodity
COTS kernel binaries. In total, we wrote around 2,000
lines of new code (mixed with C/C++, Lua, and Python).

4.1 Synthetic Symbolization
We used NtCreateFile to obtain the handlers for de-

vice drivers. As opposed to using the typical CreateFile,

694 2017 USENIX Annual Technical Conference USENIX Association

this approach allowed us to access all device drivers, in-
cluding those of all internal and undocumented devices.

When opening or creating a file object using
NtCreateFile, we can specify 13 different access rights
for the file object [34]. Since we aimed to obtain and
test as diverse access rights as possible, we repeatedly
invoked NtCreateFile in get_allowed_access to obtain
all possibly allowed permission accesses.
4.2 On-the-fly Symbolization
Target API. To detect device driver bugs with on-the-fly
symbolization, we interpose the NtDeviceIoControlFile
function, which is the lowest user-level internal API for
communicating with the kernel devices. Any user-space
process attempting to access a device driver eventually
calls the function, so hooking it allows us to test all the
device drivers used during the on-the-fly symbolization
phase. The below half of Figure 3 shows the specification
of NtDeviceIoControlFile, and CAB-FUZZ symbolizes
in_buf and ctrl_code on-the-fly.
Fulfilling Pre-context. We inferred the pre-context
of NtDeviceIoControlFile by running real user-space
programs using this function during their normal execu-
tion. We tried to find such programs with an assumption:
system management and antivirus software would use it
because they frequently access device drivers. Finally, we
found 16 programs (e.g., dxdiag.exe and perfmon.msc)
accessing 15 different drivers (e.g., KsecDD and WMI-
DataDevice) during their execution1. We used these target
programs to test the corresponding device drivers during
the on-the-fly symbolization phase (§5.2).
4.3 Boundary-state Prioritization
Prioritizing Array Boundaries. For a symbolic mem-
ory array, CAB-FUZZ estimates its lower and upper
boundary addresses and one arbitrary address between
them. CAB-FUZZ uses the getRange method of the
klee::Solver to compute these boundary addresses [6].
This method receives an expression as input and returns
a pair of the minimum and maximum values of the ex-
pression. Since getRange is computationally heavy, in-
stead of invoking this function in every symbolic memory
access, CAB-FUZZ proceeds only if the targeted mem-
ory has triggered a state forking at one point in the past.
Specifically, if state forking has never been triggered,
CAB-FUZZ does not perform any prioritization for the
memory, as we found that such memory usually has only
one concrete value. If the state forking is triggered at the
same location, CAB-FUZZ performs prioritization when
it observes the memory again later.
Prioritizing Loop Boundaries. CAB-FUZZ focuses
on three states of each loop: no, single, and maximum
execution (§3.2.2). However, identifying how many times
a loop will be executed is difficult because it varies ac-

1Due to the space limit, we do not enumerate all of them.

cording to input variables and compiler optimization tech-
niques (e.g., loop unrolling [45]). We develop a practical
loop-boundary prioritization technique that does not suf-
fer from variable loop conditions. Whenever CAB-FUZZ
encounters a loop, it first generates two forking states: no
and single iteration of the loop. Then, to get the maximum
number of loop executions, it repeatedly forks and kills
states until it observes the last state forking, which would
be the maximum because CAB-FUZZ concretely and se-
quentially executes the loop until it terminates. During
state forking, CAB-FUZZ does not call the solver to min-
imize overhead; it calls the solver only when generating
test cases. Also, we confirmed that killing unnecessary
loop states had negligible performance overhead.

4.4 Analyzing Crashes
CAB-FUZZ generated many inputs that crashed the

Windows kernel, but a large portion of them may not be
unique vulnerabilities that require in-depth analysis. A
typical technique of classifying such crashes is to inspect
the call stack at the time of the crash, but it is difficult to
identify stack information without debug symbols. More
seriously, we found that many memory access violations
are delegated to the default exception handler, making it
even harder to uniquely identify the call stack information
of the kernel thread that actually raised the exception.

To solve this problem, CAB-FUZZ records and in-
spects the blue screen of death (BSOD) information when
the Windows kernel executes the KeBugCheck* function
to gradually bring down the computer [32]. Specifically,
CAB-FUZZ uses the function’s BugCheckCode value
representing a BSOD reason and instruction address
where the exception occurred to differentiate crashes.
CAB-FUZZ treats two crashes as different when (1) they
have different BugCheckCode values or (2) they have
the same BugCheckCode value, but their instruction ad-
dresses belong to different functions.

5 Evaluation
We evaluate the effectiveness of CAB-FUZZ in finding

security vulnerabilities in the Windows device drivers.
Table 1 summarizes all new unique crashes discovered
by CAB-FUZZ. In general, our evaluation consists of
two categories targeting synthetic symbolization (§5.1)
and on-the-fly symbolization (§5.2). In particular, our
evaluation aims at answering the following questions:

• Per synthetic symbolization, how efficiently did
CAB-FUZZ detect the known vulnerability (Fig-
ure 1) compared to the conventional concolic testing
tool? (§5.1.1)

• Per synthetic and on-the-fly symbolization, how
many new unique crashes did CAB-FUZZ discover?
(§5.1.2 and §5.2.1)

USENIX Association 2017 USENIX Annual Technical Conference 695

of Crashes

Total Synthetic (Prioritization) On-the-fly

Off On

NDIS†,§ 11 5 10 -
SrvAdmin†,§ 4 4 4 -
NSI§ 2 2 2 0
ASYNCMAC†,§ 1 1 1 -
FileInfo§ 2 0 0 2
ehdrv†,§ 1 0 0 1

Total 21 12 17 3
†: Windows 7, §: Windows Server 2008

Table 1: The list of newly discovered unique crashes by
CAB-FUZZ among the 274 drivers we tested. The total number
of discovered unique crashes is smaller than the summation of
the other three columns (two synthetic and one on-the-fly cases)
because we removed duplicate crashes and only counted the
unique crashes.

• Per synthetic and on-the-fly symbolization, what par-
ticular characteristics did newly discovered crashes
exhibit? (§5.1.3 and §5.2.2)

Experimental Setup. Our experiments were performed
on 3 GHz 8-core Intel Xeon E5 CPU with 48 GB of
memory. We ran CAB-FUZZ with the latest versions of
Windows 7 and Windows Server 2008 as of April 2016.
For example, two of the drivers for which CAB-FUZZ
found crashes, NDIS and SrvAdmin, were updated in
December 2015 and October 2015, respectively. The
detailed configuration setting for CAB-FUZZ is further
described in each subsection if required.
5.1 Synthetic Symbolization

To show the effectiveness of the synthetic symbol-
ization and boundary prioritization techniques, we car-
ried out the following two experiments. First, to see if
the implementation of CAB-FUZZ can address the chal-
lenges (especially in handling state explosion), we applied
boundary-state prioritization techniques to the known ND-
Proxy vulnerability and compared the result before ap-
plying (§5.1.1). Next, we describe our experiences in
applying CAB-FUZZ to discover new crashes in the Win-
dows kernel driver using synthetic symbolization tech-
niques (§5.1.2). Further, we manually analyzed all unique
crashes newly discovered by CAB-FUZZ (§5.1.3).
Configuration. We configured CAB-FUZZ to target
186 and 88 kernel device drivers on Windows 7 and Win-
dows Server 2008, respectively (274 drivers in total).
Among them, CAB-FUZZ detected six device drivers
with 21 unique crashes (Table 1). For each device driver,
we specified ctrl_code and in_buf as symbolic variables
(shown in Figure 3). It is worth nothing that due to the
space limit of this paper, we have only presented the
results with a random search strategy, which showed

Prioritization Time (s) #States

None 7,196 384,817
Loop boundary 516 30,604
Array boundary 2 78
Both 2 78

Table 2: The effectiveness of boundary-state prioritization tech-
niques (based on the synthetic symbolization) to detect the ND-
Proxy vulnerability: Time shows the elapsed time and #States
shows the number of explored states to detect the vulnerability.

the best performance overall compared to other depth-
first and breadth-first search strategies. Since the random
search algorithm may produce different evaluation results
due to its random nature, we ran it five times per evalu-
ation and computed the average. In addition, when we
found the same crash of the same driver in Windows 7 and
Windows Server 2008, we further tested it in Windows 7
only since it is the recent version.
5.1.1 Detecting Known Vulnerability

We measured the time taken to find the NDProxy vul-
nerability (Figure 1) before and after applying the pri-
oritization techniques. We also measured the number
of program states that need to be explored to find the
vulnerability.

When both array- and loop-boundary prioritization
techniques were applied, CAB-FUZZ found the NDProxy
vulnerability within 2 seconds (Table 2). It took 2 seconds
with the array-boundary prioritization and 516 seconds
with the loop-boundary prioritization if each technique
was individually applied. The array-boundary prioritiza-
tion is more effective than the loop-boundary prioritiza-
tion in the case of the NDProxy vulnerability because the
state related to the crash (i.e., buf[2] == 36) is quickly
created by the array-boundary prioritization technique, as
shown in Figure 1.

However, when none of prioritization techniques were
applied, it took 7,196 seconds to find the vulnerability.
This significant slowdown is caused by the huge num-
ber of states that need to be covered in order to find
the vulnerability—384,817 states in total, which is 4,934
times larger than the number of states when both were
applied.
5.1.2 Newly Discovered Crashes

To determine the effectiveness of our synthetic sym-
bolization with and without prioritization techniques, we
applied CAB-FUZZ to all kernel device drivers in Win-
dows 7 and Windows Server 2008. In total, CAB-FUZZ
found 18 new unique crashes from four different device
drivers, as shown in Table 1. Specifically, the prioritiza-
tion techniques allowed CAB-FUZZ to detect six more
unique crashes while missing one unique crash. Thus, we
believe this technique is effective in practice.

696 2017 USENIX Annual Technical Conference USENIX Association

Driver No prioritization Prioritization

#Crash Time (s) #States Mem. (MB) Time (s) #States Mem. (MB)

NDIS 1 837 151 5,537 287 58 4,813
2 871 156 5,545 467 86 4,971
3 1,763 271 7,690 617 124 5,027
4 5,066 637 14,946 824 171 5,461
5 8,682 1,180 22,768 1,202 214 6,093
6 - - - 1,930 306 7,980
7 - - - 4,381 586 9,781
8 - - - 4,977 637 10,376
9 - - - 5,018 642 10,377
10 - - - 6,056 704 10,893

SrvAdmin 1 1 23 4,321 2 23 4,325
2 3 54 4,359 6 71 4,401
3 51 126 4,464 51 126 4,476
4 1,892 2,319 15,321 657 953 5,390

NSI 1 1 2 4,356 1 2 4,357
2 1,951 7,622 5,979 1,092 1,952 5,843

Table 3: Detailed experiment results of the four kernel device
drivers tested by CAB-FUZZ with and without prioritization
techniques: #Crash represents how many crashed observed
during experiments; Time represents the elapsed time; #States
represents the number of explored states; and Memory repre-
sents the consumed memory to detect each crash. All values are
averaged over five runs.

5.1.3 Effectiveness of Boundary-state Prioritization
To clearly understand the effectiveness of our prioritiza-

tion techniques, we manually analyzed why CAB-FUZZ
without our prioritization techniques cannot detect the six
unique crashes and what is the root cause of its slowdown.
Note that our prioritization techniques were ineffective
to ASYNCMAC (elapsed time and memory consump-
tion were almost the same,) so we skipped analyzing it in
depth. Also, we were not able to test their effectiveness
with other device drivers because CAB-FUZZ was not
able to detect their crashes. Table 3 represents how many
crashes were observed during our evaluation along with
elapsed time, the number of tested states, and consumed
memory. All results are averaged over five runs. Note that,
because we use a random search strategy, it is difficult to
directly compare each crash.
NDIS. The six crashes that the prioritization technique
detected were due to input buffers whose values were used
as offsets of a symbolic array. When there were no rou-
tines to check the range of input buffer values or the values
were incorrect, crashes were generated due to invalid off-
sets. However, without prioritization, CAB-FUZZ was
unable to reproduce it due to memory exhaustion.

Among the five crashes that CAB-FUZZ with pri-
oritization was able to generate but CAB-FUZZ with-
out prioritization was unable to do, we explain a crash
at ndisNsiGetNetworkInfo function of ndis.sys in de-
tail. The function had a symbolic memory array using
in_buf[5] as an offset, but did not have any routine to
check its value. As a result, when the symbolic array
pointed to invalid memory and there was a write attempt

to the memory, a crash occurred. This happened when
the value of in_buf[5] was at the boundary condition:
whether it was larger than or equal to 0xbc0, but, without
prioritization, CAB-FUZZ could not generate this state
due to a lack of available memory (it concretized ∼30
values of in_buf[5] before termination.)

On the other hand, the single crash that CAB-FUZZ
with prioritization could not detect was due to the
loop-boundary prioritization technique. We found
that the ndisNsiGetInterfaceRodEnumObject function
of ndis.sys generated a crash when it ran a loop four times
with a specific condition. Note that our loop-boundary
prioritization technique runs a loop 0, 1, or a maximum
number of times, so it cannot cover such a specific case.
To confirm it, we applied CAB-FUZZ only with the array-
boundary prioritization to NDIS. We could trigger the
specific case also, though it took about one hour longer.
SrvAdmin. We analyzed SrvAdmin and confirmed that
the 2.9× slowdown of CAB-FUZZ without prioritiza-
tion was due to the state explosion caused by a specific
loop located at the SvcAliasEnumApiHandler function of
srvnet.sys. This loop was not related to the crash we
found, but it generated 8,285 states that were approxi-
mately 20% of the entire states (41,279) of SrvAdmin.
With the loop-boundary prioritization, CAB-FUZZ could
postpone less important states, so it detected the crash
earlier.
NSI. We analyzed NSI and confirmed that our prioritiza-
tion techniques made CAB-FUZZ detect the two unique
crashes 1.8× faster. While symbolic arrays or loops were
not directly related to these crashes, we found that priori-
tization techniques helped concolic testing avoid the state
explosion, so that it kept exploring the program states and
finally reached the vulnerable program state.

5.2 On-the-Fly Symbolization
We evaluate the effectiveness of on-the-fly symbol-

ization. We summarize the new crashes the on-the-fly
technique detected (§5.2.1) and analyze them in detail to
show how this technique was able to detect them (§5.2.2).
5.2.1 Newly Discovered Crashes

Overall, CAB-FUZZ identified three unique crashes
using on-the-fly symbolization (Table 1). Note that the
crashes found by the two techniques were not overlapped
because (1) the on-the-fly technique was unable to test
some drivers (NDIS, SrvAdmin, and ASYNCMAC) be-
cause we had no reference applications accessing them
and (2) some crashes (in NSI) were triggered only if they
had improper pre-contexts. Therefore, we believe both
techniques are complementary to each other.
5.2.2 Effectiveness of On-the-fly Symbolization

To figure out how the on-the-fly technique helps find
a vulnerability, we manually analyzed three crashes that
CAB-FUZZ found in FileInfo and ehdrv device drivers.

USENIX Association 2017 USENIX Annual Technical Conference 697

of Crashes

Total Synthetic On-the-fly

WMIDataDevice 2 1 1
TCP 3 3 0

Total 5 4 1

Table 4: The crashes of Windows XP CAB-FUZZ found.

FileInfo. We found two reasons why the on-the-fly tech-
nique was able to find these cases and why synthetic sym-
bolization was not. First, FileInfo was loaded only when
a certain application started (e.g., perfmon.msc). Second,
FileInfo sanitized an input buffer size at an early stage; it
should be 12. Running perfmon.msc satisfied both condi-
tions for the on-the-fly technique, but a synthetic program
was unable to do that.
ehdrv. ehdrv was a third-party driver installed by ESET
Smart Security 9, which was used by SysInspector.exe
of the vendor. The on-the-fly technique detected a mem-
ory corruption crash of ehdrv on Windows 7 by running
SysInspector.exe before symbolization. In contrast, the
synthetic technique cannot detect it because ehdrv had a
security feature: it was only accessible by an authorized
process like SysInspector.exe, which cannot be satisfied
by a synthetic program.

5.3 Fourteen-Year-Old Bugs
We applied CAB-FUZZ to the latest version of Win-

dows XP (April 2014) and found five unique crashes
(Table 4). Among them, a crash of WMIDataDevice and
all three crashes of TCP were also observed in the initial
version of Windows XP (August 2001), implying nobody
detected them for about 14 years.

6 Discussion
In this section we explain some limitations of

CAB-FUZZ.
Boundary-state Prioritization. Our boundary-state pri-
oritization methods assume that the symbolic memory
under consideration stores data such that values between
boundaries are less important; that is, we sacrifice some
completeness for efficient detection. However, if the sym-
bolic memory is related to control flow (e.g., jump table
and virtual function table), we should consider all the
values to maintain code coverage. To solve this problem,
we plan to adopt static analysis in our system. Whenever
it detects a symbolic memory array, it performs static
analysis to know whether the symbolic array stores in-
struction addresses for indirect calls or jumps. In such
a case, it checks all the values of the symbolic array to
enhance code coverage. Also, our methods cannot handle
data structures with undefined size. We plan to enhance
CAB-FUZZ to support this in the future. For example,
we can adopt UC-KLEE [14, 39, 40]-like approaches.

On-the-fly Symbolization. Our on-the-fly approach is
a best-effort approach. If we cannot find programs con-
structing pre-contexts for vulnerable functions, it cannot
crash them. Thus, this approach is not suitable for detect-
ing the security vulnerabilities of rarely used functions.
To detect vulnerabilities in such functions, one would
need to run synthetic and on-the-fly testing in parallel.
Manual efforts. Currently, we manually specify a tar-
get API, NtDeviceIoControlFile, for the both synthetic
and on-the-fly symbolizations, and programs construct-
ing pre-contexts for the on-the-fly symbolization. In the
future, we will explore how to automate both phases for
enhancing CAB-FUZZ’s scalability.

7 Related Work
In this section, we introduce previous work related to

CAB-FUZZ. Among a large number of studies on sym-
bolic and concolic execution, we focus on four research
topics closely related to CAB-FUZZ: (1) binary-level
symbolic execution, (2) kernel and device driver testing,
(3) boundary value analysis, (4) overflow detection, and
(5) lazy initialization.
Binary-level Symbolic Execution. Symbolic exe-
cution was originally designed to work with source
code [4, 7, 12, 16, 29, 30], and extended to test binary pro-
grams lacking source code and detailed debug information
(e.g., proprietary software and malware). SAGE [3, 17] is
the earliest effort to apply symbolic execution to binary
programs and many schemes such as SmartFuzz [36],
LESE [42], IntScope [47], S2E [10], FuzzBALL [2, 31],
Mayhem [9], MegaPoint [1], and DIODE [44] follow it.
Among them, only S2E and FuzzBALL are designed to
test OS kernels, while FuzzBALL does not support Win-
dows binaries. Consequently, S2E is the only scheme that
we can directly compare with CAB-FUZZ.
Kernel and Device Driver Testing. CAB-FUZZ is de-
signed to test COTS OSes and device drivers. To the best
of our knowledge, only a few studies apply concolic ex-
ecution to OSes and device drivers. Yang et al. [50] use
their EXE system [7] to create a symbolic disk for Linux
file system testing. Their system relies on file system code
instrumentation to create the symbolic disk, so it cannot
be applied to COTS OSes directly.

DDT [27] is a QEMU-based system to test closed-
source binary device drivers for Windows, which became
a part of S2E [10]. It can test device drivers without real
hardware by creating symbolic hardware (e.g., network
interface card and sound card). However, without manual
annotations and configurations, it neither identifies device
driver interfaces due to lack of kernel symbols nor meets
conditions to initialize them.

SymDrive [41] is an S2E-based system to test Linux
and FreeBSD drivers without devices, while overcoming
the limitation of DDT. It uses a static analysis to auto-

698 2017 USENIX Annual Technical Conference USENIX Association

matically identify driver code’s key features such as entry
point and loop, so, unlike DDT, it can correctly initialize
device drivers without requiring manual effort. However,
it also relies on source code instrumentation, so it cannot
be applied to COTS OSes lacking debug information.

Trinity [24] and IOCTL Fuzzer [15] are system call
fuzzers based on Linux and Windows, respectively. Be-
fore fuzzing a certain system call, they also try to con-
struct pre-contexts, which is similar to CAB-FUZZ’s
on-the-fly technique. The key difference here is that
CAB-FUZZ symbolizes the input, but these previous ef-
forts randomly mutate input values only once. Thus, they
have difficulties in detecting sophisticated conditions to
trigger vulnerabilities.

Unlike the other systems described here, CAB-FUZZ
does not rely on source code analysis or instrumentation,
so it can be freely applied to COTS OSes. Furthermore, it
does not suffer from the initialization problem thanks to
its on-the-fly concolic testing.

Boundary Value Analysis. Several researchers have
proposed boundary value analysis techniques [22, 23,
26, 38] to maximize branch coverage. For example,
ADSE [22, 23] checks constraints at every path and loop
and augments conditions to figure out which conditions
generate maximum test cases. These approaches can de-
tect the correct boundary conditions; however, the overall
conditions will easily explode if we apply them to com-
plex software, e.g., OSes. In contrast, CAB-FUZZ creates
only two boundary states plus one arbitrary state for each
symbolic array and loop such that it practically mitigates
the state explosion problem.

Overflow Detection. CAB-FUZZ focuses on the bound-
aries of symbolic memories and loops because such
boundaries could trigger stack or heap over/underflows.
Several studies attempt to specialize symbolic execution
to detect overflow and underflows. IntScope [47] and
SmartFuzz [36] use symbolic execution to detect inte-
ger overflows. In addition, SmartFuzz covers integer
underflows, narrowing conversions, and signed/unsigned
conversions. Dowser [19] considers a buffer in a loop
to detect its overflows and underflows. DIODE [44]’s
goal is to find integer overflow errors at target memory
locations. It uses a fine-grained dynamic taint analysis to
identify all memory allocation sites, extracts target and
branch constraints from instrumented execution, solves
the constrains, and performs goal-directed conditional
branch enforcement.

Although these methods work well, they rely on heavy
static analysis and/or taint analysis to detect specific in-
tegers or buffers that could result in overflows. In con-
trast, CAB-FUZZ does not use such complicated analy-
sis techniques when detecting boundaries, so it is more
lightweight and practical than the previous techniques.

Lazy Initialization. CAB-FUZZ’s on-the-fly concolic
testing is a kind of lazy initialization technique [25, 49]
that defers the initialization of memory or a data structure
until it is actually used. Firmalice [43] is a binary analysis
framework to analyze the firmware of embedded devices.
It uses a lazy initialization technique to test memory be-
cause it does not know which code needs to be executed
to initialize specific memory regions. When Firmalice
detects a memory read from uninitialized memory during
analysis, it pauses the execution and conducts the fol-
lowing procedures. First, it identifies other procedures
that contain direct writes to the memory. Next, it labels
the procedures as initialization procedures. Last, it du-
plicates the state: (1) resumes the execution without any
modification to avoid possible crashes and (2) runs the
initialization procedures before resuming the execution.
However, a static program analysis is necessary to detect
such initialization procedures.

UC-KLEE [14, 39, 40] directly tests individual func-
tions instead of the whole program to improve scalability.
To cope with missing pre-contexts of individual functions,
it automatically generates symbolic inputs using lazy ini-
tialization. However, it still suffers from false positives
due to invariants of data structures, state machines, and
APIs, so it relies on manual annotations to reduce them.

On the contrary, CAB-FUZZ’s on-the-fly concolic test-
ing neither requires sophisticated static program analysis
nor suffers from false positives. Also, it can be fully auto-
mated because it uses the real execution procedures of a
target program.
8 Conclusion

In this paper, we presented a practical concolic testing
tool, CAB-FUZZ, to analyze COTS OSes. CAB-FUZZ
introduced two new memory symbolization techniques—
synthetic symbolization and on-the-fly symbolization—
allowing us to analyze COTS OSes without debug infor-
mation and pre-contexts. It employed two boundary-state
prioritization techniques: array- and loop-boundary prior-
itization, allowing us to prioritize potentially vulnerable
paths. Evaluation results showed that CAB-FUZZ can
detect 21 undisclosed unique crashes on Windows 7 and
Windows Server 2008 while avoiding the state explosion
problem.
Acknowledgements. We thank the anonymous review-
ers and our shepherd, Mihai Christodorescu, for their
helpful feedback. This research was supported by the
NSF award DGE-1500084, CNS-1563848, CRI-1629851
ONR under grant N000141512162, DARPA TC program
under contract No. DARPA FA8650-15-C-7556, DARPA
XD3 program under contract No. DARPA HR0011-16-C-
0059, and ETRI MSIP/IITP[B0101-15-0644].

USENIX Association 2017 USENIX Annual Technical Conference 699

References
[1] AVGERINOS, T., REBERT, A., CHA, S. K., AND BRUMLEY, D.

Enhancing Symbolic Execution with Veritesting. In Proceedings
of the 36th International Conference on Software Engineering
(ICSE) (Hyderabad, India, May–June 2014).

[2] BABIĆ, D., MARTIGNONI, L., MCCAMANT, S., AND SONG,
D. Statically-Directed Dynamic Automated Test Generation. In
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA) (Toronto, Canada, July 2011).

[3] BOUNIMOVA, E., GODEFROID, P., AND MOLNAR, D. Billions
and Billions of Constraints: Whitebox Fuzz Testing in Production.
In Proceedings of the 2013 International Conference on Software
Engineering (ICSE) (2013), pp. 122–131.

[4] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat: Au-
tomated Testing Based on Java Predicates. In Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA) (2002).

[5] BUGRARA, S., AND ENGLER, D. Redundant State Detection
for Dynamic Symbolic Execution. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC) (San Jose, CA, June
2013).

[6] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (San
Diego, CA, Dec. 2008).

[7] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically Generating Inputs of
Death. In Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS) (Alexandria, VA, Oct.–Nov.
2006).

[8] CADAR, C., AND SEN, K. Symbolic Execution for Software
Testing: Three Decades Later. Communications of the ACM 56, 2
(2013), 82–90.

[9] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY,
D. Unleashing Mayhem on Binary Code. In Proceedings of the
33rd IEEE Symposium on Security and Privacy (Oakland) (San
Francisco, CA, May 2012).

[10] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
Platform for In Vivo Multi-Path Analysis of Software Systems.
In Proceedings of the 16th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Newport Beach, CA, Mar. 2011).

[11] CVE. CVE-2013-5065, 2013. http://www.cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2013-5065.

[12] DENG, X., LEE, J., AND ROBBY. Bogor/Kiasan: A k-bounded
Symbolic Execution for Checking Strong Heap Properties of Open
Systems. In IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2006).

[13] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T., MAM-
BRETTI, A., ROBERTSON, W., ULRICH, F., AND WHELAN, R.
LAVA: Large-scale Automated Vulnerability Addition. In Pro-
ceedings of the 37th IEEE Symposium on Security and Privacy
(Oakland) (San Jose, CA, May 2016).

[14] ENGLER, D., AND DUNBAR, D. Under-Constrained Execution:
Making Automatic Code Destruction Easy and Scalable. In Pro-
ceedings of the International Symposium on Software Testing and
Analysis (ISSTA) (London, UK, July 2007).

[15] ESAGE LAB. IOCTL Fuzzer: Windows Kernel Driver Fuzzer.
https://code.google.com/archive/p/ioctlfuzzer/.

[16] GODEFROID, P. Compositional Dynamic Test Generation. In
Proceedings of the 34th ACM Symposium on Principles of Pro-
gramming Languages (POPL) (Nice, France, Jan. 2007).

[17] GODEFROID, P., LEVEN, M. Y., AND MOLNAR, D. Automated
Whitebox Fuzz Testing. In Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium (NDSS) (San
Diego, CA, Feb. 2008).

[18] GODEFROID, P., AND LUCHAUP, D. Automatic Partial Loop
Summarization in Dynamic Test Generation. In Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA) (Toronto, Canada, July 2011).

[19] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND
BOS, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations. In Proceedings of the 22th USENIX Security
Symposium (Security) (Washington, DC, Aug. 2013).

[20] INTEL. Introduction to Intel Memory Protection Ex-
tensions. https://software.intel.com/en-us/
articles/introduction-to-intel-memory-protection-
extensions.

[21] “J00RU” JURCZYK, M. Windows X86-64 System Call Ta-
ble (NT/2000/XP/2003/Vista/2008/7/2012/8). http://j00ru.
vexillium.org/ntapi_64/.

[22] JAMROZIK, K., FRASER, G., TILLMAN, N., AND DE HALLEUX,
J. Generating Test Suites with Augmented Dynamic Symbolic
Execution. In Proceedings of International Conference on Tests
and Proofs (2013).

[23] JAMROZIK, K., FRASER, G., TILLMANN, N., AND HALLEUX,
J. D. Augmented Dynamic Symbolic Execution. In Proceedings
of IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2012).

[24] JONES, D. Trinity: A Linux System Call Fuzz Tester. http:
//codemonkey.org.uk/projects/trinity/.

[25] KHURSHID, S., PĂSĂREANU, C. S., AND VISSER, W. Gen-
eralized symbolic execution for model checking and testing. In
Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS)
(2003).

[26] KOSMATOV, N., LEGEARD, B., PEUREUX, F., AND UTTING,
M. Boundary Coverage Criteria for Test Generation from Formal
Models. In Proceedings of 15th International Symposium on
Software Reliability Engineering (ISSRE) (2004).

[27] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G. Testing
Closed-Source Binary Device Drivers with DDT. In Proceedings
of the 2010 USENIX Annual Technical Conference (ATC) (Boston,
MA, June 2010).

[28] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-Pointer Integrity. In Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Broomfield, Colorado, Oct. 2014).

[29] MAJUMDAR, R., AND SEN, K. Hybrid Concolic Testing. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE) (Minneapolis, MN, May 2007).

[30] MARINESCU, P. D., AND CADAR, C. make test-zesti: A Sym-
bolic Execution Solution for Improving Regression Testing. In
Proceedings of the 34th International Conference on Software
Engineering (ICSE) (Zurich, Switzerland, June 2012).

[31] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P., SONG,
D., AND MANIATIS, P. Path-Exploration Lifting: Hi-Fi Tests for
Lo-Fi Emulators. In Proceedings of the 17th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (London, UK, Mar. 2012).

[32] MICROSOFT. KeBugCheckEX routine (Windows Drivers).
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff551961(v=vs.85).aspx.

700 2017 USENIX Annual Technical Conference USENIX Association

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5065
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5065
https://code.google.com/archive/p/ioctlfuzzer/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://j00ru.vexillium.org/ntapi_64/
http://j00ru.vexillium.org/ntapi_64/
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx

[33] MICROSOFT. Methods for Accessing Data Buffers.
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff554436(v=vs.85).aspx.

[34] MICROSOFT. NtCreateFile Function (Windows). https:
//msdn.microsoft.com/en-us/library/bb432380(v=vs.
85).aspx.

[35] MICROSOFT. NtDeviceIoControlFile function (Win-
dows). https://msdn.microsoft.com/en-us/library/
ms648411(v=vs.85).aspx.

[36] MOLNAR, D., LI, X. C., AND WAGNER, D. A. Dynamic Test
Generation To Find Integer Bugs in x86 Binary Linux Programs.
In Proceedings of the 18th USENIX Security Symposium (Security)
(Montreal, Canada, Aug. 2009).

[37] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND
ZDANCEWIC, S. SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (Dublin, Ireland, June 2009).

[38] PANDITA, R., XIE, T., TILLMANN, N., AND DE HALLEUX, J.
Guided Test Generation for Coverage Criteria. In Proceedings of
IEEE International Conference on Software Maintenance (ICSM)
(2010).

[39] RAMOS, D., AND ENGLER, D. Practical, Low-effort Verification
of Real Code using Under-constrained Execution. In Proceed-
ings of the 23rd International Conference on Computer Aided
Verification (CAV) (Snowbird, UT, July 2011).

[40] RAMOS, D. A., AND ENGLER, D. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In Proceedings
of the 24th USENIX Security Symposium (Security) (Washington,
DC, Aug. 2015).

[41] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
Drive: Testing Drivers without Devices. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI) (Hollywood, CA, Oct. 2012).

[42] SAXENA, P., POOSANKAM, P., MCCAMANT, S., AND SONG,
D. Loop-Extended Symbolic Execution on Binary Programs. In
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA) (Chicago, IL, July 2009).

[43] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL, C.,
AND VIGNA, G. Firmalice - Automatic Detection of Authentica-
tion Bypass Vulnerabilities in Binary Firmware. In Proceedings
of the 2015 Annual Network and Distributed System Security Sym-
posium (NDSS) (San Diego, CA, Feb. 2015).

[44] SIDIROGLOU-DOUSKOS, S., LAHTINEN, E., RITTENHOUSE,
N., PISELLI, P., LONG, F., KIM, D., AND RINARD, M. Targeted
Automatic Integer Overflow Discovery Using Goal-Directed Con-
ditional Branch Enforcement. In Proceedings of the 20th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Istanbul, Turkey,
Mar. 2015).

[45] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A
Dynamic Excavator for Reverse Engineering Data Structures. In
Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS) (San Diego, CA, Feb. 2011).

[46] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG,
R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL, C., AND
VIGNA, G. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS) (San Diego,
CA, Feb. 2016).

[47] WANG, T., WEI, T., LIN, Z., AND ZOU, W. IntScope: Auto-
matically Detecting Integer Overflow Vulnerability in X86 Binary
Using Symbolic Execution. In Proceedings of the 16th Annual

Network and Distributed System Security Symposium (NDSS) (San
Diego, CA, Feb. 2009).

[48] WANG, X., ZHANG, L., AND TANOFSKY, P. Experience Report:
How is Dynamic Symbolic Execution Different from Manual
Testing? A Study on KLEE. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA) (Baltimore,
MD, July 2015).

[49] XIE, Y., AND AIKEN, A. Scalable Error Detection using Boolean
Satisfiability. In Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages (POPL) (Long Beach, CA,
Jan. 2005).

[50] YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER, D.
Automatically Generating Malicious Disks using Symbolic Exe-
cution. In Proceedings of the 27th IEEE Symposium on Security
and Privacy (Oakland) (Oakland, CA, May 2006).

USENIX Association 2017 USENIX Annual Technical Conference 701

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554436(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554436(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx

Log-Structured Non-Volatile Main Memory

Qingda Hu* Jinglei Ren Anirudh Badam Jiwu Shu* Thomas Moscibroda
*Tsinghua University Microsoft Research

Abstract
Emerging non-volatile main memory (NVMM) unlocks
the performance potential of applications by storing per-
sistent data in the main memory. Such applications
require a lightweight persistent transactional memory
(PTM) system, instead of a heavyweight filesystem or
database, to have fast access to data. In a PTM system,
the memory usage, both capacity and bandwidth, plays a
key role in dictating performance and efficiency. Exist-
ing memory management mechanisms for PTMs gener-
ate high memory fragmentation, high write traffic and a
large number of persist barriers, since data is first written
to a log and then to the main data store.

In this paper, we present a log-structured NVMM sys-
tem that not only maintains NVMM in a compact manner
but also reduces the write traffic and the number of per-
sist barriers needed for executing transactions. All data
allocations and modifications are appended to the log
which becomes the location of the data. Further, we ad-
dress a unique challenge of log-structured memory man-
agement by designing a tree-based address translation
mechanism where access granularities are flexible and
different from allocation granularities. Our results show
that the new system enjoys up to 89.9% higher transac-
tion throughput and up to 82.8% lower write traffic than
a traditional PTM system.

1 Introduction
Emerging byte-addressable non-volatile main memory
(NVMM), e.g., 3D XPoint [23], PCM [43, 27], STT-
RAM [3, 25] and ReRAM [2], enables persistent data
to be stored in main memory. This leads to an archi-
tecture where applications directly access persistent data
via CPU load/store instructions [50, 10, 49, 37, 44, 18,
41, 55]. Such an architecture lowers latency not only due
to the significantly higher performance of NVMM com-
pared to SSDs, but also due to the fact that the system
software is removed from the critical path of persistent-
data accesses [36, 13, 9, 55]. Applications that use
NVMM typically employ a lightweight persistent trans-
actional memory (PTM) system [50, 10, 22, 56, 34, 9,
18, 24], instead of a traditional file system or database,
to have fast access to NVMM data.

Memory usage, both capacity and bandwidth, is cru-

*Work done while Q. Hu was an intern at Microsoft Research. Af-
filiated with Dept. of Computer Science and Technology, Tsinghua Na-
tional Laboratory for Information Science and Technology (TNLIST).

cial for the performance and efficiency of PTM sys-
tems. DRAM-style memory management used by ex-
isting PTM systems to manage NVMM leads to a high
amount of fragmentation that can cause wastage of over
50% space [46]. Moreover, existing transactional mecha-
nisms used by PTM systems lead to excessive write traf-
fic as they require all new data to be written twice – once
to the log, and once to the main data region, referred to
as home space of data. The redundant writes not only
increase memory bandwidth usage but also wear out the
NVMM device faster. Further, these writes need to be
persisted using expensive barriers in a synchronous man-
ner which increase the latency of transactions.

In this paper, we present a new log-structured mem-
ory management model for NVMM systems. This model
eliminates dichotomy of NVMM data in the home space
and a separate log area. We unify the home space and
the log area by organizing the whole NVMM solely in
the form of logs, which also act as the home space.
Our design effectively reduces fragmentation, incorpo-
rates wear-leveling, and optimizes for the write traffic
and persist barriers. Fragmentation is minimal because
memory allocation becomes an immediate append to the
end of a log, and freed up areas can be moved and con-
solidated [45, 46] to further reduce fragmentation. Be-
sides, NVMM bandwidth consumption, write wear and
the number of persist barriers are reduced because there
is no need to write data separately to both the traditional
home space and the log.

Applications using our system view NVMM in the
same way as the traditional systems, but a runtime ad-
dress mapping mechanism is employed to translate ap-
plication addresses to log offsets. We refer to the appli-
cations’ view of NVMM as the virtual home space. Such
address mappings are fully cached in DRAM, and can be
consistently restored from the log after a crash.

Another key contribution of this work is the design and
implementation of a practical tree data structure for the
home to log address mapping in our system. While log-
structured approaches have been explored in different do-
mains, such as filesystems [45, 52], databases [48, 46, 4]
and object stores [31, 46], log-structured NVMM faces a
unique challenge of address mapping overhead. Unlike
existing log-structured systems, we need to present a flat
address space where allocation granularities are not the
same as access granularities.

A data structure that can support creation of mappings
at access time as opposed to allocation time is required.

USENIX Association 2017 USENIX Annual Technical Conference 703

This is because memory stores can target arbitrary ad-
dresses and lengths that may not be indicated at alloca-
tion time. We show in this paper that a tree structure is
well suited for such a requirement. Meanwhile, NVMM
is orders of magnitude faster than SSDs, so that address
mapping performance could become a bottleneck if not
designed well. For SSDs, data access latencies dwarf ad-
dress translation overhead, but that is not the case with
NVMM. Hence, we revisit the address mapping issue of
log-structured designs for NVMM systems.

A naive tree data structure requires O(log n) opera-
tions per memory access which can be prohibitive when
n is large. Moreover, trees require expensive balanc-
ing operations to achieve such time complexity. We de-
sign key optimizations to a tree structure for log-structure
NVMM to reduce address translation overhead: (1) Two-
layer mapping. The whole home space is first divided
into static fixed-length partitions so that data can be
routed to such a partition (or more partitions) in O(1)
time. In this way, the average number of nodes in a
partition-local tree is much smaller than a huge tree cov-
ering the whole address space. (2) Skip-list trees. We use
the skip list [42] for second-layer trees. The main ben-
efit is that they probabilistically balance at insert time
to avoid rebalancing operations, which are costly and
largely impair parallelism. (3) Group update. If con-
secutive writes target contiguous addresses, we merge
them and update the tree only once. (4) Tree node cache.
We observe that memory accesses have locality so that
caching recently visited tree nodes can avoid many full
tree lookup paths starting from the root node.

We also present mechanisms to control the overhead
of log cleaning needed for compaction, and speed up the
recovery process. NVMM logs can be processed in par-
allel on recovery, which helps rebuild address mappings
for 10 GB NVMM in 3.0 seconds.

Overall, we make the following contributions:
• A new log-structured design to eliminate the di-

chotomy between the data and the transactional log for
PTMs. We identify the crucial difference between ex-
isting log-structured systems and the kind needed for
NVMMs where access granularities are not identical
to allocation granularities.

• A novel tree-based address mapping mechanism that
meets the above requirement. To the best of our
knowledge, we are the first to demonstrate the prac-
ticality of employing such a well optimized tree struc-
ture in a log-structured NVMM system.

• An implementation of the above ideas by modify-
ing TinySTM [16]. Under various workloads, log-
structured NVMM achieves 55.3% more throughput
and 72.2% less write wear than a traditional PTM on
average, when the usage of NVMM is over 90% and
the log cleaning overhead takes place.

2 Background and Motivation
Current PTMs typically derive their memory manage-
ment design from that for DRAM. Data is referenced us-
ing load and store instructions on native virtual memory
offsets, and memory allocations are managed by an al-
locator such as Hoard [6] adopted by Mnemosyne [50],
and jemalloc [15] adopted by Intel’s NVML [22] and Or-
acle’s NVM Direct [39]. However, the following prob-
lems arise in such systems.
Fragmentation of NVMM space. There are two
sources of fragmentation in a traditional memory alloca-
tor [17, 15]. First is internal fragmentation. Take Intel’s
NVML [22] for example. It aligns any NVMM alloca-
tion size to 64 B. If 65 B of NVMM is requested, NVML
shall effectively allocate 128 B, including 63 B internal
fragmentation. Second is external fragmentation. Sup-
pose a 64-B block is freed but has surrounding blocks in
use, then it cannot serve any request beyond 64 B. Exter-
nal fragmentation is severe if allocation sizes vary [38].
Experiments [46] have demonstrated that fragmentation
can take over 50% of all memory under management.
This issue is more critical for NVMM because it holds
data for a long term even across reboots.

Garbage collection, in a managed language runtime
such as Java or C#, is capable of changing allocated ad-
dresses. It can reduce fragmentation but involves ob-
ject reference analysis and process pauses [20]. Since
NVMM is slower and larger than DRAM, the cost of ob-
ject reference analysis and pauses will be prohibitive.

In contrast, a log-structured approach easily avoids
internal fragmentation because new allocation is com-
pactly appended to the log end. It absorbs external frag-
mentation by moving allocated data and consolidating
free spaces without the need to pause the process.
Excessive NVMM write traffic and barriers. NVMM
has limitations in bandwidth and endurance [28] (104 −
109 P/E cycles compared to DRAM’s 1015 cycles). How-
ever, to maintain crash consistency, all NVMM writes
must first be logged by PTM at a separate location. Such
logging entails redundant NVMM write traffic and extra
wear, compared to naive writing.

Figure 1 shows how a log-structured approach can re-
duce the write traffic and also the number of flushes
for a representative transaction. By the pseudo func-
tion map address, all addresses within the area are
mapped to a new location in the log. Such mapping only
involves DRAM writes which are fast and incur no wear
on NVMM. This approach saves extra NVMM writes
and costly CPU flushes/persist barriers.

Furthermore, the traditional PTM systems use the
NVMM bus less efficiently than the log-structured ap-
proach, because updates to the home space tend to be
sparse and hence have poor cacheline coverage . This

704 2017 USENIX Annual Technical Conference USENIX Association

void tx_update_title(employee emp, title new_title) {
tx_begin {

emp.title = new_title;
} tx_end;

}

Transaction system behaviors: logging PTM vs. log-structured NVMM

Pseudo source code:

in_log_title = append_to_undo_log(emp.title);
flush(in_log_title);
emp.title = new_title; // extra NVMM write
flush(emp.title); // one more flush

in_log_title = append_to_nvmm_log(new_title);
flush(in_log_title);
map_address(emp->title, in_log_title);

Figure 1: In a traditional PTM, objects have to be first logged and the log has to be persisted in NVM using a CPU flush
before the transaction can edit the objects. Another CPU flush is needed after the edits complete. In log-structured
NVMM, one flush is enough. Since the log entry becomes the new location of data, the extra write is eliminated.

leads to more bus bandwidth consumption when com-
pared to sequentially appending them to the log.

A unique challenge in log-structured NVMM. The
challenge of tree-based address mapping is a unique one
for log-structured NVMM. It has not been seen in exist-
ing log-structured systems. Those systems manage data
in a form of well-defined elements such as blocks in a
filesystem [45, 52], tuples in a database [48, 4] or ob-
jects in a key-value store [31, 46], where allocation gran-
ularities are the same as access granularities. Such well
defined access granularities facilitate a high performance
design. For instance, an in-memory hash table can be
employed to map elements to their locations in the log,
which offers O(1) lookup. In addition, a bloom filter can
be applied to improve mapping/index performance in the
case that a slow search path exists (e.g., log-structured
merge trees [48]).

Unfortunately, such a convenience is missing for
NVMM systems. There is no concept of data elements
or IDs in bare memory. It is hard to define one in sys-
tems that employ a flat address space where accesses
can be targeted at any offset with any length. Restrct-
ing block/object-granular accesses lacks flexibility and
incurs high costs [51, 16]. Simply setting a fixed and
small block size (e.g., tens of bytes) is not viable ei-
ther, because the metadata to maintain such blocks can
be prohibitively large [30, 19]. Furthermore, NVMM
is orders of magnitude faster than SSDs, so the address
mapping overhead, though traditionally negligible, now
stands out. Therefore, we design a more flexible but
highly performant scheme, which fragments the address
space on demand based on the executed store instruc-
tions rather than defining the granularity statically or at
data allocation time.

3 Design
This section describes the design of log-structured
NVMM (LSNVMM), a user-space library for accessing
and managing NVMM.

3.1 Overview
The high-level architecture of LSNVMM is shown in
Figure 2. From bottom up, LSNVMM uses DAX [32]
through a filesystem that allows direct access to physical
NVMM device via a memory map. In LSNVMM, the
NVMM region is organized into logs (§3.3), and an ad-
dress mapping mechanism translates virtual home-space
addresses to log positions (§3.2). Applications access
the NVMM region via our library that interposes all the
memory accesses to the region using the address map-
ping mechanism.

Applications

Transactional memory
(concurrency control)

Lock-based con-
currency control

Log-structured NVMM

Filesystem

OS

NVMM

(Direct access for files)

Figure 2: The architecture and system stack of log-
structured NVMM.

Interface. Our library offers two main functionalities.
One is memory management, with semantics similar to
that of C library: pmalloc and pfree for NVMM al-
location and deallocation, respectively1. The other func-
tionality of our library is the transaction abstraction that
provides crash-consistent data persistence. All NVMM
data operations are performed via this abstraction, re-
ferred to as an NVMM transaction. Within an NVMM
transaction, memory loads and stores are instrumented
at compile time and treated differently: all stores of
the transaction are persisted atomically to the log on
NVMM; every load address has to be translated to a

1Note that our current design assumes that the persistent region is
fixed to a static base address [50, 35]. Doing so enables use of native
pointers that remain valid across crashes and reboots. However, special
pointer types [10] can be supported easily.

USENIX Association 2017 USENIX Annual Technical Conference 705

proper position in the log to access the data. Concur-
rency control of data operations is left to an upper-layer
transactional memory (TM) system. It is also possible to
use explicit locks for such concurrency control.
Recovery. To achieve efficient address translation, ad-
dress mappings are stored in DRAM. On a normal pro-
cess shutdown, we compact the in-DRAM address map-
pings and other necessary metadata, and flush them to
NVMM, so that they can be quickly restored when the
process restarts. However, if a system crash happens,
the DRAM data is lost. Therefore, we have to rebuild
the in-DRAM data structures. To speed up this process,
the recovery is performed using thread-level parallelism
(more details in §4.5).

3.2 Address Mapping
Using our address mapping mechanism, applications in-
teract with NVMM in much the same way as DRAM to
build data structures. They need not change their mem-
ory access model that uses flexible regular virtual mem-
ory addresses and pointers. However, they have to adopt
the transaction interface to make atomic changes to the
data structures similar to existing PTM systems. We re-
fer to addresses in applications’ view as home addresses,
and log positions that are hidden from applications as log
addresses.

We use a tree structure to maintain mappings from
home addresses to log addresses. Logically, one node
in the tree holds a pair {home address, length} denoting
an area in the home space, and the log address that the
area is mapped to. The rationale for using a tree instead
of a hash table is that, in flat address space based sys-
tems, allocation granularities are not identical to access
granularities. For instance, an application may allocate
a large structure using pmalloc but only read/write a
small portion of that within transactions. Therefore, we
need address translation support for arbitrary accesses
that are not aligned with allocated objects.

The efficiency of address mapping is crucial for our
system. The latency of traditional log-structured sys-
tems is dominated by the disk/SSD latency of data ac-
cesses. Also, the granularity of such data accesses is
large (e.g., the block size of 512 B) and the frequency
is low. However, in our case, NVMM is much faster and
more frequently accessed in granularities as small as a
few bytes. Hence, it warrants careful design of the ad-
dress mapping. The time complexity of an operation on
the tree is O(log n). We use several optimizations to re-
duce the practical cost of such an operation. Figure 3 de-
picts main data structures to support these optimizations
as described below.
Two layers of mapping. The average cost of a tree op-
eration is proportional to the tree height, so our first opti-
mization targets at largely reducing the tree height. This

Skiplist per partition

stack

heap

static

code

Home Space

N
V

M
M

 regio
n

 + allo
cato

r

Address Mapping

Log Space

0 1 2 …

Partition index

0

1

…

n

Node cache per thread

…

…

…

...

NIL

NIL

NIL

head tail

1

0

0

0 1

miss

Chunk Chunk

0

hit

Figure 3: The spaces and address mappings in
LSNVMM. Access to 0© is a hit in the tree node cache,
and access to 1© is a miss. Both examples are single ad-
dresses, but a tree node contains a range of addresses and
a range lookup across nodes is supported as well.

can be realized if a huge tree is split into numerous small
ones. We do so by having two layers of address mapping.
In the first layer, we divide the home space into fixed-
length partitions, so that a home address can be simply
divided by the partition length, costing as low as one
CPU cycle, to determine which partition the address lo-
cates in. In the second layer, each partition holds a small
tree for further address lookup (Figure 3). Our approach
can reduce the tree height by several times. With real
world workloads, this optimization improves transaction
throughput by 39.6% on average (§5.2).
Group update. Opportunistically merging tree nodes
is another way to further reduce the number of nodes
and thus the height of a tree. When two sibling nodes
contain contiguous home addresses and map to contigu-
ous log addresses, they can be merged. Spatially local
writes within a transaction can exploit this optimization.
Within each NVMM transaction, we first buffer all writes
in DRAM, and combine those with contiguous home ad-
dresses on transaction commit. A group of combined
writes is appended to the log and the address mapping
tree is updated the minimal number of times. Overall,
this optimization realizes 42.3% transaction throughput
improvement according to our evaluation (§5.2).
Skip lists and locking. We choose the skip list [42], a
probabilistic alternative to balanced trees, as our tree data
structure (Figure 3). The main reason for our choice is
that, while supporting O(log n) operations on average,
the skip list does not need a complex rebalancing opera-
tion as a strictly balanced tree such as B-tree does.

Such an optimization is crucial for multi-threaded sce-
narios. A typical balanced tree requires a readers-writer

706 2017 USENIX Annual Technical Conference USENIX Association

lock to protect concurrent operations2. Lock contention
due to heavy reads and writes can deteriorate throughput
of such systems. In contrast, by leveraging skip lists, we
get rid of locking for read-only operations. Particularly,
an update of the skip list involves only simple pointer
manipulations on singly linked lists. Taking advantage of
CPU’s atomic word write (aligned 64 bits for x86), such
an update is implemented in a way that is atomic to lock-
free read-only operations. By avoiding such lock con-
tention, we can see 48.9% higher transaction throughput
with four threads in our experiments (§5.2).
Tree node caches. We equip each working thread with a
thread-local cache that stores recently accessed home ad-
dresses and pointers to their nodes in the trees (Figure 3).
When the program accesses an address, our library first
searches the cache. If it is hit, the library directly gets
the pointer to the tree node that contains the requested
address mapping; otherwise, a full tree lookup is neces-
sary and the resulting node is added to the cache. Such a
caching mechanism is effective because of inherent tem-
poral and spatial locality among memory accesses. As
our experiments show, some memory areas are hot and
frequently accessed, and memory accesses tend to clus-
ter within 64 B areas. The hit ratio is 92.2% on average,
and introduction of tree node caches leads to 30.1% in-
crease in transaction throughput on average (§5.2).

We tweak a regular hash table design to meet a special
requirement of our tree node cache. That is, once a node
is cached, addresses within its mapped area tend to be a
cache hit. A plain hash table does not give such a feature
as cached addresses are randomly distributed. For exam-
ple, a node for a 64 B area starting at 0x1000 is cached.
If an access to the address 0x1008 falls into a different
bucket, it would lose the chance to be checked with this
node and hence be a miss. To solve the issue, we deliber-
ately increase certain collision by using set-associativity.
Based on the observation above, we try to route addresses
within a 64 B scope to the same bucket so that nearby ad-
dresses can be checked with chained tree nodes that may
cover them. To realize that, we pick high-order bits of
an address as its hash value. Consequently, sequential
addresses have a good chance of falling into one bucket.

3.3 NVMM Organization
The goal of our NVMM organization is to allow each
thread to allocate NVMM with minimal overhead. To-
wards that end, the NVMM region is physically orga-
nized into static chunks, atop which we build logical logs.
Multiple chunks can be linked into a list. We choose a
relatively small chunk size (e.g., 32 KB), because typical
NVMM writes are small; moreover, an individual chunk

2There are carefully crafted lock-free balanced tree designs [8, 14]
but they involve extra complexity and overhead. In contrast, our ap-
proach is simple and performs well in practice.

with a small size can be more quickly cleaned and recy-
cled in an incremental manner.

Chunks help reduce contention among the multiple
threads. We maintain a global pool of free chunks, and
each thread has its own list(s) of chunks in use. A thread
is allowed to buffer some free chunks when it requests
one from the global pool, or after it obtains them from
local log cleaning. This can avoid frequent manipulation
of the global pool and its lock contention.

3.4 Log Structure
A log in the NVMM region consists of a list of chunks.
Multiple logs coexist in our system. It is different from
a conventional disk-based log-structure system which
tends to have a single log per disk because the disk has
only one disk header and sequential access is the first pri-
ority. With fast random access instead, NVMM warrants
a different design, which favors thread-level parallelism
by using thread-local logs. Furthermore, each thread has
multiple logs to improve log cleaning efficiency, as we
describe later in this section. LSNVMM employs a num-
ber of log cleaners to collect free space accumulated in
chunks. The free spaces come from pfree operations
or old data that has been updated. We use a background
thread to run a cleaner.
Log entry. A log entry holds two kinds of metadata.
First, a mapping for a modified or allocated memory
area. When a log cleaner scans the chunk, it checks live-
ness of each log entry by looking up the home address
from the address mapping tree. Second, a tombstone for
each freed area. A tombstone is never accessed within
transactions, but used on the recovery path to filter out
freed areas. Atop log entries, we build transactions. A
transaction consists of all log entries that it produces, by
memory stores and (de)allocations.
Cleaning policy. The log cleaner moves sparse live data
from several chunks to a new chunk in a compact man-
ner, and recycles the cleaned chunks. Chunks with the
amount of live data below a threshold (20% by default in
our setup) are selected for cleaning.

We design three optimizations for log cleaning.
(1) Fast cleaning: When all log entries in a chunk are
stale, the chunk can be safely reclaimed. This can be
done fast because we only need to modify a few list
pointers to move the chunk to a free chunk list, with-
out data copying. (2) Separate logs: We observe that
memory stores always have better locality than memory
allocations. It implies that mixing them in one log may
increase the log cleaning cost and decrease the chance
of fast cleaning. So we design separate logs for each
thread, the update log serving memory stores, the allo-
cation log serving memory allocations and the dealloca-
tion log storing only tombstones. (3) Parallel cleaning:
In order to have sufficient log cleaning throughput, we

USENIX Association 2017 USENIX Annual Technical Conference 707

perform log cleaning with multiple background threads
for different chunks.

4 Implementation
This section describes the implementation of LSNVMM.
We start with the home space management mechanisms
in §4.1, then elaborate log space management in §4.2 and
address mapping between the two spaces in §4.3. Log
cleaning and recovery procedures are described in §4.4
and §4.5, respectively.

4.1 Home Space Management
Memory allocation and access are two main functional-
ities of home space management. We draw upon exist-
ing implementation of transactional memory systems to
realize such functionalities3. But we add persistence to
transactional memory: (1) necessary allocation metadata
is stored in NVMM so that the home address space can
be rebuilt after a crash, and (2) committed transactions
are stored in NVMM so that data updates are persistent.
Next, we detail the underlying mechanisms.
Home space allocation. Considering that the 64-bit
home address space is virtual and sufficiently large, frag-
mentation is not a severe issue there. Thus, we choose
current memory allocators Hoard [6] and dlmalloc [26]
to implement home space allocation. Hoard serves mem-
ory allocations smaller than 8 KB, while dlmalloc deals
with larger ones [50].

The state of both allocators is consistently rebuilt upon
crashes using metdata stored with data and therefore,
no runtime effort is spent in ensuring persistence of the
state. Take Hoard for example. It organizes home space
into superblocks, and each superblock serves allocation
requests of a certain size (e.g., a 8 KB superblock con-
tains an array of 16 B allocations). The metadata of
superblocks (location and allocation size) is stored in
NVMM. With such information, we simply rely on the
logs to infer allocation state after crashes. Therefore,
home-space allocations do not incur any persistent op-
erations.
Transactional memory. Applications’ access to home-
space data is protected by transactions. Intel STM com-
piler [1] is used to instrument regular C/C++ code with
transaction annotations. Programmers place the keyword
tm atomic and a pair of braces to specify the scope

of a transaction. The compiler automatically generates
calls into our transaction system when a transaction be-
gins, issues memory loads and stores, and commits.

We employ TinySTM [16], a lightweight software
transactional memory implementation, to intercept these
calls and implement concurrency control of transactions.

3LSNVMM is not bound to transactional memory. We choose the
interface because it is easy to use for applications.

Each transaction holds a temporary private write set con-
taining all written values and their addresses, which are
not visible to concurrent transactions. When a transac-
tion allocates memory, the system quickly allocates the
requested size in the home space, and returns its home
address. After that, all writes to the newly allocated
space are buffered in the volatile write set.

Allocated memory, writes to old data are all persisted
into logs when the transaction is committed. Likewise,
deallocations are also logged to ensure that memory does
not leak. A TinySTM transaction may receive mem-
ory writes to both volatile regions and NVMM. The
LSNVMM library takes the responsibility to filter out
writes to volatile memory and persist those to NVMM in
a crash consistent manner when the transaction is com-
mitted. The group update optimization is performed to
merge NVMM writes that have contiguous home ad-
dresses. Afterwards, a single log entry is generated for
each NVMM write and flushed to logs in NVMM. Then
each NVMM write obtains its log address, and the library
inserts into global address mapping trees the mappings
from home addresses to log addresses.

4.2 Log Space Management
From top down, the hierarchy of log storage is as follows:
(1) a log is stored in a number of fixed-length chunks;
(2) within one or more chunks, transactions that consti-
tute the log are stored in transaction blocks; (3) within
a transaction block, memory allocations and updates of
the transaction are stored in log entries. We now describe
these components in a bottom up order.
Log entry. Each log entry has a header and data. The
header consists of (1) a 47-bit home address to record
the start home address of the data, (2) one bit to denote
whether the entry is a tombstone, and (3) a 16-bit size to
record the data length. 47 bits are enough to hold a home
address because we record the offset of the address in the
NVMM region. Immediately after the header is the data
whose location is its log address. This entry structure is
used for both update and allocation logs.
Transaction block. A group of log entries belonging to
a transaction make the payload of a transaction block. A
preamble contains the following fields: (1) A 64-bit ver-
sion number to record the commit time of the transaction.
In our implementation, it is the monotonically increas-
ing, globally unique timestamp generated by TinySTM
for each transaction4. (2) A 48-bit peer pointer that
points to another transaction block (e.g., in a different
chunk as the current chunk is filled up), or in an allo-
cation log if the current log is an update log, or vice
versa. As a result, all blocks of a transaction form a

4It is an optimization to reuse the timestamp, but LSNVMM is not
necessarily bound to any TM implementation. We can also simply use
a global atomic counter to generate the version number.

708 2017 USENIX Annual Technical Conference USENIX Association

cyclic singly-linked list. (3) A 16-bit entry number to
record the number of log entries in the current transac-
tion block. If the number is not enough to count all en-
tries of a transaction, more block(s) can be linked to the
current block. (4) A 32-bit checksum using CRC32 error-
detecting code, which is calculated against the whole
transaction block.

Since a logical transaction may contain multiple trans-
action blocks across both update and allocation logs,
consistency among the blocks becomes an issue. We
have to handle the issue in two cases. The first case is
when a crash interrupts a transaction commit. LSNVMM
can detect this case by checking the checksum of each
transaction block on recovery, and discard the transac-
tion if any of its block is invalid or lost. The second case
is when a transaction block is moved to another chunk
due to log cleaning. As a result, peer pointers referenc-
ing moved blocks are no longer valid. However, such
inconsistency brings no problem as long as the contain-
ing transactions are safely committed, because the peer
pointers are only used for detecting uncommitted trans-
actions as in the first case. Therefore, we only need to
divert log cleaning from log ends that contain uncom-
mitted transactions.
Chunk. The payload of a chunk is a sequence of trans-
action blocks that make part of a log. Chunks are doubly
linked by their headers. Besides, the header holds a flag
to denote whether the chunk belongs to an update log or
an allocation log. If a transaction block contains a log en-
try larger than the remaining space of a chunk, the entry
can be split into more, and stored in linked peer blocks
in other chunks.

4.3 Skip List
An address mapping tree is implemented as a concurrent
skip list. By using insertion as an example, we show how
our skip list operates in a concurrent manner. In a skip
list, insertion of a node involves inserting the node to a
number of levels. For each level, the insertion is identi-
cal to that of a singly linked list, which can be atomically
realized by feat of atomic pointer updates. We do inser-
tion from the bottom level up. Once the node is inserted
to the bottom level, the insertion is effective. Inserting
to upper levels only influences lookup performance. So,
the insertion is logically atomic to concurrent reads.

While reads are lock-free, any tree structure update
(e.g., insert or delete) has to hold a lock controlling the
whole tree, because concurrent updates may corrupt each
other. But we can still maintain high update concurrency,
thanks to the large number of such trees in our design.

The tree node cache also needs a careful concurrency
control. We have to check if the hit node still holds the
requested home address, because it is possible the node
has been removed and recycled. Accordingly, we check

the home address of a node twice – before and after read-
ing the log address of the node. If both checks match, the
log address must be valid.

4.4 Log Cleaning
When memory utilization is beyond a threshold, a few
background cleaner threads begin to work, in parallel
with transaction threads. Cleaning steps are as follows:
(1) A set of victim chunks are identified according to the
policy in §3.3. For each victim chunk, a scan of all its
log entries is performed to determine liveness of the data
in each entry by checking its latest version in the address
mapping tree, vt. If vt is higher than the current transac-
tion version, the entry is discarded. (2) For a transaction
block that has live entries left, the preamble is recalcu-
lated (entry number and checksum), and the entire block
appended to a new chunk. (3) For the moved transac-
tion block, a quasi TinySTM transaction is run to up-
date global mappings with the new log addresses of the
live entries. The quasi transaction is just for enforcing
concurrency control. (4) After all transaction blocks are
moved out of a victim chunk, the chunk is reclaimed by
adding it to the global free chunk pool.

4.5 Recovery
Our recovery works in two phases to maximize thread
parallelism in a manner similar to map-reduce. In the
first phase, we dispatch all log chunks to the recovery
threads for parallel processing. The main task of each
thread is to scan the assigned chunks and group valid
log entries by the partition of their home addresses. Af-
ter this phase, each thread holds an array indexed by the
home partition, and each element of the array has a list of
log entries belonging to the partition. Note that this tem-
porary log entry structure only contains pointers to data
in NVMM and necessary metadata (version number).

In the second phase, each recovery thread takes charge
of different home partitions, and the task is to replay log
entries belonging to the partitions. To do so, the above
lists of log entries are shuffled among threads, so that
each thread holds the lists whose partitions are in the
charge of the thread. Then, for each partition, the sin-
gle thread in charge sorts all log entries of the partition
by their home address and version number, then pick up
entries with latest versions and insert their address map-
pings to the global address mapping tree for that parti-
tion. The approach, similar to map-reduce, avoids most
thread contention.

5 Evaluation
To evaluate the performance of log-structure NVMM, we
answer three questions as follows.
• How effective are the individual optimizations we de-

sign for LSNVMM? (§5.2)

USENIX Association 2017 USENIX Annual Technical Conference 709

• How does LSNVMM perform against traditional PTM
systems? (§5.3)

• What are the costs of log cleaning, recovery, and
DRAM footprint? (§5.4)

5.1 Experiment Setup
All the experiments are performed on a computer with 8-
core Intel Xeon CPU E5-2637 v3 (3.5 GHz) and 64 GB
DRAM, running 64-bit Linux kernel version 4.2.3. All
results are average of five runs.
NVM simulation. As real NVMM products are not
available yet, we use a simulation method akin to that
in Mnemosyne [50]. We focus on effects of slow
NVMM writes instead of reads, as many prior works
do [35, 9, 18, 40], because the read latency of NVMM
is similar to DRAM and most memory reads are effec-
tively served by CPU caches. For a standalone NVMM
write required to be immediately persisted, we introduce
an extra latency. For sequential NVMM writes that are
executed together, we consider both write latency and
bandwidth of NVMM. The added delay is the max of
the above write latency and total write size/NVMM band-
width. By default, we set the write latency to 500 ns and
the sustainable write bandwidth to 1 GB/s. We imple-
ment any delay by a loop reading the CPU timestamp
counter (TSC) until required time has elapsed.
Benchmarks. We run five transactional benchmarks
atop our systems for evaluation. The benchmarks cover
both commonly used data structures and a real applica-
tion: SPS randomly swaps elements in a large array; RB-
Tree, B+Tree and HashTable (HT) perform operations on
a red-black tree, a B+ tree and a hash table, respectively;
KVStore runs a key-value store, Tokyo Cabinet [21].

For benchmarks BTree, B+Tree, HashTable and KV-
Store, we perform two workloads with different access
patterns: the insert workload (Ins) inserts a number of
key-value pairs, where keys are uniformly random; the
update workload (Upd) looks up a key, and deletes it if it
is found or inserts one otherwise. Keys of these pairs fol-
low the Zipfian distribution [5, 11] so that 90% updates
happen on 15% of the data. In all workloads, the value
size is 128 B by default unless otherwise noted. The total
number of elements/pairs in each benchmark is 10 mil-
lion, resulting in 2∼4 GB of logical NVMM footprint.

5.2 Effect of Optimizations
We demonstrate the effect of every optimization pro-
posed in §3.2. Comparing the library against itself pro-
vides valuable reference for other systems/implementa-
tions as such a control experiment reveals what benefit
each mechanism can bring.
Evaluated systems. We add optimizations one by one
to the address mapping structure, resulting in four imple-
mentations as below.

• Base is the baseline using a global, single skip list for
whole-space address mapping.

• 2L enhances Base with two-layer mapping. The home
space is divided into 4-KB partitions, and each parti-
tion is served by a skip list for address mapping.

• 2L-GU enhances 2L by performing group update.
• 2L-GU-C adds thread-local tree node caches with

FIFO replacement. Each cache is up to 4 M entries.
At last, we show results of LSNVMM, which is more

optimized for multiple threads. 2L-GU-C uses a readers-
writer lock per partition to protect a skip list from concur-
rency issues, while LSNVMM avoids locking for read-
only operations on a skip list. So far, all optimizations
are incorporated. In this experiment, we leave out log
cleaning which is orthogonal to these comparisons.
Results. Figure 4 shows performance of the four im-
plementations running the benchmarks. We make four
observations. (1) 2L constantly outperforms Base for
all workloads, by 39.6% on average, due to two-layer
mapping. (2) 2L-GU performs 42.3% better than 2L on
average, due to group update. (3) 2L-GU-C improves
transaction throughputs by 30.1% on average, compared
to 2L-GU, thanks to the tree node caches. (4) Over-
all, the above optimizations show strong performance in
various benchmarks/workloads, achieving up to 268.6%
(157.9% on average) performance improvement over the
baseline system.

 0

 50

 100

 150

 200

 250

SPS RBTree B+Tree HT KVStore

T
h
ro

u
g
h
p

u
t
(K

T
P

S
)â

��

Base/Ins
2L/Ins
2L-GU/Ins
2L-GU-C/Ins

Base/Upd
2L/Upd
2L-GU/Upd
2L-GU-C/Upd

Figure 4: Transaction throughputs of the benchmarks
with different optimizations, in a single thread.

Particularly, to give direct evidence of the effect of
tree node caches, we plot average cache hit ratios un-
der different benchmarks in Figure 5. A tree node cache
achieves 92.2% hit ratio on average, which leads to sig-
nificant performance improvement in all benchmarks.

 60

 70

 80

 90

 100

SPS RBTree B+Tree HT KVStore

H
it
 r

a
ti
o

 (
%

)â
�� insert update

Figure 5: Access hit ratios of tree node caches under dif-
ferent benchmarks/workloads.

At last, our multi-thread optimization is justified by
comparing 2L-GU-C and LSNVMM running the update

710 2017 USENIX Annual Technical Conference USENIX Association

workload of a multi-threaded version of the data struc-
ture benchmarks, as shown in Figure 6. Removing lock
overhead from read-only operations, LSNVMM achieves
good scalability, and provides 48.9% higher throughput
than 2L-GU-C when running four threads.

 0

 100

 200

 300

 400

 500

 600

SPS RBTree B+Tree HT

T
h

ro
u
g
h
p
u
t

(K
T

P
S

)â
�� 2L-GU-C (1)

2L-GU-C (2)
2L-GU-C (4)

LSNVMM (1)
LSNVMM (2)
LSNVMM (4)

Figure 6: Multi-threaded throughputs of data structure
benchmarks. “(n)” indicates the number of threads.

5.3 Comparison to Current Systems
Evaluated systems. We compare LSNVMM (LS) to
redo and undo logging in the traditional memory man-
agement. In the same way as LSNVMM, both log-
ging systems integrate with TinySTM [16]. Particu-
larly, Mnemosyne (Mnm) [50] is the combination of redo
logging and TinySTM with traditional memory man-
agement, and we also make Mnmsyn-Undo (MU) by
replacing the redo logging mechanism in Mnemosyne
with undo logging. Moreover, we deliberately introduce
cleaning overhead to LSNVMM in LSNVMM-Cleaning
(LSC), which triggers cleaning of chunks with over 50%
stale data every around 1000 transactions.
Performance. We show performance results of the
four PTM systems running the benchmarks. From
Figure 7 (a), we observe that LSNVMM outperforms
Mnemosyne and Mnmsyn-Undo by 37.3% and 66.1%
with one thread on average, respectively. Especially
for HashTable and SPS, LSNVMM achieves 89.6%
and 89.9% (118.2% and 125.9%) speedup beyond
Mnemosyne (Mnmsyn-Undo), respectively. These two
benchmarks turn out to issue less memory loads than oth-
ers. In contrast, LSNVMM does not perform well with
KVStore running the update workload, mainly because
it has intensive memory loads. As for scalability, Fig-
ure 7 (b) shows the performance of the PTM systems
running the benchmarks in four threads. We can see that
LSNVMM scales well. It performs 44.7% and 80.8%
better than Mnemosyne and Mnmsyn-Undo on average,
respectively. Finally, log cleaning incurs minimal over-
head in this setting. Compared to LSNVMM without log
cleaning, LSNVMM-Cleaning reduces the throughput of
benchmarks by 4.1% and 7.8%, with one thread and four
threads, respectively. More evaluation of log cleaning
follows in §5.4.1.

In conclusion, LSNVMM remarkably outperforms

logging PTMs even with log cleaning overhead, and
shows scalability with multiple threads. LSNVMM is
especially suitable for write-intensive workloads.

 0

 50

 100

 150

 200

 250

SPS RBTree B+Tree HT KVStore

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)â

�� LS/Ins
LSC/Ins

Mnm/Ins
MU/Ins

LS/Upd
LSC/Upd

Mnm/Upd
MU/Upd

(a) One thread.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

SPS RBTree B+Tree HT

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)â

�� LS/Ins
LSC/Ins

MNM/Ins
MU/Ins

LS/Upd
LSC/Upd

MNM/Upd
MU/Upd

(b) Four threads.

Figure 7: Transaction throughputs of the benchmarks
with different memory management systems.
NVMM write traffic and wear. We calculate NVMM
write traffic, i.e., the cache line size multiplied by the
total number of cache lines written back to NVMM.
This metric reflects the NVMM bandwidth consump-
tion. Among the write traffic, only modified data actu-
ally wears NVMM [57, 12], we estimate NVMM wear
in terms of total dirty bytes ever written to NVMM. Fig-
ure 8 shows that part in breakdown of write traffic. We
make two observations. (1) LSNVMM saves 82.8% and
82.0% write traffic of Mnemosyne and Mnmsyn-Undo
on average, respectively. Besides the fact that redo/undo
logging logically writes twice what LSNVMM does, we
can clearly see the influence of cache line granularity.
As home-space updates in Mnemosyne and Mnmsyn-
Undo are typically sparse and fine-grained, they waste
lots of NVMM traffic on flushing entire cache lines.
(2) LSNVMM reduces dirty bytes by 80.1% and 65.1%
compared to Mnemosyne and Mnmsyn-Undo on aver-
age, respectively. Thanks to the group update technique,
LSNVMM merges a large number of sequential and re-
peated writes. On the contrary, Mnemosyne persists ev-
ery write of the transaction in the log, even if it can be
merged or coalesced with others.
NVMM fragmentation. In this experiment, we test
different memory allocators under three typical work-
loads [46] that emulate variation of data value sizes. All
workloads consist of two phases with different individ-
ual allocation sizes. W1 first allocates collectively 1 GB
in randomly 100 - 150 bytes, and then repeats so in ran-
domly 200 - 250 bytes. W2 is different with W1 only
in that it frees 90% of the memory allocated in the first

USENIX Association 2017 USENIX Annual Technical Conference 711

0
1000
2000
3000
4000
5000
6000
7000

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

W
ri

te
tr

af
fic

(b
yt

es
/tx

)
Dirty bytes
Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(a) The insert workload.

0
1000
2000
3000
4000
5000
6000
7000

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

LS M
nm

M
U

W
ri

te
tr

af
fic

(b
yt

es
/tx

)

Dirty bytes
Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(b) The update workload.

Figure 8: NVMM write traffic and wear of different
memory management systems running the benchmarks
(in a single thread).

phase before it goes to the second phase. W3 has the
same behavior as W2 except that its individual alloca-
tion size in the first phase is random 1,000 - 2,000 bytes
and in the second phase random 1,500 - 2,500 bytes.

Figure 9 depicts the results. We make two obser-
vations. (1) Typical DRAM-oriented memory alloca-
tors hardly manage memory efficiently in these work-
loads. Mnemosyne (Hoard) produces 25.3% memory
fragmentation on average, and NVML (jemalloc) pro-
duces 35.0%. In contrast, LSNVMM keeps it as low as
4.5% by virtue of log cleaning. (2) The memory frag-
mentation of LSNVMM is inversely proportional to the
allocation size, because each allocation has its own meta-
data cost. For example, LSNVMM incurs 7.3% frag-
mentation in W1 but only 0.6% in W3.

 0

 20

 40

 60

 80

 100

W1 W2 W3

F
ra

g
m

e
n

t
(%

)â
��

LSNVMM Hoard jemalloc

Figure 9: NVMM fragmentation ratios of LSNVMM
and two other representative traditional memory alloca-
tors, Hoard [6] adopted by Mnemosyne [50], and jemal-
loc [15] adopted by Intel’s NVML [22].

5.4 Log-Induced Costs
5.4.1 Log Cleaning

We first evaluate the effect of separate logs on fast clean-
ing (§3.4). Figure 10 depicts the amount of log data

that is reclaimed by fast cleaning as the number of up-
date operations increases. In the experiment, we firstly
insert 10 million elements to the corresponding bench-
marks. We make two observations from this figure. (1)
Beyond initial 10 million updates, the fast cleaning can
effectively clean around more than 200 MB memory per
million updates. (2) The separate log design can clean
more chunks than the baseline. Their gap is bigger in the
RBTree benchmark, because it has more clustered mem-
ory stores than HashTable so that a separate update log is
apt to fast cleaning.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40

C
le

a
n
e
d
 a

m
o
u
n
t
(M

B
)

updates in millions

HashTable-Base
HashTable-Sep

RBTree-Base
RBTree-Sep

Figure 10: Fast cleaning performance with baseline
(“Base”) or separate logs (“Sep”) with a random 1 KB
update workload on HashTable or RBTree.

When all cleaning overhead walks in, Figure 11 shows
the resulting performance of the benchmark as well as
the throughput of the cleaner. In the experiment, we
preload B+Tree to occupy a certain fraction of NVMM,
and then run the update workload with four working
threads and two cleaning threads. We test two cases
where the value size is 128 B and 1 KB, respectively.
We draw a major conclusion from this figure: LSNVMM
does not lose much performance under high NVMM
pressure. The performance degradation due to cleaning
was 8% or less, even at 90% memory utilization.

 120
 130
 140
 150
 160
 170
 180
 190
 200

 30 40 50 60 70 80 90
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

T
ra

n
s
a
c
ti
o

n
 (

K
T

P
S

)

C
le

a
n
in

g
 (

M
B

/s
)

% memory utilization (home space)
Txn-128B
Txn-1KB

Cln-128B
Cln-1KB

Figure 11: Transaction (“txn”) and cleaning (“cln”)
throughputs of the B+Tree benchmark with random key
distribution and different value sizes (128B vs. 1KB) as
a function of memory utilization.

5.4.2 Recovery

Figure 12 shows the required time to recover from
a 10 GB of logs in NVMM. We rebuild the whole
LSNVMM in multiple threads. We make two ob-
servations from this figure: (1) The recovery process
quickly speeds up with more threads. For 128 B values,
LSNVMM needs 19.2 seconds to recover in one thread,

712 2017 USENIX Annual Technical Conference USENIX Association

but only 3.0 seconds in eight threads. (2) The recov-
ery latency is inversely proportional to the data allocation
size, because the number of address mappings decreases
as the allocation size increases.

 0

 4

 8

 12

 16

 20

 1 2 4 8

T
im

e
 (

s
)

threads

128B
1024B

Figure 12: Recovery time of 10-GB NVMM logs, with
different numbers of threads and different value sizes
(128B vs. 1KB).

5.4.3 DRAM footprint

We evaluate the DRAM footprints using the real appli-
cation KVStore under the insert workload with different
value sizes. Figure 13 illustrates the amount of DRAM
required. It is around 16.9% of NVMM when the value
size is as small as 128 B, and drops quickly as the value
size increases.

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000 1100

D
R

A
M

 f
o
o
tp

ri
n
t
(M

B
)

Value Size (B)

KVStore

Figure 13: DRAM footprint of the address mapping
structures and thread cache in KVStore for 1 GB NVMM
data as a function of the value size.

6 Related Work
Persistent memory systems. They can be classified
into three categories by their interfaces. One category
is PTM. For example, Mnemosyne [50], SoftWrAP [18]
and DudeTM [33] are redo logging based PTMs, while
NV-Heaps [10], NVML [22] and DCT [24] are undo log-
ging based ones. Our work is built on many PTM tech-
niques, but follows a different, log-structured way to ad-
dress the memory management issue.

The second category provides data structure inter-
faces, such as CDDS [49] and NV-Tree [53]. Their in-
terfaces to applications are not as flexible as transactions.
The third category is software transparent. WSP [37] and
ThyNVM [44] are two representatives. They either have
a strong assumption on hardware or involve advanced
hardware features. In contrast, LSNVMM is a general
solution and requires no customized hardware.

Memory allocators. Makalu [7] and nvm malloc [47]
are NVMM allocators that aim at collecting garbage in a
failure-safe manner. WAlloc [54] proposes a wear-aware
memory allocator to improve the wear leveling. These
works address other aspects of memory management,
while we focus on the memory fragmentation problem.

RAMCloud [46] shares the same goal as our work
to reduce memory fragmentation. It also uses a log-
structured approach. But it is a key-value store of well-
defined data objects, without the need for a tree-based ad-
dress mapping mechanism as in LSNVMM. LSNVMM
supports general transactions for arbitrary data.
Log-structured systems. The log-structure approach
was early designed in LFS [45], which buffers random
writes in DRAM and makes best use of sequential I/O of
hard disk drives. F2FS [29] proposes a well optimized
file system on flash storage devices, which adopts sep-
arate metadata and data logs, and uses adaptive logging
to avoid frequent garbage collection. It is similar to our
separate log design. NOVA [52] is a file system opti-
mized for hybrid memory systems, providing strong con-
sistency guarantees. It maintains independent logs for
each inode to improve scalability. Some databases [4]
implement log-structured data management, and take ad-
vantage of NVMM to simplify traditional DBMS. Over-
all, the log-structured approach is widely used in those
systems, but their designs hardly apply to LSNVMM
whose unique challenge is tree-based address translation
as discussed in §2.

7 Conclusion
The log-structured NVMM eliminates the dichotomy
between data home and data logs in current logging
PTMs. This solves the vital NVMM fragmentation is-
sue, and lowers NVMM write wear and persistence over-
head. To that end, we create four key optimizations to
tackle the performance challenge in tree-based address
mapping. Our experiments show that the log-structured
NVMM can outperform Mnemosyne and Mnmsyn-Undo
by 44.7% and 80.8% on average in terms of transaction
throughput. Our work reveals how a software tree struc-
ture can be optimized to a level that can efficiently serve
address mapping for NVMM load/store instructions.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Yu
Hua, for their valuable feedback. This work was partially
supported by the National Natural Science Foundation
of China (Grant No. 61502266, 61433008, 61232003),
the Beijing Municipal Science and Technology Com-
mission of China (Grant No. D151100000815003), and
the China Postdoctoral Science Foundation (Grant No.
2016T90094, 2015M580098).

USENIX Association 2017 USENIX Annual Technical Conference 713

References
[1] Intel C++ STM compiler prototype edition.

https://software.intel.com/en-
us/forums/intel-c-stm-compiler-
prototype-edition, 2012.

[2] AKINAGA, H., AND SHIMA, H. Resistive random
access memory (ReRAM) based on metal oxides.
Proc. IEEE 98, 12 (2010).

[3] APALKOV, D., KHVALKOVSKIY, A., WATTS, S.,
NIKITIN, V., TANG, X., LOTTIS, D., MOON, K.,
LUO, X., CHEN, E., ONG, A., DRISKILL-SMITH,
A., AND KROUNBI, M. Spin-transfer torque mag-
netic random access memory (STT-MRAM). ACM
J. Emerg. Technol. Comput. Syst. 9, 2 (May 2013),
13:1–13:35.

[4] ARULRAJ, J., PAVLO, A., AND DULLOOR, S. R.
Let’s talk about storage & recovery methods for
non-volatile memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), SIG-
MOD ’15, pp. 707–722.

[5] ATIKOGLU, B., XU, Y., FRACHTENBERG, E.,
JIANG, S., AND PALECZNY, M. Workload analy-
sis of a large-scale key-value store. In Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement
and Modeling of Computer Systems (2012), SIG-
METRICS ’12, pp. 53–64.

[6] BERGER, E. D., MCKINLEY, K. S., BLUMOFE,
R. D., AND WILSON, P. R. Hoard: A scalable
memory allocator for multithreaded applications.
In Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (2000), ASP-
LOS IX, pp. 117–128.

[7] BHANDARI, K., CHAKRABARTI, D. R., AND
BOEHM, H.-J. Makalu: Fast recoverable alloca-
tion of non-volatile memory. In Proceedings of
the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (2016), OOPSLA ’16,
pp. 677–694.

[8] BRAGINSKY, A., AND PETRANK, E. A lock-free
B+tree. In Proceedings of the Twenty-fourth An-
nual ACM Symposium on Parallelism in Algorithms
and Architectures (2012), SPAA ’12, pp. 58–67.

[9] CHATZISTERGIOU, A., CINTRA, M., AND VI-
GLAS, S. D. REWIND: Recovery Write-ahead sys-

tem for In-memory Non-volatile Data-structures.
Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508.

[10] COBURN, J., CAULFIELD, A. M., AKEL, A.,
GRUPP, L. M., GUPTA, R. K., JHALA, R., AND
SWANSON, S. NV-heaps: Making persistent
objects fast and safe with next-generation, non-
volatile memories. In Proceedings of the Sixteenth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (2011), ASPLOS XVI, pp. 105–118.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmark-
ing cloud serving systems with YCSB. In Proceed-
ings of the 1st ACM Symposium on Cloud Comput-
ing (2010), SoCC ’10, pp. 143–154.

[12] DU, Y., ZHOU, M., CHILDERS, B. R., MOSSÉ,
D., AND MELHEM, R. Bit mapping for balanced
PCM cell programming. In Proceedings of the 40th
Annual International Symposium on Computer Ar-
chitecture (2013), ISCA ’13, pp. 428–439.

[13] DULLOOR, S. R., KUMAR, S., KESHAVA-
MURTHY, A., LANTZ, P., REDDY, D.,
SANKARAN, R., AND JACKSON, J. System
software for persistent memory. In Proceedings
of the Ninth European Conference on Computer
Systems (2014), EuroSys ’14, pp. 15:1–15:15.

[14] ELLEN, F., FATOUROU, P., HELGA, J., AND
RUPPERT, E. The amortized complexity of non-
blocking binary search trees. In Proceedings of the
2014 ACM Symposium on Principles of Distributed
Computing (2014), PODC ’14, pp. 332–340.

[15] EVANS, J. A scalable concurrent malloc(3) imple-
mentation for FreeBSD. In Proceedings of the BS-
DCan Conference (2006).

[16] FELBER, P., FETZER, C., AND RIEGEL, T. Dy-
namic performance tuning of word-based soft-
ware transactional memory. In Proceedings of
the 13th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (2008),
PPoPP ’08, pp. 237–246.

[17] FREE SOFTWARE FOUNDATION, INC. The GNU
C Library, 2.24 ed., Aug. 2016. https://www.
gnu.org/software/libc/manual/.

[18] GILES, E. R., DOSHI, K., AND VARMAN, P. Soft-
WrAP: A lightweight framework for transactional
support of storage class memory. In Proceedings of
the 31st Symposium on Mass Storage Systems and
Technologies (May 2015), MSST ’15, pp. 1–14.

714 2017 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://www.gnu.org/software/libc/manual/
https://www.gnu.org/software/libc/manual/

[19] GUO, F., AND EFSTATHOPOULOS, P. Build-
ing a high-performance deduplication system. In
Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference (2011),
USENIX ATC ’11, pp. 271–284.

[20] HERTZ, M., AND BERGER, E. D. Quantifying
the performance of garbage collection vs. explicit
memory management. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications (2005), OOPSLA ’05, pp. 313–326.

[21] HIRABAYASHI, M. Tokyo cabinet: a modern im-
plementation of DBM. http://1978th.net/
tokyocabinet/, 2010.

[22] INTEL. The NVM Library. http://pmem.io/,
2016.

[23] INTEL NEWSROOM. Introducing Intel Op-
tane technology – bringing 3D XPoint
memory to storage and memory products.
https://newsroom.intel.com/press-
kits/introducing-intel-optane-
technology-bringing-3d-xpoint-
memory-to-storage-and-memory-
products/, July 2015.

[24] KOLLI, A., PELLEY, S., SAIDI, A., CHEN, P. M.,
AND WENISCH, T. F. High-performance transac-
tions for persistent memories. In Proceedings of the
Twenty-First International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (2016), ASPLOS ’16, pp. 399–
411.

[25] KLTRSAY, E., KANDEMIR, M., SIVASUBRAMA-
NIAM, A., AND MUTLU, O. Evaluating STT-RAM
as an energy-efficient main memory alternative. In
Proceeding of the 2013 IEEE International Sympo-
sium on Performance Analysis of Systems and Soft-
ware (Apr. 2013), ISPASS ’13, pp. 256–267.

[26] LEA, D. A memory allocator. http://g.
oswego.edu/dl/html/malloc.html.

[27] LEE, B., ZHOU, P., YANG, J., ZHANG, Y., ZHAO,
B., IPEK, E., MUTLU, O., AND BURGER, D.
Phase-change technology and the future of main
memory. IEEE Micro 30 (Jan. 2010), 131–141.

[28] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER,
D. Architecting phase change memory as a scal-
able DRAM alternative. In Proceedings of the 36th
Annual International Symposium on Computer Ar-
chitecture (2009), ISCA ’09, pp. 2–13.

[29] LEE, C., SIM, D., HWANG, J., AND CHO, S.
F2FS: A new file system for flash storage. In 13th
USENIX Conference on File and Storage Technolo-
gies (2015), FAST ’15, pp. 273–286.

[30] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D.,
DEOLALIKAR, V., TREZISE, G., AND CAMBLE,
P. Sparse indexing: Large scale, inline deduplica-
tion using sampling and locality. In Proccedings of
the 7th Conference on File and Storage Technolo-
gies (2009), FAST ’09, pp. 111–123.

[31] LIM, H., FAN, B., ANDERSEN, D. G., AND
KAMINSKY, M. SILT: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Sys-
tems Principles (2011), SOSP ’11, pp. 1–13.

[32] LINUX KERNEL ORGANIZATION, INC. Direct
access for files. https://www.kernel.org/
doc/Documentation/filesystems/dax.
txt, 2016.

[33] LIU, M., ZHANG, M., CHEN, K., QIAN, X.,
WU, Y., AND REN, J. DudeTM: Building durable
transactions with decoupling for persistent mem-
ory. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(2017), ASPLOS ’17, pp. 329–343.

[34] LIU, R.-S., SHEN, D.-Y., YANG, C.-L., YU, S.-
C., AND WANG, C.-Y. M. NVM Duet: Uni-
fied working memory and persistent store architec-
ture. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (2014), ASP-
LOS ’14, pp. 455–470.

[35] LU, Y., SHU, J., AND SUN, L. Blurred persis-
tence in transactional persistent memory. In Pro-
ceedings of the 31st Symposium on Mass Storage
Systems and Technologies (May 2015), MSST ’15,
pp. 1–13.

[36] MORARU, I., ANDERSEN, D. G., KAMIN-
SKY, M., TOLIA, N., RANGANATHAN, P., AND
BINKERT, N. Consistent, durable, and safe mem-
ory management for byte-addressable non volatile
main memory. In Proceedings of the First ACM
SIGOPS Conference on Timely Results in Operat-
ing Systems (2013), TRIOS ’13, pp. 1:1–1:17.

[37] NARAYANAN, D., AND HODSON, O. Whole-
system persistence. In Proceedings of the Seven-
teenth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (2012), ASPLOS XVII, pp. 401–410.

USENIX Association 2017 USENIX Annual Technical Conference 715

http://1978th.net/tokyocabinet/
http://1978th.net/tokyocabinet/
http://pmem.io/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[38] NISHTALA, R., FUGAL, H., GRIMM, S.,
KWIATKOWSKI, M., LEE, H., LI, H. C., MCEL-
ROY, R., PALECZNY, M., PEEK, D., SAAB, P.,
STAFFORD, D., TUNG, T., AND VENKATARA-
MANI, V. Scaling memcache at Facebook. In
Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation
(2013), NSDI ’13, pp. 385–398.

[39] ORACLE. NVM Direct. https://github.
com/oracle/nvm-direct, 2016.

[40] OU, J., SHU, J., AND LU, Y. A high performance
file system for non-volatile main memory. In Pro-
ceedings of the Eleventh European Conference on
Computer Systems (2016), EuroSys ’16, pp. 12:1–
12:16.

[41] PELLEY, S., CHEN, P. M., AND WENISCH, T. F.
Memory persistency. In Proceeding of the 41st
Annual International Symposium on Computer Ar-
chitecuture (2014), ISCA ’14, pp. 265–276.

[42] PUGH, W. Skip lists: A probabilistic alternative to
balanced trees. Commun. ACM 33, 6 (June 1990),
668–676.

[43] RAOUX, S., BURR, G. W., BREITWISCH, M. J.,
RETTNER, C. T., CHEN, Y.-C., SHELBY, R. M.,
SALINGA, M., KREBS, D., CHEN, S.-H., LUNG,
H.-L., AND LAM, C. H. Phase-change random
access memory: A scalable technology. IBM J. Res.
Dev. 52, 4 (July 2008), 465–479.

[44] REN, J., ZHAO, J., KHAN, S., CHOI, J., WU, Y.,
AND MUTLU, O. ThyNVM: Enabling software-
transparent crash consistency in persistent mem-
ory systems. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture (2015),
MICRO-48, pp. 672–685. http://persper.
com/thynvm/.

[45] ROSENBLUM, M., AND OUSTERHOUT, J. K. The
design and implementation of a log-structured file
system. ACM Trans. Comput. Syst. 10, 1 (Feb.
1992), 26–52.

[46] RUMBLE, S. M., KEJRIWAL, A., AND OUSTER-
HOUT, J. Log-structured memory for DRAM-
based storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies
(2014), FAST ’14, pp. 1–16.

[47] SCHWALB, D., BERNING, T., FAUST, M.,
DRESELER, M., AND PLATTNER, H. nvm malloc:

memory allocation for NVRAM. In In Sixth Inter-
national Workshop on Accelerating Data Manage-
ment Systems Using Modern Processor and Storage
Architectures (in conjunction with VLDB) (2015).

[48] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A
general purpose log structured merge tree. In Pro-
ceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (2012), SIG-
MOD ’12, pp. 217–228.

[49] VENKATARAMAN, S., TOLIA, N., RAN-
GANATHAN, P., AND CAMPBELL, R. H. Con-
sistent and durable data structures for non-volatile
byte-addressable memory. In Proceedings of
the 9th USENIX Conference on File and Stroage
Technologies (2011), FAST ’11, pp. 61–75.

[50] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: Lightweight persistent memory. In
Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (2011), ASP-
LOS XVI, pp. 91–104.

[51] WANG, C., CHEN, W.-Y., WU, Y., SAHA, B.,
AND ADL-TABATABAI, A.-R. Code generation
and optimization for transactional memory con-
structs in an unmanaged language. In Proceedings
of the International Symposium on Code Genera-
tion and Optimization (2007), CGO ’07, pp. 34–48.

[52] XU, J., AND SWANSON, S. NOVA: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of the 14th
Usenix Conference on File and Storage Technolo-
gies (2016), FAST ’16, pp. 323–338.

[53] YANG, J., WEI, Q., CHEN, C., WANG, C.,
YONG, K. L., AND HE, B. NV-Tree: Reducing
consistency cost for NVM-based single level sys-
tems. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies (2015),
FAST ’15, pp. 167–181.

[54] YU, S., XIAO, N., DENG, M., XING, Y., LIU,
F., CAI, Z., AND CHEN, W. Walloc: An ef-
ficient wear-aware allocator for non-volatile main
memory. In 2015 IEEE 34th International Per-
formance Computing and Communications Confer-
ence (IPCCC) (2015), IPCCC ’15, pp. 1–8.

[55] ZHANG, Y., AND SWANSON, S. A study of appli-
cation performance with non-volatile main mem-
ory. In Proceedings of the 31st Symposium on Mass
Storage Systems and Technologies (May 2015),
MSST ’15, pp. 1–10.

716 2017 USENIX Annual Technical Conference USENIX Association

https://github.com/oracle/nvm-direct
https://github.com/oracle/nvm-direct
http://persper.com/thynvm/
http://persper.com/thynvm/

[56] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND
JOUPPI, N. P. Kiln: Closing the performance
gap between systems with and without persis-
tence support. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microar-
chitecture (2013), MICRO-46, pp. 421–432.

[57] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG,
Y. A durable and energy efficient main memory
using phase change memory technology. In Pro-
ceedings of the 36th Annual International Sympo-
sium on Computer Architecture (2009), ISCA ’09,
pp. 14–23.

USENIX Association 2017 USENIX Annual Technical Conference 717

Soft Updates Made Simple and Fast

on Non-volatile Memory
Mingkai Dong, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

Fast, byte-addressable NVM promises near cache la-

tency and near memory bus throughput for file system

operations. However, unanticipated cache line eviction

may lead to disordered metadata update and thus exist-

ing NVM file systems (NVMFS) use synchronous cache

flushes to ensure consistency, which extends critical path

latency.

In this paper, we revisit soft updates, an intriguing

idea that eliminates most synchronous metadata updates

through delayed writes and dependency tracking, in the

context of NVMFS. We show that on one hand byte-

addressability of NVM significantly simplifies depen-

dency tracking and enforcement by allowing better di-

rectory organization and closely matching the per-pointer

dependency tracking of soft updates. On the other hand,

per-cache-line failure atomicity of NVM cannot ensure

the correctness of soft updates, which relies on block

write atomicity; page cache, which is necessary for dual

views in soft updates, becomes inefficient due to double

writes and duplicated metadata. To guarantee the correct-

ness and consistency without synchronous cache flushes

and page cache, we propose pointer-based dual views,

which shares most data structures but uses different point-

ers in different views, to allow delayed persistency and

eliminate file system checking after a crash. In this

way, our system, namely SoupFS1, significantly short-

ens the critical path latency by delaying almost all syn-

chronous cache flushes. We have implemented SoupFS as

a POSIX-compliant file system for Linux and evaluated

it against state-of-the-art NVMFS like PMFS and NOVA.

Performance results show that SoupFS can have notably

lower latency and modestly higher throughput compared

to existing NVMFS.

1. Introduction

Soft updates, which uses delayed writes for metadata up-

dates, tracks per-pointer dependencies among updates in

memory, and enforces such dependencies during write

back to disk, is an intriguing idea that promises metadata

update latency and throughput close to memory-only file

systems [10, 11, 23, 35]. However, soft updates is also

known for its high complexity, especially the complex

dependency tracking as well as enforcement (like roll-

1 Short for Soft updates inspired File System

back/forward to resolve cyclic dependencies, which also

lead to double writes) [1, 3, 9, 13, 22]. A known file sys-

tem developer Valerie Aurora argued that “soft updates

are, simply put, too hard to understand, implement, and

maintain to be part of the mainstream of file system de-

velopment” [1].

In this paper, we revisit soft updates for NVM and ar-

gue that two main sources of the complexity are: 1) the

mismatch between per-pointer based dependency track-

ing and the block-based interface of traditional disks; 2)

excessively delayed writes that complicate dependency

tracking. We then show that soft updates can be made

simple by taking advantage of the byte-addressability

and low latency offered by NVM. Byte-addressability

matches the per-pointer based dependency tracking by

eliminating false sharing among different data struc-

tures and avoiding cyclic dependencies and complex roll-

back/forward. Byte-addressability also allows the use of

more efficient data structures like hash tables in the di-

rectory organization to further simplify the dependen-

cies of file system operations. Besides, page cache and

disk scheduler can be excluded from the storage hierar-

chy because of the byte-addressability and low latency of

NVM, so that soft updates can use in-place writes with

delayed persistency to simplify the dependency track-

ing. The simplified storage hierarchy also eliminates the

gap between the page cache and the file system, mak-

ing the dependency tracking and enforcement semantic-

aware and even simpler.

However, there is still a major challenge that im-

pedes the application of soft updates to NVM. Since page

cache, the software cache layer designed for slow storage

media, is removed for performance concerns, file sys-

tem updates are directly written to CPU cache and per-

sisted to NVM later. Unlike page cache that can be pre-

cisely controlled by file systems, CPU cache is hardware-

managed such that file systems cannot control the evic-

tion of cache lines. State-of-the-art NVM file systems

(NVMFS) [8, 45], like traditional disk-based file systems,

use logging or shadow copying to ensure crash consis-

tency. Yet, instead of buffering data for explicit and peri-

odic flushing later, NVMFS has to eagerly flush critical

metadata in case of accidental eviction of such metadata

to NVM in a wrong order. This necessitates the uses of

high latency operations like clflush/clflushopt+sfence in

USENIX Association 2017 USENIX Annual Technical Conference 719

the critical path of file system related syscalls, which in-

evitably extends the critical path latency.

To overcome the consistency issue from unanticipated

cache line eviction without page cache and cache flush

operations, we review dual views, a latest view and a con-

sistent view, which is used in soft updates for file system

metadata. All metadata in the consistent view is always

persisted and consistent, while metadata in the latest view

is always up-to-date and might be volatile. Without caring

about the cache line eviction, a syscall handler operates

directly in the latest view and tracks the dependencies

of modifications. Unanticipated cache line eviction in the

latest view can never affect the persisted metadata in the

consistent view by design. Background persisters are re-

sponsible for asynchronously persisting metadata from

the latest view to the consistent view according to the

tracked dependencies. They use clflush/clflushopt+sfence

operations to enforce the update dependencies in back-

ground without affecting the syscall latency. A naive ap-

proach to providing dual views is duplicating all metadata

in the file system. Such an approach doubles the memory

usage and causes unnecessary memory copies when syn-

chronizing metadata between the latest view and the con-

sistent view. To implement dual views efficiently, we pro-

pose pointer-based dual views, in which most structures

are shared by both views and different views are observed

by following different pointers. Thanks to pointer-based

dual views, SoupFS avoids almost all synchronous cache

flushes in the critical path, and the consistent view can be

immediately used without performing file system check-

ing or recovery after crashes.

We have implemented SoupFS as a POSIX-

compliant2, NVM-based file system at the backend

of the virtual file system in Linux. Evaluations using dif-

ferent NVM configurations show that SoupFS provides

notably lower latency and modestly higher throughput

compared to state-of-the-art NVM file systems such as

PMFS and NOVA. Specifically, SoupFS achieves up to

80% latency reduction for file system related syscalls in

the micro-benchmarks and improves the throughput by

up to 89% and 50% for Filebench and Postmark.

In summary, the contributions of this paper include:

• A detailed analysis of the complexity of soft updates

and the argument that soft updates can be made simple

for NVM (§2).
• A review of the update dependencies of file systems

on NVM, a simple semantic-aware dependency track-

ing and enforcement mechanism and efficient pointer-

based dual views (§3).
• An implementation of SoupFS on Linux and an ex-

tensive evaluation (§4) that confirms the efficiency of

SoupFS.

2 SoupFS has passed the POSIX-compliant test in http://www.

tuxera.com/community/posix-test-suite/.

2. Background and Motivation

2.1 NVM and NVMFS

Emerging NVM technologies such as PCM, STT-

MRAM, Memristor, NVDIMM and Intel/Micron’s 3D

XPoint are revolutionizing the storage hierarchy by offer-

ing features like byte-addressability, non-volatility, and

close-to-DRAM speed. STT-RAM has lower latency than

DRAM but high cost, making it a promising replacement

for on-chip cache instead of DRAM replacement [47].

Other emerging NVM media like PCM or 3D XPoint

generally have higher latency especially higher write la-

tency than DRAM, which indicates that synchronous

write to NVM would cause higher latency than that to

DRAM. NVDIMM, a commercially available NVM so-

lution, generally has the same performance character-

istics with DRAM as it is essentially battery-backed

DRAM, though it is usually with 10–20X higher price

than DRAM according to a recent price quotation.

Applications

Disk/SSD FS

Page Cache

Device Mapper

Block Layer

Device Drivers

Disk/SSD

NVMFS

NVM

Memory
Bus

64 bit
load/store

SYSCALL

I/O Bus

512/4096B
Disk Cmds

(a) Storage stack

L1/L3/LLC
~1/8/40 cycles

~180 cycles ~600 cycles

Pipeline

Store

Buffer

Caches (L1/L2/LLC)

WC Buffer

Memory Controller

Memory Bus64 bit

DRAM NVRAM

(b) CPU path

Figure 1: Storage stack and path

While new software can leverage the load/store in-

terface to access NVM directly, quite a lot of software

may continue to access persistent data in NVM through

the file system interface. Hence, there have been inten-

sive efforts in designing NVM file systems (NVMFS) [4–

6, 8, 25, 44, 45]. Figure 1(a) illustrates the storage stacks

from applications to persistent storage for disks (includ-

ing SSD) and NVM. Compared to disk file systems,

NVMFS can avoid major storage software layers like

page cache, device mapper, block layer and drivers, but

instead only relies on memory management for space

management. However, there are also several challenges

that require a redesign of file systems for NVM.

Fine-grained Failure-Atomic Updates: Although it

is claimed that memory controllers supporting Intel

DIMM will also support Asynchronous DRAM Re-

fresh [32], the failure-atomic write unit is only one cache

line size, still far less than 512-/4096-byte for disks. This

fine-grained failure atomicity prevents the use of prior

approaches (like backpointers [3]) relying on coarse-

grained failure atomicity.

720 2017 USENIX Annual Technical Conference USENIX Association

http://www.tuxera.com/community/posix-test-suite/
http://www.tuxera.com/community/posix-test-suite/

Hardware-controlled Ordering: NVMFS elevates

the level of persistency boundary from DRAM/Disk to

CPU cache/NVM. However, unlike disk-based file sys-

tems that have complete control of the order of data

flushed to disk, CPU cache is hardware-managed and

unanticipated cache line eviction may break the order-

ing enforced by sfence/mfence, which only orders on-

chip visibility of data updates across CPU cores. To

this end, prior NVMFS needs to eagerly use clflush or

clflushopt to flush data from CPU cache to the mem-

ory controller [4, 8, 25, 44, 45]. clflushopt allows asyn-

chronously flushing data compared to synchronous and

serialized feature of clflush. But the ordering of clflushopt

must be enforced by memory fences like sfence. Eagerly

flushing cache lines and persisting data would cause high

latency in the critical path, especially for NVM with

higher write latency than DRAM.

Software Efficiency: Unlike in conventional file sys-

tems where slow storage devices dominate access la-

tency, the cost of clflush and clflushopt+sfence is much

higher compared to CPU cache accesses. It becomes the

new bottleneck and must be minimized in the critical

path to approach the near-cache access speed. Besides,

the scarcity of CPU cache volume requires economizing

cache usage to provide more space for applications.

Allocation bitmaps

1 alloc

inode
3 alloc

dentry

dentryinode

directory inode

4

init

dentry

5

attach

inode

2

init

inode

6attach

dentry

(a) General

Allocation bitmaps

1

3

dentryinode

directory inode

4

5

2

6

Journaled
inode

Journaled
dentry

Journaled
bitmap

2’ 4’

1’

3’

0:cmt

7:cmp

Journal

5’
6’

Commit/Complete

(b) Journaling
Figure 2: Persistency dependency of creating a file

2.2 The Cost of Consistency

To address fine-grained atomicity and hardware-

controlled ordering, prior file systems need to order

operations carefully and use synchronous flushing to

preserve crash consistency, which leads to high latency.

Figure 2(a) illustrates the dependency to create a file,

where the dashed arrows denote the persistency ordering.

For example, the arrow from init inode to alloc inode

dictates that the initialization of the new inode must

not be persisted until its allocation information is made

persistent. Prior file systems like PMFS [8] usually use

journaling to handle this issue, which further complicates

the dependencies (as shown in Figure 2(b)) and still

requires eagerly flushing the logs. In this example, there

are around 19 persistency dependencies to be respected,

which requires around 14 clflushes. Packing multiple

journaled metadata into a single cache line can reduce

the number of clflushes, but cannot eliminate them.

2.3 Soft Updates

Soft updates [10, 11, 23, 35] is an intriguing metadata

update technique and has been implemented in FreeBSD

UFS [23]. It has the promise of mostly eliminating syn-

chronous metadata updates and providing fast crash re-

covery by instantly providing a consistent file system.

While soft updates is an intriguing and concise idea to

achieve low latency and high throughput, the block inter-

face exposed by the underlying disk complicates depen-

dency tracking and enforcement in the following ways:

Block-oriented directory organization complicates

dependencies: Like many other disk-based file systems,

soft updates treats directories as regular files organized

by direct blocks and indirect blocks. This block-oriented

directory organization simplifies the implementation of

file systems for block devices but complicates the de-

pendencies due to false sharing. For example, placing

multiple dentries in the same block allows cyclic depen-

dencies, which must be resolved by complicated roll-

back/forward. It also necessitates the additional tracking

of whether the block to store the new dentry is newly al-

located or reused, so that it can be treated differently in

the enforcement.

Delayed writes complicate dependency tracking:

Delaying disk writes of metadata updates is one key idea

of soft updates specially designed for disk-based stor-

age with high write latency. A sequence of dependent

metadata changes, which otherwise can be written syn-

chronously, is delayed with various dependency tracking

structures attached. While asynchronous disk writes im-

prove creation throughput by a factor of two compared

with synchronous writes [23], soft updates must track the

status of delayed operations to maintain ordering for in-

tegrity and security. However, the page cache usually is

unaware of the content in the page, which creates a se-

mantic gap between the page cache (where enforcement

happens) and the file system (where tracking happens).

The gap forces soft updates to involve complex structures

for status and dependency tracking, which complicates

both the critical path of synchronous system calls and the

syncer daemon that is responsible for flushing the delayed

writes.

Roll-back/forward complicates dependency en-

forcement: Soft updates tracks per-pointer metadata up-

dates to eliminate false sharing. However, during en-

forcement, as a disk block still contains many metadata

structures, there are still many cyclic dependencies at the

block level during write-back. Soft updates handles this

complexity by rolling back metadata changes that have

pending dependencies to only write consistent metadata

updates and then rolling forward the reverted metadata

changes to persist the change again. This, however, would

double the disk updates and diminish its gain over jour-

naling mechanisms [36].

USENIX Association 2017 USENIX Annual Technical Conference 721

Soft updates is considered difficult and complicated

to implement and maintain [1, 13]. By rethinking soft

updates on NVM, we find that the byte-addressability

of NVM can simplify the design of soft updates and

delayed persistency of soft updates can further boost the

performance of file systems on NVM.

3. Design and Implementation

To embrace high performance and byte-addressability of

NVM, we design SoupFS, a soft updates implementation

that is simple and fast on NVM. SoupFS redesigns the

directory organization using hash tables to simplify the

complicated dependencies caused by block-oriented di-

rectory organization. The roll-back/forward complexity

is eliminated by removing page cache, thanks to byte-

addressability of NVM. The removal of page cache also

enables a semantic-aware dependency tracking which al-

leviates the complexity caused by delayed writes.

As a result, a syscall handler simply tracks the opera-

tion type along with related pointers, and with file system

semantics in mind, background persisters can enforce the

persistency and dependencies according to the type and

pointers tracked during the syscall.

SoupFS is fast mainly because it applies delayed per-

sistency which eliminates almost all synchronous cache

flushes in the file system syscall critical path. Providing

dual views, a latest view and a consistent view, of file sys-

tem metadata is the key technique to allow delayed per-

sistency and eliminate file system checking after a crash.

However, page cache, which facilitates the implemen-

tation of dual views in soft updates, is removed in SoupFS

for performance and simplicity. To provide dual views

without page cache, we propose efficient pointer-based

dual views by specially designing its metadata structures

so that most structures are shared by both views and dif-

ferent views are observed by following different pointers.

3.1 Directory Organization

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

dentrybuckets

filename

pointer

inode

pointer

latest

next

consistent

next

0x7b 6

inode

hash len filename

Figure 3: Directory and dentries in SoupFS

Directory operations are the core of many file system

syscalls. In traditional file systems, a directory is orga-

nized akin to regular files but with different registered

operations. Despite poor performance of lookups due to

linear scans, reusing the regular file structures as dentry

arrays is simple to implement and conforms to the us-

age of block devices. However, storing multiple variable-

length dentries in one block causes false sharing that al-

lows cyclic dependencies, which must be resolved by

roll-back/forward and thus significantly complicates the

dependency enforcement.

With the byte-addressability of NVM, we re-organize

directories using hash tables as shown in Figure 3. The

root of a directory points to an array of buckets, each

of which points to a list of dentries. A dentry is a fixed-

sized structure consisting of four pointers to the filename,

the inode, the latest and the consistent next dentry. The

filename is externalized to reduce fragmentation, and the

hash value and length are stored ahead of the filename for

fast comparison. Next pointers point to the next dentry in

the hash table. Two next pointers are stored since a dentry

can be in two hash tables (dual views of the directory) at

the same time. The usage of these two next pointers is

explained in §3.4.

Hash-table-based directory organization simplifies de-

pendencies in SoupFS. Finer-grained structures used in

hash tables avoid false sharing and further the roll-

back/forward in the enforcement. Also, since SoupFS

allocates a new dentry for each directory insertion, we

don’t need to track the dependency additionally. As

a result, tracking the operation type and a pointer to

the added/removed dentry is sufficient for persisting the

metadata and enforcing the dependencies for most of the

time. Update dependencies are further discussed in §3.3.

A dentry occupies 32B which is usually less than one

cache line size. In the implementation, the first few bytes

of a filename can be stored together with its correspond-

ing dentry for memory efficiency.

3.2 Content Oblivious Allocator

Some file systems like EXT4 pre-allocate dedicated space

for inodes. Dedicating space for inodes facilitates inode

management and yields good performance in disk-based

file systems. However, it fixes the number of available in-

odes and incapacitates the file system when inode area is

full even though free data blocks are abundant. Such an

issue is exacerbated significantly when more data struc-

tures are involved, such as the filename and the dentry in

SoupFS.

To address this issue, we provide a content-oblivious

allocator which treats the whole NVM space as a large

memory pool and allocates memory without knowing

what the memory is used for. The content-unawareness

of the allocator breaks the boundary between various

data structures, making the memory management more

flexible and simpler without sacrificing performance and

correctness.

We also categorize the data structures into two kinds

according to the size they use for allocation (see Table 1).

As a result, the content-oblivious allocator only needs to

manage the memory in page size (4KB) and cache line

722 2017 USENIX Annual Technical Conference USENIX Association

Table 1: Data structure sizes in SoupFS
Data Structure Size Allocation Size

inode 64B 64B

filename variable 64B

dentry 32B 64B

hash table (buckets) 4KB 4KB

B-tree node 4KB 4KB

data block 4KB 4KB

size (64B). Filenames, the only variable-length structure,

are split into multiple cache lines linked with pointers if

a single cache line is not sufficient (see Figure 4).

Metadata of the allocator is stored in the bitmap in

NVM, and in-DRAM per-CPU free-lists are used to im-

prove the performance of frequent allocations and deal-

locations. The implementation of the allocator is derived

from ssmalloc [21] and simplified according to two fixed

allocation sizes.

filename cont’d

“A-long-lo”0x3c 25

hash len filename

“ng-long-filename”

next next

Figure 4: Long filenames in SoupFS

3.3 Update Dependencies

It is seldom a single operation to finish a syscall in file

systems. Different data structures are modified in the

file system, and the orders of these modifications are

dedicatedly arranged for crash consistency. Soft updates

summaries these ordering requirements in three rules:

• C1: Never point to a structure before it has been ini-

tialized, e.g., an inode must be initialized before a di-

rectory entry references it.
• C2: Never re-use a resource before nullifying all pre-

vious pointers to it, e.g., an inode’s pointer to a data

block must be nullified before that disk block may be

re-allocated for a new inode.
• C3: Never reset the old pointer to a live resource be-

fore the new pointer has been set, e.g., when renaming

a file, do not remove the old name for an inode until

after the new name has been written.

These three rules are the guidelines of soft updates

dependency tracking and enforcement. SoupFS follows

C2 and C3 and generalizes C1 which is over-restrictive

in most file system operations. Taking the file creation as

an example, the new dentry can hold the reference to the

new inode even before the initialization of the inode is

persisted, as long as the dentry has not been persistently

inserted into the hash table in NVM. That is, before

the dentry becomes reachable from the root, pointers in

the dentry can temporarily violate C1 without causing

any consistency issue. Based on such an observation, we

generalize C1 to be “never let the structure be reachable

from the root until it has been initialized,” which can

further simplify the dependencies in SoupFS.

We then review the update dependencies in different

file system operations in SoupFS. For a file creation, a se-

ries of operations need to be done as shown in Figure 5.

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

buckets

0x7b 6

inode

hash len filename

1

2

3

4

5

Figure 5: Dependencies of creating a file

1 An inode is allocated and initialized with correct in-

formation. 2 A block of memory is allocated and initial-

ized with the filename. 3 A dentry is allocated and the

pointers to the inode and filename are filled. 4 The den-

try is inserted into the hash table of the directory. 5 The

inode of the parent directory is updated. There are sev-

eral pointers in the above operations. However, the only

persistency dependencies we need to guarantee are:

1. 1 2 3 are persisted before the insertion of the

dentry is persisted (4).

2. The parent directory inode information(5) is per-

sisted after the persistence of dentry insertion (4).

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

buckets

0x7b 6

inode

hash len filename

1

2
3

4

5

Figure 6: Dependencies of removing a file

For a file removal, the operations are reverted as shown

in Figure 63. 1 Remove the dentry from the hash table.

2 The parent directory inode is modified. 3 The file-

name can be freed. 4 The dentry can be freed. 5 The

inode can be freed if its link count is zero. This time, the

only ordering requirement is that 2 3 4 5 shall be

done after the dentry removal (1) is persisted.

The creation and removal of directories are largely

as described above. One difference is that additional op-

erations for hash table construction and destruction are

needed. The construction of a hash table includes allo-

cating a page as hash table buckets and erasing it to be

all zeros. The destruction is simply freeing the memory

since a directory can be removed only if it is empty, i.e.

there is no dentry in the hash table. Additionally, we omit

the “.” dentry since it points the current inode. For the

“..” dentry, we simply store it in the inode to avoid other

unnecessary dependencies.

B-tree nodes are metadata structures to organize data

blocks which contain file data. When a file is enlarged,

the newly written data and metadata structure modifica-

tions need to be persisted before the new file size is per-

sisted. These metadata structure modifications include B-

tree height increases, B-tree node allocations and mod-

3 It is not shown in the figure that if the dentry to remove is the head of

the list, the pointer in the corresponding bucket is modified.

USENIX Association 2017 USENIX Annual Technical Conference 723

ifications, and data block allocations. Adding new data

blocks and new inner B-tree nodes to the B-tree cannot be

done atomically without copy-on-write. But even if this is

not done atomically, it will not cause any problems since

all the changes are not visible to users before the update

of the file size. The B-tree root and height are stored in

the inode and can be persisted atomically.

When a file is truncated, the reduced file size shall

be firstly persisted before reduced file data space is re-

claimed. For efficiency, the reclamations of these space

are usually delayed for later file size increases unless the

free space in the file systems is nearly exhausted.

3.4 Pointer-based Dual Views

One key property of soft updates is that it ensures that

metadata present in memory always reflects the latest

state of the file systems (i.e., the latest view) and metadata

persisted in disks is consistent (i.e., the consistent view).

The dual views technique allows delayed persistency and

eliminates file system checking after a crash. Soft updates

implements dual views based on page cache. However, as

memory becomes storage, the page cache is removed for

performance concerns in most NVMFS.

Thus, to provide dual views in NVMFS, a naive ap-

proach is to bring back the “cache” for metadata by main-

taining another copy of the file system metadata. This ap-

proach, however, doubles the memory usage and causes

unnecessary memory copies when synchronizing meta-

data between the latest view and the consistent view. For

example, the whole persisted metadata structure has to be

copied to its cache before the modification.

To implement efficient dual views, we propose

pointer-based dual views in which most structures are

shared by both views and different views are observed by

following different pointers. We will then describe how

different metadata structures (shown in Table 1) are de-

signed to provide pointer-based dual views in SoupFS.

Inodes are already duplicated since VFS has its own

data structure (VFS inode) to present an inode. So

SoupFS uses its own inodes to store the consistent view

and the corresponding VFS inode for the latest metadata.

Filenames are immutable in SoupFS. A filename al-

ways co-exists with its dentry and this binding relation

never changes before the removal of the dentry. Thus the

filename of a dentry can be directly shared by both views.

Dentries are almost read-only. During insertion, a

dentry is inserted to the head of the linked list in the

corresponding bucket. This procedure modifies no exist-

ing dentries. When removing a dentry, its predecessor is

modified to point to the next dentry. SoupFS should be

aware of such a modification so that it can traverse the

list without the removed dentry in the latest view. At the

same time, the removed dentry should be still observable

in the consistent view if the whole removal has not been

persisted. Otherwise, a crash might leave the file system

inconsistent when there are multiple not-yet-persisted in-

sertions and removals.

To share dentries in both views, SoupFS stores a pair

of next pointers, latest next and consistent next, in a

dentry. With these two next pointers, a traversal in the

latest view is done by following the latest next pointer if it

is non-null. Otherwise, the consistent next pointer is used.

This guarantees that the latest information is retrieved

by following the latest-next-first rule and the consistent

view is observed by following only the consistent next

pointers. Since the latest next is also stored in NVM, to

differentiate the real latest next and the leftover latest next

of a crash, SoupFS embeds an epoch number in the latest

next. The epoch number is increased after a crash and

latest next pointers with old epoch numbers are treated

as null. This on-demand checking prevents after-crash

stop-the-world checking in which all leftover latest next

pointers are nullified.

Directory hash table buckets are changed upon an

insertion to the dentry list or the removal of the last den-

try. To provide two views, we maintain a latest bucket

for each of the buckets and if not null, it always points

to the latest first dentry in the dentry list. A latest bucket

and its corresponding real bucket together act similarly to

the two next pointers in dentries. For convenient memory

management, all latest buckets for a hash table are gath-

ered together in a volatile page and allocated on demand.

directory

inode
1

3

2

4

…

buckets

C

D
1

3

2

4

…

directory

VFS

inode

B A

latest buckets

points to latest next dentry

points to consistent next dentry

points to latest buckets

points to consistent buckets

mutually reachable

Figure 7: Dual views in a directory
An example is shown in Figure 7, in which the latest

view can be observed by following dashed arrows and the

consistent view is organized by solid arrows. We can also

know from Figure 7 that dentry D is recently inserted and

B is removed from the directory and both the insertion of

D and removal of B have not been persisted yet4.

B-tree nodes and data blocks: SoupFS focuses on

metadata and does not protect consistency of written data,

which is the same as soft updates5. SoupFS does not pro-

vide two views for B-tree nodes and data blocks. Never-

theless, there are still two views of file data in SoupFS.

4 Since modifications to D and C are directly written in NVM, these

changes might have been persisted. But these changes will be ignored

after a crash since they are not observable in the consistent view.
5 Even though soft updates can leverage page cache to provide two

copies of data, it cannot guarantee a write spanning two blocks can be

persisted atomically.

724 2017 USENIX Annual Technical Conference USENIX Association

Table 2: Operations tracked by SoupFS

OP Type Recorded Data Structures

diradd added dentry, source directory∗, overwritten inode∗

dirrem removed dentry, destination directory∗

sizechg the old and new file size

attrchg -

One is the latest file data that are available by inspect-

ing the B-tree root and the file size stored in VFS in-

ode. The other is the persisted file data which can be

obtained by following the B-tree root and the file size

in SoupFS’s inode. These two B-tree roots and file sizes

form two B-trees that are built on the same set of B-tree

nodes and data blocks. However, neither data in two B-

trees are guaranteed to be consistent after a crash. To pro-

vide data consistency in SoupFS, techniques like copy-

on-write can be adopted.

Allocator: The allocation information in NVM

bitmap presents the consistent view and in-DRAM free-

lists provide the latest view.

3.5 Dependency Tracking

Dependency tracking is one of the key parts of soft up-

dates and is much simplified in SoupFS. Thanks to the

byte-addressability of NVM, there are no more cyclic de-

pendencies in the system. We thus can use a DAG to

present dependencies among different parts of the file

system, according to the paper of soft updates [10]. How-

ever, since SoupFS abandons the page cache and the

block layer, the gap between the page cache and the file

system disappear. In other words, a persister can know

which operation on which structure needs to be persisted.

By endowing with file system semantics, dependency

tracking and enforcement are further simplified.

Dependency Tracking Structures: Although soft

updates tracks dependencies in byte-level granularity, it

is still a block-oriented dependency tracking that uses ad-

ditional structures to track the dependencies among dif-

ferent blocks. Different from the original soft updates,

SoupFS uses an inode-centric semantic-aware way to or-

ganize all dependencies.

op type

related

information

list next

dirty inode list

metadata

op list

list next

metadata

op list

list next

metadata

op list

list next

VFS inode VFS inode VFS inode

Figure 8: Dependency tracking structures

Figure 8 shows dependency tracking structures in

SoupFS. In each VFS inode, an operation list (op list)

tracks all recent operations on this inode that are not yet

persisted. Each of the operations consists of an operation

∗ These structures are only for rename.

type (op type) and related information such as pointers

to data structures involved during the operation. Table 2

shows the operations SoupFS tracks in detail, in which di-

radd and dirrem are used to track in-directory operations,

sizechg is for regular file structure changes and attrchg

is for attribute-only updates of an inode. An operation is

created and inserted to the operation list of the VFS in-

ode during the syscalls (see §3.6). Once the operation list

is not empty, the VFS inode is added to the dirty inode

list, waiting to be handled by the persisters.

Tracking these operations is sufficient for dependency

enforcement. Supposing a VFS directory inode contains a

diradd, by checking added dentry, SoupFS knows almost

everything about the operation, e.g., the filename and the

new inode. SoupFS can then persist these operations in

the correct order that enforces update dependencies.

3.6 POSIX Syscalls

SoupFS classifies POSIX syscalls into the following cat-

egories and handles them accordingly.

Attribute-only Modification: These syscalls, chmod

and chown for instance, only change the attributes of an

inode. SoupFS handles these syscalls by directly updating

the attributes in the corresponding VFS inode and insert

an attrchg into the inode’s operation list.

Directory Modification: Syscalls like create, mkdir,

unlink and rmdir modify the content of a parent direc-

tory. SoupFS handles these syscalls according to steps

described in §3.3. Then it inserts a diradd or a dirrem to

the directory inode’s operation list. The affected dentry is

recorded as related data in the operation.

File Data Modification: These syscalls might mod-

ify the B-tree structures of a regular file. Examples in-

clude write and truncate. The deallocations of nodes are

delayed, and the allocations and attachments of B-tree

nodes and data blocks are directly done in the B-tree. The

new file size and new file root (if changed) are updated

only in the latest view (VFS inode). Finally, a sizechg is

inserted into the inode’s operation list.

Rename: Rename is special since it can involve more

than one directory. Same as soft updates, SoupFS treats

rename as a combination of a creation in the destina-

tion directory and a removal in the source directory. As

a result, two operations, diradd and dirrem are inserted

into the operation lists of the destination directory in-

ode and the source directory inode respectively. Soft up-

dates’s ordering requirement for rename is also adopted

by SoupFS, i.e., the persistence of the creation should

be completed before the persistence of the removal. To

track this dependency, source directory and destination

directory are respectively recorded in diradd and dirrem

as shown in Table 2.

If an existing dentry is overwritten in rename, it is di-

rectly modified by replacing its inode pointer. To reclaim

USENIX Association 2017 USENIX Annual Technical Conference 725

the original inode in the overwritten dentry, SoupFS

records it in diradd as the overwritten inode.

3.7 Dependency Enforcement

Dependency enforcement is done by daemons called per-

sisters. Persisters periodically wake up, retrieve all dirty

inodes from the dirty inode list, and persist each oper-

ation in the operation list according to the ordering re-

quirements. The wake-up frequency can be specified at

mount time as the bound of persistence.

It is simple to persist an operation. For diradd, a per-

sister first ensures the persistence of the allocations and

new structures. Then, it reflects the operation in the con-

sistent view by updating the corresponding consistent

pointer with the latest pointer.

For dirrem, a persister first makes the target data struc-

ture persistently removed from the consistent view, then

reclaims memory used by the removed data structures.

For sizechg, a persister can get the newly allocated B-

tree nodes and data blocks by inspecting the old and the

new file size. Allocations are firstly persisted and then

data blocks and B-tree nodes are persisted in a correct

order. The file size, the B-tree root and height in the

consistent view are updated only after all modifications

within the B-tree are persisted. If it is a truncation, the

truncated B-tree nodes and data blocks can be reclaimed

after the persistence of the new file size, B-tree root and

height. As an optimization, the reclamation is delayed for

later file size increases.

For attrchg, attributes in the VFS inode are persis-

tently written to the consistent inode. The atomicity of

these operations is discussed in §3.8.

Finally, the persisted operation is removed from the

operation list and the VFS inode is removed from the

dirty inode list when its operation list is empty.

In the implementation, we deploy one persister for

each NUMA node to prevent expensive cross-NUMA

memory accesses.

3.8 Atomicity

SoupFS assumes that the failure-atomic write unit of

NVM is a cache line, which is no less than 64 bytes.

Based on this assumption, there are two kinds of atomic

writes used in SoupFS.

The most commonly used one is an atomic update of a

pointer, which is done using atomic operations provided

by CPU. The other write is persisting an inode. Since

the inode size in SoupFS is 64 bytes which is the cache

line size, SoupFS needs to prevent the cache line from

being evicted before updates to the inode are finished.

This is guaranteed by using Intel RTM technology which

will hold the cache line in cache until the transaction

ends. Per-CPU cache-line-sized journals can be used as

fallbacks of RTM to guarantee progress.

Both kinds of atomic writes only guarantee

that an update is not partially persisted. It is the

clflush/clflushopt+sfence that can guarantee the persis-

tence of the update.

3.9 File System Checking

SoupFS is the same as soft updates in file system check-

ing and recovery. Thanks to the consistent view, SoupFS

can be instantly used after a crash without having to

wait for file system checking or recovery. But in order

to collect the memory leaked by the crash, a specialized

fsck needs to be invoked manually. The fsck traverses the

whole file system from the root and reconstructs the allo-

cation bitmaps in which all allocated memory is useful.

3.10 Endurance

Although write endurance is not the design goal of

SoupFS, we expect better write endurance than other

NVMFS, since SoupFS eliminates journaling mecha-

nisms which frequently need to write temporary backup

data in NVM. In SoupFS, almost all writes to NVM are

to modify the persistent state of the file system. The only

exception is updates to the latest next pointer in dentries.

While storing latest next in DRAM can further benefit

the endurance, it involves additional data structures to

track the relation between dentries and latest next point-

ers, which is complex. Moreover, the negative effect of

updating latest next pointers is limited since in the imple-

mentation the update only happens in removal operations

and it is likely to be kept in the cache before the operation

is persisted by the persisters.

4. Evaluation

4.1 Experimental Setup

To evaluate the performance of SoupFS, we run micro-

benchmarks and macro-benchmarks with a dual-socket

Intel Xeon E5 server equipped with NVDIMM. Each 8-

core processor runs at 2.3 GHz with four DDR4 channels.

There are 48 GB DRAM and 64 GB NVDIMM equipped

on the server, and we use one pmem device whose 32GB

NVDIMM locate on one NUMA node in the evaluation.

We compare SoupFS against four Linux file sys-

tems: EXT4, EXT4 with DAX (EXT4-DAX), PMFS and

NOVA. EXT4 can be directly used in Linux 4.9.6, but

PMFS and NOVA need simple modifications to run on

Linux 4.9.6.

PMFS, NOVA, and SoupFS obtain a range of NVM

from kernel driver and manage NVM independently.

EXT4-DAX bypasses the page cache using the DAX in-

terface exposed by the persistent memory driver. We eval-

uate EXT4 only for reference since it cannot guarantee

crash consistency in NVM. We provide no comparison

with the original soft updates as there is no available

soft updates implementation in Linux and simply running

726 2017 USENIX Annual Technical Conference USENIX Association

FreeBSD UFS with soft updates on NVM cannot guaran-

tee consistency due to the lack of block write atomicity.

Table 3: Micro-benchmark characteristics

Name Workload

filetest (I) create (104
×100) (II) unlink (104

×100)

dirtest (I) mkdir (104
×100) (II) rmdir (104

×100)

4.2 Micro-benchmarks

We use two single-threaded micro-benchmarks to eval-

uate the throughput and latency of SoupFS, as shown

in Table 3. The benchmarks run 100 iterations and in

each iteration, the filetest creates 104 files in one direc-

tory and then deletes all of them. The dirtest is similar to

the filetest but it creates directories instead of files.

Figure 9(a) and 9(b) show the throughput and la-

tency of create, unlink, mkdir and rmdir tested using the

filetest and dirtest. Generally, SoupFS performs best in

all these tests. It outperforms NOVA in throughput by

43% to 405%, and reduces latency by 30% to 80%. We

attribute the performance improvement to the reduction

of flushes in the system call path. NOVA also performs

well in the tests since it leverages in-DRAM radix trees

to manage its directories. However, it still needs logs and

cache flush operations to guarantee crash consistency,

which causes relatively worse performance than SoupFS.

Besides journaling and excessive flush operations, PMFS

has high latency and low throughput also because its cost

of directory lookup grows linearly with the increasing

number of directory entries. This is notable for create and

mkdir since one insertion to the directory needs to scan

all existing dentries to find an available slot. For unlink

and rmdir, the latency is very low since our benchmarks

delete the files/directories in the same order they are cre-

ated. If the dentry preceding the to-be-removed dentry is

not in use, PMFS will merge those two dentries during

the removal. Thus in unlink and rmdir, PMFS needs to

search at most two dentries to find the dentry to remove,

yielding low latencies as shown in the figure. EXT4 and

EXT4-DAX leverage hashed B-trees to speed up direc-

tory accesses, thus they achieve better performance than

PMFS.

Figure 9(c) shows the latency distribution for create

in the filetest. Latencies longer than 30us are not shown

in the figure for clarity. The result proves the average

latencies shown in Figure 9(b). Most of the latencies for

SoupFS locate at around 3us and latencies for NOVA at

around 4us. Due to the inefficient directory organization,

latencies for PMFS evenly distribute and steadily rise as

the number of files in a directory increases.

Table 4: Filebench workload characteristics

Workload Average file size # of files I/O size r:w ratio

Fileserver 128KB 10000 1M 1:2

Fileserver-1K 1KB 10000 1M 1:2

Webproxy 16KB 10000 16K 5:1

Varmail 16KB 5000 1M 1:1

4.3 Macro-benchmarks

We evaluate the performance of SoupFS for real world

applications by running a set of macro-benchmark work-

loads, including Filebench and Postmark.

Filebench: Filebench is a file system benchmark that

simulates a large variety of workloads by specifying dif-

ferent models. We integrate the recent fixes to Filebench

by Dong et al. [7] to make our evaluation more accurate.

Table 4 shows the characteristics of Filebench workloads.

We run these benchmarks from 1 to 20 threads multiple

times and report the average to show the throughput and

scalability. The coefficient of variation is 1.8% in aver-

age.

As shown in Figure 11(a) to 11(d) SoupFS performs

best in general. The performance drop after eight threads

is caused by the NUMA architecture. When the num-

ber of threads exceeds eight, either the threads contend

on eight cores of a NUMA node, or there are a lot of

cross-NUMA memory accesses. We thus evaluate with

Filebench bound to one NUMA node and report the re-

sult in Figure 12(a) to 12(d), in which the throughput still

cannot scale well, but the performance drop disappears.

The throughput of fileserver is lower than those of

other Filebench workloads. This is because the default

average file size is 128KB, causing each operation to

write more data and the data write speed dominates.

SoupFS performs slightly better in this workload since it

provides two views of the file size so that it does not need

to persist the B-tree structures immediately. As a draw-

back, the file data are not guaranteed to be persisted after

the write syscall, which is different from other NVMFS.

We also evaluate fileserver with 1K file size to highlight

the metadata operations (Figure 11(b)). The throughput

of all file systems increases and SoupFS outperforms

NOVA by up to 89% and PMFS by up to 47%.

The webproxy involves recreating and reading several

files in a directory with many files. PMFS performs worst

due to its inefficient directory access, while other file sys-

tems, by using hash tables (SoupFS), radix trees (NOVA)

and hashed B-trees (EXT4 and EXT4-DAX), perform

much better. SoupFS performs slightly better when there

are fewer threads because of metadata operations like file

removals and creations.

The varmail acts as a mail server on which users read,

remove, reply, and write mails. In this workload, fsync

operations eliminate the benefit of page cache in EXT4

and the performance of PMFS is limited by its slow

directory design. SoupFS outperforms NOVA by up to

75% due to fast metadata operations.

Postmark: Postmark is a benchmark to simulate mail

servers. We enlarge the number of transactions to 106 in

the default single-threaded Postmark configuration to test

the performance. Figure 10 shows that SoupFS outper-

forms other file systems by about 50%.

USENIX Association 2017 USENIX Annual Technical Conference 727

 0

 100

 200

 300

 400

 500

 600

 700

create

unlink

m
kdir

rm
dir

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
/s

)

ext4
ext4dax

pmfs
nova

soupfs

(a) Throughput

 0

 5

 10

 15

 20

create

unlink

m
kdir

rm
dir

L
a
te

n
c
y
 (

u
s
/o

p
)

ext4
ext4dax

pmfs

 57.5 57.7

nova
soupfs

(b) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

D
is

tr
ib

u
ti
o
n

Latency (us)

ext4
ext4dax

pmfs
nova

soupfs

(c) Latency CDF for create
Figure 9: Throughput and latency of file system operations

 0

 50

 100

 150

 200

 250

 300

 350

read write

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

ext4
ext4dax

pmfs
nova

soupfs

Figure 10: Postmark

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(a) fileserver

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(b) fileserver-1K

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

ext4
ext4dax

pmfs
nova

soupfs

(c) webproxy

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(d) varmail

Figure 11: Throughput of Filebench (EXT4 does not guarantee correctness)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(a) fileserver

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(b) fileserver-1K

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(c) webproxy

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/s

)

Threads

(d) varmail

Figure 12: Throughput of Filebench with NUMA binding (EXT4 does not guarantee correctness)

4.4 Sensitivity to NVM Characteristics

Different NVM technologies have different write laten-

cies. The NVDIMM we use has the same performance as

DRAM; however, NVM built by PCM and 3D XPoint is

expected to have higher latency especially higher write

latency than DRAM. We roughly evaluate the sensitivity

to NVM write latency of different file systems by insert-

ing delays after each clflush instruction.

Figure 13 shows the latency of create and unlink in the

filetest micro-benchmark with different delays inserted

after clflush. In both cases, the latency of SoupFS remains

unchanged with increasing delays due to the elimination

of cache flushes in the critical path. The latency of PMFS

and NOVA increases because they need cache flushes for

crash consistency during the syscall. Increasing the de-

lay from 0 to 800ns, the latency of NOVA increases 8us

which is nearly 200% of its original value for create (Fig-

ure 13(a)). The increased value matches our estimation in

§2.2. Although the increased latency for PMFS is similar,

the create latency of PMFS is still dominated by the slow

directory lookup performance, so the relative influence is

not significant. For unlink in Figure 13(b), both NOVA

and PMFS are affected by the clflush delays, with latency

increased from 6us to 18us.

 0
 2
 4
 6
 8

 10
 12
 14

 0 200 400 600 800
Delay (ns)

 56
 58
 60
 62
 64
 66
 68
 70

L
a

te
n

c
y
 (

u
s
)

pmfs
nova

soupfs

(a) create

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800

L
a

te
n

c
y
 (

u
s
)

Delay (ns)

pmfs
nova

soupfs

(b) unlink
Figure 13: Latency of filetest with different clflush delays

clflushopt, the asynchronous and parallel version of

clflush, is not available on our evaluation platform. We

thus give no evaluation of clflushopt. However, since

most of the cache flushes in the file systems are for persis-

tency ordering guarantee, file systems usually use a com-

bination of clflushopt+sfence which neutralizes the merit

of asynchronism and parallelism. Other approaches, like

running instructions between clflushopt and sfence or us-

ing existing atomic operations to replace fences, are fea-

sible but they can only be used under certain conditions

where appropriate instructions and existing atomic oper-

ations are available. clwb, which is not available on our

platform either, is similar to clflushopt but keeps the data

in the cache after persisting it. However, the merit of clwb

can barely bring performance improvement since existing

NVMFS are designed to avoid re-accessing flushed cache

lines in one syscall.

728 2017 USENIX Annual Technical Conference USENIX Association

We would also like to compare the impact of different

NVM bandwidth on the performance of SoupFS. Unfor-

tunately, we fail to change the BIOS configuration of the

PCIE extended area as suggested by Sengupta et al. [37],

as it is inaccessible to a normal user. We thus leave such a

comparison as future work. Yet, since the delayed persis-

tency of SoupFS has fewer requirements for immediately

persisting the data which urgently need bandwidth, we

envision that SoupFS would gain more benefits compared

to other alternatives like PMFS and NOVA that require

synchronous flushes.

5. Related Work

Metadata update approaches: Other than soft updates,

there have been various approaches to preserving meta-

data consistency, including shadow paging [14, 18, 30],

log-structuring [17, 19, 24, 31, 33, 34], journaling [2,

12, 39] and WriteAtomic [29]. There have been various

other ways to represent write ordering, using backpoint-

ers [3], transactional checksums [28], patches [9]. For

example, NoFS [3] proposes backpointers to reduce or-

dering requirement when persisting data. It, however, re-

quires adding a backpointer to not only metadata but also

data, which increases storage overhead. Moreover, a key

assumption is that a backpointer and its data or metadata

are persisted atomically, a property not available in NVM.

NVM-aware file systems: Some designs have con-

sidered using NVM to accelerate metadata update per-

formance. For example, Network appliance’s WAFL [14]

leverages NVRAM to keep logs to improve synchronous

log update performance. The Rio cache [27] enabled by

uninterruptible power supply can also be used to log syn-

chronous metadata updates with high performance. How-

ever, even with NVM as cache, they may still suffer from

consistency issues from unanticipated cache line eviction

for metadata updates.

The promising feature of NVM has stimulated the de-

sign and implementation of several recent NVM file sys-

tems such as BPFS [4], SCMFS [44], Aerie [41], EXT4-

DAX [5, 6], NOVA [45] and HiNFS [25]. Generally, they

allow “execute in place” (XIP) to bypass the block layer

and page cache to reduce management overhead, or pro-

vide a buffer cache with in-place commit feature [20].

Wu and Zwaenepoel describe eNVy [43], a storage

system that directly presents flash memory as a linear

address space into memory bus using paging translation.

To overcome slow write performance of flash memory,

eVNy uses a small battery-backed SRAM as a buffer

to create a copy of the updated page to give the illu-

sion of in-place update. As the NVM nowadays could

achieve within one order of magnitude speed of DRAM,

SCMFS [44] and SIMFS [38] further directly map a file

data space into the virtual address space of a process.

These techniques are orthogonal to the design of SoupFS.

Data structures for NVM: Venkataraman et al. [40]

describe a persistent B+ tree implementation for NVM,

yet requires synchronous flushes at each update path.

NV-Tree [46] instead uses DRAM as indexes to re-

duce synchronous flushes cost, but requires scanning all

NVM in order to reconstruct the indexes upon a crash.

Mnemosyne [42] provides a transactional interface for

consistent updates of application data structures. SoupFS

eliminates cache flushes in the critical path of file system

operations and need no journaling for crash consistency.

Crash consistency and memory persistency mod-

els: Chidambaram et al. [2] propose separating order-

ing from durability and introduce optimistic crash con-

sistency by leveraging a hypothetical hardware mecha-

nism called asynchronous durability notification (ADN).

SoupFS can be made simple and efficient with ADN by

avoiding flushing already persistent cache lines.

Foedus [15] leverages the duality of volatile pages and

stratified snapshot pages to provide snapshots and crash

consistency in an NVM-based in-memory database. Most

of the pointers in Foedus are dual-page-pointers stored to-

gether. SoupFS uses a similar technique like “dual point-

ers” to present dual views of the file system metadata in

some structures like dentries. However, the latest pointers

for the latest view may be created on demand and stored

separately from the consistent pointer in SoupFS.

Pelley et al. [26] introduce the concept of memory per-

sistency as an analogy of memory consistency, summa-

rize a set of persistency models such as strict and epoch

persistency and additionally introduce strand persistency.

Kolli et al. [16] further describe a set of techniques like

deferring commit until lock release to different persis-

tency models to relax write orderings for transactions

whose read/write sets are known in advance. Unlike prior

work, SoupFS extends soft updates instead of logging for

ensuring the persistency models.

6. Conclusions

This paper describes SoupFS, a soft updates implemen-

tation for NVM. SoupFS is made simple by leveraging

byte-addressability to simplify dependency tracking and

enforcement. SoupFS is made fast through delaying most

synchronous flushes from the critical path thanks to the

efficient pointer-based dual views. Evaluations show that

SoupFS outperforms state-of-the-art NVMFS.

Acknowledgment

We thank our shepherd Liuba Shrira and the anonymous

reviewers for their constructive comments. This work is

supported in part by National Key Research & Develop-

ment Program of China (No. 2016YFB1000104), China

National Natural Science Foundation (No. 61572314,

61525204 and 61672345), Zhangjiang Hi-Tech program

(No. 201501-YP-B108-012) and CREATE E2S2.

USENIX Association 2017 USENIX Annual Technical Conference 729

References

[1] V. Aurora. Soft update, hard problems.

https://lwn.net/Articles/339337/, 2009.

[2] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Optimistic crash consistency.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 228–243. ACM,

2013.

[3] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Consistency without ordering. In

FAST, page 9, 2012.

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles, pages 133–146. ACM, 2009.

[5] Supporting filesystems in persistent memory.

https://lwn.net/Articles/610174/, 2014.

[6] Support ext4 on nv-dimms.

http://lwn.net/Articles/588218/, 2014.

[7] M. Dong, Q. Yu, X. Zhou, Y. Hong, H. Chen, and B. Zang.

Rethinking benchmarking for nvm-based file systems. In

Proceedings of the 7th ACM SIGOPS Asia-Pacific Work-

shop on Systems, pages 20:1–20:7, 2016.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,

D. Reddy, R. Sankaran, and J. Jackson. System software

for persistent memory. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, 2014.

[9] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,

S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized

file system dependencies. In SOSP, pages 307–320. ACM,

2007.

[10] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N.

Patt. Soft updates: a solution to the metadata update

problem in file systems. ACM Transactions on Computer

Systems (TOCS), 18(2):127–153, 2000.

[11] G. R. Ganger and Y. N. Patt. Metadata update performance

in file systems. In Proceedings of the 1st USENIX confer-

ence on Operating Systems Design and Implementation.

USENIX Association, 1994.

[12] R. Hagmann. Reimplementing the cedar file system using

logging and group commit. In SOSP. ACM, 1987.

[13] V. Henson. Khb: A filesystems reading list.

https://lwn.net/Articles/196292/, 2006.

[14] D. Hitz, J. Lau, and M. A. Malcolm. File system design for

an nfs file server appliance. In USENIX winter, volume 94,

1994.

[15] H. Kimura. Foedus: Oltp engine for a thousand cores

and nvram. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages

691–706. ACM, 2015.

[16] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch.

High-performance transactions for persistent memories. In

Proceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages and

Operating Systems, pages 399–411. ACM, 2016.

[17] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The linux implementation of a log-structured

file system. ACM SIGOPS Operating Systems Review,

40(3):102–107, 2006.

[18] E. Kustarz. Zfs-the last word in file systems.

http://www.opensolaris.org/os/community/zfs/, 2008.

[19] C. Lee, D. Sim, J. Hwang, and S. Cho. F2fs: A new file

system for flash storage. In 13th USENIX Conference on

File and Storage Technologies (FAST 15), pages 273–286,

2015.

[20] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer

cache and journaling layers with non-volatile memory. In

USENIX Conference on File and Storage Technologies,

pages 73–80, 2013.

[21] R. Liu and H. Chen. Ssmalloc: a low-latency, locality-

conscious memory allocator with stable performance scal-

ability. In Proceedings of the Asia-Pacific Workshop on

Systems, page 15. ACM, 2012.

[22] K. McKusick. Journaling soft updates. In BSDCan, 2010.

[23] M. K. McKusick, G. R. Ganger, et al. Soft updates: A

technique for eliminating most synchronous writes in the

fast filesystem. In USENIX Annual Technical Conference,

FREENIX Track, pages 1–17, 1999.

[24] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. Sfs:

random write considered harmful in solid state drives. In

FAST, page 12, 2012.

[25] J. Ou, J. Shu, and Y. Lu. A high performance file system

for non-volatile main memory. In European Conference

on Computer Systems, 2016.

[26] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persis-

tency. In ISCA, pages 265–276. ACM, 2014.

[27] C. PM, N. WT, S. Chandra, C. Aycock, G. Rajamani, and

D. Lowell. The rio file cache: Surviving operating system

crashes. In ASPLOS, 1996.

[28] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,

H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Iron file systems. In Proceedings of the Twen-

tieth ACM Symposium on Operating Systems Principles,

SOSP ’05, pages 206–220. ACM, 2005.

[29] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transac-

tional flash. In OSDI, pages 147–160, 2008.

[30] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree

filesystem. ACM Transactions on Storage (TOS), 9(3):9,

2013.

[31] M. Rosenblum and J. K. Ousterhout. The design and im-

plementation of a log-structured file system. ACM Trans-

actions on Computer Systems (TOCS), 10(1):26–52, 1992.

[32] A. M. Rudoff. Deprecating the pcom-

mit instruction. https://software.intel.com/en-

us/blogs/2016/09/12/deprecate-pcommit-instruction,

2016.

[33] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-

structured memory for dram-based storage. In Proceed-

730 2017 USENIX Annual Technical Conference USENIX Association

ings of the 12th USENIX Conference on File and Storage

Technologies (FAST 14), pages 1–16, 2014.

[34] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An

implementation of a log-structured file system for unix. In

Proceedings of the USENIX Winter 1993 Conference Pro-

ceedings on USENIX Winter 1993 Conference Proceed-

ings, pages 3–3. USENIX Association, 1993.

[35] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,

C. A. Soules, and C. A. Stein. Journaling versus soft up-

dates: Asynchronous meta-data protection in file systems.

In USENIX Annual Technical Conference, General Track,

pages 71–84, 2000.

[36] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,

C. A. N. Soules, and C. A. Stein. Journaling versus soft up-

dates: Asynchronous meta-data protection in file systems.

In Usenix ATC, 2000.

[37] D. Sengupta, Q. Wang, H. Volos, L. Cherkasova, J. Li,

G. Magalhaes, and K. Schwan. A framework for emulating

non-volatile memory systemswith different performance

characteristics. In Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering,

pages 317–320. ACM, 2015.

[38] E. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang. De-

signing an efficient persistent in-memory file system. In

IEEE Non-Volatile Memory System and Applications Sym-

posium, pages 1–6, 2015.

[39] Silicon Graphics International Corp. Xfs:

A high-performance journaling file system.

http://oss.sgi.com/projects/xfs, 2012.

[40] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Camp-

bell, et al. Consistent and durable data structures for non-

volatile byte-addressable memory. In FAST, volume 11,

pages 61–75, 2011.

[41] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,

P. Saxena, , and M. M. Swift. Aerie: Flexible file-system

interfaces to storage-class memory. In Proceedings of the

Ninth Euro- pean Conference on Computer Systems (Eu-

roSys 14), page 14:114:14, 2014.

[42] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

Lightweight persistent memory. ACM SIGPLAN Notices,

46(3):91–104, 2011.

[43] M. Wu and W. Zwaenepoel. envy: A non-volatile, main

memory storage system. In ASPLOS, 1994.

[44] X. Wu and A. Reddy. Scmfs: a file system for storage class

memory. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage

and Analysis, page 39. ACM, 2011.

[45] J. Xu and S. Swanson. Nova: A log-structured file sys-

tem for hybrid volatile/non-volatile main memories. In

USENIX Conference on File and Storage Technologies,

pages 323–338, 2016.

[46] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He.

Nv-tree: Reducing consistency cost for nvm-based single

level systems. In 13th USENIX Conference on File and

Storage Technologies (FAST 15), pages 167–181, 2015.

[47] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the performance gap between systems with and

without persistence support. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 421–432. ACM, 2013.

USENIX Association 2017 USENIX Annual Technical Conference 731

SmartMD: A High Performance Deduplication Engine with Mixed Pages

Fan Guo1, Yongkun Li1,2, Yinlong Xu1,3, Song Jiang4, John C. S. Lui5
1University of Science and Technology of China

2Collaborative Innovation Center of High Performance Computing, NUDT
3Anhui Province Key Laboratory of High Performance Computing, USTC

4University of Texas, Arlington
5The Chinese University of Hong Kong

Abstract
In hypervisor-based virtualization environments, transla-
tion lookaside buffers (TLBs) misses may induce two-
dimensional page table walks, which may incur a long
access latency, and this issue becomes worse with ever
increasing memory capacity. To reduce the overhead
of TLB misses, large pages (e.g., 2M-pages) are widely
supported in modern hardware platforms to reduce the
number of page table entries. However, memory man-
agement with large pages can be inefficient in dedupli-
cation, leading to low utilization of memory, which is a
precious resource for a variety of applications.

To simultaneously enjoy benefits of high performance
by accessing memory with large pages (e.g., 2M-pages)
and high deduplication rate by managing memory with
base pages (e.g., 4K-pages), we propose Smart Memory
Deduplciation, or SmartMD in short, which is an adap-
tive and efficient management scheme for mixed-page
memory. Specifically, we propose two lightweight
schemes to accurately monitor pages’ access frequency
and repetition rate, and present a dynamic and adap-
tive conversion scheme to selectively split or reconstruct
large pages. We implement a prototype system and con-
duct extensive experiments with various workloads. Ex-
periment results show that SmartMD can simultaneously
achieve high access performance similar to systems us-
ing large pages, and achieves a deduplication rate similar
to that applying aggressive deduplication scheme (i.e.,
KSM) at the same time on base pages.

1 Introduction

In modern computers, processors use page tables to
translate virtual addresses to physical addresses. To ac-
celerate the translation, TLB was introduced to cache
virtual-to-physical address mappings. While TLB is
critical to system’s performance, its misses carry high
penalty for accessing the page table in memory. In par-

ticular, in a system employing hypervisor-based virtual-
ization, the hypervisor and guests maintain separate page
tables, and TLB misses will lead to high-latency two-
dimensional page table walks. Previous works [13, 17]
show that this is often the primary contributor to the per-
formance difference between virtualized and bare-metal
systems. In fact, the overhead of TLB misses has become
one of the primary bottlenecks of memory access.

Moreover, while memory size becomes increasingly
larger, TLB’s capacity cannot grow at the same rate as
DRAM. To reduce TLB miss ratio, large pages are in-
troduced in many modern hardware platforms to reduce
the number of page table entries required to cover a large
memory space. For example, the X86 platform supports
2M-page and 1G-page, while the ARM platform sup-
ports 1M-page and 16M-page [9].

It is important to note that different VMs on the same
host machine often run similar operating systems (OSes)
or applications. It is highly likely that there exists a great
deal of redundant data among different VMs [14]. Thus,
we can save memory space by removing redundant data
and sharing only a single copy of the data among differ-
ent VMs (also known as memory deduplication). How-
ever, for memory systems with large pages (e.g., 2M-
pages), our experiments show that it is hard to find du-
plicate large pages even the memory contains a large
amount of redundant data. In other words, deduplication
in unit of the large page is ineffective and usually saves
only a small amount of memory space.

To enable more effective deduplication, current OSes
exploit an aggressive deduplication approach (ADA),
which aggressively splits large pages (e.g., 2M-pages)
to base pages (e.g., 4K-pages) and performs deduplica-
tion among base pages [22]. However, after the splitting,
the memory space covered by translation entries in the
TLB can be significantly reduced. Although ADA saves
more memory space, accessing the split large pages sig-
nificantly increases TLB miss ratio and degrades access
performance. Moreover, the reconstruction of split large

USENIX Association 2017 USENIX Annual Technical Conference 733

pages is not well supported in current OSes. In a sys-
tem that keeps running, there are increasingly more split
pages, leading to continuous degradation of memory ac-
cess performance.

In this paper, our objective is to maximize memory
saving with deduplication while keeping high memory
access performance on a server hosting multiple VMs. In
particular, we propose SmartMD, to maximize memory
saving while keeping high performance of memory ac-
cess. The main idea is to split cold large pages with high
repetition rate to save memory space, and at the same
time, to reconstruct split large pages when they become
hot to improve memory access performance. The key
challenges are how to efficiently monitor repetition rate
and access frequency of pages, and how to dynamically
conduct conversions between large pages and base pages
so as to achieve both high deduplication rate and high
memory access performance. The main contributions of
this work can be summarized as follows.

• We propose two lightweight schemes to monitor
pages on their access frequency and repetition rate.
In particular, we introduce counting bloom filters
and sampling into the monitor such that it can ac-
curately track pages’ status with very low overhead.
Additionally, we propose a labeling method to iden-
tify duplicate pages during the monitoring, which
can greatly accelerate the deduplication process.

• We propose an adaptive conversion scheme which
selectively splits large pages to base pages, and also
selectively reconstructs split large pages according
to the access frequency and repetition rate of these
pages and memory utilization. With this bidirec-
tional conversion, we can take both benefits of high
memory access performance with large pages and
high deduplication rate with base pages.

• We implement a reconstruction facility by selec-
tively gathering scattered subpages of a split large
page, and then carefully re-create descriptor and
page table entry of the split large page. As a result,
the memory access performance can be improved
by reconstructing split large pages which turn hot.

• We implement a prototype and conduct extensive
experiments to show the efficiency of SmartMD.
Results show that SmartMD can simultaneously
achieve high memory access performance similar to
that of large page-based systems, and high dedupli-
cation rate similar to that produced by aggressive
deduplication schemes, such as KSM.

The rest of the paper is organized as follows. We in-
troduce the background of memory virtualization, large
page management, and current aggressive deduplication

technology in Section 2. We motivate the design for im-
proving the aggressive deduplication policy in Section 3.
In Section 4, we discuss the design of various techniques
used in SmartMD. In Section 5, we describe the experi-
ment setup and present the evaluation results to show the
efficiency of SmartMD. Section 6 discusses the related
work and Section 7 concludes the paper.

2 Background

2.1 Memory Virtualization
To efficiently utilize limited memory space, a high-
performance server hosting virtual machines (VMs) usu-
ally dynamically allocates its memory pages to VMs on
demand. Because of the dynamic allocation, physical
addresses of the memory pages allocated to a VM are
often not contiguous. So in a hypervisor-based virtual-
ized system, a VM uses guest’s virtual addresses (GVA)
and guest’s physical addresses (GPA) for its memory ac-
cess. GPA are logical addresses on the host and they are
mapped to host physical addresses (HPA). To improve
the address translation performance from GPA to HPA,
extended page tables (named by Intel) or nested page ta-
bles (named by AMD) [12] have been introduced. With
the extended page tables 1, a VM will carry out a two-
dimensional page walk to access its data with two steps.
First, a GVA is translated to its corresponding GPA using
guest’s page tables. Second, the GPA is further translated
to its corresponding HPA using extended page tables.

When using base pages (i.e., 4KB pages in X86-64
system), both the guest’s page table and extended page
table are composed of four levels. Accessing each level
of the guest’s page table will trigger the traversal of
the extended page table. In the worst case, a two-
dimensional page walk will require 24 memory refer-
ences [12, 23], which is apparently unacceptable. A
commonly practice to accelerate the address translation
is to cache frequently used global mapping from GVA to
HPA in the TLB [27].

However, when the memory becomes increasingly
large the page tables consistently grow, and as a result
the hit ratio of TLB reduces. To increase the hit ratio
of TLB and further speedup the address translation in a
system with a large amount of memory, large pages have
been widely adopted in today’s systems.

2.2 Advantage of Using Large Pages
A large page is composed of a fixed number of contigu-
ous base pages. For example, in a X86-64 system, OS

1In this paper we will use Intel’s extended page tables as an ex-
ample, though the design and conclusions derived from the evaluation
results are also applicable to the system using nested page tables.

734 2017 USENIX Annual Technical Conference USENIX Association

Benchmark Host: Base
Guest: Large

Host: Large
Guest: Base

Host: Large
Guest: Large

SPECjbb 1.06 1.12 1.30
Graph500 1.26 1.34 1.68
Liblinear 1.13 1.14 1.37
Sysbench 1.07 1.09 1.20
Biobench 1.02 1.18 1.37

Table 1: Benchmark performance with selective use of
large pages. Details of the benchmark programs are de-
scribed in Section 5. The performance is normalized
against the one for running the benchmark on the system
using base pages in both guest and host OSes.

uses one 2MB-page entry to cover a contiguous 2MB
region of memory for its address translation, instead of
using 512 4KB-page entries to cover it. In a virtual en-
vironment, large pages can be supported in both guest’s
page tables and extended page tables [12]. With large
pages, the page table becomes significantly smaller, and
much larger memory space can be covered by a TLB ta-
ble of the same size. In this way, using large pages helps
to increase TLB hit ratio for global mappings. In partic-
ular, it reduces maximum number of memory references
in a 2D page walk after a TLB miss from 24 to 15 [12].

To show improvement of memory access performance
with large pages, we run experiments with various
benchmarks in a KVM virtual machine. Detailed con-
figuration of the virtual machine is described in Section
5, and we present the experimental results in Table 1.
We can see that the performance can be significantly im-
proved for most of the benchmarks even if we use large
pages only in guest’s OS or in host’s OS. In particular,
if we use large pages in both OSes, the performance of
Graph500 is improved by 68% over the baseline system
in which only base page is used.

2.3 Impact of Using Large Pages on Mem-
ory Deduplication

Usually there is a great deal of duplicated data residing
in the memory of a virtualized machine [14]. Dedu-
plication among different VMs will lower the memory
demand and keep memory from being overcommitted.
However, even though there can be plenty of duplicate
data in the memory, there can be very few duplicate large
pages. While the deduplication removes duplicate data
at the granularity of page, it may not be effective with
the use of large pages. Our experiments show that ADA
can save 13.7% - 47.9% of used memory for the selected
benchmarks, but deduplication in unit of large page saves
only 0.8% - 5.9% of used memory (see Table 2). That
is, deduplication among different VMs in unit of large
page can save very little memory. Thus, major OSes sup-
port an aggressive deduplication approach (ADA), which

splits a large page into base pages and then applies dedu-
plication on base pages [22], such as KSM in Linux.

Policy Benchmark Memory Saving Performance
Large Page
w/o ADA

Graph500 0.37 GB(3.4%) 1
SPECjbb2005 0.40 GB(5.9%) 1

Liblinear 0.32 GB(2.0%) 1
Sysbench 0.09 GB(0.8%) 1
Biobench 0.20 GB(1.4%) 1

Large Page
with ADA

Graph500 5.18 GB(47.9%) 0.695
Specjbb2005 1.83GB(26.9%) 0.922

Liblinear 3.79 GB (23.7%) 0.846
Sysbench 2.83 GB(18.0%) 0.867
Biobench 1.88 GB(13.7%) 0.910

Table 2: Memory saving and performance of large-page-
based systems with/without running ADA (aggressive
deduplication approach), which splits all large pages.
When ADA is not used, deduplication is applied at the
large-page granularity. Memory saving is normalized
against the memory demand in the system without us-
ing any deduplication. The performance is normalized
against that for the system using large pages without ap-
plying ADA.

3 Motivations

3.1 Aggressive Deduplication
When a large page contains duplicate subpages, ADA
will split it into base pages and then perform dedupli-
cation on these base pages. Although ADA has the po-
tential to save significant amount of memory space, the
page tables become much larger, which will reduce the
hit ratio of TLB and increase memory access time. The
worst scenario of ADA is that it splits a large page that
has high access frequency and low repetition rate (or the
percentage of duplicate subpages belonging to the large
page). And it compromises memory access performance
and produces little memory saving.

We carry out experiments to show the statistics of
memory pages. Fig. 1 shows the distributions of large
pages with high access frequency or high repetition rate
of a VM running SPECjbb. From Fig. 1(a), we can see
that the SPECjbb benchmark constantly accesses some
large pages throughout its entire run time while other
large pages are rarely accessed. Fig. 1(b) shows that
majority of large pages with high repetition rate appears
only in few memory regions. Comparing Fig. 1(a) with
Fig. 1(b), we find that many large pages have high access
frequency but few duplicate subpages. In the meantime,
there exist large pages with many duplicate subpages and
low access frequency. In short, with ADA that selects
large pages for splitting without considering page access
frequency and repetition rate, the benefit of its limited
memory saving can be more than offset by the degraded
memory access performance for many applications.

USENIX Association 2017 USENIX Annual Technical Conference 735

Address (MB)
0 512 1024 1536 2048R

u
n
ti
m

e
 (

s
)

0
80

160

(a) Location of large pages with high access frequency.

Address (MB)
0 512 1024 1536 2048R

u
n
tim

e
 (

s)

0
80

160

(b) Location of large pages with repetition rate higher than 1/8.

Figure 1: Memory usage of SPECjbb.

We experimentally compare memory saving and mem-
ory access performance in the system using large page
and ADA. The results are shown in Table 2. With ADA,
the system saves 13.7%-47.9% of memory space but
is slowed down by up to 30.5% due to increased TLB
misses after splitting large pages. Specifically, the per-
centage of large pages drops to 16% on average. On the
other hand, retaining large pages preserves high mem-
ory access performance, but it loses opportunities of re-
ducing memory usage. Thus, current memory manage-
ment scheme is inadequate for virtualized systems run-
ning memory-intensive applications.

To this end, we propose SmartMD, a selective dedupli-
cation scheme that assigns each large page a priority of
being split for potential deduplication according to its ac-
cess frequency and repetition rate. SmartMD splits large
pages with high repetition rate and low access frequency
and performs deduplication among their subpages to save
memory while maintaining high access performance.

3.2 Difficulties of Converting Base Pages to
Large Pages

Major OSes support splitting of large pages to produce
more deduplication opportunities. However, the recon-
struction of base pages back into large pages is not
well supported [22, 8]. In particular, only large pages
whose base pages are not shared with those in other large
pages can be reconstructed. Furthermore, the reconstruc-
tion may substantially compromise system performance.
Meanwhile, instead of releasing free pages back to the
host, a VM often keeps these pages for its incoming ap-
plications. Thus, the conversion of base pages to large
pages in current OSes may cause incremental degra-
dation of memory access performance. In this work,
we propose an approach to efficiently reconstruct large
pages to improve memory access performance.

System memory

Large
Pages

Base
Pages

Monitor

Selector

Pages
Characteristics

Candidate
Pages

Convertor

Figure 2: Illustration of SmartMD’s Architecture.

3.3 The Challenges
Monitoring pages’ statuses. SmartMD needs to track
pages’ access frequency and repetition rate, which are
not directly disclosed by current OSes. Meanwhile,
monitoring these parameters will introduce additional
overheads. Thus, we need to design an efficient moni-
toring mechanism with low overhead.

Choosing right pages. Splitting large pages into base
pages and reconstructing base pages into large pages
may have big negative impacts on memory access per-
formance. SmartMD must carefully select right pages
to split and reconstruct for maximal efficacy and min-
imal side effect. Furthermore, applications’ demands
on memory and CPU may change dynamically, so
SmartMD needs to identify current performance bottle-
neck and resource constraint and to provide an adap-
tive conversion mechanism between large pages and base
pages to alleviate the situation.

Reconstructing large pages. SmartMD provides an ap-
proach to reconstruct base pages into large pages. How-
ever, implementation of the approach can be challeng-
ing, because splitting a large page not only changes its
descriptor and page table entries of its subpages, but also
breaks the contiguity of its subpages. Even worse, some
subpages might have been freed after splitting, which im-
poses great difficulty on the reconstruction process.

4 Design of SmartMD

In this section we will overview the design of SmartMD
followed with design details on each of its components.

4.1 Overview of SmartMD
As shown in Fig. 2, SmartMD is composed of three mod-
ules, Monitor, Selector, and Converter. In the Monitor,
we provide two lightweight schemes to track number of

736 2017 USENIX Annual Technical Conference USENIX Association

Sub-
page

...

Large Page

Access Bit

Page Table
Entry

Counting Bloom Filter

Sampling

Checking

Repetition
Rate

Duplicate
Labels

 Access
Frequency

Monitor

Sampled
Subpages

Figure 3: Design of the Monitor.

duplicate subpages, or the repetition rate for large pages.
This information will be used by the Selector to select
large pages for splitting or base pages for reconstruc-
tion. In particular, we propose an algorithm which dy-
namically performs the selection according to the current
memory utilization, data access frequency, and large-
page repetition rate. Finally, the Converter performs the
conversion between large pages and base pages.

4.2 The Monitor

The Monitor uses a thread to periodically scan pages to
measure memory utilization as well as page access fre-
quency and repetition rate. Fig. 3 illustrates the tech-
niques used in the Monitor and its workflow.

Monitoring memory utilization and page access fre-
quency. We note that the OS already provides a utility to
monitor and disclose the size of free memory space in a
system. However, it does not provide a utility to directly
monitor and disclose page access frequency. To address
this issue, SmartMD periodically scans access bit of each
page to gauge pages’ access frequency. It clears the ac-
cess bits of all pages at the beginning of a monitoring
period, and checks each of them after check interval sec-
onds. If the access bit of a page is one, which is set due
to a reference to the page in the period, SmartMD will in-
crement its access frequency by one. Otherwise, the page
was not accessed in the last period and its access fre-
quency is decremented by one. If a large page has been
split, we check the frequencies of its subpages and see if
any of them is larger than zero. If yes, we increment fre-
quency of the the original large page by one. However,
we keep the frequency value always in the range from 0
to N, where N is a positive integer, and will not change
it beyond the range. We initialize a page’s frequency to
N/2 when the system starts.

Detecting repetition rate of pages. To measure the rep-

etition rate of a large page (or the percentage of dupli-
cate base pages in the large page), existing approaches
use comparison trees to identify duplicate pages [11].
However, they carry high CPU overhead. In contrast,
SmartMD uses a counting bloom filter for an approxi-
mate identification.

The counting bloom filter is a one-dimensional vec-
tor, and each of its entries is a 3-bit counter. As shown
in Fig. 4, when scanning a large page, SmartMD uses
the counting bloom filter to check whether its subpages
are duplicates or not. Specifically, when checking a sub-
page, SmartMD applies three hash functions on the sub-
page’s content to calculate the indexes of its correspond-
ing counters. For each subpage, SmartMD also records
its signature, which is produced by applying a hash func-
tion on its content and is used to represent the page. If a
page is checked for the first time (i.e., its recorded signa-
ture is not found), SmartMD will increase its correspond-
ing counters by one. Otherwise, if all of the counters are
greater than one, we consider this page as a duplicate
one. If a page is modified, SmartMD decrements each
of its current counters by one and increments each of its
new counters by one. In addition, if a page is released,
SmartMD also decrements each of its counters by one.

... 1 2 0 ... 4 1 ... 5 ... 3 ...

Hash Functions

Page1 Page2

Page1
(Duplicated)

Page2
(Unduplicated)

Figure 4: Identification of duplicate pages by using a
counting bloom filter.

To make a trade-off between memory overhead and
identification accuracy, SmartMD sets the size of the
counting bloom filter, in terms of counters in it, as eight
times of the number of base pages in the system. With
this configuration, SmartMD can ensure that the false
positive of the bloom filter is less than 3.06% [1].

SmartMD adopts a sampling-based approach to fur-
ther accelerate the identification. Specifically, the Moni-
tor first samples some subpages in a large page and cal-
culates their hash values. It then checks whether these
sampled subpages have been modified during the previ-
ous monitoring time period by comparing their current
signatures with the ones on record. If a large page has
been modified or is scanned for the first time during the
sampling process, the Monitor will scan all the subpages

USENIX Association 2017 USENIX Annual Technical Conference 737

to update their signatures and insert them into the count-
ing bloom filter. Meanwhile, SmartMD calculates the
repetition rate of the large page. Otherwise, the Moni-
tor calculates the repetition rate only among the sampled
subpages, instead of all subpages in the large page, so
as to reduce the overhead. For the subpages identified
by the Monitor as duplicates, SmartMD labels them as
a hint to the deduplication component to improve its ef-
ficiency. Specifically, when a large page is being split,
SmartMD uses KSM to deduplicate redundant pages.
KSM searches the labeled pages in the comparison trees
to speed up the deduplication process. SmartMD orga-
nizes each large page’s metadata about its access fre-
quency and repetition rate in a linked list.

Our sampling-based detecting algorithm can help
to substantially reduce the CPU overhead for most
workloads. Experiments show that the ratio of mis-
identification of duplicate pages is less than 5% by sam-
pling only 25% subpages in a large page. In particu-
lar, the counting bloom filter improves the efficiency of
SmartMD on three aspects. First, it helps SmartMD to
obtain approximate repetition rate of large pages with
a small overhead. By using the repetition rate, we can
avoid splitting large pages with low repetition rate. Sec-
ond, it labels identified duplicate pages to speed up the
deduplication process of SmartMD. Third, it reduces the
number of nodes in the deduplicaiton trees by only split-
ting large pages with high repetition rate.

4.3 The Selector
To improve memory access performance, the Selector
chooses candidate large pages for splitting based on two
metrics, namely access frequency and repetition rate.
Identifying cold and hot pages. Upon knowing pages’
access frequency from the Monitor module, the Selector
divides all pages into three categories, cold, warm, and
hot, with two thresholds, T hrescold and T hreshot . If a
large page’s frequency value is smaller than T hrescold ,
it is designated as cold. If its frequency value is greater
than T hreshot , it is a hot page. All other pages are
designated as warm. We denote the gap between the two
thresholds (T hreshot � T hrescold) as lengthwarm. Note
that the state of warm is a transition one between the
cold and hot states. We introduce it to avoid switching
between the hot and cold states too often.

Identifying duplicate pages. We set a repetition rate
threshold, T hresrepet , for the Selector to select candidate
pages. In particular, the Selector only selects large pages
whose percentages of duplicate subpages are more than
T hresrepet for splitting, and we name these pages as
duplicate large pages or simply duplicate pages. It is
important to set T hresrepet properly so as to obtain a

Remapped
Subpages

Normal
Subpages

Shared
Subpages

Normal
Subpages

Split Large Page

Normal
Subpages

Normal
Subpages

Normal
Subpages

Normal
Subpages

Migrating Breaking

Normal
Subpages

Normal
Subpages

Normal
Subpages

Normal
Subpages

Writing Page Descriptor
and Page Table

 Reconstructed Large Page

...

...

... ...

... ...

...

Figure 5: Process of reconstructing split large pages.

high deduplication rate with minimal number of split
large pages. In our experiments, we find that by setting
T hresrepet = 1/8, SmartMD can deduplicate more than
95% of duplicate subpages and split 40% fewer pages
than traditional aggressive deduplication approach.

Selector Workflow. When scanning a large page, the
Selector first reads its access frequency. If this page has
been designated as cold, the Selector will further deter-
mine whether its repetition rate is greater than T hresrepet .
If yes, this page is ready for splitting. On the other hand,
when selecting split large pages for reconstruction, the
Selector chooses only hot pages as candidates.

4.4 The Converter
The converter is responsible for the conversion between
large pages and base pages, including the splitting of
large pages and the reconstruction of split pages. The
splitting process can be realized by calling a system API,
while OSes do not well support the reconstruction func-
tionality. We implement a utility in SmartMD to recon-
struct split large pages. Fig. 5 illustrates this process,
which consists of the following three steps.

(1) Gathering subpages. To reconstruct a split large
page, we need to ensure that all of its subpages cur-
rently reside in memory and are not deduplicated
with other pages. If some subpages have been dedu-
plicated, we generate a duplicate copy for each of
these subpages, and migrate all subpages to a con-
tiguous memory space before reconstructing.

(2) Writing page descriptor. Once all subpages of a
split large page have been gathered, we re-create
page descriptor of the large page from the page de-
scriptors of all subpages.

(3) Writing page table. We use a single page entry to
map the reconstructed large page, and invalidate old
entries about the original subpages.

738 2017 USENIX Annual Technical Conference USENIX Association

As the cost of gathering subpages for reconstruction
of large pages can be high, we propose two gathering
mechanisms to reduce the number of subpages that have
to be migrated. Specifically, if most of the subpages of
a large page still stay in their original physical mem-
ory locations, we conduct in-place gathering, in which
we migrate the subpages that have been relocated back
to their original memory locations after migrating pages
currently occupying the locations elsewhere. Otherwise,
if most subpages of a split large page have been relocated
from their original memory locations, we conduct out-of-
place gathering, in which a contiguous memory space of
the size of a large page is allocated and all of the large
page’s subpages are migrated into the space. Because of
existence of spatial locality in the memory access, it is
expected that for a particular workload either a high per-
centage of subpages of a split large page stay in the orig-
inal locations or a high percentage of them do not. Our
experiments show that for most benchmarks we tested,
the percentages are larger than 90%. By adaptively ap-
plying the gathering mechanisms, we can significantly
reduce gathering cost and the reconstruction overhead.

Adaptive page conversion. To reduce the cost of con-
version between large pages and base pages, we develop
an adaptive conversion scheme to improve performance
of SmartMD based on the ratio of allocated memory
size to total memory size, i.e., utilization of the memory
space. The idea is that if the system has sufficient free
memory space, we use only large pages for high memory
access performance. On the other hand, if memory uti-
lization becomes high and memory page swapping may
occur, we split large pages into base pages for a high
deduplication rate. Specifically, the adaptive page con-
version scheme uses four parameters to guide its con-
version decision, including two thresholds about mem-
ory utilization (memlow and memhigh) and two thresholds
about access frequency (T hrescold and T hreshot). In each
monitoring period, we first check the memory utilization,
and then tune the parameter T hrescold accordingly so as
to dynamically identify pages to be split. In particular,
if the memory utilization is less than memlow, we decre-
ment T hrescold by one to make more pages stay in the
warm or hot states and keep them from being split for
high memory access performance. If the memory uti-
lization is greater than memhigh, indicating that memory
is in high demand, we increase T hrescold by one to allow
more large pages to be considered as cold pages and be
eligible for being split so as to achieve higher dedupli-
cation rate. Similar to a page’s frequency value, we also
keep T hrescold in the range from 0 to N, where N is a
positive integer, in the process.

5 Evaluation

To show its efficacy and efficiency, we implement a
SmartMD’s prototype on Linux 3.4 and conduct ex-
periments using QEMU to manage KVM. Our experi-
ments run on a server with two Intel Xeon E5-2650 v4
2.20GHz processors, 64GB RAM, and a 2TB WD hard
disk (WD20EFRX). Both the host and guest OSes are
Ubuntu 14.04. We boot up four VMs in parallel, each
of which is assigned one VCPU and 4GB RAM, and
all VMs are hosted on one physical CPU. In our exper-
iments, we focus only on 2MB and 4KB pages, which
are commonly used in most applications. We run the fol-
lowing benchmark programs in each VM. Their memory
demands without deduplication are listed in Table 3.

• Graph500 [2]. Graph500 generates and com-
presses large graphs. It also runs breadth-first
search on the graph. We run Graph500 in each guest
VM with the same scale (22) and edgefactor (16).
We generate graphs initialized differently to ensure
that graphs in different VMs are different. We use
average number of edges traversed in a VM per sec-
ond as the performance metric of the benchmark.

• SPECjbb [6]. SPECjbb is a benchmark for evaluat-
ing performance of server-side Java business appli-
cations. We run SPECjbb in each VM and use the
average bops (business operations per second) of all
VMs as its performance metric.

• Libliner [5]. Libliner is a suite of linear classifiers
for a data set with millions of instances and features.
We run SVM, one benchmark program in Liblinear,
on the urlcombined dataset. The performance met-
ric is average execution time of the program running
in different VMs.

• Sysbench [7]. Sysbench is a multi-threaded bench-
mark for database. We run sysbench on Mysql by
storing all data in the buffer pool of Mysql. We use
the average number of queries performed by a VM
per second as the performance metric.

• Biobench [10]. Biobench is a suite of bioinformat-
ics applications. We run Mummer, a program in
Biobench on the human-chromosomes dataset [4],
and measure its average execution time in different
VMs.

Graph-
500

SPECjbb-
2005

Lib-
linear

Sys-
bench

Bio-
bench

2.7GB 1.7GB 4.0GB 2.93GB 3.42GB

Table 3: Memory usage of each VM w/o deduplication.
We compare SmartMD with three other schemes on

both performance and memory usage. The first one is

USENIX Association 2017 USENIX Annual Technical Conference 739

KSM, which uses the aggressive deduplication approach
to split all large pages to achieve the best deduplication
rate. The second one is named no-splitting, which pre-
serves all large pages and performs deduplication in unit
of large page to achieve the best access performance.
The third one is Ingens [22], which is the state-of-the-art
scheme using mixed pages to make a trade-off between
access performance and memory saving. Default values
of the parameters used in the experiments are listed in Ta-
ble 4. We adopt the same rate at which for the schemes to
scan and identify duplicate pages for a fair comparison.

Parameter Value Description
monitor period 6s scanning period of the monitor-

ing thread
check interval 2.6s interv. of checking access bits
T hresrepet 1/8 thresh. of repetition rate
memhigh 90% thresh. of high mem. utilization
memlow 80% thresh. of low mem. utilization
page to scan 1024 number of pages scanned by

dedup-thread in each scan
sleep millisecs 20ms time to sleep after each scan of

the dedup-thread

Table 4: Default parameter setting.
Note that with the adaptive page conversion scheme

described in Section 4.4, large page will not be split for
deduplication if there is a sufficient amount of free mem-
ory. In the evaluation of SmartMD on its effectiveness
and efficiency (see Section 5.1⇠5.4), we use fixed non-
zero T hreshcold and T hreshhot , instead of the adaptive
conversion scheme, to make sure that SmartMD comes
into effect even when the server has abundant free mem-
ory. Specifically, we set the range of a page’s access
frequency from 0 to 4. Meanwhile, instead of allowing
T hreshcold to be decremented to 0 due to low memory
utilization, we fix it at 1 so that large pages eligible for
splitting may still be produced even if the system has
enough free memory. In addition, we set T hreshhot to
3. We set initial access frequency of each page to 2, ly-
ing between T hreshcold and T hreshhot , to ensure that it
has a chance to be classified as either hot or cold page.

To evaluate effectiveness of the adaptive conver-
sion scheme, we run experiments with SmartMD in a
memory-constrained system (Section 5.5). In particu-
lar, we limit the host’s memory space by running an in-
memory file system (hugetlbfs [3]) to occupy a certain
amount of memory space on the host. Pages held by
hugetlbfs cannot be deduplicated or swapped out. In this
way, we can flexibly adjust size of the host’s memory
available for running benchmark programs.

5.1 Overhead of SmartMD
CPU overhead. We first run Graph500 to compare the
CPU overhead of SmartMD with the other two memory

Monitor thread Dedup thread Total
KSM 0 33.5% 33.5%
Ingens 5.3% 21.3% 26.6%

SmartMD 13.1% 11.9% 25.0%

Table 5: Average CPU utilization sampled in every sec-
ond.

deduplication schemes, KSM and Ingens. The results are
shown in Table 5. Both the monitoring thread and dedu-
plication thread use additional CPU cycles. KSM uses
aggressive deduplication without tracking status of the
pages. However, without knowing whether a large page
contains duplicate subpage(s), it has to scan all large
pages and in each large page determines whether each of
its subpages is a duplicate, leading to high CPU overhead
in its deduplication. As shown in Table 5, KSM spends
more CPU time than Ingens and SmartMD by 26% and
34%, respectively. SmartMD takes more CPU time on
monitoring each large’s access frequency and repetition
rate. In contrast, Ingens monitors only access frequency.
Accordingly, the monitoring thread of SmartMD induces
7.8% higher CPU overhead than that of Ingens. With
the knowledge on access frequency and repetition rate
of each large page, as well as on which of its subpage
are duplicates, SmartMD can more efficiently and pre-
cisely locate large pages for effective deduplication. As
shown Table 5, SmartMD’s deduplication thread spends
9.4% lower CPU time than that of Ingens. Comparison
of deduplication effectiveness with Ingens will be pre-
sented in Section 5.3.
Memory overhead. SmartMD uses 3 bits to store
each of the eight counting bloom filters for each base
page. Since the size of a base page is 4KB, the ra-
tio of extra memory space used to store the filters is
only (3bits⇥ 8)÷ (4KB) = 3/212. For each large page,
we use 32B to store its access frequency and repetition
rate, as well as some necessary pointers. Since the size
of a large page is 2MB, SmartMD requires additional
32B÷2MB= 1/216 of the memory space for large pages.
For example, 16 GB memory is used during the running
of Libliner on four VMs. SmartMD needs about 12MB
to store bloom filers for base pages and 0.25MB to store
metadata for large pages. Apparently the memory over-
head of SmartMD is negligible.

5.2 Performance and Memory saving
In this section, we compare SmartMD with two com-
monly used mechanisms in major OSes, which are KSM
or no-splitting, using different benchmark programs on
their performance and memory usage. Comparison with
Ingens will be presented in Section 5.3. By aggressively
splitting any large pages to maximize deduplication op-
portunities, KSM can achieve the highest memory sav-

740 2017 USENIX Annual Technical Conference USENIX Association

No
-sp
litt
ing KS

M

Sm
art
MD
-1s

Sm
art
MD
-2.
6s

Pe
rf
or
m
an
ce

0

.5

1
Graph500

No
-sp
litt
ing KS

M

Sm
art
MD
-1s

Sm
art
MD
-2.
6s

0

.5

1
SPECjbb2005

No
-sp
litt
ing KS

M

Sm
art
MD
-1s

Sm
art
MD
-2.
6s

0

.5

1
Liblinear

No
-sp
litt
ing KS

M

Sm
art
MD
-1s

Sm
art
MD
-2.
6s

0

.5

1
Sysbench

No
-sp
litt
ing KS

M

Sm
art
MD
-1s

Sm
art
MD
-2.
6s

0

.5

1
Biobench

Figure 6: Performance of the benchmarks under various deduplication policies.

Time (sec)
0 100 200

M
em

or
y

sa
vi

ng
 (G

B
)

0

2

4

6
Graph500

Time (sec)
0 100 200

0

1

2
SPECjbb2005

Time (sec)
0 100 200

0

2

4
Liblinear

Time (sec)
0 100 200

0

1

2

3
Sysbench

Time (sec)
0 100 200

0

1

2
Biobench

SmartMD-1.0s SmartMD-2.6s KSM No-splitting

Figure 7: Memory saving under various deduplication policies.

ing. On the other hand, no-splitting represents an op-
timization only on performance by preserving all large
pages. Here we study the trade-off made by SmartMD
between performance and memory saving by comparing
it with the KSM and no-splitting schemes.

We first show performance of the benchmarks by using
SmartMD, KSM and no-splitting in Fig. 6, where we nor-
malize the performance, whose metrics are introduced in
the description of the benchmarks in Section 5, against
that of the no-splitting scheme. In the experiments, we
use two different check interval values (1.0s and 2.6s)
in SmartMD to vary the time period between reseting
access bits and its next reaching of the bits. Accord-
ingly, SmartMD is named SmartMD-1s and SmartMD-
2.6s, respectively. Fig. 6 shows that for the benchmarks
SmartMD achieves nearly the same performance as no-
splitting by using a larger check interval. In contrast,
SmartMD improves KSM’s performance by up to 42.7%
by only spliting necessary large pages.

Experiment results on memory saving are shown in
Fig. 7. Because no-splitting does not perform splitting
of large pages and conducts deduplication in the unit of
large page, it reduces memory usage by a small percent-
age (6% or less). In contrast, SmartMD and KSM can
reduce memory usage by a much larger amount, which
is usually 4x to 31x as large as the saving received in no-
splitting. Fig. 7 also show , we can also see that in gen-
eral SmartMD reduces about the same amount of mem-
ory as KSM. Interestingly, in some execution periods of
some benchmarks, such as Liblinear, SmartMD reduces
more memory than KSM. By using counting Bloom fil-
ters and labeling of duplicate pages, SmartMD can com-

plete its scan of memory to find duplicate pages much
faster than KSM, and carry out deduplication in a more
timely manner. For example, to reduce memory usage of
Liblinear by 3.2GB SmartMD-2.6s and KSM take 118s
and 161s, respectively.

Looking into Figs. 6 and 7, we can see that SmartMD
takes both benefits on memory saving and access perfor-
mance. Specifically, SmartMD can save 4x to 21x as
much memory as the no-splitting scheme while keep-
ing similar access performance. For example, with
Graph500 SmartMD can save 3.82 GB memory space,
or 35.4% of the total memory, which is 9x the memory
space saved by no-splitting. In the meantime, SmartMD
can achieve up to 15.8% of performance improvement
over KSM while achieving a memory saving similar to
KSM.

Additionally, SmartMD can be configured to tune the
weight of its optimization goals between access perfor-
mance and memory saving. With SmartMD, we can
improve either the access performance or memory sav-
ing while minimally compromising the other goal. For
example, the performance of Sysbench is improved by
12.9% with increasing checking interval from 1.0s to
2.6s. Meanwhile, the memory saving only decreases by
4.3%. This is because SmartMD splits only large pages
with low access frequency and high repetition rate. In
this way, SmartMD can ensure that each splitting can
bring benefit of memory saving but incur small negative
impact on memory access performance. Furthermore,
base pages can be opportunistically converted back to
large pages to benefit the performance of SmartMD.

USENIX Association 2017 USENIX Annual Technical Conference 741

Time (sec)
0 100 200

M
em

or
y

sa
vi

ng
 (G

B
)

0

2

4
Graph500

Time (sec)
0 100 200

0

1

2
SPECjbb2005

Time (sec)
0 100 200

0

2

4
Liblinear

Time (sec)
0 100 200

0

1

2

3
Sysbench

Time (sec)
0 100 200

0

1

2
Biobench

SmartMD Ingens

Figure 8: Comparison of memory saving between Ingens and SmartMD.

Ingens SmartMD
Graph500 0.989 0.992

SPECjbb2005 0.991 0.994
Liblinear 0.987 0.991
Sysbench 0.982 0.989
Biobench 0.976 0.982

Table 6: Performance normalized to that of No-splitting.

5.3 Comparison with Ingens
Kwon et al. [22] proposed Ingens to enable conversion
from base pages to large pages to maintain high memory
access. It also selectively splits large pages for more ef-
fective deduplication. However, in the selection of large
pages, it only considers access frequency and does not
take into account of repetition rate. In addition, it does
not consider page access frequency in the decision of
reconstruction of large pages. Table 6 shows the per-
formance of the benchmark programs with SmartMD
and Ingens. For SmartMD check interval is set at 2.6s.
Fig. 8 shows the memory saving of SmartMD and In-
gens. We see that SmartMD can save 1.3x to 3.5x as
much memory as Ingens while still keeping performance
of SmartMD to that of Ingens. While Ingens splits any
large pages that are considered cold, it has to throttle
generation of cold pages to keep memory access per-
formance close to that of no-splitting. This is achieved
by postponement of checking accessing bits. However,
this approaches leaves fewer pages available for dedupli-
cation. SmartMD can more precisely identify the right
large pages (with low access frequency and high repetion
rate) for splitting. It is less likely to conduct unnecessary
splitting. SmartMD also performs necessary reconstruc-
tion of large pages to keep high memory performance.

5.4 Performance in a NUMA Environment
In the above experiments, all VMs are hosted on one
physical CPU in a NUMA system. However, if they are
hosted on different CPUs, deduplication may make ac-
cesses of originally local pages become more expensive
ones of remote pages, causing performance degradation.

To study performance impact of the NUMA architec-

Single-CPU NUMA
Graph500 0.8% 1.6%

SPECjbb2005 0.6% 2.1%
Liblinear 0.9% 1.8%
Sysbench 1.1% 2.6%
Biobench 1.8% 3.9%

Table 7: Performance degradation by using SmartMD on
NUMA. The degradation is calculated against the perfor-
mance of No-splitting with the same benchmark.

ture, we place two VMs on one physical CPU, and an-
other two on a different CPU and re-run the benchmarks
with SmartMD. The performance results are shown in
Table 7. As shown, running SmartMD in the NUMA
environment does cause larger performance degradation.
However, the NUMA impact is very small, as SmartMD
only splits large pages into base pages and deduplicate
them only for those with low access frequency. Thus,
even if many pages are deduplicated and relocated, only
a very limited number of remote accesses are induced.

5.5 Performance in a Memory Over-
committed System

In this section, we evaluate the performance with
different memory loads: no-overcommitted, slight-
overcommitted and severe-overcommitted, which corre-
spond to scenarios where the ratios of memory demand
of an application to the usable memory size as 0.8, 1.1,
and 1.4, respectively. We compare the performance of
benchmarks using KSM, Ingens, and No-splitting, and
the performance results are shown in Fig. 9. We can
see that when the system has sufficient memory, perfor-
mance of SmartMD is close to that of No-splitting. This
is because when the memory utilization is low, SmartMD
sets the cold threshold (T hreshcold) to zero to keep large
pages from being split.

With the increase of the host’s memory load, the ac-
cess performance of No-splitting drops much faster than
other three schemes. With less effective deduplication,
No-splitting has a larger memory demand. When the de-
mands is larger than usable memory size, it will cause

742 2017 USENIX Annual Technical Conference USENIX Association

Levels of overcommitment

No(0.8x)
Slight(1.1x)

Severe(1.33x)

P
er

fo
rm

an
ce

0

0.5

1

Graph500

Levels of overcommitment

No(0.8x)
Slight(1.1x)

Severe(1.4x)
0

0.5

1

Liblinear
No-splitting KSM Ingens SmartMD

Figure 9: Performance in overcommitted systems.

more serious swapping of the program’s working set be-
tween the memory and the disk, significantly slowing
down the program’s execution. With few pages dedu-
plicated and larger memory demand than SmartMD, In-
gens also shows significantly degraded performance in a
memory overcommitted system.

SmartMD outperforms the other three schemes in
the memory overcommitted systems. For example, for
Graph500 SmartMD achieves up to 38.6% of perfor-
mance improvement over other schemes. Using intel-
ligently selective and adaptive conversion between large
pages and base pages, SmartMD can make a better trade-
off between memory saving and access performance un-
der different levels of memory overcommitments.

6 Related Work

Management of large pages. To efficiently use large
pages, researchers proposed schemes to manage pages
of different sizes [16, 26]. For example, Navarro et
al. [25] provide a tool for FreeBSD to support multiple
page sizes with contiguity-awareness and fragmentation
reduction. Gorman et al. [18] propose a placement
policy for physical page allocator, which mitigates
fragmentation and increases contiguity by grouping
pages according to whether the pages can be migrated.
Their subsequent work [19] proposes an API for appli-
cations to explicitly request huge pages. Different from
SmartMD, the above works do not consider memory
deduplication.

Memory Deduplication. Memory dedupli-
cation has attracted attention of many re-
searchers [11, 24, 20, 29, 28, 15, 21, 30]. In-memory
deduplication technique was first implemented in
VMWares ESX server [30], which requires no assistance
from guest OSes and performs transparently in the
hypervisor layer. KSM [11] is implemented as a kernel
thread, which periodically scans memory pages to detect
duplicate pages. Miller et al. [24] find that data in

the page cache are more likely to be duplicates. They
propose a memory deduplication scanner named XLH to
identify duplicate pages. Gupta et al. propose Difference
Engine [20] to deduplicate partial base pages with partial
redundancy. The above works can be considered as
aggressive deduplication schemes whose sole objective
is to reduce memory usage. However, they do not
consider impact of using large pages on deduplication
efficacy as well as performance impact of splitting large
pages.

The Ingens Deduplication Ingens [22] is a recently
proposed memory deduplication scheme most similar
to SmartMD. Ingens provides a coordinated transparent
huge page support for the OS and hypervisor. In con-
trast, SmartMD achieves higher memory saving while
maintaining similar access performance with its three
advantages. (1) SmartMD selectively splits large pages
according to their access frequency and repetition rate,
while Ingens only considers pages’ access frequency. (2)
SmartMD reconstructs split large pages based on their
access frequency, while Ingens reconstructs a large page
as long as most of its subpages are utilized. (3) SmartMD
adaptively selects pages for splitting and reconstruction,
and uses sampling-based counting bloom filters and du-
plication labels to reduce overhead.

7 Conclusion

In this work, we propose SmartMD, an adaptive and effi-
cient scheme, to manage memory with pages of different
sizes. SmartMD can simultaneously take both the bene-
fit of high performance by accessing memory with large
pages, and the benefit of high deduplication rate by man-
aging memory with base pages. Experimental results
show that compared to KSM and no-splitting, SmartMD
can either saves more memory space with similar mem-
ory access performance, or achieves higher memory ac-
cess performance with similar memory saving.

8 Acknowledgements

We thank the anonymous reviewers and our shepherd,
Don Porter, for their valuable comments and sugges-
tions. In the work, Yongkun Li was partially sup-
ported by Anhui Provincial Natural Science Founda-
tion (1508085SQF214). Yinlong Xu was partially sup-
ported by National Natural Science Foundation of China
(61379038). Song Jiang was partially supported by US
National Science Foundation (1527076). John C. S. Lui
was partially supported by Hong Kong General Research
Fund (14208816). Yongkun Li is the corresponding au-
thor.

USENIX Association 2017 USENIX Annual Technical Conference 743

References
[1] bloomfilter. https://en.wikipedia.org/wiki/Bl

oom_filter.

[2] Graph500. http://www.graph500.org/specificat

ions.

[3] Hugetlbfs. https://www.kernel.org/doc/Documen

tation/vm/hugetlbpage.txt.

[4] Human chromosomes. http://mummer.sourceforge

.net/applications.html.

[5] Liblinear. https://www.csie.ntu.edu.tw/

~

cjlin

/liblinear/.

[6] SPECjbb2005. https://www.spec.org/jbb2005/.

[7] Sysbench. https://github.com/akopytov/sysben

ch.

[8] The big khugepaged redesign. https://lwn.net/Ar

ticles/634384/.

[9] Page sizes among architectures. https://en.wikiped

ia.org/wiki/Page_(computer_memory), 2017.

[10] ALBAYRAKTAROGLU, K., JALEEL, A., WU, X.,
FRANKLIN, M., JACOB, B., TSENG, C.-W., AND YE-
UNG, D. Biobench: A benchmark suite of bioinformatics
applications. In ISPASS (2005), IEEE.

[11] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increas-
ing memory density by using ksm. In Proceedings of the
linux symposium (2009), Citeseer, pp. 19–28.

[12] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND
MANNE, S. Accelerating two-dimensional page walks
for virtualized systems. In ACM SIGARCH Computer Ar-
chitecture News (2008), vol. 36, ACM, pp. 26–35.

[13] BUELL, J., HECHT, D., HEO, J., SALADI, K., AND
TAHERI, R. Methodology for performance analysis of
vmware vsphere under tier-1 applications. VMware Tech-
nical Journal 2, 1 (2013), 19–28.

[14] CHANG, C.-R., WU, J.-J., AND LIU, P. An empirical
study on memory sharing of virtual machines for server
consolidation. In ISPA (2011), IEEE, pp. 244–249.

[15] CHIANG, J.-H., LI, H.-L., AND CHIUEH, T.-C.
Introspection-based memory de-duplication and migra-
tion. In ACM SIGPLAN Notices (2013), vol. 48, ACM,
pp. 51–62.

[16] FANG, Z., ZHANG, L., CARTER, J. B., HSIEH, W. C.,
AND MCKEE, S. A. Reevaluating online superpage pro-
motion with hardware support. In HPCA (2001), IEEE.

[17] GANDHI, J., BASU, A., HILL, M. D., AND SWIFT,
M. M. Efficient memory virtualization: Reducing dimen-
sionality of nested page walks. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microar-
chitecture (2014), IEEE Computer Society, pp. 178–189.

[18] GORMAN, M., AND HEALY, P. Supporting superpage
allocation without additional hardware support. In Pro-
ceedings of the 7th international symposium on Memory
management (2008), ACM, pp. 41–50.

[19] GORMAN, M., AND HEALY, P. Performance charac-
teristics of explicit superpage support. In International
Symposium on Computer Architecture (2010), Springer,
pp. 293–310.

[20] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNO-
EREN, A. C., VARGHESE, G., VOELKER, G. M., AND
VAHDAT, A. Difference engine: Harnessing memory re-
dundancy in virtual machines. Communications of the
ACM 53, 10 (2010), 85–93.

[21] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bi-
modal content defined chunking for backup streams. In
Proceedings of the 8th USENIX Conference on File and
Storage Technologies (2010), FAST’10.

[22] KWON, Y., YU, H., PETER, S., ROSSBACH, C. J., AND
WITCHEL, E. Coordinated and efficient huge page man-
agement with ingens. In OSDI 16 (2016), USENIX As-
sociation, pp. 705–721.

[23] MERRIFIELD, T., AND TAHERI, H. R. Performance
implications of extended page tables on virtualized x86
processors. In Proceedings of the12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (2016), VEE ’16, ACM.

[24] MILLER, K., FRANZ, F., RITTINGHAUS, M., HILLEN-
BRAND, M., AND BELLOSA, F. Xlh: More effec-
tive memory deduplication scanners through cross-layer
hints. In USENIX Annual Technical Conference (2013),
pp. 279–290.

[25] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A.
Practical, transparent operating system support for super-
pages. ACM SIGOPS Operating Systems Review 36, SI
(2002), 89–104.

[26] NAVARRO, J. E. Transparent operating system support
for superpages. PhD thesis, Rice University, 2004.

[27] PHAM, B., VESELỲ, J., LOH, G. H., AND BHAT-
TACHARJEE, A. Large pages and lightweight memory
management in virtualized environments: Can you have
it both ways? In Proceedings of the 48th International
Symposium on Micro architecture (2015), ACM, pp. 1–
12.

[28] SHARMA, P., AND KULKARNI, P. Singleton: system-
wide page deduplication in virtual environments. In Pro-
ceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing (2012),
ACM, pp. 15–26.

[29] SINDELAR, M., SITARAMAN, R. K., AND SHENOY,
P. Sharing-aware algorithms for virtual machine colo-
cation. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architec-
tures (2011), ACM, pp. 367–378.

[30] WALDSPURGER, C. A. Memory resource management
in vmware esx server. ACM SIGOPS Operating Systems
Review 36, SI (2002), 181–194.

744 2017 USENIX Annual Technical Conference USENIX Association

Elastic Memory Management for Cloud Data Analytics

Jingjing Wang and Magdalena Balazinska
Dept. of Computer Science & Engineering, University of Washington

Abstract

We develop an approach for the automatic and elastic
management of memory in shared clusters executing data
analytics applications. Our approach, called ElasticMem,
comprises a technique for dynamically changing memory
limits in Java virtual machines, models to predict mem-
ory usage and garbage collection cost, and a scheduling
algorithm that dynamically reallocates memory between
applications. Experiments with our prototype implemen-
tation show that our approach outperforms static memory
allocation leading to fewer query failures when memory is
scarce, up to 80% lower garbage collection overheads, and
up to 30% lower query times when memory is abundant.

1 Introduction

The analysis of large datasets is an important problem
and many big data systems are available to facilitate this
task [2,29,33,36,48,53]. To handle large data sizes, these
systems execute in shared-nothing clusters. Whether pub-
lic or private, clusters are typically shared by many queries
(also called “applications”)1 and even many systems ex-
ecuting in the same cluster at the same time. In such
shared clusters, a resource manager [25,47] is responsible
for the resource allocation between systems and applica-
tions. Modern resource managers rely on containers (e.g.,
YARN [47], Docker [3], or Kubernetes [5] containers),
which isolate applications that share the same machine
and provide hard resource limits. Application resource
requirements are both constrained and protected by the
containers. Figure 1 illustrates the interaction between a
resource manager and containers: the resource manager
launches containers with resource limits and schedules
applications inside those containers.

Many modern data analytics systems, such as Spark

1In this paper, we focus on applications that correspond to analytical
queries and use the terms “application” and “query” interchangeably.

Myria	Query	1	

Spark	
App	1	

Spark	
App	1	

System	X	App	A	

Myria	Query	1	
Myria	
Query	1	

Myria	
Query	2	

Myria	
Query	2	

Machine	1	

Resource	
Manager	

Machine	2	 Machine	3	

Spark	App	1	

Myria	Query	1	

Myria	Query	2	

System	X	App	A		

Figure 1: A resource manager schedules multiple applica-
tions from multiple systems (Spark [53], Myria [48], and
System X) in a shared cluster. An application may have mul-
tiple processes across multiple machines. The resource man-
ager schedules applications by putting them in containers
with resource limits.

[53], Impala [29], GraphLab [33], Giraph [2], and
Myria [22, 48], strive to maximally utilize memory, yet
memory remains an expensive resource. In this paper,
we focus in particular on memory allocation. However,
container-based scheduling has limitations for managing
memory. When an application needs to run, it must es-
timate its resource requirements and communicate them
to the resource manager. The latter then decides whether
or not to schedule the application based on the amount
of available resources. The challenge, however, is that it
is hard to estimate the memory need of a data analytics
application before executing it because it may depend
on multiple runtime factors including the cardinalities
of intermediate results, which are known to be hard to
estimate [27, 31].

Having an inaccurate memory usage estimate can harm
query performance in multiple ways. If the estimate is
too high, cluster resources may be under-utilized. If the
estimate is less than the minimum amount of memory
needed to complete the query, the system must either spill
data to disk, which leads to performance degradation, or
fail with an out-of-memory error, wasting the resources

USENIX Association 2017 USENIX Annual Technical Conference 745

already consumed by the query. This challenge exists
in systems with manual memory management, such as
those written in C/C++ [29, 33], in Java-based systems
that use byte arrays [8], and in systems that rely on auto-
matic memory management provided by runtimes such
as Java [2, 48, 52, 53] and the .NET Common Language
Runtime (CLR) [36]. The situation is more complicated
when garbage collection (GC) is used for automatic mem-
ory management, since GC activities add another layer
of unpredictability to query performance. Even if the re-
source estimates are sufficient for the query to complete,
garbage collection in some cases can significantly slow
down query execution. As a concrete example, we demon-
strate how changing the maximum heap size of Java-based
systems can significantly impact query time in Section 2.

To address these problems, we develop a new approach,
called ElasticMem, where data analytics applications ex-
ecute in separate containers, but the resource manager
elastically adjusts the memory allocated to these contain-
ers. The optimization goal is to jointly minimize failures
and total execution time of all applications subject to the
physical limit on the total amount of memory in the clus-
ter. We presented the vision behind the approach and a
few preliminary results in a short workshop paper [49]. In
this paper, we develop the approach in full.

Elastic container memory management is a difficult
problem. First, elastic memory allocation is not supported
in most systems. For Java-based systems, the maximum
heap size of a Java virtual machine (JVM) stays constant
during its lifetime. For C/C++-based systems such as
Impala [29], limiting the resource of a process is usually
done through Linux utilities such as cgroups, which
do not expose functionality to change resource limits at
runtime. For systems that run in CLR [36], the problem
is opposite: No control on the heap size can be specified,
so the heap can grow arbitrarily up to the total physical
memory. Second, in order to elastically and dynamically
allocate memory to data analytics applications, we need
to understand how extra memory can prevent failures
and speed up these applications. We need models of GC
benefits and overheads. Finally, we need an algorithm that
uses the models to orchestrate memory allocation across
multiple data analytics applications.

We present our approach to address all three challenges.
We focus on analytical applications, in particular rela-
tional algebra queries on large data, and Java-based sys-
tems. Since memory management in Java containers (e.g.,
YARN [47]) is determined by JVMs internally, we focus
on how and when to change the memory layouts of JVMs.
Specifically, our contributions are the following:

• We show how to modify the JVM to enable dynamic
changes to an application’s heap layout for elastic man-
agement of its memory utilizations (Section 3.1).
• Our key contribution is an algorithm for elastically

managing memory across multiple applications in a big
data analytics system to achieve an overall optimization
goal (Section 3.2). In this paper, we present scenarios
where each query runs in one JVM and multiple queries
run in one machine, but our approach can be extended
to a multi-machine setting.
• In support of elastic memory management, we de-

velop a machine-learning based technique for predicting
the heap state and GC overhead for a relational query and
whether it is expected to run out of memory (Section 3.3)
based on operator statistics. Since the common approach
for implementing relational operators in memory, such
as joins and aggregates, is to use hash tables [19], we
build models that use hash table statistics as input.

We evaluate our elastic memory management tech-
niques using TPC-H queries [6] on Myria [22, 48], a
shared-nothing data analytics system, against containers
with fixed memory limits. In our experiments, our ap-
proach outperforms static allocation: It reduces the num-
ber of query failures; it reduces query times by up to 30%,
GC times by up to 80%, and overall resource utilization
(Section 4).

2 Performance Impact of Automatic Mem-
ory Management

Many big data analytics systems today, including
Spark [53], Flink [1], Hadoop [52], Giraph [2], and
Myria [48], are written in programming languages
with automatic memory management, specifically Java.
Garbage collection associated with automatic memory
management is known to cause performance variations
that are hard to control: The GC policy, although customiz-
able by the programmer to some extent, is controlled by
the runtime internally. Depending on the policy and heap
state, the time and frequency of GCs may vary signifi-
cantly and, as we later show in this section, may signifi-
cantly impact query performance.

Over the past decade, there have been several JVM
implementations with various GC algorithms. However,
most of the contemporary ones share the concept of gener-
ations [9]. With this design, the heap space is partitioned
into multiple generations for storing objects with different
ages. Figure 2 illustrates the internal state of a JVM heap
with two generations. Initial memory allocation requests
always go to the young generation. When it fills up, a GC
is triggered to clean up dead objects. There are different
types of GCs as shown in Figure 2. In a young collec-
tion, live objects in the young generation are promoted to
the old generation. In a full collection, dead objects are
cleaned from both generations in addition to promotions.
The type of collection to trigger depends on whether a
promotion failure, i.e., insufficient space for promoting

746 2017 USENIX Annual Technical Conference USENIX Association

L LL	

L LL	 D D L	

L	 LD D L

L	 LD D L

L L L	

L L L	

N

Young	Genera+on	 Old	Genera+on	

Heap	

L L L	L LL	 D D L	 D

New	Alloca+on		
(GROW)	

Young	Collec+on		
(YGC)	
Full	Collec+on		
(FGCp)	

Ini+al	State	

Full	Collec+on		
(FGCc)	

Dynamic	Size	Limits	

Figure 2: Internal heap states of a JVM before and af-
ter actions of new object allocation, young generation col-
lection, and full collections, starting from an initial state.
Dark blocks: (L)ive objects, light blocks: (D)ead objects,
blue blocks: (N)ew objects. Dashed lines: generation size
limits that can be changed in real time by our approach.
We describe FGCp and FGCc in Section 3.2.3.

objects from the young generation, is expected to occur
or actually occurs. In this paper, we use OpenJDK as the
reference JVM implementation. We focus on the common
class of GC algorithms that use a young and old gener-
ation, and leave extensions to other languages and GC
algorithms to future work.

We show a concrete example of how GC can impact
query execution by executing a self-join query on a syn-
thetic dataset containing ten million tuples with two int

columns, on three systems: Myria, Spark 1.1 and Spark
2.0, using one process on one machine with default GC
collectors (-XX:+UseParallelGC). Figure 3 shows the
query execution times with different heap-size limits.
Each data point is the average of five trials with error
bars showing the minimum and maximum values. For
both Myria and Spark 2.0, when the heap is large, the
query time converges to approximately 35 seconds, which
is the pure query time with almost no GC. When we shrink
the heap size, however, the run times increase moderately
due to more GC time. For Myria, the run time increases
from 35 seconds to 55 seconds when the heap size goes
from 16 GB to 3 GB, and further increases drastically
to 141 seconds when the heap size shrinks from 3 GB
to 2 GB. Eventually, Myria fails with an out-of-memory
error when the limit is less than 2 GB. Similarly, the query
time for Spark 1.1 has a steep increase from 86 to 466
seconds when the heap size changes from 5 to 4 GB, and
the query fails when the heap size is less than 4 GB. Spark
2.0 follows a similar trend as Myria, but does not fail even
with only 500 MB of memory because it is able to spill
data to disk when memory is insufficient. As a result,
however, its execution time increases to 127 seconds.

3 Elastic Memory Allocation

In this section, we present our approach, called Elas-
ticMem, for elastic memory allocation. ElasticMem com-
prises three key components. First, ElasticMem needs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Heap Size (GB)

20

50
100
200

500

Q
ue

ry
 T

im
e

(s
)

OOM OOMOOM OOM

1..

Myria
Spark 1.1
Spark 2.0

Figure 3: Impact of GC on query execution time in Myria,
Spark 1.1, and Spark 2.0. The y-axis uses a log scale.

JVMs that can change memory limits dynamically, and
we describe how we modify OpenJDK to enable this fea-
ture in Section 3.1. Second, the heart of ElasticMem is
a memory manager that dynamically allocates memory
across multiple queries (Section 3.2). Finally, to drive the
manager’s allocation decisions, ElasticMem uses models
that predict the heap state and the GC costs (i.e., impact
on run time) and benefits (i.e., expected freed memory)
at any point during query execution (Section 3.3). The
implementation of our approach is available at our web-
site [4].

3.1 Implementing Dynamic Heap Adjust-
ment in a JVM

OpenJDK manages an application’s memory as follows:
First, the user specifies the maximum heap size of a JVM
process before launching it. The JVM then asks the operat-
ing system to reserve the heap space and divides the space
into generations based on its internal size policy as in Fig-
ure 2. During program execution, if a memory allocation
request cannot be satisfied due to insufficient memory,
the JVM may trigger GCs to release some memory. If not
much memory is released after spending a large amount
of time on GC, the JVM throws an OutOfMemory error.
The maximum heap size stays constant during a JVM’s
lifetime. It cannot be increased even if an OutOfMemory

is thrown while more memory is available on the machine,
or decreased if heap space is underutilized.

This rigid design, however, is unnecessary. For operat-
ing systems that support overcommitting memory, a logi-
cal address space does not physically occupy any memory
until it is used. This property, together with 64-bit address
spaces, allow us to reserve and commit a large address
space when launching a JVM. The actual memory limits
on heap spaces, such as generations, can be modified later
during runtime.

We modify the source code of OpenJDK to implement
this feature. We change the JVM to reserve and commit a
continuous address space of a specified maximum heap
size (-Xmx) when it launches. The initial size limit of
each generation is set according to the JVM’s internal
policy. We make the maximum heap size large enough
such that the per-generation limits are sufficiently large to

USENIX Association 2017 USENIX Annual Technical Conference 747

become irrelevant. Additionally, we add our new dynamic
size limits to both the young and old generation of a
JVM p, denoted with ylimit(p) and olimit(p) respectively.
Our memory manager changes these limits at runtime.
We set their initial values to reasonably small numbers
(e.g., 1 GB) and prevent each generation from using more
memory than its dynamic limit.

To interact with the JVM, we add a socket-based API
through which the JVM receives instructions such as re-
quests for the current heap state, memory limit adjust-
ments, or GC triggers. We disable the JVM’s internal GC
policies to let our memory manager control when and
which GCs to happen. We modify GC implementations to
always release recycled memory to the OS. If more mem-
ory is needed but unavailable given the current limits, we
let the JVM pause until more memory is available. We
implement our changes on top of OpenJDK 7u85’s de-
fault heap implementation (ParallelScavengeHeap),
which contains approximately 1000 lines of code.

3.2 Dynamic Memory Allocation

The main component of ElasticMem is a memory man-
ager. It monitors concurrently executing queries and alters
their JVMs’ memory utilizations by performing actions
on the JVMs, such as triggering a GC or killing the JVM.
Each action has a value, and the objective is to maximize
the sum of all action values. A value is a combination of
several factors, including whether the action kills a JVM,
causes a JVM to pause, or how efficiently it enables the
JVM to acquire memory: i.e., the ratio of time spent over
space acquired (from the OS or recovered through a GC).

The manager makes decisions according to two pieces
of information: the JVM heap states and the estimated
values of performing actions on the JVMs. Because pre-
dicting these values far into the future carries significant
uncertainty, and because our changes to the JVM enable
us to adjust memory limits without any overhead, we de-
velop a dynamic memory manager. The manager makes
decisions adaptively at each timestep t for some small pe-
riod [t, t +δt]. At t, the manager gathers runtime statistics
from each JVM and performs actions on it. Queries then
execute for time δt . Their states change and the manager
makes another round of decisions at t +δt . We describe
our allocation algorithms in this section, starting with a
more precise problem statement.

3.2.1 Problem Statement

We start with a single-node and a one-process-per-query
scenario. As introduced in Section 1, each JVM is a con-
tainer that executes a single query (or query partition). We
model query execution as the process of accommodating
the memory growth of the corresponding JVM. For a pe-

riod [t, t +δt], the memory usage of a JVM may grow by
some amount. We can perform various actions to the JVM
to affect its memory utilization: allocate enough memory
for the expected growth, trigger a GC, which may require
extra memory in the short term but free up memory in
the longer term, kill the JVM to release all its memory, or
do nothing, which may stall a JVM if it cannot grow its
memory utilization as needed.

Consider a single physical machine with a total amount
of memory M. A set of N JVMs {p1, . . . , pN} is running
on it, each has used some space in both the young and
the old generation. At the current timestep t, we need to
allocate M across the N JVMs, such that the total mem-
ory used does not exceed M, while minimizing a global
objective function.

The memory that must be allocated to a JVM is en-
tirely determined by the action that the manager selects.
For example, to perform a young generation GC, the old
generation needs to have enough space to accommodate
the promoted young generation live objects. The manager
must increase the memory limit for the old generation to
accommodate the added space requirement. We denote
with ycap(pi,ai) and ocap(pi,ai), the minimal amount of
memory that must be allocated to the young and old gener-
ation of JVM pi, if the manager chooses action ai. These
values refer to the new required totals and not increments.

Each action has a value that contributes to the global
objective function. We denote the value of action ai on pi
with value(pi,ai). The objective function is thus:

maximize
N
∑

i=1
value(pi,ai),ai ∈ Actions,

subject to
N
∑

i=1
(ycap(pi,ai)+ocap(pi,ai))≤M,

where Actions is the set of possible actions. In our ap-
proach, the value(pi,ai) is a structure with multiple fields.
We describe its internal structure and how to sum and
compare values in Section 3.2.3 below.

The above definition can be extended to a shared-
nothing cluster scenario by letting the manager make
decisions independently for each machine.

3.2.2 Runtime Metrics

Several runtime metrics are needed to compute the value
and the space requirements of actions. Some are reported
by the JVM while others are estimated by the manager:

Metrics reported by the JVM: For a JVM p at
timestep t, ylimit(p, t) and olimit(p, t) are the current mem-
ory limits of the young and old generation. The manager
sets those limits at the previous timestep. However, only
some of the space in each generation is used at t, and the
JVM reports the used sizes as yused(p, t) and oused(p, t).

Metrics estimated by the manager: Besides the
above metrics, we also need to estimate some values

748 2017 USENIX Annual Technical Conference USENIX Association

Value Meaning
ylimit(p, t) Size limit of the young gen
olimit(p, t) Size limit of the old gen
yused(p, t) Total used space in the young gen
oused(p, t) Total used space in the old gen
ŷlive(p, t) Total size of live objects in the young gen
ôlive(p, t) Total size of live objects in the old gen
ŷdead(p, t) Total size of dead objects in the young gen
ôdead(p, t) Total size of dead objects in the old gen

ˆgrw(p, t) Estimated heap growth until next timestep
ĝcy(yob j(p, t)) Time to perform a young collection
ĝco(oob j(p, t)) Time to perform an old collection

Table 1: Runtime metrics reported by JVM p or esti-
mated by the manager at timestep t. x̂ indicates that x
is estimated. “gen” is short for generation.

that are not directly available. First, the space used in
the young and old generation of a JVM is further di-
vided into live and dead objects. The manager estimates
the total size of those objects, which we denote with
ŷlive(p, t), ŷdead(p, t), ôlive(p, t) and ôdead(p, t). We use
x̂ to indicate that a value x is estimated by the manager.
Second, the manager needs to estimate p’s heap growth,

ˆgrw(p, t), before the next timestep, where ˆgrw(p, t) =
ŷused(p, t +δt)− yused(p, t). Finally, to model the impact
of a GC, the manager needs to know how much memory
a GC will free, and how much time it will take. Since
the target of a GC is the set of all objects in the gener-
ation(s) undergoing the GC, we use yob j(p, t) to denote
the set of all the objects in the young generation and simi-
larly oob j(p, t) for the old generation.2 ĝcy(yob j(p, t)) and
ĝco(oob j(p, t)) are then the estimated times for a young
and an old GC. We describe how the manager estimates
these metrics in Section 3.3.

Table 1 summarizes the notation. Since t is the only
used timestep, we omit t and only use p as the argument
in the rest of the paper when the context is clear.

3.2.3 Space of Possible Actions

There are four types of actions that the manager can
choose for each JVM: allowing the JVM to grow by ask-
ing the operating system for more memory, reducing the
memory assigned to the JVM by performing a garbage col-
lection and recycling space,3 pausing the JVM if it cannot
either grow or recycle enough memory, or as a last resort,
killing a JVM to release its entire memory. The manager
performs an action for every JVM at each timestep. An
action a on a JVM p has value, value(p,a), with a min-
imum amount of memory needed for p’s young and old
generations, (ycap(p,a) and ocap(p,a)). We denote the
time to perform a on p with time(p,a), and the size of the

2yob j(p, t) is the union of all the live and dead objects in the young
generation of p at t, similarly to oob j(p, t).

3The recycled memory is always reclaimed by the OS.

newly available space made by a with space(p,a). The
cost of an action is the amount of time needed to acquire
a given amount of space, or time(p,a)

space(p,a) . The manager uses
this ratio to compare and choose actions.

The detailed set of Actions is as follows:

• GROW: Let the JVM grow to continue query execu-
tion. In order to reserve space for the growth, the man-
ager must allocate ycap(p,GROW) = yused(p) + ˆgrw(p)
to the young generation and ocap(p,GROW) = ŷlive(p)+
oused(p) to the old generation. We reserve extra space
in the old generation for prospective promotions to pre-
serve the possibilities of having all types of GCs in the
future. The cost is the time it takes to request and ac-
cess the new space, which depends on the size of the
space change given by: ycap(p,GROW)+ocap(p,GROW)−
ylimit(p)− olimit(p). Under normal circumstances, this
will be the commonly selected action until space be-
comes tight and JVMs must start garbage collection or
must pause before being able to grow again.
• YGC: Trigger a young generation GC. The JVM

needs at least the current used space, yused(p), for the
young generation, and ŷlive(p) + oused(p) for the old
generation to avoid a promotion failure. The cost is the
GC time ĝcy(yob j(p)), and we expect memory of size
ŷdead(p) to be recycled.
• FGCp: Trigger a full GC by first performing a young

generation collection to promote live objects to the old
generation then performing a GC on the old generation.
Similar to YGC, we need at least yused(p) and ŷlive(p)+
oused(p) for the young and old generations respectively.
The cost is the GC time ĝcy(yob j(p))+ ĝco(oob j(p)) and
the space to be recycled is ŷdead(p)+ ôdead(p).
• FGCc: Trigger a full GC by first performing a GC on

the whole heap, then trying to promote young generation
live objects if possible, without changing the total heap
size. Free space from the young generation after the first
GC gets shifted to the old generation to make space for
copying. Different from FGCp, we only need yused(p)
and oused(p) for the young and old generation since the
promotion is not mandatory. However, more GC time
is needed since the full collection is now performed on
both generations instead of only the old generation. We
assume that the time grows proportionally to the size
of live objects and use ĝcy(yob j(p)) + ĝco(oob j(p)) ∗
(ŷlive(p) + ôlive(p))/ôlive(p) as the GC time estimate.
The memory to be recycled is also ŷdead(p)+ ôdead(p).
• NOOP: Do nothing to the JVM, keep the current

limits ylimit(p) and olimit(p). As a consequence, the JVM
is expected to pause since it cannot either grow or recycle
enough memory by doing garbage collection.
• KILL: Kill the JVM immediately. As a consequence,

the query running in this JVM will fail.

FGCp, which promotes first, is the default behavior in

USENIX Association 2017 USENIX Annual Technical Conference 749

OpenJDK. However, the promotion may fail if the old
generation does not have enough free space to absorb
young generation live objects, and when it happens, JVM
spends much time on copying the live objects back, so
that the young generation remains the same as it was
before the promotion. In other words, triggering FGCp
while expecting a promotion failure is not cost effective.
However, when memory is scarce, the manager may not
be able to allocate extra space to avoid the promotion
failure. In this case, we need a GC which can still recycle
space without increasing the limits. We solve this problem
by implementing another full GC procedure, FGCc: We
first collect both generations, then shift young generation
free space to the old generation to keep the total heap
limit unchanged. A young GC is then performed if there
is enough space for promoting.

Table 2 summarizes the properties of all actions. os(m)
denotes the time to access new memory of size m. We ob-
tain its value by running a calibration program since this
value changes for different systems and settings. Figure 2
illustrates the effect of all the actions except for NOOP and
KILL, which have the obvious effects.

We define the value of an action with three attributes,
where only one of them is set to a non-zero value. For
NOOP and KILL, we set the corresponding attributes to
1. For other actions, we use their cost, or time/space effi-
ciency, as the value: i.e., how much time the action needs
per unit of space that it makes available. Then for an
action a on a VM p, its value value(p,a) is defined as:

value(p,a).cost =
time(p,a)

space(p,a)
,

for GROW,YGC,
FGCp,FGCc,

value(p,a).NOOP= 1, for NOOP,
value(p,a).KILL= 1, for KILL,

With the above definition, our manager can favor actions
by comparing these three attributes in a certain order, as
we describe in Section 3.2.4.

3.2.4 Memory Allocation Algorithm

Next, we discuss the allocation algorithm, which allocates
memory to the JVMs by performing actions on them at
each timestep. We model the problem as a 0-1 knapsack
problem. The capacity of the knapsack is the total amount
of memory, and the items are actions performed on JVMs.
Each action has a value and a minimum space requirement
as described in Table 2. The goal is to maximize the total
item value in the knapsack without exceeding its capacity.

The 0-1 knapsack problem is known to be NP-complete
with a pseudo-polynomial dynamic programming solu-
tion [14]. Let optN,M denote the value of the best scheme
for allocating memory of size M to the first N JVMs,
p1 · · · pN . If a JVM pi is undergoing a GC, the manager
skips it to wait for the GC to complete. Otherwise, it

derives opti, j by enumerating possible actions on pi and
picking the one that leads to the largest value for opti, j.
We define the sum of two values as the sum of their three
attributes, then the state transition function is defined as:

opti, j =
{

opti, j if opti, j > opti−1, j−m + v,
opti−1, j−m + v otherwise,

where v = value(pi,a),a ∈ Actions, i ∈ [1,N], j ∈ [0,M].

To choose between two values, we first check which
one has a lower value for attribute KILL, then fewer
NOOPs to reduce pausing time, then a smaller time/space
ratio. The one with fewer KILL, then fewer NOOP, then
smaller time/space ratio, has a higher value. To be precise,
given two values a and b, we define a > b as:

bool operator>(const Value& a,
const Value& b) {

if a.KILL < b.KILL return true
if a.NOOP < b.NOOP return true
if a.cost < b.cost return true
return false

}

The complexity of the dynamic programming is O(N ∗
M), where N is the number of JVMs and M is the total
amount of memory. On modern servers, M can be large
if the memory-size units are fine-grained, which would
prevent the manager from making fast decisions. At the
same time, allocating memory at fine granularity is un-
necessary. To enable fast memory-allocation decisions,
we define U as the unit of memory allocation, and any
allocation is represented as a multiple of U . We discuss
two ways of setting U : as a constant or as a dynamically
computed variable based on the current heap state, and
evaluate their impact on performance in Section 4.

Algorithm 1 and Algorithm 2 show the detailed alloca-
tion algorithms. Function ALLOCATE allocates memory of
size M across the list of JVMs, P, at the current timestep,
and it returns the best allocation scheme, actbest , which is
a vector of actions for each p∈ P. The algorithm works as
follows: First, we find all the JVMs that are not undergo-
ing a GC as P−PINGC to compute their actions. Because
the algorithm allocates memory as increments of U , but
ylimit(p) and olimit(p) of a JVM p at the current timestep
may not be increments of U when U is a dynamic vari-
able, we do not include NOOP in Algorithm 2. Instead, we
consider all the combinations of P−PINGC as potential
PNOOP (line 4) and use P′ = P− (PINGC∪PNOOP) to denote
the remaining JVMs. The remaining memory to be allo-
cated is of size M′ (line 7). We then apply Algorithm 2 on
P′ and memory of size M′ (= K units of size U). Function
KNAPSACK returns the best solution with its value. The
generation size limits and value of an action on a JVM
are computed as in Table 2. The size limits are aligned
to increments of U by function align(size,U) defined as:

750 2017 USENIX Annual Technical Conference USENIX Association

Action a ycap(p,a) ocap(p,a) space(p,a) time(p,a)

GROW yused(p)+ ˆgrw(p) ŷlive(p)+oused(p)
ycap(p,a)+ocap(p,a)
−ylimit(p)−olimit(p)

os(space(p,a))

YGC yused(p) ŷlive(p)+oused(p) ŷdead(p) ĝcy(yob j(p))
FGCp yused(p) ŷlive(p)+oused(p) ŷdead(p)+ ôdead(p) ĝcy(yob j(p))+ ĝco(oob j(p))

FGCc yused(p) oused(p) ŷdead(p)+ ôdead(p)
ĝcy(yob j(p))+ ĝco(oob j(p))∗ r,
r = (ŷlive(p)+ ôlive(p))/ôlive(p)

NOOP ylimit(p) olimit(p)
KILL 0 0

Table 2: Per-generation size limit requirements, sizes of created space, and time taken for each action a in Actions on JVM
p at the current timestep. os(m) is the time to access memory of size m. Other symbols are defined in Table 1.

Algorithm 1 The scheduling algorithm: allocates memory of
size M across the list of JVMs P, returns the allocation scheme.

1: function ALLOCATE(P,M)
2: valuebest = actbest = None
3: PINGC = {p ∈ P, p is undergoing a GC}
4: for PNOOP ∈ power set of P−PINGC do
5: actp = NOOP, p ∈ PNOOP
6: P′ = P− (PINGC∪PNOOP)
7: M′ = M−∑p∈PINGC∪PNOOP(ylimit(p)+olimit(p))
8: Compute U , let K = M′/U
9: act ′,value′ = Knapsack(P′,K,U)

10: actp = act ′p, p ∈ P′

11: value.cost = value′.cost, value.KILL= value′.KILL
12: value.NOOP= size of PNOOP
13: if value > valuebest then
14: valuebest = value, actbest = act
15: if actbest contains only NOOP then
16: Pick Pkill ⊆ P, let actbest

p = KILL, p ∈ Pkill

17: return actbest

align(size,U) = ceiling(size/U). For GC actions, we de-
fined a constant mingcsave to avoid GCs that only recycle
a negligible amount of space. We derive act from the
transition actions trans and return them together with the
value. They are then merged with PNOOP and PINGC to get
the final allocation. We maintain the best allocation and
its value across all the powersets. In the end, if the best al-
location only contains NOOP actions, we pick some JVMs
to kill to make progress. In this work, we pick the query
that occupies the largest amount of memory and kill all
its JVMs, and we leave other strategies as future work.

3.3 Estimating Runtime Values
The last piece of ElasticMem is the models that estimate
JVM values that are necessary for memory allocation
decisions yet not directly available as indicated in Table 1.

3.3.1 Heap Growth

To allocate memory to a JVM for the next timestep, the
memory manager needs to estimate its memory growth.
Different approaches are possible. In this paper, we adopt

Algorithm 2 The knapsack problem: given the list of JVMs P
and K memory units of size U , returns the best allocation and
its value.

1: function KNAPSACK(P,K,U)
2: N = size of P
3: opt0, j = 0, j ∈ [0,K]
4: for i← 1,N do
5: for j← 0,K do
6: for a ∈ [GROW,YGC,FGCc,FGCp,KILL] do
7: if a ∈ [YGC,FGCc,FGCp] and
8: space(pi,a)< mingcsave then continue
9: yunit = align(ycap(pi,a),U)

10: ounit = align(ocap(pi,a),U)
11: if opti−1, j−yunit−ounit is valid then
12: v = opti−1, j−yunit−ounit + value(pi,a)
13: if v > opti, j then
14: opti, j = v, transi, j = (a,yunit +ounit)

15: Derive actp of each p ∈ P from optN,K and transN,K
16: return act,optN,K

a simple approach. To estimate the heap growth of JVM
p at timestep t, ˆgrw(p, t), the manager maintains the max-
imum change in the young generation’s usage during the
past b timesteps. To be precise, we define: ˆgrw(p, t) =
max |yused(p, t ′)− yused(p, t ′ − δt)|, t ′ ∈ [t − b ∗ δt , t]. In
our experiments, we set b = 3 empirically. We show
in Section 4 that this value yields good performance.

3.3.2 GC Time and Space Saving

The GC time and space saving depend primarily on the
number and total size of the live and dead objects in
the collected region. Unfortunately, getting such detailed
statistics is expensive, as we need to traverse the object
reference graph similarly as in a GC. Paying such a cost
for each JVM at every prediction defeats the purpose of
reducing GC costs in the first place.

We observe, however, that a query operator’s data struc-
tures and their update patterns determine the state of live
and dead objects, which determines GC times and the
amount of reclaimable memory. Our approach is thus to
monitor the state of major data structures in query opera-
tors, collect statistics from them as features, and use these

USENIX Association 2017 USENIX Annual Technical Conference 751

Feature Meaning
nt Total # of processed tuples

ntd Delta # of processed tuples since the last GC
nk Total # of distinct keys in the hash table

nkd Delta # of distinct keys since the last GC
numlong # of long columns
numstr # of String columns
sumstr Avg. sum of lengths of all String columns

Table 3: Features collected from a hash table.

features to build models. While there are many operators
in a big data system, most keep their state in a small set
of data structures, for example, hash tables. So instead
of changing the operators, we wrap data structures with
the functionality to report statistics, and instrument them
during query execution to get per-data structure statistics.
There are many large data structures, but in data analytics
systems, the most commonly used ones by operators with
large in-memory state, such as join and aggregate, are
hash tables. In this paper, we focus on the hash table data
structure. To get predictions for the whole query, we first
build models for one hash table, then compute the sum of
per-hash-table predictions as the prediction for the whole
query. Our approach, however, can easily be extended to
other data structures and operators.

Table 3 lists the statistics that we collect for a hash
table. A hash table stores tuples consist of columns. A
tuple has a key defined by some columns and a value
formed by the remaining columns. We collect the number
of tuples and keys in a hash table in both generations
(both the total and the delta since the previous GC), since
new objects are put in the young generation only until a
GC. These features are nt, ntd, nk and nkd. The schema
also affects memory consumption. In particular, primitive
types, such as long, are stored internally using primi-
tive arrays (e.g. long[]) in many systems that optimize
memory consumption. However, data structures with Java
object types, such as String, cannot be handled in the
same way, as their representations have large overhead.
So we treat them separately by introducing features for
primitive types (numlong) and String types (numstr and
sumstr). The overhead of getting these values from hash
tables is negligible. We then build machine learning mod-
els to predict the GC times and the total size of live and
dead objects as specified in Table 1.

To build models, our first approach to collect training
examples is to randomly trigger GCs during execution to
collect statistics. The models built from them, however,
yielded poor predictions for test points that happen to fall
in regions with insufficient training data. As a second ap-
proach, we collected training data using a coarse-grained
multidimensional grid with one dimension per feature.
The examples were uniformly distributed throughout the
feature space but they all had the same small set of dis-

tinct feature values, the values from the grid. As a result,
predictions were excellent for values on the grid but poor
otherwise. Using a fine-grained grid, however, is too ex-
pensive since the feature space has eight dimensions. For
example, if we divide each dimension in four, the total
number of grid points is (4+ 1)7 = 78,125. Assuming
that collecting one data point requires 30 seconds, we
need 78,125/2/60 ≈ 651 machine hours. Our final ap-
proach is thus to combine the previous two: We first col-
lect data using a coarse-grained grid to ensure uniform
coverage of the entire feature space, then for each grid
cell, we introduce some diversity by collecting two ran-
domly selected data points inside of it. The union of the
grid and the random points is the training set. To collect
a data point for a hash table, we run a query with only
that hash table and a synthetically generated dataset as
the input. This approach enables us to precisely control
the feature values when we trigger a GC. We then can use
any off-the-shelf approach to build a regression model. In
our implementation, we use the M5P model [40, 50] from
Weka [20] since it gives us the most accurate predictions
overall. We evaluate our models in Section 4.2.

4 Evaluation

We evaluate the performance of our memory manager and
the accuracy of our models. We perform all experiments
on Amazon EC2 using r3.4xlarge instances. We do not
set swap space to avoid performance degradation due to
virtual memory swapping. We execute TPC-H queries [6]
on Myria [48], a shared-nothing data management and
analytics system written in Java. The TPC-H queries are
written in MyriaL, which is Myria’s declarative query lan-
guage, and they are publicly available at [7]. We modify
or omit several queries because MyriaL does not sup-
port some language features, such as nulls and ORDER

BY. The final set consists of 17 TPC-H queries: Q1-Q6,
Q8-Q12, and Q14-19. To experiment with a broad range
of query memory consumption, we execute each query
on two databases with scale factors one and two.

4.1 Scheduling
We first compare our elastic manager (Elastic) against the
original JVM with fixed maximum heap size (Original).
For Original, we assume that each running JVM gets
an equal share of the total memory. We pick 4 memory-
intensive TPC-H queries, Q4, Q9, Q18, and Q19, and
execute each on two databases, which leads to a total of 8
queries. In all experiments, we execute these 8 queries on
one EC2 instance together with our memory manager. All
data points are averages of five trials, and we report the
minimal and maximal values as floating error bars. Each
run of the allocation algorithm takes about 0.15 seconds.

752 2017 USENIX Annual Technical Conference USENIX Association

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

2000

El
ap

se
d

Ti
m

e
(s

)

4 4

7
8

2 4
5

6

8 8

46
8 8

8

58 8

8

7 5
8 8

8

7 6
8 8

8

8 8 8

8

8
7

8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

Figure 4: Average elapsed times and # of completed
queries (labeled on top of each bar).

We empirically set the constant mingcsave from Al-
gorithm 2 to 30 MB. The value of the function os(m)
is obtained by running a calibration program, which
asks the operating system for memory of size m using
mmap and accesses it using variable assignments. We
take the system time as os(m). For r3.4xlarge, we
get os(m) = 0.35s ∗ m

1 GB . We set the interval between
timesteps, δt , to 0.5 seconds except in Section 4.1.3,
where we compare different values of δt . In order to
avoid query hanging due to frequent GCs that do not
recycle much memory, we kill a query after 8 minutes if
it is still running. Based on our observation, 8 minutes is
long enough for any query to complete with a reasonable
amount of memory.

One extreme of Original is serial execution where
queries are executed one at a time, while the other ex-
treme is to execute all queries simultaneously. The former
approach requires the least amount of memory for all
queries to complete but takes longer time, while the latter
finishes all queries the fastest when memory is sufficient,
however may fail more queries when memory is scarce.
We vary the degree of parallelism (DOP) for Original to
compare these alternatives. To make it fair for Elastic, we
also introduce a variant of Elastic, which allows execu-
tions to be delayed by resubmitting killed queries serially
after all queries either complete or get killed. We call
this variant Elastic-Resubmit. To avoid livelocks, we only
resubmit each killed query once, and each resubmitted
query runs only by itself. We leave resubmitting multiple
queries simultaneously as future work.

Another important parameter is the size of the memory
increment unit U . The value of U can be either fixed
or derived in real time. We test fixed sizes of 100 MB,
500 MB, and 1000 MB, and variable sizes as 1/8, 1/12,
and 1/16 of the total free space at the current timestep.

4.1.1 Scheduling Simultaneous Queries

First, we submit all queries at the same time. Figure 4
shows the elapsed times, together with the numbers of
completed queries while varying the total memory size.
The elapsed times are the times for all queries to complete.
In this figure, we use U=1/12 as the representative of our
elastic manager because it provides the best overall per-

0.2
0.4
0.6
0.8

G
C

 T
im

e
R

at
io

Total Memory (GB)
10 15 20 25 30 40 50 70 90

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60
0.80

Q
ue

ry
 T

im
e

R
at

io

GC Time
GC Time GC Time

GC Time GC Time
GC Time GC Time

GC Time
GC Time

20
40
60
80

R
SS

 (G
B

)

Elastic, U=1/8
Elastic, U=1/12

Elastic, U=1/16
Elastic, U=500MB

Elastic, U=1000MB
Original, DOP=8

Figure 5: Relative total query time improvement ratio
(top) and GC time improvement ratio (middle) for Elastic
over Original, DOP=8, and resident set size, RSS (bottom).

formance across all experiments. We further discuss the
performance of different values of U in Figure 5. When
memory is abundant (≥ 20 GB), both Elastic managers
yield more completed queries and also shorter elapsed
times than all the three Original variants. When mem-
ory is scarce (≤ 15 GB) and only suffices to execute one
query at a time, for 15 GB, Elastic-Resubmit is able to
complete all queries with less time than Original, DOP=1.
For 10 GB, it only misses one query with a slightly longer
time comparing to DOP=1. Based on our observation,
the query failed because our manager needs to allocate
memory as increments of U , however U is not sufficiently
fine-grained. The overhead of elapsed time is due to the
elastic method striving to accommodate all queries to-
gether before degrading to serial execution. As a proof
of concept, we calculate the in-memory sizes of domi-
nant large hash tables of the 8 queries and find that the
sum of them is about 14 GB. This experiment shows the
advantage of using the elastic manager: it automatically
adjusts the degree of parallelism, enabling the system
to get high-performance while avoiding out-of-memory
failures when possible.

In Figure 5, we further drill down on the performance of
different variants of our approach. We seek to determine
which variant yields the greatest performance improve-
ment compared with non-elastic memory management.
Because the elapsed times of Original, DOP=1 are signif-
icantly longer than the other two variants, we use Orig-
inal, DOP=8 as the baseline in this experiment, which
also brings fair comparison with our approach. We mea-
sure performance in terms of total query execution time,
which is the sum of the per-query execution times, and

USENIX Association 2017 USENIX Annual Technical Conference 753

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

)

45

7 8

2 4
5

8

7

8

46
8 8

8

5
8 8

8

7 5
8 8

8

7 6
8 8

8

8
6

8 8

8

8 8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

Figure 6: Average elapsed times and # of completed
queries (labeled on top of each bar) with 30 seconds delay.

total GC time, the sum of the GC times of all queries.
Figure 5 shows the relative improvement percentages in
total query execution time and GC time of Elastic over
Original, DOP=8, for different values of U , and also the
actual physical memory usage (resident set size, RSS).4

Higher bars indicate greater improvements. When mem-
ory is scarce (≤ 15 GB), Elastic with variable values of
U (1/8, 1/12 and 1/16) takes longer to execute each query
because it strives to finish more queries than Original,
DOP=8, as shown previously in Figure 4. When memory
is abundant (≥ 20 GB), for any of the values of U , Elastic
outperforms Original, DOP=8 on both total query time
and GC time. The percentage improvements are between
10% and 30% for query time and 40% to 80% for GC time.
We observe that it is caused by Original, DOP=8 trigger-
ing GCs that do not recycle much space especially in late
stages for large queries but being unable to shift memory
quota from small queries, while Elastic can dynamically
allocate memory across all queries. The improvement ra-
tios of query time decrease after 70 GB because GC time
takes a less portion of query time when memory is abun-
dant. To show the maximum improvement that we can
achieve by reducing GC time to zero, we also show the
ratios of total GC time to query time in the top subfigure
as a reference. Finally, the bottom subfigure shows that
our elastic manager is also able to utilize a larger fraction
of available physical memory to save on GC time and
query time. Importantly, all values of U , especially the
three variable ones, yield similar performance indicating
that careful tuning is not required.

4.1.2 Scheduling Queries with Delays

To better simulate a real cluster, instead of issuing all the
queries at the same time, we submit the above 8 queries
with delays. Each query is submitted 30 seconds later
than the previous one. Figure 6 shows the elapsed times
and the numbers of completed queries. The patterns are
similar to the experiment above with no delay (Figure 4),
but also different as Elastic can finish the same number of
queries with less time when memory is scarce (10 GB),
and always beats all variants of Original in terms of both

4We define the improvement percentage as (x− y)/x, where x is the
value of Original and y is the value of Elastic.

query completion and elapsed time. This is due to the
memory flexibility that ElasticMem has: the number of
simultaneously running queries is lower when delay is
introduced, so Elastic is able to finish more queries faster,
while Original stays the same.

4.1.3 Timestep Interval

Finally, we evaluate the sensitivity of the approach to dif-
ferent values of δt varying from 0.1, 0.5, or 1 second for
U=500MB and U=1/12. We find that when memory is
scarce, 0.5 seconds slightly outperforms others by com-
pleting more queries with less time, although in general
the three δts yield similar performance, which indicates
that the approach is not sensitive to small differences
when using variable sizes of U and thus careful tuning is
not necessary. We omit details due to space constraints.

4.2 GC Models
An important component of ElasticMem is its models
that predict the GC time and the space that will be freed
(Section 3.3). We evaluate its models in this section. We
limit the training space to 12 million tuples and 12 million
keys for a hash table, with the schema varying from 1 to
7 long columns and 0 to 8 String columns with a total
of 0 to 96 characters. This training space is large enough
to fit all hash tables from TPC-H queries. As described
in Section 3.3, we collect approximately 1080 grid points
and 1082 random points together as the training set. We
also collect a test set of 7696 data points by randomly trig-
gering GC for the 17 TPC-H queries on both databases.

We set the JVM to use one thread for GC
(-XX:ParallelGCThreads=1) because we observe
that the JVM is not always able to distribute
work evenly across multiple GC threads. We do
not use thread-local buffers (-XX:-UseTLAB). We
let the JVM always sweep live objects to the be-
ginning of the old generation after each collection
(-XX:MarkSweepAlwaysCompactCount=1) instead of
every few collections to reduce GC cost variance. Among
several models available in Weka [20], we pick the M5P
model with default settings for its overall accuracy. M5P is
a decision tree where leaves are linear regressions [40,50].
We use relative absolute error (RAE) to measure the pre-
diction accuracies.5

Figure 7 shows the results for both doing 10-fold cross
validation on the training set and testing on the random
TPC-H test set. For cross validation, the predictions yield
RAEs below 5% for every value except odead . For testing,
both ydead and odead cannot be predicted well, while all
others have RAEs lower than 25%. This is because that

5The RAE of a list of predictions Pi and corresponding real values
Ri is defined as: ∑

n
i=1 |Pi−Ri|/∑

n
i=1 |R−Ri|.

754 2017 USENIX Annual Technical Conference USENIX Association

Test Set
CV TPC-H

5
10
20

50
100

R
A

E
(%

)

y_live
y_dead
o_live
o_dead
gc_y
gc_o

Figure 7: GC Model accuracies on 10-fold cross validation
and random TPC-H test set.

the size of dead objects is not strongly correlated with
the objects in data structures. Fortunately, the fact that the
sum of dead and live objects is the total used size gives us
a way to avoid predicting ydead and odead . Instead, we let
ŷdead = yused− ŷlive and ôdead = oused− ôlive, where yused
and oused can be obtained precisely. Overall, the predic-
tion error rates are low and, as we showed in Section 4.1,
suffice to achieve good memory allocation decisions.

5 Related Work

Memory allocation within a single machine: Many ap-
proaches focus on sharing memory across multiple objects
on a single machine. Several techniques have queries as
the objects: Some [12, 16, 38] allocate buffer space across
queries based on page access models to reduce page faults.
Others [11, 39] tune buffer allocation policies to meet per-
formance goals in real-time database systems. A third set
of methods [45] uses application resource sensitivities
to guide allocation. More recently, Narasayya et al. [37]
develop techniques to share a bufferpool across multiple
tenants. Several approaches focus on operators within a
query. Anciaux et al. [10] allocate memory across opera-
tors on memory-constrained devices. Davison et al. [15]
sell resources to competing operators to maximize profit.
Garofalakis et al. [17] schedule operators with multidi-
mensional resource constraints in NUMA systems. Fi-
nally, Storm et al. [44] manage memory across database
system components. Although they share the idea of man-
aging memory for multiple objects with a global objective
function, the problems are restricted to single machines,
and they ignore GC. Salomie et al. [41] move memory
across JVMs dynamically by adding a balloon space to
OpenJDK but have no performance models or scheduling
algorithms. Ginkgo [26] dynamically manages memory
for multiple Java applications by changing layouts using
Java Native Interface. However, it models performance
by profiling specific workloads, while our approach is
applicable to arbitrary relational queries.

Cluster-wide resource scheduling: Some techniques
develop models to understand how resources affect the
runtime characteristics of applications. Li et al. [32] par-
tition queries on heterogeneous machines based on sys-
tem calibrations and optimizer statistics. Herodotou et
al. [23, 24] tune Hadoop application parameters based on

machine learning models built by job profiles. Some other
techniques focus on short-lived requests. Lang et al. [30]
schedule transactional workloads on heterogeneous hard-
ware resources for multiple tenants. Schaffner et al. [42]
minimize tail latency of tenant response times in column
database clusters. BlowFish [28] adaptively adjusts stor-
age for performance of random access and search queries
by switching between array layers with different sampling
rates based on certain thresholds. In contrast, our focus
is relational queries on Java-based systems with no sam-
pling. To provide a unified framework for resource sharing
and application scheduling, several general-purpose re-
source managers have emerged [25,47,51]. However, they
all lack the ability to adjust memory limits dynamically.

Adaptive GC tuning: Cook et al. [13] provide two
GC triggering policies based on real-time statistics, but
do not investigate memory management across applica-
tions. Simo et al. [43] study the performance impact of
JVM heap growth policies by evaluating them on several
benchmarks. Maas et al. [35] observe that GC coordi-
nation is important for distributed applications. They let
users specify coordination policy to make all JVMs trigger
GC at the same time under certain conditions.

Region-based memory management: Another line
of work uses region-based memory management
(RBMM) [46] to avoid GC overhead. Broom [18] cat-
egorizes Naiad [36] objects into three types with a re-
gion assigned to each. Deca [34] manipulates Spark Scala
objects in-memory representations as byte arrays and al-
locates pages for them. While RBMM may reduce GC
overhead, it requires that the programmer declare object-
to-region mappings and adds complexity to compilation,
without eliminating space safety concerns [21].

6 Conclusion and Future Work

In this paper, we presented ElasticMem, an approach for
the automatic and elastic memory management for big
data analytics applications running in shared-nothing clus-
ters. Our approach includes a technique to dynamically
change JVM memory limits, an approach to model mem-
ory usage and garbage collection cost during query exe-
cution, and a memory manager that performs actions on
JVMs to reduce total failures and run times. We evaluated
our approach in Myria and showed that our approach out-
performed static memory allocation both on query failures
and execution times. We leave extensions to other data
structures and experiments with more diverse workloads
and systems as future work.

Acknowledgment: This project is supported in part
by the National Science Foundation through grant IIS-
1247469 and the Intel Science and Technology Center for
Big Data.

USENIX Association 2017 USENIX Annual Technical Conference 755

References

[1] Apache Flink. http://flink.apache.org/.

[2] Apache Giraph. http://giraph.apache.org/.

[3] Docker Container. https://www.docker.com/.

[4] ElasticMem. http://myria.cs.washington.edu/

projects/2015/09/12/cloud_service.html#

elasticmem.

[5] Kubernetes. http://kubernetes.io/.

[6] TPC-H. http://www.tpc.org/tpch/.

[7] TPC-H queries in MyriaL. https://github.com/

uwescience/tpch-myrial.

[8] Tungsten: memory management and binary processing
on Spark. https://databricks.com/blog/2015/04/

28/project-tungsten-bringing-spark-closer-to-

bare-metal.html.

[9] Memory management in the Java HotSpotTMvirtual ma-
chine. http://www.oracle.com/technetwork/java/

javase/memorymanagement-whitepaper-150215.pdf,
2006.

[10] N. Anciaux, L. Bouganim, and P. Pucheral. Memory re-
quirements for query execution in highly constrained de-
vices. In Proceedings of the 29th International Conference
on Very Large Data Bases - Volume 29, VLDB ’03, pages
694–705. VLDB Endowment, 2003.

[11] K. P. Brown, M. J. Carey, and M. Livny. Managing mem-
ory to meet multiclass workload response time goals. In
Proceedings of the 19th International Conference on Very
Large Data Bases, VLDB ’93, pages 328–341, San Fran-
cisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[12] C.-M. Chen and N. Roussopoulos. Adaptive database
buffer allocation using query feedback. In Proceedings
of the 19th International Conference on Very Large Data
Bases, VLDB ’93, pages 342–353, San Francisco, CA,
USA, 1993. Morgan Kaufmann Publishers Inc.

[13] J. E. Cook, A. W. Klauser, A. L. Wolf, and B. G. Zorn.
Semi-automatic, self-adaptive control of garbage collec-
tion rates in object databases. In Proceedings of the 1996
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’96, pages 377–388, New York, NY,
USA, 1996. ACM.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, chapter 16, pages 425–427.
The MIT Press, 3nd edition, 2009.

[15] D. L. Davison and G. Graefe. Dynamic resource brokering
for multi-user query execution. In Proceedings of the 1995
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’95, pages 281–292, New York, NY,
USA, 1995. ACM.

[16] C. Faloutsos, R. T. Ng, and T. K. Sellis. Predictive load
control for flexible buffer allocation. In Proceedings of
the 17th International Conference on Very Large Data
Bases, VLDB ’91, pages 265–274, San Francisco, CA,
USA, 1991. Morgan Kaufmann Publishers Inc.

[17] M. N. Garofalakis and Y. E. Ioannidis. Parallel query
scheduling and optimization with time- and space-shared
resources. In Proceedings of the 23rd International Con-
ference on Very Large Data Bases, VLDB ’97, pages 296–
305, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[18] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytin-
iotis, G. Ramalingam, M. Costa, D. G. Murray, S. Hand,
and M. Isard. Broom: Sweeping out garbage collection
from big data systems. In 15th Workshop on Hot Top-
ics in Operating Systems (HotOS XV), Kartause Ittingen,
Switzerland, 2015. USENIX Association.

[19] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–169, June 1993.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The WEKA data mining software:
An update. SIGKDD Explor. Newsl., 11(1):10–18, Nov.
2009.

[21] N. Hallenberg, M. Elsman, and M. Tofte. Combining
region inference and garbage collection. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI ’02, pages
141–152, New York, NY, USA, 2002. ACM.

[22] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu,
P. Koutris, D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang,
A. Whitaker, S. Xu, M. Balazinska, B. Howe, and D. Suciu.
Demonstration of the Myria big data management service.
In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages
881–884, New York, NY, USA, 2014. ACM.

[23] H. Herodotou, F. Dong, and S. Babu. No one (cluster)
size fits all: Automatic cluster sizing for data-intensive
analytics. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC ’11, pages 18:1–18:14, New
York, NY, USA, 2011. ACM.

[24] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In In CIDR, pages 261–272, 2011.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-
form for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages 295–
308, Berkeley, CA, USA, 2011. USENIX Association.

[26] M. R. Hines, A. Gordon, M. Silva, D. Da Silva,
K. Ryu, and M. Ben-Yehuda. Applications know best:
Performance-driven memory overcommit with ginkgo. In
Proceedings of the 2011 IEEE Third International Con-
ference on Cloud Computing Technology and Science,
CLOUDCOM ’11, pages 130–137, Washington, DC, USA,
2011. IEEE Computer Society.

[27] Y. E. Ioannidis and S. Christodoulakis. On the propaga-
tion of errors in the size of join results. In Proceedings
of the 1991 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’91, pages 268–277, New
York, NY, USA, 1991. ACM.

756 2017 USENIX Annual Technical Conference USENIX Association

http://flink.apache.org/
http://giraph.apache.org/
https://www.docker.com/
http://myria.cs.washington.edu/projects/2015/09/12/cloud_service.html#elasticmem
http://myria.cs.washington.edu/projects/2015/09/12/cloud_service.html#elasticmem
http://myria.cs.washington.edu/projects/2015/09/12/cloud_service.html#elasticmem
http://kubernetes.io/
http://www.tpc.org/tpch/
https://github.com/uwescience/tpch-myrial
https://github.com/uwescience/tpch-myrial
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

[28] A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish: Dy-
namic storage-performance tradeoff in data stores. In
Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI’16, pages 485–
500, Berkeley, CA, USA, 2016. USENIX Association.

[29] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Ja-
cobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Im-
pala: A modern, open-source SQL engine for Hadoop. In
CIDR, 2015.

[30] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards
multi-tenant performance slos. IEEE Trans. on Knowl.
and Data Eng., 26(6):1447–1463, June 2014.

[31] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
Proc. VLDB Endow., 9(3):204–215, Nov. 2015.

[32] J. Li, J. Naughton, and R. V. Nehme. Resource brico-
lage for parallel database systems. Proc. VLDB Endow.,
8(1):25–36, Sept. 2014.

[33] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: A framework
for machine learning and data mining in the cloud. Proc.
VLDB Endow., 5(8):716–727, Apr. 2012.

[34] L. Lu, X. Shi, Y. Zhou, X. Zhang, H. Jin, C. Pei, L. He,
and Y. Geng. Lifetime-based memory management for
distributed data processing systems. Proc. VLDB Endow.,
9(12):936–947, Aug. 2016.

[35] M. Maas, T. Harris, K. Asanovic, and J. Kubiatowicz.
Trash day: Coordinating garbage collection in distributed
systems. In 15th Workshop on Hot Topics in Operating
Systems, HotOS XV, Kartause Ittingen, Switzerland, May
18-20, 2015, 2015.

[36] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A timely dataflow system. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 439–455,
New York, NY, USA, 2013. ACM.

[37] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala,
and S. Chaudhuri. Sharing buffer pool memory in multi-
tenant relational database-as-a-service. Proc. VLDB En-
dow., 8(7):726–737, Feb. 2015.

[38] R. Ng, C. Faloutsos, and T. Sellis. Flexible buffer alloca-
tion based on marginal gains. In Proceedings of the 1991
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’91, pages 387–396, New York, NY,
USA, 1991. ACM.

[39] H. H. Pang, M. J. Carey, and M. Livny. Managing memory
for real-time queries. In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’94, pages 221–232, New York, NY, USA,
1994. ACM.

[40] R. J. Quinlan. Learning with continuous classes. In
5th Australian Joint Conference on Artificial Intelligence,
pages 343–348, Singapore, 1992. World Scientific.

[41] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone.
Application level ballooning for efficient server consolida-
tion. In Proceedings of the 8th ACM European Conference
on Computer Systems, EuroSys ’13, pages 337–350, New
York, NY, USA, 2013. ACM.

[42] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner,
and A. Zeier. Predicting in-memory database performance
for automating cluster management tasks. In ICDE, pages
1264–1275. IEEE Computer Society, 2011.

[43] J. Simão and L. Veiga. Adaptability driven by quality of
execution in high level virtual machines for shared cloud
environments. Comput. Syst. Sci. Eng., 28(6), 2013.

[44] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao,
and M. Surendra. Adaptive self-tuning memory in db2. In
Proceedings of the 32Nd International Conference on Very
Large Data Bases, VLDB ’06, pages 1081–1092. VLDB
Endowment, 2006.

[45] P. Tembey, A. Gavrilovska, and K. Schwan. Merlin:
Application- and platform-aware resource allocation in
consolidated server systems. In Proceedings of the ACM
Symposium on Cloud Computing, SOCC ’14, pages 14:1–
14:14, New York, NY, USA, 2014. ACM.

[46] M. Tofte and J.-P. Talpin. Region-based memory manage-
ment. Inf. Comput., 132(2):109–176, Feb. 1997.

[47] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet another
resource negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 5:1–
5:16, New York, NY, USA, 2013. ACM.

[48] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes,
B. Howe, D. Hutchison, S. Jain, R. Maas, P. Mehta,
D. Moritz, B. Myers, J. Ortiz, D. Suciu, A. Whitaker, and
S. Xu. The Myria big data management and analytics
system and cloud services. In CIDR, 2017.

[49] J. Wang and M. Balazinska. Toward elastic memory man-
agement for cloud data analytics. In Proceedings of the 3rd
ACM SIGMOD Workshop on Algorithms and Systems for
MapReduce and Beyond, BeyondMR ’16, pages 7:1–7:4,
New York, NY, USA, 2016. ACM.

[50] Y. Wang and I. H. Witten. Induction of model trees for
predicting continuous classes. In Poster papers of the
9th European Conference on Machine Learning. Springer,
1997.

[51] M. Weimer, Y. Chen, B.-G. Chun, T. Condie, C. Curino,
C. Douglas, Y. Lee, T. Majestro, D. Malkhi, S. Matusevych,
B. Myers, S. Narayanamurthy, R. Ramakrishnan, S. Rao,
R. Sears, B. Sezgin, and J. Wang. Reef: Retainable eval-
uator execution framework. In Proceedings of the 2015
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 1343–1355, New York, NY,
USA, 2015. ACM.

[52] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

USENIX Association 2017 USENIX Annual Technical Conference 757

[53] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the

9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley, CA,

USA, 2012. USENIX Association.

758 2017 USENIX Annual Technical Conference USENIX Association

Improving File System Performance of Mobile Storage Systems
Using a Decoupled Defragmenter

Sangwook Shane Hahn, Sungjin Lee†, Cheng Ji∗, Li-Pin Chang‡,
Inhyuk Yee, Liang Shi§, Chun Jason Xue∗, and Jihong Kim

Seoul National University, †Daegu Gyeongbuk Institute of Science and Technology,
∗City University of Hong Kong, ‡National Chiao-Tung University, §Chongqing University

Abstract
In this paper, we comprehensively investigate the file
fragmentation problem on mobile flash storage. From
our evaluation study with real Android smartphones, we
observed two interesting points on file fragmentation on
flash storage. First, defragmentation on mobile flash
storage is essential for high I/O performance on Android
smartphones because file fragmentation, which is a re-
curring problem (even after defragmentation), can signif-
icantly degrade I/O performance. Second, file fragmen-
tation affects flash storage quite differently than HDDs.
When files are fragmented on flash storage, the logi-
cal fragmentation and the physical fragmentation are de-
coupled and a performance degradation mostly comes
from logical fragmentation. Motivated by our obser-
vations, we propose a novel defragger, janus defragger
(janusd), which supports two defraggers, janusdL for a
logical defragger and janusdP for a physical defragger.
JanusdL, which takes advantage of flash storage’s inter-
nal logical to physical mapping table, supports logical
defragmentation without data copies. JanusdL is very
effective for most fragmented files while not sacrificing
the flash lifetime. JanusdP, which is useful for physi-
cally fragmented files but requires data copies, is invoked
only when absolutely necessary. By adaptively selecting
janusdL and janusdP, janusd achieves the effect of full
file defragmentation without reducing the flash lifetime.
Our experimental results show that janusd can achieve at
least the same level of I/O performance improvement as
e4defrag without affecting the flash lifetime, thus mak-
ing janusd an attractive defragmentation solution for mo-
bile flash storage.

1 Introduction
When a file system becomes highly fragmented, it has
to allocate multiple split storage areas, i.e., extents [1],
for a single file more frequently. In an HDD-based file
system, accessing such a highly-fragmented file degrades
the performance significantly due to the increased time-
consuming seek operations. In order to mitigate the per-
formance impact caused by file fragmentation, many file
systems recommends the periodical execution of the de-
fragmentation utility (e.g., every week) [2-6].

Unlike for HDD-based file systems, defragmentation
is generally not recommended for flash-based file sys-
tems [7-13]. Since flash storage does not require seek

Step 1: examine the need and effect of

file defragmentation. (See Section 2.)

Step 2: extract the design requirements of

a defragger for flash storage. (See Section 3.)

Step 3: design and implement a defragger

that meets the requirements. (See Section 4.)

Fig. 1: A summary of the key steps in our investigation.
operations, it is believed that the effect of defragmenta-
tion on the file system performance is rather negligible
for flash storage. Furthermore, since a large number of
files need to be copied during defragmentation, frequent
defragmentation can affect the limited lifetime. How-
ever, this negative view toward flash defragmentation has
been widely accepted without a proper validation study.
The main goal of this paper, therefore, is to investigate
the file fragmentation problem on mobile flash storage in
a systematic and comprehensive fashion. Fig. 1 summa-
rizes the key steps of our investigation study.

Since previous studies (e.g., [22]) have shown that files
can be severely fragmented on mobile flash storage, in
our study, we start with two key questions related to the
effect of file defragmentation (step 1 in Fig. 1): 1) when
fragmented files are defragmented, how much I/O per-
formance is improved? and 2) how long does the effect
of file defragmentation last? Unlike a common miscon-
ception on flash defragmentation, our evaluation study
showed that I/O performance of flash storage can be sig-
nificantly improved by defragmentation. For example,
when fragmented files were defragmented, the average
app launching time, which is an important user-perceived
performance metric on smartphones, can be improved by
up to 52% over the fragmented files.

Although fragmented files can degrade the I/O perfor-
mance, if the effect of file defragmentation can last for
long time (e.g., several months), a conventional defrag-
mentation tool will be sufficient. However, our evalua-
tion study indicated that file fragmentation may recur in
a short cycle, around a week, even after full file defrag-
mentation on smartphones. One main cause of recurring
file fragmentation was frequent automatic app updates
on smartphones. Since many popular apps tend to be up-
dated very frequently (e.g., every 10 days [28]), the effect
of file defragmentation quickly disappears.

When file defragmentation is repeatedly required, a
conventional defragger such as e4defrag may not be an

USENIX Association 2017 USENIX Annual Technical Conference 759

appropriate solution for flash storage because it requires
a large amount of data copies during defragmentation,
thus seriously affecting the flash lifetime. For example,
if we invoke e4defrag every week as suggested from our
evaluation study, it might reduce the flash lifetime by
more than 10%. Therefore, in order to maintain high I/O
performance in a sustainable fashion, we need a differ-
ent approach to the defragmentation problem for mobile
flash storage, so that the impact of file defragmentation
on the flash lifetime is less adverse.

The key insight behind janus defragger (janusd)
comes from our investigation on the characteristics of
file fragmentation in flash storage (step 2 in Fig. 1). Our
study showed that file fragmentation affects flash storage
quite differently from HDDs. In HDDs, when a (logi-
cal) file is highly fragmented, its physical layout is frag-
mented similarly with many isolated physical fragments.
That means, logical fragmentation at the file system and
physical fragmentation at the storage medium level are
highly correlated. On the other hand, in flash storage,
there is no physical counterpart at the storage medium
level which is strongly correlated with logical fragmenta-
tion at the file system. For example, unlike HDDs where
a degree of logical fragmentation directly affects the I/O
performance at the storage medium level, the I/O per-
formance at the storage medium level in flash storage
is largely decided by an average degree of the I/O par-
allelism during I/O operations [16-21]. As will be ex-
plained in Section 3, since the average degree of the I/O
parallelism for accessing a file is not correlated with the
degree of logical fragmentation of the file, file fragmen-
tation in flash storage occurs in a decoupled fashion be-
tween the logical space and the physical space. (In this
paper, we call that a file foo is physically fragmented
when the degree of the I/O parallelism in accessing foo
is limited.)

In order to understand the impact of decoupled frag-
mentation on I/O performance, we evaluated the perfor-
mance impact of file fragmentation on the entire mobile
I/O stack layers. As expected, because of a high degree
of the I/O parallelism at the storage medium level, only a
small number of (unlucky) files were stored in a severely
skewed fashion, limiting their I/O parallelism levels sig-
nificantly. That is, regardless of how files were logically
fragmented, their I/O performance at the storage medium
level did not change much. On the other hand, logi-
cally fragmented files significantly increased processing
times in the block I/O layer and the device driver because
of a large increase in the number of block I/O requests.
Therefore, the minimum requirement for a flash defrag-
ger would be to defragment the logical space effectively.
Furthermore, since flash files are fragmented in a decou-
pled fashion, an ideal flash defragger needs to support
an independent physical defragger as well. The physical

defragger is necessary because a logical defragger cannot
even identify physically fragmented files.

Motivated by the above requirements on a defragger
for mobile flash storage, we propose a novel decou-
pled defragger, janusd, which consists of two defraggers,
janusdL for a logical defragger and janusdP for a phys-
ical defragger (step 3 in Fig. 1). JanusdL, which takes
advantage of flash storage’s internal logical to physical
mapping table, supports logical defragmentation with-
out reducing the flash lifetime by avoiding explicit data
copies. JanusdP, which independently operates from
janusdL, works like a conventional defragger with data
copies. Since the I/O performance of flash storage is
dominated by logical file fragmentation, janusdL works
very well for most fragmented files without affecting the
flash lifetime. On a rare occasion when a file is physi-
cally fragmented, janusdP is invoked to restore the de-
graded file performance.

In order to validate the effectiveness of the proposed
janusd technique, we have implemented janusd on an
emulated mobile flash storage, simeMMC and simUFS.
(SimeMMC and simUFS, which are based on an extended
Samsung 843T SSD which supports host-level FTLs,
are configured to effectively simulate the bandwidth of
eMMC and UFS devices [14, 15], respectively.) Our
experimental results show that janusd significantly im-
proves the I/O performance of mobile flash storage. For
example, janusd can reduce the app launching time by
up to 53%, achieving an equivalent I/O performance im-
provement as e4defrag. However, janusd requires a less
than 1% of data copies over e4defrag, thus making it
an attractive defragmentation solution for flash storage.
Furthermore, janusdL alone achieves about 97% of the
janusd’s performance level for most files.

The remainder of this paper is organized as follows. In
Section 2, we report our key findings through our evalu-
ation study of real-world file fragmentation on Android
smartphones. Section 3 describes decoupled fragmen-
tation in flash storage and explains needs for both log-
ical and physical defraggers. A detailed description of
janusd is given in Section 4. Experimental results follow
in Section 5, and related work is summarized in Section
6. Finally, Section 7 concludes with future work.

2 File Fragmentation: User Study
In this section, we empirically investigate how file I/O
performance is affected by file fragmentation on flash
storage using 14 smartphones in use. In particular, we
examine how quickly file fragmentation occurs again af-
ter defragmentation and how much I/O performance is
affected by different defragmentation intervals.

2.1 Evaluation Study Setup
For our study, we collected 14 used Android smart-
phones. In order to avoid possible bias, we have se-

760 2017 USENIX Annual Technical Conference USENIX Association

Table 1: File system utilizations of 14 smartphones.
50-59% 60-69% 70-79% 80-89% 90-99%
S5, GP S3, G5 N5 N6, T2, T5, Z1, Z3 S6, I2, T3, T4

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8

P
er

ce
n

ta
g

e
(%

)

Degree of Fragmentation

S5

S3

N5

N6

S6

Fig. 2: Cumulative distributions of DoF values.

lected these smartphones from five different manufac-
turers with at least six month’s real use. 14 users,
like most other smartphone users, heavily used popu-
lar Android applications such as Chrome, Messenger,

Gmail, Facebook, Twitter and Game. Table 1 di-
vides 14 smartphones1 into 5 categories based on the file
system utilization. (In the rest of this section, we report
the evaluation results on five representative smartphones,
S5, S3, N5, N6 and S6, which were chosen from each
utilization category.) We inspected file fragmentation on
the data partition only because the data partitions oc-
cupied most of the total storage space available and most
I/O operations occur in the data partition.

For our study, we used the degree DoF(x) of fragmen-
tation of a file x, which is defined as the ratio of the
number of extents allocated to the file x to the ideal (i.e.,
smallest) number of extents needed for the file x. For ex-
ample, if an 1-GB file foo in Ext4 were allocated to 24
extents, DoF(foo) would be 3 (i.e., 24/8), because foo

would have required at least 8 extents even when foo

was contiguously allocated. (A single extent can cover
up to 128 MB in Ext4.) The large DoF value means that
the file is highly fragmented.

2.2 Degree of File Fragmentation Analysis
We first examined DoF values of files in the data parti-
tion of the five smartphones using e4defrag, and Fig. 2
shows cumulative distributions of DoF values on the five
smartphones. As reported in other investigations such as
[22], our inspected smartphones exhibited similar char-
acteristics on file fragmentation. Fragmented files ac-
counted for between 14% and 33% of all files. In par-
ticular, on N5, 717 files among its 2,704 files were frag-
mented. Furthermore, 476 files were fragmented with
their DoF values larger than 2. When the file system
space was highly utilized, the number of fragmented files
tends to be large. For example, on S6, having the highest
file system utilization, 33% of its files were fragmented.

114 phones include Nexus 5 (N5), 6 (N6), Galaxy S3 (S3), S5 (S5),
S6 (S6), Note 2 (T2), Note 3 (T3), Note 4 (T4), Note 5 (T5), Xperia Z1
(Z1), Z3 (Z3), Optimus G Pro (GP), G5 (G5) and Vega Iron 2 (I2).

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)

S3 (63%)
S5 (51%)

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)
S3 (63%)
S5 (51%)

(a) Six applications on N6.

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)

S3 (63%)
S5 (51%)

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)
S3 (63%)
S5 (51%)

(b) Twitter on five smartphones.

Fig. 3: The average DoF value of application files.

2.3 File Fragmentation Recurrence
Since our target smartphones have never been defrag-
mented before, the results shown in Fig. 2 are interest-
ing but somewhat expected. A more critical question for
our study was to find out how soon file fragmentation re-
curs after full file defragmentation. If the recurrence in-
terval of file fragmentation were quite large (say, several
months), an existing defragmentation would be sufficient
for mobile flash storage as well.

In order to understand file fragmentation recurrence
(as well as others), after defragmenting all the files using
e4defrag, we collected a daily snapshot of each smart-
phone for the subsequent two-week interval using a cus-
tom data collection app. Our snapshot data include DoF
values of files and app launching times, Fig. 3(a) shows
the changes in the average DoF values of the files associ-
ated with six popular applications, Chrome, Messenger,
Gmail, Facebook, Twitter and Game, on N6. As
shown in Fig. 3(a), file fragmentation recurred quickly
after the full file system defragmentation. For most ap-
plications on N6, file fragmentation occurs again in a
week since the full defragmentation. Fig. 3(b) shows the
changes in the average DoF values of the files associated
with Twitter on the five smartphones with different file
system utilizations. The recurrence interval of file frag-
mentation was proportional to the file system utilization.
For example, on the seventh day after the full file system
defragmentation, the average DoF value of the Twitter
files reached 1.86 and 3.04 for 70% and 90% of file sys-
tem utilization, respectively. Even though only the DoF
values of Twitter files are presented here, we had simi-
lar observations on the files of the other applications [42].

Our observation strongly suggests that file fragmen-
tation is a recurring problem in smartphones, especially
when the file system utilization is high2. In the following
subsections, we shall show that file fragmentation nega-
tively impact on user experience, but regular file defrag-
mentation is harmful to flash storage lifetime. The pro-
posed janusd technique is novel in that these two con-
flicting phenomena are resolved in a satisfactory fashion.

2One of the reasons for a short recurrence interval is frequent app
updates which automatically invoked in background when a smart-
phone is connected to a Wi-Fi environment. Since popular apps such
as Twitter are reported to be updated, on average, every 7 days [29],
when the file system utilization is high, newly installed apps are very
likely to experience severe file fragmentation.

USENIX Association 2017 USENIX Annual Technical Conference 761

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)

S3 (63%)
S5 (51%)

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)
S3 (63%)
S5 (51%)

(a) Six applications on N6.

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

4

5

6

0 day 1 day 3 days 7 days 14 days
Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)

S3 (63%)
S5 (51%)

A
ve

ra
ge

 D
oF

of
 A

pp
lic

at
io

n
F

ile
s

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

Game
Twitter
Facebook
Gmail
Messenger
Chrome

1

2

3

0 day 1 day 3 days 7 days 14 days

N
or

m
al

iz
ed

 L
au

nc
hi

ng
 T

im
e

Days since defragmentation

S6 (92%)
N6 (83%)
N5 (74%)
S3 (63%)
S5 (51%)

(b) Twitter on five smartphones.

Fig. 4: Changes in app launching times.
2.4 Impact on User Experience
File fragmentation can negatively impact on the smart-
phone user experience due to degraded I/O performance.
For example, the launching of an application involves
reading a set of files, including executables, libraries,
and data files. This procedure creates a user-perceived
latency because the user has to wait until all the required
files have been loaded from flash storage. We define the
launching time of an application to be the time interval
between the time when the application icon is touched
and the time when all graphical user interface compo-
nents are displayed for the next user interaction.

Fig. 4(a) shows the launching time of the six popular
applications on N6 and Fig. 4(b) depicts the launching
time of Twitter on five smartphones with different file
system utilizations. The launching time noticeably de-
graded as the day count increased, especially with the
high file system utilization. For example, compared to
the launching time right after the full file system defrag-
mentation, the launching time of Twitter on the sev-
enth day was already 1.6 times longer when the file sys-
tem utilization was 70%, and the launching time was am-
plified to two times longer when the file system utiliza-
tion was 90%. This result indicates that the recurring file
fragmentation can highly impact the quality of user ex-
perience in a short period of time.

2.5 Impact on Flash Memory Lifetime
Because file fragmentation is a recurring problem, reg-
ular file defragmentation might be necessary to main-
tain satisfiable user experience. In fact, weekly file de-
fragmentation is recommended by many defragmenta-
tion tools [25, 26]. However, conventional file defrag-
mentation is based on data copies, which increases the
wear in flash memory. We performed full file system
defragmentation with different frequencies, including a
daily basis and a weekly basis, under the emulated appli-
cation update behaviors. Fig. 5 shows the total write traf-
fic contributed by file defragmentation measured by the
built-in Linux block I/O tracing tool blktrace. Surpris-
ingly, the amount of data copies during file defragmen-
tation was fairly large. For example, defragmenting files
on the third day involved 1.8 GB of data copies under
a 70% file system utilization, and this number increased
to 5.76 GB if the file system utilization was 90%. If file
defragmentation was performed in a weekly manner, the
amount of data copies reached up to 9.53 GB.

0

5

10

15

20

25

N5 (74%) N6 (83%) S6 (92%)

1 day 3 days 7 days 14 days

A
m

ou
nt

 o
f

D
at

a
C

op
yi

ng
 (

G
B

)

* The data Partition Size
N5: 26.7 GB
N6: 26 GB
S6: 25 GB

Fig. 5: The amount of data copies by file defragmenta-
tion with different defragmentation periods.

The extra data copies negatively impacts on flash
memory lifetime. This problem is further exaggerated
by the deteriorated flash endurance due to the introduc-
tion of multilevel cells. Specifically, the program-erase
cycle (PE cycle) limit of TLC NAND is as low as 300
PE cycles. The data partition of the S6 is 25 GB, and
weekly file defragmentation costs every flash block (9.53
GB/week × 4 weeks)/25 GB≈1.5 extra PE cycles per
month. In the typical smartphone life cycle of two years,
weekly file defragmentation introduces 36 extra PE cy-
cles to every block, and thus the flash lifetime is degraded
by more than 10%. This significant lifetime reduction
highly discourages the use of conventional copy-based
file defragmentation tools on flash storage.

3 File Fragmentation: Under The Hood
In order to develop a flash-aware file defragmentation
tool which does not have a negative effect on the flash
lifetime, we performed a detailed characterization study
of file fragmentation on flash storage.

3.1 Decoupled Fragmentation on Flash
Since flash storage works quite differently from HDDs at
the storage medium level, before our study, we redefined
the concept of physical fragmentation for flash storage.

Since flash storage is composed of a group of parallel
I/O units (e.g., multiple flash memory channels/planes)
and each I/O unit can support random access, a conven-
tional definition of physical data sequentiality on hard
drives does not make much sense to flash storage. In
order to better reflect the effect of file fragmentation on
I/O performance in flash storage, we associate two met-
rics, DoFL(x) and DoFP(x), for a file x, where DoFL(x)
and DoFP(x) represent the degrees of logical fragmen-
tation and physical fragmentation, respectively. For the
logical DoF value, DoFL(x), of a file x, we use DoF(x)
as defined in Section 2.1. Since the I/O performance at
the flash device level is largely determined by a degree
of the I/O parallelism while accessing the file x, not the
number of split extents as in HDDs, we define the phys-
ical DoF value, DoFP(x), of a file x as (1 - DoP(x)).
DoP(x), which indicates the effective degree of the I/O
parallelism for accessing the file x, is computed as the
ratio of the average degree of the I/O parallelism for ac-
cessing the file x sequentially to the maximum degree
of the I/O parallelism supported by a flash storage sys-

762 2017 USENIX Annual Technical Conference USENIX Association

0

0.25

0.5

0.75

0

10

20

30

40

8
4

2
1

Percentage (%
)

0

0.25

0.5

0.75

0

10

20

30

40

8
4

2
1

Percentage (%
)

(a) After 1-year aging.

0

0.25

0.5

0.75

0

10

20

30

40

8
4

2
1

Percentage (%
)

0

0.25

0.5

0.75

0

10

20

30

40

8
4

2
1

Percentage (%
)

(b) After 1-week aging.

Fig. 6: A snapshot distribution of files classified based
on their DoFL values and DoFP values.

tem. When a flash storage system can support up to M
I/O operations at the same time, if, on average, n oper-
ations were supported in parallel while accessing foo,
DoP(foo) is n/M. Therefore, DoFP(x) becomes 0 when
the file x was accessed under the maximum I/O paral-
lelism. As the effective degree of the I/O parallelism
drops, DoFP(x) approaches (1- 1/M).

In order to understand how logical fragmentation and
physical fragmentation interact with each other in flash
storage, we measured how DoFL and DoFP values
change from the Ext4 file system after aging Ext4 with
simulated one-year and one-week workloads. Since we
need to collect DoFP values, we used a mobile flash stor-
age emulator (see Section 5).

Fig. 6 shows the distributions of DoFL and DoFP val-
ues after aging Ext4 with simulated one-year and one-
week workloads, respectively. The results indicate that
logical and physical fragmentation are highly decoupled.
For example, the files in Region A suffered from high de-
grees of logical fragmentation but their degrees of phys-
ical fragmentation were quite low. On the other hand,
surprisingly, there were still a few files in Region B that
were barely fragmented at the logical space but suffered
from high degrees of physical fragmentation.

Decoupled logical and physical fragmentation is
mainly attributed to the high degree of the I/O paral-
lelism available in flash storage as well as the extra indi-
rection layer in flash storage for logical to physical map-
ping. Logical fragmentation and physical fragmentation
impose different impacts on I/O performance. Specifi-
cally, logical fragmentation amplifies the overhead in the
system software I/O stack due to the increased I/O fre-
quency, while physical fragmentation degrades the I/O
parallelism in flash storage. Defragmentation only at the
logical or physical level may not produce the optimal I/O
performance. For example, even though a file has been
defragmented at the file system level, it dost not guar-
antee that the file is accessed through the maximum I/O
parallelism inside of flash storage.

Conventional defragmentation tools cannot perform
physical defragmentation for flash storage because the
host does not have direct access to flash channels. In

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Degree of Logical Fragmentation (DoFL)

0 0.25

Degree of Physical
Fragmentation (DoFP)

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Degree of Logical Fragmentation (DoFL)

0.5 0.75

Degree of Physical
Fragmentation (DoFP)

(a) Varying DoFL under low DoFP’s.

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Degree of Logical Fragmentation (DoFL)

0 0.25

Degree of Physical
Fragmentation (DoFP)

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Degree of Logical Fragmentation (DoFL)

0.5 0.75

Degree of Physical
Fragmentation (DoFP)

(b) Varying DoFL under high DoFP’s.

Fig. 7: I/O throughput under varying DoFL and DoFP.

addition, these tools are not aware of the existing indi-
rection layer inside of flash storage, which is useful to
modify the logical layout of files without physical data
copies. We believe that the firmware of flash storage
must be adequately involved during the defragmentation
process. As shown in Fig. 6, the majority of file fragmen-
tation is affiliated with logical fragmentation. While it is
possible to perform copyless defragmentation for logi-
cally fragmented files (the files in Region A), data copies
are still necessary to re-distribute data among flash chan-
nels for physical defragmentation. Fortunately, as shown
in Fig. 6(a) and 6(b), the files with DoFP ≥ 0.5 contribute
to no more than 20% of all files. In other words, physical
defragmentation will be performed only for absolutely
needed cases to prevent the extra data copies which will
reduce the flash memory lifetime.

3.2 Need for Logical Defragmentation
To measure the significance of logical and physical frag-
mentation in terms of performance impact, we measured
the throughput of reading a file foo under different val-
ues of DoFL(foo) and DoFP(foo). In order to con-
trol DoFL values in our study, we made a simple utility
which repeatedly splits a given file foo until DoFL(foo)
reaches the target DoFL number. The performance mea-
surement was conducted on the mobile flash storage
emulator so that the degree of physical fragmentation
DoFP(foo) can also be carefully controlled. Based on
the majority of the distribution in Fig. 6, the DoFL value
was between 1 and 8, while the DoFP value was between
0 and 0.25. Fig. 7(a) shows that, when there was no phys-
ical fragmentation (DoFP = 0), a high degree of logical
fragmentation (DoFL = 8) significantly degraded the I/O
throughput by 75% compared to the case without any
logical fragmentation (DoFL = 1). On the other hand,
increasing DoFP(foo) from 0 to 0.25 only slightly de-
graded the throughput, no more than 20% for each DoFL

value. This observation suggests that logical fragmen-
tation should be managed in a more aggressive manner
than physical fragmentation.

In order to understand how logical fragmentation af-
fects the overhead in the system software I/O stack, we
built a fully integrated storage I/O profiler, IOPro, for
quantitative evaluations. IOPro can profile the complete
Android I/O stack from the application level to the de-

USENIX Association 2017 USENIX Annual Technical Conference 763

0

1000

2000

3000

4000

1 2 4 8

I/
O

 E
xe

cu
ti

on
 T

im
es

 (
us

)

Degree of Logical Fragmentation (DoFL)

File System
Page Cache
Block Layer
Device Driver
Flash Storage

(a) Execution time changes on N6

0

500

1000

1500

2000

2500

1 2 4 8

I/
O

 E
xe

cu
ti

on
 T

im
es

 (
us

)

Degree of Logical Fragmentation (DoFL)

File System
Page Cache
Block Layer
Device Driver
Flash Storage

(b) Execution time changes on S6

Fig. 8: Execution time changes under varying DoFL.
vice driver level. The key feature of IOPro is that all
I/O activities can be seamlessly linked together via their
corresponding file information throughout the entire An-
droid I/O stack. Using this tool, we can easily measure
times spent in different I/O stack layers. For each mea-
surement run, IOPro measured execution times spent in
the Ext4 file system, the page cache, the block layer, the
device driver and the mobile flash storage , respectively,
on each of our inspected smartphones. For brevity’s sake,
we only include the measurement data for N6 and S6 in
this section, which represent smartphones with eMMC
devices and with UFS devices, respectively.

In order to evaluate the effect of logical fragmentation,
we measured I/O execution times while varying DoFL

from 1 (no fragmentation) to 8 (heavy fragmentation).
For all the measurements, we ran a simple synthetic I/O
workload which reads a 512-KB file. The 512-KB file
was pre-split into multiple fragments by our fragmen-
tation utility so that the target DoFL can be satisfied.
Figs. 8(a) and 8(b) show how different I/O stack layers
were affected under varying DoFL values on N6 and S6,
respectively. The times spent for the block layer, the de-
vice driver, and the flash storage device have increased
as with the increasing DoFL values. On the other hand,
the times spent in the file system and page cache layers
are barely affected. (In the block layer and the device
driver, the increased number of block I/O requests in ac-
cessing the fragmented file directly affected the overhead
of the I/O scheduler, handshaking and interrupt handling
[36-41].) In mobile flash storage, although the same I/O
layers were affected as in HDDs by the increased num-
ber of block I/O requests, the relative impact on these I/O
layers were quite different from that in HDDs. As shown
in Figs. 8, the block layer is dominantly affected by the
number of block I/O requests over the flash storage de-
vice. In HDDs, the impact on the HDD device would
have been very dominant, making the impact on the rest
of I/O layers negligible.

3.3 Need for Physical Defragmentation
As previously shown in Fig. 6, most of the files have
small DoFP values (≤ 0.25). This is because, with the
rich I/O parallelism inside of flash storage, it is very
unlikely that a file suffers from extremely low I/O par-
allelism. For example, suppose that data are allocated
among eight channels of equal availability, the proba-
bility that a 64-KB file composed of eight 8-KB flash

File System DoFL

Physical Defragmentation

NAND Flash

Flash Storage

JanusdFTLL2P Mapping Table

Logical
Defragmentation

Defragmentation
Command

DoFP

JanusdL JanusdPUser-level

 ,

File-to-Storage Mapping

Fig. 9: An overall architecture of janusd.

pages is entirely allocated to one single channel would
be 0.00004%. This probability further reduces if the file
size is larger than 64 KB. On the other hand, the probabil-
ity that the 64-KB file is allocated to 6 or more channels
would around 80%.

Although it is a rare case that a file has a very high
DoFP value, the overall performance may still be ad-
versely affected if a physically fragmented file is fre-
quently accessed. Fig. 7(b) shows that, a high degree
of physical fragmentation (i.e., ≥ 0.5) severely degraded
the I/O throughput even when the degree of logical frag-
mentation was low. For example, even if a file was not
fragmented at all in the logical space (DoFL=1), if the
file had a DoFP value of 0.5, the I/O throughput be-
came only 48% of that with DoFP=0. Because logical
and physical fragmentation is decoupled on flash stor-
age, in such a rare case of high physical fragmentation,
it is not sufficient to perform logical defragmentation
only, and physical defragmentation is necessary to re-
distribute data among channels at a cost of flash lifetime.

4 Design and Implementation of Janusd
Our analysis in Sections 2 and 3 strongly indicates that
file system fragmentation causes serious performance
degradation even in flash storage, badly affecting the
quality of user experiences in mobile systems. More-
over, unlike in HDDs, logical and physical fragmentation
in flash storage must be handled in different manners.

Janusd is designed to effectively cope with the prob-
lems arising from logical and physical fragmentation at a
low cost. Fig. 9 shows an organization of janusd with
two defraggers, janusdL and janusdP, which are im-
plemented as a user-level tool like e4defrag. Once the
janusdL or janusdP is run by end users, it collects in-
formation of files to decide whether or not to trigger
logical or physical defragmentation. To perform log-
ical/physical fragmentation, special supports from the
flash storage side are required. Those supportive func-
tions are implemented as a firmware module, called
janusdFTL, which is an extension of the existing FTL
algorithm. Janusd is designed with a minimal change to
the existing system. Thus, it is unnecessary to change
the underlying file system and OS kernel, except for the

764 2017 USENIX Annual Technical Conference USENIX Association

addition of a device driver for communication between
the user-level tool and janusdFTL.

JanusdL is responsible for resolving logical fragmen-
tation of files. JanusdL selects a list of fragmented files
based on DoFL of files (see 1 in Fig. 9). Instead of
physically moving files’ data to another location, it sends
a defragmentation command to janusdFTL (2) so that
the logical-to-physical mapping table inside of flash stor-
age (3) will be updated. This design enables us to re-
solve logical fragmentation without any physical data
copies (see Section 4.1). JanusdP does not change log-
ical layouts of files. Instead, it is in charge of resolving
physical fragmentation for better exploitation of multiple
channels in flash storage by re-distributing data among
channels. JanusdP notifies janusdFTL of a list of fre-
quently accessed files (4), and janusdFTL calculates
the DoFP values of the files (5) based on the physi-
cal data allocation inside of flash storage. Because data
copies have negative impact on flash memory lifetime
(see Section 4.2), among the frequently accessed files,
janusdFTL performs physical defragmentation only on
the files with high DoFP values (6).

For the janusdL/P and janusdFTL to communicate
with each other, new custom interfaces must be added.
Table 2 summarizes a set of new custom interfaces,
which can be implemented using user-defined command
facilities of SATA and NVMe. Detailed descriptions of
janusdL/P will be given in the following subsections.

4.1 JanusdL: Logical Defragmentation
Because janusdL inherits most of the features and algo-
rithms from e4dfrag, the implementation of janusdL is
done with slight modifications of e4dfrag.

Logical Defragmentation: When janusdL is invoked,
it first searches for fragmented files using file-to-storage
mapping. JanusdL calls the FIBMAP command of the
Linux VFS to obtain a list of logical block addresses
(LBAs) where the data of a given file is stored, and then
it calculates the values of DoFL of the file accordingly.
With a list of files for logical defragmentation, the fol-
lowing process repeats for each of the files: JanusdL first
looks for free and continuous LBAs as the destination
where the file fragments can be moved to. These destina-
tion LBAs are obtained using the existing free-space allo-
cation feature in e4dfrag. With the LBAs of the file frag-
ments (source LBAs) and the destination LBAs, janusdL
sends a defrag command, shown in Table 2, contain-

Table 2: Custom interfaces for janusd.
Command Description

defrag(list src LBA, Change src LBA in logical-to-physical
list dst LBA) mapping table to dst LBA.

flush() Flush buffered defrag log to flash from DRAM.
check() Check whether commit completion flag

is saved at defrag log or not.
discard() Delete the uncommitted log entries in defrag log.

11 13 15 17

File F

File System Space
(Array of LBAs)

f0 f3f1 f2

11
12
13
14
15
16
17

p0 p3p1 p2

p0

p3

p1

p2

(4 Extents)

18

L2P Mapping

11 13 15 17

NAND Flash
(Array of Pages)

(OOB Areas)

19 ~ 22

File F

f0

15
16
17
18
19
20
21

p0 p3p1 p2

p0

p3

p1
p2

22

11 13 15 17

NAND Flash
(Array of Pages)

f0 f3f1 f2

(a) Before Defragmentation (b) After Defragmentation

L2P Mapping

(OOB Areas)

Defragmentation
with JanusdL

Old Extents
(removed)

File System Space
(Array of LBAs)

Fig. 10: An example of defragmentation in janusd.

ing pairs of source-destination LBAs to janusdFTL in
flash storage. Upon receiving defrag command, janus-
dFTL updates its logical-to-physical (L2P) mapping ta-
ble so that the destination LBAs will refer to the physical
pages referred to by the source LBAs. After completion
of the command, janusdL revises the pointers in the in-
ode of the defragmented file so that host applications can
access the file through continuous LBAs.

Fig. 10 illustrates an example of how janusdL per-
forms logical defragmentation. We assume that a target
file F for defragmentation is fragmented into four extents
f0, f1, f2, and f3, and they are stored in LBAs 11, 13,
15, and 17 (source LBAs), respectively. JanusdL sends
a defrag command to map the extents to new LBAs 19
to 22 (destination LBAs). JanusdFTL first locates a list
of physical pages that are mapped to the source LBAs.
In this example, the file extents f0, f1, f2, and f3 at the
source LBAs 11, 13, 15, and 17 are mapped to physical
pages p0, p1, p2, and p3, respectively. JanusdFTL then
updates the mapping entries of the destination LBAs 19
to 22 so that they refer to the physical pages p0 to p3, re-
spectively. Finally, the L2P mapping entries of the source
LBAs are unset, and janusdFTL sends an acknowledg-
ment to the host to finish the defrag command. After
this, janusdL revises the inode of the file to access the
new extent f0 through the new LBAs 19 to 22.

Power Failure Recovery: JanusdL may introduce in-
consistency between L2P and P2L mapping information
in the event of unexpected power failures. When new
data is being written to a page, the FTL stores a corre-
sponding LBA in an OOB area of that page for reverse
P2L mapping. Even after a power failure occurs and an
L2P mapping table (in DRAM) is lost, the FTL is able to
recover a complete L2P mapping table by scanning all of
the OOB areas in NAND flash. Unfortunately, when an
L2P mapping table gets updated by janusd, correspond-
ing LBAs in OOB areas cannot be updated in sync with
the changes of L2P mapping because of NAND flash’s
erase-before-write constraint. In Fig. 10, for example,
the LBA referring to the page p0 was changed from 11
to 19, but the page p0 still stores the old LBA (i.e., 11)
in its OOB area. Suppose that the L2P mapping table is

USENIX Association 2017 USENIX Annual Technical Conference 765

p0 p3p1 p2

11 13 15 17

15
16
17
18
19
20
21
22

11
12
13
14

p0

p3

p1

p2Scan OOBs
1

�

L2P Mapping (Incorrect)

Defrag Log

11 � 19
13 � 20
15 � 21
17 � 22

2 Load a defrag log

15
16
17
18
19
20
21
22

11
12
13
14

p0

p3

p1

p2

�

L2P Mapping

3
Reconstruct L2P

Mapping using a

Defrag Log

Fig. 11: A power failure recovery of janusdL.

lost due to a power failure. The FTL will rebuild the L2P
mapping table by scanning OOB areas. Based on the old
P2L information in OOB areas, the page p0 is referred
to by LBA 11. However, at the file-system level, the new
extent f0 is at LBAs 19 to 22 because the inode of the file
has been changed. As a result, when applications attempt
to access f0, the file-system sends wrong LBAs (e.g., 19)
and the FTL returns invalid data or reports an error.
JanusdL addresses the inconsistency problem by log-

ging all of the history of remapped LBAs in a special log,
called a defrag log. A defrag log is an ordered collection
of entries, each of which is a pair of a source LBA and
a destination LBA plus a length. This information can
easily be extracted from defrag commands. For exam-
ple, a defrag log entry for f0 is (11, 19, 1), where 11 is a
source LBA, 19 is a destination LBA, and 1 is a length.
Fig. 11 shows an example of how the mapping table is
reconstructed after an unexpected power failure. When
a flash storage device is rebooted, the FTL scans OOB
areas of all pages and builds the L2P mapping table as
usual. Then, it checks the defrag log to see if any L2P
entries have been remapped for defragmentation and up-
dates the mapping table accordingly.

To prevent frequent writes to flash, janusdFTL keeps
defrag log entries in DRAM temporally and flushes them
to flash at proper timings. This buffering, however, po-
tentially causes another inconsistency problem – if a
power failure occurs before the buffer is flushed to flash,
the inconsistency between L2P and P2L mapping occurs.
This problem can be solved by using a commit protocol
combined with fsck. Fig. 12 illustrates how the commit
protocol guarantees atomicity of defragmentation. Once
all target files are moved and defragmentation is ready to
finish, janusdL explicitly (1) flushes the buffered defrag
log to flash by transmitting flush command in Table 2,
(2) writes all file-system’s metadata to a journaling area,
and (3) appends a commit completion flag to the end of
the defrag log. On system rebooting, fsck modified for
janusdL first checks if the latest commit completion flag
was written successfully by sending check command in
Table 2. If not, the system was improperly shut down
due to a system failure. Using discard command in
Table 2, the modified fsck asks janusdFTL to discard
uncommitted log entries in the defrag log and to rebuild

Fig. 12: A synchronization of file-system’s metadata and
defrag-log commits.

an L2P mapping table only with committed ones. In the
file system level, at the same time, the modified fsck

rollbacks all the changes made to files by janusdL and
reverts the files to their last consistent states.

Defrag Log Management: The FTL conducts inter-
nal page movements for garbage collection and wear lev-
eling. If these page movements involve a page whose
LBA is previously remapped, the defrag log must be up-
dated. When a page is moved by garbage collection or
wear leveling, janusdFTL writes the page according to
its most recent P2L mapping information. The update of
L2P mapping is required when a page is overwritten with
new data as well. For both cases, since the P2L page
mapping has been rewritten to flash, the corresponding
old log entry should be removed.

Fig. 13 illustrates how janusdFTL manages the defrag
log during garbage collection. Suppose that the flash
block where valid pages p0, p1, p2 and p3 are stored is
selected as a victim so that those pages are moved to four
free pages p4, p5, p6 and p7, respectively. Accordingly,
the L2P mapping table is updated to refer to new page lo-
cations. While moving valid pages, janusdFTL updates
P2L mapping in OOBs if they are previously remapped
by the defrag remapper. For example, 11 in p0 is changed
to 19 in p4. After this, the entries of the moved pages are
deleted from the defrag log. For example, entries (11,
19, 1), . . . , (17, 22, 1) are now unnecessary. However,
because of the overwrite restriction, janusdFTL has to
append log entries to the defrag log, (11, Ø, 1), . . . , (17,
Ø, 1), to mark the old entries of LBAs 11 to 17 deleted.
By this design, the defrag log may have multiple entries
for the same LPAs, for example, (11, 19, 1) and (11, Ø,
1). To ignore old entries when the defrag log is scanned,
janusdFTL writes a unique version number together.

As astute readers may notice, the defrag log would
grow very large over time. To prevent this, janusdFTL
sets a limit on the defrag log size. Once the size limit
is reached, janusdFTL performs compaction – it selects
flash blocks containing part of the defrag log, filters out
obsolete entries, and writes only valid entries to the de-
frag log. (11, 19, 1) and (11, Ø, 1) are examples of ob-
solete entries – since L2P is equivalent to P2L, there is
no need to keep them in the defrag log. The maximum

766 2017 USENIX Annual Technical Conference USENIX Association

p0 p3p1 p2

11 13 15 17

19
20
21
22

L2P Mapping

Defrag Log

11 � 19
13 � 20
15 � 21
17 � 22

19
20
21
22

p4

p7

p5

p6

L2P Mapping

p4 p7p5 p6

19 20 21 22

p0

p3

p1

p2

11 � O
13 � O
15 � O
17 � O

Old Entries New Entries

Move to Free Pages

with Up-to-date P2L Mapping
2

1Select a Victim

3 Update L2P Mapping

4Append New Entries

Fig. 13: Updating defrag log during garbage collection.

size of the defrag log is currently set to 10 MB, which is
large enough to hold several millions of entries. Thanks
to its huge size, almost all of the log entries become obso-
lete before being selected for compaction, and thus com-
paction involves few entry copy operations.

4.2 JanusdP: Physical Defragmentation
Different from janusdL, janusdP involves data copies for
physical defragmentation. To minimize the negative im-
pact of data copies on flash lifetime, janusdP performs
physical defragmentation only on selected files that meet
the following criteria: 1) they must be frequently ac-
cessed and 2) they must have high dragees of physical
fragmentation (i.e., high DoFP values).

To measure read frequencies of files, we implement
a daemon program that keeps track of the total count
of read accesses of files using the inotify feature pro-
vided by the Linux kernel. The read counts of files are
stored in a separate file, and the janusdP utility reads the
file to determine a list of 50 most frequently read files.
JanusdP and janusdL use the same command to commu-
nicate with janusdFTL. To notify janusdFTL of physical
defragmentation on a file, janusdP stores all the LBAs
associated with the file as the source LBAs of a defrag
command, but fills all the destination LBAs of the com-
mand with a null value -1. In this way, janusdFTL can
easily distinguish a command for logical defragmenta-
tion from a command for physical defragmentation.

After janusdFTL receives a command for physical de-
fragmentation, it first calculates the DoFP value for the
source LBAs stored in the defrag command. Recall that
the DoFP value associated with a set of LBAs is 0 if
the LBAs can be accessed through the maximum I/O
parallelism inside of flash storage. We employ 0.5 as
an empirical threshold of DoFP for janusdFTL to con-
duct physical defragmentation on the source LBAs. If
the DoFP of the LBAs is higher than or equal to 0.5,
janusdFTL re-distributes the data (mapped to the source
LBAs) among channels for the best I/O parallelism of fu-
ture accesses. If the DoFP of the LBAs is lower than 0.5,
janusdFTL does nothing because the benefit of physical
defragmentation would be marginal.

Fig. 14: An overview of our evaluation platform.
5 Experimental Results
In order to objectively understand the performance impli-
cation of janusd, we implement a comprehensive evalua-
tion platform in the Linux operating system that supports
three useful features, including (1) file-system snap-
shot/replication, (2) trace collection/replay, along with
(3) mobile storage emulation. This evaluation platform
makes it possible for us to conduct a set of the evalua-
tions in an easy and convenient manner without modify-
ing various smartphone platforms.

Fig. 14 illustrates our evaluation platform. The snap-
shot/replication tool allows us to take a storage snapshot
of a smartphone and to replicate the same one in local
flash storage for experiments. The trace collection/replay
tool helps us to collect system-call events (e.g., read()
and write()) from various applications running on real-
world smartphones, and it replays them on the local stor-
age. Those features enable us to repeat exactly the same
I/O workloads on the same storage setup while varying
defragmentation policies.

It is impossible to modify mobile storage devices like
eMMC and UFS. Thus, we build two emulated mo-
bile flash devices, called simeMMC and simUFS, using
a customizable SSD device based on Samsung’s 843T
SSD [27]. 843T SSD supports extended SATA inter-
faces that allow a host system to directly control chan-
nels using NAND-specific I/O primitives (e.g., a page
read/write and block erasure). Based on those interfaces,
we implement a complete page-level FTL in a block
layer of the Linux kernel (ver. 3.10). eMMC and UFS
have similar channel architectures as conventional SSDs,
except that they have smaller numbers of channels due
to limited power budgets. We emulate I/O throughputs
of eMMC and UFS by limiting the number of available
channels of the 843T SSD to 4 and 8 for simeMMC and
simUFS, respectively. To simulate a smaller I/O queue
depth of mobile storage, we also intentionally increase
end-to-end I/O latencies between the host and the flash
device. As a result, both simeMMC and simUFS can ac-
curately simulate I/O performance of eMMC and UFS
devices over various request sizes.

As mentioned in Section 4, we implement janusdL/P
as a user-level tool using e4defrag. The number of code
lines newly added to e4defrag is about 400. janusdFTL
is implemented as an extended module of the page-level
FTL in the block layer. The custom interfaces between
janusdL/janusdP and janusdFTL listed in Table 2 are im-
plemented using the ioctl facility of the Linux.

USENIX Association 2017 USENIX Annual Technical Conference 767

5.1 Usage Scenario of Smartphone
We collect I/O activities of six popular applications run-
ning on N6. Table 3 summarizes the usage scenarios of
each application. Each scenario starts with launching an
application and runs specific tasks described in Table 3
for 10 minutes. The file system utilization is about 83%.

In order to perform evaluations under realistic environ-
ments, we create a six-month usage scenario of a smart-
phone. Based on a statistical study reporting that average
daily time spent with a smartphone is 220 minutes [30],
we simulate a daily usage scenario of a smartphone by
repeating the six scenarios for 220 minutes. In a simi-
lar way, we finally create a six-month usage scenario by
repeating the daily usage scenario 180 times. The appli-
cations are updated every 10 days based on the analysis
of the update cycle of Android applications [28].

5.2 I/O Performance Analysis
While executing the six-month usage scenario, we
compare the effect of six different defragmentation
policies on performance: baseline, janusd, janusdL,
e4defrag 1w, e4defrag 2w and e4defrag 4w. (Note that
e4defrag nw indicates when we invoke e4defrag with ev-
ery n weeks.) For a fair comparison, before the execution
of the scenario with a specific policy, the file system is
initialized with the snapshot/replication tool mentioned
in Section 5.1. Baseline does not perform file defrag-
mentation. For janusd and janusdL, we execute janusd
and janusdL every week. In the case of e4defrag, we
invoke e4defrag with three different cycles, 1 week, 2
weeks and 4 weeks.

Fig. 15 shows that janusd achieves a consistent I/O
throughput similar to or slightly better than e4defrag 1w
((a) Chrome 58 MB/s and (b) Game 66 MB/s). An inter-
esting observation here is that the I/O throughput drops
sharply even after one week without defragmentation.
This indicates that frequent invocations of defragmenta-
tion are desirable to maintain high and consistent perfor-
mance. In particular, janusd works better than janusdL
and e4defrag 1w, offering the performance very close
to the clean file system. Compared with janusdL and
e4defrag 1w that perform only logical defragmentation,
janusd conducts physical defragmentation that physi-
cally distributes fragmented pieces of files across differ-
ent channels, improving I/O parallelism of file access.
Fig. 16 shows I/O throughputs of the rest of the applica-

Table 3: A summary of benchmark scenarios.
Scenario DoFL Scenario Description

Chrome 1.34 Launching app → Viewing webpages

Messenger 1.99 Launching app → Viewing chat records

Gmail 2.18 Launching app → Viewing emails

Facebook 2.55 Launching app → Viewing online news

Twitter 2.75 Launching app → Viewing online news

Game 3.02 Launching Lineage 2 → Playing game

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Time (Week)

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Time (Week)

baseline janusd janusdL
e4defrag_1w e4defrag_2w e4defrag_4w

(a) Chrome

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Time (Week)

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
or

m
al

iz
ed

 I
/O

 T
hr

ou
gh

pu
t

Time (Week)

baseline janusd janusdL
e4defrag_1w e4defrag_2w e4defrag_4w

(b) Game
Fig. 15: Changes of I/O throughput over 6 months.

tions not shown in Fig. 15. On average, janusd improves
the I/O throughput by 57% and 76% over baseline for
simeMMC and simUFS, respectively. As expected, as the
larger the values of DoFL, the higher the I/O throughputs
improved by janusd.

In order to analyze the impact of janusd on the qual-
ity of user experiences, we measure app launching times
of the usage scenarios. We replay system call traces
that are issued while an app is being launched, and then
measure the reductions of I/O elapsed times spent by
flash storage. Fig. 17 shows that janusd reduces the app
launching times by up to 29% and 36% for simeMMC and
simUFS over baseline, respectively. Our results confirm
that janusd is effective in improving the quality of user
experiences in smartphones.

Finally, Figs. 16 and 17 show that the performance im-
provement by janusd is more significant in a faster stor-
age device like simUFS than a slower one, simeMMC. As
observed in Section 3.2, the heavy fragmentation of files
increases the number of small I/O requests to flash stor-
age, which results in the increase of I/O stack overheads.
SimUFS is more badly affected by the increased software
I/O overheads – because of a fast storage access time, the
handling of I/O requests at the software I/O stack level
accounts for a larger proportion of the total I/O elapsed
time. Janusd translates a large number of small I/Os
to a fewer large ones, alleviating a performance penalty
caused by I/O stack overheads. As a result, simUFS gets
more benefits over simeMMC from the reduction of I/O
stack overheads.

0

10

20

30

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

50

100

150

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

(a) simeMMC

0

10

20

30

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

50

100

150

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

(b) simUFS

Fig. 16: The impact of janusd on the I/O throughput.

768 2017 USENIX Annual Technical Conference USENIX Association

0

10

20

30

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

50

100

150

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

(a) simeMMC

0

10

20

30

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

50

100

150

Messenger Gmail Facebook Twitter

baseline janusd janusdL e4defrag

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

0 2 4 6 8 10

Chrome

Messenger

Gmail

Facebook

Twitter

Game

Launching Time (sec)

baseline

janusd

janusdL

e4defrag

(b) simUFS

Fig. 17: The impact of janusd on the app launching time.

5.3 Lifetime Analysis
JanusdP has to physically move data. By performing
physical defragmentation only on files that are physically
fragmented and heavily read, janusdP minimizes its neg-
ative effect on flash lifetime. Table 4 shows that phys-
ical defragmentation by janusdP involves only a small
amount of data copies, 364 MB, which is negligible com-
pared to e4defrag 4w that copies data of 217 GB. Even
though a smaller number of files are defragmented, its
impact on performance is more significant than e4defrag
as illustrated in Fig. 16. This is because janusdP opti-
mally relocates files in multiple channels by taking into
account the physical layout of flash storage.

Finally, we measure the amount of extra data move-
ments needed for the maintenance of a defrag log in
NAND flash. As mentioned in Section 4.2, we limit the
size of a defrag log to 10 MB, and if its size exceeds the
limit, janusd triggers compaction to reduce the log size.
Since janusdL does not make data copies, the amount of
data copies of janusdL in Table 4 indicates the amount
data coped during the defrag log compaction. 219-MB
data copies by janusdL is negligible over e4defrag 1w
that involves 156-GB data copies for defragmentation.

6 Related Work
File Defragmentation: Recent interests in file defrag-
mentation on flash storage were largely motivated by
high-performance I/O support in flash storage. As flash
storage gets faster, SW I/O stack overheads are emerg-
ing as a new I/O performance bottleneck, and flash frag-
mentation is reevaluated as a potential I/O bottleneck for
flash storage. For example, Ji et al. showed that file frag-
mentation negatively affected the performance of mo-
bile applications through an empirical study using sev-
eral used smartphones [22]. In particular, they confirmed
that redundant I/Os caused by fragmented files account
for a nontrivial fraction of the total I/O time, degrading
the overall I/O performance. More recently, Park et al.
presented that file defragmentation on a log-structured
file system reduced the frequency of I/O requests to a
flash storage system, thereby improving the overall read

Table 4: Impact of janusd on the amount of data copies.
e4defrag 1w e4defrag 2w e4defrag 4w janusdL janusdP

156 GB 182 GB 217 GB 0.219 GB 0.364 GB

performance [35]. While existing studies just discov-
ered fragmentation problems [22-24] or presented a file-
system-specific solution [35], our work, which is based
on a detailed characterization study of flash file fragmen-
tation, proposes a general scheme that can solve the frag-
mentation problem in flash storage, regardless of appli-
cation types or system platforms.

Remapping Optimization in Flash: There are sev-
eral studies proposed to improve flash storage perfor-
mance by enhancing the remapping function of the FTL
[31-34]. For example, Choi et al. presented a remapping
technique that avoided double writing in journaling file
systems [31]. Kang et al. proposed a transactional FTL
for SQLite databases, which remapped a logical address
from a physical location to a new physical location [32].

Our work is similar to the aforementioned studies in
that it leverages an FTL’s remapping function to offer
better I/O performance. The above studies, however, did
not take into account of the fragmentation problem in
flash storage, and thus their remapping schemes could
not effectively deal with fragmented files. Consequently,
those studies are not applicable to resolve fragmentation.

7 Conclusions
We have presented a complete treatment for file fragmen-
tation on mobile flash storage. From a systematic eval-
uation study, we showed that 1) file fragmentation is a
recurring problem with a short recurrence interval and 2)
the impact of file defragmentation on I/O performance
is significant. By exploiting the decoupled fragmenta-
tion characteristics of flash storage, we proposed a novel
flash-aware decoupled defragger, janusd, with two sepa-
rate defraggers, janusdL and janusdP. JanusdL supports
logical defragmentation without data copies by remap-
ping the LBAs of the logically fragmented files with
the FTL’s mapping table. By saving a complete history
of remapped LBA pairs in the defrag log, janusdL can
safely recover from sudden power failures. On the other
hand, janusdP, which is rarely invoked, improves the de-
gree of the I/O parallelism of files which are severely
limited in their available I/O parallelism. Our evaluation
results showed that janusd can improve the I/O through-
put by 57% and 76% on average in the Ext4 file systems
on simeMMC and simUFS, respectively.

Our work can be extended in several directions. For
example, janusdL can be easily extended to support dif-
ferent types of spatial locality of a file system such as
free-space defragmentation. It would be also possible
to support defrag-on-write that triggers logical defrag-
mentation right after calling write() because the over-
head of janusdL is negligible (i.e., < 1 ms) over the
cost of write() itself. Defrag-on-writes would realize a
fragmentation-free file system, guaranteeing no perfor-
mance degradation from fragmented files.

USENIX Association 2017 USENIX Annual Technical Conference 769

8 Acknowledgments

We would like to thank Ji-Yong Shin, our shepherd, and
anonymous referees for valuable comments that greatly
improved our paper. This research was supported by
the National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science, ICT and Future
Planning (MSIP) (NRF-2015M3C4A7065645), Ministry
of Science and Technology of Taiwan (MOST 104-
2221-E-009-011-MY3) and China National 863 Program
2015AA015304. The ICT at Seoul National University
provided research facilities for this study. (Correspond-
ing Author: Jihong Kim)

References

[1] MANTHUR, A., CAO, M., AND BHATTACHARYA,
S. The New ext4 File System: Current Status and
Future Plans. In Proceedings of Linux Symposium
(2007).

[2] E4defrag - Online Defragmenter for Ext4 File Sys-
tem. http://manpages.ubuntu.com/manpages/
trusty/man8/e4defrag.8.html

[3] Condusiv Diskeeper. http://www.condusiv.

com/products/diskeeper/

[4] Auslogics Disk Defrag. http://auslogics.com/
en/software/disk-defrag/

[5] Defraggler. http://www.piriform.com/

defraggler

[6] Smart Defrag. http://www.iobit.com/en/

iobitsmartdefrag.php?a

[7] Samsung SSD Performance Enhancement &
Maintenance. http://www.samsung.com/

semiconductor/minisite/ssd/support/

faqs-03.html

[8] Frequently Asked Questions for Intel Solid State
Drives. http://www.intel.com/content/www/

us/en/support/software/000006110.html

[9] Crucial SSD and HDD Support & Mainte-
nance. http://www.crucial.com/usa/en/

support-system-maintenance-defragment-

hard-drive

[10] KEHRER, O. O&O Defrag and Solid State
Drives. http://www.oo-software.com/en/

docs/whitepaper/ood_ssd.pdf

[11] LIND, A. Auslogics: How to Defrag Disk Drives
The Right Way. http://www.auslogics.com/

en/articles/how-to-defrag/

[12] Windows 8 TRIM SSD Instead of Defragmenta-
tion. http://www.eightforums.com/
tutorials/8615-optimize-drives-defrag-

hdd-trim-ssd-windows-8-a.html

[13] Windows 10 TRIM SSD Instead of Defragmenta-
tion. http://www.tenforums.com/tutorials/

8933-optimize-defrag-drives-windows-10-a.

html

[14] Embedded MultiMediaCard (e.MMC). http:

//www.jedec.org/standards-documents/

technology-focus-areas/

flash-memory-ssds-ufs-emmc/e-mmc

[15] Universal Flash Storage (UFS). http:

//www.jedec.org/standards-documents/

focus/flash/universal-flash-storage-ufs

[16] AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., DAVIS, J. D., MANASSE, M., AND PANI-
GRAHY, R. Design Tradeoffs for SSD Performance.
In Proceedings of the USENIX Annual Technical
Conference (2008).

[17] KANG, J.-U., KIM, J.-S., PARK, C., PARK, H.,
AND LEE, J. A Multi-channel Architecture for
High-performance NAND Flash-based Storage Sys-
tem. Journal of Systems Architecture: the EUROMI-
CRO Journal (2007).

[18] PARK, S.-H., HA, S.-H., BANG, K., AND
CHUNG, E.-Y. Design and Analysis of Flash Trans-
lation Layers for Multi-channel NAND Flash-based
Storage devices. IEEE Transactions on Consumer
Electronics (2009).

[19] HU, Y., JIANG, H., FANG, D., TIAN, L., AND
LUO, H. Performance Impact and Interplay of SSD
Parallelism Through Advanced Commands, Alloca-
tion Strategy and Data Granularity. In Proceedings
of the ACM International Conference on Supercom-
puting (2011), pp. 96–107.

[20] JUNG, M., AND KANDEMIR, M. T. An Eval-
uation of Different Page Allocation Strategies on
High-Speed SSDs. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems
(2012).

[21] JUNG, M., WILSON III, E. H., AND KANDEMIR,
M. T. Physically Addressed Queueing (PAQ): Im-
proving Parallelism in Solid State Disks. In Pro-
ceedings of the International Symposium on Com-
puter Architecture (2012), pp. 404–415.

770 2017 USENIX Annual Technical Conference USENIX Association

[22] JI, C., CHANG, L., SHI, L., WU, C., LI, Q., AND
XUE, C. J. An Empirical Study of File-System Frag-
mentation in Mobile Storage Systems. In Proceed-
ings of the USENIX Workshop on Hot Topics in Stor-
age and File Systems (2016).

[23] CONWAY, A., BAKSHI, A., JIAO, Y., ZHAN, Y.,
BENDER, M. A., JANNEN, W., JOHNSON, R.,
KUSZMAUL, B. C., PORTER, D. E., YUAN, J.,
AND FARACH-COLTON, M. File Systems Fated for
Senescence? Nonsense, Says Science!. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (2017).

[24] KINSELLA, J. The Impact of Disk Fragmen-
tation. http://condusiv.com/disk-defrag/

fragmentation-impact/

[25] KESSLER, M. Maintaining Windows 2000
Peak Performance Through Defragmentation.
https://msdn.microsoft.com/en-us/

library/bb742585.aspx

[26] SINOFSKY, S. Disk Defragmentation
Background and Engineering the Win-
dows 7 Improvements. https://blogs.

msdn.microsoft.com/e7/2009/01/25/

disk-defragmentation-background-and-

engineering-the-windows-7-improvements/

[27] SAMSUNG 843T Data Center Series.
http://memorysolution.de/mso_upload/

out/all/SM843T_Specification_v1.0.pdf

[28] KUMAR, U. Understanding Android’s
Application Update Cycles. https:

//www.nowsecure.com/blog/2015/06/08/

understanding-android-s-application-

update-cycles/

[29] Twitter Version History. https://www.apk4fun.
com/history/2699/

[30] HECHTEL, E. How Smartphones and
Mobile Internet Have Changed Our Lives.
https://testobject.com/blog/2016/01/

smartphones-mobile-internet-changed-our-

life.html

[31] CHOI, H.-J., LIM, S.-H., AND PARK, K.-H.
JFTL: A Flash Translation Layer Based on A Journal
Remapping for Flash Memory. ACM Transactions
on Storage (2009).

[32] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-
H., AND MIN, C. X-FTL: Transactional FTL for
SQLite Databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data (2013), pp. 97–108.

[33] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. De-
indirection for Flash-based SSDs with Nameless
Writes. In Proceedings of the USENIX Conference
on File and Storage Technologies (2012).

[34] OH, G., SEO, C., MAYURAM, R., KEE, Y., AND
LEE, S. SHARE Interface in Flash Storage for Rela-
tional and NoSQL Databases. In Proceedings of the
International Conference on Management of Data
(2016), pp. 343–354.

[35] PARK, J., KANG, D.-H., AND EOM, Y.-I. File
Defragmentation Scheme for A Log-structured File
System. In Proceedings of the ACM SIGOPS Asia-
Pacific Workshop on Systems (2016), pp. 19.

[36] TRAEGER, A. An Introduction to Linux Block I/O.
http://researcher.ibm.com/researcher/

files/il-AVISHAY/01-block_io-v1.3.pdf

[37] I/O Schedulers. http://www.makelinux.net/

books/lkd2/ch13lev1sec5

[38] T10, TECHNICAL COMMITTEE OF THE IN-
TERNATIONAL COMMITTEE ON INFORMATION
TECHNOLOGY STANDARDS. SCSI TEST UNIT
READY Command. http://www.t10.org/ftp/

t10/document.06/06-022r0.pdf

[39] T10, TECHNICAL COMMITTEE OF THE INTER-
NATIONAL COMMITTEE ON INFORMATION TECH-
NOLOGY STANDARDS. SCSI Block Commands
- 3 (SBC-3). http://www.t10.org/ftp/t10/

document.05/05-344r0.pdf

[40] ANDERSON, D. C., CHASE, J. S., GADDE, S.,
GALLATIN, A. J., AND YOCUM, K. G. Cheat-
ing the I/O Bottleneck: Network Storage with
Trapeze/Myrinet. In Proceedings of the USENIX An-
nual Technical Conference (1998).

[41] AHMAD, I., GULATI, A., AND MASHTIZADEH,
A. vIC: Interrupt Coalescing for Virtual Machine
Storage Device I/O. In Proceedings of the USENIX
Annual Technical Conference (2011).

[42] HAHN, S.S. Impact of File Fragmen-
tation on Android Smartphones. http:

//cares.snu.ac.kr/?view=publications&

menuN=34#2017_Technical_Report

USENIX Association 2017 USENIX Annual Technical Conference 771

Octopus: an RDMA-enabled Distributed Persistent Memory File System

Youyou Lu
Tsinghua University

Jiwu Shu⇤
Tsinghua University

Youmin Chen
Tsinghua University

Tao Li
University of Florida

Abstract
Non-volatile memory (NVM) and remote direct memory
access (RDMA) provide extremely high performance
in storage and network hardware. However, existing
distributed file systems strictly isolate file system and
network layers, and the heavy layered software de-
signs leave high-speed hardware under-exploited. In
this paper, we propose an RDMA-enabled distributed
persistent memory file system, Octopus, to redesign file
system internal mechanisms by closely coupling NVM
and RDMA features. For data operations, Octopus
directly accesses a shared persistent memory pool to
reduce memory copying overhead, and actively fetches
and pushes data all in clients to re-balance the load be-
tween the server and network. For metadata operations,
Octopus introduces self-identified RPC for immediate
notification between file systems and networking, and
an efficient distributed transaction mechanism for con-
sistency. Evaluations show that Octopus achieves nearly
the raw bandwidth for large I/Os and orders of magnitude
better performance than existing distributed file systems.

1 Introduction

The in-memory storage and computing paradigm
emerges as both HPC and big data communities are
demanding extremely high performance in data storage
and processing. Recent in-memory storage systems,
including both database systems (e.g., SAP HANA [8])
and file systems (e.g., Alluxio [23]), have been used
to achieve high data processing performance. With
the emerging non-volatile memory (NVM) technologies,
such as phase change memory (PCM) [34, 21, 46],
resistive RAM (ReRAM), and 3D XPoint [7], data can be
stored persistently in main memory level, i.e., persistent
memory. New local file systems, including BPFS [11],
SCMFS [42], PMFS [14], and HiNFS [32], are built

⇤Jiwu Shu is the corresponding author.

recently to exploit the byte-addressability or persistence
advantages of non-volatile memories. Their promising
results have shown potentials of NVMs in high perfor-
mance of both data storage and processing.

Meanwhile, the remote direct memory access
(RDMA) technology brings extremely low latency and
high bandwidth to the networking. We have measured an
average latency and bandwidth of 0.9us and 6.35GB/s
with a 56 Gbps InfiniBand switch, compared to 75us and
118MB/s with Gigabit Ethernet (GigaE). RDMA has
greatly improved data center communications or RPCs
in recent studies [13, 37, 19, 20].

Distributed file systems are trying to support RDMA
networks for high performance, but mostly by substi-
tuting the communication module with an RDMA li-
brary. CephFS supports RDMA by using Accelio [2],
an RDMA-based asynchronous RPC middleware. Glus-
terFS implements its own RDMA library for data com-
munication [1]. NVFS [16] is a HDFS variant that is
optimized with NVM and RDMA. And, Crail [9], a
recent distributed file system from IBM, is built on the
RDMA-optimized RPC library, DaRPC [37]. However,
these file systems strictly isolate file system and network
layers, by only replacing their data management and
communication modules without refactoring the internal
file system mechanisms. This layered and heavy soft-
ware design prevents file systems from exploiting the
hardware benefits. As we observed, GlusterFS has its
software latency that accounts for nearly 100% on NVM
and RDMA, while it is only 2% on disk. Similarly, it
achieves only 15% of raw InfiniBand bandwidth, com-
pared to 70% of the GigaE bandwidth. In conclusion,
the strict isolation between the file system and network
layers makes distributed file systems too heavy to exploit
the benefits of emerging high-speed hardware.

In this paper, we revisit both data and metadata mech-
anism designs of the distributed file system by taking
NVM and RDMA features into consideration. We pro-
pose an efficient distributed persistent memory file sys-

USENIX Association 2017 USENIX Annual Technical Conference 773

tem, Octopus1, to effectively exploit the benefits of high-
speed hardware. Octopus avoids the strict isolation of file
system and network layers, and redesigns the file system
internal mechanisms by closely coupling with NVM and
RDMA features. For the data management, Octopus
directly accesses a shared persistent memory pool by
exporting NVM to a global space, avoiding stacking a
distributed file system layer on local file systems, to
eliminate redundant memory copies. It also rebalances
the server and network loads, and revises the data I/O
flows to offload loads from servers to clients in a client-
active way for higher throughput. For the metadata
management, Octopus introduces a self-identified RPC
which carries sender’s identifier with the RDMA write
primitive for low-latency notification. In addition, it
proposes a new distributed transaction mechanism by
incorporating RDMA write and atomic primitives. As
such, Octopus efficiently incorporates RDMA into file
system designs that effectively exploit hardware benefits.
Our major contributions are summarized as follows.
• We propose novel I/O flows based on RDMA for

Octopus, which directly accesses a shared persistent
memory pool without stacked file system layers,
and actively fetches or pushes data in clients to
rebalance server and network loads.

• We redesign metadata mechanisms leveraging
RDMA primitives, including self-identified meta-
data RPC for low-latency notification, and a collect-
dispatch distributed transaction for low-overhead
consistency.

• We implement and evaluate Octopus. Experimental
results show that Octopus effectively explores the
raw hardware performance, and significantly out-
performs existing RDMA-optimized distributed file
systems.

2 Background and Motivation

2.1 Non-volatile Memory and RDMA
Non-Volatile Memory. Byte-addressable non-volatile
memory (NVM) technologies, including PCM [34, 21,
46], ReRAM, Memristor [36], are being intensively stud-
ied in recent years. Intel and Micron have announced
the 3D XPoint technology which is expected to be in
product in the near future [7]. These NVMs have ac-
cess latencies close to that of DRAM, while providing
data persistence as hard disks. In addition, NVMs are
expected to have better scalability than DRAM [34, 21].
Therefore, NVMs are promising candidates for storing
data persistently at the main memory level.

1It is called Octopus because the file system performs remote direct
memory access just like a Octopus uses its eight legs.

Remote Direct Memory Access. Remote Direct
Memory Access (RDMA) enables low-latency network
access by directly accessing memory from remote
servers. It bypasses the operating system and supports
zero-copy networking, and thus achieves high bandwidth
and low latency in network accesses. There are two kinds
of commands in RDMA for remote memory access:

(1) Message Semantics, with typical RDMA send

and recv verbs for message passing, are similar to socket
programming. Before sending an RDMA send request
at the client side, an RDMA recv needs to be posted at
the server side with an attached address indicating where
to store the coming message.

(2) Memory Semantics, with typical RDMA read

and write verbs, use a new data communication model
(i.e., one-sided) in RDMA. In memory semantics, the
memory address in remote server where the message will
be stored is assigned at the sender side. This removes
the CPU involvement of remote servers. The memory
semantics provide relatively higher bandwidth and lower
latency than the message semantics.

In addition, RDMA provides other verbs, in-
cluding atomic verbs like compare and swap and
fetch and add that enable atomic memory access of
remote servers.

2.2 Software Challenges on Emerging
High-Speed Hardware

In a storage system equipped with NVMs and RDMA en-
abled network, the hardware provides extremely higher
performance than traditional media like hard disks and
Gigabit Ethernet. Comparatively, overheads of the soft-
ware layer, which are negligible compared to slow disk
and Ethernet, now account for a significant part in the
whole system.

Latency. To understand the latency overhead of ex-
isting distributed file systems, we perform synchronous
1KB write operations on GlusterFS, and collect latencies
respectively in the storage, network, and software parts.
The latencies are averaged with 100 synchronous writes.
Figure 1(a) shows the latency breakdown of GlusterFS
on disk (denoted as diskGluster) and memory (denoted
as memGluster). To improve efficiency of GlusterFS on
memory, we run memGluster on EXT4-DAX [4], which
is optimized for NVM by bypassing the page cache and
reducing memory copies. In diskGluster, the storage
latency consumes the most part, nearly 98% of the total
latency. In memGluster, the storage latency percentage
drops dramatically to nearly zero. In comparison, the
file system software latency becomes the dominate part,
almost 100%. Similar trends have also been observed
in previous studies in local storage systems [38]. While
most distributed file systems stack the distributed data

774 2017 USENIX Annual Technical Conference USENIX Association

diskGlusterFS memGlusterFS
0

20
40

60
80

100

100 %

2 %

La
te

nc
y

B
re

ak
do

w
n

(a)

98 %

(%)

diskGlusterFS memGlusterFS
0.0

0.5

1.0324 us18 ms
Storage Network File System

32
3M
B
/s

N
or

m
al

iz
ed

 B
an

dw
id

th

(b)

Storage Network Software

83
M
B
/s

Figure 1: Software Overhead

management layer on another local file system (a.k.a,
stacked file system layers), they face more serious soft-
ware overhead than local storage systems.

Bandwidth. We also measure the maximum band-
width of GlusterFS to understand the software overhead
in terms of bandwidth. In the evaluation, we perform
1MB write requests to a single GlusterFS server repeat-
edly to get the average write bandwidth of GlusterFS.
Figure 1(b) shows the GlusterFS write bandwidth against
the storage and network bandwidths. In diskGluster,
GlusterFS achieves a bandwidth that is 93.6% of raw
disk bandwidth and 70.3% of raw Gigabit Ethernet band-
width. In memGluster, GlusterFS’s bandwidth is only
14.7% of raw memory bandwidth and 15.1% of raw In-
finiBand bandwidth. Existing file systems are inefficient
in exploiting the high bandwidth of new hardware.

We find that there are four mechanisms that contribute
to this inefficiency in existing distributed file systems.
First, data are copied multiple times in multiple places in
memory, including user buffer, file system page cache,
and network buffer. While this design is feasible for file
systems that are built for slow disks and networks, it has
a significant impact on system performance with high-
speed hardware. Second, when networking is getting
faster, the CPU at server side can be easily the bottleneck
when processing requests from a lot of clients. Third,
traditional RPC that is based on the event-driven model
has relatively high notification latency when hardware
provides low latency communication. Fourth, distributed
file systems have huge consistency overhead in dis-
tributed transactions, owing to multiple network round-
trips and complex processing logic.

As such, we propose to design an efficient distributed
memory file system for high-speed network and memory
hardware, by revisiting the internal mechanisms in both
data and metadata management.

3 Octopus Design

To effectively explore the benefits of raw hardware
performance, Octopus closely couples RDMA with file
system mechanism designs. Both data and metadata
mechanisms are reconsidered:
• High-Throughput Data I/O, to achieve high

I/O bandwidth by reducing memory copies with

Shared NVM Private NVM

2.	Create(“/home/a”).

3.	Start	Tx.

Server% Server& Server' Server(RDMA

1.	Server% =	hash(“/home/a”).

RDMA RDMA

Shared Persistent Memory Pool

CLIENT1

4.	Collect,
Dispatch.

5. Return	result.

1. Server' =	hash(“/home/b”).

CLIENT2

2.	Read(“/home/b”).

4.	Return	file	address.

3.	Lookup. 5.	RDMA	READ.

… …
metadata metadata metadata metadata

data data data data

Figure 2: Octopus Architecture

a Shared Persistent Memory Pool, and improve
throughput of small I/Os using Client-Active I/Os.

• Low-Latency Metadata Access, to provide a low-
latency and scalable metadata RPC with Self-
Identified RPC, and decrease consistency overhead
using the Collect-Dispatch Transaction.

3.1 Overview
Octopus is built for a cluster of servers that are equipped
with non-volatile memory and RDMA-enabled net-
works. Octopus consists of two parts: clients and data
servers. Octopus has no centralized metadata server,
and the metadata service is distributed to different data
servers. In Octopus, files are distributed to data servers
in a hash-based way, as shown in Figure 2. A file has
its metadata and data blocks in the same data server. But
its parent directory and its siblings may be distributed
to other servers. Note that the hash-based distribution
of file or data blocks is not a design focus of this paper.
Hash-based distribution may lead to difficulties in wear
leveling issue in non-volatile memory, and we leave this
problem for future work. Instead, we aim to discuss
novel metadata and data mechanism designs that are
enabled by RDMA in this paper.

In each server, the data area is exported and shared in
the whole cluster for remote direct data accesses, while
the metadata area is kept private for consistency reasons.
Figure 3 shows the data layout of each server, which
is organized into six zones: (1) Super Block to keep
the metadata of the file system. (2) Message Pool for
the metadata RPC for temporary message storage when
exchanging messages. (3) Metadata Index Zone using a
chained hash table to index the file or directory metadata
nodes in the metadata zone. Each entry in the chained
hash table contains name, i addr, and list ptr fields,
which respectively represent the name of the file, the
physical address of the file’s inode, and the pointer to
link the metadata index for the files that has a same
hash value. A file hashes its name and locates its
metadata index to fetch its inode address. (4) Metadata
Zone to keep the file or directory metadata nodes (i.e.,
inode), each of which consumes 256 bytes. With the

USENIX Association 2017 USENIX Annual Technical Conference 775

name
i_addr
list_ptr

Bitm
ap ¶

Bitm
ap ¶

Super
Block

Metadata
Index	Zone Metadata	 Zone Data	 Zone

Shared	NVMPrivate	NVM

Message
Pool

¶

bucket bucket bucket

Log
Zone

Figure 3: Data Layout in a Octopus Node
inode, Octopus locates the data blocks in the data zone.
(5) Data Zone to keep data blocks, including directory
entry blocks and file data blocks. (6) Log Zone for
transaction log blocks to ensure file system consistency.

While a data server keeps metadata and data respec-
tively in the private and shared area, Octopus accesses
the two areas remotely in different ways. For the private
metadata accesses, Octopus uses optimized remote pro-
cedure calls (RPC) as in existing distributed file systems.
For the shared data accesses, Octopus directly reads or
writes data objects remotely using RDMA primitives.

With the use of RDMA, Octopus removes duplicated
memory copies between file system images and memory
buffers by introducing the Shared Persistent Memory
Pool (shared pool for brevity). This shared pool is
formed with exported data areas from each data server
in the whole cluster (in Section 3.2.1). In current
implementation, the memory pool is initialized using
a static XML configuration file, which stores the pool
size and the cluster information. Octopus also redesigns
the read/write flows by sacrificing network round-trips
to amortize server loads using Client-Active I/Os (in
Section 3.2.2).

For metadata mechanisms, Octopus leverages RDMA
write primitives to design a low-latency and scalable
RPC for metadata operations (in Section 3.3.1). It also
redesigns the distributed transaction to reduce the consis-
tency overhead, by collecting data from remote servers
for local logging and then dispatching them to remote
sides (in Section 3.3.2).

3.2 High-Throughput Data I/O
Octopus introduces a shared persistent memory pool to
reduce data copies for higher bandwidth, and actively
performs I/Os in clients to rebalance server and network
overheads for higher throughput.

3.2.1 Shared Persistent Memory Pool

In a system with extremely fast NVM and RDMA,
memory copies account for a large portion of overhead
in an I/O request. In existing distributed file systems,
a distributed file system is commonly layered on top of
local file systems. For a read or write request, a data
object is duplicated to multiple locations in memory,
such as kernel buffer (mbuf in TCP/IP stack), user buffer
(for storing distributed data objects as local files), kernel

User	Space	Buffer User	Space	Buffer

mbufmessage	
pool mbuf message	

pool
page	
cache

FS	ImageNICNIC

Client Server

GlusterFS Crail Octopus

Figure 4: Data Copies in a Remote I/O Request

page cache (for local file system cache), and file system
image in persistent memory (for file storage in a local
file system in NVM). As the GlusterFS example shown
in Figure 4, a remote I/O request requires the fetched data
to be copied seven times including in memory and NIC
(network interface controller) for final access.

Recent local persistent file systems (like PMFS [14]
and EXT4-DAX [4]) directly access persistent memory
storage without going through kernel page cache, but it
does not solve problems in the distributed file systems
cases. With direct access of these persistent memory file
systems, only page cache is bypassed, and a distributed
file system still requires data to be copied six times.

Octopus introduces the shared persistent memory pool
by exporting the data area of the file system image in
each server for sharing. The shared pool design not only
removes the stacked file system design, but also enables
direct remote access to file system images without any
caching. Octopus directly manages data distribution and
layout of each server, and does not rely on a local file
system. Direct data management without stacking file
systems is also taken in Crail [9], a recent RDMA-aware
distributed file system built from scratch. Compared to
stacked file system designs like GlusterFS, data copies in
Octopus and Crail do not need to go through user space
buffer in the server side, as shown in Figure 4.

Octopus also provides a global view of data layout
with the shared pool enabled by RDMA. In a data server
in Octopus, the data area in the non-volatile memory is
registered with ibv reg mr when the data server joins,
which allows the remote direct access to file system
images. Hence, Octopus removes the use of a message

pool or a mbuf in the server side, which are used for
preparing file system data for network transfers. As
such, Octopus requires data to be copied only four times
for a remote I/O request, as shown in Figure 4. By
reducing memory copies in non-volatile memories, data
I/O performance is significantly improved, especially for
large I/Os that incur fewer metadata operations.

3.2.2 Client-Active Data I/O

For data I/O, it is common to complete a request within
one network round-trip. Figure 5(a) shows a read exam-
ple. The client issues a read request to the server, and
the server prepares data and sends it back to the client.

776 2017 USENIX Annual Technical Conference USENIX Association

Client 1 Client 2 Client 3 Server
NIC CPU MEM

Lookup	file	data. Send	data.

(a)	Server-Active	Data	I/O

Client 1 Client 2 Client 3 Server
NIC CPU MEM

Lookup	file	data. Send	address.

(b)	Client-Active	Data	I/O

Read	“/home/a”

Read	“/home/b”

Read	“/home/c”

Read	“/home/a”

Read	“/home/b”

Read	“/home/c”

Figure 5: Comparison of Server-Active and Client-
Active Modes

Similarly, a write request can also complete with one
round-trip. This is called Server-Active Mode. While
this mode works well for slow Ethernet, we find that
the server is always in high utilization and becomes a
bottleneck when new hardware is equipped.

In remote I/Os, the throughput is bounded by the lower
one between the network and server throughput. In our
cluster, we achieve 5 million network IOPS for 1KB
writes, but have to spend around 2us (i.e., 0.5 million) for
data locating even without data processing. The server
processing capacity becomes the bottleneck for small
I/Os when RDMA is equipped.

In Octopus, we propose client-active mode to improve
server throughput by sacrificing the network perfor-
mance when performing small size I/Os. As shown in
Figure 5(b), in the first step, a client in Octopus sends a
read or write request to the server. In the second step, the
server sends back the metadata information to the client.
Both the two steps are executed for metadata exchange
using the self-identified metadata RPC which will be
discussed next. In the third step, the client reads or
writes file data with the returned metadata information,
and directly accesses data using RDMA read and write
commands. Since RDMA read and write are one-sided
operations, which access remote data without participa-
tion of CPUs in remote servers, the server in Octopus has
higher processing capacity. By doing so, a rebalance is
made between the server and network overheads. With
introduced limited round-trips, server load is offloaded
to clients, resulting in higher throughput for concurrent
requests.

Besides, Octopus uses the per-file read-write lock to
serialize the concurrent RDMA-based data accesses. The
lock service is based on a combination of GCC (GNU
Compiler Collection) and RDMA atomic primitives. To
read or write file data, the locking operation is executed
by the server locally using GCC atomic instructions. The
unlock operation is executed remotely by the client with
RDMA atomic verbs after data I/Os. Note that seri-

alizability between GCC and RDMA atomic primitives
is not guaranteed due to lack of atomicity between the
CPU and the NIC [10, 41, 19]. In Octopus, GCC and
RDMA atomic instructions are respectively used in the
locking and unlocking phases. This isolation prevents
the competition between the CPU and the NIC, and thus
ensures correctness of parallel accesses.

3.3 Low-Latency Metadata Access
RDMA provides microsecond level access latencies for
remote data access. To explore this benefit in the file
system level, Octopus refactors the metadata RPC and
distributed transaction by incorporating RDMA write
and atomic primitives.

3.3.1 Self-Identified Metadata RPC

RPCs are used in Octopus for metadata operations. Both
message and memory semantic commands can be uti-
lized to implement RPCs.

(1) Message-based RPC. In the message-based RPC,
a recv request is firstly assigned with a memory address,
and then initialized in the remote side before the send

request. Each time an RDMA send arrives, an RDMA
recv is consumed. Message-base RPC has relatively
high latency and low throughput. send/recv in UD
(Unreliable Datagram) mode provides higher through-
put [20], but is not suitable for distributed file systems
due to its unreliable connections.

(2) Memory-based RPC. RDMA read/write have
lower latency than send/recv. Unfortunately, these
commands are one-sided, and remote server is unin-
volved. To timely process these requests, the server side
needs to scan the message buffers repeatedly to discover
new requests. This causes high CPU overhead. Even
worse, when the number of clients increased, the server
side needs to scan more message buffers, and this in turn
increases the processing latency.

To gain benefits of both sides, we propose the self-
identified metadata RPC. Self-identified metadata RPC
attaches the sender’s identifier with the RDMA write
request using the RDMA write with imm command.
write with imm is different from RDMA write in two
aspects: (1) it is able to carry an immediate field in the
message, and (2) it notifies remote side immediately,
but RDMA write does not. With the first difference,
we attach the client’s identifier in the immediate data
field including both a node id and an offset of the
client’s receive buffer. For the second difference, RDMA
write with imm consumes one receive request from the
remote queue pair (QP), and thus gets immediately pro-
cessing after the request arrives. The identifier attached
in the immediate field helps the server to direct locate the
new message without scanning the whole buffer. After

USENIX Association 2017 USENIX Annual Technical Conference 777

Begin

Coordinator

Log Begin

Local Lock

 Transaction
Execution
Log Context
Log Commit/

Abort

Wait

Local Lock

 Transaction
Execution
Log Context
Log Commit/

Abort

Begin

OP-REQ

VOTE-YES/NO

Log Commit/
Abort Wait

COMMIT/ABORT

Write Data
Local Unlock Write Data

Local Unlock

End End

Log End

Participant

ACK

Wait

Begin

Coordinator

Local Lock

Local
Transaction
Execution

Log Context

Wait

Write Data
Local Unlock

End End

Participant

Local Lock

Collect
WriteSet

Wait

COLLECT-REQ

WRITE-SET

UPDATE WRITESET

REMOTE UNLOCK

Local Log

Distributed Log

(a) Traditional 2PC Approach (b) Collect-Dispatch Approach

Log Commit/
Abort

Log Begin

Log BeginLog Begin

Figure 6: Distributed Transaction
processing, the server uses RDMA write to return data
back to the specified address of offset in the client of
node id. Compared to buffer scanning, this immediate
notification dramatically lowers down the CPU overhead
when there are a lot of client requests. As such, the self-
identified metadata RPC provides low-latency and scal-
able RPCs than send/recv and read/write approaches.

3.3.2 Collect-Dispatch Transaction

A single file system operation, like mkdir, mknod, rmnod
and rmdir in Octopus, performs updates to multiple
servers. Distributed transactions are needed to provide
concurrency control for simultaneous requests and crash
consistency for the atomicity of updates across servers.
The two-phase commit (2PC) protocol is usually used to
ensure consistency. However, 2PC incurs high overhead
due to its distributed logging and coordination for both
locks and log persistence. As shown in Figure 6(a),
both locking and logging are required in coordinator
and participants, and complex network round-trips are
needed for negotiation for log persistence ordering.

Octopus designs a new distributed transaction protocol
named Collect-Dispatch Transaction leveraging RDMA
primitives. The key idea lies in two aspects, respectively
in crash consistency and concurrency control. One is
local logging with remote in-place update for crash
consistency. As shown in Figure 6(b), in collect phase,
Octopus collects the read and write sets from partici-
pants, and performs local transaction execution and local
logging in the coordinator. Since participants do not need
to keep logging, there is no need for complex negotiation
for log persistence between coordinator and participants,
thereby reducing protocol overheads. For the dispatch
phase, the coordinator spreads the updated write set

to the participants using RDMA write and releases
the corresponding lock with RDMA atomic primitives,
without the involvements of the participants.

The other is a combination of GCC and RDMA
locking for concurrency control, which is the same as
the lock design in the data I/Os in Section 3.2.2. In
collect-dispatch transactions, locks are added locally
using the GCC compare and swap command in both
coordinator and participants. For the unlock operations,
the coordinator releases the local lock using the GCC
compare and swap command but the remote lock in
each participant using the RDMA compare and swap

command. The RDMA unlock operations do not involve
the CPU processing of participants, and thus simplify the
unlock phase.

As a whole, collect-dispatch requires one RPC, one
RDMA write, and one RDMA atomic operation, and
2PC requires two RPCs. Collect-Dispatch still has lower
overhead, because (1) RPC has higher latency than an
RDMA write/atomic primitive, (2) RDMA write/atomic
primitive does not involve CPU processing of remote
side. Thus, we conclude collect-dispatch is efficient,
as it not only removes complex negotiations for log
persistence ordering across servers, but reduces costly
RPC and CPU processing overheads.

Consistency Discussions. In persistent memory sys-
tems, data cache in the CPU cache needs to be flushed
to the memory timely and ordered to provide crash
consistency [11, 26, 33, 25, 14, 32]. In Octopus, meta-
data consistency is guaranteed by the collect-dispatch
transaction, which uses clflush to flush data from the
CPU cache to the memory to force persistence of the
log. While the collect-dispatch transaction can be used
to provide data consistency, data I/Os are not wrapped
in a transaction in current Octopus implementation for
efficiency. We expect that RDMA will have more ef-
ficient remote flush operations that could benefit data
consistency, such as novel I/O flows like RDMA read
for remote durability [12], new proposed commands
like RDMA commit [39], or new designs that leverage
availability for crash consistency [45]. We leave efficient
data consistency for future work.

4 Evaluation

In this section, we evaluate Octopus’s overall data
and metadata performance, then the benefits from each
mechanism design, and finally its performance for big
data applications.

4.1 Experimental Setup
Evaluation Platform. In the evaluation, we run Octopus
on servers with large memory. Each server is equipped

778 2017 USENIX Annual Technical Conference USENIX Association

with 384GB DRAM and two 2.5GHz Intel Xeon E5-
2680 v3 processors, and each processor has 24 cores.
Clients run on different servers. Each client server has
16GB DRAM and one Intel Xeon E2620 processor. All
these servers are connected with a Mellanox SX1012
switch using CX353A ConnectX-3 FDR HCAs (which
support 56 Gbps over InfiniBand and 40GigE). All of
them are installed with Fedora 23.

Evaluated File Systems. Table 1 lists the distributed
file system (DFSs) for comparison. All these file systems
are deployed in memory of the same cluster. For existing
DFSs that require local file systems, we build local
file systems on DRAM with pmem driver and DAX [5]
supported in ext4. The EXT4-DAX [4] is optimized
for NVM which bypasses the page cache and reduces
memory copies. Octopus manages its storage space on
the emulated persistent memory using shared memory
(SHM) of Linux in each server. These file systems are al-
located with 20GB for file system storage at each server.
For the network part, all distributed file systems run
on RDMA directly. Specifically, memGluster supports
using RDMA protocol for communication between glus-
terfs clients and glusterfs bricks. NVFS is an optimized
version of HDFS which exploits the advantages of byte-
addressability of NVM and RDMA. Crail is a recent
open-source DFS from IBM, and it relies on DaRPC [37]
for RDMA optimization and reserves huge pages as
transfer cache for bandwidth improvement.

Table 1: Evaluated File Systems
memGluster GlusterFS runs on memory, and GlusterFS is a

widely-used DFS that has no centralized metadata
services and is now a part of Redhat

NVFS [16] a version of HDFS that is optimized with both
RDMA and NVM

Crail [9] an in-memory RDMA-optimized DFS built with
DaRPC [37]

memHDFS [35] HDFS runs on memory, and HDFS is a widely-
used DFS for big data processing

Alluxio[23] an in-memory file system for big data processing

Workloads. In our evaluation, we compare Octopus
with memGluster, NVFS and Crail for metadata and
read-write performance, and compare it with NVFS and
Alluxio for big data benchmarks. We use mdtest for
metadata evaluation, fio for read/write evaluation, and
an in-house read/write tool based on openMPI for ag-
gregated I/O performance. For big data evaluation, we
replace HDFS by adding Octopus plugin under Hadoop.
We use three package-in MapReduce benchmarks in
Hadoop, i.e., TestDFSIO, Teragen, and Wordcount, for
evaluation.

4.2 Overall Performance
To evaluate Octopus, we first compare its overall perfor-
mance with memGluster, NVFS and Crail. All these file

Getattr Readdir
0

20

40

60

80

100

La
te

nc
y

B
re

ak
do

w
n

(a)

14 % 15 %

85 % 84 %

7.3 us 6.7 us(%)

Write Read
0.0

0.5

1.0

Storage Network File System

6088MB/s

N
or

m
al

iz
ed

 B
an

dw
id

th

(b)

Storage Network Software

5629MB/s

Figure 7: Latency Breakdown and Bandwidth Utilization

systems are running in the memory level with RDMA-
enabled InfiniBand network. In this evaluation, we first
compare Octopus’s latency and bandwidth to the raw
network’s and storage’s latency and bandwidth, and then
compare Octopus’s metadata and data performance to
other file systems.

4.2.1 Latency and Bandwidth Breakdown

Figure 7 shows both single round-trip latency and band-
width breakdown for Octopus. From the figures, we have
two observations.

(1) The software latency is dramatically reduced to
6us (around 85% of the total latency) in Octopus, from
323us (over 99%) in memGluster, as shown in Fig-
ure 7(a). For the memGluster on the emerging non-
volatile memory and RDMA hardwares, the file system
layer has a latency that is several orders larger than
that of storage or network. The software consumes the
overwhelmed part, and becomes a new bottleneck of the
whole storage system. In contrast, Octopus is effective in
reducing the software latency by redesigning the data and
metadata mechanisms with RDMA. The software latency
in Octopus is in the same order with the hardware.

(2) Octopus achieves read/write bandwidth that ap-
proaches the raw network bandwidth, as shown in Fig-
ure 7(b). The raw storage and network bandwidths
respectively are 6509MB/s (with single-thread mem-
cpy) and 6350MB/s. Octopus achieves a read/write
(6088/5629MB/s) bandwidth that is 95.9%/88.6% of the
network bandwidth. In conclusion, Octopus effectively
exploits the hardware bandwidth.

4.2.2 Metadata Performance

Figure 8 shows the file systems’ performance in terms
of metadata IOPS with different metadata operations by
varying the number of data servers. From the figure, we
make two observations.

(1) Octopus has the highest metadata IOPS among
all evaluated file systems in general. memGluster and
NVFS provide metadata IOPS in the order of 104. Crail
provides metadata IOPS in the order of 105 owing to
DaRPC, a high performance RDMA-based RPC. Com-
paratively, Octopus provides metadata IOPS in the order
of 106, which is two orders higher than memGluster
and NVFS. Octopus achieves the highest throughput

USENIX Association 2017 USENIX Annual Technical Conference 779

1 2 3 4 5

10

100

1000

1 2 3 4 5

1

10

100

1000

1 2 3 4 5

100

1000

10000

1 2 3 4 5

100

1000

10000

1 2 3 4 5

100

1000

1 2 3 4 5

10

100

1000

Number of ClientsNumber of Clients
(a) Mknod

GlusterFS NVFS Crail
Crail-Poll Octopus

Number of Clients Number of Clients Number of Clients

Th
ro

ug
hp

ut
 (o

ps
/s

 x
10

00
)

(b) Mkdir

GlusterFS NVFS Crail
Crail-Poll Octopus

Number of Clients
(c) Readdir

GlusterFS NVFS Crail
Crail-Poll Octopus

Th
ro

ug
hp

ut
 (o

ps
/s

 x
10

00
)

(d) Getattr

GlusterFS NVFS Crail
Crail-Poll Octopus

(e) Rmnod

GlusterFS NVFS Crail
Crail-Poll Octopus

(f) Rmdir

GlusterFS NVFS Crail
Crail-Poll Octopus

Figure 8: Metadata Throughput

except for rmdir and rmnod when there is only one data
server. Crail is slightly better in this case, because it is
deployed with RdmaDataNode mode without transaction
guarantee. Generally, Octopus achieves high throughput
in processing metadata requests, which mainly owes to
the self-identified RPC and collect-dispatch transaction
that promise extremely low latency and high throughput.

(2) Octopus achieves much better scalability than the
other evaluated file systems. NVFS and Crail are de-
signed with single metadata server, and achieve constant
metadata throughput. Even with one metadata server,
Octopus achieves better throughput than these two file
systems in most cases. memGluster achieves the worst
throughput, for GlusterFS is designed to run on hard
disks and the software layer is inefficient in exploring the
high performance of NVM and RDMA, which has been
illustrated in Section 2.2. Besides, memGluster stacks its
data management layer on top of the local file system in
each server to process metadata requests, and this also
limits the throughput. Comparatively, Octopus has the
best scalability. For all evaluated metadata operations,
Octopus’s IOPS is improved by 3.6 to 5.4 times when
the number of servers is increased from 1 to 5.

4.2.3 Read/Write Performance

Figure 9 shows the file systems’ performance in terms
of concurrent read/write throughput with multiple clients
by varying the read/write sizes. From figure 9, we can
see that, with small read/write sizes, Octopus achieves
much higher throughput than other file systems (750
Kops/s and 1 Mops/s for writes and reads respectively).
This benefit mainly comes from the client-active data I/O
and self-identified RPC mechanisms. NVFS achieves
relatively high throughput when read/write size is set
to 1KB, for its buffer manager prefetches data to boost

1KB
4KB

16KB
64KB

256KB
1MB

0

250

500

750

1KB
4KB

16KB
64KB

256KB
1MB

0

400

800

1200

Th
ro

ug
hp

ut
 (o

ps
/s

 x
10

00
)

(a) Write

 GlusterFS
 NVFS
 Crail
 Octopus

(b) Read

 GlusterFS
 NVFS
 Crail
 Octopus

Figure 9: Data I/O Throughput (Multiple Clients)

1K 4K 16K 64K 256K 1MB
10

100

1000

10000

1K 4K 16K 64K 256K 1MB
10

100

1000

10000

B
an

dw
id

th
 (M

B
/s

)

(a) Write

 GlusterFS NVFS Crail
 Crail-Poll Octopus

(b) Read

GlusterFS NVFS Crail
Crail-Poll Octopus

Figure 10: Data I/O Bandwidth (Single Client)
performance. But it drops rapidly when the I/O size
grows, which is mainly restricted by the performance of
RPC efficiency. Crail has lower throughput than NVFS
when I/O size is small, but it achieves throughput close
to Octopus when I/O size grows. memGluster has the
worst throughput and only achieves 100 Kops/s.

Figure 10 shows the read/write bandwidth achieved
by a single client with different read/write sizes. As
shown in the figure, Octopus significantly outperforms
existing DFSs in terms of read or write bandwidth. When
the I/O size is set to 1MB, the read/write bandwidths in
NVFS and memGluster are around only 1000MB/s and
1500MB/s, respectively. Crail reaches a bandwidth of
4000MB/s, which only occupies 63% of the raw network
bandwidth. In contrast, Octopus can achieve bandwidth
close to that of the raw InfiniBand network (6088MB/s
and 5629MB/s with 1MB I/O size for read and write re-
spectively), which is mainly because of reduced memory
copies by using a shared persistent memory pool.

780 2017 USENIX Annual Technical Conference USENIX Association

4.3 Evaluation of Data Mechanisms
4.3.1 Effects of Reducing Data Copies

Octopus improves data transfer bandwidth by reducing
memory copies. To verify the effect of reducing data
copies, we implement a version of Octopus which add
an extra copy at client side, and we refer to it as Oc-
topus+copy. As shown in Figure 11, when I/O size
is set to 1MB, Octopus+copy achieves nearly the same
bandwidth as Crail (around 4000MB/s). However, when
the extra data copy is removed, Octopus can provide
6000MB/s of bandwidth that is written or read by a
single client, 23% of extra bandwidth gained. When the
I/O size is small, Octopus+copy still surpasses Crail with
higher bandwidth, owing to closely coupled RDMA and
file system mechanism designs to be evaluated next.

1K 4K 16K 64K256K1MB
10

100

1000

10000

1K 4K 16K 64K256K1MB
10

100

1000

10000

B
an

dw
id

th
 (M

B
/s

)

(a) Write

 Crail
 Octopus+copy
 Octopus

(b) Read

 Crail
 Octopus+copy
 Octopus

Figure 11: Effects of Reducing Data Copies

4.3.2 Effects of Client-Active Data I/O

We then compare the IOPS of data I/O in client-active
and server-active modes that are mentioned in Section 3.
Figure 12 shows the read/write throughput of both client-
active and server-active modes of Octopus by varying
read/write sizes. Crail’s performance is also given for
reference. We observe that the client-active mode has
higher data throughput than the server-active mode for
small read/write sizes. Both modes have close through-
put for read/write sizes that are larger than 16KB. When
the read/write sizes are smaller than 16KB, the client-
active mode has higher data throughput by 193% for
writes and 27.2% for reads on average. Even the client-
active mode consists more network round-trips, it is more
efficient to offload workloads to clients from servers
when the read/write size is small, in order to improve
the data throughput. Client-active mode improves write
throughput more obviously than read throughput, be-
cause the server side has higher overhead for writes than
reads in server-active mode. In server-active mode, after
the server side reads data from the client using RDMA
read when processing client’s write operation, it has to
check the completion of this operation, which is time-
consuming. But for client’s read operations, server side
never checks the completion message, and provides rela-
tively higher throughput. In all, we conclude that client-
active mode has higher bandwidth than the commonly-
used server-active mode.

1KB
4KB

16KB
64KB

256KB
1MB

200

400

600

800

1000

1KB
4KB

16KB
64KB

256KB
1MB

300

600

900

1200

Th
ro

ug
hp

ut
 (k

op
s/

s)

(a) Write

 Crail
 Server-Active
 Client-Active

(b) Read

 Crail
 Server-Active
 Client-Active

Figure 12: Client-Active Data I/O Performance

4.4 Evaluation of Metadata Mechanisms

4.4.1 Effects of Self-Identified Metadata RPC

We first compare raw RPC performance with different
usage of RDMA primitives to evaluate the effects of self-
identified metadata RPC. We then compare Octopus with
existing file systems on metadata latencies.

Figure 13(a) shows the raw RPC throughput us-
ing three RPC implementations (i.e., message-based,
memory-based, and self-identified, without message
batch) along with DaRPC by varying the I/O sizes.
DaRPC used in Crail is designed based on RDMA
send/recv, and it achieves the lowest throughput,
2.4Mops/s with an I/O size of 16 bytes. Its performance
may be limited by the Java implementation in its jVerbs
interface. We also implement a message-based RPC
that uses RDMA send/recv verbs, and it achieves a
throughput of 3.87Mops/s at most. This throughput is
limited by the raw performance of RDMA send/recv.
For the memory-based RPCs that use RDMA write

verbs, as taken in FaRM [13], we compare the perfor-
mance by setting the maximum number of client threads
to 20 and 100. As observed, the throughput is the
highest (i.e., 5.4Mops/s) when the maximum number
of client threads is 20. However, it decreases quickly
to 3.46Mops/s when the maximum number of client
threads is 100. This shows the inefficiency in processing
and notification in the memory-based RPCs when there
are a large number of client threads. Our proposed self-
identified RPC, which carry on client identifiers with
the RDMA write with imm verbs, keeps constant high
throughput for an average of 5.4Mops/s, without being
affected by the number of client threads. Similarly, we
also measure the latency of each RPC (in Figure 13(b)),
among which self-identified RPC keeps relative low la-
tency. As such, self-identified RPCs provide scalable and
low-latency accesses, which is suitable for distributed
storage systems to support a large number of client
requests.

Figure 14 shows metadata latencies of Octopus along
with other file systems. As shown in the figure, Octopus
achieves the lowest metadata latencies among all the
evaluated file systems for all evaluated metadata oper-
ations (i.e., 7.3us and 6.7us respectively for getattr

USENIX Association 2017 USENIX Annual Technical Conference 781

16B 64B 128B256B512B 1KB

2

4

6

(b)

Th
ro

ug
hp

ut
 (M

op
s/

s) Write-20Cli Write-100Cli
 Send/Recv Crail
 Self-Identified

(a)

Write-20Cli

Write-100Cli

Send/Recv
Crail
Self-Identified

0

2

4

6

R
aw

 R
P

C
 L

at
en

cy
 (u

s)

Figure 13: Raw RPC Performance

and readdir), which are close to the InfiniBand network
latency for most cases. With the self-identified metadata
RPC, Octopus can support low-latency metadata opera-
tions even without client cache. Crail uses DaRPC for
inter-server communication. However, Crail’s metadata
(e.g., mkdir and mknod) latencies are much higher than
raw DaRPC’s latency. This possibly is because Crail is
implemented on the inefficient HDFS framework, or it
registers memory temporarily for message communica-
tion, which is time-consuming. NVFS and memGluster
suffer the similar problem of heavy file system designs
as Crail, and thus have relatively higher latency.

Mkdir Mknod Readdir Getattr Rmnod Rmdir

0.01

0.1

1

10

217.5263.1243.8381.2513.9

N
or

m
al

iz
ed

 L
at

en
cy

 (u
s) GlusterFS NVFS Crail

 Crail-Poll Octopus
3225.8

Figure 14: Metadata Latency

4.4.2 Effects of Collect-Dispatch Transaction

To evaluate the effects of the collect-dispatch transaction
in Octopus, we also implement a transaction system
based on 2PC for comparison. Figure 15(a) exhibits the
latencies of these two transaction mechanisms. Collect-
dispatch reduces latency by up to 37%. This is because
2PC involves two RPCs to exchange messages from
remote servers, while collect-dispatch only needs one
RPC and two one-sided RDMA commands to finish the
transaction. Although the number of messages is in-
creased, the total latency drops. RPC protocol needs the
involvements of both local and remote nodes, and a lot
of side information (e.g., hash computing, and message
discovery) needs to be processed at this time. Thus,
RPC latency (around 5us) is much higher than one-sided
RDMA primitives (less than 1us). From figure 15(b) we
can see that, transaction based on collect-dispatch im-
proves throughput by up to 79%. On one hand, collect-
dispatch only writes logs locally, significantly reducing
logging overhead. On the other hand, collect-dispatch
decreases the total number of RPC when processing
transactions, which reduces the involvements of remote
CPUs and thereby improves performance.

Mkdir Mknod Rmnod Rmdir
0

10

20

30

40

(b)

La
te

nc
y

(u
s)

 2PC
 Collect-Dispath

(a)
Mkdir Mknod Rmnod Rmdir

0

60

120

180

Th
ro

ug
hp

ut
 (K

op
s/

s) 2PC
 Collect-Dispatch

Figure 15: Collect-Dispatch Transaction Performance

4.5 Evaluation using Big Data Applications

In addition, we compare Octopus with distributed file
systems that are used in big data framework. We con-
figure Hadoop with different distributed file systems -
memHDFS, Alluxio, NVFS, Crail and Octopus. In
this section, we compare both read/write bandwidth and
application performance.

Read/Write Bandwidth. Figure 16(a) compares the
read/write bandwidths of above-mentioned file systems
using TestDFSIO by setting the read/write size to 256KB.
Octopus and Crail show much higher bandwidth than tra-
ditional file systems. Octopus achieves 2689MB/s and
2499MB/s for write and read operations respectively,
and Crail achieves 2424MB/s and 2215MB/s respec-
tively. Note that they have lower bandwidths than the re-
sults in fio. The reason is that we connect Octopus/Crail
with Hadoop plugin using JNI (Java Native Interface),
which restricts the bandwidth. In contrast, memHDFS,
Alluxio and NVFS show lower bandwidth than Octopus
and Crail. memHDFS has the lowest bandwidth, for the
heavy HDFS software design that is for hard disks and
traditional Ethernet. Alluxio and NVFS are optimized to
run on DRAM, and thus provide higher bandwidth than
memHDFS. But they are still slower than Octopus. Thus,
we conclude the general-purpose Octopus can also be
integrated into existing big data framework and provide
better performance than existing file systems.

Write Read
0

1000

2000

3000

Te
st

D
FS

IO
 (M

B
/s

)

Teragen

6

8

10

12
memHDFS Alluxio NVFS
Crail Octopus

W
or

dc
ou

nt
 E

xe
cu

tio
n

Ti
m

e
(s

)

Te
ra

ge
n

E
xe

cu
tio

n
Ti

m
e

(s
)memHDFS Alluxio NVFS

Crail Octopus

Wordcount
40

60

80

Figure 16: Big Data Evaluation

Big Data Application Performance. Figure 16(b)
shows the application performance for different file sys-
tems. Octopus consumes the least time to finish all
evaluated applications. Among all the evaluated file
systems, memHDFS generally has the highest run time,
i.e., 11.7s for Teragen and 82s for Wordcount. For the
Teragen workload, the run time in Alluxio, NVFS, Crail
and Octopus is 11.0s, 10.0s, 11.4s and 8.8s, respectively.

782 2017 USENIX Annual Technical Conference USENIX Association

For the Wordcount workload, the run time in Alluxio,
NVFS, Crail and Octopus is 69.5s, 65.9s, 62.5s and
57.1s, respectively. We conclude that our proposed
general-purpose Octopus can even provide better perfor-
mance for big data applications than existing dedicated
file systems.

5 Related Work

Persistent Memory File Systems: In addition to file
systems that are built for flash memory [17, 28, 27, 22,
44], a number of local file systems have been built from
scratch to exploit both byte-addressability and persis-
tence benefits of non-volatile memory [11, 14, 42, 32,
43]. BPFS [11] is a file system for persistent memory that
directly manages non-volatile memory in a tree structure,
and provides atomic data persistence using short-circuit
shadow paging. PMFS [14] proposed by Intel also
enables direct persistent memory access from applica-
tions by removing file system page cache with memory
mapped IO. Similar to BPFS and PMFS, SCMFS [42]
is a file system for persistent memory which leverages
the virtual memory management of the operating system.
Fine-grained management is further studied in recent
NOVA [43] and HiNFS [32] to make software more
efficient. The Linux kernel community also starts to
support persistent memory by introducing DAX (Direct
Access) to existing file systems, e.g., EXT4-DAX [4].
The efficient software design concept in these local file
systems, including removing duplicated memory copies,
is further studied in Octopus distributed file system to
make remote accesses more efficient.

General RDMA Optimizations: RDMA provides
high performance but requires careful tuning. Recent
study [19] offers guidelines on how to use RDMA verbs
efficiently from a low-level perspective such as in PCIe
and NIC. Cell [30] dynamically balances CPU consump-
tion and network overhead using RDMA primitives in
a distributed B-tree store. PASTE [15] proposes direct
NIC DMA to persistent memory to avoid data copies,
for a joint optimization between network and data stores.
FaSST [20] proposes to use UD (Unreliable Datagram)
for RPC implementation when using send/recv, in or-
der to improve scalability. RDMA has also been used
to optimize distributed protocols, like shared memory
access [13], replication [45], in-memory transaction [41],
and lock mechanism [31]. RDMA optimizations have
brought benefits to computer systems, and this motivates
us to start rethinking the file system design with RDMA.

RDMA Optimizations in Key-Value Stores: RDMA
features have been adopted in several key-value stores
to improve performance [29, 18, 13, 40]. MICA [24]
bypasses the kernel and uses a lightweight networking
stack to improve data access performance in key-value

stores. Pilaf [29] optimizes the get operation using mul-
tiple RDMA read commands at the client side, which
offloads hash calculation burden from remote servers to
clients, improving system performance. HERD [18] im-
plements both get and put operations using the combina-
tion of RDMA write and UD send, in order to achieve
high throughput. HydraDB [40] is a versatile key-value
middleware that achieves data replication to guarantee
fault-tolerance and awareness for NUMA architecture,
and adds client-side cache to accelerate the get opera-
tion. While RDMA techniques lead to evolutions in the
designs of key-value stores, its impact on file system
designs is still under-exploited.

RDMA Optimizations in Distributed File Systems:
Existing distributed file systems have tried to support
RDMA network by substituting their communication
modules [1, 3, 6]. Ceph over Accelio [3] is a project un-
der development to support RDMA in Ceph. Accelio [2]
is an RDMA-based asynchronous messaging and RPC
middleware designed to improve message performance
and CPU parallelism. Alluxio [23] in Spark (formerly
named Tachyon) is transplanted to run on top of RDMA
by Mellanox [6]. It faces the same problem as Ceph on
RDMA. NVFS [16] is an optimized version of HDFS
that combines both NVM and RDMA technologies. Due
to heavy software design in HDFS, NVFS hardly exploits
the high performance of NVM and RDMA. Crail [9]
is a recently developed distributed file system built on
DaRPC [37]. DaRPC is an RDMA-based RPC that
tightly integrates the RPC message processing and net-
work processing, which provides both high throughput
and low latency. However, their internal file system
mechanisms remain the same. In comparison, our pro-
posed Octopus revisits the file system mechanisms with
RDMA features, instead of introducing RDMA only to
the communication module.

6 Conclusion

The efficiency of the file system design becomes an im-
portant design issue for storage systems that are equipped
with high-speed NVM and RDMA hardware. Both the
two emerging hardware technologies not only improve
hardware performance, but also push back the soft-
ware evolution. In this paper, we propose a distributed
memory file system, Octopus, which has its internal
file system mechanisms closely coupled with RDMA
features. Octopus simplifies the data management layer
by reducing memory copies, and rebalances network and
server loads with active I/Os in clients. It also redesigns
the metadata RPC and the distributed transaction by
using RDMA primitives. Evaluations show that Octopus
effectively explores hardware benefits, and significantly
outperforms existing distributed file systems.

USENIX Association 2017 USENIX Annual Technical Conference 783

Acknowledgments

We thank our shepherd Michio Honda and anonymous
reviewers for their feedbacks and suggestions. We
also thank Weijian Xu for his contribution in the early
prototype of Octopus. This work is supported by the
National Natural Science Foundation of China (Grant
No. 61502266, 61433008, 61232003), the Beijing Mu-
nicipal Science and Technology Commission of China
(Grant No. D151100000815003), and the China Post-
doctoral Science Foundation (Grant No. 2016T90094,
2015M580098). Youyou Lu is also supported by the
Young Elite Scientists Sponsorship Program of China
Association for Science and Technology (CAST).

References
[1] GlusterFS on RDMA. "https://gluster.readthedocs.io

/en/latest/AdministratorGuide/RDMATransport/".

[2] Accelio. "http://www.accelio.org", 2013.

[3] Ceph over Accelio. "https://www.cohortfs.com/ceph-o

ver-accelio", 2014.

[4] Support ext4 on NV-DIMMs. "https://lwn.net/Articles

/588218", 2014.

[5] Supporting filesystems in persistent memory. "https://lwn.

net/Articles/610174", 2014.

[6] Alluxio on RDMA. "https://community.mellanox.com

/docs/DOC-2128", 2015.

[7] Introducing Intel Optane technology - bringing 3D
XPoint memory to storage and memory products.
"https://newsroom.intel.com/press-kits/introd

ucing-intel-optane-technology-bringing-3d-xpoin

t-memory-to-storage-and-memory-products/", 2016.

[8] SAP HANA, in-memory computing and real time analyt-
ics. "http://go.sap.com/product/technology-platf

orm/hana.html", 2016.

[9] Crail: A Fast Multi-tiered Distributed Direct Access File System.
https://github.com/zrlio/crail, 2017.

[10] ASSOCIATION, I. T., ET AL. InfiniBand Architecture Specifica-
tion: Release 1.3. InfiniBand Trade Association, 2009.

[11] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better I/O through byte-
addressable, persistent memory. In Proceedings of the 22nd ACM
SIGOPS Symposium on Operating Systems Principles (SOSP)
(New York, NY, USA, 2009), ACM, pp. 133–146.

[12] DOUGLAS, C. RDMA with PMEM: software mechanisms for
enabling access to remote persistent memory. http://www.sn

ia.org/sites/default/files/SDC15_presentations/

persistant_mem/ChetDouglas_RDMA_with_PM.pdf, 2015.

[13] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. Farm: fast remote memory. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14)
(2014), pp. 401–414.

[14] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ,
P., REDDY, D., SANKARAN, R., AND JACKSON, J. System
software for persistent memory. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys) (New
York, NY, USA, 2014), ACM, pp. 15:1–15:15.

[15] HONDA, M., EGGERT, L., AND SANTRY, D. Paste: Network
stacks must integrate with nvmm abstractions. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks (2016),
ACM, pp. 183–189.

[16] ISLAM, N. S., WASI-UR RAHMAN, M., LU, X., AND PANDA,
D. K. High performance design for hdfs with byte-addressability
of nvm and rdma. In Proceedings of the 2016 International
Conference on Supercomputing (2016), ACM, p. 8.

[17] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.
DFS: A file system for virtualized flash storage. In Proceedings
of the 8th USENIX Conference on File and Storage Technologies
(FAST) (Berkeley, CA, 2010), USENIX.

[18] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
rdma efficiently for key-value services. In SIGCOMM (2014).

[19] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance rdma systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (2016).

[20] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
fast, scalable and simple distributed transactions with two-sided
(rdma) datagram rpcs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (2016), USENIX
Association, pp. 185–201.

[21] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Ar-
chitecting phase change memory as a scalable dram alternative.
In Proceedings of the 36th annual International Symposium on
Computer Architecture (ISCA) (New York, NY, USA, 2009),
ACM, pp. 2–13.

[22] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A
new file system for flash storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST)
(Santa Clara, CA, Feb. 2015), USENIX.

[23] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In Proceedings of the ACM Symposium
on Cloud Computing (2014).

[24] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
management 15, 32 (2014), 36.

[25] LU, Y., SHU, J., AND SUN, L. Blurred persistence in transac-
tional persistent memory. In Proceedings of the 31st Conference
on Massive Storage Systems and Technologies (MSST) (2015),
IEEE, pp. 1–13.

[26] LU, Y., SHU, J., SUN, L., AND MUTLU, O. Loose-ordering
consistency for persistent memory. In Proceedings of the IEEE
32nd International Conference on Computer Design (ICCD)
(2014), IEEE.

[27] LU, Y., SHU, J., AND WANG, W. ReconFS: A reconstructable
file system on flash storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST) (Berkeley,
CA, 2014), USENIX, pp. 75–88.

[28] LU, Y., SHU, J., AND ZHENG, W. Extending the lifetime of
flash-based storage through reducing write amplification from
file systems. In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST) (Berkeley, CA, 2013),
USENIX.

[29] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In Presented as
part of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13) (2013), pp. 103–114.

[30] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing cpu and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (2016).

784 2017 USENIX Annual Technical Conference USENIX Association

[31] NARRAVULA, S., MARNIDALA, A., VISHNU, A.,
VAIDYANATHAN, K., AND PANDA, D. K. High performance
distributed lock management services using network-based
remote atomic operations. In Seventh IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’07)
(2007), IEEE, pp. 583–590.

[32] OU, J., SHU, J., AND LU, Y. A high performance file system
for non-volatile main memory. In Proceedings of the Eleventh
European Conference on Computer Systems (2016), ACM, p. 12.

[33] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory
persistency. In Proceedings of the 41st ACM/IEEE International
Symposium on Computer Architecture (ISCA) (2014), pp. 265–
276.

[34] QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A.
Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the 36th annual
International Symposium on Computer Architecture (ISCA) (New
York, NY, USA, 2009), ACM, pp. 24–33.

[35] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.
The hadoop distributed file system. In IEEE 26th symposium
on mass storage systems and technologies (MSST) (2010), IEEE,
pp. 1–10.

[36] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing memristor found. nature 453,
7191 (2008), 80–83.

[37] STUEDI, P., TRIVEDI, A., METZLER, B., AND PFEFFERLE, J.
DaRPC: Data center rpc. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC) (2014), ACM, pp. 1–13.

[38] SWANSON, S., AND CAULFIELD, A. M. Refactor, reduce,
recycle: Restructuring the i/o stack for the future of storage.
Computer 46, 8 (2013), 52–59.

[39] TALPEY, T. Remote Access to ultra-low-latency storage.
http://www.snia.org/sites/default/files/SDC15_pr

esentations/persistant_mem/Talpey-Remote_Access

_Storage.pdf, 2015.

[40] WANG, Y., ZHANG, L., TAN, J., LI, M., GAO, Y., GUERIN,
X., MENG, X., AND MENG, S. Hydradb: a resilient rdma-
driven key-value middleware for in-memory cluster computing.
In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2015),
ACM, p. 22.

[41] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using rdma and htm. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles
(2015), ACM, pp. 87–104.

[42] WU, X., AND REDDY, A. L. N. SCMFS: A file system for
storage class memory. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC) (New York, NY, USA, 2011), ACM, pp. 39:1–
39:11.

[43] XU, J., AND SWANSON, S. Nova: a log-structured file system
for hybrid volatile/non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16) (2016),
pp. 323–338.

[44] ZHANG, J., SHU, J., AND LU, Y. Parafs: A log-structured file
system to exploit the internal parallelism of flash devices. In 2016
USENIX Annual Technical Conference (USENIX ATC 16) (2016).

[45] ZHANG, Y., YANG, J., MEMARIPOUR, A., AND SWANSON,
S. Mojim: A reliable and highly-available non-volatile memory
system. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2015), ASPLOS ’15,
ACM, pp. 3–18.

[46] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y. A durable
and energy efficient main memory using phase change memory
technology. In Proceedings of the 36th annual International
Symposium on Computer Architecture (ISCA) (New York, NY,
USA, 2009), ACM, pp. 14–23.

USENIX Association 2017 USENIX Annual Technical Conference 785

iJournaling: Fine-Grained Journaling
for Improving the Latency of Fsync System Call

Daejun Park and Dongkun Shin
Sungkyunkwan University, Korea

pdaejun@skku.edu, dongkun@skku.edu

Abstract
For data durability, many applications rely on syn-
chronous operations such as an fsync() system call.
However, latency-sensitive synchronous operations can
be delayed under the compound transaction scheme of
the current journaling technique. Because a compound
transaction includes irrelevant data and metadata, as well
as the data and metadata of fsynced file, the latency of
an fsync call can be unexpectedly long. In this paper,
we first analyze various factors that may delay an fsync
operation, and propose a novel hybrid journaling tech-
nique, called ijournaling, which journals only the cor-
responding file-level transaction for an fsync call, while
recording a normal journal transaction during periodic
journaling. The file-level transaction journal has only
the related metadata updates of the fsynced file. By re-
moving several factors detrimental to fsync latency, the
proposed technique can reduce the fsync latency, mit-
igate the interference between fsync-intensive threads,
and provide high manycore scalability. Experiments us-
ing a smartphone and a desktop computer showed signif-
icant improvements in fsync latency through the use of
ijournaling.

1 Introduction

The buffered I/O is essential to a high-performance file
system because data can be temporarily buffered in the
main memory until being written back to storage. How-
ever, the buffered I/O cannot guarantee file-system con-
sistency and data durability in the cases of unclean file-
system shutdowns or hardware failures [22]. To ensure
file-system consistency, many file systems have adopted
a journaling technique, which can ensure the atomicity
of a transaction. A transaction is a group of file system
modifications that must be carried out atomically. For
example, the ext4 file system uses the journaling block
device version 2 (JBD2) in the Linux kernel to support

journaling [23]. All file system operations are logged
in the journal area before updating the original file sys-
tem. Therefore, by undoing any incomplete transactions
and redoing all committed transactions, journaling can
be used to maintain the file-system consistency despite
sudden system crashes.

The ext4 file system uses a physical logging scheme
that records the modified blocks [14], rather than logi-
cal logs, which records operations. Because several of
the metadata structures of ext4, such as block bitmap

and inode table, are shared among multiple file op-
erations, it is easier and more efficient to commit mul-
tiple transactions at once rather than commit each file
operation-level transaction individually. For the purpose,
ext4 groups concurrent unrelated transactions into a sin-
gle compound transaction [26], which is periodically
flushed into a reserved storage area, called a journal area.
The compound transactions are maintained in the journal
transaction buffer of the main memory until being com-
mitted to the journal area. The compound transaction
scheme provides a better performance, particularly when
the same metadata structure is frequently updated within
a short period of time.
Ext4 supports three journaling modes: writeback, or-

dered, and data modes. Ordered mode, which is the
default option, journals only the metadata. However, it
enforces an ordering constraint to guarantee file-system
consistency, in which the transaction-related data writes
must be completed before the journal writes of the meta-
data. Therefore, the transaction commit latency will be
lengthy if the size of the associated data is large. A long
transaction commit latency may not be a serious prob-
lem, however, because the journal commit operations are
periodically invoked by a background journaling thread.

Although the file-system consistency and data dura-
bility are supported using a journaling scheme, the data
durability is not immediate. To ensure instant data dura-
bility, users must call a synchronous operation such as an
fsync() or fdatasync(). Most database systems rely

USENIX Association 2017 USENIX Annual Technical Conference 787

on fsync system calls to be assured of immediate data
durability. Recent mobile platforms such as Android also
frequently use fsync system calls [17]. Because an fsync
system call is a synchronous operation, the fsync latency
affects the performance of the application.

When a file system uses journaling, all file-system
changes are updated through the journaling layer. There-
fore, when an application calls an fsync for a modified
file, the journaling thread is awakened on demand, and
the transactions in the transaction buffer are flushed into
the storage immediately, irrespective of the journal com-
mit interval. The fsync operation must wait until the
journal commit operation is completed. In particular, a
compound transaction in the transaction buffer may in-
clude data and metadata updates of other irrelevant files,
as well as the target file of the fsync call (fsynced file). A
long latency for committing a compound journal transac-
tion will increase the latency of an fsync system call [12].

For a short fsync latency, a more fine-grained journal-
ing scheme such as file-level transaction committing is
required. However, under a physical logging scheme,
fine-grained journaling is difficult to implement because
several metadata blocks are shared by multiple file op-
erations. In addition, fine-grained journaling imposes a
high journaling overhead.

Another solution is the use of a logical logging
scheme. For example, XFS [28] and ZFS [7] log the file
operations rather the modified blocks for a synchronous
request. All file system operations are logically-logged
as transactions, which accumulate in memory until they
are committed to the journal area for an fsync call. The
logical logs are replayed during a crash recovery. How-
ever, logical logging requires a large sized transaction
buffer in the memory compared with physical logging,
particularly when the same metadata structure is fre-
quently updated. For example, ZFS generates a 256
bytes of logical log in memory for each write operation.

To address this issue, we propose a hybrid approach
that uses both the normal journaling by JBD2 and
the file-level transaction journaling of our proposed
ijournaling technique. Under a normal periodic jour-
naling operation, the proposed scheme uses a legacy
journaling scheme that flushes the compound transac-
tion. However, if on-demand journaling is invoked by an
fsync call, ijournaling commits only the transactions
related to the fsynced file without flushing the compound
transaction in the transaction buffer. The file-level trans-
actions include only the minimum metadata, through
which all relevant file-system metadata blocks can be re-
covered after a system crash. The ijournaling tech-
nique can eliminate the compound transaction problem
for an fsync call without requiring an additional large
amount of memory space for transaction management,
unlike ZFS. We evaluated the performance improvements

of the proposed journaling scheme on both a smartphone
and a desktop system.

2 Background

Ext4 is the default file system of Linux kernel, and
is widely used on mobile devices such as Android-
based smartphones and desktop computers. Ext4 di-
vides an entire storage space into several block groups.
Two metadata structures, i.e., superblock and group

descriptor table (GDT), describe the general infor-
mation of the overall file system. Each block group has
its own block bitmap and inode bitmap to manage
the allocation status of the data blocks or inode entries.
Each block group also maintains an inode table. Each
inode entry of the inode table is 256 bytes in size and
describes the attributes of a single file or directory. These
metadata structures are allocated in a 4-KB block unit,
and are shared by multiple files or directories. Ext4 sup-
ports an extent-based block-mapping scheme. A single
extent identifies a set of blocks that are logically con-
tiguous within the file and also on the underlying block
device. An inode entry can contain a maximum of four
extent structures internally. If more extents are required,
external extent structures are allocated in the data block
area for indirect pointing.
Ext4 uses a journaling technique. Information regard-

ing pending file-system updates is first written to the
journal to enable an efficient crash recovery. The jour-
nal space is treated as a circular buffer. Once the nec-
essary information has been propagated to its fixed lo-
cation in the ext4 structures, the corresponding journal
logs are identified as checkpointed, and the space can be
reclaimed. All modified metadata blocks are recorded
in a block unit at the journal area even though only a
portion of the metadata blocks is modified. This feature
makes it difficult to implement file-level journaling be-
cause a metadata block is shared by multiple files. One
transaction log in the journal contains a journal header
(JH), several journal descriptor blocks (JDs) to describe
its contents, and a journal commit block (JC) to denote
the end of the transaction.
Ext4 manages the life cycle of each transaction. Each

transaction has a metadata list and an inode list, which
have the metadata blocks and pointers to the inodes mod-
ified by the transaction, respectively. First, a running
transaction is created, and all file-system modifications
are inserted into the running transaction. When the pe-
riodic JBD2 thread is invoked or an fsync() is called,
the transaction state is changed to committing, and the
transaction blocks are written into the journal area. After
the completion of a transaction commit, the transaction
is marked as checkpoint. After the transaction is check-
pointed, it is removed from the transaction list.

788 2017 USENIX Annual Technical Conference USENIX Association

3 Related Work

Prabhakaran et al. [26] observed the storage performance
when a foreground asynchronous sequential stream and a
background random synchronous stream compete to use
the ext3 file system. They showed that the more fre-
quently the background process calls an fsync, the more
traffic is sent to the journal owing to the compound trans-
actions of ext3. The authors proposed an adaptive ap-
proach that selects the best journaling mode for each
transaction according to its I/O pattern. However, this
approach cannot solve the compound transaction prob-
lem completely, and may be unsafe [27].

Jeong et al. [17] revealed the journaling-of-journal
(JoJ) problem on an Android-based smartphone, where
the ext4 file system uses a journaling scheme for data
reliability, and SQLite [3] conducts additional journal-
ing using its own journal file. Their study suggests us-
ing fdatasync() and write-ahead logging (WAL) in
SQLite to reduce the number of journal commits. Here,
fdatasync() does not commit a journal transaction un-
less the file-system metadata relevant to the target file are
changed. However, WAL also generates frequent fsync
calls, and fdatasync() can be effective only when there
are no metadata updates.

To mitigate the JoJ overhead, Shen et al. [27] pro-
posed using the data journaling mode of ext4 adaptively.
Data journaling writes both data and metadata in the jour-
nal area without generating page writes at the original
file system locations during a journal commit operation.
Because a journal commit operation sends only the se-
quential write requests to the storage, the journal commit
latency can be reduced. However, this technique also
flushes compound transactions and cannot completely
avoid a long fsync latency.

There are several approaches that divide a file sys-
tem space into several groups to localize the faults and
transactions of the filesystem, or to avoid the lock con-
tention on shared file-system data structures in memory.
The per-block-group (PBG) journaling scheme [19] ex-
ploits the block groups of ext4. Because each block
group has its own metadata blocks, PBG journaling ex-
tracts a block-group-level transaction including updates
on the fsynced file from a compound transaction, and
commits only the transaction of the target block group.
PBG journaling shows significant improvements in terms
of fsync latency when a fsynced file and other irrelevant
files are allocated in different block groups. However,
a long fsync latency occurs if irrelevant files share the
same block group. The eager synching [8] also uses a
similar technique as PBG journaling.

IceFS [21] proposed a new container abstraction,
called cube, to provide more flexible and configurable
isolations. SpanFS [18] distributes files and directories

among the domains, which are the basic independent
function units for file system services such as data alloca-
tion and journaling. IceFS and SpanFS also cannot avoid
the compound transaction problem within a cube or do-
main. Moreover, IceFS is incompatible with legacy file
systems, and the user should manage the cubes. SpanFS
can generate a large compound transaction across mul-
tiple domains. Xsyncfs [25], NoFS [10], and OptFS [9]
improved the fsync latency by delaying sync operations
or changing the implementation of ordering constraint.

ScaleFS [13] uses a logical logging technique. Op-
eration logs (OpLogs) are generated in its in-memory
file system to record file-system changes. An OpLog
consists of logical file-system operations, and is applied
to the on-disk file system when an fsync is invoked.
ScaleFS applies only dependent operations that are re-
lated to the file or directory being fsynced, which is
a very similar approach to our proposed ijournaling

technique. However, logical logging-based journaling
scheme requires significant changes to the current ext4
file systems. In addition, a performance overhead occurs
because each file-system operation must record its own
OpLog. Our proposed ijournaling follows the physi-
cal logging scheme of ext4, and has little overhead for
managing file-level journals.

Jeong et al. [15] proposed an I/O scheduler technique
that can detect asynchronous I/O requests related with
latency-sensitive file operations such as an fsync call, and
boost them over the other asynchronous I/Os. This tech-
nique improves the fsync latency and can be used along
with our technique because they both handle the differ-
ent underlying reasons for a long fsync latency problem.
However, the number of latency-sensitive asynchronous
I/Os can be minimized under our ijournaling scheme
because only the relevant blocks are flushed by fsync
calls.

Min et al. [24] investigated the performance of
fsync() for a manycore architecture under five widely-
deployed file systems. They showed that most of the
file systems start to degrade in performance when more
than ten cores compete for the file system. In our
ijournaling scheme, a sync operation does not depend
on a single journaling thread and each core has its own
separate ijournal area. Therefore, our scheme provides a
better manycore scalability, which is described in greater
detail in Section 6.

4 Analysis of Fsync Latency in Ext4

When a user process calls an fsync() system call for a
file, the process is blocked, and the system call service in
the kernel performs the following operations, as shown in
Figure 1. First, it updates the related metadata blocks for
the file, inserts them into the running transaction man-

USENIX Association 2017 USENIX Annual Technical Conference 789

Process1

File system

JBD
Tx5 (running)

IB BB

C B

metadata list

inode list

Page cache

write (file A)

Process2

WB

thread

File system

Page cache

IO Scheduler

SYNC queue

block alloc.

insert

requests

ASYNC queue

Process3

write (file B) write (file C)

Storage

B C

Process1 Process2 Process3

fsync (file B)
write (file B)

A

JBD

File system

Page cache

Process1 Process2 Process3

JBD

Tx commit File system

Process1 Process2 Process3

JBD

metadata listinode list

1 1
3 5

2 4
6

1 2 1

Tx5 (running)

IB BB

C B

metadata list

inode list A

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2

3 1 1 2

2

insert

A
3

1
2

B C

1 1
3 5

2 4
6

A
3

1
2 2

B C

1 1
3 5

2 4
6

A
3

1
2 2

Tx5 (runningà committing)

IB BB

C B

metadata list

inode list A

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2 1 2

3 4 5 6

2 3 1

Page cache B C

1

Tx commit end

1
3 5

2 4
6

A
3

1
2 2

Tx5 (committingà checkpoint)

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2 2 3 1

IB BBC B A

blocked wakeup

checkpoint Tx

3

WB

thread

block alloc.

checkpoint Tx

insert

checkpoint Tx

1 2 3 4 5 6

WB

thread

insert

JCJH J J

(a) WB flush thread is flushing

dirty pages

(b) fsync() is called;

data pages are flushed
(c) commit transaction

(d) transaction is completed;

fsync() is completed

Figure 1: Dependency problems of a journal commit.

aged by JBD2, and flushes the data blocks of the fsynced
file, as shown in Figure 1(b). For example, the block

bitmap needs to be modified when an fsync call flushes
newly allocated data blocks. Ext4 uses a delayed block
allocation scheme, and thus, the file-system location for
a data block is determined just before the block is flushed
into storage. The write requests on the data blocks of the
fsynced file are transferred as synchronous requests be-
cause the user process is waiting for the completion of
the system call.

Second, the system call service sends a commit re-
quest for the relevant transaction to JBD2 if the trans-
action state is still running, and waits for the comple-
tion of the commit operation, as shown in Figure 1(c).
In this step, a commit operation cannot be issued im-
mediately if there is another committing transaction be-
cause JBD2 can commit only one transaction at a time.
During a commit operation, JBD2 awaits the completion
of all data write requests relevant to the target transac-
tion. In Figure 1(c), all data blocks of files A, B, and C
must be flushed because the target transaction includes
the inodes. Finally, JBD2 writes the journal blocks in the
journal area after the completion of the data write opera-
tions, as shown in Figure 1(d). A journal block includes
the modified metadata blocks. The final block written
by JBD2 is the journal commit (JC) block, which is fol-
lowed by a flush command. When the flush command is
completed, the fsync() system call is completed, and
the user process can continue with its operations.

Based on its operations, we can find several reasons
for adverse effect on the latency of an fsync system call.
The first reason is the inter-transaction (IT) dependency.
Because ext4 uses a single JBD2 thread, only one trans-
action (i.e., a committing transaction) can be committed
at a time. Protecting concurrent journal commits is im-
portant for preventing multiple journals from being inter-
leaved in the journal area. Furthermore, multiple trans-
actions cannot be committed concurrently because they
share several metadata blocks. Therefore, if the JBD2

thread is committing transaction T xn−1, the next transac-
tion T xn relevant to the fsynced file cannot be changed
into a committing transaction immediately. Such cases
will occur frequently when multiple threads invoke fsync
calls simultaneously. To solve this IT dependency prob-
lem, our ijournaling technique handles an fsync call
at system call service rather than the journaling thread,
and uses separated journal areas.

The second reason is the compound transaction (CTX)
dependency, shown in Figure 1(c). When the JBD2
thread commits the transaction of an fsynced file, the in-
ode list of the committing transaction includes irrelevant
inodes. The JBD2 thread must wait for the completion
of the data block write operations owing to the ordering
constraint of ordered-mode journaling. The CTX depen-
dency is severe when there are many processes generat-
ing file-system write operations. Even when only one
process generates write operations, a CTX dependency
problem can occur if the process updates multiple files.
In some cases, a transaction can include discard com-
mands [1], which have considerably long latencies.

The delayed block allocation technique of ext4 ag-
gravates the CTX problem. The delayed block alloca-
tion has many advantages because it postpones block al-
locations until the page flush time, rather than during a
write() operation [23]. Therefore, the overall perfor-
mance of the file system is higher when delayed alloca-
tion is enabled. However, if an fsync is called just after
the flush kernel thread invocation, as shown in the ex-
ample in Figure 1(a), the flush thread will allocate data
blocks for dirty pages, and register several modified in-
odes in the running transaction during the delayed block
allocation. Then, the commit operation of the journal
transaction will generate many write requests into stor-
age. If an fsync is called before the flush thread is in-
voked, the fsync latency will be short because there are
few modifications to the file system. Therefore, fsync
latencies will fluctuate in a delayed allocation scheme.
On the contrary, if the delayed allocation is disabled, the

790 2017 USENIX Annual Technical Conference USENIX Association

modified inodes will be distributed to different transac-
tions, and the fsync latency will be unrelated with the
flush thread invocation. Nevertheless, a delayed alloca-
tion can demonstrate a better performance and shorter
average fsync latency, as described later in Section 6.
Because our ijournaling scheme commits a file-level
transaction rather than a compound transaction, it can al-
ways demonstrate a short fsync latency irrespective of
the block allocation policy. Throughout our study, we
used delayed allocation as the default scheme.

The last reason is the quasi-async request (QA) de-
pendency revealed in [15]. In Figure 1(a), the writeback
flush thread has sent a write request on data block 1 of file
B before an fsync is called. Whereas the write requests
generated by an fsync system call are sent along with
a SYNC flag, the write requests generated by the flush
thread are sent without the flag. The CFQ I/O sched-
uler in Linux gives lower priorities to requests without a
SYNC flag. Although data block 1 is written by an async
request, the request is latency-sensitive. Such a request is
called a quasi-async request. A long latency will occur
for completion of the quasi-async request, particularly
when there are many competing async requests in the
I/O queue. The QA dependency problem can be solved
through the boosting technique proposed in [15], which
changes a quasi-async request into a sync request. How-
ever, owing to the CTX dependency, the asynchronous
write requests on A and C in Figure 1 must also be
changed to sync requests in the boosting technique. The
ijournaling can mitigate the QA dependency problem
by removing unrelated dependencies. For example, the
fsync call on B does not need to wait for the completion
of write requests on A and C.

5 The iJournaling Scheme

5.1 Main Idea
The goal of ijournaling is to improve the perfor-
mance of an fsync() call while exploiting the advan-
tage of the legacy compound-transaction-based journal-
ing scheme. Only when a process calls an fsync() sys-
tem call, ijournaling is invoked. The ijournaling

scheme generates ijournal transactions (i-transactions)
and flushes them into a reserved ijournal area with-
out committing the normal running transaction of an
fsynced file. The i-transaction includes metadata mod-
ification logs, which are the minimum required informa-
tion through which a crash recovery operation can re-
cover the file-system metadata blocks modified through
an fsync operation. Only file-level metadata such as an
inode entry and the external extent structures of the target
file, and any related directory entries (DEs), are recorded.
Other modified metadata blocks shared by other files,

block

bitmap

0 1

54

2 3

...6

30 31

3534

28 29

3332

Recovered BBijournal transaction

0 1

54

2 3

...6

30 31

3534

28 29

3332

Old block bitmap

i-tx
used block

free block

extent

start block : 30

length : 2

...

...

recover

ijournal Area Metadata Area

Figure 2: Block bitmap recovery with ijournal.

such as GDT, block bitmap, inode bitmap, or inode
table, are not flushed into the ijournal area. They can
be recovered during the crash recovery time using com-
mitted i-transactions. The ijournaling scheme does
not change the normal running transaction used by the
JBD2 thread. Therefore, the metadata blocks committed
by ijournaling are again committed into the normal
journal area through the following periodic JBD2 thread,
which simplifies the crash recovery.

Figure 2 shows an example of a metadata recovery op-
eration of ijournaling. When the file-system recovery
module finds a committed i-transaction in the ijournal
area, it can modify the old block bitmap in the file
system using the extent allocation information, which
can be found from the inode entry or the external ex-
tent structures in the i-transaction. Because two blocks
from block number 30 are allocated for an extent, the
30-th and 31-st bits in the block bitmap must be set.
The inode table and inode bitmap can also be eas-
ily recovered through a recorded inode entry. To imple-
ment ijournaling, no changes are required to the cur-
rent JBD2 journaling scheme. Whereas a normal jour-
naling thread flushes the transaction buffer periodically,
ijournaling is performed in the fsync() system call
service. Therefore, an ijournaling and a normal jour-
naling can be performed simultaneously, and the inter-
transaction dependency is removed. The file-system re-
covery module must be modified to handle ijournal.

5.2 iJournal Transaction

The ijournal area is separated from the normal journal
area. In addition, each processor core uses a separate per-
core ijournal area in order to support manycore scal-
ability. Each ijournal area is managed as a circular
buffer. This scheme needs to allocate space as many as
the number of cores. If the existing normal journal area is
shared by normal journal transactions and i-transactions,
no additional space allocation is required. However, we
should be carefully in allocating blocks in the journal
area to prevent two different journal blocks from being
mixed in the journal area in an interleaved manner, be-
cause a transaction must consist of consecutive blocks.

USENIX Association 2017 USENIX Annual Technical Conference 791

While a JBD2 thread is allocating blocks in the journal
area, the ijournaling must wait until the block allo-
cation is completed. Therefore, separating journal areas
can improve the concurrency of journaling operations.
The required storage space for per-core ijournal area
is small because the the size of an i-transaction is smaller
than that of a normal transaction, and i-transactions will
be invalidated after its corresponding normal transaction
is committed.

Figure 3 shows the structure of an i-transaction, of
which there are two types: file i-transaction and direc-
tory i-transaction. Whereas the file i-transaction has the
metadata information of an fsynced file, the directory i-
transaction has the metadata information of any related
parent directory.

A file i-transaction is composed of one header block,
several external extent blocks (if they exist), and one
commit block. The journal header in the header block
has the same structure as a normal journal header. It
includes the magic number and transaction ID. A file
i-transaction has the same transaction ID as the run-
ning transaction of normal journaling, which includes the
metadata updates of the corresponding fsynced file. Be-
cause the journal transactions are distributed among mul-
tiple journal areas, the crash recovery module must iden-
tify the order of each transaction based on its transaction
IDs. Because there can be multiple fsync calls before the
current running transaction of normal journaling is com-
mitted, several i-transactions will have the same transac-
tion IDs. In particular, for the i-transactions recorded at
different ijournal areas, it is impossible to know the
order of them if they have a same transaction ID. To re-
solve this problem, ijournaling uses a sub-transaction
ID, which is incremented by each fsync call and managed
globally among multiple cores.

The inode number and inode structure in an i-
transaction are used for recovering the inode table,
inode bitmap, and GDT. Each block tag stores the
mapping between an external extent block in the file i-
transaction and its actual file-system block number. The
crash recovery can update the block bitmap using the
internal extent information in the inode structure, the
block tags, and the external extent blocks. The file i-
transaction collects only dirty external extent structures.
To reduce the extent tree search overhead, we modified
the file system to maintain a list of dirty extent blocks
for each uncommitted file and update it during each ex-
tent allocation/free operation. Because only a 20 bytes
of data structure is required for tracking one external ex-
tent, the memory overhead for external extent tracking is
not significant. The commit block indicates whether an
i-transaction has been completely committed.

The directory i-transaction is used to record any rele-
vant directory updates. If a file is fsynced but its parent

journal

header

(12B)

inode

number

(4B)

inode

structure

(256B)

block

tag

(8B)

header block (4KB)

ijournal

header

external

extent

commit

block

external

extent

DE
commit

block
DE

ijournal

header

file i-transaction

directory i-transaction

...

...

block

tag

(8B)

...

Figure 3: Structure of ijournal transaction.

directory entry is not committed before a system crash,
the file will be unreachable after the system recovery. For
example, if directory A and its subdirectory B are created,
and an fsync call for file /A/B/c is called, ijournaling
records all the changed directory information of the di-
rectories of A and B, as well as the changed file informa-
tion of file c. The ijournaling identifies all directories
that are related to the fsynced file and therefore must also
be committed.

To track the uncommitted directories, we added the
uncommitted DE flag in the inode structure. When a
new file is created, the flag is marked in the created
file’s inode to denote that its directory entry has not been
recorded at the parent directory block. The flag is cleared
when the parent directory block is committed by JBD2.
The ijournaling first checks the flag of the fsynced in-
ode. If the flag is marked, the parent directory is also ex-
amined recursively until no more uncommitted directory
is found. At that time, the directory i-transaction of top-
most uncommitted parent directory is first written in the
ijournal area, and then the directory i-transactions of
next-level directories are written in order. Finally, the file
i-transaction of fsynced file is written. Therefore, even
though there is a system crash during the ijournaling, the
recovered file system can maintain its consistency (i.e.,
there is no unreachable file or directory.) Although only
one directory entry in the DE blocks of an uncommitted
directory is related with an fsync call, our scheme records
the entire DE blocks of the uncommitted directory in the
directory i-transaction for fast fsync handling, because it
is time consuming to extract the modified directory en-
tries from the DE blocks. Instead, the recovery process
identifies the modified and valid DE entries to update the
old DE blocks in the file system.

If there are no modified external extent blocks and DE
blocks to be committed by an fsync call, it will be possi-
ble to write a single block i-transaction by recording all
information in the ijournal header, which can reduce the
write traffic on the ijournal area.

The ijournaling will show a slightly difference on
crash recovery compared with the normal journaling
scheme. While the normal journaling can recover all the
other contemporary file operations as well as the fsynced

792 2017 USENIX Annual Technical Conference USENIX Association

file operation, the proposed ijournaling can recover only
the files and directories related to fsync operation. How-
ever, the file system consistency is guaranteed.

To simplify the ijournaling implementation, our
scheme uses the normal journaling for some cases. For
the fsync call for a directory itself, a normal transaction is
committed instead of an ijournal to record all file-system
changes in the subdirectories, as well as in the fsynced
directory entry. This simplifies the journaling by remov-
ing the traversing of the subdirectories. When an inode is
shared by multiple files using hard link and an fsync()

is called for only one file, the file-system consistency can
be broken if ijournaling records the parent directo-
ries of only the fsynced file. To eliminate the traversing
of directories connected by hard links, a normal transac-
tion is committed instead of an ijournal for the case. To
track such a case, we added the uncommitted HL flag
in the inode structure. The flag of a file is marked if the
i link count of its inode is incremented by a hard link
operation. The flag is cleared when a running transac-
tion is committed by the JBD2 thread. The fsync system
call service checks the flag of the target inode, and calls
normal journaling if the flag has been marked.

5.3 Crash Recovery

The ijournal crash recovery module replays only valid
i-transactions. It first scans the normal journal area,
replays the committed but not-yet-checkpointed journal
transactions, and finds the last committed journal trans-
action ID (Max TxID). Because valid i-transactions have
the information on file-system changes after a valid nor-
mal journal transaction is committed, the normal journal
transaction must be replayed before i-transactions. Then,
the recovery module scans the ijournal areas. If an i-
transaction has a transaction ID larger than Max TxID,
it is valid. Otherwise, the i-transaction is ignored since
a normal committed journal transaction includes all the
metadata modifications of the i-transaction. If there
are multiple i-transactions on an inode, only the last i-
transaction with the largest sub-transaction ID is valid
since the last one includes all the metadata modifications
of the previous i-transactions.

Figure 4(a) shows an example of journal commit. At
a time of 30, the normal transaction with the transac-
tion ID (TxID) n is committed and the TxID is incre-
mented to n + 1. Before the next periodic transaction
with TxID = n+ 1 is committed, the files B, C, and D
are modified, and fsync() calls are invoked for the files
C and D by different processor cores. In Figure 4(b),
the i-transactions with (TxID, sub-TxID) = (n+1,0) and
(n+1,1) have the committed file information of the files
C and D, respectively. The system is crashed before
the periodic transaction commit (TxID = n+ 1). In Fig-

Tx
n-1

Tx
n

i-Tx
(n+1,1)

i-Tx
(n,0)

i-Tx
(n+1,0)

Normal

Journal area

Recovery result

10

iJournal

(Core 0)

iJournal

(Core 1)

Tx
n

i-Tx
(n+1,0)

i-Tx
(n+1,1)

fop(A)

JBD2 commit

(TxID = n-1) fsync(A)

time
commit period

2015 3530 454025

JBD2 commit

 (TxID = n)

fop(C)

fsync(C) fsync(D)

fop(D) crashfop(B)

50

fsync(C) fsync(D)

Committed journal

(a) an example scenario of journal commit

(b) file system recovery

Figure 4: Example of journal commit and recovery.

ure 4(b), the i-transaction with TxID = n is invalid be-
cause the normal transaction with TxID = n has been
committed. Therefore, the recovery operation uses only
the i-transactions with TxID = n+1. In Figure 4(a), there
is a file operation on file B before a system crash, but the
operation cannot be recovered by ijournaling. How-
ever, there is no problem in file-system consistency.

For each valid i-transaction, the recovery module mod-
ifies the corresponding inode entry and other metadata
blocks in the file system. Because an fsync call can
generate one file i-transaction and multiple directory i-
transactions, the multiple i-transactions generated by an
fsync call cannot be committed atomically if a system
crash occurs during fsync handling. In addition, the DE
blocks in directory i-transaction also contain information
on irrelevant files. Instead of directly copying the DE
blocks of a directory i-transaction into the file-system
blocks during a crash recovery, the crash recovery opera-
tion first identifies the changed directory entries by com-
paring the two different DE blocks. If the inode pointed
to by a changed directory entry is accessible, the entry is
modified in the DE blocks in the file system.

Figure 5 shows an example of a file-system recovery
under the ijournaling scheme. Initially, the file with
inode number 3 has three external extents, which are
used to access 24 blocks. Through some file operations,
ten blocks (block numbers 50-59) and the corresponding
external extent structure in block number 12 are freed.
Then, six blocks (block numbers 74-79) are appended,
and the external extent in block number 13 is modified.
After the file operations, an fsync is called. Assume
that there is a system crash before a normal journal is
committed. The recovery module builds the inode struc-
ture including the external extent tree with the recorded
i-transactions. By comparing the built inode with the
corresponding inode in storage, the recovery module can
identify the file-system changes by the logged fsync call,
and can replay these changes. When the external ex-
tent block in block number 12 is freed, the original ext4

USENIX Association 2017 USENIX Annual Technical Conference 793

block bitmap

memory

attr.
11
12
13

inode 3

EE
index

external extents

disk

inode

table

block

bitmap

0

(a) initial state
memory

disk

0

JH
extent

[70-79]
JC

inode 3

11 13

journal area

block bitmap inode 3

EE
index

external extents

(b) free [50-59]; write [74-79]; fsync()

memory

(c) crash recovery

inode 3

extent

[20-29]

extent

[50-59]

extent

[70-73]

11 12 13

current extent tree

extent 12 freed

block [50-59] freed

extent 13 modified

block [74-79] alloced

committed actions

inode 3

extent

[20-29]

extent

[70-79]

11 13

recovered extent tree

attr.
11
13

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 73...

inode

bitmap

inode

table

block

bitmap

inode

bitmap

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 79...

JH JCnormal JDs

11 12 13
21 ... 29 ...20
51 ... 59 ...50
... 74 ... 7970

11 12 13
21 ... 29 ...20
51 ... 59 ...50
... 74 ... 7970

disk

0

JH
extent

[70-79]
JC

inode 3

11 13

journal area

inode

table

block

bitmap

inode

bitmap

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 79...

JH JCnormal JDs

external

extent

[20-29]

external

extent

[50-59]

external

extent

[70-73]

external

extent

[20-29]

external

extent

[70-79]

ijournal area

ijournal areajournal area

JH JCnormal JDs

ijournal area

Figure 5: Example of a crash recovery.

journaling records a revocation block at the journal area
to prevent an incorrect replay of the journal, which will
cause a data corruption. The ijournaling scheme skips
the writing of the revocation block because the following
normal journaling will write it.

6 Experiments

6.1 Experiment Environments
To evaluate the effectiveness of ijournaling, an
Android-based smartphone and a desktop computer were
used. The smartphone was equipped with a Samsung
Exynos 5410 (1.6-GHz Quad Cortex-A15 + 1.2-GHz
Quad Cortex-A7) processor, 2 GB of DRAM, and 32
GB of eMMC. The Android OS version was 4.2.2 (Jelly
Bean), and the Linux kernel version was 3.4.5. The desk-
top computer was equipped with an Intel i7-4790 3.6-
GHz CPU, 16 GB of DRAM, and a Samsung 850 Pro
SSD. The desktop Linux version was 4.7.3. The delayed
allocation and ordered-mode journaling were used by de-
fault. The JBD2 thread conducts a journal commit oper-
ation at periodic 5-second intervals.

Linux kernel version 3.8 or later removes the ordering
constraint of the ordered-mode journaling scheme [29].
Therefore, it is not necessary for an fsync call to wait un-
til all data pages relevant to the journal transaction are
flushed into the disk. However, the modified ordered-
mode journaling scheme cannot guarantee file-system
consistency similar to writeback-mode journaling. This
flaw has been fixed at version 4.6.2 [20]. The Linux
kernel versions used in our experiments (i.e., 3.4.5 and
4.7.3) keep a strict ordering constraint in ordered mode
journaling.

6.2 Basic Comparison

We first measured the fsync latencies under different
journaling schemes, normal and ijournaling, on the
desktop and smartphone. The boosting technique [15]
was optionally applied. We ran two programs for the
experiments. One is an fsync-generating thread (fsync
tester), which writes 80 KB of data in a file and calls
an fsync repeatedly. We gave a delay of 0.1 second be-
tween write() and fsync() in order to generate many
quasi-async requests. The other is the fio program [6],
which generates 4 KB of sequential write requests for a
file with a configurable write bandwidth of BGbw. The fio
program was used as a background process, which gen-
erated many data blocks to be flushed during the trans-
action commit operation. We determined the value of
BGbw at each experiment considering the storage band-
width and the target foreground workload.

Figure 6(a) shows the results for the desktop when
BGbw = 400 MB/s. In the normal journaling scheme, the
tail fsync latency at the 95th percentile is longer than 3.5
seconds. This is because the fsync must wait until a large
number of dirty pages are flushed. In our measurement,
1.5 GB of data blocks at maximum were flushed during
an fsync handling. However, ijournaling showed less
than 0.2 seconds of fsync latency. The boosting tech-
nique was not very effective at reducing the fsync la-
tency. Because SSD supports command queueing, most
of the quasi-async requests were sent to storage without a
long delay in the I/O scheduler. Once a request is sent to
storage, the boosting cannot be applied because the host
system cannot control the transferred requests.

Figure 6(b) shows the results for the smartphone when
BGbw = 50 MB/s. The ijournaling scheme also im-
proved the fsync latency in the smartphone. Unlike with
the desktop experiments, the boosting technique was ef-
fective because eMMC is slower than SSD, and does not
support command queueing. By removing the CTX de-
pendency, ijournaling significantly reduced the num-
ber of quasi-async requests and showed a shorter 95th
percentile tail latency without boosting. We also im-
plemented the logical logging scheme in the ext4 file

794 2017 USENIX Annual Technical Conference USENIX Association

(a) desktop (b) smartphone

0

0.2

0.4

0.6

0.8

1

avg. latency 95% tail latency

fs
y

n
c

la
te

n
cy

 (
s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

logical log

0

1

2

3

4

5

6

avg. latency 95% tail latency

fs
y

n
c

la
te

n
cy

 (
s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

Figure 6: Fsync latency for different journaling schemes.

(a) desktop (b) smartphone

0

0.2

0.4

0.6

100 200 300 400 500

a
v
e
ra

g
e
 f
sy

n
c

la
te

n
cy

 (
s)

background write bandwidth

(MB/s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

0

0.1

0.2

0.3

10 20 30 40 50

a
v
e
ra

g
e
 f
sy

n
c

la
te

n
cy

 (
s)

background write bandwidth

(MB/s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

Figure 7: Changes in fsync latency when varying the
number of concurrent file operations.

system. We followed the design of logical logging in
ZFS. The delayed allocation was disabled in the logical
logging experiments because the logical logging must
generate an operation log for each file operation. The
logical logging showed longer latencies compared with
ijournaling using the boosting scheme. This is be-
cause the logical logging must flush a large size of logs.

To demonstrate the CTX dependency problem in
legacy journaling, we measured the fsync latencies of
fsync tester while varying the write bandwidth of the
background process, i.e., BGbw of fio. Figure 7 shows the
average fsync latencies under four different journaling
schemes. As the background write bandwidth increased,
the fsync latency increased for the normal journaling
scheme because more transactions were merged into a
compound transaction. In particular, when BGbw = 500
MB/s during the desktop experiment, the fsync system
call was not completed until the background fio program
was terminated. However, the ijournaling scheme
showed short latencies even when BGbw was high. The
booting scheme was effective only when ijournaling

is enabled.
Figure 8 compares the fsync latencies in legacy jour-

naling under different block allocation policies. The ex-
periment scenario is same as the scenario of Figure 6(a).
When an fsync() was called while the flush thread was
flushing dirty pages, the fsync latency became signifi-

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40

fs
y

n
c

la
te

n
cy

 (
s)

iterations

delayed alloc no delayed alloc

Figure 8: Fsync latency with and without delayed allo-
cation at a desktop.

cantly high for the delayed allocation scheme. Other-
wise, the latency was short. This is because data blocks
are allocated when the flush thread is invoked. How-
ever, when the delayed allocation is disabled, there are
no significant changes in the fsync latency. The average
fsync latency is shorter when the delayed allocation is
enabled. Because ijournaling can solve the CTX de-
pendency problem, it can mitigate the fluctuating fsync
latency problem of delayed allocation, and thus showed
less than 0.2 seconds latencies as shown in Figure 6(a).

6.3 Manycore Scalability
A critical hurdle in implementing a manycore-scalable
file system is the journaling contention, as reported in
[24]. In particular, a single JBD2 thread handles all
file-system transactions in ext4. Because ijournaling
commits an fsync-related transaction in the system call
service without calling the JBD2 thread, it improves the
manycore scalability. In addition, each core has its own
ijournal area, and thus, multiple fsync calls can be
handled simultaneously at multiple processor cores.

In this experiment, we used a Xeon E5-2630 machine
equipped with 2.4 GHz 8-core CPU, 64 GB of DRAM,
and an Intel 750 NVMe SSD (400GB). The Linux ker-
nel version was 4.7.3. Each core ran a process of sys-
bench [4], which generated 4 KB of sequential write re-
quests on 128 files. Each write() operation was fol-
lowed by an fsync() call. Figure 9 shows the changes
in total bandwidth of the multiple sysbench processes
while increasing the number of processor cores. Three
different journal schemes were tested: normal journal-
ing, ijournaling with one shared ijournal area, and
ijournaling with a separate ijournal area per core.

The rate of increase in the total bandwidth decreased
in normal journaling owing to its inter-transaction de-
pendency problem. While JBD2 commits the transaction
of a process, other processes must await the completion
of the transaction commit. However, ijournaling im-
proves the bandwidth significantly. In particular, when
a separate ijournal area was allocated for each core

USENIX Association 2017 USENIX Annual Technical Conference 795

(a) ramdisk (b) Intel 750 NVMe SSD

0

1

2

3

1 2 3 4 5 6 7 8

b
a
n
d
w

id
th

(G

B
/s

)

number of cores

normal

ijournal

per-core ijournal

0

100

200

300

400

500

1 2 3 4 5 6 7 8

b
a

n
d

w
id

th

(M
B

/s
)

number of cores

Figure 9: Multicore scalability.

(a) WAL journal (b) rollback journal

0%

5%

10%

15%

20%

25%

30%

insert update insert update

w/o BG write w/ BG write

p
e
rf

o
rm

a
n

ce

im

p
ro

v
e
m

e
n

t normal w/ boosting
ijournal
ijournal w/ boosting

0%

30%

60%

90%

120%

150%

180%

insert update insert update

w/o BG write w/ BG write

p
e
rf

o
rm

a
n
ce

im

p
ro

v
e
m

e
n
t normal w/ boosting

ijournal
ijournal w/ boosting

Figure 10: Mobibench results on a smartphone.

and the storage device used was a ramdisk, the total
bandwidth increased linearly as the number of cores in-
creased. When the storage device was an NVMe SSD,
ijournaling showed a linear improvement in the to-
tal bandwidth at up to four cores. When more than four
cores were used, however, the rate of bandwidth increase
was reduced owing to the bandwidth limit of the SSD.

6.4 Benchmark Results

The fsync latency can affect the performance of an ap-
plication if frequent fsync system calls are generated. To
evaluate the performance gain from ijournaling, sev-
eral benchmark programs were used. Figure 10 shows
the results of Mobibench [16], which was designed for
testing the SQLite performance on an Android-based
smartphone. Because SQLite DBMS generates frequent
fsync calls, its performance is closely related to the fsync
latency. One-thousand DB transactions were generated,
and two DB journaling modes, i.e., WAL journal and
rollback journal modes, were used. The fio background
application was optionally executed using BGbw = 30
MB/s. We measured the performance improvement over
the normal journaling scheme.

Even when no background process was used, and
therefore no CTX dependency occurred, ijournaling
improved the DB performance. The performance gain
in WAL journal mode is due to the reduced journal
write traffic of ijournaling. Whereas normal jour-

naling must write multiple metadata blocks in a journal,
ijournaling writes only two ijournal blocks for most
cases because the modified inode entry is put into a 4 KB
ijournal header block. The significant performance gain
in rollback journal mode resulted from the CTX depen-
dency problem. Although no background process was
executed, the SQLite updated multiple files and the roll-
back journal file was truncated for every DB transaction.
Owing to the truncated file, a discard command was in-
cluded in the normal transaction. Therefore, the trans-
action commit was delayed owing to the handling of the
discard command in normal journaling.

When a background process was executed,
ijournaling showed significant performance im-
provements. In normal journaling, a journal commit
invoked by an fsync call flushed about 25 MB of
data blocks owing to the CTX dependency problem.
The improvements achieved through boosting were
poor because the SQLite application calls an fsync()

immediately after a write() operation.
Figures 11(a) and (b) compares the performances of

two smartphone applications under different journaling
schemes. The camera burstshot program took 20 photos,
and the application install program installed Angrybird.
The fio background application was optionally executed
using BGbw = 30 MB/s. These applications also delete
several files, and thus the transaction committed by an
fsync() includes discard commands. Therefore, the
ijournaling scheme reduced the execution times even
when no background application was running. When a
background application was executed, the performance
improvements by ijournaling were more significant.
Because the application install program is computing-
intensive owing to the compilation work for java class
files, its execution time is not significantly affected by
the file-system performance. When we observed only the
fsync latencies, however, there were significant perfor-
mance gains by ijournaling, as shown in Figure 11(c).

Figure 11(d) shows the performance improvements by
ijournaling for the desktop benchmarks. Three work-
loads were used: Percona’s tpcc-mysql [5], YCSB [11],
and FileBench’s varmail [2]. In the tpcc-mysql work-
load, the DB page size was configured to 4 KB, ten ware-
houses were used, 16 connections were applied, and the
running time was 100 seconds. In the case of the YCSB
workload, the MySQL system and a update-heavy work-
load (i.e., Workload A), which has 50% reads and 50%
updates, were used. The varmail workload was run with
the default option. The fio background application was
optionally executed using BGbw = 200 MB/s.

Even when no background application was used,
ijournaling improved the performance on the desktop
benchmarks because these workloads generated multi-
ple concurrent threads that called an fsync() simultane-

796 2017 USENIX Annual Technical Conference USENIX Association

(a) smartphone burstshot (b) smartphone app install (c) app install (fsync latency) (d) desktop benchmark

0

1

2

3

4

5

6

7

w/o BG write w/ BG write

e
la

p
se

d
 t

im
e
 (

s)
normal

normal w/ boosting

ijournal

ijournal w/ boosting

0

10

20

30

40

50

60

w/o BG write w/ BG write

e
la

p
se

d
 t

im
e
 (

s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

w/o BG write w/ BG write

to
ta

l
fs

y
n

c
la

te
n

cy
 (

s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

0%

50%

100%

150%

200%

w/o BG write w/ BG write

p
e

rf
o

rm
a

n
ce

im

p
ro

v
e

m
e

n
t tpcc-mysql (tpmC)

YCSB (ops/s)

varmail (ops/s)

Figure 11: Real application benchmarks.

ously, and thus the inter-transaction dependency was se-
vere. For example, for the tpcc-mysql workload, 28.3%
of all fsync calls were delayed owing to the IT depen-
dency. In addition, ijournaling reduced the journal
write traffic by 56% owing to its file-level journaling
scheme for the YCSB workload. Most of the transac-
tions committed by fsync() had discard commands in
the varmail workload.

When a background application was executed, there
were no further performance improvements compared
with the case of no background process for the tpcc-
mysql and YCSB workloads because these workloads
had an excessive inter-transaction problem. The varmail
workload is more fsync-intensive. In the case of the var-
mail workload, while a JBD2 was committing a normal
transaction, many fsync calls were delayed owing to the
IT dependency problem in normal journaling. Therefore,
the performance gain by ijournaling was more signif-
icant.

6.5 Crash Recovery Tests
Finally, we conducted crash recovery tests under four
file-system modification scenarios. During each test sce-
nario, a crash was triggered and the system was restarted.
The file-system operations generated during the tests
were printed out, and recorded on a monitoring com-
puter. The required file-system changes were derived
from the logs, and we were able to check whether the
file-system changes were correctly recovered. In addi-
tion, we also checked the file-system consistency using
the e2fsck utility.

In the first scenario, one-thousand files were created
sequentially, among which only odd-numbered files were
fsynced. A system crash was triggered before normal pe-
riodic journaling was invoked. This scenario was able
to test whether ijournaling can recover the inodes of
fsynced files and whether the recovered directory entry
of the parent directory has the entries of only committed
files. In the second scenario, a file was created, and 4 KB
of data were appended to the file repeatedly. After each 4
KB write, an fsync was called. To make external extent

blocks, a crash was triggered after the file size reached
larger than 1 GB. This test covered the correctness of ex-
ternal extent tracking. For the third scenario, more than
two depths of directories were made, and an fsync for a
file at leaf node was called. This scenario was able to
check whether all related parent directories were recov-
ered. For the last scenario, ten threads were generated,
each of which executed file operations randomly selected
among mkdir, create, write, truncate, unlink, and
fsync. For each of these scenarios, we ascertained that
ijournaling can correctly recover the fsynced files and
their related directories without any file-system inconsis-
tencies.

7 Conclusion

We rely on the journaling of data updates for file-system
consistency, and synchronous writes for data durability.
However, latency-sensitive synchronous operations such
as an fsync() system call can be delayed under the com-
pound transaction scheme of the current journaling tech-
nique. Because a compound transaction includes irrele-
vant data and metadata, as well as those of fsynced file,
the fsync latency can be unexpectedly long. In this pa-
per, we first analyzed the affecting factors that may delay
an fsync operation, and proposed a novel hybrid journal-
ing technique, called ijournaling, which journals only
the related file-level transactions of an fsync call and re-
covers the file-system consistency through file-level jour-
nals upon a crash recovery. Experiments using real de-
vices showed that there are significant improvements to
the fsync latencies when using ijournaling, and that
many synchronous applications can benefit from the pro-
posed ijournaling technique.

Acknowledgements
We would like to thank Theodore Ts’o, who was our
shepherd, and anonymous reviewers for their valuable
comments and suggestions. This work was supported
by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP). (No.
2016R1A2B2008672)

USENIX Association 2017 USENIX Annual Technical Conference 797

References

[1] Ext4 filesystem. https://www.kernel.org/doc/Documenta-
tion/filesystems/ext4.txt.

[2] Filebench. http://filebench.sourceforge.net/.

[3] SQLite. https://sqlite.org.

[4] Sysbench. https://github.com/akopytov/sysbench.

[5] tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql.

[6] J. Axboe. FIO - flexible IO tester. http://freshmeat.net
/projects/fio/.

[7] Jeff Bonwick and Bill Moore. ZFS: The last word in file
systems. http://wiki.illumos.org/download/attachments/
1146951/zfs last.pdf, 2007.

[8] Li-Pin Chang, Po-Han Sung, and Po-Hung Chen. Fast file
synching for applications in flash-based android devices.
In Proceedings of the 3rd Non-Volatile Memory Systems
and Applications Symposium, pages 1–6, 2014.

[9] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings of
the 24th ACM Symposium on Operating Systems Princi-
ples, SOSP’13, pages 228–243, 2013.

[10] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
without ordering. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST’12,
pages 101–116, 2012.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC’10, pages
143–154, 2010.

[12] Jonathan Corbet. Solving the ext3 latency problem.
http://lwn.net/Articles/328363/.

[13] Rasha Eqbal. ScaleFS: A multicore-scalable file system.
Master’s thesis, Massachusetts Institute of Technology,
August 2014.

[14] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers,
Inc., 1993.

[15] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boosting
quasi-asynchronous I/O for better responsiveness in mo-
bile devices. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, pages
191–202, 2015.

[16] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin
Lee, and Youjip Won. AndroStep: Android storage per-
formance analysis tool. In Software Engineering Work-
shops, pages 327–340, 2013.

[17] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O stack optimization for smart-
phones. In Proceedings of the 2013 USENIX Annual
Technical Conference, ATC’13, pages 309–320, 2013.

[18] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A scal-
able file system on fast storage devices. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Tech-
nical Conference, ATC’15, pages 249–261, 2015.

[19] Yunji Kang and Dongkun Shin. Per-block-group journal-
ing for improving fsync response time. In Proceedings
of the 18th IEEE International Symposium on Consumer
Electronics, pages 22–25, 2014.

[20] Jan Kara. ext4: fix data exposure after a crash.
https://patchwork.kernel.org/patch/9156691/, 2016.

[21] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Physical disentanglement in a container-based
file system. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI’14, pages 81–96, 2014.

[22] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Marshall Kirk Mckusick.
Ffsck: The fast file-system checker. ACM Transactions
on Storage, 10(1):2:1–2:28, 2014.

[23] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier. The new ext4 filesystem: Current status and
future plans. In Proceedings of the Ottowa Linux Sympo-
sium, 2007.

[24] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In Proceedings of the 2016 USENIX Annual
Technical Conference, ATC’16, pages 71–85, 2016.

[25] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the sync.
ACM Transactions on Computer Systems, 26(3):6:1–6:26,
2008.

[26] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In Proceedings of the 2005
USENIX Annual Technical Conference, ATC’05, pages
105–120, 2005.

[27] Kai Shen, Stan Park, and Meng Zhu. Journaling of jour-
nal is (almost) free. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, FAST’14,
pages 287–293, 2014.

[28] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in the
xfs file system. In Proceedings of the 1996 USENIX An-
nual Technical Conference, ATC’96, pages 1–14, 1996.

[29] Theodore Ts’o. ext4: remove calls to ext4 jbd2 file
inode() from delalloc write path. http://git.kernel.org/
cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
f3b59291a69d0b734be1fc8be489fef2dd846d3d, 2012.

798 2017 USENIX Annual Technical Conference USENIX Association

Scaling Distributed File Systems in Resource-Harvesting Datacenters∗

Pulkit A. Misra? Íñigo Goiri† Jason Kace† Ricardo Bianchini†
?Duke University †Microsoft Research

Abstract
Datacenters can use distributed file systems to store data
for batch processing on the same servers that run latency-
critical services. Taking advantage of this storage capac-
ity involves minimizing interference with the co-located
services, while implementing user-friendly, efficient, and
scalable file system access. Unfortunately, current sys-
tems fail one or more of these requirements, and must
be manually partitioned across independent subclusters.
Thus, in this paper, we introduce techniques for automat-
ically and transparently scaling such file systems to en-
tire resource-harvesting datacenters. We create a layer of
software in front of the existing metadata managers, as-
sign servers to subclusters to minimize interference and
data movement, and smartly migrate data across subclus-
ters in the background. We implement our techniques in
HDFS, and evaluate them using simulation of 10 produc-
tion datacenters and a real 4k-server deployment. Our
results show that our techniques produce high file access
performance, and high data durability and availability,
while migrating a limited amount of data. We recently
deployed our system onto 30k servers in Bing’s datacen-
ters, and discuss lessons from this deployment.

1 Introduction
Each datacenter costs billions of dollars to build, popu-
late, and operate. Even though procuring servers domi-
nates this cost [5], servers are often poorly utilized, es-
pecially in clusters that host interactive services [5, 9].
Resource harvesting. The co-location of useful batch
workloads (e.g., data analytics, machine learning) and
the data they require on the same servers that run inter-
active services is effective at extracting more value from
the servers, and at reducing the overall number of servers
that must be procured. Effectively, the batch workloads
can harvest the spare cycles and storage space left by
the services. However, the services must be shielded
from any non-trivial performance interference produced
by the batch workloads or their storage accesses; prior
work [18, 19, 26] has addressed this problem. At the
same time, we must ensure that the services’ resource
requirements and management do not unnecessarily de-
grade batch workloads’ performance or compromise the
availability and durability of the batch workloads’ data.

∗Pulkit Misra was a summer intern at Microsoft Research.

Zhang et al. [26] built a resource-harvesting dis-
tributed file system for the batch workloads’ data that
achieves these characteristics by smartly placing the file
block replicas across the servers. However, they did not
address how to scale the file system for full datacenter-
wide (e.g., 50k servers) harvesting, which is our target.
Scaling distributed file systems. Most distributed file
systems have not been designed to scale (transparently or
at all) to such large sizes. For example, HDFS [2], Cos-
mos Store [7], and GFS [12] do not typically scale well
beyond a few thousand servers, as they rely on a cen-
tralized metadata manager (with standby replicas). To
scale beyond this size, administrators must create sepa-
rate subclusters (of whatever maximum size can be effi-
ciently handled), each running an independent manager
for an independent portion of the namespace.

Unfortunately, this approach to scaling has several
drawbacks. First, users are presented a partitioned view
of the namespace and often have full control over which
subcluster to place their folder/files in. Second, exercis-
ing this control, users may inadvertently fill up a sub-
cluster or overload it with a high access demand. Third,
to mitigate these situations, administrators must manage
folder/file placement manually (via folder/file migration
and/or forcing users to the more lightly used subclus-
ters). Fourth, it is very difficult for administrators (and
impossible for users) to understand the characteristics of
the co-located services in each subcluster well enough to
make appropriate folder/file placement decisions, espe-
cially as services are complex and numerous.

Another approach to scaling is to implement mul-
tiple, strongly consistent, active metadata managers,
e.g. [1, 23]. Though no information has been published
about Google’s Colossus (the follow-on to GFS), we un-
derstand that it implements such managers. However,
this approach also has two key drawbacks: (1) the sys-
tem becomes more complex, and this complexity is only
required for large installations (simpler systems that also
work well for more popular smaller systems are pre-
ferrable); and (2) any software bugs, failures, or oper-
ator mistakes have a greater impact without the isolation
provided by subclusters, as highlighted in [22].

Given the drawbacks of these two approaches, it is
clear that a cleanly layered, automated, and manageable
approach to distributed file system scalability is needed.
Our work. Thus, in this paper, we design techniques for

USENIX Association 2017 USENIX Annual Technical Conference 799

automatically and transparently scaling file systems to
entire resource-harvesting datacenters with tens of thou-
sands of servers. We use Zhang’s replica placement
algorithm within each subcluster, but focus on how to
“federate” the subclusters transparently and efficiently.
We achieve these high-level characteristics by inserting a
layer of software between clients and metadata managers
that understands the federated namespace and routes re-
quests to the appropriate subclusters.

Moreover, our techniques seek to (1) avoid interfer-
ence from co-located services; and (2) promote behav-
ioral diversity, good performance, and good space usage
across subclusters. Achieving these goals at the same
time is challenging, given the large number of services
and servers, and the widely varying folder/file size and
access characteristics of the batch workloads.

To simplify the problem, we divide it into two parts.
First, we select the servers to assign to each subcluster
in a way that maximizes data availability and durabil-
ity. Specifically, we use consistent hashing [17] for this
new purpose, which has the added benefit of limiting data
movement when resizing subclusters. Second, we assign
folders/files to subclusters and efficiently migrate them
when either a subcluster starts to run out of space, or a
subcluster’s metadata manager starts to receive an exces-
sive amount of access load. We model this rebalancing
as a Mixed Integer Linear Program (MILP) problem that
is simple enough to solve efficiently. Migrations occur in
the background and transparently to users.
Implementation and results. To explore our techniques
concretely, we build them into HDFS and call the re-
sulting system “Datacenter-Harvesting HDFS” or sim-
ply “DH-HDFS”. We selected HDFS because (1) it is
a popular open-source system that is used in large Inter-
net companies, e.g. Microsoft, Twitter, and Yahoo (we
are contributing our system to open source [16]); (2)
our target workloads are mostly analytics jobs over large
amounts of data, for which HDFS provides adequate fea-
tures and performs well; and (3) many data-analytics
frameworks, like Spark and Hive, can run on HDFS.

Our evaluation uses a real deployment in a produc-
tion datacenter, real service and file access traces, and
simulation of 10 real datacenters. The results show
that our server-to-subcluster assignment prevents inter-
ference from co-located services, minimizes data move-
ment when subclusters are added/removed, and promotes
data availability and durability for batch jobs. The re-
sults also show that our folder migration policy is effi-
cient, migrating a small percentage of the folders; just
enough to manage severe space shortages or load im-
balances. When combining our techniques, DH-HDFS
improves durability and availability by up to 4 and 5 or-
ders of magnitude, respectively, compared to prior ap-
proaches. Finally, the results show that the federation

layer imposes little performance overhead.
Production use. We currently have 4 DH-HDFS deploy-
ments in production use in our datacenters; the largest
deployment now has 19k+ servers spread across 6 sub-
clusters. We discuss lessons from these deployments.
Implications for other datacenter types. Though we
focus on resource-harvesting datacenters, some aspects
of our work also apply to scenarios where the batch
workloads have the same priority over the resources as
the co-located services, or where there are no co-located
services. Specifically, our federation architecture and
techniques for folder/file mapping to subclusters with pe-
riodic migrations apply to any scenario. Our technique
for server-to-subcluster mapping would work in other
scenarios, but is not strictly needed.
Summary. Our main contributions are:
• We propose novel techniques for scaling distributed
file systems while accounting for data durability, avail-
ability, storage capacity, and access performance in large
resource-harvesting datacenters. In particular, we intro-
duce (a) layering for transparent scalability of unmodi-
fied existing systems; (b) consistent hashing for subclus-
ter creation; and (c) MILP-based dynamic file migration.
• We implement our techniques in HDFS to create DH-
HDFS, which we have deployed in production.
• We evaluate our techniques and system, using real
workloads, real experimentation, and simulation.
• We discuss lessons from DH-HDFS in production use.

2 Background and related work

2.1 Resource-harvesting datacenters
In resource-harvesting datacenters, most servers are al-
lotted to native, often latency-critical, workloads. Be-
cause of their latency requirements, these workloads
store data using their servers’ local file system. We re-
fer to these workloads as “primary tenants”. To improve
utilization, lower priority workloads called “secondary
tenants”, such as batch data analytics jobs, can harvest
any spare capacity left idle by primary tenants. Primary
tenants have priority over their servers’ resources, i.e. a
load spike may cause secondary tenants to be throttled
(or even killed) and their storage accesses to be denied.
Moreover, primary tenant developers own their servers’
management, i.e. they are free to perform actions that de-
stroy disk data. Among other scenarios, disk reimaging
(reformatting) occurs when developers re-deploy their
primary tenants from scratch, and when the management
system tests the resilience of production services.

The resource-harvesting organization is reminiscent
of large enterprises where different departments have
their own budgets, without a central infrastructure group.
Nevertheless, multiple Internet companies, such as Mi-
crosoft and Facebook, use this type of underlying system.

800 2017 USENIX Annual Technical Conference USENIX Association

Though Google’s infrastructure is fully shared, i.e. any
workload is treated the same, large Google tenants may
also request priority over their allotted resources [24].

2.2 Diversity-aware replica placement
A challenge in harvesting is protecting file block avail-
ability and durability: (1) if we store all of a block’s repli-
cas in primary tenants that load-spike at the same time,
the block may become unavailable; (2) if developers or
the management system reimage the disks containing all
of a block’s replicas in a short time span, the block may
be lost. Thus, a replica placement algorithm must ac-
count for primary tenant and management activity.

Zhang’s placement algorithm [26] places replicas
within a single cluster (i.e., a few thousand servers),
while maximizing diversity: it does not allow multiple
replicas of a block to be placed in any logical (e.g.,
servers of the same primary tenant) or physical (e.g.,
rack) server grouping that induces correlations in re-
source usage, disk reimaging, or failures.

We build upon Zhang’s single-cluster work by creat-
ing a federation of clusters (we refer to each cluster in the
federation as a subcluster). In this context, we also select
which servers to assign to each subcluster, and automati-
cally rebalance space and access load across subclusters.

2.3 Large-scale distributed data storage
Large-scale file systems. Several distributed file sys-
tems (e.g., [1, 20, 23]) have been proposed for large
installations. Though potentially scalable, they involve
complexity and overhead in metadata management, and
are hard to manage and maintain in large-scale produc-
tion. Moreover, they are often optimized for general
workloads, and not those of datacenter applications (e.g.,
write-once, append-only).

For these reasons, file systems at Microsoft [2, 7],
Facebook [2, 6], Twitter [2], and other datacenter opera-
tors are much simpler. They rely on a centralized meta-
data manager (e.g., “Namenode” in HDFS) that hosts all
metadata, handles all metadata accesses, and tracks the
storage nodes. To scale, administrators manually par-
tition the overall file set into independent file systems,
each in a subcluster. Some systems (e.g., ViewFS [3],
Cosmos Store [7]) enable users to access multiple sub-
clusters transparently, by exploiting “mount tables” that
translate folder names to subclusters. However, the
client-local mount tables are independent and not kept
coherent. In contrast, Google’s Colossus is rumored to
implement multiple active metadata managers. This ap-
proach is more complex and does not benefit from the
fault- and mistake-isolation provided by subclusters [22].
Rebalancing. Some systems rebalance metadata across
metadata managers without subclusters, e.g. [1, 23].

A challenge with subclusters is that they may be-

come imbalanced in terms of space usage and/or access
load. In resource-harvesting datacenters, imbalance is
also possible in the primary tenants’ resource usage and
management behavior; e.g., changes in primary tenant
disk reimaging patterns could start to harm a subclus-
ter’s durability. We are not aware of prior policies for
folder/file rebalancing across subclusters.

Several works considered rebalancing within a single
cluster. For example, [13] and [14] proposed balanc-
ing the access load. Considering space and access load,
Singh et al. [21] accounted for multiple resources (e.g.,
switches, disks) in making greedy rebalancing decisions.
The built-in HDFS rebalancer can be used to manually
rebalance data, and to populate newly added servers.
HDFS Federation. HDFS has an option to split the
namespace (and block management) explicitly across in-
dependent metadata managers, while storing data in any
server [11]. This approach does not involve subclusters,
but exposes multiple namespaces that users must manage
manually [3], and limits scaling as all servers still heart-
beat to all managers. Our system is quite different, and
should not be confused with this HDFS option.

3 Federation architecture

3.1 Overview
Our architecture assumes an unmodified underlying dis-
tributed file system similar in structure to HDFS [2], Cos-
mos Store [7], and GFS [12]. It federates subclusters of
the distributed file system, each defined by its own meta-
data manager, data storage nodes, and client library.

Each subcluster operates independently, unaware of
other subclusters. This characteristic simplifies our de-
sign, and means that all replicas of a file block live in
the same subcluster. As we illustrate in Figure 1, we
interpose a highly available and fault-tolerant layer of
software between the clients and the subclusters’ meta-
data managers (labeled “MM” in the figure). The layer
comprises (1) multiple client request routers (labeled
“R”); (2) a state store that maintains a global mount ta-
ble (i.e., the folder/file-to-subcluster mappings, which
we call “mount table entries” or simply “mount points”)
and other pieces of state about the federation; and (3) a
folder/file rebalancer. Next, we detail these components.

3.2 Client request routers
The routers transparently expose a single global names-
pace to the clients through the standard metadata man-
ager interface of the underlying distributed file system.
Clients are unaware of the routers. A client’s file access
may reach any router (arrow #1 in Figure 1), as routers
may sit behind a load balancer or some other request dis-
tribution mechanism. The router then consults the state
store to determine the metadata manager for the proper

USENIX Association 2017 USENIX Annual Technical Conference 801

Subcluster 0

SN

MM

SN

MM

SN

Subcluster N

SN

MM

SN

MM

SN

State
Store

Client

R RR

Rebalancer
1

2

3

4

Figure 1: Federation layer comprising transparent re-
quest routers, a logically centralized state store, and a
folder/file rebalancer. R = router; MM = metadata man-
ager; SN = storage node; grey color = standby manager.

subcluster (arrow #2), and forwards the request to it (ar-
row #3). The reply from the manager flows back in the
opposite direction. The reply lists the address of the stor-
age nodes for all replicas of the file’s blocks, so the client
can communicate directly with the corresponding storage
nodes on actual block accesses (arrow #4).

The routers intercept all calls. Most calls involve sim-
ply forwarding the same parameters to the proper meta-
data manager, perhaps after adjusting any pathnames.
However, four types of calls may require additional pro-
cessing: renames, deletes, folder listings, and writes.
Routers fail any renames or deletes of mount points, like
in other file systems (e.g., Linux). Renames or deletes of
folders/files that only affect one subcluster can simply be
forwarded to the proper metadata manager. We handle
renames of folders/files that affect multiple subclusters
by performing the rename in the state store (i.e., creating
a new mount table entry) and having the rebalancer mi-
grate the data later. Importantly, the routers “lock” the
federated namespace during these renames to prevent in-
advertent cycles [10]. Folder listing involves contacting
the parent folder’s subcluster, and including any mount
points under the same parent folder. Finally, routers may
fail folder/file writes during short periods, to guarantee
consistency (e.g., during rebalancing operations, as we
discuss in Section 3.4).

To avoid frequent communication with the state store,
the routers cache the folder/file-to-subcluster mappings
locally. The router’s cache entries may become stale, as
a result of rebalancing or of losing contact with the state
store for a period of time. To prevent uses of stale entries,
we ensure all routers acknowledge mount table changes,
and check the state store for freshness of their entries.
Dependability. Other than the disposable cache state,
routers are stateless and can be replaced or restarted for
high availability and fault tolerance. The routers send
heartbeats to the state store, including information about

metadata managers and subclusters. If a router cannot
heartbeat for a period T , it enters a “safe” mode (no ac-
cesses allowed), and the other routers take on the full
metadata access load. If a router does not update its sta-
tus for a period 2T , any locks it holds are taken away.

The router uses standard HDFS interfaces to query
the availability of the redundant managers and the space
available in the subcluster. For dependability, we asso-
ciate routers with overlapping sets of metadata managers,
and resolve conflicts using quorum techniques.

3.3 State store
The store maintains four pieces of state about the fed-
eration: (1) the global mount table; (2) the state of the
routers; (3) the access load, available space, and avail-
ability state of the metadata managers/subclusters; and
(4) the state of rebalancing operations (Section 3.4).

The mount table contains explicit mappings of fold-
ers and files to subclusters. For example, there could be
a mapping from folder /tmp/ to subcluster 3 in folder
/3/tmp/ in the federated namespace. Only the system
administrators or the rebalancer can create or modify en-
tries in the mount table. But, since there may be multi-
ple concurrent accesses to it, writes to the mount table
must be properly synchronized. In terms of structure,
the logically centralized nature of the state store simpli-
fies our architecture. However, for larger installations
(e.g., tens of active routers), the store must be physically
distributed and provide strong consistency. Existing sys-
tems, e.g. Zookeeper [15], provide these features and can
be used to implement the store. We use Zookeeper for
our implementation (Section 5).

3.4 Rebalancer
Subclusters may be unbalanced in three ways: (1) the
characteristics of their primary tenants are such that some
subclusters do not exhibit enough diversity for high-
quality replica placement; (2) the access load they re-
ceive may be skewed and overload some metadata man-
agers or interfere with the primary tenants in some sub-
clusters; and/or (3) the amount of data they store may be
widely different, threatening to fill up some of them.

We address the first way with our server-to-subcluster
mapping (Section 4.1). To address the other ways, our
architecture includes a rebalancer component. The re-
balancer migrates folders/files across subclusters (fold-
ers/files and subclusters are selected as discussed in Sec-
tion 4.2) and then updates the mount table. The source
data may be a sub-path of an existing mount point, i.e. the
rebalancer can create new mount table entries.
Ensuring consistency. The rebalancer must ensure the
consistency of the federated file system, as regular client
traffic may be directed to the files it is migrating, and
multiple failure types may occur. To achieve this, it first

802 2017 USENIX Annual Technical Conference USENIX Association

records in the state store a write-ahead log of the oper-
ations it is about to start. As each operation completes,
it updates the log to reflect the completion. A failed re-
balance can be finished or rolled back using the log. The
log also protects the system against inadvertently run-
ning multiple concurrent rebalancer instances: each in-
stance checks the log before a migration, and aborts if it
finds that another instance is actively altering the same
part of the namespace.

Second, it takes a write lease on the corresponding
mount table entries (it may need to renew the lease dur-
ing long migrations) and records the state (e.g., last mod-
ification time) of the entire subtree to be migrated. The
lease prevents changes to the mount table points (by ad-
ministrators or multiple instances of the rebalancer), but
not to the source folders/files themselves by other clients.

Third, the rebalancer copies the data to the target sub-
cluster. At the end of the copy, it checks whether the
source data was modified during the copy. Via the state
store, the rebalancer must instruct the routers to prevent
writes to the source and target subtrees (and wait for
routers to acknowledge), before it can compare the meta-
data for the subtrees. This prevents a client from modify-
ing the source data after it has been inspected for recent
changes, but before the mount table has been updated
to point to the target subcluster. During this checking
phase, clients are still able to read from the source data.
If the source data is unchanged, the rebalancer updates
the mount table, waits for all routers to acknowledge the
change (at which point the source data can no longer be
accessed), stops blocking writes to the source and target
subtrees, and then removes the data from the source sub-
cluster. If the source data was modified during the copy,
the rebalancer rolls back and either re-starts the entire
copy or simply re-copies the changed files. Our current
implementation takes the latter approach. Similarly, a
failure in any step of the rebalancer (e.g., a file migra-
tion) causes a roll back. The rebalancer tries to complete
the copy a few times (three times in our implementation).
If these re-tries are not enough to complete the copy, the
rebalancer rolls back but, this time, it blocks writes to the
data before the copy starts.

Fourth, when the migration successfully completes,
the rebalancer gives up the lease on the mount points.

3.5 Alternative architecture we discarded

We considered simply extending a system like
ViewFS [3] with a shared mount table, but this de-
sign would not be transparent to the underlying file
system; it would require changing the file system’s client
code to implement the functionality of our routers.

4 Federation techniques

In this section, we discuss the two tiers of techniques
we propose to simplify the problem of organizing the
federated file system in a resource-harvesting datacen-
ter: (1) server-to-subcluster mapping, (2) folder/file-to-
subcluster mapping and dynamic rebalancing. The first
tier statistically guarantees that subclusters are diverse
in terms of primary tenants’ resource usage and disk
reimaging behaviors. The second tier ensures that no
subcluster undergoes an excessive access load or a stor-
age space shortage due to secondary tenants, while other
subclusters have available capacity. We finish the section
with a discussion of alternative techniques.

4.1 Assign servers to subclusters
The components above provide the mechanisms we need
to create and manage the federated file system. However,
we still need a policy for assigning servers to subclusters
in the first place. We have multiple goals for this policy:

1. Ensure that subcluster addition/removal (e.g., when
the administrator adds the servers of a large primary
tenant into the harvesting infrastructure) does not
cause massive data reorganization;

2. Promote network locality within subclusters;
3. Produce diversity in primary tenants’ resource us-

age and reimaging behaviors in each subcluster for
high availability and durability; and

4. Produce subclusters with balanced primary tenant
storage space usage. (The rebalancer balances the
subclusters with respect to secondary tenant access
load and space consumption.)

To achieve these goals, we first define the number of
subclusters as the total number of servers divided by the
number of servers that can be efficiently accommodated
by a metadata manager (∼4000 servers per subcluster
by default). Then, our policy leverages consistent hash-
ing [17] of rack names for assigning server racks to sub-
clusters. As consistent hashing is probabilistic, each sub-
cluster is assigned multiple virtual nodes [8] on the hash
ring to balance the number of servers assigned to each
subcluster. Consistent hashing reduces the amount of
data reorganization needed when subclusters are added
to/removed – goal #1 above. We hash full racks to retain
within-rack network locality (within a datacenter, there
may be hundreds of racks, each with a few dozen servers
and a top-of-rack switch) – goal #2. Finally, since each
primary tenant is spread across racks for fault tolerance
and most primary tenants are relatively small, random-
izing the rack assignment to subclusters statistically pro-
duces evenly balanced diversity in primary tenant load
and reimaging behaviors, as well as balanced space us-
age – goals #3 and #4. We are unaware of other work
that has used consistent hashing for this purpose.

USENIX Association 2017 USENIX Annual Technical Conference 803

tmp user

/

logsapps

SC1 SC2 SC3 SC1

tmp user

/

logsapps

user1 user2

SC1 SC2 SC3

SC2 SC3

SC1

SC0 SC0

0.1TB0.5TB 0.2TB 2.5TB

1TB 1TB

0.5TB

0.5TB 0.1TB 0.2TB

0.5TB0.5TB

SC0: 0.5TB → 0.5TB
SC1: 3.0TB → 1.0TB (-2TB)
SC2: 0.1TB → 1.1TB (+1TB)
SC3: 0.2TB → 1.2TB (+1TB)

/user/user1 (1TB): SC1→SC2
/user/user2 (1TB): SC1→SC3

Figure 2: Example of rebalancing due to storage capac-
ity. The file system is stored across 4 subclusters. After
a rebalance, /user is split across 2 subclusters.

4.2 Assign/rebalance files to subclusters
Using the technique above, we now have subclusters with
statistically balanced primary tenant resource usage, disk
reimaging, and space usage. But we still need to assign
the secondary tenants’ folders/files to them, and possi-
bly re-assign (rebalance) folders/files, when some of the
current assignments are no longer appropriate.
Creation-time assignment policy. To avoid creating
new mount points every time a new folder/file is created,
the routers forward create operations to the same sub-
cluster of the parent folder. This may eventually fill up
some subclusters while others have plenty of free space.
In addition, it may produce subclusters that receive high
access loads while others receive much lower loads. We
leverage rebalancing to correct these situations.
Rebalancing policy. The rebalancer wakes up periodi-
cally (e.g., hourly) and compares the recent subclusters’
metadata access load and free space to pre-defined wa-
termark thresholds. We opt not to rebalance (an expen-
sive operation) simply because the subclusters are imbal-
anced with respect to load or space. Instead, the thresh-
olds define values beyond which a subcluster would be
considered “under stress”. Each rebalancing round tries
to bring all subclusters below the watermarks. Adminis-
trators can also start a rebalancing round manually.

The rebalancer finds the subclusters’ information in
the state store. As the routers intercept all accesses to
the metadata managers, they can easily accumulate this
information and store it in the state store. (The routers
cannot determine the access load imposed on a subclus-
ter’s storage nodes, only that on its metadata manager.
Nevertheless, the manager is the first to overload, since it
is centralized.) The routers periodically consult the man-
agers to find out the amount of free space in each sub-
cluster, and store it in the state store during heartbeats.

Figure 2 illustrates an example where subcluster 1 is
highly loaded. The rebalancer decides to split /user
and spread it across subclusters 2 and 3.
Rebalancing as optimization. To determine which fold-
ers/files to migrate to which subclusters, we model rebal-
ancing as a MILP problem and use a standard solver for
it. MILP is expressive enough and works well for our

constraints and objectives. We are not aware of similar
approaches to file system rebalancing.

We start by creating a representation of the federated
namespace, where we annotate each tree node with (1)
the peak amount of load it has received in any short
time interval (e.g., 5 minutes) since the last rebalance,
(2) the current size of the subtree below it, and (3) its
current subcluster. We prune nodes that exhibit lower
load and lower size than corresponding administrator-
defined low-end thresholds. This limits the size of the
MILP problem, making it efficient to solve.

We use the pruned tree as the input to the MILP prob-
lem. The main constraints are the maximum access load
a metadata manager can handle, and the maximum stor-
age capacity of each subcluster. As its outputs, the so-
lution produces the subcluster in which each of the tree
nodes should be after rebalancing. As the objective func-
tion, we minimize a utility function combining several
weighted factors: access load per subcluster, used stor-
age capacity per subcluster, amount of data to move in
the rebalance, and the number of entries in the mount ta-
ble after rebalancing. The administrator is responsible
for defining the weight for each factor.

Since these factors are measured in different units, we
represent them as percentages over their corresponding
watermarks. We introduced the access load and used ca-
pacity thresholds above. For the amount of data to move,
we compute the percentage with respect to the combined
size of the files that need to move to bring all subclus-
ters below the watermarks. For the number of mount ta-
ble entries, we use the percentage compared to the maxi-
mum between the number of subclusters and the number
of folders in the first level of the federated namespace.

Besides its ability to derive efficient rebalances, our
optimization approach is flexible in that different objec-
tive functions and constraints can be easily implemented.

4.3 Alternative techniques we discarded
Assigning servers and files to subclusters at once. For
the file system organization, we considered solving the
entire server and folder/file assignment problem as a
large mathematical program, including primary tenants’
characteristics and the federated file system. Doing so
would be unwieldy; splitting the problem into two tiers
of techniques makes the problem manageable.
Assigning servers to subclusters. We considered ran-
dom assignment per server, per primary tenant, and per
groups of primary tenants. These approaches produce
subclusters with high diversity, but cause significant data
movement when a subcluster is added/removed. Consis-
tent hashing achieves diversity without this problem.
Assigning/rebalancing files to subclusters. We consid-
ered using consistent hashing of file names. There are
two main problems with this approach: (1) the files in

804 2017 USENIX Annual Technical Conference USENIX Association

each folder could be spread across multiple subclusters,
leading to a very large mount table; and (2) a subtree re-
name would likely cause the entire subtree to move. Us-
ing consistent hashing of immutable file identifiers [10]
would solve the latter problem but not the former.

5 Implementation and deployment

We implement our federation architecture and techniques
in HDFS, and call the resulting system “Datacenter-
Harvesting HDFS” or simply “DH-HDFS”. We are con-
tributing our system to open source [16].

In terms of structure and behavior, HDFS matches the
underlying distributed file system in Figure 1: its meta-
data manager is called “Name Node” (NN) and its per-
server block storage node is called “Data Node” (DN).
The NN implements all the APIs of standard distributed
file systems, and maintains the namespace and the map-
ping of files to their blocks. The (primary) NN is backed
up by one or more secondary NNs. In our setup, the NN
replicates each block (256 MBytes) three times by de-
fault. On a file access, the NN informs the client about
the servers that store the replicas of the file’s blocks. The
client contacts the DN on one of these servers directly to
complete the access. The DNs heartbeat to the NN; after
a few missing heartbeats from a DN, the NN starts to re-
create the corresponding replicas in other servers without
overloading the network (30 blocks/hour/server). Within
each subcluster, we use Zhang’s replica placement algo-
rithm [26] to achieve high data durability and availability
in a resource-harvesting datacenter.

We place the routers behind a load balancer and con-
figure clients (via their standard configuration files) to
use the load balancer address as the NN. We implement
the state store using Zookeeper [15]. At a high level, our
router and state store organization purposely matches a
similar architecture for YARN federation [4]. The rebal-
ancer runs as a separate MapReduce program (one file
per map task). For scalability, each DN determines its
subcluster membership independently at startup time. If
it needs to move to a different subcluster, the DN first de-
commissions itself from the old subcluster and then joins
the new one. We also allow administrators to define the
membership and trigger rebalances manually.

Based on our experience with the system, we define
the number of subclusters as the number of servers in the
datacenter divided by 4k (the largest size that HDFS han-
dles efficiently in our setup). We set the routers to heart-
beat to the state store every 10 seconds by default. In ad-
dition, we define the threshold for access load as an av-
erage 40k requests/second (near the highest throughput
that an NN can handle efficiently in our setup) over any
5-minute period, and the space threshold as 80% of each
subcluster’s full capacity. We leverage an HDFS utility

(DistCP) for copying file system subtrees. If writes occur
during a copy, DistCP only re-copies the individual files
written. It also transparently handles failures of NNs and
DNs. We configure the rebalancer to try a subtree copy
3 times before re-trying with blocked client writes (Sec-
tion 3). All settings above are configurable.

6 Evaluation

6.1 Methodology
Workloads. To represent the primary tenants, we use
detailed CPU utilization and disk reimaging statistics of
all the primary tenants (thousands of servers) in 10 real
large-scale datacenters.1 As our secondary tenants’ file
access workload, we use a real HDFS trace from Ya-
hoo! [25]. The trace contains 700k files and 4M file ac-
cesses with their timestamps. The trace does not specify
file sizes, so we assume each file has 6 blocks, for a total
of 4.2M blocks (as we replicate each block 3 times, the
total dataset is 3PB). The trace does not specify whether
file access operations are for reading or writing, so we as-
sume that each create operation represents a full file write
and each open operation represents a full file read. This
assumption is accurate for systems like HDFS, which im-
plement write-once, read-many-times files. Overall, our
trace contains 3.7M reads and 0.3M writes.
Simulator. Because we cannot experiment with en-
tire datacenters and need to capture long-term behaviors
(e.g., months), we extend the simulation infrastructure
from [26] to support multiple subclusters. We faithfully
simulate the CPU utilization and reimaging behavior of
the primary tenants, federation architecture, the tech-
niques for server and folder/file assignment, and HDFS
with diversity-aware replica placement. In the simulator,
we use the same code that implements server assignment
to subclusters, data placement and rebalancing in our real
systems. For simplicity, we simulate each rebalance op-
eration as if it were instantaneous (our real system ex-
periments explore the actual timing of rebalances). The
simulator replays the logs from the 10 datacenters for
simulating the primary tenants’ CPU utilization and disk
reimages, and uses the Yahoo! trace [25] for simulating
the secondary tenants’ block accesses. All operations are
faithfully executed based on their logged timestamps.

The simulator outputs durability (percentage of blocks
retained, despite disk reimages), availability (percentage
of successful accesses, despite primary tenant resource
usage), usable space, access load for each subcluster, and
amount of data migrated. For our durability results, we
simulate 6 months of the primary tenants’ reimages. For
our availability results, we simulate 1 month of primary
tenants’ utilizations and repeat the Yahoo! trace over this

1Due to commercial reasons, we omit certain information, such as
absolute numbers of servers and actual utilizations.

USENIX Association 2017 USENIX Annual Technical Conference 805

period. We run each simulation 5 times and report aver-
age results. The results are consistent across runs.

For comparison with DH-HDFS, we use a baseline
system that assigns servers to subclusters randomly (per
group of primary tenants), which provides high diversity
per subcluster. This approach represents the manual as-
signment we have observed in production in the absence
of DH-HDFS. The baseline assigns folder/files to sub-
clusters in such a way that each subcluster gets three lev-
els of the federated namespace in round-robin fashion.
The baseline rebalances folders/files based on a greedy
algorithm (which we adapted from [21] for the federated
scenario), whenever the access load or usable space ex-
ceeds their watermark thresholds. The algorithm ranks
the folders and subclusters from most to least busy (in
terms of load or storage), and migrates folders from the
top of the folder list to subclusters from the bottom of the
subcluster list. Finally, the baseline leverages Zhang’s al-
gorithm for replica placement within each subcluster.

We also present an extensive sensitivity study, explor-
ing the impact of the load threshold, space threshold, and
rebalancing frequency in DH-HDFS.
Real experiments. We use the implementation of DH-
HDFS from Section 5. We run the system on 4k servers
across 4 subclusters in a production datacenter. The
servers have 12-32 cores and 32-128GB of memory.
Each subcluster has 4 NNs and we co-locate a router
on each machine that runs a NN. We use 5 Zookeeper
servers for the state store. We set the rebalancer to wake
up every hour. We built a distributed trace replayer to
reproduce the same load as in the Yahoo! trace.

6.2 Simulation results
We start our evaluation by isolating the impact of each
feature in DH-HDFS. To conserve space, these compar-
isons use a single datacenter (DC-7); the other datacen-
ters exhibit similar trends. Then, we study data durability
and availability of the baseline and DH-HDFS systems
across the 10 datacenters. Finally, we use a sensitivity
study to quantify the impact of the load threshold, the
space threshold, and the rebalancing frequency.
Within-cluster replica placement. Comparing the first
two rows of Table 1 isolates the impact of the replica
placement approach within each subcluster. All system
characteristics other than the replica placement approach
are set to the baseline system, except that we turn off re-
balancing. Zhang’s algorithm accounts for primary ten-
ant behaviors, whereas stock HDFS places replicas in
different racks irrespective of primary tenants. The re-
sults show that Zhang’s algorithm is also effective in the
federated scenario: both durability and availability im-
prove by 4 orders of magnitude. Moreover, note that los-
ing even a single block (i.e., its 3 replicas) brings dura-
bility to six 9s (< 100×1/4.2M) in our setup, so achiev-

Study Version Dur. Avail.
Within-subcluster Stock HDFS two 9s one 9
replica placement Diversity-aware [26] six 9s five 9s

Server-to-subcluster Random per primary group two 9s two 9s
assignment Random per server six 9s five 9s

Random per rack six 9s five 9s
Consistent hashing per rack six 9s five 9s

Folder-to-subcluster Round-robin per subtree (RR) six 9s five 9s
assignment RR + rebalancing from [21] two 9s zero 9s

RR + our rebalancing six 9s five 9s

Table 1: Simulation results for DC-7.

ing higher durability is challenging especially as primary
tenants’ are free to reimage collections of disks at will.
Server-to-subcluster assignment. The next set of rows
compare approaches for assigning servers to subclusters.
Again, features other than server-to-subcluster assign-
ment are those of the baseline system without rebalanc-
ing. The results show that random per primary tenant
group, which groups together all primary tenants that
have related functionality, performs poorly. Due to their
close relationship and potentially large size, these groups
do not produce enough diversity even under Zhang’s al-
gorithm. The other three approaches achieve good re-
sults, as they leverage finer grain randomization and thus
benefit from primary tenant diversity.

Consistent hashing has the additional advantage of re-
quiring limited data movement as a result of subcluster
additions/removals. For example, if we were to add a
new subcluster to DC-7, only 5.5% of the data would
move to populate it. In contrast, the random per rack
approach would move 44% of the data. On the other
hand, if we were to remove the subcluster with the most
data, consistent hashing would require 20% of the data
to move, while random per rack would move 68% of it.
Folder-to-subcluster assignment. The following set of
rows compare techniques for assigning folders to sub-
clusters; all other features are those of the baseline sys-
tem. The results show that our rebalancing approach im-
proves performance (not shown in the table) at the same
time as retaining high durability and availability. Specifi-
cally, without rebalancing, some subclusters are exposed
to extremely high load; at peak, 142k accesses/second
over a period of 5 minutes. With our approach, the peak
load on any subcluster goes down to 38k accesses/second
after rebalancing, just under our watermark threshold of
40k accesses/second. To achieve this, our rebalancer mi-
grates 24TB of data. In contrast, the greedy rebalancer
achieves a peak of 37k accesses/second, but migrates
84TB of data. Worse, this rebalancer degrades durabil-
ity and availability significantly, as it does not consider
the diversity of primary tenants in the lightly loaded sub-
clusters. Had we assumed consistent hashing (instead of
random per primary tenant group) for the server assign-
ment in this comparison, the greedy rebalancer would not
have degraded durability and availability, but would still

806 2017 USENIX Annual Technical Conference USENIX Association

10-8

10-6

10-4

10-2

1

100

1 2 3 4 5 6 7 8 9 10

U
na

va
ila

b
le

 a
cc

es
se

s
(%

)

Datacenter

Baseline

DH-HDFS

Figure 3: Data availability for baseline and DH-HDFS
for 10 datacenters. The Y-axis is in log scale.

have moved 3.5× more data than our rebalancer.
Comparing baseline and DH-HDFS. Figure 3 quan-
tifies the data availability (in percentage of failed ac-
cesses) of the baseline and DH-HDFS systems for our
10 real datacenters. The Y-axis in the figure is in log
scale; a missing bar means that there were no failed
accesses. To study a spectrum of utilization scenarios,
we adjust the primary tenants’ workloads (via acceler-
ation/deceleration of their primary tenants’ utilizations)
to produce 3 groups of datacenters: the three leftmost
datacenters exhibit low average primary tenant utiliza-
tion (roughly 25% of the available resources), the four
next datacenters exhibit mid-range average utilizations
(roughly 50%), and the three rightmost datacenters ex-
hibit high average utilizations (roughly 75%).

These results show that both systems exhibit negligi-
ble unavailability (> seven 9s availability) for the data-
centers with low average utilization. For the mid-range
datacenters, DH-HDFS improves availability by up to 5
orders of magnitude for three of them, while it matches
the already high availability of the fourth (DC-6). The
three high-utilization datacenters pose the greatest chal-
lenge to data availability. Still, DH-HDFS produces
greater availability for all of them.

Figure 4 quantifies our datacenters’ durability (in per-
centage of lost blocks) in the same order. Again, the Y-
axis is in log scale. DH-HDFS exhibits greater durability
than the baseline system by up to 4 orders of magnitude.
The exception is DC-3 for which the baseline system pro-
duces slightly greater durability. The reason for this re-
sult is that consistent hashing provides statistical guar-
antees only. In exceptional cases, it may behave worse
than assigning servers to subclusters by groups of pri-
mary tenants. We verified this by changing the hashing
slightly to produce a different assignment, which makes
our durability better than the baseline’s.

Across all datacenters, our rebalancer migrates from
3.5× to 24× less data than the baseline’s rebalancer.
Sensitivity of rebalancing to its parameters. Table 2
lists the comparisons we perform to assess the sensitiv-
ity of rebalancing to its main parameters. We show re-
sults for DC-7 (our largest production deployment), but
other datacenters exhibit similar trends. Since durability

10-8

10-6

10-4

10-2

1

100

1 2 3 4 5 6 7 8 9 10

B
lo

ck
s

lo
st

 (
%

)

Datacenter

Baseline

DH-HDFS

Figure 4: Data durability for baseline and DH-HDFS for
10 datacenters. The Y-axis is in log scale.

and availability are not strongly affected by rebalancing
(consistent hashing and Zhang’s replica placement [26]
are the dominant factors), we do not include these statis-
tics. Instead, the table includes the range of subcluster
peak loads (“Load range”), the range of subcluster space
usage (“Space range”), and the amount of data migrated
during rebalancing (“Data moved”).

The first three rows of the table isolate the impact of
the load threshold, assuming the other parameters are
fixed at their default values and spare-based rebalancing
is turned off. Looking at the load range and data moved
columns, we can see that setting the load threshold at the
average of the peak subcluster loads produces evenly bal-
anced subclusters. Higher thresholds (including our de-
fault value of 40k accesses/second) produce more uneven
peak loads, but can be satisfied with less data migration.

The next set of rows isolate the impact of the space
threshold, assuming the other parameters stay at their
default values and turning off load rebalancing. The
space range and data moved columns show a similar
effect: when the threshold is tight, rebalancing evens
out the space usage at the cost of substantial data mi-
gration. Higher thresholds produce more unevenly dis-
tributed space usage, but involve less migration.

The last row shows the impact of using both average
values for load- and space-driven rebalancing, assum-
ing other parameters at their default values. This result
shows that our full rebalancer brings both the peak load
and space below their thresholds.

Finally, we study the impact of the frequency with
which the rebalancer wakes up (not shown), while other
parameters stay at their default values. We consider wak-
ing up every 30 minutes, 1 hour, and 2 hours. The results
show that, for our setup, all these frequencies produce
the same statistics as in the third row of the table.

6.3 Experimental results
We start this section by presenting experimental results
on the performance of the DH-HDFS routers. We then
study the performance of rebalancing operations.
Router performance. To explore the limits of our
router’s performance, we study two scenarios: a work-
load dominated by block reads, and a workload with

USENIX Association 2017 USENIX Annual Technical Conference 807

Study Version Load range Space range Data moved
Load threshold average (30,500 acesses / sec) 27,250 - 30,600 accesses / sec 3 - 658 TB 33 TB

35,000 accesses / sec 21,508 - 34,457 accesses / sec 6.5 - 665 TB 26 TB
40,000 accesses / sec 21,508 - 37,834 accesses / sec 6.5 - 665 TB 24 TB

Space threshold average (136 TB) 3,746 - 142,573 accesses / sec 122 - 132 TB 543 TB
2 x average 5,873 - 141,789 accesses / sec 33 - 247 TB 439 TB
4 x average 5,953 - 141,858 accesses / sec 16 - 495 TB 190 TB

Space and load average, average 24,500 - 31,500 accesses / sec 117 - 136 TB 554 TB

Table 2: Rebalancing results for DH-HDFS and DC-7.

0

2

4

6

8

10

0 50 100 150 200

A
ve

ra
ge

 la
te

nc
y

(m
s)

Thousands of requests per second

1R + 1NN

1NN

12R + 4NN

4NN

Figure 5: Performance for metadata operations.

metadata-only operations. The former scenario is the
best for our routers, and the latter is the worst; any real
workload would perform between these extremes. In the
best-case scenario, the performance of the routers is irrel-
evant. As each block is large (256MB), client-observed
read latencies are measured in seconds (it takes seconds
to read such a large block from disk), routers and NNs
have little work to do (as clients contact DNs directly for
blocks), and saturation occurs when the DNs saturate.

In the worst-case scenario, Figure 5 depicts the aver-
age metadata-only latency, as a function of load. This
figure shows that one NN saturates at roughly 40k re-
quests/second, whereas 4 NNs again saturate at roughly
4× higher load. In the small configuration, the routers
add less than 1ms of latency and saturate slightly sooner.
In the large configuration, the routers add up to 3ms of
latency and saturate around 150k requests/second.

These results suggest that the routers perform well,
adding relatively low latencies to metadata operations
and negligible latencies to block accesses. Given that the
latency of actual block transfers would likely dominate
in real workloads, our routers should pose no significant
overheads or bottlenecks in most scenarios.
Rebalancer performance. To explore the performance
of rebalancing in our system, we study the Yahoo! trace
when we replay it against a DH-HDFS setup with 4 sub-
clusters and 4k servers. Figure 6 depicts the distribu-
tion of requests across the subclusters without rebalanc-
ing over time. The figure stacks the requests sent to each
subcluster, representing them with different colors.

The figure shows that subcluster 0 receives a large
amount of load around 4000 seconds into the execution.
To demonstrate the rebalancer, we set the load watermark
threshold at 2000 requests/second over any 5-minute pe-

0

500

1000

1500

2000

0 2000 4000 6000 8000 10000 12000

R
eq

ue
st

s
pe

r
se

co
nd

Time (seconds)

Subcluster 3

Subcluster 2

Subcluster 1

Subcluster 0

Figure 6: Subclusters’ loads without rebalancing.

riod. As this threshold is exceeded, the rebalancer moves
4 folders of roughly the same size (400 files each) with
a total of 13TB away from subcluster 0. Over repeated
runs, we find that folder migrations take 354 seconds on
average, 80% take less than 500 seconds, but one of them
takes up to 25 minutes. Performance is especially vari-
able when primary tenant traffic on the network is signif-
icant, i.e. during the weekdays. Most of the rebalancing
time is spent in DistCP, with less than 34 seconds going
into ensuring consistency and synchronizing the mount
tables. The MILP solver takes negligible time (<100
milliseconds) to select the migrations.

These results demonstrate that the rebalancer itself is
efficient, but the overall time to complete migrations can
vary significantly, mainly due to primary tenant traffic.
Nevertheless, recall that rebalances occur in the back-
ground and transparently to users, so the migration time
variability is unlikely to be a problem.
File system performance. To illustrate the impact of the
network traffic on the performance of our federated file
system, Figure 7 shows Cumulative Distribution Func-
tions (CDFs) of the performance of client-router inter-
actions over the trace execution during a weekday (left)
and during a weekend (right). The left graph shows much
greater performance variability than the right one.

These results illustrate that harvesting spare resources
for lower priority (secondary) workloads leaves their per-
formance at the mercy of the primary tenants’ resource
demands. Most secondary workloads have lax perfor-
mance requirements, so variability only becomes a prob-
lem when it is extreme. Nevertheless, if datacenter oper-
ators desire greater performance predictability for some
of their secondary workloads, they must (1) account for
these workloads in their resource provisioning, e.g. net-

808 2017 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

1 10 100 1000

C
D

F
 (

%
)

Latency (ms)
1 10 100 1000

Latency (ms)

SC 0

SC 1

SC 2

SC 3

Figure 7: Client-router latency during weekday (left) and
weekend (right).

work bandwidth; or (2) ensure that these workloads re-
ceive better than best-effort quality of service.

7 Lessons from production deployment
We deployed DH-HDFS in 4 production datacenters 6
months ago. The deployments currently involve more
than 30k servers, and range from roughly 1k servers
across 3 subclusters to more than 19k servers across 6
subclusters. We learned many lessons from these deploy-
ments and from onboarding users onto DH-HDFS.
Server-to-subcluster assignment and bootstrapping.
Once we started deploying DH-HDFS, switching from
manual server assignment to consistent hashing caused
many servers to switch subclusters. This implied moving
large amounts of data, which produced heavy network
traffic and long downtimes. To avoid this data reshuf-
fling, the administrators introduced a new service called
the Subcluster Controller. This component maintained
the server-to-subcluster assignments and authorized (or
not) servers to join a subcluster. Servers with data from
a subcluster are not allowed to join a different subclus-
ter. Once a server is reimaged or decommissioned, the
controller allows it to join the new subcluster assigned
through consistent hashing.
File-to-subcluster assignment and onboarding users.
Before introducing DH-HDFS, users submitted their
batch workloads pointing to data of one subcluster (meta-
data manager). To onboard workloads gradually, we de-
ployed the routers to listen to their own RPC and HTTP
ports (instead of the metadata managers’ ports).

Workloads that do not yet fully leverage the single
DH-HDFS namespace still want to access subclusters di-
rectly. For this reason, we added special mount points
that point to the root of each subcluster.
Spreading large datasets across subclusters. Even un-
der DH-HDFS, workloads operating on large datasets
were having difficulty (1) storing all their data in a sin-
gle subcluster and (2) overloading the metadata manager.
One option would have been to spread the files across
folders in different subclusters, but users wanted this data
in a single folder. For these users, we created special
mount points that span multiple subclusters. Each file

within such a mount point is assigned to one of the sub-
clusters using consistent hashing. As explained in Sec-
tion 4.3, this approach adds additional complexity for re-
naming. For this reason, we disallow renames and re-
strict these special mount points to certain workloads.
Rebalancing and administrators. Currently, the rebal-
ancer is a service triggered by the administrator. It col-
lects the space utilization and access statistics, and pro-
poses which paths to move across subclusters. Our de-
sign expected paths to be unique across the namespace.
However, administrators created multiple mount entries
pointing to the same physical data (in the same subclus-
ter). In this case, the federated namespace had loops and
counted multiple times the same physical entity. In ad-
dition, we had the special mount points (i.e., subcluster
roots and folders spread across subclusters), which made
the namespace even more complex. To handle these sit-
uations when collecting the statistics, we modified the
rebalancer to (1) ignore the special mount points; and (2)
map all aliases to a single federated location. For exam-
ple, if /tmp/logs and /logs both point to /logs in
subcluster 0, we assign all the accesses to just one path.
Performance in production. Our largest deployment
has 24 routers for 6 subclusters, and typically runs large
data analytics workloads on an index of the Web. The
load across the routers and their latency are fairly even.
The latency of the routers is around 3 milliseconds,
whereas the latency of the metadata managers is around
1 millisecond. These match the latencies from Section 6.

For this deployment, we use a 5-server Zookeeper en-
semble for the state store. On average, a router sends 5
requests to the store every 10 seconds. This is a low load
compared to the other services that use the ensemble.

8 Conclusions
In this paper, we proposed techniques for automatically
and transparently scaling the distributed file systems
used in commercial datacenters. We focused on systems
where interactive services and batch workloads share the
same servers, but most of our work also applies to ded-
icated servers. Our results show that our techniques in-
troduce little overhead, and our system behaves well even
in extreme scenarios. We conclude that it is possible to
scale existing systems to very large sizes in a simple and
efficient manner, while exposing a single namespace.

Acknowledgments
We thank the ATC reviewers and our shepherd, Vishakha
Gupta, for their comments on our paper. We also thank
Bing’s Multitenancy team, Chris Douglas, Carlo Curino,
and John Douceur for many suggestions and discussions,
their comments on our paper, and help open-sourcing our
system and deploying it in production.

USENIX Association 2017 USENIX Annual Technical Conference 809

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CER-

MAK, G., CHAIKEN, R., DOUCEUR, J. R., HOW-
ELL, J., LORCH, J. R., THEIMER, M., AND WAT-
TENHOFER, R. P. FARSITE: Federated, Available,
and Reliable Storage for an Incompletely Trusted
Environment. In OSDI (2002).

[2] APACHE FOUNDATION. HDFS Architecture
Guide, 2008. http://hadoop.apache.org/
docs/current/hdfs_design.html.

[3] APACHE FOUNDATION. ViewFs Guide,
2016. http://hadoop.apache.org/
docs/current/hadoop-project-dist/
hadoop-hdfs/ViewFs.html.

[4] ARENE, M., CHALIPARAMBIL, K., CURINO, C.,
DOUGLAS, C., FUMAROLA, G. M., HEDDAYA,
S., KRISHNAN, S., RAMAKRISHNAN, R., RAO,
S., SAKALANAGA, S., SHAH, R., SHI, B., AND
ZHOU, B. Enable YARN RM Scale Out via Feder-
ation using Multiple RM’s. https://issues.
apache.org/jira/browse/YARN-2915.

[5] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE,
U. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines.
Morgan & Claypool Publishers, 2009.

[6] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J.,
VAJGEL, P., ET AL. Finding a Needle in Haystack:
Facebook’s Photo Storage. In OSDI (2010).

[7] CHAIKEN, R., JENKINS, B., LARSON, P. Å.,
RAMSEY, B., SHAKIB, D., WEAVER, S., AND
ZHOU, J. SCOPE: Easy and Efficient Parallel Pro-
cessing of Massive Data Sets. In VLDB (2008).

[8] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In SOSP (2007).

[9] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In ASPLOS (2014).

[10] DOUCEUR, J. R., AND HOWELL, J. Distributed
Directory Service in the Farsite File System. In
OSDI (2006).

[11] FOUNDATION, A. HDFS Federation, 2016.
https://hadoop.apache.org/docs/
r2.7.2/hadoop-project-dist/
hadoop-hdfs/Federation.html.

[12] GHEMAWAT, S., GOBIOFF, H., AND LEUNG,
S. T. The Google File System. In SOSP (2003).

[13] HILDRUM, K., DOUGLIS, F., WOLF, J. L., YU,
P. S., FLEISCHER, L., AND KATTA, A. Storage
Optimization for Large-Scale Distributed Stream-
Processing Systems. Transactions on Storage
(TOS) 3, 4 (2008), 5.

[14] HSIAO, H. C., CHUNG, H. Y., SHEN, H., AND
CHAO, Y. C. Load Rebalancing for Distributed
File Systems in Clouds. TPDS 24, 5 (2013), 951–
962.

[15] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND
REED, B. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In USENIX ATC (2010).

[16] KACE, J., AND GOIRI, I. Router-based HDFS
federation, 2017. https://issues.apache.
org/jira/browse/HDFS-10467.

[17] KARGER, D., LEHMAN, E., LEIGHTON, T., PAN-
IGRAHY, R., LEVINE, M., AND LEWIN, D. Con-
sistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the
World Wide Web. In STOC (1997).

[18] LO, D., CHENG, L., GOVINDARAJU, R., RAN-
GANATHAN, P., AND KOZYRAKIS, C. Heracles:
Improving Resource Efficiency at Scale. In ISCA
(2015).

[19] MARS, J., TANG, L., HUNDT, R., SKADRON, K.,
AND SOFFA, M. L. Bubble-up: Increasing Utiliza-
tion in Modern Warehouse Scale Computers Via
Sensible Co-Locations. In MICRO (2011).

[20] MUTHITACHAROEN, A., MORRIS, R., GIL,
T. M., AND CHEN, B. Ivy: A Read/Write Peer-
to-Peer File System. In OSDI (2002).

[21] SINGH, A., KORUPOLU, M., AND MOHAPATRA,
D. Server-Storage Virtualization: Integration and
Load Balancing in Data Centers. In Supercomput-
ing (2008).

[22] VERMA, A., PEDROSA, L., KORUPOLU, M., OP-
PENHEIMER, D., TUNE, E., AND WILKES, J.
Large-Scale Cluster Management at Google with
Borg. In EuroSys (2015).

[23] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D., AND MALTZAHN, C. Ceph: A
Scalable, High-Performance Distributed File Sys-
tem. In OSDI (2006).

[24] WILKES, J. Private communication, 2016.

810 2017 USENIX Annual Technical Conference USENIX Association

http://hadoop.apache.org/docs/current/hdfs_design.html
http://hadoop.apache.org/docs/current/hdfs_design.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://issues.apache.org/jira/browse/YARN-2915
https://issues.apache.org/jira/browse/YARN-2915
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/HDFS-10467

[25] YAHOO! Yahoo! Research Webscope Pro-
gram, 2008. https://webscope.sandbox.
yahoo.com/.

[26] ZHANG, Y., PREKAS, G., FUMAROLA, G. M.,

FONTOURA, M., GOIRI, I., AND BIANCHINI,
R. History-Based Harvesting of Spare Cycles
and Storage in Large-Scale Datacenters. In OSDI
(2016).

USENIX Association 2017 USENIX Annual Technical Conference 811

https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/

	atc17-li_yiwen
	atc17-lawall
	atc17-amit
	atc17-kumar
	atc17-peng
	atc17-guo
	atc17-gunawardhana
	atc17-iorgulescu
	atc17-tang
	atc17-ai
	atc17-hoiland-jorgensen
	atc17-byma
	atc17-bergman
	atc17-zhang
	atc17-ma
	atc17-hayes
	atc17-dall
	atc17-gopalan
	atc17-chen_wei
	atc17-prasad
	atc17-xu
	atc17-lind
	Introduction
	Background
	Threat model
	Trusted execution with Intel SGX
	Security with trusted execution

	Glamdring Design
	Code annotation phase
	Code analysis phase
	Code partitioning phase
	Discussion

	Code Generation and Hardening
	Code transformation
	Code hardening

	Evaluation
	Security evaluation
	Memcached
	LibreSSL
	Digital Bitbox
	Discussion

	Performance evaluation

	Related Work
	Conclusions
	Acknowledgements

	atc17-hahnel
	Introduction
	System Model
	Background
	Intel SGX
	The Page-Fault Channel
	Prime-and-Probe Cache Side-Channel Attacks

	Design
	Noise reduction
	Single Stepping
	Cache Side-Channel Attack

	Attacks
	VC3
	Attack Overview
	Word Length
	Cache Line Address
	Word Position
	Word Recovery

	JPEG

	Implementation
	Implementation on Windows
	SGX
	Single Stepping
	Cache Side-Channel Attacks
	VC3
	JPEG

	Evaluation
	Single Stepping
	Cache Side Channel
	VC3
	JPEG

	Mitigations
	Related Work
	Conclusion

	atc17-tak
	atc17-cidon
	Introduction
	Motivation
	Partitioned vs Pooled
	Slab Allocation Limits Multi-tenancy

	Design
	The Cleaner and Arbiter
	Balancing Eviction Accuracy and Cleaning

	Memshare's Sharing Model
	Allocation Priority
	Increasing Efficiency for Reserved Memory

	Implementation
	The Log
	The Arbiter
	The Cleaner
	Modularity

	Evaluation
	Performance
	Single Tenant Hit Rate

	Microbenchmarks
	Latency
	CPU and Throughput
	Memory Overhead and Utilization

	Related Work
	Conclusion

	atc17-wei
	atc17-xia
	Introduction
	Background and Motivation
	Non-Volatile Memory
	KV operations and indexing efficiency

	HiKV Design and Implementation
	Hybrid index
	Index updating
	Asynchronous updates
	Dynamic threads adaption

	Differential concurrency
	Ordered-write consistency
	Hash index design
	Consistency algorithm

	Recovery
	Implementation

	Evaluation
	Experimental Setup
	Single-threaded performance
	Latency reduction
	Throughput improvement

	Scalability
	Sensitivity analysis
	Sensitivity to NVM write latency
	Sensitivity to dataset size

	Performance breakdown
	Impact of NVM read latency
	Memory consumption
	Recovery time

	Related Work
	Conclusion
	Acknowledgments

	atc17-balmau
	atc17-o_callahan
	atc17-mahdisoltani
	atc17-huang
	atc17-pina
	atc17-stephens
	Introduction
	Background
	Server Networking Queue Configurations
	Optimizations and Queue Configurations
	Configuration Trade-off Study
	Summary

	Titan
	Dynamic Queue Assignment (DQA)
	Dynamic Queue Weight Assignment (DQWA)
	Dynamic Segmentation Offload Sizing (DSOS)

	Implementation
	Methodology
	Evaluation
	Two Server Performance
	Cluster Performance

	Related Work
	Conclusions
	Acknowledgements

	atc17-wu
	atc17-sultana
	atc17-son
	atc17-waldspurger
	atc17-blankstein
	atc17-mashayekhi
	Introduction
	Execution Templates
	Abstraction
	Installation and Instantiation
	Edits
	Patching

	System Design
	Control Plane Requirements
	Nimbus Architecture
	Nimbus Execution and Data Model
	Nimbus Control Plane

	Implementation
	Installation and Instantiation
	Patching
	Edits
	Fault Recovery

	Evaluation
	Methodology
	Micro-Benchmarks
	Control Plane Performance
	Dynamic Scheduling
	Complex Applications

	Related Work
	Discussion and Conclusion

	atc17-dietrich
	Introduction
	Redundant Builds
	About This Paper

	Problem Analysis
	Modular Decomposition
	Build Systems and Dependencies
	Detecting Redundant Compilation

	The cHash Approach
	Implementation
	Experimental Results
	Evaluated Applications
	Validation of cHash Implementation
	Rebuild with Minimal Changes
	Rebuild with Commit-Sized Changes

	Related Work
	Discussion
	Threats to Validity
	Advantages of cHash
	AST Hash Precision
	Future Work

	Conclusion

	atc17-chen_yu_lin
	atc17-sun
	atc17-li_runhui
	atc17-li_huiba
	atc17-smejkal
	atc17-kashyap
	atc17-miao
	atc17-malicevic
	atc17-tsai
	Introduction
	Background
	Software Guard Extensions (SGX)
	SGX Software Design Space

	Design Overview
	Threat Model
	User Policy Configuration
	Multi-Process Applications

	Shielding Linux Abstractions
	Shielding Dynamic Loading
	Shielding Single-Process Abstractions
	Shielding Multi-Process Abstractions

	Evaluation
	Server applications
	Command-Line Applications
	Performance Overhead Analysis
	TCB Size and Shielded Functionality

	Related Work
	Conclusion

	atc17-quoc
	Introduction
	Overview
	System Architecture
	System Model

	Design
	Submitting Queries
	Answering Queries
	Step I: Sampling at Clients
	Step II: Answering Queries at Clients
	Step III: Transmitting Answers via Proxies
	Step IV: Generating Result at the Aggregator

	Practical Considerations
	Historical Analytics
	Query Inversion

	Privacy Analysis
	Implementation
	Evaluation: Microbenchmarks
	Evaluation: Case Studies
	Experimental Setup
	Results from Case Studies

	Related Work
	Conclusion

	atc17-kuppusamy
	Introduction
	Background
	Community repositories
	Project and snapshot metadata

	Threat model
	Analysis of the limitations of existing systems
	Systems that are insecure
	Systems that are bandwidth-inefficient

	Mercury: a new security system
	Insight: shifting trust from developers to the repository
	Security analysis
	Recovering from a repository compromise
	Securing out-of-date package managers
	Deleting projects from snapshot metadata
	Protection against malicious mirrors
	Implementation

	Evaluation of bandwidth costs
	Experimental setup
	Bandwidth overhead by security system
	Bandwidth versus number of projects
	Bandwidth versus rate of project updates

	Related work
	Conclusions

	atc17-kim
	atc17-hu
	atc17-dong
	atc17-guo
	atc17-wang
	1 Introduction
	2 Performance Impact of Automatic Memory Management
	3 Elastic Memory Allocation
	3.1 Implementing Dynamic Heap Adjustment in a JVM
	3.2 Dynamic Memory Allocation
	3.2.1 Problem Statement
	3.2.2 Runtime Metrics
	3.2.3 Space of Possible Actions
	3.2.4 Memory Allocation Algorithm

	3.3 Estimating Runtime Values
	3.3.1 Heap Growth
	3.3.2 GC Time and Space Saving

	4 Evaluation
	4.1 Scheduling
	4.1.1 Scheduling Simultaneous Queries
	4.1.2 Scheduling Queries with Delays
	4.1.3 Timestep Interval

	4.2 GC Models

	5 Related Work
	6 Conclusion and Future Work

	atc17-hahn
	atc17-lu
	atc17-park
	atc17-misra
	Blank Page
	Blank Page

